
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134021362
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134021362
https://plusone.google.com/share?url=http://www.informit.com/title/9780134021362
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134021362
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134021362/Free-Sample-Chapter

SWIFT™ FOR PROGRAMMERS
DEITEL® DEVELOPER SERIES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission
to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13402136-2
ISBN-10: 0-13-402136-3

Text printed in the United States at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, January 2015

SWIFT™ FOR PROGRAMMERS
DEITEL® DEVELOPER SERIES

Paul Deitel • Harvey Deitel
Deitel & Associates, Inc.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Deitel® Ser ies Page
Deitel® Developer Series
Android for Programmers: An App-Driven

Approach, 2/E, Volume 1
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2012 for Programmers
iOS® 8 for Programmers: An App-Driven Approach

with Swift™, Volume 1
Java™ for Programmers, 3/E
JavaScript for Programmers
Swift™ for Programmers

How To Program Series
Android How to Program, 2/E
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, Early Objects Version, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
(continued in next column)

(continued from previous column)
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2012 How to Program, 6/E
Visual Basic® 2010 How to Program, 5/E
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android App Development Fundamentals, 2/e
C++ Fundamentals
Java™ Fundamentals, 2/e
C# 2012 Fundamentals
C# 2010 Fundamentals
iOS® 8 App Development Fundamentals, 3/e
JavaScript Fundamentals
Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan

• Twitter®—@deitel

• Google+™—google.com/+DeitelFan

• YouTube™—youtube.com/DeitelTV

• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:
 www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
www.deitel.com

www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iOS app development, and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

http://www.deitel.com/books/CourseSmart/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/training/
http://www.deitel.com
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html
http://www.deitel.com/books/LiveLessons/

In Loving Memory of Aunt Rochelle Deitel:

The most positive person we ever knew.
You brought joy to our lives.

Harvey, Barbara, Paul and Abbey

Trademarks
DEITEL, the double-thumbs-up bug and DIVE-INTO are registered trademarks of Deitel & Associates, Inc.

Apple, iOS, iPhone, iPad, iPod touch, Xcode, Swift, Objective-C, Cocoa and Cocoa Touch are trade-
marks or registered trademarks of Apple, Inc.

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Preface xix

Before You Begin xxvii

1 Introduction to Swift and Xcode 6 1
1.1 Introduction 2
1.2 Apple’s OS X® and iOS® Operating Systems: A Brief History 3
1.3 Objective-C 3
1.4 Swift: Apple’s Programming Language of the Future 4

1.4.1 Key Features of Many Popular Languages 4
1.4.2 Performance 6
1.4.3 Error Prevention 6
1.4.4 Swift Standard Library 6
1.4.5 Swift Apps and the Cocoa® and Cocoa Touch® Frameworks 7
1.4.6 Swift and Objective-C Interoperability 9
1.4.7 Other Apple Swift Resources 9

1.5 Can I Use Swift Exclusively? 9
1.5.1 Objective-C Programmers Who Are Developing New iOS

and OS X Apps 10
1.5.2 Objective-C Programmers Who Are Enhancing Existing iOS

and OS X Apps 10
1.5.3 Java, C++ and C# Programmers Who Are New to iOS and

OS X App Development 10
1.5.4 Significant Language Changes Expected 10
1.5.5 A Mixture of Swift and Objective-C 10

1.6 Xcode 6 Integrated Development Environment 10
1.7 Creating Swift Apps with Xcode 6 13
1.8 Web Resources 18

2 Introduction to Swift Programming 20
2.1 Introduction 21
2.2 A First Swift Program: Printing a Line of Text 21
2.3 Modifying Your First Program 23
2.4 Composing Larger Strings with String Interpolation 25
2.5 Another Application: Adding Integers 27

Contents

viii Contents

2.6 Arithmetic 28
2.6.1 Automatic Arithmetic Overflow Checking 29
2.6.2 Operator Precedence 29

2.7 Decision Making: The if Conditional Statement and the
Comparative Operators 29

2.8 Wrap-Up 32

3 Introduction to Classes, Objects, Methods and
Functions 33

3.1 Introduction 34
3.2 Account Class 35

3.2.1 Defining a Class 35
3.2.2 Defining a Class Attribute as a Stored Property 36
3.2.3 Defining a public Stored Property with a private Setter 37
3.2.4 Initializing a Class’s Properties with init 37
3.2.5 Defining a Class’s Behaviors as Methods 39

3.3 Creating and Using Account Objects 40
3.3.1 Importing the Foundation Framework 40
3.3.2 Creating and Configuring an NSNumberFormatter to Format

Currency Values 41
3.3.3 Defining a Function—formatAccountString 42
3.3.4 Creating Objects and Calling an Initializer 42
3.3.5 Calling Methods on Objects—Depositing into Account Objects 43
3.3.6 Calling Methods on Objects—Withdrawing from Account Objects 44

3.4 Value Types vs. Reference Types 45
3.5 Software Engineering with Access Modifiers 46
3.6 Wrap-Up 47

4 Control Statements; Assignment, Increment
and Logical Operators 48

4.1 Introduction 49
4.2 Control Statements 49
4.3 if Conditional Statement 50
4.4 if…else Conditional Statement 50
4.5 Compound Assignment Operators 52
4.6 Increment and Decrement Operators 53
4.7 switch Conditional Statement 55

4.7.1 Using a switch Statement to Convert Numeric Grades to
Letter Grades 55

4.7.2 Specifying Grade Ranges with the Closed-Range Operator (...) 56
4.7.3 The default Case 56
4.7.4 Other Patterns in the case Label 57
4.7.5 No Automatic Fall Through as in Other C-Based Languages 57

Contents ix

4.8 while Loop Statement 57
4.9 do…while Loop Statement 58
4.10 for…in Loop Statement and the Range Operators 58

4.10.1 Iterating Over Collections of Values with Closed Ranges,
Half-Open Ranges and the Global stride Function 59

4.10.2 Compound-Interest Calculations with for…in 60
4.10.3 Formatting Strings with Field Widths and Justification 61
4.10.4 Performing the Interest Calculations 62
4.10.5 A Warning about Displaying Rounded Values 62

4.11 for Loop Statement 63
4.11.1 General Format of a for Statement 64
4.11.2 Scope of a for Statement’s Control Variable 64
4.11.3 Expressions in a for Statement’s Header Are Optional 64

4.12 break and continue Statements 64
4.12.1 break Statement Example 64
4.12.2 continue Statement Example 65

4.13 Logical Operators 66
4.13.1 Logical AND (&&) Operator 66
4.13.2 Logical OR (||) Operator 67
4.13.3 Short-Circuit Evaluation of Complex Conditions 67
4.13.4 Logical NOT (!) Operator 68

4.14 Wrap-Up 69

5 Functions and Methods: A Deeper Look;
enums and Tuples 70

5.1 Introduction 71
5.2 Modules in Swift 72
5.3 Darwin Module—Using Predefined C Functions 73
5.4 Multiple-Parameter Function Definition 74
5.5 Random-Number Generation 76
5.6 Introducing Enumerations and Tuples 77

5.6.1 Introducing Enumeration (enum) Types 80
5.6.2 Tuples and Multiple Function Return Values 82
5.6.3 Tuples as Function Arguments 83
5.6.4 Accessing the Raw Value of an enum Constant 83

5.7 Scope of Declarations 84
5.8 Function and Method Overloading 86
5.9 External Parameter Names 88
5.10 Default Parameter Values 89
5.11 Passing Arguments by Value or by Reference 90
5.12 Recursion 92
5.13 Nested Functions 93
5.14 Wrap-Up 95

x Contents

6 Arrays and an Introduction to Closures 96
6.1 Introduction 97
6.2 Arrays 98
6.3 Creating and Initializing Arrays 99
6.4 Iterating through Arrays 101
6.5 Adding and Removing Array Elements 104
6.6 Subscript Expressions with Ranges 107
6.7 Sorting Arrays; Introduction to Closures 108

6.7.1 Closures and Closure Expressions 108
6.7.2 Array Methods sort and sorted 109
6.7.3 Sorting with Function ascendingOrder 111
6.7.4 Using a Fully Typed Closure Expression 111
6.7.5 Using a Closure Expression with Inferred Types 111
6.7.6 Using a Closure Expression with Inferred Types and an

Implicit return 112
6.7.7 Using a Closure Expression with Shorthand Argument Names 112
6.7.8 Using an Operator Function as a Closure Expression 112
6.7.9 Reversing an Array’s Elements 112

6.8 Array Methods filter, map and reduce 112
6.8.1 Filtering an Array 114
6.8.2 Mapping an Array’s Elements to New Values 115
6.8.3 Reducing an Array’s Elements to a Single Value 115
6.8.4 Combining Filtering, Mapping and Reducing 116

6.9 Card Shuffling and Dealing Simulation; Computed Properties; Optionals 116
6.9.1 Class Card 116
6.9.2 Class DeckOfCards 117
6.9.3 DeckOfCards Initializer 118
6.9.4 DeckOfCards Method shuffle 119
6.9.5 DeckOfCards Method dealCard and Optional Return Values 119
6.9.6 Shuffling and Dealing Cards 119
6.9.7 Unwrapping Optional Values with Optional Binding and the

if or while Statements 121
6.10 Passing Arrays to Functions 121

6.10.1 Passing an Entire Array By Value 123
6.10.2 Passing One Array Element By Value 123
6.10.3 Passing an Entire Array By Reference 123
6.10.4 Passing One Array Element By Reference 124

6.11 Notes on Pass-By-Value and Pass-By-Reference 124
6.12 Multidimensional Arrays 124
6.13 Variadic Parameters 128
6.14 Wrap-Up 129

7 Dictionary 131
7.1 Introduction 132

Contents xi

7.1.1 What Is a Dictionary? 132
7.1.2 Dictionary Examples 133
7.1.3 Dictionary is a Generic Type 133
7.1.4 Dictionary Is a Value Type 133
7.1.5 Dictionary Is Implemented as a Hash Table 134
7.1.6 Dictionary Is Type Safe 134

7.2 Declaring a Dictionary: Key–Value Pairs and Dictionary Literals 134
7.2.1 Dictionary Key–Value Pairs and Dictionary Literals 135
7.2.2 Declaring a Dictionary with Generics and Explicit Typing 136
7.2.3 Declaring a Dictionary with Type Inference 136
7.2.4 Invoking Dictionary’s description Property Explicitly

and Implicitly 136
7.3 Declaring and Printing Empty Dictionary Objects 136
7.4 Iterating through a Dictionary with for…in 137
7.5 General-Purpose Generic Dictionary Printing Function 139
7.6 Dictionary Equality Operators == and != 140
7.7 Dictionary count and isEmpty Properties 141
7.8 Dictionary Whose Values Are Arrays 142
7.9 Dictionary’s keys and values Properties 143
7.10 Inserting, Modifying and Removing Key–Value Pairs with Subscripting 145

7.10.1 Updating the Value of an Existing Key–Value Pair 147
7.10.2 Adding a New Key–Value Pair 147
7.10.3 Removing a Key–Value Pair 147
7.10.4 Subscripting Returns an Optional Value 147
7.10.5 Processing an Optional Value 148
7.10.6 Inserting a New Key–Value Pair in an Empty Dictionary 148

7.11 Inserting, Removing and Modifying Key–Value Pairs 148
7.11.1 Inserting a Key–Value Pair with Dictionary

Method updateValue 150
7.11.2 Updating a Key–Value Pair with Dictionary

Method updateValue 151
7.11.3 Removing a Key–Value Pair with Dictionary

Method removeValueForKey 151
7.11.4 Attempting to Remove a Nonexistent Key–Value Pair

with Method removeValueForKey 151
7.11.5 Emptying a Dictionary with Method removeAll 151

7.12 Building a Dictionary Dynamically: Word Counts in a String 151
7.13 Bridging Between Dictionary and Foundation Classes 153
7.14 Hash Tables and Hashing 154
7.15 Wrap-Up 155

8 Classes: A Deeper Look and Extensions 157
8.1 Introduction 158
8.2 Time Class: Default Initializers and Property Observers 160

8.2.1 Stored Property Initialization and the Default Initializer 162

xii Contents

8.2.2 willSet and didSet Property Observers for Stored Properties 162
8.2.3 Computed Read-Only Properties universalDescription and

description 163
8.2.4 Using Class Time 164

8.3 Designated and Convenience Initializers in Class Time 166
8.3.1 Class Time with Overloaded Initializers 166
8.3.2 Designated Initializers 167
8.3.3 Convenience Initializers and Initializer Delegation with self 168
8.3.4 Using Class Time’s Designated and Convenience Initializers 169

8.4 Failable Initializers in Class Time 170
8.4.1 Failable Designated Initializers 172
8.4.2 Failable Convenience Initializers 172
8.4.3 Implicitly Unwrapped Failable Initializers 173
8.4.4 Invoking Failable Initializers 173

8.5 Extensions to Class Time 174
8.5.1 Class Time with Extensions 175
8.5.2 Testing Class Time’s Extensions 177
8.5.3 Extensions and Access Modifiers 178

8.6 Read-Write Computed Properties 178
8.7 Composition 181

8.7.1 Class Employee 181
8.7.2 Testing Class Employee 183

8.8 Automatic Reference Counting, Strong References and Weak References 184
8.9 Deinitializers 185
8.10 Using NSDecimalNumber for Precise Monetary Calculations 185
8.11 Type Properties and Type Methods 187

8.11.1 Type Scope 188
8.11.2 Motivating Type Properties 188
8.11.3 Creating Type Properties and Type Methods in Classes 189
8.11.4 Using Type Properties and Type Methods 190

8.12 Lazy Stored Properties and Delayed Initialization 191
8.13 Wrap-Up 192

9 Structures, Enumerations and Nested Types 194
9.1 Introduction 195
9.2 Structure Definitions 196

9.2.1 Time struct Definition with Default and Memberwise Initializers 198
9.2.2 Custom Initializers extension to struct Time 198
9.2.3 Computed Properties extension to struct Time 199
9.2.4 Mutating Methods extension to struct Time 199
9.2.5 Testing the Time struct 200

9.3 Enumerations and Nested Types 202
9.3.1 Card struct with Nested Suit and Face enum Types 202
9.3.2 DeckOfCards struct 205

Contents xiii

9.3.3 Testing the struct Types Card and DeckOfCards, and the enum
Types Suit and Face 207

9.4 Choosing Among Structures, Enumerations and Classes in Your Apps 209
9.5 Associated Values for enums 210
9.6 Wrap-Up 212

10 Inheritance, Polymorphism and Protocols 214
10.1 Introduction 215

10.1.1 Superclasses and Subclasses 215
10.1.2 Polymorphism 216
10.1.3 Implementing for Extensibility 216
10.1.4 Programming in the Specific 216
10.1.5 Protocols 217

10.2 Superclasses and Subclasses 217
10.3 An Inheritance Hierarchy: CommunityMembers 218
10.4 Case Study: Using Inheritance to Create Related Employee Types 218

10.4.1 Superclass CommissionEmployee 220
10.4.2 Subclass BasePlusCommissionEmployee 221
10.4.3 Testing the Class Hierarchy 224

10.5 Access Modifiers in Inheritance Hierarchies 226
10.6 Introduction to Polymorphism: A Polymorphic Video Game Discussion 227
10.7 Case Study: Payroll System Class Hierarchy Using Polymorphism 228

10.7.1 Base Class Employee 229
10.7.2 Subclass SalariedEmployee 231
10.7.3 Subclass CommissionEmployee 232
10.7.4 Indirect Subclass BasePlusCommissionEmployee 233
10.7.5 Polymorphic Processing 235

10.8 Case Study: Creating and Using Custom Protocols 238
10.8.1 Protocol Capabilities Must Be Defined in Each Conforming Type 238
10.8.2 Protocols and Is-a Relationships 238
10.8.3 Relating Disparate Types Via Protocols 238
10.8.4 Accounts-Payable Application 239
10.8.5 Developing a Payable Hierarchy 239
10.8.6 Declaring Protocol Payable 240
10.8.7 Creating Class Invoice 241
10.8.8 Using extensions to Add Printable and Payable

Protocol Conformance to Class Employee 242
10.8.9 Using Protocol Payable to Process Invoices and Employees

Polymorphically 244
10.9 Additional Protocol Features 246

10.9.1 Protocol Inheritance 246
10.9.2 Class-Only Protocols 246
10.9.3 Optional Capabilities in Protocols 246
10.9.4 Protocol Composition 247
10.9.5 Common Protocols in Swift 247

xiv Contents

10.10 Using final to Prevent Method Overriding and Inheritance 248
10.11 Initialization and Deinitialization in Class Hierarchies 248

10.11.1 Basic Class-Instance Initialization 248
10.11.2 Initialization in Class Hierarchies 249
10.11.3 Initialization of a BasePlusCommissionEmployee Object 250
10.11.4 Overriding Initializers and Required Initializers 250
10.11.5 Deinitialization in Class Hierarchies 251

10.12 Wrap-Up 251

11 Generics 253
11.1 Introduction 254
11.2 Motivation for Generic Functions 254
11.3 Generic Functions: Implementation and Specialization 255
11.4 Type Parameters with Type Constraints 258
11.5 Overloading Generic Functions 259
11.6 Generic Types 259
11.7 Note About Associated Types for Protocols 263
11.8 Wrap-Up 263

12 Operator Overloading and Subscripts 264
12.1 Introduction 265
12.2 String Operators and Methods 266

12.2.1 String Variables and Constants 268
12.2.2 String Comparative Operators 268
12.2.3 Custom String Unary Prefix Operator ! 269
12.2.4 String Concatenation with Operators + and += 269
12.2.5 String Subscript ([]) Operator for Creating Substrings 270
12.2.6 Other String Methods 270

12.3 Custom Complex Numeric Type with Overloaded Arithmetic Operators 271
12.3.1 Overloaded Operator Functions +, - and * 272
12.3.2 Overloading the Arithmetic Assignment Operator += 272
12.3.3 Performing Arithmetic with Complex Numbers 273

12.4 Overloading Arithmetic Operators for Class NSDecimalNumber 274
12.4.1 Overloading the Multiplication Operator (*) 275
12.4.2 Overloading the Addition Operator (+) 276
12.4.3 Using the Overloaded Operators 276
12.4.4 Overloading the *= Multiplication Assignment Operator 276

12.5 Overloading Unary Operators: ++ and -- 276
12.5.1 Overloading Unary Prefix Operators That Modify

Their Operands 278
12.5.2 Overloading Unary Postfix Operators That Modify

Their Operands 278
12.5.3 Swift’s AnyObject Type—Bridging Between Objective-C and Swift 278

12.6 Overloading Subscripts 279

Contents xv

12.6.1 Box Type with Custom Subscripts 279
12.6.2 Subscript Syntax 281
12.6.3 Type Box’s Int Subscript and the precondition Function 281
12.6.4 Type Box’s String Subscript 282
12.6.5 Using Type Box’s Subscripts 282

12.7 Custom Operators 283
12.7.1 Precedence and Associativity 283
12.7.2 Symbols Used in Custom Operators 284
12.7.3 Defining a Custom Exponentiation Operator for Type Int 285

12.8 Custom Generic Operators 286
12.9 Wrap-Up 287

13 iOS 8 App Development: Welcome App 288
13.1 Introduction 289
13.2 Technologies Overview 290

13.2.1 Xcode and Interface Builder 290
13.2.2 Labels and Image Views 290
13.2.3 Asset Catalogs and Image Sets 291
13.2.4 Running the App 291
13.2.5 Accessibility 291
13.2.6 Internationalization 291

13.3 Creating a Universal App Project with Xcode 291
13.3.1 Xcode Projects and App Templates 291
13.3.2 Creating and Configuring a Project 292

13.4 Xcode Workspace Window 293
13.4.1 Navigator Area 294
13.4.2 Editor Area 294
13.4.3 Utilities Area and Inspectors 295
13.4.4 Debug Area 295
13.4.5 Xcode Toolbar 295
13.4.6 Project Navigator 296
13.4.7 Keyboard Shortcuts 296

13.5 Storyboarding the Welcome App’s UI 296
13.5.1 Configuring the App for Portrait and Landscape Orientations 297
13.5.2 Providing an App Icon 297
13.5.3 Creating an Image Set for the App’s Image 299
13.5.4 Overview of the Storyboard and the Xcode Utilities Area 300
13.5.5 Adding an Image View to the UI 302
13.5.6 Using Inspectors to Configure the Image View 302
13.5.7 Adding and Configuring the Label 304
13.5.8 Using Auto Layout to Support Different Screen Sizes and

Orientations 306
13.6 Running the Welcome App 308

13.6.1 Testing on the iOS Simulator 308

xvi Contents

13.6.2 Testing on a Device (for Paid Apple iOS Developer Program
Members Only) 311

13.7 Making Your App Accessible 311
13.7.1 Enabling Accessibility for the Image View 311
13.7.2 Confirming Accessibility Text with the Simulator’s

Accessibility Inspector 312
13.8 Internationalizing Your App 313

13.8.1 Locking Your UI During Translation 314
13.8.2 Exporting Your UI’s String Resources 315
13.8.3 Translating the String Resources 316
13.8.4 Importing the Translated String Resources 316
13.8.5 Testing the App in Spanish 317

13.9 Wrap-Up 318

14 iOS 8 App Development: Tip Calculator App 319
14.1 Introduction 320
14.2 Test-Driving the Tip Calculator App in the iPhone and iPad Simulators 321
14.3 Technologies Overview 322

14.3.1 Swift Programming 322
14.3.2 Swift Apps and the Cocoa Touch® Frameworks 322
14.3.3 Using the UIKit and Foundation Frameworks in Swift Code 323
14.3.4 Creating Labels, a Text Field and a Slider with Interface Builder 324
14.3.5 View Controllers 324
14.3.6 Linking UI Components to Your Swift Code 324
14.3.7 Performing Tasks After a View Loads 325
14.3.8 Bridging Between Swift and Objective-C Types 325

14.4 Building the App’s UI 325
14.4.1 Creating the Project 325
14.4.2 Configuring the Size Classes for Designing a Portrait

Orientation iPhone App 327
14.4.3 Adding the UI Components 327
14.4.4 Adding the Auto Layout Constraints 334

14.5 Creating Outlets with Interface Builder 337
14.6 Creating Actions with Interface Builder 340
14.7 Class ViewController 341

14.7.1 import Declarations 342
14.7.2 ViewController Class Definition 342
14.7.3 ViewController’s @IBOutlet Properties 342
14.7.4 Other ViewController Properties 343
14.7.5 Overridden UIViewController method viewDidLoad 344
14.7.6 ViewController Action Method calculateTip 345
14.7.7 Global Utility Functions Defined in ViewController.swift 347

14.8 Wrap-Up 349

Contents xvii

A Keywords 351

B Operator Precedence Chart 352

C Labeled break and continue Statements 354
C.1 Introduction 354
C.2 Labeled break Statement 354
C.3 Labeled continue Statement 355

Index 357

This page intentionally left blank

Welcome to Apple’s new Swift programming language and Swift for Programmers! This
book presents leading-edge computing technologies for software developers. It’s designed
primarily for three audiences of developers who already know object-oriented program-
ming and are considering using Swift:

• Objective-C programmers who are developing new iOS and/or OS X apps and
who want to quickly begin using Swift in their apps.

• Objective-C programmers who are enhancing existing iOS and/or OS X apps and
who want to quickly begin using Swift in their apps.

• Java, C++ and C# programmers who are new to iOS and OS X development and
who want to start developing iOS and/or OS X apps in Swift.

Chapters 1 through 12 focus on Swift programming, then Chapters 13 and 14 briefly
introduce iOS 8 app development. The iOS 8 chapters are condensed versions of Chapters 2
and 3 of our book, iOS® 8 for Programmers: An App-Driven Approach with Swift™, in which
we focus on building many complete iPhone® and iPad® apps.1

We emphasize software engineering best practices. At the heart of the book is the
Deitel signature “live-code approach.” Rather than using only code snippets, we present
most concepts in the context of complete working Swift programs that run on OS X®

and— in the last two chapters—iOS® 8. Each complete code example is accompanied by
one or more live sample executions. In the few cases where we use code snippets, we always
extract them from compiled, correctly executing, live-code examples. All of the book’s
source code is available at

Some complete live-code programs might appear to be code snippets—this is because
Swift eliminates various items that are common in many C-based languages, such as the
need for a main method. For example, the following is actually a complete Swift program:

Swift Programming Language
Swift was a surprise announcement at Apple’s WWDC (Worldwide Developer Confer-
ence) in June 2014. Because the language is so new, it’s likely to evolve quickly over the
next few years. Here’s some key aspects of Swift:

1. Swift is a young language that’s evolving rapidly. We plan to post bonus content covering important
new features as they emerge. See http://www.deitel.com/books/SwiftFP for details.

http://www.deitel.com/books/SwiftFP

println("Welcome to Swift Programming!")

Preface

http://www.deitel.com/books/SwiftFP
http://www.deitel.com/books/SwiftFP

xx Preface

• Apple’s Language of the Future—Apple is the most valuable technology company
in the world, and they’ve declared that Swift is their language of the future for
app and systems programming.

• Popular Language Features—Swift is a contemporary language with simpler syntax
than Objective-C. Because Swift is new, its designers were able to include popular
features like those in Objective-C, Java, C#, Ruby, Python and many others. These
features (which are listed in Fig. 1.1) include type inference, tuples, closures (lamb-
das), generics, operator overloading, functions with multiple return values, option-
als, String interpolation, switch statement enhancements and more. We’ve found
it easier and faster to develop iOS and OS X apps in Swift than in Objective-C.

• Performance—Swift was designed for better performance than Objective-C.
Apple has observed that Swift code is about 1.5 times faster than Objective-C
code on today’s multi-core systems.

• Error Prevention—Swift eliminates many common programming errors, making
your code more robust and secure. Some of these error prevention features (which
are listed in Fig. 1.2) include automatic memory management, no pointers,
required braces around every control statement’s body, assignment operators that
do not return values, requiring initialization of all variables and constants before
they’re used, array bounds checking, automatic checking for overflow of integer
calculations, and more.

• Interoperability with Objective-C—You can combine Swift and Objective-C in
the same app. This enables you to enhance existing Objective-C apps without
having to rewrite all the code. Your apps will easily be able to interact with the
Cocoa/Cocoa Touch frameworks, which are largely written in Objective-C.

• Playgrounds—A playground is an Xcode window in which you can enter Swift
code that compiles and executes as you type it. This allows you to see and hear
your code’s results as you write it, to quickly find and fix errors, and to experi-
ment with features of Swift and the Cocoa/Cocoa Touch frameworks.

Software Used in Swift for Programmers
To execute our Swift examples and write your own Swift code, you must install Xcode 6,
which is available free from the Mac App Store. When you open Xcode for the first time,
it will download and install additional features required for development. For the latest in-
formation about Xcode, visit

Swift Fundamentals: Parts I, II and III LiveLessons Video Training
Our Swift Fundamentals: Parts I, II and III LiveLessons video training product shows you
what you need to know to start building robust, powerful software with Swift. It includes
approximately 20 hours of expert training synchronized with Swift for Programmers. For
additional information about Deitel LiveLessons video products, visit

or contact us at deitel@deitel.com.

https://developer.apple.com/xcode

http://www.deitel.com/livelessons

http://www.deitel.com/livelessons
https://developer.apple.com/xcode

Preface xxi

You also can access our books and LiveLessons videos on Safari Books Online

if you have an appropriate subscription. A limited free-trial is available. Safari is popular
with large companies, colleges, libraries and individuals who would like access to video
training and electronic versions of print publications.

Explosive Growth of the iPhone and iPad Is Creating Opportunity
for Developers
iPhone and iPad device sales have been growing exponentially, creating significant oppor-
tunities for iOS app developers. The first-generation iPhone, released in June 2007, sold
6.1 million units in its initial five quarters of availability.2 The iPhone 5s and the iPhone
5c, released simultaneously in September 2013, sold over nine million combined in the first
three days of availability.3 The most recent iPhone 6 and iPhone 6 Plus, announced in Sep-
tember 2014, pre-sold four million combined in just one day—double the number of
iPhone 5 pre-sales in its first day of pre-order availability.4 Apple sold 10 million iPhone 6
and iPhone 6 Plus units combined in their first weekend of availability.5

Sales of the iPad are equally impressive. The first generation iPad, launched in April
2010, sold 3 million units in its first 80 days of availability6 and over 40 million worldwide
by September 2011.7 The iPad mini with Retina display (the second-generation iPad
mini) and the iPad Air (the fifth-generation iPad) were released in November 2013. In just
the first quarter of 2014, Apple sold a record 26 million iPads.8

There are over 1.3 million apps in the App Store9 and over 75 billion iOS apps have
been downloaded.10 The potential for iOS app developers is enormous. It’s likely that
most new iOS and OS X development soon will be done in Swift, so there are great oppor-
tunities for Swift programmers.

Our Research Sources
Due to Swift’s similarities with many of today’s popular programming languages, we were
able to repurpose and customize examples from many of our other programming text-
books and professional books. Because Swift is new, we performed most of our research
using the Apple resources listed on the next page.

http://www.safaribooksonline.com

2. http://www.apple.com/pr/library/2009/07/21results.html.
3. https://www.apple.com/pr/library/2013/09/23First-Weekend-iPhone-Sales-Top-Nine-

Million-Sets-New-Record.html.
4. http://techcrunch.com/2014/09/15/apple-sells-4m-iphone-6-and-6-plus-pre-orders-

in-opening-24-hours/.
5. http://www.apple.com/pr/library/2014/09/22First-Weekend-iPhone-Sales-Top-10-

Million-Set-New-Record.html.
6. http://www.ipadinsider.com/tag/ipad-sales-figures/.
7. http://www.statista.com/statistics/180656/sales-of-tablets-and-ipads-in-the-us-

until-2012/.
8. http://www.theverge.com/2014/1/27/5350106/apple-q1-2014-earnings.
9. http://mashable.com/2014/09/09/apple-1-3-million-apps-app-store/.
10. http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-

seen-75-billion-downloads-to-date/.

http://www.safaribooksonline.com
http://www.apple.com/pr/library/2009/07/21results.html.
http://www.ipadinsider.com/tag/ipad-sales-figures/
http://www.theverge.com/2014/1/27/5350106/apple-q1-2014-earnings
http://mashable.com/2014/09/09/apple-1-3-million-apps-app-store/
https://www.apple.com/pr/library/2013/09/23First-Weekend-iPhone-Sales-Top-Nine-Million-Sets-New-Record.html
https://www.apple.com/pr/library/2013/09/23First-Weekend-iPhone-Sales-Top-Nine-Million-Sets-New-Record.html
http://techcrunch.com/2014/09/15/apple-sells-4m-iphone-6-and-6-plus-pre-ordersin-opening-24-hours/
http://techcrunch.com/2014/09/15/apple-sells-4m-iphone-6-and-6-plus-pre-ordersin-opening-24-hours/
http://www.apple.com/pr/library/2014/09/22First-Weekend-iPhone-Sales-Top-10-Million-Set-New-Record.html
http://www.apple.com/pr/library/2014/09/22First-Weekend-iPhone-Sales-Top-10-Million-Set-New-Record.html
http://www.statista.com/statistics/180656/sales-of-tablets-and-ipads-in-the-us-until-2012/
http://www.statista.com/statistics/180656/sales-of-tablets-and-ipads-in-the-us-until-2012/
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/

xxii Preface

• The Swift Programming Language—available in the iBooks store and at:

• Using Swift with Cocoa and Objective-C—available in the iBooks store and at:

• The Swift Standard Library Reference:

• The Swift Blog:

• World Wide Developers Conference (WWDC) 2014 videos:

Teaching Approach
Swift for Programmers contains numerous complete working code examples. We stress pro-
gram clarity and concentrate on building well-engineered, high-performance software.

Syntax Coloring. For readability, we syntax color all the Swift code, similar to the syntax
coloring in the Xcode 6 integrated-development environment. Our conventions are:

Code Highlighting. We place colored rectangles around key code segments.

Using Fonts for Emphasis. We place key terms and the index’s page reference for each
term’s defining occurrence in bold colored text for easier reference. We emphasize on-
screen components in the bold Helvetica font (e.g., the File menu) and emphasize Swift
program text in the Lucida font (for example, println()).

Objectives/Outline. Each chapter begins with a list of objectives and a chapter outline.

Illustrations/Figures. Abundant tables, programs and program outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined eight decades of programming experience.

 https://developer.apple.com/library/ios/documentation/Swift/

Conceptual/Swift_Programming_Language/

 https://developer.apple.com/library/ios/documentation/Swift/
Conceptual/BuildingCocoaApps

 https://developer.apple.com/library/ios/documentation/General/

Reference/SwiftStandardLibraryReference

 https://developer.apple.com/swift/blog/

 https://developer.apple.com/videos/wwdc/2014/

comments appear in green
keywords appear in dark blue

constants and literal values appear in light blue

all other code appears in black

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference
https://developer.apple.com/swift/blog/
https://developer.apple.com/videos/wwdc/2014/

Preface xxiii

Index. We’ve included an extensive index. Each key term’s defining occurrence is high-
lighted with a bold colored page number.

Academic Bundle iOS® 8 for Programmers and Swift™ for Programmers
The Academic Bundle iOS® 8 for Programmers and Swift™ for Programmers is designed for
professionals, students and instructors interested in learning or teaching iOS 8 app devel-
opment with a broader and deeper treatment of Swift. You can conveniently order the
Academic Bundle from pearsonhighered.com with one ISBN: 0-13-408775-5. The Ac-
ademic Bundle includes:

• Swift™ for Programmers (print book)

• iOS® 8 for Programmers: An App Driven Approach with Swift™, Volume 1, 3/e
(print book)

• Access Code Card for Academic Package to accompany Swift™ for Programmers

• Access Code Card for Academic Package to accompany iOS® 8 for Programmers:
An App Driven Approach with Swift™, Volume 1, 3/e

The two Access Code Cards for the Academic Packages (when used together) give you ac-
cess to the companion websites, which include self-review questions (with answers), short-
answer questions, programming exercises, programming projects and selected videos cho-
sen to get you up to speed quickly with Xcode 6, visual programming and basic Swift-
based, iOS 8 programming.

Ordering the Books and Supplements Separately
The print books and Access Code Cards may be purchased separately from pearsonhigh-
ered.com using the following ISBNs (email deitel@deitel.com if you have questions):

• Swift™ for Programmers (print book): ISBN 0-13-402136-3

• Standalone access code card for Academic Package to accompany Swift™ for Pro-
grammers: ISBN 0-13-405818-6

• iOS® 8 for Programmers: An App Driven Approach with Swift™, Volume 1, 3/e
(print book): ISBN 0-13-396526-0

• Standalone access code card for Academic Package to accompany iOS® 8 for
Programmers: An App Driven Approach with Swift™, Volume 1, 3/e: ISBN 0-13-
405825-9

Error-Prevention Tips
These tips contain suggestions for exposing bugs and removing them from your programs;
many describe aspects of Swift that prevent bugs from getting into programs in the first place.

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory they occupy.

Software Engineering Observations
The Software Engineering Observations highlight design patterns and architectural
issues that affect the construction of software systems, especially large-scale systems.

xxiv Preface

Instructor Supplements
Instructor supplements are available online at Pearson’s Instructor Resource Center (IRC).
The supplements include:

• Solutions Manual with selected solutions to the short-answer exercises.

• Test Item File of multiple-choice examination questions (with answers).

• PowerPoint® slides with the book’s source code and tables.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center.
Certified instructors who adopt the book for their courses can obtain password access
from their regular Pearson sales representatives (www.pearson.com/replocator). Solu-
tions are not provided for “project” exercises.

Acknowledgments
Deitel Team
We’d like to thank Abbey Deitel and Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. Abbey co-authored Chapter 1 and this Preface, and she and
Barbara painstakingly researched the world of Swift. Our Art Director, Jessica Deitel (age
10) chose the cover color.

Pearson Education Team
We’re fortunate to have worked on this project with the dedicated publishing professionals
at Prentice Hall/Pearson. We appreciate the extraordinary efforts and 20-year mentorship
of our friend and professional colleague Mark L. Taub, Editor-in-Chief of Pearson Tech-
nology Group. Kim Boedigheimer recruited distinguished members of the iOS, OS X and
emerging Swift communities to review the manuscript and she managed the review pro-
cess. We selected the cover art and Chuti Prasertsith designed the cover. John Fuller man-
aged the book’s production.

Reviewers
We wish to acknowledge the efforts of our reviewers. They scrutinized the text and the
programs and provided countless suggestions for improving the presentation.

• Scott Bossack, Lead iOS Developer, Thrillist Media Group

• René Cacheaux, iOS Architect, Mutual Mobile

• Ash Furrow, iOS Developer, Artsy

• Rob McGovern, Independent Contractor

• Abizer Nasir, Freelance iOS and OS X Developer, Jungle Candy Software Ltd.

• Rik Watson, Technical Team Lead for HP Enterprise Services (Applications Ser-
vices)

• Jack Watson-Hamblin, Programming Writer and Teacher, MotionInMotion
(https://motioninmotion.tv/)

A Special Thank You to Reviewer Charles Brown
When Swift was announced in June 2014, within days our publisher, Prentice Hall/Pear-
son, agreed to publish our Swift book, which at the time was just an idea. One key prob-

http://www.pearson.com/replocator
https://motioninmotion.tv/

Preface xxv

lem—where would we find Swift reviewers when the language was so new? We asked for
help from our 75,000 social media and newsletter followers. Charles E. Brown, Indepen-
dent Contractor affiliated with Apple and Adobe, was the first to respond and became the
core member of our review team. He mentored us throughout the project, providing in-
sights, encouragement, answers to our technical questions and appropriate cautions.

Keeping in Touch with the Authors
As you read the book, if you have questions, comments or suggestions, send an e-mail to
us at

and we’ll respond promptly. For updates on this book, visit

subscribe to the Deitel® Buzz Online newsletter at

and join the Deitel social networking communities on

• Facebook® (http://facebook.com/DeitelFan)

• Twitter® (@deitel)

• Google+™ (http://google.com/+DeitelFan)

• YouTube® (http://youtube.com/DeitelTV)

• LinkedIn® (http://linkedin.com/company/deitel-&-associates)

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. We hope you enjoy working with Swift for Programmers as much
as we enjoyed writing it!

Paul and Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. He holds the Java Certified Program-
mer and Java Certified Developer designations, and is an Oracle Java Champion. Paul was
also named as a Microsoft® Most Valuable Professional (MVP) for C# in 2012–2014.
Through Deitel & Associates, Inc., he has delivered hundreds of programming courses
worldwide to clients, including Cisco, IBM, Siemens, Sun Microsystems (now Oracle),
Dell, Fidelity, NASA at the Kennedy Space Center, the National Severe Storm Laborato-
ry, White Sands Missile Range, Rogue Wave Software, Boeing, SunGard, Nortel Net-
works, Puma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M.
Deitel, are the world’s best-selling programming-language textbook/professional book/
video authors.

deitel@deitel.com

http://www.deitel.com/books/SwiftFP

http://www.deitel.com/newsletter/subscribe.html

deitel@deitel.com

http://www.deitel.com/books/SwiftFP
http://www.deitel.com/newsletter/subscribe.html
http://facebook.com/DeitelFan
http://google.com/+DeitelFan
http://youtube.com/DeitelTV
http://linkedin.com/company/deitel-&-associates

xxvi Preface

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University. He has extensive college teaching experience, including earning tenure and
serving as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications
have earned international recognition, with translations published in Japanese, German,
Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional Chinese,
Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of pro-
gramming courses to corporate, academic, government and military clients.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in mobile app de-
velopment, computer programming languages, object technology and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Swift and iOS app development,
Java™, Android app development, C++, C, Visual C#®, Visual Basic®, Python®, object
technology, Internet and web programming and a growing list of additional programming
and software development courses.

Through its 39-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books in
print and a wide range of e-book formats, and LiveLessons video courses. Deitel & Associ-
ates, Inc. and the authors can be reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

http://www.deitel.com/training

http://www.informit.com/store/sales.aspx

http://www.deitel.com/training
http://www.informit.com/store/sales.aspx
http://www.deitel.com

This section contains information you should review before using this book. Updates to
the information presented here will be posted at:

Conventions
Font and Naming
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Swift code or commands. Our convention is to emphasize on-screen
components in a sans-serif bold Helvetica font (for example, File menu) and to emphasize
Swift code and commands in a sans-serif Lucida font (for example, println()). When
building user interfaces (UIs) using Xcode’s Interface Builder, we also use the bold Helvet-
ica font to refer to property names for UI components (such as a Label’s Text property).

Conventions for Referencing Menu Items in a Menu
We use the > character to indicate selecting a menu item from a menu. The notation File >
Open… indicates that you should select the Open… menu item from the File menu.

Software Used in this Book
To execute our Swift examples and write your own Swift code, you must install Xcode 6.
You can install the currently released Xcode version for free from the Mac App Store. When
you open Xcode for the first time, it will download and install additional features required
for development. For the latest information about Xcode, visit

A Note Regarding the Xcode 6 Toolbar Icons
We developed this book’s examples with Xcode 6 on OS X Yosemite. If you’re running
OS X Mavericks, some Xcode toolbar icons we show in the text may differ on your screen.

Becoming a Registered Apple Developer
Registered developers have access to the online iOS and OS X documentation and other
resources. Apple also now makes Xcode pre-release versions (such as the next point release
or major version) available to all registered Apple developers. To register, visit:

http://www.deitel.com/books/SwiftFP

https://developer.apple.com/xcode

https://developer.apple.com/register

Before You Begin

http://www.deitel.com/books/SwiftFP
https://developer.apple.com/xcode
https://developer.apple.com/register

xxviii Before You Begin

To download the next pre-release Xcode version, visit:

Once you download a prerelease DMG (disk image) file, double click it to launch the in-
staller, then follow the on-screen instructions.

Fee-Based iOS Developer Programs
In Chapters 13–14, you’ll build two iOS apps and test them on your Mac using the iOS
simulator that’s bundled with Xcode. If you’d like to run iOS apps on actual iOS devices,
you must be a member of one of the following iOS developer programs.

iOS Developer Program
The fee-based iOS Developer Program allows you to load your iOS apps onto iOS devices
for testing and to submit your apps to the App Store. If you intend to distribute iOS apps,
you’ll need to join the fee-based program. You can sign up at

iOS Developer Enterprise Program
Organizations may register for the iOS Developer Enterprise Program at

which enables developers to deploy proprietary iOS apps to employees within their orga-
nization.

iOS Developer University Program
Colleges and universities interested in offering iOS app-development courses can apply to
the iOS Developer University Program at

Qualifying schools receive free access to all the developer tools and resources. Students can
share their apps with each other and test them on iOS devices.

Adding Your Paid iOS Developer Program Account to Xcode
Xcode can interact with your paid iOS and OS X Developer Program accounts on your
behalf so that you can install apps onto your iOS devices for testing. If you have a paid
iOS Developer Program account, you can add it to Xcode. To do so:

1. Select Xcode > Preferences….

2. In the Accounts tab, click the + button in the lower left corner and select Add Ap-
ple ID….

3. Enter your Apple ID and password, then click Add.

Obtaining the Code Examples
The Swift for Programmers examples are available for download as a ZIP file from

https://developer.apple.com/xcode/downloads

https://developer.apple.com/programs

https://developer.apple.com/programs/ios/enterprise

https://developer.apple.com/programs/ios/university

http://www.deitel.com/books/SwiftFP

http://www.deitel.com/books/SwiftFP
https://developer.apple.com/xcode/downloads
https://developer.apple.com/programs
https://developer.apple.com/programs/ios/enterprise
https://developer.apple.com/programs/ios/university

 Xcode Playgrounds and Projects for the Code Examples xxix

under the heading Download Code Examples and Other Premium Content. When you click
the link to the ZIP file, it will be placed by default in your user account’s Downloads folder.
We assume that the examples are located in the SwiftFPExamples folder in your user ac-
count’s Documents folder. You can use Finder to move the ZIP file there, then double click
the file to extract its contents.

Xcode Playgrounds and Projects for the Code Examples
Playgrounds are a new interactive coding capability in Xcode 6. They execute Swift code
as you write it. They’re particularly useful for learning and experimenting with Swift or
the Cocoa and Cocoa Touch frameworks that are used to build iOS and OS X apps. Proj-
ects, on the other hand, are used to manage all the files for each app that you create.

For each example, we provide one of the following:

• an Xcode playground file with the .playground extension

• an Xcode project for an OS X Command Line Tool app that produces text output
(such projects don’t require you to develop a GUI or to run apps in the iOS sim-
ulator)

• an Xcode project for an iOS 8 app that runs in the iOS simulator bundled with
Xcode.

An Xcode project is stored in a folder with the project’s name. In that folder is a file with
a .xcodeproj extension. You can double click a .playground or .xcodeproj file to open
it in Xcode. Throughout this book, we use playgrounds for single-source-file examples and
projects for multi-source-file examples.

Use Playgrounds for Learning
We recommend that as you learn Swift, you enter each example’s code into an Xcode 6
playground so that you can immediately see the code in action as you write it. Sometimes
you might need to restart the IDE if a playground stops working correctly. If you enter
any of our multi-source-file examples into a playground, you must define any functions
and types before they’re used.

Viewing Output in a Playground
In a playground, the results of any output statements are visible only if the Assistant Editor
is displayed. To open it in a playground, select Assistant Editor > Show Assistant Editor
from Xcode’s View menu. The Assistant Editor will appear at the playground window’s
right side.

Playground and Project Naming Conventions
Each project or playground is named based on its figure number(s) or the concept being pre-
sented. The comment in the first line of a source code file contains information to help
you identifiy which playground or project to open from the chapter’s examples folder:

• the project’s or playground’s base name—e.g., fig02-01 and fig03-01-11 cor-
respond to fig02-01.playground and fig03-01-11.xcodeproj, respectively.

• the project’s or playground’s complete name—e.g., CompoundInterest.play-
ground or Inheritance.xcodeproj.

xxx Before You Begin

Configuring Xcode to Display Line Numbers
Many programmers find it helpful to display line numbers in the code editor. To do so:

1. Open Xcode and select Preferences… from the Xcode menu.

2. Select the Text Editing tab, then ensure that the Editing subtab is selected.

3. Check the Line Numbers checkbox.

You’re now ready to begin learning Swift with Swift for Programmers. We hope you
enjoy the book! If you have any questions, please email us at deitel@deitel.com.

5
Functions and Methods:

A Deeper Look; enums and
Tuples

O b j e c t i v e s
In this chapter you’ll:

■ Learn about Swift modules (for software reuse).
■ Define functions with multiple parameters.
■ Use random-number generation to implement a game-

playing app.
■ Use enum types to create sets of named constants.
■ Return multiple values from a function via a tuple, pass a

tuple to a function and access a tuple’s elements.
■ Learn how an identifier’s scope limits its visibility to specific

parts of a program.
■ Create overloaded functions.
■ Learn how local and external parameter names are used in

function and method calls.
■ Use default parameter values in function calls.
■ Pass method arguments by value and by reference.
■ Define a recursive function.
■ Define a nested function.

5.1 Introduction 71
O

u
tl

in
e

5.1 Introduction
We introduced functions and methods in Chapter 3. The key distinction between a func-
tion and a method is that any function defined in a type is a method.

In this chapter, we begin by discussing modules, which Swift uses to package related
software components for reuse. We introduce Darwin—Apple’s UNIX-based core of OS
X and iOS—and import Darwin features (such as a C-based random-number-generation
function) for use in apps.

We discuss random-number generation and develop a version of a popular casino dice
game. That example demonstrates basic enum types for creating named constants that
improve the readability of the code. You’ll see that Swift’s enum constants can have values,
but that’s not required. The example also presents tuples—collections of values of the
same or different types. We return multiple values from a function via a tuple, pass a tuple
to a function and access a tuple’s elements via both names and indices.

Next, we discuss Swift’s scope rules. Then, we introduce the concept of overloading.
You’ll frequently see identically named functions or, within a type, identically named
methods. This overloading is used to implement functions or methods that perform sim-
ilar tasks but with different types and/or different numbers of parameters. This chapter
demonstrates overloading with functions, and you’ll see examples of method overloading
in later chapters.

We discuss the differences between calling functions and methods and present the
concepts of local vs. external parameter names. As you’ll see, external parameter names
must be used in a function call to label all of the corresponding arguments. This is another
distinction between functions and methods—by default, methods require their second
and subsequent arguments to be labeled with parameter names. This has to do with the
similarities between how methods are named in Objective-C and Swift, which we discuss
in Section 5.9. We also mention how to disable this feature when calling methods. Param-
eter names are always required in initializer calls.

We use a default parameter value that the compiler inserts in a function call if you do
not provide the corresponding argument when the function is called. We discuss how
value- and reference-type arguments are passed to methods, then demonstrate how to pass

5.1 Introduction
5.2 Modules in Swift
5.3 Darwin Module—Using Predefined C

Functions
5.4 Multiple-Parameter Function Definition
5.5 Random-Number Generation
5.6 Introducing Enumerations and Tuples

5.6.1 Introducing Enumeration (enum) Types
5.6.2 Tuples and Multiple Function Return

Values
5.6.3 Tuples as Function Arguments
5.6.4 Accessing the Raw Value of an enum

Constant

5.7 Scope of Declarations
5.8 Function and Method Overloading
5.9 External Parameter Names

5.10 Default Parameter Values
5.11 Passing Arguments by Value or by

Reference
5.12 Recursion
5.13 Nested Functions
5.14 Wrap-Up

72 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

arguments by reference using the keyword inout. You’ll write recursive functions (func-
tions that call themselves) and nested functions.

Many of the features presented as functions in this chapter also apply to methods and
initializers in the new types you create. We’ll point out key differences between functions,
methods and initializers.

5.2 Modules in Swift
Swift apps are written by combining new functions and types, properties, methods, classes,
structs (Chapter 9) and enums (introduced in Section 5.6 and discussed in more detail in
Chapter 9) with predefined capabilities in the Swift Standard Library, the Cocoa and Co-
coa Touch frameworks, and other class libraries. Figure 5.1 overviews some functions,
types and protocols (similar to interfaces in other languages) from the Swift Standard Li-
brary. You can locate additional information about Swift Standard Library types and func-
tions in the Swift Standard Library Reference at

At the time of this writing, the Swift Standard Library Reference is not yet complete. There
are many other built-in free functions (sometimes called global functions), but only a few
are currently listed. Similarly, there are other protocols not yet included in the reference,
but mentioned in other Swift documentation (e.g., Hashable and DebugPrintable).

http://bit.ly/SwiftStandardLibrary

Feature Description

Types
Array This type is used to represent arrays—collections of related data items. Type

Array provides many initializers, properties, methods and operators for perform-
ing common array manipulations. Chapter 6 discusses type Array in detail.

Dictionary A Dictionary maps unique keys to values—for example, an employee’s ID num-
ber can be mapped to one employee’s information. Type Dictionary provides
many initializers, properties, methods and operators for performing common
manipulations of key–value pairs. Chapter 7 discusses type Dictionary in detail.

Boolean and
numeric types

As you’ve seen, Swift provides type Bool and integer and floating-point numeric
types (Fig. 2.6). These are the equivalent of what many programming languages
refer to as the built-in, primitive or fundamental types.

String Strings are collections of characters. Type String provides many initializers,
properties, methods and operators for performing common String manipula-
tions. We present details of type String throughout the book.

Protocols
Comparable An item that is Comparable can be compared with another item of the same type

using the < operator. Strings and all of Swift’s integer and floating-point numeric
types are Comparable. We discuss how to make your own types Comparable in
Chapter 12, Operator Overloading and Subscripts.

Fig. 5.1 | Some Swift Standard Library features, (Part 1 of 2.)

http://bit.ly/SwiftStandardLibrary

5.3 Darwin Module—Using Predefined C Functions 73

Modules
Related software components in Objective-C are grouped into frameworks (similar to
namespaces or packages in other languages) so that they can be reused in Cocoa and Cocoa
Touch apps. Swift’s equivalent to a framework is a module. When you create a Swift proj-
ect, Xcode places all of the project’s Swift code in a module with the same name as your
project. If you create a Swift-based Cocoa Framework project or Cocoa Touch Framework
project, you can then reuse that framework in Cocoa and Cocoa Touch apps by importing
it with the import keyword (as you did with the Foundation framework in Fig. 3.6).

5.3 Darwin Module—Using Predefined C Functions
Just as your Swift apps can reuse Cocoa and Cocoa Touch frameworks (written largely in
Objective-C), they can also reuse C-based UNIX functions (such as arc4random_uniform in
Section 5.5) and C Standard Library functions (such as the common C math functions listed
in Fig. 5.2) that are built into OS X and iOS. These and many other features of UNIX and
C are available via the Darwin module, which provides access to the C libraries in Darwin—
Apple’s open-source UNIX-based core on which the OS X and iOS operating systems are
built. To import the Darwin module, use the following import declaration:

The Darwin module is imported by default into several Cocoa and Cocoa Touch frame-
works—such as Foundation, AppKit and UIKit—so that various software components in
those frameworks can interact with the underlying operating system.

Equatable An item that is Equatable can be compared with another item of the same type
using the == operator. Bools, Strings and all of Swift’s numeric types are Equat-
able. We discuss how to make your own types Equatable in Chapter 12.

Printable Any item that is Printable has a description property that returns a String rep-
resentation of the item—similar to some languages’ toString or ToString meth-
ods. Bools, Strings and all of Swift’s numeric types are Printable. We discuss
how to make your own types Printable in Chapter 10.

Functions
print, println Functions that display text representations of Printable items.

sort, sorted Functions that sort the contents of Arrays—sort modifies the original Array’s
contents and sorted returns a new Array containing the sorted contents.
Chapter 6 uses these functions to sort Arrays.

Software Engineering Observation 5.1
Don’t try to “reinvent the wheel.” When possible, reuse capabilities of the Swift Standard
Library, the Cocoa and Cocoa Touch frameworks, and other libraries. This reduces app
development time, avoids introducing programming errors and contributes to good app
performance.

import Darwin

Feature Description

Fig. 5.1 | Some Swift Standard Library features, (Part 2 of 2.)

74 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

5.4 Multiple-Parameter Function Definition
In previous chapters, you called functions, methods and initializers with varying numbers
of arguments. You also defined functions and methods with only one parameter. In this
section, we define and call a function with multiple parameters.

Figure 5.3 defines a function maximum (lines 4–18) that determines and returns the
largest of three Double values. Lines 21–23 call maximum with the largest value (3.3) as the
first, second or third argument, respectively, to show that the function always returns the
largest of its three arguments.

Method Description Example

Throughout this table, x and y are of type Double

abs(x) absolute value of x abs(23.7) is 23.7
abs(0.0) is 0.0
abs(-23.7) is 23.7

ceil(x) rounds x to the smallest integer not
less than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x (x in radians) cos(0.0) is 1.0

exp(x) exponential method ex exp(1.0) is 2.71828
exp(2.0) is 7.38906

floor(x) rounds x to the largest integer not
greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

log(x) natural logarithm of x (base e) log(M_E) is 1.0
log(M_E * M_E) is 2.0

max(x, y) larger value of x and y max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3

min(x, y) smaller value of x and y min(2.3, 12.7) is 2.3
min(-2.3, -12.7) is -12.7

pow(x, y) x raised to the power y (i.e., xy) pow(2.0, 7.0) is 128.0
pow(9.0, 0.5) is 3.0

sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0.0

sqrt(x) square root of x sqrt(900.0) is 30.0

tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

Fig. 5.2 | Some math functions from the C Standard Library.

1 // fig05-03: Function maximum with three Double parameters.

2
3 // returns the maximum of its three Double parameters
4
5
6

Fig. 5.3 | Function maximum with three Double parameters. (Part 1 of 2.)

func maximum(x: Double, y: Double, z: Double) -> Double {
 var maximumValue = x // assume x is the largest to start

5.4 Multiple-Parameter Function Definition 75

Function maximum
Line 4 indicates that maximum requires three Double parameters (x, y and z) to accomplish
its task and returns a Double. There must be one argument in the function call for each
parameter in the function definition. Also, each argument must match the type of the cor-
responding parameter. Parameters are constants by default—if you need to modify a pa-
rameter’s value in the function’s body, you must place var before the parameter’s name.

Three Ways to Return Control from a Function
There are three ways to return control to the statement that calls a function. If the func-
tions’s return type is Void (that is, it does not return a result), control returns when the
function-ending right brace is reached or when the statement

is executed from the functions’s body. If the function returns a result, the statement

evaluates the expression, then returns the result (and control) to the caller (as in line 17).

7
8
9

10
11
12
13
14
15
16
17
18
19
20 // test function maximum

21 println("Maximum of 3.3, 2.2 and 1.1 is: \()")
22 println("Maximum of 1.1, 3.3 and 2.2 is: \()")

23 println("Maximum of 2.2, 1.1 and 3.3 is: \()")

Maximum of 3.3, 2.2 and 1.1 is: 3.3
Maximum of 1.1, 3.3 and 2.2 is: 3.3
Maximum of 2.2, 1.1 and 3.3 is: 3.3

Common Programming Error 5.1
Declaring method parameters of the same type as x, y: Double instead of x: Double,
y: Double is a syntax error—a type is required for each parameter in the parameter list.

Error-Prevention Tip 5.1
Making parameters constant by default ensures that you do not accidentally modify their
values—you must explicitly opt for this functionality by declaring parameters as var.

return

return expression

Fig. 5.3 | Function maximum with three Double parameters. (Part 2 of 2.)

 // determine whether y is greater than maximumValue
 if y > maximumValue {

 maximumValue = y

 }

 // determine whether z is greater than maximumValue

 if z > maximumValue {
 maximumValue = z

 }

 return maximumValue;

}

maximum(3.3, 2.2, 1.1)

maximum(1.1, 3.3, 2.2)
maximum(2.2, 1.1, 3.3)

76 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

Swift Function max
Swift provides a max function that can be used to compare two values of the same Compara-
ble type—all of Swift’s numeric types and Strings are Comparable. A second version of max
takes a variable number of arguments and is used to compare three or more arguments of the
same Comparable type. You’ll create your own functions with variable-length parameter lists
in Chapter 6, Arrays and an Introduction to Closures. There is no need for us to define our
own maximum function, as we could have replaced the maximum calls in lines 21–23 with:

5.5 Random-Number Generation
We now take a brief diversion into a popular type of programming application—simula-
tion and game playing. In this and the next section, we develop a game-playing program
with multiple functions.

The element of chance can be introduced in a program via the arc4random_uniform
function (a C-based UNIX function from the Darwin module), which produces random
unsigned 32-bit integers (UInt32; see Fig. 2.6) from 0 up to but not including an upper
bound that you specify as an argument. There’s also function arc4random, which takes no
arguments and returns a random unsigned 32-bit integer in the range 0 (UInt32.min) to
4,294,967,295 (UInt32.max).

Both functions use the RC4 (also called ARCFOUR) random-number generation
algorithm (http://en.wikipedia.org/wiki/RC4) and produce nondeterministic
random numbers that cannot be predicted. To use these functions, you must import the
Darwin module (Section 5.3).

Obtaining a Random Value with arc4random
The following statement generates a random UInt32 value in the range 0 (UInt32.min) to
4,294,967,295 (UInt32.max):

Obtaining a Random Value in a Specific Range with arc4random_uniform
The range of values produced by arc4random generally differs from the range of values re-
quired in a particular app. For example, a program that simulates the rolling of a six-sided
die might require random integers in the range 1–6. For cases like this, we’ll use the func-
tion arc4random_uniform.

To demonstrate arc4random_uniform, let’s develop a program that simulates 20 rolls
of a six-sided die and displays the value of each roll. First, we use arc4random_uniform to
produce random values in the range 0–5, as follows:

max(3.3, 2.2, 1.1)

max(1.1, 3.3, 2.2)

max(2.2, 1.1, 3.3)

Error-Prevention Tip 5.2
Functions arc4random_uniform and arc4random cannot produce repeatable random-
number sequences. If you require repeatability for testing, use the Darwin module’s C
function random to obtain the random values and function srandom to seed the random-
number generator with the same seed during each program execution. Once you’ve com-
pleted testing, use either arc4random_uniform or arc4random to produce random values.

let randomValue = arc4random()

http://en.wikipedia.org/wiki/RC4

5.6 Introducing Enumerations and Tuples 77

The argument 6 is the upper bound of the values produced and represents the number of
unique values to produce (in this case six—0, 1, 2, 3, 4 and 5).

A six-sided die has the numbers 1–6 on its faces, not 0–5. So we shift the range of
numbers produced by adding 1 to our previous result, as in

Rolling a Six-Sided Die 20 Times
Figure 5.4 shows two sample outputs which confirm that the results of the preceding calcu-
lation are integers in the range 1–6, and that each run of the program can produce a different
sequence of random numbers. Line 2 imports the Darwin module to allow the program to
access function arc4random_uniform—the Swift Standard Library does not have its own
random-number-generation capabilities. Line 5 executes 20 times in a loop to roll the die.
To run the program multiple times in a playground, simply press Enter on a blank line.

5.6 Introducing Enumerations and Tuples
One popular game of chance is the dice game known as “craps.” In this section, we imple-
ment a simple version of the game and introduce Swift’s enum and tuple features.

The rules of the game are straightforward:

You roll two dice. Each die has six faces, which contain one, two, three, four, five and
six spots, respectively. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, you win. If the sum
is 2, 3 or 12 on the first throw (called “craps”), you lose (i.e., “the house” wins). If the
sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes your “point.” To win,
you must continue rolling the dice until you “make your point” (i.e., roll that same
point value). You lose by rolling a 7 before making your point.

The app in Fig. 5.5 simulates the game of craps. Lines 31–74 of the program play the
game. The rollDice function (lines 19–23) is called to roll the two dice and compute their
sum, and the displayRoll function (lines 26–28) is called to display the results of a roll.
The four sample outputs show winning on the first roll, losing on the first roll, winning
on a subsequent roll and losing on a subsequent roll, respectively.

let face = arc4random_uniform(6)

let face = 1 + arc4random_uniform(6)

1 // fig05-04: Shifted and scaled random integers
2 import Darwin // allow program to use C function arc4random_uniform

3
4 for i in 1...20 {
5 print("\(1 +) ")

6 }

3 3 3 1 1 2 1 2 4 2 2 3 6 2 5 3 4 6 6 1

6 2 5 1 3 5 2 1 6 5 4 1 6 1 3 3 1 4 3 4

Fig. 5.4 | Shifted and scaled random integers.

arc4random_uniform(6)

78 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

1 // fig05-05: Simulating the dice game craps

2 import Darwin

3
4 // enum representing game status constants (no raw type)

5 enum Status {

6 case Continue, Won, Lost
7 }

8
9 // enum with Int constants representing common dice totals

10 enum DiceNames: Int {

11 case SnakeEyes = 2

12 case Trey = 3
13 case Seven = 7

14 case YoLeven = 11

15 case BoxCars = 12
16 }

17
18 // function that rolls two dice and returns them and their sum as a tuple

19 func rollDice() -> (die1: Int, die2: Int, sum: Int) {
20 let die1 = // first die roll

21 let die2 = Int(1 + arc4random_uniform(6)) // second die roll

22
23 }

24
25 // function to display a roll of the dice
26 func displayRoll() {

27 println("Player rolled \() + \() = \()")

28 }
29
30 // play one game of craps

31 var myPoint = 0 // point if no win or loss on first roll
32 var gameStatus = Status.Continue // can contain Continue, Won or Lost

33
34
35
36
37 // determine game status and point based on first roll
38
39 // win on first roll

40
41 gameStatus = Status.Won

42 // lose on first roll

43
44

45 gameStatus = Status.Lost

46 // did not win or lose, so remember point
47 default:

48 gameStatus = Status.Continue // game is not over

49 myPoint = roll.sum // remember the point
50 println("Point is \(myPoint)")

51 }

52

Fig. 5.5 | Simulating the dice game craps. (Part 1 of 2.)

Int(1 + arc4random_uniform(6))

return (die1, die2, die1 + die2)

roll: (Int, Int, Int)
roll.0 roll.1 roll.2

var roll = rollDice() // first roll of the dice

displayRoll(roll) // display the two dice and the sum

switch roll.sum {

case DiceNames.Seven.rawValue, DiceNames.YoLeven.rawValue:

case DiceNames.SnakeEyes.rawValue, DiceNames.Trey.rawValue,

 DiceNames.BoxCars.rawValue:

5.6 Introducing Enumerations and Tuples 79

53 // while game is not complete

54 while gameStatus == Status.Continue

55 {
56

57

58
59 // determine game status

60 if { // won by making point

61 gameStatus = Status.Won
62 } else {

63 if (roll.sum ==) { // lost by rolling 7

64 gameStatus = Status.Lost
65 }

66 }

67 }
68
69 // display won or lost message

70 if gameStatus == Status.Won {

71 println("Player wins")
72 } else {

73 println("Player loses")

74 }

Player rolled 2 + 5 = 7
Player wins

Player rolled 2 + 1 = 3
Player loses

Player rolled 2 + 4 = 6
Point is 6
Player rolled 3 + 1 = 4
Player rolled 5 + 5 = 10
Player rolled 6 + 1 = 7
Player loses

Player rolled 4 + 6 = 10
Point is 10
Player rolled 1 + 3 = 4
Player rolled 1 + 3 = 4
Player rolled 2 + 3 = 5
Player rolled 4 + 4 = 8
Player rolled 6 + 6 = 12
Player rolled 4 + 4 = 8
Player rolled 4 + 5 = 9
Player rolled 2 + 6 = 8
Player rolled 6 + 6 = 12
Player rolled 6 + 4 = 10
Player wins

Fig. 5.5 | Simulating the dice game craps. (Part 2 of 2.)

roll = rollDice() // first roll of the dice
displayRoll(roll) // display the two dice and the sum

roll.sum == myPoint

DiceNames.Seven.rawValue

80 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

The Game’s Logic
The game is reasonably involved. The player may win or lose on the first roll, or may win
or lose on any subsequent roll. Lines 31–74 contain the logic for one complete game of
craps. Variable myPoint (line 31) stores the “point” if the player does not win or lose on
the first roll. Variable gameStatus (line 32) maintains the game status. Variable roll (cre-
ated at line 34 and assigned a new value at line 56) stores the most recent roll of the dice.
Variable myPoint is initialized to 0 so the program can compile. If you do not initialize
myPoint, the compiler issues an error, because myPoint is not assigned a value in every
case of the switch statement—thus, the app could try to use myPoint before it’s assigned
a value. By contrast, gameStatus does not require initialization because it’s assigned a val-
ue in every branch of the switch statement—thus, it’s guaranteed to be initialized before
it’s used.

The First Roll
Line 34 calls function rollDice, which picks two random values from 1 to 6 and returns
both values and their sum. Line 35 calls function displayRoll to display the value of the
first die, the value of the second die and the sum of the dice. We explain the details of
rollDice’s return value and displayRoll’s argument in Sections 5.6.2 and 5.6.3, respec-
tively. Next, the program enters the switch statement at lines 38–51, which uses the sum
of the dice to determine whether the game has been won or lost, or whether it should con-
tinue with another roll.

Additional Rolls of the Dice
If we’re still trying to “make our point” (i.e., the game is continuing from a prior roll), the
loop in lines 54–67 executes. Line 56 rolls the dice again. Lines 60–66 determine whether
the game was won or lost on the most recent roll—if not, the game continues. When the
game completes, lines 70––74 display a message indicating whether the player won or lost,
and the app terminates.

5.6.1 Introducing Enumeration (enum) Types
In this section, we introduce basic enumeration features—more details are presented in
Chapter 9, Structures, Enumerations and Nested Types.

Status Enumeration
The Status type (lines 5–7) is an enumeration that declares a set of constants represented
by identifiers. An enumeration is introduced by the keyword enum and a type name (in this
case, Status). As with a class, braces ({ and }) delimit the enum’s body. Inside the braces
is a case containing a comma-separated list of enumeration constants. The enum constant
names must be unique. Unlike enums in other C-based programming languages, a Swift
enum’s constants do not have values by default—the constants themselves are the values.
Sometimes it’s useful for each constant to have a so-called raw value, as in the DiceNames
enum (lines 10–16) that we discuss momentarily.

Error-Prevention Tip 5.3
Initialize every variable when it’s defined.

5.6 Introducing Enumerations and Tuples 81

Variables and constants of type Status can be assigned only constants defined in the
Status enum. When the game is won, the app sets variable gameStatus to Status.Won
(lines 41 and 61). When the game is lost, the app sets gameStatus to Status.Lost (lines
45 and 64). Otherwise, the app sets gameStatus to Status.Continue (line 48) to indicate
that the dice must be rolled again. If a variable has an enum type, you can assign enum con-
stants to the variable using the shorthand notation:

DiceNames Enumeration
The sums of the dice that would result in a win or loss on the first roll are declared in the
DiceNames enumeration in lines 10–16. These are used in the cases of the switch state-
ment (lines 38–51). The identifier names use casino parlance—such as snake eyes (2) and
box cars (12)—for these sums. In DiceNames we explicitly assign a value to each constant’s
name. When an enum’s constants require values (known as raw values), you must specify
the enum’s raw type—that is, the type used to represent each constant’s value. Line 10 in-
dicates that DiceNames’s raw type is Int, so each constant’s type is also Int. The raw type
can be any of Swift’s numeric types, type String or type Character.

Constants that are assigned explicit values are typically defined in a separate cases for
readability (as in lines 11–15), but this is not required. We could have written the Dice-
Names enumeration as:

If an enum type’s constants represent sequential integer values, they can be defined as
a comma-separated list in one case, as in:

In Months, each subsequent constant after January has a value one higher than the value
of the previous constant, so February is 2, March is 3, etc. So, we could have defined the
DiceNames constants SnakeEyes and Trey in one case as:

The raw values of an enum’s constants must be unique. In an enum with one of the
integer numeric types, if the first constant is unassigned, the compiler gives it the value 0.

variableName = .EnumConstantName

Good Programming Practice 5.1
enum constant names should begin with a capital letter and use camel-case naming.

enum DiceNames: Int {
 case SnakeEyes = 2, Trey = 3, Seven = 7, YoLeven = 11,

 BoxCars = 12

}

enum Months: Int {

 case January = 1, February, March, April, May, June, July,

 August, September, October, November, December
}

case SnakeEyes = 2, Trey

Good Programming Practice 5.2
Using enumeration constants (like Months.January, Months.February, etc.) rather than
literal integer values (such as 1, 2, etc.) makes code easier to read and maintain.

82 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

5.6.2 Tuples and Multiple Function Return Values
In the rules of the game, the player must roll two dice on the first roll and must do the
same on all subsequent rolls. Function rollDice (lines 19–23) rolls the dice and computes
their sum. Function rollDice is declared once, but it’s called from two places (lines 34
and 56). The function takes no arguments. Each time it’s called, rollDice returns three
values (the two die values and the sum of the dice) as a tuple—an arbitrary collection of
values that can be of the same or different types. In function rollDice’s return type

die1, die2 and sum are names that can be used to access the returned tuple’s elements.

The sum of the dice can be calculated using the values of the tuple elements die1 and
die2. We chose to include sum in the tuple because there are multiple locations in the pro-
gram where we use the sum of the dice. Rather than recalculating the sum each time, we
calculate it once in rollDice, return it as part of the tuple, then simply use the tuple’s sum
element as necessary in the rest of the code.

Composing a Tuple
To return a tuple containing multiple values from a function, you compose it by wrapping
the values in parentheses, as in the return statement (line 22).

Accessing a Tuple’s Elements
When a tuple specifies names for its elements, you can access them by name using the dot
(.) syntax. Line 34 assigns the tuple returned by rollDice to the variable roll, which is
inferred to have the tuple type (Int, Int, Int). The switch statement’s control expres-
sion (line 38) uses roll.sum to get the sum of the dice from the returned tuple.

Decomposing a Tuple
You can also decompose a tuple into individual variables or constants. For example, the
statement

assigns the three values in the tuple to the constants die1, die2 and sum, respectively.
When decomposing a tuple, if you need only some of the values, you can ignore individual
values with the underscore character (_), as in:

Explicit Casts Are Required for Numeric Conversions
Unlike many other programming languages, Swift does not allow implicit conversions be-
tween numeric types. To prevent a compilation error when you use a value of one numeric
type where a different numeric type is expected, the compiler requires you to cast the value
to the required type to force the conversion. This enables you to “take control” from the
compiler. You essentially say, “I know this conversion might lose information, but for my
purposes here, that’s fine.”

(die1: Int, die2: Int, sum: Int)

Good Programming Practice 5.3
You’re not required to specify names for each element of a tuple, but doing so makes the
code more readable.

let (die1, die2, sum) = rollDice()

let (_, _, sum) = rollDice()

5.6 Introducing Enumerations and Tuples 83

Function rollDice returns a tuple containing Int values; however, the random num-
bers returned by function arc4random_uniform are of type UInt32. To convert these to
type Int, you must use an Int cast as shown in line 20:

The cast Int(1 + arc4random_uniform(6)) creates a temporary Int copy of the argument
in parentheses.

5.6.3 Tuples as Function Arguments
After each call to rollDice, the program calls function displayRoll (lines 35 and 57) to
display the two die values and the sum of the dice. The function (lines 26–28) receives one
parameter (roll) which has the tuple type (Int, Int, Int). In this case, we did not specify
names for the elements in the tuple, so that we could show accessing a tuple’s members
using indices and dot syntax, as in line 27. The first tuple element has index 0, so roll.0
evaluates to the first die’s value, roll.1 evaluates to the second die’s value and roll.2 eval-
uates to their sum.

5.6.4 Accessing the Raw Value of an enum Constant
The switch statement at lines 38–51 performs its tasks based on the sum of the dice. Swift
does not provide implicit conversions between enum constants and numeric types. How-
ever, each enum constant has a rawValue property that returns the constant’s raw value.
Lines 40, 43 and 44 compare the Int sum of the dice to the raw Int values of several Dice-
Names constants to determine whether the game was won or lost on the first roll. We use
the raw enum constant values in this case because there are several sums (4, 5, 6, 8, 9 and
10) that don’t correspond to the DiceName enum constants.

Converting a Value to an enum Constant
You can use an enum’s initializer to get the enum constant that corresponds to a raw value.
For example, using the Months enum discussed in Section 5.6.1, the expression

returns the enum constant Months.February. In a program that receives a month as a value
in the range 1–12, you could use the Months enum’s initializer to convert those values to
the corresponding Months enum constants for use in a switch’s cases. Because the argu-
ment could be invalid, the actual value returned by the initializer is a Months?—an option-
al value of type Months. We discuss this in more depth in Section 9.3.3.

let die1 = Int(1 + arc4random_uniform(6)) // first die roll

Error-Prevention Tip 5.4
Each numeric type represents a different range of values. Disallowing implicit conver-
sions—thus forcing you to use explicit casts for numeric conversions—prevents uninten-
tional conversions between types. This is another Swift feature that eliminates errors.

Common Programming Error 5.2
Converting a numeric-type value to a value of another numeric type may change the val-
ue. For example, converting a Double value to an Int value may introduce truncation
errors (loss of the fractional part) in the result.

Months(rawValue: 2)

84 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

5.7 Scope of Declarations
You’ve seen declarations of Swift entities, such as classes, methods, properties, variables
and parameters. Declarations introduce names that can be used to refer to such Swift en-
tities. The scope of a declaration is the portion of the code that can refer to the declared
entity by its unqualified name. Such an entity is said to be “in scope” for that portion of
the app. This section introduces several important scope issues. The basic scope rules are:

1. The scope of a parameter is the body of the method in which the declaration ap-
pears.

2. The scope of a local variable or constant is from the point at which it’s defined to
the closing right brace (}) of the block containing the definition.

3. The scope of a local variable that appears in the initialization section of a for
statement’s header is the body of that for statement and the other expressions in
the header.

4. The scope of a local variable that receives each value in a for…in statement is the
body of that for…in statement.

5. The scope of a method or property of a class is the entire body of the class.

6. A type, function, variable or constant defined outside any other language element
has global scope from its point of definition to the end of the file in which the
type, function, variable or constant is defined. Types and functions also have
module scope—by default, they can be used from other files in the same module
or in other apps that import that module, unless they’re declared private.

Any block may contain variable declarations. If a local variable, constant or parameter
in a method has the same name as a property of a class, the property is hidden until the
block terminates. In Chapter 8, we discuss how to access hidden properties via the key-
word self. The app in Fig. 5.6 demonstrates the scopes for a global variable, a property
of a class and local variables in methods.

1 // fig05-06: Demonstrating scopes

2
3
4 class Scope {

5
6

7 // create and initialize local variable x during each call

8 func useLocalVariable()
9 {

10

11
12 println("\nlocal x on entering useLocalVariable is ")

13

14 println("local x before exiting useLocalVariable is ")
15 }

16

Fig. 5.6 | Demonstrating scopes. (Part 1 of 2.)

var x = 5 // global variable x

var x = 1 // property hides global variable x in class Scope

var x = 25 // initialized each time useLocalVariable is called

\(x)
++x // modifies this method's local variable x

\(x)

5.7 Scope of Declarations 85

Line 2 defines and initializes the global variable x to 5. This variable is hidden in any
block or method that declares local variable named x and in any class that defines a prop-
erty named x. Class Scope (lines 4–23) defines a property x with the value 1 (line 5). We
defined the class after the global variable x at line 2 to show that the class’s property x hides
the global variable.

Line 25 defines an object of class Scope named scope. Line 27 outputs the value of
global variable x (whose value is 5). Next, lines 29–32 call Scope methods useLocalVari-
able (lines 8–15) and useProperty (lines 18–22) that each take no arguments and do not
return results. We call each method twice. Method useLocalVariable declares local vari-
able x (line 10). When useLocalVariable is first called (line 29), it creates local variable
x and initializes it to 25 (line 10), outputs the value of x (line 12), increments x (line 13)
and outputs the value of x again (line 14). When useLocalVariable is called a second
time (line 31), it re-creates local variable x and reinitializes it to 25, so the output of each
useLocalVariable call is identical.

Method useProperty does not declare any local variables. Therefore, when it refers
to x, class Scope’s property x (line 5) is used. When method useProperty is first called

17 // modify class Scope's property x during each call

18 func useProperty() {

19 println("\nproperty x on entering useProperty is ")
20

21 println("property x before exiting useProperty is ")

22 }
23 }

24
25 var scope = Scope() // create a Scope object
26
27 println("global variable x when program begins execution is ")

28
29 scope.useLocalVariable()

30 scope.useProperty()

31 scope.useLocalVariable()
32 scope.useProperty()

33
34 println("\nglobal variable x before program terminates is ")

global variable x when program begins execution is 5

local x on entering useLocalVariable is 25
local x before exiting useLocalVariable is 26

property x on entering useProperty is 1
property x before exiting useProperty is 10

local x on entering useLocalVariable is 25
local x before exiting useLocalVariable is 26

property x on entering useProperty is 10
property x before exiting useProperty is 100

global variable x before program terminates is 5

Fig. 5.6 | Demonstrating scopes. (Part 2 of 2.)

\(x)

x *= 10 // modifies class Scope's property x
\(x)

\(x)

\(x)

86 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

(line 30), it outputs the value (1) or property x (line 19), multiplies the property x by 10
(line 20) and outputs the value (10) of property x again (line 21) before returning. The
next time method useProperty is called (line 32), the property has its modified value, 10,
so the method outputs 10, then 100. The app outputs the value of global variable x again
(line 34) to show that none of the method calls modified the global variable x, because the
methods all referred to variables or properties named x in other scopes.

5.8 Function and Method Overloading
You can define functions of the same name, as long as they have different sets of parame-
ters (determined by the number, types and order of the parameters). This is called func-
tion overloading and can be used with a type’s methods and initializers as well. When an
overloaded function is called, the Swift compiler selects the appropriate function by exam-
ining the number, types and order of the arguments in the call. Function overloading is
commonly used to create several functions with the same name that perform the same or
similar tasks, but on different types or different numbers of arguments. For example, Swift
function max is overloaded with two versions—one that returns the maximum of two val-
ues and one that returns the maximum of three or more values. Our next example dem-
onstrates declaring and invoking overloaded functions. You’ll see examples of overloaded
initializers in Chapter 8, Classes: A Deeper Look and Extensions.

Declaring Overloaded Functions
In Fig. 5.7, we define overloaded versions of function square—one that calculates the
square of an Int (and returns an Int) and one that calculates the square of a Double (and
returns a Double). Although these functions have the same name and similar parameter
lists and bodies, you can think of them simply as different methods. It may help to think
of the functions names as “square of Int” and “square of Double,” respectively.

1 // fig05-07: Overloaded function definitions

2
3 // square function with Int argument

4
5 {
6 println("Called square with Int argument: \(value)")

7 return value * value

8 }
9

10 // square function with Double argument

11
12 {

13 println("Called square with Double argument: \(value)")

14 return value * value
15 }

16
17 // test overloaded square functions
18 println("Square of Int 7 is \()\n")

19 println("Square of Double 7.5 is \()")

Fig. 5.7 | Overloaded function definitions. (Part 1 of 2.)

func square(value: Int) -> Int

func square(value: Double) -> Double

square(7)
square(7.5)

5.8 Function and Method Overloading 87

Line 18 invokes method square with the argument 7. Literal integer values are treated
as type Int, so the method call in line 18 invokes the version of square at lines 4–8 that
specifies an Int parameter. Similarly, line 19 invokes square with the argument 7.5. Lit-
eral floating-point values are treated as type Double, so the method call in line 19 invokes
the version of square at lines 11–15 that specifies a Double parameter. Each function first
outputs a line of text to prove that the proper function was called in each case.

The overloaded functions in Fig. 5.7 perform the same calculation, but with two dif-
ferent types. Swift’s generics feature provides a mechanism for writing a single “generic
function” that can perform the same tasks as an entire set of overloaded functions. We dis-
cuss generic functions in Chapter 11, Generics.

Distinguishing Between Overloaded Functions
The compiler distinguishes overloaded functions by their signature—a combination of
the function’s name and the number, types and order of its parameters. The signature also
includes the way those parameters are passed, which can be modified by the inout key-
word (discussed in Section 5.11). If the compiler looked only at method names during
compilation, the code in Fig. 5.7 would be ambiguous—the compiler would not know
how to distinguish between the square functions. Internally, the compiler uses signatures
to determine whether functions are unique, whether a class’s methods are unique and
whether a class’s initializers are unique.

For example, in Fig. 5.7, the compiler will use the function signatures to distinguish
between the “square of Int” function (the square function that specifies an Int param-
eter) and the “square of Double” function (the square function that specifies a Double
parameter). If a function someFunction’s declaration begins as

then that function will have a different signature than the function declared as

The order of the parameter types is important—the compiler considers the preceding two
functions to be distinct.

Return Types of Overloaded Functions
In discussing the logical names of functions used by the compiler, we did not mention the
return types of the functions. This is because function calls cannot be distinguished by re-
turn type. Overloaded functions can have the same or different return types if the functions
have different parameter lists. Also, overloaded functions need not have the same number
of parameters.

Called square with Int argument: 7
Square of Int 7 is 49

Called square with Double argument: 7.5
Square of Double 7.5 is 56.25

func someFunction(a: Int, b: Double)

func someFunction(a: Double, b: Int)

Fig. 5.7 | Overloaded function definitions. (Part 2 of 2.)

88 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

5.9 External Parameter Names
By default, the parameter names you specify in a function definition are local to that func-
tion—they’re used only in the body of that function to access the function’s argument val-
ues. You can also define external parameter names that the caller is required to use when
a function is called—as is the case for all the arguments to an initializer and any arguments
after the first argument in a method call. This can help make the meaning of each argu-
ment clear to the programmer calling the function.

For each parameter, you can specify both an external name and a local name by
placing the external name before the local name as in:

or you can specify that the local parameter name should also be used as the external pa-
rameter name by placing a # before the local parameter name, as we demonstrate in
Fig. 5.8 (line 4). The function power (lines 4–12) calculates the value of its base argument
raised to its exponent argument. The two calls to power (lines 15 and 16) each specify the
parameter name before each argument. Once you expose an external parameter name, you
must label the corresponding argument in a function call with a parameter name and a
colon (:); otherwise, a compilation error occurs.

Changing the Default External Parameter Names for an Initializer or Method
By default, the names of an initializer’s parameters and the names of a method’s parame-
ters for every parameter after the first are used as their external names. You can customize
a method’s or initializer’s external parameter names by specifying your own, using the
same syntax we discussed for functions earlier in this section.

externalName localName: type

1 // fig05-08: External parameter names

2
3 // use iteration to calculate power of base raised to the exponent

4 func power() -> Int {

5 var result = 1;
6

7 for i in 1...exponent {

8 result *= base
9 }

10

11 return result
12 }

13
14 // call power with and without default parameter values
15 println("power(base: 10, exponent: 2) = \()")

16 println("power(base: 2, exponent: 10) = \()")

power(base: 10, exponent: 2) = 100
power(base: 2, exponent: 10) = 1024

Fig. 5.8 | External parameter names.

#base: Int, #exponent: Int

power(base: 10, exponent: 2)
power(base:2, exponent: 10)

5.10 Default Parameter Values 89

Why an External Name Is Not Required for a Method’s First Argument
In Objective-C, method calls read like sentences. The method name refers to the first pa-
rameter, and each subsequent parameter has a name that’s specified as part of the method
call. In addition, method and parameter names often include prepositions to help make
function calls read like sentences.

Apple wants Swift programmers to use similar naming conventions in their methods.
Because the method name should refer to the first parameter, Swift provides only a local
parameter name for the first method parameter, then provides local and external parameter
names for all subsequent parameters. Using this naming convention, we could reimple-
ment the power function as

In this case, we’d call the function as:

which reads like the sentence, “Raise the base 10 to the exponent 2.”

Requiring an External Parameter Name for a Method’s First Argument
You can require a method’s caller to provide an external parameter name for the method’s
first argument. To do so, simply precede the parameter name with # to use the local pa-
rameter name as the external parameter name or specify an external parameter name.

Passing Method Arguments Without Parameter Names
You can allow a method to be called without labeling its arguments by using an underscore
(_) as each parameter’s external name.

5.10 Default Parameter Values
Methods can have default parameters that allow the caller to vary the number of argu-
ments to pass. A default parameter specifies a default value that’s assigned to the parameter
if the corresponding argument is omitted.

You can create functions with one or more default parameters. All default parameters
must be placed to the right of the function’s nonoptional parameters—that is, at the end of the
parameter list. Each default parameter must specify a default value by using an equal (=)
sign followed by the value.

When a parameter has a default value, the caller can optionally pass that particular
argument. For example, the function

specifies a default second parameter. Any call to power must pass at least an argument for
the parameter base, or a compilation error occurs. Optionally, a second argument (for the
exponent parameter) can be passed to power. Consider the following calls to power:

The first call generates a compilation error because this function requires a minimum of
one argument. The second call is valid because the one required argument (10) is being

func raiseBase(base: Int, #toExponent: Int) -> Int

raiseBase(10, toExponent: 2)

func power(base: Int, exponent: Int = 2) -> Int

power() // compilation error--first argument is required

power(10) // calls power with 2 as the second argument
power(10, exponent: 3) // explicitly specifying both arguments

90 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

passed explicitly—the optional exponent is not specified in the method call, so 2 is passed
by default. The last call is also valid—10 is passed as the required argument and 3 is passed
as the optional argument. A function’s default parameter names are automatically external
parameter names—when you provide an argument for a default parameter, you must spec-
ify the default parameter’s name with that argument in the function call.

Figure 5.9 demonstrates a default parameter. The program reimplements the power
function of Fig. 5.8 without external parameter names and with a default value for its
second parameter. Lines 15–16 call function power. Line 15 calls it without the second
argument. In this case, the compiler provides the second argument, 2, using the default
value specified in line 4, which is not visible to you in the call. Notice that the call to power
at line 16 requires the parameter name for the second argument.

5.11 Passing Arguments by Value or by Reference
Swift allows you to pass arguments to functions by value or by reference. When an argu-
ment is passed by value (the default for value types in Swift), a copy of its value is made and
passed to the called function. Changes to the copy do not affect the original variable’s
value in the caller. This prevents the accidental side effects that so greatly hinder the de-
velopment of correct and reliable software systems. Each argument that’s been passed in
the programs in this chapter so far has been passed by value. When an argument is passed
by reference, the caller gives the function the ability to access and modify the caller’s orig-
inal variable.

To pass an object of a class type by reference into a function, simply provide as an
argument in the function call the variable that refers to the object. Then, in the function
body, reference the object using the parameter name. The parameter refers to the original
object in memory, so the called function can access the original object directly.

1 // fig05-09: Default parameter values

2
3 // use iteration to calculate power of base raised to the exponent

4 func power(base: Int,) -> Int {
5 var result = 1;

6

7 for i in 1...exponent {
8 result *= base

9 }

10
11 return result

12 }

13
14 // call power with and without default parameter values

15 println("power(10) = \()")

16 println("power(2, exponent: 10) = \()")

power(10) = 100
power(2, exponent: 10) = 1024

Fig. 5.9 | Default parameter values.

exponent: Int = 2

power(10)

power(2, exponent: 10)

5.11 Passing Arguments by Value or by Reference 91

We’ve considered value types and reference types. A major difference between them
is that value-type variables store values, so specifying a value-type variable in a function call
passes a copy of that value to the method. Reference-type variables store references to objects,
so specifying a reference-type variable as an argument passes the function a copy of the ref-
erence that refers to the object. Even though the reference itself is passed by value, the func-
tion can still use the reference it receives to interact with—and possibly modify—the
original object. Similarly, when returning information from a function via a return state-
ment, the function returns a copy of the value stored in a value-type variable or a copy of
the reference stored in a reference-type variable. When a reference is returned, the caller
can use that reference to interact with the returned reference-type object.

inout Parameters
What if you would like to pass a variable by reference so the called function can modify
the variable’s value in the caller? To do this, Swift provides keyword inout. Applying
inout to a parameter declaration allows you to pass a variable to a function by reference—
the called function will be able to modify the original variable in the caller. It’s a compila-
tion error to pass a constant to an inout parameter. A function can use multiple inout
parameters as another way to “return” multiple values to a caller. You can also pass a ref-
erence-type variable by reference, which allows you to modify it so that it refers to a new
object.

Demonstrating an inout Parameter
The app in Fig. 5.10 uses the inout keyword to allow a function to modify its Int argu-
ment. Function square (lines 4–6) multiplies its parameter value by itself and assigns the
result to value. The Int parameter is preceded with inout, which indicates that the argu-
ment passed to this method must be an Int and that it will be passed by reference. Because
the argument is passed by reference, the assignment at line 5 modifies the original argu-
ment’s value in the caller.

1 // fig05-10: Pass-by-reference with inout parameters
2
3 // square function that modifies its argument in the caller

4 func square() {
5 value *= value // squares value of caller's variable

6 }

7
8 // test inout parameter

9 var x = 5

10 println("Original value of x is \(x)")
11
12 println("Value of x after calling square(&x) is \(x)")

Original value of x is 5
Value of x after calling square(&x) is 25

Fig. 5.10 | Pass-by-reference with inout parameters.

inout value: Int

square(&x)

92 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

Passing an Argument by Reference
Line 9 initializes variable x to 5. Line 10 displays x’s original value. When you pass a vari-
able to a method with a reference parameter, you must precede the argument with an &
(line 11)—similar to a pointer in languages like Objective-C, C and C++. After line 11
squares x’s value, line 12 displays the new value. Notice that x is now 25.

5.12 Recursion
Swift supports recursion. A recursive function calls itself, either directly or indirectly
through another function.

Recursive Factorial Calculations
Figure 5.11 uses recursion to calculate and display the factorials of the integers from 0 to
10. The recursive function factorial (lines 4–11) first tests to determine whether a ter-
minating condition (line 6) is true. If number is less than or equal to 1 (the base case), fac-
torial returns 1, no further recursion is necessary and the function returns. If number is
greater than 1, line 9 expresses the problem as the product of number and a recursive call
to factorial evaluating the factorial of number - 1, which is a slightly simpler problem
than the original calculation, factorial(number).

Software Engineering Observation 5.2
By default, value types are passed by value. Objects of reference types are not passed to
methods; rather, references to objects are passed to methods. The references themselves are
passed by value. When a method receives a reference to an object, the method can
manipulate the object directly, but the reference value cannot be changed to refer to a new
object.

1 // fig05-12: Recursive factorial function

2
3 // recursive factorial function

4 func factorial(number: Int64) -> Int64 {

5 // base case
6 if number <= 1 {

7 return 1

8 } else { // recursion step
9 return number * factorial(number - 1)

10 }

11 }
12
13 // calculate the factorials of 0 through 10

14 for counter in 0...10 {
15 println("\(counter)! = \()")

16 }

0! = 1
1! = 1
2! = 2

Fig. 5.11 | Recursive factorial function. (Part 1 of 2.)

factorial(Int64(counter))

5.13 Nested Functions 93

Function factorial receives a parameter of type Int64 and returns a result of type
Int64. As you can see in Fig. 5.11, factorial values become large quickly. We chose Int64
(which can represent relatively large integers) so that the app could calculate factorials up
to 20!. Unfortunately, the function produces large values so quickly that 21! exceeds the
maximum value that can be stored in an Int64 variable, causing an overflow. Due to the
restrictions on the integral types, variables of type Float or Double might ultimately be
needed to calculate factorials of larger numbers.

A strength of object-oriented programming languages like Swift is that they can be
extended with new types to meet your applications’ needs. For example, you could create
a type (e.g., HugeInt) that supports arbitrarily large integers for use in large-number fac-
torial calculations.

5.13 Nested Functions
You can nest function definitions in other function definitions. This can be useful for or-
ganizing complex functions. Rather than defining at global scope a utility (helper) func-
tion that’s called by only one other function, you can nest the utility function’s definition
in the scope of the function that uses it. This hides it from the rest of your code. For ex-
ample, an array-sorting function could define a nested swap function for swapping ele-
ments into sorted order.

If necessary, an enclosing function can return a nested function so that it can be called
from other scopes—for example, you could define a function that returns a nested func-
tion based on a value passed to the enclosing function (as we do in this section’s example).
A nested function also has access to the local variables and constants in its enclosing func-
tion’s scope, including the enclosing function’s parameters.

Figure 5.12 contains a mechanical nested-functions example. Function sortOrder
(lines 4–16), based on the Bool parameter increasingOrder’s value, returns either the
nested function ascending (defined at lines 6–8) or the nested function descending
(defined at lines 11–13). To make the purpose of sortOrder’s argument clear, we specified
that its parameter name (increasingOrder) should also be its external parameter name—
thus, each call to sortOrder (lines 19 and 28) labels its argument with increasingOrder.

3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Common Programming Error 5.3
Either omitting the base case or writing the recursion step incorrectly so that it does not
converge on the base case will cause infinite recursion, eventually exhausting memory.
This error is analogous to the problem of an infinite loop in an iterative (nonrecursive)
solution.

Fig. 5.11 | Recursive factorial function. (Part 2 of 2.)

94 Chapter 5 Functions and Methods: A Deeper Look; enums and Tuples

Every Function Has a Type and Can Be Treated as Data
Each function you define has a type that’s determined by the types of its parameters and
by its return type. The return type of function sortOrder is specified as

A function type consists of parentheses containing the parameter types, followed by -> and
the return type. The preceding type indicates that the value returned by sortOrder is a
function type for a function that receives two Int parameters and returns a Bool. Func-
tions ascending and descending meet these requirements.

Because every function has a type, you can assign functions to variables, pass them to
functions and methods, and return them from functions and methods. We’ll discuss func-
tions as data in more detail in Section 6.7.

1 // fig05-12: Mechanical example of nested functions

2
3 // return a function that determines the ordering of two Ints
4 func sortOrder(#increasingOrder: Bool) -> {

5

6
7

8

9
10

11

12
13

14

15 return (increasingOrder ? ascending : descending)
16 }

17
18 // get function for comparing Ints to see if they're in ascending order

19
20
21 if {

22 println("7 and 5 are in ascending order")
23 } else {

24 println("7 and 5 are not in ascending order")

25 }
26
27 // get function for comparing Ints to see if they're in descending order

28
29
30 if {

31 println("7 and 5 are in descending order")
32 } else {

33 println("7 and 5 are not in descending order")

34 }

7 and 5 are not in ascending order
7 and 5 are in descending order

Fig. 5.12 | Mechanical example of nested functions.

(Int, Int) -> Bool

(Int, Int) -> Bool
// return true if x and y are in ascending order

func ascending(x: Int, y: Int) -> Bool {

 return x < y
}

// return true if x and y are in descending order
func descending(x: Int, y: Int) -> Bool {

 return x > y

}

var order = sortOrder(increasingOrder: true)

order(7, 5)

order = sortOrder(increasingOrder: false)

order(7, 5)

5.14 Wrap-Up 95

Assigning a Function to a Variable and Using the Variable to Call the Function
Line 19 calls function sortOrder with the argument true to indicate that sortOrder
should return the function that determines whether two Ints are in ascending order. The
returned function is assigned to the variable order, which is inferred to have the type

Once you’ve assigned a function to a variable, you can use the variable to call the function,
as shown in line 21. Line 28 calls sortOrder with the argument false to get the function
that determines whether two Ints are in descending order, then line 30 calls that function.

5.14 Wrap-Up
In this chapter, we continued our discussion of functions and methods. We discussed that
Swift automatically creates modules for packaging reusable software components. We in-
troduced Darwin—Apple’s UNIX-based core of OS X and iOS—and imported the Dar-
win module so we could use the random-number generator.

We used enum types to create sets of named constants with and without values for the
constants. You returned multiple values from a function via a tuple, passed a tuple to a
function and accessed a tuple’s elements via both names and indices.

We discussed the scope of identifiers. We used overloading to define multiple func-
tions with the same name that performed similar tasks but with different types and/or dif-
ferent numbers of parameters.

We discussed differences in how functions and methods are called, and we presented
the concepts of local parameter names vs. external parameter names. You saw that, when
external parameter names are provided in a function definition, they must be used in the
function call to label the corresponding arguments. You used # to expose a local parameter
name as the external parameter name. We also showed how to disable this feature in
methods—by placing an underscore (_) before the parameter’s name—so that parameter
names are not required in a method call.

You specified a default parameter value and saw that the compiler supplied that value
in a function call when you did not explicitly provide an argument for that parameter.

We discussed how value-type and reference-type arguments are passed to methods
and demonstrated how to pass arguments by reference by declaring the parameter as inout
and providing an ampersand (&) before the corresponding argument in a function call. We
demonstrated that Swift supports recursive functions and nested functions.

In Chapter 6, you’ll use Arrays to maintain lists and tables of data. You’ll also create
functions with variable-length argument lists. We’ll continue our discussion of functions
in Chapter 6 which also presents closures—anonymous functions that are typically
defined in the scope of a function or method and commonly passed as arguments to other
functions or methods. As you’ll see, a function is a closure with a name. Swift’s Array type
provides methods filter, map and reduce that receive closures as arguments—which
enable you to express complex operations in a more concise and elegant manner than with
full function definitions. We’ll present additional method and initializer concepts in
Chapters 8–10.

(Int, Int) -> Bool

Symbols
_, underscore for ignoring a

tuple value during
decomposition 82

--, predecrement/
postdecrement operators
53

-, subtraction operator 28,
29

: notation for inheritance
221

!, logical NOT operator 68
truth table 68

!=, not equals operator 30
!==, not identical to operator

30, 45
?:, ternary conditional

operator 52
., dot syntax 36, 41
..., closed range operator

56, 59, 107
..<, half-open range

operator 56, 59, 103, 107,
108

{, left brace 35
}, right brace 35
*, multiplication operator

28, 29
*=, multiplication

assignment operator 53
/, division operator 28, 29
/*…*/, multiline comment

22
//, end-of-line comment 22
/=, division assignment

operator 53
\, backslash special character

24

\’, single-quote special
character 24

\", double-quote special
character 24

\0, null special character 24
\n, line feed special character

24
\r, carriage-return special

character 24
\t, tab special character 24
&-, overflow subtraction

operator 29
&*, overflow multiplication

operator 29
&/, overflow division

operator 29
&&, logical AND operator

66, 67
truth table 67

&%, overflow remainder
operator 29

&+, overflow addition
operator 29

%, remainder operator 28, 29
%@ format specifier 61, 62
%=, remainder assignment

operator 53
+ for concatenating Arrays

101
– (minus sign) formatting

flag 62
+, addition operator 28, 29
++, preincrement/

postincrement operators
53

+= operator for Arrays 104,
106, 107

+=, addition assignment
operator 52

<, less than operator 30
<=, less than or equal

operator 30
-=, subtraction assignment

operator 53
==, is equal to operator 30
=== identical to operator 30,

45
>, greater than operator 30
>=, greater than or equal to

operator 30
||, logical OR operator 66,

67
truth table 67

Numerics
0, format flag 163

A
abbreviating assignment

expressions 52
abs C function 74
abstract class 228, 230, 231
abstract method 230
abstract property 230
access modifier 35

internal 35, 37, 46, 226
private 35, 46, 226
public 35, 37, 46, 226

access modifiers
public 160

Accessibility 291, 311
accessibility strings 289
Accessibilty Inspector 312
UIAccessibility

protocol 312

Index

358 Index

action 50, 324
create 340

action (event handler) 340
actual types in generics 254
adaptive design 11
Add Missing Constraints 334
addition 28, 29
addition compound

assignment operator, +=
52

adopt a protocol 238, 241
advance global function 270
Alignment attribute of a Label

332
anonymous function 4, 108
AnyObject type 279, 345
API 7
app icons 298
app name 293
App Store xxxii
app templates 292

Game 292
Master-Detail Application

292
Page-Based Application

292
Single View Application

292
Tabbed Application 292

append method of a String
270

append method of Array
104, 106

AppKit 7
Apple Inc. 3
Apple Macintosh 3
Apple TV 3
Apple World Wide

Developer Conference
(WWDC) xix, 3

arc4random UNIX function
76

arc4random_uniform
UNIX function 76, 77
upper bound 77

arithmetic compound
assignment operators 52

arithmetic operators 28
-, subtraction 28, 29
*, multiplication 28, 29
/, division 28, 29
&-, overflow subtraction

29
&*, overflow

multiplication 29
&/, overflow division 29
&%, overflow remainder

29
&+, overflow addition 29
%, remainder 28, 29
+, addition 28, 29

Array

count property 98
array bounds checking 5
Array literal 100, 101

for multidimensional
Array 125

nested 125
Array of one-dimensional
Arrays 125

Array Swift Standard
Library type 72, 97, 153,
278, 325
+ operator for

concatenating Arrays
101

+= operator 104, 106,
107

append method 104, 106
delete a subset of the

elements 108
description property

99, 100
element type 99
filter method 113
initializer with no

parameters 100
initializer with two

parameters 100
insert method 104, 107
isEmpty property 105

Array Swift Standard
Library type (cont.)
last property 261
map method 113, 115
pass by reference 123
reduce method 114,

115, 128, 142
removeAll method 104,

107
removeAtIndex method

104, 107
removeLast method

104, 107
replace a subset 108
reverse method 112
select a subset 108
sort method 109
sorted method 109, 111
two-dimensional 124
zero-based counting 98

as cast operator 278, 279
as operator 238
as? operator 237
aspect ratio 303
assert function 282
asset catalog 291, 298
assignment operators 52
Assistant editor (Xcode) 12,

16, 295, 338, 340
associated type for a protocol

263
associated value for an enum

constant 210
associative array 132
associativity

default value none 284
left 284
none 284
of a new operator 284
right 284

associativity context-
sensitive keyword 285

associativity of operators 29,
32
left to right 29
right to left 29

Index 359

Attributes inspector 303
auto layout 11, 290, 301,

306, 334
auto layout constraints

adding 334
Equal Widths 335
missing 334

automatic reference counting
(ARC) 159, 184, 193, 343

Autoshrink 305, 332

B
Background attribute of a

GUI component 328
backslash (\) 24
base class 248, 342

topmost superclass in a
class hierarchy 220, 248

base internationalization 314
base language

(internationalization) 314,
315

becomeFirstResponder
method of a GUI
component 325, 344

binary operator 28
body

of a class definition 35
of an if statement 29

Bool expression 52
Bool primitive type 52
Bool type 26, 27
Boolean and numeric Swift

Standard Library types 72
braces ({ and })

not required 56
branch statement 29
break statement 57, 64
Breakpoint navigator 16, 294
bridging between Objective-

C and Swift 153, 279,
325, 348
Apple’s Using Swift with

Cocoa and Objective-C
guide 153, 279

downcast 279

bullseye symbol for an outlet
or action 339

bundle identifier (bundle
ID) 15, 293

C
C Standard Library 73
camel case naming 27
card face 204
card games 116
carriage return 24
case in an enum 80
case keyword 56
case sensitive 27
cast 82
categories in Objective-C

159, 174
ceil C function 74
chain of initializer calls 248
class 72

camel case naming 35
constructor 37
default constructor 38
definition 35, 342
hierarchy 218
name 35

class keyword
for a type property or type

method in a class 190
for defining a class 35

class method in other object-
oriented languages 187

class variable 187
classes

Dictionary 132
NSArray 153, 279, 325
NSDate 181, 182, 182
NSDateFormatter 182,

184
NSDecimalNumber 34,

63, 185, 274, 323
NSDictionary 153, 279,

325
NSMutableArray 153,

279, 325

classes (cont.)
NSMutableDictionary

153, 279, 325
NSMutableString 279
NSNumber 347, 348
NSNumberFormatter 41,

323, 347
NSString 153, 279, 325
UIImageView 290, 302
UILabel 290, 324
UISlider 324
UITextField 324
UIViewController 324,

344
class-only protocol 246

optional capabilities 246
class-only protocols 246
client code 37
closed range operator (...)

56, 107
closure 4, 142

anonymous function 108
closure expression 109

empty parameter list 111
fully typed 111
inferred types 111
inferred types and

implicit return 112
operator function 112
shorthand argument

names 112
Cocoa 7
Cocoa Touch 7, 290, 301,

322, 323
code-completion suggestions

22
code reuse 215
Code Snippet library 301
collision in a hashtable 154
color opacity 328
column 124
columns of a two-

dimensional Array 124
comment

multiline, /*…*/ 22
single-line, // 22

360 Index

company identifier 293, 326
Comparable protocol 247,

259
String 268

Comparable Swift Standard
Library protocol 72

comparative operators 30,
247, 259

compile-time type safety 254
componentsSeparatedBySt

ring method of class
NSString 152

compose a tuple 82
composition 181
compound assignment

operators 52
compound interest 60
computed property 37, 117,

160, 163, 174, 230
get accessor 117, 178,

179
read-only 163, 178
set accessor 117, 178,

179
shorthand read-only 163
struct 198

computed type property 187,
189
struct 198

concatenate Strings 22, 52
concrete class in other object-

oriented programming
languages 230

condition 29
conditional statement 49, 49

if...else 50
Conditional Statements

if 29
conform to a protocol 238
connect a GUI control to a

corresponding 324
Connection type 339
Connections inspector 303
constant property 36, 324
constant value-type object

196

constructor in other object-
oriented programming
languages 248

context-sensitive help 16, 41,
295

context-sensitive keyword
285

context-sensitive keywords
32

continue statement 65, 355
control expression 55
control statement

nesting 50
stacking 50

control variable 63
convenience initializer 167,

168, 172, 174
protocol conformance 241

convenience initializer 249,
251

convenience keyword 168
copy constructor 169
copy method of class
NSObject 278, 279

copy-on-write 201
cos C function 74
count property of type
Array 98, 104

count property of type
Dictionary 141

countElements global
function 61, 119

counter-controlled loop 63
craps (casino game) 77
create an action in Interface

Builder 340
create an outlet in Interface

Builder 338
creating and initializing an
Array 101

currency format 338
currency formatting 322
CurrencyStyle constant

from the NSNumber-
FormatterStyle
enumeration 186, 219

CurrencyStyle constant of
the NSNumberFormatter-
Style enumeration 348

custom name for the
constant in a property
observer 162

D
dangling-else problem 52
Darwin module 73, 76
dateFormat property of class
NSDateFormatter 184

dateStyle property of class
NSDateFormatter 182

dealing a deck of cards 116
deallocate an object 185
Debug area (Xcode) 16, 17,

293, 295
Debug navigator 16, 294
debugger 12
decimal separator 219
decimalNumberByAdding

method of class
NSDecimalNumber 187,
276, 349

decimalNumberBy-

DividingBy method of
class NSDecimalNumber
349

decimalNumberBy-

MultiplyingBy method
of class NSDecimalNumber
187, 220, 275, 349

declaration
import 41, 342

declaration modifier 285
decompose a tuple 82, 142

ignore a value with _ 82
decrement operator, -- 53
default case in a switch 56
default initializer 38, 160,

162, 198, 249
struct 199

default parameter 89
default value 89

Index 361

deinit keyword 185
inheritance 251

deinitializer 185, 189, 251
not allowed in value types

198
delegate protocol 246
delete a subset of an Array

108
dependent condition 68
Deployment Info 297
derived class 342
description property

Array 99, 100
Dictionary 134, 136

designated initializer 167,
172, 222, 223, 248, 249,
250
protocol conformance

241
designated initializer in a

base class 248
Device Orientation 297
Devices project setting 293
Devices window (Xcode 6)

22
dice game 77
Dicitonary Swift Standard

Library type 132, 136,
153, 278, 325
Arrays as values 142
count property 141
description property

134, 136
empty Dictionary 136
empty literal, [:] 135,

141
equality operators 140
generic type 133
immutable 134
inserting new key–value

pairs 145, 147
isEmpty property 141
key 132
keys property 143
literal 135

Dicitonary Swift Standard
Library type (cont.)
modifying the value

associated with a key
145, 147

mutable 134
removeAll method 151
removeValueForKey

method 151
removing key–value pairs

145, 147
shorthand notation 133
subscripting operations

145
type inference 136
updateValue method

150, 151
value 132
values property 145

Dictionary Swift Standard
Library type 72

didSet property observer
162

direct superclass 218
disabilities 291, 311
display a line of text 22
division 28, 29
division compound

assignment operator, /=
53

do...while loop statement
50, 58

document outline window
307

dot (.) syntax 36, 41
double-precision floating-

point number 34
double quotes, " 22, 24
Double type 26, 27, 34, 34
downcast 237, 238, 279
duplicate existing GUI

components 324
dynamic binding 237
dynamically typed 345

E
Editing Changed event for a

Text Field 340, 345
Editor area (Xcode) 16, 293,

294
element of chance 76
element type of an Array 99
ellipsis (...) in a method

parameter list 128
else keyword 51
emojis in Swift code 26
empty Dictionary literal
[:] 135, 141

empty Dictionary object
136

empty statement (in C-based
languages) 31

empty String 347
encapsulation 46
endIndex property of a
String 270

enum 80, 80
case 80
constants in switch

statement cases 205
failable initializer 209
initializer 209
keyword 195
raw type 81
unique raw values for

constants 202
enum constant 80

associated values 210
raw value 81
rawValue 204
rawValue property 83

enum constants in cases 205
enum keyword 202
enum type 80
enumerate function 103
enumeration 195
Equal Widths constraint 335
equality operators 140
Equatable protocol 247

String 268

362 Index

Equatable Swift Standard
Library protocol 73

Error-Prevention Tips
overview xxi

escape character 24
event handler 340
event-handling method 324
Events

Editing Changed event for
a Text Field 340, 345

Value Changed event for a
Slider 340, 345

exception handling 163
exclamation point (!) to

unwrap an optional 145
exhausting memory 93
exit point

of a control statement 50
exiting a for statement 65
exp C function 74
explicit cast 82
exponentiation operator 285
expression 28
extended graphene cluster

268
extensible 227
extension 199

computed property 174
convenience initializer

174
keyword 159, 174
method 174

extension for conforming
to a protocol 238, 239,
242

external iteration 113
external parameter name

to use local parameter
name 88

for a function parameter
88

F
face of a card 204
factorial 92
failable 172

failable initializer 159, 170,
173, 220, 223, 230, 231
convenience initializer

172
designated initializer 172
init? 172

failable initializer for an enum
209

failable initializer in a
protocol 241

false keyword 29, 52
fatalError function 231
field width 62
file in the Project navigator

18, 296
File inspector 16, 295
File Template library 301
filter elements of an Array

114
filter method of Array

113
final

class 248
method 248
property 248
subscript 248

Find navigator 16, 294
Finder window 321
first responder 325
Fisher-Yates shuffle

algorithm 119
fixed text

in a format string 61
Fix-it 12
Float type 26, 27, 34, 34
floating-point literal

Double by default 34
floating-point number 34

double precision 34
Double type 34
Float type 34
single precision 34

floor C function 74
for loop statement 50, 63
for…in loop 50, 58

nested 126, 128

force unwrap an optional
with ! 145, 148

format specifiers 61
%@ 61, 62

format string 61
formatted output

– (minus sign) formatting
flag 62

0 flag 163
field width 62
left justify 62
minus sign (–) formatting

flag 62
formatted text

right align 62
Foundation framework 7,

41, 322, 323, 348
NSNumberFormatter

class 41
frameworks 40

Foundation 41, 323
UIKit 301, 323, 324, 342

free (global) function 22
free function 40, 72
fully typed closure expression

111
func keyword 40
function 40

definition 75
external parameter name

88
generic declaration 140
multiple return values 82
overloading 86

functions
advance 270
assert 282
countElements 61, 119
enumerate 103
fatalError 231
max 76
precondition 281
print 23, 23, 73
println 22, 23, 73
sort 73
sorted 73

Index 363

functions (cont.)
stride 59, 60, 103
with multiple return

values 5

G
game playing 76
Game template 292
generic function 254

maximum 258
generic function declaration

140
generic overloaded operator

function 286
generic parameter clause 256
generic type 99, 133, 254
generic type constraint 134
generics 5

actual types 254
associated type for a

protocol 263
function overload 259
generic parameter clause

256
method 256
placeholder for a type 254
specialization 257
type 259
type argument 257
type constraint 259
type parameter 140, 256
where clause 259

get accessor of a computed
property 117, 178, 179

getter for a propery 36
Git 293
global (free) function 22
global function 40, 72
global variable

private 189
Grand Central Dispatch

(GCD) 113
Graphical User Interface

(GUI) 3
group in the Project

navigator 18, 296

grouping related software
components (module) 46,
73

guard condition in a case 57
GUI Components

Image View 290
Label 290, 327, 328
naming convention 337
Slider 320

guide lines 302

H
half-open range operator

(..<) 56, 59, 103, 107,
108

has-a relationship 181
hash table 154
Hashable protocol 134,

217, 248, 259
hashing 154
hash-table collisions 155
hasPrefix method of a
String 270

hasSuffix method of a
String 270

height or a GUI component
329

“hidden” fields 84
HIG (Human Interface

Guidelines) 302
horizontal tab 24
Human Interface Guidelines

(HIG) 302, 327

I
@IBAction 345
@IBAction event-handling

method 324
@IBOutlet property 324,

343
iCloud 7
IDE (integrated

development
environment) 10

identical to (===) operator
30, 45

identifier 26
identifier naming 26
identifiers

camel case naming 35
Identity inspector 303
identity operators 140
identity value in a reduction

operation 115
if conditional statement 29
if...else conditional

statement 50
Image attribute 303
image set 291, 298
Image View 290, 302, 303
Images.xcassets 298
immutable 99, 113

by default 195
Dictionary 134

implementation of a
function 230

implicitly unwrapped
failable initializer 173

implicitly unwrapped
optional 220, 222, 343

import declaration 41, 342
#import preprocessor

directive 323
in keyword

introduce a closure’s body
111

increment
expression 65
operator, ++ 53

increment and decrement
operators 53

indentation 51
index (subscript) 98
indirect superclass 218
infer enum constant’s type in

a switch 205
infinite loop 64, 93
infinite recursion 93
inheritance 215, 221, 344

: notation 221
base class (topmost

superclass) 220, 248

364 Index

inheritance (cont.)
deinitializers 251
examples 217
hierarchy 218
hierarchy for university
CommunityMembers
218

initialization 248
initializers 249
two-phase initialization

process 249, 249, 250
inherits 342
init keyword 38
init! failable initializer 173
init? failable initializer 172
initialization

two-phase initialization
process in class
hierarchies 249, 249,
250

initializer 37, 38, 42, 136,
173
call another initializer of

the same class using
self 168

convenience 167, 168
delegation 168
designated 167, 249
enum 209
failable 159, 170
failable convenience

initializer 172
failable designated

initializer 172
inherit 249
init! 173
init? 172
no-argument 168
overloaded 166
override a designated

initializer 250
struct 198, 199

initializers cannot specify a
return type 40

initializing two-dimensional
Arrays in declarations 126

inout keyword 91, 195, 262
in an overloaded

assignment operator
function 272

inout parameter
passing an Array by

reference 123
insert method of a String

270
insert method of Array

104, 107
inspector 16, 295, 302

Attributes 303
Connections 303
File 16, 295
Identity 303
Quick Help 16, 41, 295
Size 303

instance method 188, 240
instance property 188, 240
Instruments 12
Int cast 83
Int primitive type 53
Int type 25, 27
Int16 type 25
Int32 type 25
Int64 type 25
Int8 type 25
integer 27

quotient 28
value 27

integer division 28
integrated development

environment (IDE) 10
Interface Builder 3, 11, 12,

12, 289, 290, 290
duplicate existing GUI

components 324
Pin tools 335

interface in other object-
oriented programming
languages 238

internal

access modifier 35, 37,
46, 226

internal iteration 113

internationalization 291,
308, 313
base language 314, 315
lock your components for

localization 314
Internationalization and

Localization Guide 314
iOS 8 3
iOS 8 for Programmers: An

App-Driven Approach with
Swift 7

iOS app templates 292
iOS Developer Enterprise

Program xxxii
iOS Developer Library

Reference 7, 323
iOS Developer Program

xxxii, 308
iOS Developer University

Program xxxii
iOS simulator 289, 291, 308
iPad 3
iPhone 3
iPod Touch 3
is-a relationship 217
is operator 346
isEmpty property

Array 105
Dictionary 141
String 269, 347

Issue navigator 16, 294
iteration of a loop 65
iteration statements 50

J
Jobs, Steve 3
join method of a String

271
jump bar in the Assistant

editor 338
Jump To Definition 41

K
key in a Dictionary 132
keyboard

how to display 325, 344

Index 365

keyboard shortcuts 18, 296
Keyboard Type attribute of a

Text Field 334
keys property of type
Dictionary 143

key–value pair 5, 132, 135,
155

keywords 50
@objc 238
as 238
as? 237
associativity 285
Bool 52
break 57
case 56
class 35
continue 65
convenience 168
default 56
deinit 185
didSet 162
do 50, 58
else 50
enum 80, 202
extension 159, 174
false 52
for 50, 63
func 40
if 50
import 41, 342
init 38
inout 91, 195
internal 35, 37, 46, 226
lazy 160, 191, 193
let 25, 324
mutating 199, 201, 205
operator 285
optional 247
override 224, 344
postfix 269, 278
precedence 285
prefix 269, 278
private 35, 46, 226
protocol 240
public 35, 37, 46, 226
required 251

keywords (cont.)
return 40, 42
self 39, 163
static 204, 240
subscript 281
super 223, 344, 344
switch 50
table of Keywords and

reserved words 351
table of keywords and

reserved words 351
true 52
typealias 263
var 25, 324, 343
weak 184
while 50, 58
willSet 162

L
Label 290, 304, 329

Alignment attribute 305,
332

Font attribute 305
Lines attribute 305
Text attribute 305

label 354
label in a switch 56
labeled break statement 354

exiting a nested loop 355
labeled continue statement

355
terminating a single

iteration of a labeled
loop 355

labeled statement 354
lambda 4
landscape orientation 297,

300
last-in, first-out (LIFO)

order 263
last property of Array 261
launch images 298
lazy stored property 160,

191, 192, 193
cannot have property

observers 192

leading edge of a view 308
left associativity value 284
left brace, { 35
left justified 62
let keyword 25, 134, 324
Library window 302
LIFO (last-in, first-out)

order 263
line break 22, 23
line-feed character, \n 24, 24
LLVM Compiler 12
load factor 155
local variable 39, 39, 84
locale property of class
NSDateFormatter 182

locale-specific currency
string 41, 322, 348

locale-specific date String
182

locale-specific percentage
string 346, 347

localization 313
lock GUI components 314

localize 289
localizedStringFrom-

Number method of class
NSNumberFormatter 186,
219, 347, 348

location simulation 12
lock your components for

localization 314
All Properties 314
entire storyboard 314
Localizable Properties 314
Non-localizable Properties

314
Nothing 314

log C function 74
logical AND, && 66, 68

truth table 67
logical negation, or logical

NOT (!) operator truth
table 68

logical operators 66
logical OR, || 66, 67

truth table 67

366 Index

logical statement
switch 55

Look-and-Feel Observations
overview xxii

loop body 58
loop-continuation condition

50, 58, 63, 64, 65
loop statement 50, 57

do...while 50, 58
for 50
for…in 50, 58
while 50, 57

looping terminates 58

M
Mac Developer Library

Reference 7
Mac OS X 3
Macintosh 3
main.swift 21
make your point (game of

craps) 77
map Array elements to new

values 115
map method of an Optional

211
map method of Array 113,

115
Master-Detail Application

template 292
max C function 74
max property of an integer

type 25
max Swift Standard Library

function 76
maximum generic function

258
Media library 301
memberwise copy a value-

type object 199
memberwise initializer for a
struct 198, 199, 200

memory leaks 17, 296
memory-space/execution-

time trade-off 155
memory utilization 155

message 340
Metal 292
method 342

local variable 39
struct 198

method names
came case naming 35

min C function 74
min property of an integer

type 25
Minimum Font Scale 305, 332
minus sign (–) formatting

flag 62
missing auto layout

constraints 334
Mode attribute 303
module 46, 73
module (grouping related

software components) 46,
73, 227

monetary calculations 63,
185

monetary values 322
multidimensional Array

124, 126
multiline comment 22

nested 22
multiple function return

values 82
multiplication

* 28, 29
assignment operator, *=

53, 276
mutable Dictionary 134
mutate 113
mutating method in a

protocol 240
mutating method of a
struct 199, 201, 205

N
namespace 73
naming convention

GUI components 337

naming identifiers 26
Navigator area (Xcode) 16,

17, 293, 294, 295
Navigators 294

Breakpoint 16, 294
Debug 16, 294
Issue 16, 294
Log 16, 294
Project 16, 18, 294, 296
Search 16, 294
Symbol 16, 294

nested
Array initializers 125
for statement 126, 128
for…in loops 126, 128
functions 5
if...else conditional

statement 51
multiline comment 22
type 5, 202

newValue constant received
by willSet property
observer 162

NeXT Inc. 3
NeXT Interface Builder 12
NeXTSTEP operating

system 3, 323
nib file 12
no-argument initializer 168
non-deterministic random

numbers 76
none associativity value 284
not identical to (!==)

operator 30, 45
NSArray class 153, 279, 325
NSDate class 181, 182
NSDateFormatter class 182,

184
dateFormat property

184
dateStyle property 182
locale property 182
stringFromDate method

182, 184
timeStyle property 182

Index 367

NSDecimalNumber class 34,
63, 185, 274, 323
decimalNumberBy-

Adding method 187,
276, 349

decimalNumberBy-

DividingBy method
349

decimalNumberBy-

MultiplyingBy

method 187, 220, 275,
349

initializer 186
one method 187
overloaded operators 275,

276
zero method 187

NSDictionary class 153,
279, 325

NSMutableArray class 153,
279, 325

NSMutableDictionary class
153, 279, 325

NSMutableString class 279
NSNumber class 347, 348
NSNumberFormatter class

41, 323, 347
localizedStringFromN

umber method 186,
219, 347, 348

numberStyle property
41

stringFromNumber
method 42, 219

NSNumberFormatterStyle
enum 347
CurrencyStyle

constant 186, 219
PercentStyle

constant 219
NSString class 153, 279,

325
componentsSeparatedB

yString method 152

numberStyle property of
class NSNumberFormatter
41

numeric keypad 320, 325,
327
display 344

numeric types in Swift 153,
278, 325

O
@objc keyword 238, 247
Object library 301
object-oriented

programming (OOP) 215
Objective-C 3, 4, 10

parameter type 345
property 324
subclass 342
superclass 342

Objective-C protocols 246
oldValue constant received

by didSet property
observer 162

one method of class
NSDecimalNumber 187

opacity of a color 328
OpenGL ES 12, 292
OpenStep 7
operating system 3
operator keyword 285
operator overloading 5, 265

cannot overload = or ?:
265, 287

multiplication
assignment operator,
*= 276

operator characters in a
custom operator 284

operator head in a custom
operator 284

symbols reserved for
Swift’s use 284

operator precedence 29
Operator Precedence

Chart Appendix 352
rules 29

operators
--, predecrement/

postdecrement 53
!, logical NOT 68
?:, ternary conditional

operator 52
... (closed range) 56, 59,

107
..< (half-open range) 56,

59, 103, 107, 108
*=, multiplication

assignment operator 53
/=, division assignment

operator 53
&&, logical AND 66, 67
%=, remainder assignment

operator 53
++, preincrement/

postincrement 53
+=, addition assignment

operator 52
-=, subtraction

assignment operator 53
||, logical OR 66, 67
arithmetic 28
binary 28
compound assignment 52
decrement operator, --

53, 54
increment and decrement

53
increment, ++ 53
logical AND, && 66, 68
logical operators 66
logical OR, || 66, 67
multiplication, * 28
postfix decrement 53
postfix increment 53
prefix decrement 53
prefix increment 53
remainder, % 28, 29
subtraction, - 29
ternary conditional

operator, ?: 52

368 Index

optional 4
force unwrap with ! 145,

148
return value 119
returned from
Dictionary subscript
145

unwrap 148
optional binding 121, 148,

153, 172, 209, 211, 224,
226, 238
in a while statement 263

optional chaining 172, 211,
247

optional keyword 247
optional parameter

default value 89
Optional type 121, 210
optional value 42, 119

unwrapping 119, 121
OS X 3

Yosemite 3
outlet 324

create 337, 338
outlet property name 337
output 22
overflow checking 5
overflow checking arithmetic

operators 29
overflow operators 29

&-, overflow subtraction
29

&*, overflow
multiplication 29

&/, overflow division 29
&%, overflow remainder

29
&+, overflow addition 29

overloaded constructors 166
overloaded division operator

346
overloaded function 86, 254
overloaded methods 86
overloaded operator function

269

overloaded operators for
complex numbers 273

overloading
inout parameter in an

overloaded assignment
operator function 272

unary ! operator 266
overloading generic methods

259
override a superclass member

250
override keyword 224, 344

P
package 73
Page-Based Application

template 292
parameter

constant by default 123
type annotation 38
var 123
variadic 128

parameter type 345
pass-by-reference 90
pass-by-value 90
pattern in a case 56
Payable protocol

declaration 240
Payable protocol hierarchy

UML class diagram 239
PercentStyle constant

from the enum
NSNumberFormatter-

Style 219, 347
performance issues 17, 296
Performance Tips overview

xxi
Pin tools in Interface Builder

335
pixel density 298
placeholder for a type in

generics 254
playground 11, 14
polymorphism 216, 227
Portability Tips overview xxii
portrait orientation 297, 300

postdecrement 53
postfix declaration

modifier 269, 278
postfix decrement operator

53
postfix increment operator

53
postincrement 53
pow C function 74
power of 2 larger than 100

57
precedence 29, 32

arithmetic operators 29
default value 100 for a

new operator 284
of a custom operator 284
of built-in operators 284

Precedence Chart Appendix
352

precedence context-
sensitive keyword 285

precondition function 281
predecrement 53
prefix declaration modifier

269, 278
prefix decrement operator 53
prefix increment operator 53
preincrement 53
Preincrementing and

postincrementing 54
principle 195
principle of least privilege

195
print a line of text 22
print function 23, 23
print Swift Standard

Library function 73
Printable protocol 99, 136,

217, 248
conform to 239

Printable Swift Standard
Library protocol 73

println function 22, 23
println Swift Standard

Library function 73

Index 369

private

access modifier 35, 46,
226

global variable 189
set for a property 37

private(set) 37
program in the general 216
program in the specific 216
programmatically select a

component 325, 344
programming languages

Objective-C 7
project 14, 291
project name 293
Project navigator 16, 18,

294, 296
Project Structure group 18,

296
property 342

computed 37, 163, 324
constant 36, 324
didSet observer 162
private setter 37
read-only in a protocol

240
read-write property in a

protocol 240
stored 36
stored properties must be

initialized 248
variable 36, 324
willSet observer 162

property attribute 184, 343
unowned 185
weak 184, 343

property declaration 339
property observer 160, 162,

192
didSet 162
struct 198
validation 162
willSet 162

protocol 217, 228, 231, 238
adopt 238, 241
adopt more than one 241
class only 246

protocol (cont.)
conform 238
convenience initializer in

a conforming class 241
definition 240
designated initializer in a

conforming class 241
failable initializer 241
mutating method 240
Objective-C 246
read-only property 240
read-write property 240
required initializer in a

conforming class 240
requirements 238
with optional capabilities

246
protocol composition 246,

247, 259
protocol inheritance 246
protocol keyword 240
protocols

Comparable 72, 247, 259
Equatable 73, 247
Hashable 134, 217, 248,

259
Printable 73, 136, 217,

248
SignedIntegerType 286

public

access modifier 35, 37,
46, 160, 226

service 160

Q
Quick Help inspector 16, 41,

295

R
random numbers

arc4random UNIX
function 76

arc4random_uniform
UNIX function 76, 77

element of chance 76
generation 116

range operators
... (closed range) 107
..< (half-open range)

103, 107, 108
raw type of an enum type 81
raw value of an enum type

constant 81
rawValue of an enum

constant 204
rawValue property of an
enum constant 83

Read-Eval-Print-Loop
(REPL) 11

read-only computed
property 160, 163

read-only property in a
protocol 240

read-write property in a
protocol 240

real number 27
recent projects 13
recursive factorial 92
recursive function 92
reduce method of Array

114, 115, 128, 142
refer to an object 45
reference 45
reference count 184, 343
reference type 45, 91, 181
reinventing the wheel 40,

322
remainder 28
remainder compound

assignment operator, %=
53

remainder operator, % 28, 29
removeAll method of type
Array 104, 107

removeAll method of type
Dictionary 151

removeAll method of type
String 270

removeAtIndex method of
type Array 104, 107

removeAtIndex method of
type String 270

370 Index

removeLast method of type
Array 104, 107

removeValueForKey
method of type
Dictionary 151

REPL (Read-Eval-Print-
Loop) 11

replace a subset of an Array
108

Report navigator 16, 294
required initializer

in a class that conforms to
a protocol 240

required keyword 251
requirements of a protocol

238
Resolve Auto Layout Issues

334
responder chain 325
return keyword 40, 42
return multiple values from a

function 82
return type of a method or

function 40
reuse 40, 322
reverse method of Array

112
Rhapsody 7
right align formatted text 62
right associativity value 284
right brace, } 35
rolling two dice 82
rounding a number 28, 62
rows of a two-dimensional
Array 124

rule of thumb (heuristic) 66
rules of operator precedence

29
Run button (Xcode) 35, 321,

322

S
savings account 60
scene 300
SceneKit 292
Scheme selector (Xcode) 321

SCM (source-code
management) repository
13

scope of a declaration 84
screen cursor 24
screen-manager program 227
select a component

programmatically 325,
344

select a subset of an Array
108

selecting multiple GUI
components 332

self

to call another initializer
of the same class 168

self keyword 39, 163
sender of an event 345
set accessor of a computed

property 117, 178, 179
setter for a property 36
shadow a property 39
sheet 291, 292
short-circuit evaluation 68
shorthand notation for read-

only computed properties
163

shorthand type annotation
Dictionary 136

shuffle a deck of cards 116
side effect 90
signature of a function 87
SignedIntegerType

protocol 286
simulation 76
simulator 289, 291, 308
sin C function 74
single-entry/single-exit

control statements 50
single-line comment, // 22
single-precision floating-

point number 34
Single View Application

project 325
Single View Application

template 292

size class 300
Any 327
Compact Width 327
Regular Height 327

Size inspector 303, 336
Slice type 108
Slider 320

thumb 320, 330, 331
thumb position 346
Value Changed event 340,

345
Software Engineering

Observations overview xxii
software reuse 215
sort method of Array 109
sort Swift Standard Library

function 73
sorted method of Array

109, 111
sorted Swift Standard

Library function 73
source-code control system

293
source-code management

(SCM) repository 13
special characters 24

\, backslash 24
\’, single-quote 24
\", double-quote 24
\0, null character 24
\n, line feed 24
\t, tab 24
in String literals 24

specialization (generics) 257
SpriteKit 292
sqrt C function 74
square brackets, [] 98
stack 259
Stack generic type 259
Standard editor (Xcode) 16,

294
Standard Library

class string 266
standard output 22
standard time format 165

Index 371

startIndex property of a
String 270

statement 23
Statements

break 57, 64, 65
conditional 49, 49
continue 65, 355
control-statement nesting

50
control-statement

stacking 50
do...while 50, 58
for 50, 63
for…in 50, 58
if 29
if...else 50
labeled break 354, 354
labeled continue 355
loop 50, 57
nested if...else 51
switch 55
while 50, 57

static 240
static keyword 204, 240

type property or type
method in a structure
or enumeration 190

static in other object-
oriented languages 187

StepStone 3
stored property 36, 37, 117,

160, 223, 230
lazy 160, 191, 193
must be initialized 248
struct 198

stored type property 187,
204
in a struct 198

storyboard 11, 290, 300
stride global function 59,

60, 103
closed-range 59
half-open range 60

String concatenation 42
String interpolation 5, 160,

238

String Swift Standard
Library type 72

String type 22
append method 270
concatenation 22
conforms to Comparable

268
conforms to Equatable

268
endIndex property 270
hasPrefix method 270
hasSuffix method 270
insert method 270
interpolation 25, 26
isEmpty 347
isEmpty property 269
join method 271
literal 22
literals have type String

22
removeAll method 270
removeAtIndex method

270
startIndex property

270
String type in Swift 153,

278, 325
stringFromDate method of

class NSDateFormatter
182, 184

stringFromNumber method
of class NSNumber-
Formatter 42, 219

strong reference 184, 185,
343

strong reference cycle 185
struct

default initializer 199
initializers in an
extension 198, 199

keyword 195
memberwise initializer

198, 199, 200
mutating method 199,

201, 205

structure 195
structured programming 66
subclass 215, 223, 342

initializer 223
subcript

struct 198
subscript keyword 281
subtraction 28

operator, - 29
subtraction compound

assignment operator, -=
53

super keyword 223, 344,
344

superclass 215, 342
direct 218
indirect 218

Swift 4, 7, 320
AnyObject type 279
Apple publications 9
sample code 9

Swift Blog 9
Swift filename extension

(.swift) 21
Swift Keywords 351
Swift Programming Language

book 9, 263
Swift Resource Center 18
Swift Standard Library 6

Array type 72
Boolean and numeric

types 72
Comparable protocol 72
Dictionary type 72
Equatable protocol 73
max 76
print function 73
Printable protocol 73
println function 73
sort function 73
sorted function 73
String type 72

Swift Standard Library
Reference 7

372 Index

switch conditional
statement 55
case label 56, 57
default case 56
where clause in a case 57

switch logic 57
switch statement 205

infer enum constant’s type
205

Symbol navigator 16, 294

T
tab bar 292
tab character, \t 24
tab stops 24
Tabbed Application template

292
tan C function 74
target-language attribute

(XLIFF) 316
template 291
termination housekeeping

185
ternary conditional operator,
?: 52

Test navigator 16, 294
Text Field 327, 328

Editing Changed event
340, 345

Keyboard Type attribute
334

Text property 329
Text property of a Label 329
text property of a UILabel

347
text property of a
UITextField 346

thumb of a Slider 320, 330,
331

thumb position of a Slider
346

timeStyle property of class
NSDateFormatter 182

tokenize a String 152
topmost superclass (base

class) 220, 248

trailing closure 111
trailing edge of a scene 334
trailing edge of a view 308
true 29, 50, 52
truncate 28
truth tables

for operator ! 68
for operator && 67
for operator || 67

tuple 4, 40, 55, 82, 104, 210
compose 82
decompose 82, 142
ignoring a value during

decomposition 82
returning multiple values

from a function 82
two-dimensional Array 124
two-phase initialization

process 223, 249, 250
type annotation 25, 98

parameter 38
type argument 257, 262
type checking 254
type constraint 134, 258,

259, 286
type inference 4, 25, 136
type method 187, 189, 190,

240
accessing from a class’s

other members 190
struct 198

type parameter 140, 256,
258, 260
section 256, 260

type property 187, 190, 240
accessing from a class’s

other members 190
computed 187, 189
stored 187, 204
stored in a struct 198

type safe 99, 237, 256, 257
type scope 188
typealias keyword 263
types

Array 72, 153, 278, 325
Bool 26, 27

types (cont.)
Boolean and numeric

types 72
Dictionary 72, 153,

278, 325
Double 26, 27, 34
Float 26, 27, 34, 34
Int 25, 27
Int16 25
Int32 25
Int64 25
Int8 25
max property of an integer

type 25
min property of an integer

type 25
numeric 153, 278, 325
Optional 121
Slice 108
String 22, 72, 153, 278,

325
UInt16 26
UInt32 26
UInt64 26
UInt8 26

U
UIAccessibility protocol

312
UIImageView class 290, 302
UIKit 7, 323
UIKit framework 301, 323,

324, 342
UILabel 324
UISlider 324
UITextField 324
UIViewController 324

UILabel class 290, 324
text property 347

UInt16 type 26
UInt32 type 26
UInt64 type 26
UInt8 type 26
UISlider class 324

value property 346

Index 373

UITextField class 324
text property 346

UIViewController class
324, 344

UML (Unified Modeling
Language) 218

Unicode Technical Standard
#35 for locale-specific
formatting 184

Unified Modeling Language
(UML) 218

unique ID of a GUI
component 314

unique raw values for
constants in enum types
202

unit tests 17, 296
universal app 289, 291, 293,

296
universal-time format 160,

165
unowned property attribute

185
unqualified name 84
unspecified number of

arguments 128
unwrap an optional 148
unwrapping an optional

value 119, 121
updateValue method of

type Dictionary 150,
151

uppercase letter 27
user interface (UI) 290
user interface events 340
Using Swift with Cocoa and

Objective-C 9, 10, 153,
279

Utilities area (Xcode) 16, 17,
293, 295

V
validate a propety with a

property observer 162

value binding 57
Value Changed event for a

Slider 340, 345
value in a Dictionary 132
value property of a
UISlider 346

value type 5, 45, 91, 133,
181

value vs. reference types blog
post 210

values property of type
Dictionary 145

value-type
memberwise copy 199

var keyword 25, 324, 343
var parameters 123
variable

reference type 45
variable names

camel case naming 35
variable number of

arguments 128
variable property 36, 324
variadic parameter 128
Version editor (Xcode) 12,

16, 295
view controller 324
view debugger 12
view device logs 22
viewDidLoad message 325
VoiceOver 291, 311, 313

enable/disable 311

W
weak keyword 184
weak property attribute 343
Welcome to Xcode window

13
where clause 259
where clause in a case 57
while loop statement 50, 57
while statement

optional binding 263
white space 22

willSet property observer
162

workspace window 16
Wozniak, Steve 3
WWDC (Apple World

Wide Developer
Conference) xix, 3

X
Xcode 290, 321

Assistant editor 16, 295,
338, 340

code-completion
suggestions 22

Debug area 16, 17, 293,
295

Editor area 16, 293, 294
Jump to Definition 41
Navigator area 16, 17,

293, 294, 295
Single View Application

project 325
Standard editor 16, 294
Utilities area 16, 17, 293,

295
Version editor 16, 295

Xcode 6 10
Xcode Groups

Project Structure 18
project structure 296

Xcode IDE 289
Xcode Libraries

Code Snippet 301
File Template 301
Media 301
Object 301

Xcode navigators
Breakpoint 16, 294
Debug 16, 294
Find 16, 294
Issue 16, 294
Project 16, 18, 294, 296
Report 16, 294
Symbol 16, 294
Test 16, 294

374 Index

Xcode playground 22

Xcode project 22

Xcode toolbar 17, 295

Xcode Windows

Library 302

Welcome to Xcode 13

XCTest 12
Xerox PARC (Palo Alto

Research Center) 3

XLIFF
XML Localization

Interchange File
Format 314, 315

XML Localization
Interchange File Format
(XLIFF) 314, 315

Y
Yellow Box API 7

Yosemite (OS X) 3

Z
zero method of class
NSDecimalNumber 187

zero-based counting 98

	Contents
	Preface
	Before You Begin
	5 Functions and Methods: A Deeper Look; enums and Tuples
	5.1 Introduction
	5.2 Modules in Swift
	5.3 Darwin Module—Using Predefined C Functions
	5.4 Multiple-Parameter Function Definition
	5.5 Random-Number Generation
	5.6 Introducing Enumerations and Tuples
	5.6.1 Introducing Enumeration (enum) Types
	5.6.2 Tuples and Multiple Function Return Values
	5.6.3 Tuples as Function Arguments
	5.6.4 Accessing the Raw Value of an enum Constant

	5.7 Scope of Declarations
	5.8 Function and Method Overloading
	5.9 External Parameter Names
	5.10 Default Parameter Values
	5.11 Passing Arguments by Value or by Reference
	5.12 Recursion
	5.13 Nested Functions
	5.14 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

