SUPPLY CHAIN AND LOGISTICS MANAGEMENT MADE EASY

Methods and Applications for Planning, Operations, Integration, Control and Improvement, and Network Design

PAUL A. MYERSON
Professor of Practice in Supply Chain Management, Lehigh University
Praise for
Supply Chain and Logistics Management Made Easy

“Paul Myerson’s new book is a refreshing and a welcomed addition to the field, offering the reader a clear and easy-to-understand presentation of the key concepts and methods used in the field of supply chain management. His work is not only easy to understand but also comprehensive in coverage.

“I highly recommend it to university professors who want to incorporate it in their undergraduate and graduate courses in supply chain management. I have become a real fan of Supply Chain and Logistics Management Made Easy. Certainly, nothing in life is easy, but Paul Myerson’s new book has made the field more attractive and popular.”

—Richard A. Lancioni, Professor of Marketing and Supply Chain Management, Fox School of Business & Management, Temple University

“Is it possible to take a discipline that involves millions of moving things, people, and processes and make it easy? Paul has taken the complex subject of supply chain and delivered a thorough and easy-to-understand review of all its elements. For the business student, the book provides a comprehensive view of the supply chain and serves as an effective introduction to the discipline and as an effective teaching tool. For the supply chain expert, this book is an excellent tool for reflection on all things supply chain. Each section brings back thoughts of the challenges the accomplished supply chain leader has faced. The book is an excellent resource for anyone in business who is looking to work in or currently works in supply chain management.”

—Gary MacNew, Regional Vice President, Supply Chain Optimizers

“This is an excellent read for both students and professionals who are interested in gaining a better understanding of what supply chain and logistics is all about. It is an easy-to-understand handbook for anyone who has a need to better understand supply chain management or is responsible for helping their organization gain an advantage from their supply chain. Myerson’s book should be on every manager’s bookshelf for ready reference.”

—Robert J. Trent, Ph.D., Supply Chain Management Program Director, Lehigh University

“Paul does a great job compacting supply chain management and logistics into one text. I wish I would have had this book when I was a logistics student 30+ years ago, but it’s a great text and reference for me now, too. The SCM discipline is very wide and diverse now. This book captures all the elements. A complete professional reference. An easy read that teaches.”

—Andy Gillespie, Director, Global Logistics, Ansell

“Practical, accessible, up-to-date, and covering today’s best practices, Supply Chain and Logistics Management Made Easy is the ideal introduction to modern supply chain management for every manager, professional, and student.”

—Oliver Yao, Associate Professor, Lehigh University
This page intentionally left blank
Supply Chain and Logistics Management Made Easy
This page intentionally left blank
Supply Chain and Logistics Management Made Easy

Methods and Applications for Planning, Operations, Integration, Control and Improvement, and Network Design

Paul A. Myerson
Professor of Practice in Supply Chain Management
Lehigh University
This book is dedicated to the memory of my father, Dr. Albert L. Myerson, the smartest person that I ever knew, who taught me the value of education and research.

I also appreciate the support of my wife, Lynne, and son, Andrew, without whose support and patience, this book would have taken a whole lot longer to write!
Contents

Part I
Supply Chain and Logistics Management: Overview 1

Chapter 1
Introduction .. 3
- Supply Chain Defined .. 4
- SCOR Model ... 5
- An Integrated, Value-Added Supply Chain 7
 - The Value Chain .. 7
- Leveraging the Supply Chain ... 8
- Supply Chain Strategy for a Competitive Advantage 9
- Segmenting the Supply Chain ... 10
- The Global Supply Chain and Technology 11

Chapter 2
Understanding the Supply Chain ... 13
- Historical Perspective .. 13
- Value as a Utility ... 14
- Organizational and Supply Chain Strategy 15
 - Mission Statement ... 15
 - SWOT Analysis ... 16
 - Strategic Choices ... 17
 - Supply Chain Strategy Elements and Drivers 17
 - Supply Chain Strategy Methodology 19
- Supply Chain Opportunities and Challenges 23
- Supply Chain Talent Pipeline ... 26
 - Career Opportunities in Supply Chain and Logistics Management 27
 - Growing Demand ... 27

Part II
Planning for the Supply Chain ... 31

Chapter 3
Demand Planning .. 33
- Forecasting Used to Be Strictly Like “Driving Ahead, Looking in the Rearview Mirror” 34
- Forecasting Realities .. 35
- Types of Forecasts ... 36
 - Demand Drivers ... 36
Inventory Planning and Control Technology

- Software .. 65
- Hardware .. 67
- Careers .. 67

Chapter 5 Aggregate Planning and Scheduling ... 69

- The Process Decision 70
- Goods and Service Processes. 70
- Planning and Scheduling Process Overview 72
- Aggregate Planning 74
- S&OP Process ... 74
- Demand and Supply Options 76
- Aggregate Planning Strategies 78
- Master Production Schedule 78
- Production Strategies 79
- System Nervousness 80
- Material Requirements Planning 80
- Bill of Materials 80
- MRP Mechanics 81
- Short-Term Scheduling 83
- Types of Scheduling 84
- Sequencing .. 84
- Finite Capacity Scheduling 85
- Service Scheduling 85
- Technology ... 86

Part III Supply Chain Operations ... 87

Chapter 6 Procurement in the Supply Chain .. 89

- Make or Buy .. 90
- Outsourcing .. 90
- Other Supply Chain Strategies 91
- The Procurement Process 93
- Identify and Review Requirements 93
- Establish Specifications 94
- Identify and Select Suppliers 95
- Determine the Right Price 97
- Issue Purchase Orders 98
Chapter 9 Order Management and Customer Relationship Management. . 147
Order Management. . 148
 Order Placement. . 148
 Order Processing. . 148
 Order Preparation and Loading. . 149
 Order Delivery. . 150
Customer Relationship Management. . 150
 Customer Service. . 150
Customer Relationship Management. . 154
Technology. . 155

Chapter 10 Reverse Logistics and Sustainability . 157
Reverse Logistics Activities . 157
 Repairs and Refurbishing. . 158
 Refilling. . 159
 Recall. . 159
 Remanufacturing. . 159
 Recycling and Waste Disposal. . 160
Returns Vary by Industry. . 160
 Publishing Industry. . 160
 Computer Industry. . 160
 Automotive Industry. . 160
 Retail Industry. . 161
Reverse Logistic Costs. . 161
Reverse Logistics Process. . 161
 Receive. . 161
 Sort and Stage. . 161
 Process. . 162
Analyze... 162
Support.. 162
Reverse Logistics as a Strategy ... 162
Using Reverse Logistics to Positively Impact Revenue 162
Other Strategic Uses of Reverse Logistics ... 163
Reverse Logistics System Design... 164
Product Location ... 164
Product Collection System ... 164
Recycling or Disposal Centers ... 165
Documentation System ... 165
Reverse Logistics Challenges .. 165
Retailer-Manufacturer Conflict ... 165
Problem Returns and Their Symptoms .. 166
Cause and Effect ... 166
Reactive Response .. 166
Managing Reverse Logistics ... 166
Gatekeeping ... 167
Compacting the Distribution Cycle Time ... 168
Reverse Logistics Information Technology Systems 168
Centralized Return Centers .. 168
Zero Returns .. 169
Remanufacture and Refurbishment .. 169
Asset Recovery ... 170
Negotiation .. 170
Financial Management ... 170
Outsourcing .. 170
Reverse Logistics and the Environment ... 170
Supply Chain Sustainability ... 171
Green Logistics ... 171

Chapter 11 Global Supply Chain Operations and Risk Management 173
Growth of Globalization .. 173
Factors Influencing Globalization .. 174
Reasons for a Company to Globalize ... 174
Global Supply Chain Strategy Development ... 175
International Transportation Methods .. 177
Ocean .. 177
Air .. 177
Motor .. 178
Part V Supply Chain and Logistics Network Design 223

Chapter 15 Facility Location Decision. 225
 The Importance of Facility Location When Designing a Supply Chain. 225
 Supply Chain Network Design Influencers 226
 Types of Distribution Networks 228
 Manufacturer Storage with Direct Shipping 228
 Manufacturer Storage with Direct Shipping and In-Transit Merge 229
 Distributor Storage with Carrier Delivery 230
 Distributor Storage with Last-Mile Delivery 232
 Manufacturer or Distributor Storage with Customer Pickup 233
 Retailer Storage with Customer Pickup 234
 Impact of E-Business on the Distribution Network 235
 Location Decisions 237
 Strategic Considerations 237
 Location Decision Hierarchy 238
 Dominant Factors in Manufacturing 240
 Dominant Factors in Services 240
 Location Techniques 240
 Location Cost-Volume Analysis 240
 Weighted Factor Rating Method 242
 Center of Gravity Method 243
 The Transportation Problem Model 245
 Technology 246
 Careers 246

Chapter 16 Facility Layout Decision 249
 Types of Layouts 249
 Product Layouts 250
 Process Layouts 250
 Hybrid Layouts 253
 Cellular (or Work Cell) Layouts 253
Fixed-Position Layout 255
Facility Design in Service Organizations 255
Designing and Improving Product Layouts 256
Assembly Line Design and Balancing 256
Work Cell Staffing and Balancing 258
Warehouse Design and Layout Principles 260
Design and Layout Process 260
Technology ... 261
Careers .. 262

Part VI Supply Chain and Logistics Measurement, Control, and Improvement 263

Chapter 17 Metrics and Measures 265
Measurement and Control Methods 265
The Evolution of Metrics 266
Data Analytics .. 266
Measurement Methods 267
Measurement Categories 267
Balanced Scorecard Approach 268
Customer Service Metrics 269
Operational Metrics 269
Financial Metrics ... 270
SCOR Model .. 270
Supply Chain Dashboard and KPIs 273
Indicators ... 274
Benchmarking ... 274

Chapter 18 Lean and Agile Supply Chain and Logistics 277
Lean and Waste .. 277
History of Lean .. 278
Value-Added Versus Non-Value-Added Activities 279
Waste .. 280
Lean Culture and Teamwork 281
Lean Teams ... 282
Kaizen and Teams 283
Team and Kaizen Objectives 283
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Stream Mapping</td>
<td>283</td>
</tr>
<tr>
<td>VSM Benefits</td>
<td>286</td>
</tr>
<tr>
<td>Lean Tools</td>
<td>286</td>
</tr>
<tr>
<td>Standardized Work</td>
<td>288</td>
</tr>
<tr>
<td>5S-Workplace Organization System</td>
<td>288</td>
</tr>
<tr>
<td>Visual Controls</td>
<td>289</td>
</tr>
<tr>
<td>Facility Layout</td>
<td>289</td>
</tr>
<tr>
<td>Batch Size Reduction and Quick Changeover</td>
<td>289</td>
</tr>
<tr>
<td>Quality at the Source</td>
<td>290</td>
</tr>
<tr>
<td>Point-of-Use Storage</td>
<td>291</td>
</tr>
<tr>
<td>Total Productive Maintenance</td>
<td>291</td>
</tr>
<tr>
<td>Pull/Kanban and Work Cells</td>
<td>291</td>
</tr>
<tr>
<td>Lean and Six Sigma</td>
<td>292</td>
</tr>
</tbody>
</table>

Chapter 19 Outlook for Supply Chain and Logistics Management 293

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Chain and Logistics Career Outlook</td>
<td>293</td>
</tr>
<tr>
<td>Trends in Supply Chain and Logistics Management</td>
<td>294</td>
</tr>
<tr>
<td>Supply Chain Trends</td>
<td>294</td>
</tr>
<tr>
<td>Logistics Trends</td>
<td>295</td>
</tr>
<tr>
<td>Supply Chain Leadership Trends</td>
<td>296</td>
</tr>
<tr>
<td>Supply Chain Technology Trends</td>
<td>297</td>
</tr>
<tr>
<td>Conclusion</td>
<td>299</td>
</tr>
</tbody>
</table>

References | 301 |

Index | 305 |
About the Author

Paul A. Myerson is a Professor of Practice in Supply Chain Management at Lehigh University and holds a B.S. in Business Logistics and an M.B.A. in Physical Distribution. Professor Myerson has an extensive background as a Supply Chain and Logistics professional, consultant, and teacher.

Prior to joining the faculty at Lehigh, Professor Myerson has been a successful change catalyst for a variety of clients and organizations of all sizes, having over 30 years experience in Supply Chain and Logistics strategies, systems, and operations that have resulted in bottom-line improvements for companies such as General Electric, Unilever, and Church and Dwight (Arm & Hammer).

Professor Myerson created and has marketed a Supply Chain Planning software tool for Windows to a variety of companies worldwide since 1998.

He is the author of the books Lean Supply Chain & Logistics (McGraw-Hill, Copyright 2012) and Lean Wholesale and Retail (McGraw-Hill, Copyright 2014) as well as a Lean Supply Chain and Logistics Management simulation training game and training package (Enna.com, copyright 2012–13).

Professor Myerson also writes a column on Lean Supply Chain for Inbound Logistics Magazine and a blog for Industry Week magazine.
This page intentionally left blank
In the early 1980s, U.S. companies dramatically increased the outsourcing of manufacturing, raw materials, components, and services to foreign countries. Around that time, the term *supply chain* was coined to recognize the increased importance of a variety of business disciplines that were now much more challenging to manage as a result of the new global economy. Prior to that, functions such as purchasing, transportation, warehousing, and so on were isolated and at fairly low levels in organizations.

Since that time, we’ve seen the creation of the Internet and various business technologies such as enterprise resource planning (ERP) systems, advanced planning systems (APS), and radio frequency ID (RFID), to name a few, which have helped to speed up the flow of information and product lifecycles as well as increasing the need for better communication, collaboration and visibility.

Today, logistics alone accounts for more than 9.5% of U.S. gross domestic product (GDP). Over $1.3 trillion is spent on transportation, inventory, and related logistics activities. The concept of the supply chain has now risen in importance to the extent that commercials on TV extol the virtues of logistics (for example, UPS “I Love Logistics” commercials) to the point where it is now part of the common lexicon and very mainstream. As a result, most universities now offer supply chain and logistics courses, if not majors, and most organizations have a vice president of supply chain and logistics management (or similar title).

However, beyond supply chain and logistics employees, not many in business or the public fully understand the role and importance that the supply chain plays in gaining and maintaining a competitive advantage in today’s world.

We are at the point today where most people are familiar with the terms *supply chain* and *logistics* but don’t really know that much about them. In this book, we not only define the supply chain but also offer insight into its various components, tools, and technology to help improve your understanding so that you can use it as a competitive tool in your business.

Because supply chain and logistics costs can range from 50% to 70% of a company’s sales (with trillions spent on it worldwide), organizations of all sizes both perform and are interested in
this function. Therefore, understanding and implementing an efficient supply chain strategy can prove critical to both an employee’s and a company’s success.

Supply Chain Defined

The first thing we need to do is get some definitions out of the way. The terms *supply chain* and *supply chain management* (SCM) should be separately defined because they are sometimes (mistakenly) used interchangeably.

The supply chain itself is a system of organizations, people, activities, information, and resources involved in the planning, moving, or storage of a product or service from supplier to customer (actually more like a “web” than a “chain”). Supply chain activities transform natural resources, raw materials, and components into a finished product that is delivered to the end customer. For example, I once heard a major paper goods manufacturer describe their supply chain for toilet paper as ranging from “stump to rump.”

In contrast, *supply chain management*, as defined by the Council of Supply Chain Management Professionals (CSCMP), “encompasses the planning and management of all activities involved in sourcing, procurement, conversion, and logistics management. It also includes the crucial components of coordination and collaboration with channel partners, which can be suppliers, intermediaries, third-party service providers, and customers.”

In essence, supply chain management integrates supply and demand management within and across companies and typically “includes all of the logistics management activities noted above, as well as manufacturing operations, and it drives coordination of processes and activities with and across marketing, sales, product design, finance and information technology” (Council of Supply Chain Management Professionals [CSCMP], 2014).

Some people take a narrower view of supply chain, and in many cases, they think of it as focused more on the supply end (that is, purchasing), and so ignore the logistics side (as defined as the part of the supply chain that plans, implements, and controls the efficient movement and storage of goods, services, and information from the point of use or consumption to meet customer requirements). In other cases, many just assume that logistics is included but don’t state it. Still others, while including both areas above, ignore the planning aspects of supply chain. Personally, I tend to refer to the field as *supply chain and logistics management* to make clear what is included.

As you will see in this book, it is important to understand the similarities and differences between more functional areas like logistics, which includes transportation and distribution, versus the broader concept of SCM, which is cross-functional and cross-organizational. This can have a major impact on decision making, structure, and staffing in an organization, so it needs to be understood and examined carefully.

Depending on one’s view, some of the functions listed here may be included within the supply chain and logistics organization:
Procurement: The acquisition of goods or services from an outside external source

Demand forecasting: Estimating the quantity of a product or service that customers will purchase

Customer service and order management: Tasks associated with fulfilling an order for goods or services placed by a customer

Inventory: Planning and management

Transportation: For hire and private

Warehousing: Public and private

Materials handling and packaging: Movement, protection, storage, and control of materials and products using manual, semi-automated, and automated equipment

Facility network: Location decision in an organization’s supply chain network

Supply chain management is also intertwined with operations management, which consists of activities that create value by transforming inputs (that is, raw materials) into outputs (that is, goods and services). Both activities support the manufacturing process.

SCOR Model

Another way to view the supply chain is through the SCOR model, which was developed by the Supply Chain Council (SCC) (2014) to teach, understand, and manage supply chains. It is a model to both define and measure the performance of an organization’s supply chain.

The SCOR model is organized around the five major management processes (see Figure 1.1):

- **Plan**: Alignment of resources to demand
- **Make**: Conversion or value-added activities within a supply chain operation
- **Source**: Buying or acquiring materials or services
■ **Deliver**: All customer interaction, from receiving order to final delivery and installation

■ **Return**: All processes that reverse material or service flows from the customer backward through the supply chain

This provides a broad definition for the supply chain, which highlights its importance to the organization and how it helps create metrics to measure performance.

SCOR Metrics

To this aim, the SCOR model is also a hierarchical framework that combines business activities, metrics, and practices that can be looked at from a high or very detailed level.

The levels, from broadest to narrowest, are defined as follows:

- **Level 1: Scope**: Defines business lines, business strategy and complete supply chains.
- **Level 2: Configuration**: Defines specific planning models such as “make to order” (MTO) or “make to stock” (MTS), which are basically process strategies.
- **Level 3: Activity**: Specifies tasks within the supply chain, describing what people actually do.
- **Level 4: Workflow**: Includes best practices, job details, or workflow of an activity.
- **Level 5: Transaction**: Specific detail transactions to perform a job step.

All SCOR metrics have five key strategic performance attributes. A performance attribute is a group of metrics used to express a strategy. An attribute itself cannot be measured; it is used to set strategic direction.

The five strategic attributes are as follows:

- **Reliability**: The ability to deliver, on time, complete, in the right condition, packaging, and documentation to the right customer
- **Responsiveness**: The speed at which products and services are provided
- **Agility**: The ability to change (the supply chain) to support changing (market) conditions
- **Cost**: The cost associated with operating the supply chain
- **Assets**: The effectiveness in managing assets in support of demand satisfaction

The SCOR model contains more than 150 key indicators, such as inventory days of supply and forecast accuracy, that measure the performance of supply chain operations and are grouped within the previously listed strategic attribute categories.
Once the performance of supply chain operations has been measured and performance gaps identified, they are benchmarked against industry best practices to target improvement, as discussed in more detail later in this book.

An Integrated, Value-Added Supply Chain

The goal for today’s supply chain is to achieve integration through collaboration to achieve visibility downstream toward the customer and upstream to suppliers. In a way, many of today’s companies have been able to “substitute information for inventory” to achieve efficiencies. The days of having “islands of automation,” which may optimize your organization’s supply chain at the cost of someone else’s (for example, your supplier), are over.

As you will see throughout this book, the concepts of teamwork and critical thinking aided by technology enable organizations to work with other functions internally and with other members of their supply chain, including customers, suppliers, and partners, to achieve new levels of efficiency and to use their supply chain to achieve a competitive advantage that focuses on adding value to the customer as opposed to just being a cost center within the organization.

The Value Chain

The Value Chain model, originated by Michael Porter, shows the value-creating activities of an organization, which as you can see in Figure 1.2 relies heavily on supply chain functions.

In a value chain, each of a firm’s internal activities listed after the figure adds incremental value to the final product or service by transforming inputs to outputs.

- **Inbound logistics**: Receiving, warehousing, and inventory control of input materials
- **Operations**: Transforming inputs into the final product or service to create value
- **Outbound logistics**: Actions that get the final product to the customer, including warehousing and order fulfillment

![Figure 1.2 The value chain](image-url)
- **Marketing and sales**: Activities related to buyers purchasing the product, including advertising, pricing, distribution channel selection, and the like
- **Service**: Activities that maintain and improve a product’s value, including customer support, repair, warranty service, and the like

Support activities identified by Porter can also add value to an organization:

- **Procurement**: Purchasing raw materials and other inputs that are used in value-creating activities
- **Technology development**: Research and development, process automation, and similar activities that support value chain activities
- **Human resource management**: Recruiting, training, development, and compensation of employees
- **Firm infrastructure**: Finance, legal, quality control, and so on

Porter recommended value chain analysis to investigate areas that represent potential strengths that can be used to achieve a competitive advantage. As you can see, the supply chain adds value in a variety of ways, so it should be a critical area of focus (Porter, 1985).

We investigate ways to identify value-added and non-value-added activities (which should be reduced or eliminated) in a supply chain later in this book using a Lean methodology and tools.

Leveraging the Supply Chain

Because supply chain costs represent a significant portion of a company’s sales, it isn’t difficult to see why there is such a focus on it. This results in a “leveraging” effect, as any dollar saved on supply chain contributes as the same to the bottom line as a much larger and often unattainable increase in sales (will vary based on an individual company’s profit margin).

Table 1.1 illustrates this through an example of a business that is evaluating two strategic options: 1) reduce its supply chain costs by approximately 6.5% through more effective negotiations with a vendor, or 2) increase sales by 25% (which will most assuredly also add to sales and marketing costs). You can see the leveraging effect of the supply chain as the relatively small cost decrease contributes as much to the bottom line as the 25% sales increase (which is pretty difficult to accomplish in any economy).
Table 1.1 Supply Chain Leveraging Effect

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Supply Chain Improvement Option</th>
<th>Sales Increase Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>$1,000,000</td>
<td>$1,000,000</td>
<td>$1,250,000</td>
</tr>
<tr>
<td>Cost of material</td>
<td>$650,000 (65%)</td>
<td>$600,000 (60%)</td>
<td>$812,500 (65%)</td>
</tr>
<tr>
<td>Production costs</td>
<td>$150,000 (15%)</td>
<td>$150,000 (15%)</td>
<td>$187,500 (15%)</td>
</tr>
<tr>
<td>Fixed costs</td>
<td>$100,000 (10%)</td>
<td>$100,000 (15%)</td>
<td>$100,000 (8%)</td>
</tr>
<tr>
<td>Profit</td>
<td>$100,000 (10%)</td>
<td>$150,000 (15%)</td>
<td>$150,000 (15%)</td>
</tr>
</tbody>
</table>

The supply chain cost reduction in this example has impressive results, but you have to keep in mind that “you can’t get blood from a stone.” That is where Lean techniques, which are discussed later, can have a significant impact. Through Lean, a team-based form of continuous improvement that focuses on the identification and elimination of waste, we can create a “paradigm shift” that can make process (and cost) improvements that were previously thought impossible.

Supply Chain Strategy for a Competitive Advantage

Historically, supply chain and logistics functions were viewed primarily as cost centers to be controlled. It is only in the past 20 years or so that it has become clear that it can be used for a competitive advantage as well.

To accomplish this, an organization should establish competitive priorities that their supply chain must have to satisfy internal and external customers. They should then link the selected competitive priorities to their supply chain and logistics processes.

Krajewski, Ritzman, and Malhotra (2013) suggest breaking an organization’s competitive priorities into cost, quality, time, and flexibility capability groups:

- **Cost strategy:** Focuses on delivering a product or service to the customer at the lowest possible cost without sacrificing quality. Walmart has been the low-cost leader in retail by operating an efficient supply chain.

- **Time strategy:** This strategy can be in terms of speed of delivery, response time, or even product development time. Dell has been a prime example of a manufacturer that has excelled at response time by assembling, testing, and shipping computers in as little as a few days. FedEx is known for fast, on-time deliveries of small packages.

- **Quality strategy:** Consistent, high-quality goods or services require a reliable, safe supply chain to deliver on this promise. If Sony had an inferior supply chain with high damage levels, it wouldn’t matter to the customer that their electronics are of the highest quality.
Flexibility strategy: Can come in various forms such as volume, variety, and customization. Many of today’s e-commerce businesses, such as Amazon, offer a great deal of flexibility in many of these categories.

In many cases, an organization may focus on more than one of these strategies, and even when focusing on one, it doesn’t mean that they will offer subpar performance on the others (just not “best in class” perhaps).

Segmenting the Supply Chain

Today’s use of “omni-channel marketing,” which is an integrated approach of selling to consumers through multiple distribution channels (that is, brick-and-mortar, mobile Internet devices, computers, television, radio, direct mail, catalog, and so on) has created the need to handle multiple channels with separate warehouse picking operations, often replenished from a common inventory in a single facility.

This can lead many companies such as Dell Computer to segment their entire supply chains, whereby different channels and products are served through different supply chain processes. The ultimate goal is to determine the best supply chain processes and policies for individual customers and products that also maximize customer service and company profitability.

The rationale for this, according to an Ernst & Young white paper titled “Supply Chain Segmentation,” (2014) is that the “business environment is getting increasingly complex, especially for technology companies dealing with rapid innovation, globalization, and a growing number of business partners, business models, and differences in expectations from different markets and customers.”

E&Y suggest five ways to consider segmentation:

- Product complexity based
- Supply chain risk based
- Manufacturing process and technology based
- Customer service needs based
- Market driven

The idea is that a “one size fits all” strategy will not usually work in today’s environment.

They suggest that while senior sponsorship is required for successful supply chain segmentation, you also need cross-functional support from multiple organizational disciplines. The team must provide supporting policies, segment-level processes, and IT infrastructure to both automate the processes and provide metrics.

In Dell’s case, over the past few years, they have expanded beyond their direct to customer model to a “multichannel, segmented model, with different policies for serving consumers,
corporate customers, distributors, and retailers. Through this transformation, Dell has saved US $1.5 billion in operational costs” (Thomas, 2012).

The Global Supply Chain and Technology

Suffice it to say, the concept of “global” supply chain management (GSCM) is primarily a result of the globalization of business in general. As businesses search globally for sources of lower-cost materials and labor, someone has to manage these complex and intricate operations.

The combination of globalization and emerging technologies is continuously changing the supply chain. Products that were once made domestically, such as apparel and computers, are now designed, assembled, and marketed worldwide by a conglomeration of organizations.

As a result, there are many risks (disruptions, natural disasters, domestic job loss, and so on) and challenges (short product lifecycles, erratic demand, and so on) that are inherent to the process. To this end, a roundtable at a Dartmouth University Roundtable identified five major issues and challenges ahead (Johnson, 2006):

- **Globalization and outsourcing**: Including the impact of China and India on supply chain structure and coordination
- **New information technologies**: Such as radio frequency identification (RFID; a data collection technology that uses electronic tags for storing data) and tools that enable enterprise integration and collaboration
- **Economic forces**: Within and between supply chains, from consumer pricing to supplier contract negotiation
- **Risk management**: Includes risks rising from supply chain complexity and from security threats
- **Product lifecycle management**: Including post-sale service and product recovery

We discuss the impact of global operations and various forms of technology used today in supply chain management later in this book.

For now, we will look back to get a little historical perspective on the topic of supply chain and logistics management.
Index

Numbers
3PLs (third-party-logistics providers), 193-196
 advantages, 194
 disadvantages, 194-195
 Ryder case study, 195-196
4PLs (fourth-party-logistics providers), 196-198
 components for success, 197
 Menlo Worldwide Logistics case study, 197-198
 players, 197
5S, 288-289
80/20 rule, 61

A
ABC method, 267
 demand planning, 46-47
 inventory planning, 61-63
accumulation warehouses, 133-134
accuracy (order-filling), 149
acquisition, 189
Act to Regulate Interstate Commerce, 104
activity, 6
activity-based costing. See ABC method
aggregate planning and scheduling, 55, 295
 collaboration, 206
 demand options, 76-77
 integrated business planning, 76
MPS (master production schedule), 78-80
MRP (Material Requirements Planning), 80-83
 BOM (bill of materials), 80-81
 mechanics, 81-83
overview, 69
processes, 74-76
production strategies, 79
S&OP processes, 74-76
short-term scheduling, 83-86
 FCS (finite capacity scheduling), 85
 sequencing, 84-85
 service scheduling, 85-86
 types of scheduling, 84
 typical planning and scheduling process, 83
strategies, 78
supply capacity options, 77
technology, 86
agility, 6
air carriers
 domestic transportation, 108
 international transportation, 177
Air Deregulation Act of 1978, 104
air waybill, 122
allocation, warehouses and, 134
American Production and Inventory Control Society (APICS), 29, 67
American Society for Transportation & Logistics (AST&L), 103
analytics, 298
APICS (American Production and Inventory Control Society), 29, 67
approving invoices, 100
Apria, 195
Ariba, 101
arm’s-length transactions, 189
assemble-to-order (ATO), 79
assembly line design and balancing, 256-258
asset recovery, 170
assets, 6
associative forecasting models
correlation, 45
least squares method, 44
multiple regression, 46
overview, 40
seasonality, 45-46
assortment warehouses, 133-134
AST&L (American Society for Transportation & Logistics), 103
ATO (assemble-to-order), 79
automated warehouses, 130
automotive industry, return rates in, 160-161
averages
moving averages, 43
weighted moving average, 43
benchmarking, 274-275
Best Buy, 164-165
best of breed solutions, 213
best-in-class software, 217
BI (business intelligence), 216
bid and auction, 99
bidding, 97
bill of lading (B/L)
domestic B/L, 117-118
international B/L, 121-122
bill of materials (BOM), 73, 80-81
billing, 114
bills. See documents
B/L (bill of lading)
domestic B/L, 117-118
international B/L, 121-122
BOM (bill of materials), 73, 80-81
bonded warehouses, 129-130, 178
break-bulk warehouses, 128, 132-133
bullwhip effect, 23, 212
business intelligence (BI), 216

C
capacity, FCS (finite capacity scheduling), 85
career outlook
facility layout, 262
inventory planning, 67
supply chain and logistics management, 26-29, 293-294
supply chain network analysis, 247
carnet, 120
Carrier Corporation (Mexico), 195-196
carrying or holding costs, 54
catalog retailer warehouses, 128
categories (measurement), 267-268
causal forecasting models. See associative forecasting models
cellular layouts, 253-254
center of gravity analysis, 243-245
centralized return centers (CRCs), 168-169
certificates
 certificate of free sale, 120
 certificate of inspection, 120
 certificate of insurance, 120
 certificate of manufacture, 120
 certificate of origin, 119
certification programs, 24-29, 89
Certified Production and Inventory Management (CPIM), 29
Certified Professional in Supply Management (CPSM), 29, 89
Certified Supply Chain Professional (CSCP), 29
challenges
 GSCM (global supply chain management), 178-180
 reverse logistics, 165-166
 SCM (supply chain management), 23-26
channels of distribution, 52
chase plans, 78
claims (freight), 119
Class I railroads, 106-107
classifications (freight), 115
clean B/L (bill of lading), 122
clim ate-controlled warehouses, 130
cloud computing, 219
COFC (container on a rail flatcar), 108
Colgate, 226
collaboration
 benefits of, 206
 collaboration methods, 206
 CPFR (collaborative planning, forecasting, and replenishment), 208-210
 ECR (Efficient Customer Response), 207-208
 QR (quick response), 206-207
customer collaboration, 204-205
 versus integration, 199
levels of external collaboration, 202-203
S&OP (sales & operational planning), 206
supplier collaboration, 25, 204
supply chain collaboration by industry, 202
types of external collaboration, 203-204
collaborative planning, forecasting, and replenishment (CPFR), 205, 208-210
collecting, 114
commodity rates, 116
common carriers, 110
competition, 24-25
competitive advantage, 9-10
competitive bidding, 97
complexity, 296
computer industry, return rates in, 160
continuation, 6
consolidation, 114
consolidation warehouses, 128, 132-133
consultants, 218
container on a rail flatcar (COFC), 108
continuity, 296
continuous production, 127
contract carriers, 110
contract manufacturing, 77
contract warehouses, 129
contracting, 203
control risks, 182
co-operative warehouses, 130
corporate purchase cards, 99
correlation, 45
costs, 6
 cost strategy, 9
cost-based pricing, 97
distribution network types
distributor storage with carrier delivery, 231
distributor storage with customer pickup, 234
distributor storage with last-mile delivery, 232
e-business impact, 235
manufacturer storage with direct shipping, 229
manufacturer storage with direct shipping and in-transit merge, 230
retailer storage with customer pickup, 234-235
facilities, 226-227, 240-242
inventory, 53-55
carrying or holding costs, 54
ordering costs, 54
setup costs, 54-55
total cost minimized, 55
reverse logistics, 161
supply chain software market, 217
transportation, 105
cost elements, 113-114
cost factors, 111-112
rates charged, 114-116
cost-volume (CV) analysis, 240-242
Council of Supply Chain Management Professionals (CSCMP), 4, 67, 103
counter seasonal demand, 77
CPFR (collaborative planning, forecasting, and replenishment), 205, 208-210
CPIM (Certified Production and Inventory Management), 29
CPSM (Certified Professional in Supply Management), 29, 89
CR (critical ratio), 85
CRCs (centralized return centers), 168-169
CRM (custom relationship management)
customer service, 150
internal versus external metrics, 152-153
levels of focus, 153
managing, 153-154
multifunctional dimensions of, 151
overview, 150-151
service failure and recovery, 153-154
service quality and metrics, 152
transactional elements of, 151-152
OMSs (order management systems), 155-156
overview, 147-148, 150
software, 214
cross-docking warehouses, 128
CSCMP (Council of Supply Chain Management Professionals), 4, 103
CSCP (Certified Supply Chain Professional), 29
cube rates, 116
cube utilization (warehouses), 136
culture (Lean), 281-283
customer centricity, 294
customer classification of warehouses, 127-128
customer collaboration, 204-205
customer loyalty with reverse logistics, 163
customer relationship management.
See CRM (custom relationship management)
customer service, 150
internal versus external metrics, 152-153
levels of focus, 153
managing, 153-154
multifunctional dimensions of, 151
overview, 150-151
service failure and recovery, 153-154
service quality and metrics, 152
transactional elements of, 151-152
customer service metrics, 269
customer-facing metrics, 142-143
customers brokers, 109
CV (cost-volume) analysis, 240-242
cycle counting, 63-64
D

dashboards, 273-274
data analytics, 266-267
data versus information, 211-212
DCs (distribution centers), 128
decay (product lifecycle), 41-42
defects, 280
delivery, 99, 150. See also transportation systems
Dell Computer, 10-11, 226
Delphi method, 39
demand and supply risk, 182
demand drivers, 36-37
external demand drivers, 37
internal demand drivers, 36
demand options, 76-77
demand planning
demand management, 215
forecasting, 37-38
ABC method, 46-47
associative models, 40, 44-46
Delphi method, 39
demand drivers, 36-37
forecasting realities, 35-36
forecasting software, 46-47
history of, 34-35
jury of executive opinion, 39
knowledge of products, 38-39
metrics, 46-48
process steps, 37-38
product lifestyles and, 40-42
pyramid approach to, 34-35
quantitative versus qualitative models, 38-40
time series models, 40, 42-43
types of forecasts, 36
overview, 23, 33-34
technology and best practices, 46-47
typical planning and scheduling process, 33
demand planning cross-functional meetings, 74
demand time fence (DTF), 80
density
density rates, 116
transportation costs and, 112
dependent demand inventory, 51-53
deregulation, effects on pricing, 115
descriptive analytics, 266
design
distribution network types, 228
distributor storage with carrier delivery, 230-231
distributor storage with customer pickup, 233-234
distributor storage with last-mile delivery, 232-233
e-business impact, 235-236
manufacturer storage with direct shipping, 228-229
manufacturer storage with direct shipping and in-transit merge, 229-230
retailer storage with customer pickup, 233-234
facility layout
assembly line design and balancing, 256-258
career outlook, 262
cellular layouts, 253-254
facility design in service organizations, 255-256
fixed-position layouts, 255
hybrid layouts, 253
overview, 249-250
process layouts, 250-252
product layouts, 250
technology, 261
warehouse design and layout, 260-261
work cell staffing and balancing, 258-259
facility location
careers in supply chain network analysis, 247
center of gravity analysis, 243-245
cost versus service, 226-227
CV (cost-volume) analysis, 240-242
dominant factors in manufacturing, 240
dominant factors in services, 240
importance of, 225-226
location decisions hierarchy, 238-240
network optimization solutions, 246-247
overview, 225
strategic considerations, 237-238
transportation problem model, 245-246
weighted factor rating analysis, 242-243
for profitability, 295
reverse logistics systems, 162-164
documentation, 165
product collection system, 164-165
product location, 164
recycling or disposal centers, 165
deterioration, 140
diagnostic analytics, 266
diagnostic indicators, 274
digital demand, 294
direct procurement, 93
discrete orders, 98
dispersion, 114
disruptions in supply chain, 183
distance, transportation costs and, 111
distributed order management (DOM) system, 155
distribution centers (DCs), 128
distribution networks, 228, 294
distributor storage with carrier delivery, 230-231
distributor storage with customer pickup, 233-234
distributor storage with last-mile delivery, 232-233
e-business impact, 235-236
manufacturer storage with direct shipping, 228-229
manufacturer storage with direct shipping and in-transit merge, 229-230
retailer storage with customer pickup, 233-234
distribution requirements planning (DRP), 61, 66-67
distribution warehouses, 125
distributor storage
with carrier delivery, 230-231
with customer pickup, 233-234
with last-mile delivery, 232-233
diversion, 113
documents
B/L (bill of lading), 117-118
freight bills, 118
freight claims, 119
international B/L (bill of lading), 121-122
international transport documents, 121
reverse logistics documentation, 165
sales documents, 119-120
terms of sale, 116-117, 120-121
DOM (distributed order management) system, 155
domestic transportation documents, 116-119
B/L (bill of lading), 117-118
freight bills, 118
freight claims, 119
terms of sale, 116-117
DRP (distribution requirements planning), 61, 66-67
DTF (demand time fence), 80
dynamic replenishment, 204
earliest due date (EDD), 85

e-business impact on distribution networks, 235-236

Economic Order Quantity (EOQ) inventory model, 55-57

economic value analysis (EVA), 267

economics
 transportation
 cost elements, 113-114
 cost factors, 111-112
 shipping patterns, 112
 transportation economics, 110-111

warehouses
 economic benefits, 131-135
 economic needs for warehousing, 126-127

ECR (Efficient Customer Response), 207-208

EDD (earliest due date), 85

EDI (electronic data interchange), 99

Efficient Customer Response (ECR), 207-208

EFT (electronic funds transfer), 99

electronic data interchange (EDI), 99

electronic funds transfer (EFT), 99

emerging supply chain technology trends, 219-221

employees
 hiring, 77
 laying off, 77
 part-time workers, 77
 subcontracting, 77
 temporary workers, 77

end-to-end visibility, 296

engineer-to-order (ETO), 79

enterprise resource systems (ERP), 216

enterprise solutions, 213

environmental considerations for reverse logistics, 170-172

environmental risk, 182

EOQ (Economic Order Quantity) inventory model, 55-57

EPR (extended product responsibility) programs, 171

e-procurement, 99

ERP (enterprise resource systems), 216

error measurement, forecasting, 46-48
 mean absolute deviation (MAD), 47
 mean absolute percent error (MAPE), 47-48
 mean squared error (MSE), 47
 tracking signals, 48

ETO (engineer-to-order), 79

EVA (economic value analysis), 267

evaluating vendors, 96

event management, 216

exception rates, 116

execution
 execution viewpoint, 214
 execution-driven planning solutions, 221
 execution-level collaboration, 203
 supply chain execution, 215-216

executive opinion, jury of, 39

expediting, 114

exponential smoothing, 43

extended enterprise solutions (XES), 213

extended product responsibility (EPR) programs, 171

external demand drivers, 37

external integration, 201-206
 benefits of, 206
 collaboration methods, 206
 CPFR (collaborative planning, forecasting, and replenishment), 208-210
 ECR (Efficient Customer Response), 207-208
 QR (quick response), 206-207
customer collaboration, 204-205
levels of external collaboration, 202-203
S&OP (sales & operational planning), 206
supplier collaboration, 204
supply chain collaboration by industry, 202
types of external collaboration, 203-204
external risks (GSCM), 182-183

F
facilities
distribution network types, 228
distributor storage with carrier delivery, 230-231
distributor storage with customer pickup, 233-234
distributor storage with last-mile delivery, 232-233
e-business impact, 235-236
manufacturer storage with direct shipping, 228-229
manufacturer storage with direct shipping and in-transit merge, 229-230
retailer storage with customer pickup, 233-234
layout
assembly line design and balancing, 256-258
career outlook, 262
cellular layouts, 253-254
facility design in service organizations, 255-256
fixed-position layouts, 255
hybrid layouts, 253
Lean, 289
overview, 249-250
process layouts, 250-252
product layouts, 250
technology, 261
warehouse design and layout, 260-261
work cell staffing and balancing, 258-259
location
careers in supply chain network analysis, 247
center of gravity analysis, 243-245
cost versus service, 226-227
CV (cost-volume) analysis, 240-242
dominant factors in manufacturing, 240
dominant factors in services, 240
importance of, 225-226
location decisions hierarchy, 238-240
network optimization solutions, 246-247
overview, 225
strategic considerations, 237-238
transportation problem model, 245-246
weighted factor rating analysis, 242-243
factory warehouses, 127
failure in customer service, 153-154
FAK (freight-all-kinds) rates, 116
FCFS (first come, first served), 85
FCS (finite capacity scheduling), 85
few suppliers, 92
financial management for reverse logistics, 170
financial metrics, 270
finished goods, 53
finite capacity scheduling (FCS), 85
firm infrastructure, 8
first come, first served (FCFS), 85
Fixed-Period model, 60-61
fixed-position layouts, 255
Fixed-Quantity model, 57-60
probabilistic safety stock, 58-60
rule of thumb safety stock calculations, 60
safety stock, 58
flexibility strategy, 10, 295
F.O.B. destination, 117
F.O.B. origin, 117
focus, levels of, 153
forecasting
ABC method, 46-47
associative models, 40
correlation, 45
least squares method, 44
multiple regression, 46
seasonality, 45-46
Delphi method, 39
demand drivers, 36-37
external demand drivers, 37
internal demand drivers, 36
forecasting realities, 35-36
history of, 34-35
jury of executive opinion, 39
knowledge of products, 38-39
market surveys, 39
metrics, 46-48
mean absolute deviation (MAD), 47
mean absolute percent error (MAPE), 47-48
mean squared error (MSE), 47
tracking signals, 48
overview, 33-34
process steps, 37-38
product lifestyles and, 40-42
decline, 41-42
growth phase, 41
introduction phase, 41
maturity, 41
pyramid approach to, 34-35
quantitative versus qualitative models, 38-40
technology and best practices, 46-47
time series models, 42-43
components, 42-43
exponential smoothing, 43
moving average, 43
naive approach, 43
overview, 40
weighted moving average, 43
types of forecasts, 36
form utility, 15
forward scheduling, 84
foul B/L (bill of lading), 122
fourth-party-logistics (4PL) providers, 196-198
components for success, 197
Menlo Worldwide Logistics case study, 197-198
players, 197
free sale, certificate of, 120
freedom of trade, 174
freight bills, 118
freight brokers, 109
freight claims, 119
freight classifications, 115
freight forwarders, 109
freight-all-kinds (FAK) rates, 116
full-truckload carriers, 107
G
gatekeeping, 167-168
general warehouses, 125
global intermediaries, 109-110, 178
global supply chain management. See GSCM (global supply chain management)
globalization, 24, 295
benefits of, 174-175
growth of, 173-175
government warehouses, 130
green logistics, 171-172
growth
 of globalization, 173-175
 growth phase (product lifecycle), 41
 in logistics industry, 295
GSCM (global supply chain management), 11
 challenges, 178-180
 growth of globalization, 173-175
 international transportation methods, 177-178
 overview, 173
 questions to ask when going global, 179-180
 risk management, 181-185
 external risks, 182-183
 internal risks, 182
 potential risk identification and impact, 181
 risk mitigation, 184-185
 supply chain disruptions, 183
 strategy development, 175-177

H
 hardware inventory planning, 67
 Hewlett-Packard, 171
 for-hire carriers, 107, 110
 for-hire transportation industry, 192
 hiring employees, 77
history
 forecasting, 34-35
 Lean, 278-279
 logistics, 13-14
 transportation systems, 103-105
 warehouse management, 126
human resource management, 8
human supply chain technology, 221
hybrid layouts, 253

I
 IBM ILOG LogicNet Plus XE, 246-247
 ICC (Interstate Commerce Commission), 104
 identifying risk, 181
 idle time, 77
 import licenses, 120
 inbound logistics, 7
 Incoterms, 120-121
 independent versus dependent demand
 inventory, 51-53
 indicators, 273-274
 indirect procurement, 93
 industry framework, 18
 influence demand, 76
information
 versus data, 211-212
 flows, 212
 information utility, 15
 needs, 213-214
information technology systems (reverse logistics), 168
in-sourcing, 91
inspection, certificate of, 120
Institute of Business Forecasting & Planning, 34
Institute for Supply Management (ISM), 29, 89
insurance, certificate of, 120
integrated business planning, 76
integration. See supply chain integration
interchange, 114
intermodal carriers, 108
internal demand drivers, 36
internal integration, 200-201
internal metrics (warehouses), 143
internal processes, 19
internal risks (GSCM), 182
international B/L (bill of lading), 121-122
International Commercial Terms, 120-121
International Society for Logistics (SOLE), 103
international transportation documents, 119-122
international B/L (bill of lading), 121-122
sales documents, 119-120
terms of sale, 120-121
transport documents, 121
Interstate Commerce Commission (ICC), 104
introduction phase (product lifecycle), 41
inventory control and accuracy, 63-64
inventory planning
 ABC method, 61-63
career outlook, 67
channels of distribution, 52
costs of inventory, 53-55
 carrying or holding costs, 54
 ordering costs, 54
 setup costs, 54-55
 total cost minimized, 55
cycle counting, 63-64
EOQ (Economic Order Quantity)
 inventory model, 55-57
hardware, 67
independent versus dependent demand
 inventory, 51-53
inventory control and accuracy, 63-64
metrics, 64-65
overview, 51
ROP (Reorder Point) models, 57
 Fixed-Period model, 60-61
 Fixed-Quantity model, 57-60
 Single-Period model, 61
software, 65-67
types of inventory, 53
typical planning and scheduling process, 51
inventory waste, 280
invoice approval, 100
invoicing processes, 204
ISM (Institute for Supply Management), 29, 89
J
JIT (just-in-time) programs, 92
Johnson & Johnson, 92, 172
joint ventures, 92
jury of executive opinion, 39
just-in-time (JIT) programs, 92
K
kaizen, 283
Kanban, 204, 291-292
key performance indicators (KPIs), 273-274
knowledge of products, 38-39
KPIs (key performance indicators), 273-274
L
lagging indicators, 274
laying off employees, 77
layout
 facility layout
 assembly line design and balancing, 256-258
career outlook, 262
 cellular layouts, 253-254
 facility design in service organizations, 255-256
 fixed-position layouts, 255
 hybrid layouts, 253
 Lean, 289
 overview, 249-250
 process layouts, 250-252
product layouts, 250
technology, 261
warehouse design and layout, 260-261
work cell staffing and balancing, 258-259
warehouse layout, 137-140
deterioration, 140
material handling, 138-139
pallet positioning, 139
pilferage, 140
leadership, trends in, 296-297
leading indicators, 274
Lean, 26, 201
culture and teamwork, 281-283
history of, 278-279
kaizen, 283
non-value-added activities, 279-280
overview, 277
tools, 286-287
5S, 288-289
batch size reduction and quick changeover, 289-290
facility layout, 289
point-of-use storage, 291
pull systems/kanban, 291-292
quality at the source, 290
Six Sigma, 292
standardized work, 288
tools, 291-292
TPM (total productive maintenance), 291
visual controls, 289
work cells, 291-292
value-added activities, 279-280
VSMs (value stream maps), 283-286
waste, 280-281
least squares method, 44
legal types of carriage, 110-111
for-hire carriers, 110
private carriers, 110-111
less-than-truckload (LTL) carriers, 107
level plans, 78
levels (SCOR model), 6
leveraging effect (supply chain), 8-9
lifecycles (product)
forecasting and, 40-42
decay, 41-42
growth phase, 41
introduction phase, 41
maturity, 41
overview, 25
Lighthouse for the Blind, 219
line haul, 113
linear regression, 44
loading orders, 149
local line haul carriers, 107
location (facility)
careers in supply chain network analysis, 247
center of gravity analysis, 243-245
cost versus service, 226-227
CV (cost-volume) analysis, 240-242
distribution network types, 228
distributor storage with carrier delivery, 230-231
distributor storage with customer pickup, 233-234
distributor storage with last-mile delivery, 232-233
e-business impact, 235-236
manufacturer storage with direct shipping, 228-229
manufacturer storage with direct shipping and in-transit merge, 229-230
retailer storage with customer pickup, 233-234
dominant factors in manufacturing, 240
dominant factors in services, 240
importance of, 225-226
location decisions hierarchy, 238-240
network optimization solutions, 246-247
overview, 225
strategic considerations, 237-238
transportation problem model, 245-246
weighted factor rating analysis, 242-243
location cost-volume analysis, 240-242
logistics. See also reverse logistics
career outlook, 293-294
green logistics, 171-172
history of, 13-14
inbound logistics, 7
outbound logistics, 7
percentage of U.S. GDP (gross domestic product), 3
trends in, 295-296
Logistix Solutions, 246-247
longest processing time (LPT), 85
lot sizing, 149
LPT (longest processing time), 85
LTL (less-than-truckload) carriers, 107

M
MAD (mean absolute deviation), 47
maintenance, repair, and operations (MRO), 53
make versus buy, 90
make-to-order (MTO), 79
make-to-stock (MTS), 79
managerial focus, 19
manufacture, certificate of, 120
manufacturer storage
with direct shipping, 228-229
with direct shipping and in-transit merge, 229-230
manufacturing, trends in, 294-295
many suppliers, 92
MAPE (mean absolute percent error), 47-48
market presence, warehouses and, 135
market surveys, 39
market-based pricing, 97
marketing, 8
master production schedule (MPS), 73, 78-80
material handling, 138-139
Material Requirements Planning. See MRP (Material Requirements Planning)
maturity (product lifecycle), 41
maximizing recovery rates with reverse logistics, 163
mean absolute deviation (MAD), 47
mean absolute percent error (MAPE), 47-48
mean squared error (MSE), 47
measurement. See metrics
meetings
demand planning cross-functional meetings, 74
pre-S&OP meeting, 74
supply planning cross-functional meeting, 74
Menlo Worldwide Logistics case study, 197-198
Merck, 92
metrics
ABC method, 267
balanced scorecard approach, 267, 268-270
customer service metrics, 269
financial metrics, 270
operational metrics, 269
benchmarking, 274-275
customer service
internal versus external metrics, 152
service quality and metrics, 152
data analytics, 266-267
EVA (economic value analysis), 267
forecasting, 46-48
ABC method, 46-47
mean absolute deviation (MAD), 47
mean absolute percent error (MAPE), 47-48
mean squared error (MSE), 47
tracking signals, 48
history of, 266
inventory planning, 64-65
measurement categories, 267-268
overview, 265
procurement, 100-101
SCOR model, 6-7, 267, 270-272
supply chain dashboard and KPIs,
273-274
transportation systems, 122
warehouse management, 142-143
Mission Foods, 219
mission statement, 15-16
mitigating risk (GSCM), 184-185
mixing warehouses, 133-134
MNCs (multinational corporations), 174
mobile computing, 219
models
 SCOR model, 5-6
 illustration, 5
 metrics, 6-7
 Value Chain model, 7-8
modes of transportation, 105-110
 air carriers, 108
 global intermediaries, 109-110
 intermodal carriers, 108
 motor carriers, 107
 pipeline, 108-109
 rail, 106-107
 shipment characteristics, 106
motion waste, 280
Motor Carrier Act of 1980, 104
motor carriers
 domestic transportation, 107
 international transportation, 178
Motorola, 292
moving averages, 43
MPS (master production schedule), 73,
78-80
MRO (maintenance, repair, and operations), 53
MRP (Material Requirements Planning),
80-83
 BOM (bill of materials), 80-81
 mechanics, 81-83
MSE (mean squared error), 47
MTO (make-to-order), 79
MTS (make-to-stock), 79
multichannel sourcing, 296
multi-enterprise visibility systems,
220-221
multifunctional dimensions of customer
service, 151
multinational corporations (MNCs), 174
multiple regression, 46
N
naive approach (time series models), 43
National Motor Freight Classification
(NMFC), 115
near shoring, 295
near sourcing, 92
negotiable B/L (bill of lading), 122
negotiation
 price, 97-98
 reverse logistics, 170
Nestlé, 172
network design
 distribution network types, 228
 distributor storage with carrier
delivery, 230-231
 distributor storage with customer
pickup, 233-234
 distributor storage with last-mile
delivery, 232-233
e-business impact, 235-236
 manufacturer storage with direct
shipping, 228-229
manufacturer storage with direct shipping and in-transit merge, 229-230
retailer storage with customer pickup, 234-235

facility layout
assembly line design and balancing, 256-258
career outlook, 262
cellular layouts, 253-254
facility design in service organizations, 255-256
fixed-position layouts, 255
hybrid layouts, 253
overview, 249-250
process layouts, 250-252
product layouts, 250
technology, 261
warehouse design and layout, 260-261
work cell staffing and balancing, 258-259

facility location
careers in supply chain network analysis, 247
center of gravity analysis, 243-245
cost versus service, 226-227
CV (cost-volume) analysis, 240-242
dominant factors in manufacturing, 240
dominant factors in services, 240
importance of, 225-226
location decisions hierarchy, 238-240
network optimization solutions, 246-247
overview, 225
strategic considerations, 237-238
transportation problem model, 245-246
weighted factor rating analysis, 242-243

new demand, 77

NMFC (National Motor Freight Classification), 115

non-value-added activities, 279-280
non-vessel-operating common carriers (NVOCCs), 110
notified bill of lading, 117
NVOCCs (non-vessel-operating common carriers), 110

O
ocean bill of lading, 122
ocean transport, 177
omni-channel marketing, 10, 294
OMSs (order management systems), 155-156
operational metrics, 269
operational-level measurement, 268
operations defined, 7
GSCM (global supply chain management), 11
challenges, 178-180
growth of globalization, 173-175
international transportation methods, 177-178
overview, 173
questions to ask when going global, 179-180
risk management, 181-185
strategy development, 175-177
procurement
delivery, 99
direct procurement, 93
few versus many suppliers, 92
indirect procurement, 93
invoice approval, 100
joint ventures, 92
make versus buy, 90
metrics, 100-101
near sourcing, 92
outsourcing, 90-91
overview, 89-90
price negotiation, 97-98
process overview, 93
purchase orders, 98-99
purchasing, 89
receipt of goods, 100
requirements, 93-94
in-sourcing, 91
specifications, 94-95
strategic sourcing, 89-90
supplier selection, 95-96
technology, 101
vertical integration, 92
virtual companies, 92-93
reverse logistics
challenges, 165-166
costs, 161
environmental considerations, 170-172
managing, 166-170
overview, 157-158
process steps, 161-162
recall, 159
recycling and waste disposal, 160
refilling, 159
remanufacturing, 159-160
repairs and refurbishing, 158
return rates by industry, 160-161
strategic uses of, 162-164
system design, 162-164
transportation systems
costs, 105
domestic transportation documents, 116-119
for-hire carriers, 110
history, 103-105
international transportation documents, 119-122
international transportation methods, 177-178
legal types of carriage, 110-111
metrics, 122
modes, 105-110
overview, 103
private carriers, 110-111
rates charged, 114-116
TMS (transportation management systems), 122
transportation economics, 110-111
warehouse management
distribution warehouses, 125
economic benefits, 131-135
economic needs for warehousing, 126-127
facility layout, 137-140
general warehouses, 125
history of, 126
metrics, 142-143
overview, 125-126
packaging, 141-142
picking, 141
putaway, 140, 143
receiving, 141
shipping, 141
size of facility, 135-137
storage, 141
types of warehouses, 127-131
WMS (warehouse management system), 143-144
YMS (yard management system), 145
opportunities in SCM (supply chain management), 23-26
optimization of supply chains, 298
order batching, 149
order bill of lading, 117
to order B/L (bill of lading), 122
order management
OMSs (order management systems), 155-156
order delivery, 150
order placement, 148
order preparation and loading, 149
order processing, 148-149
order-filling accuracy, 149
overview, 147-148
process, 148
order management systems (OMSs), 155-156
ordering costs, 54
origin, certificate of, 119
outbound logistics, 7
outsourcing, 25, 90-91
3PLs (third-party-logistics providers), 193-196
advantages, 194
disadvantages, 194-195
Ryder case study, 195-196
4PLs (fourth-party-logistics providers), 196-198
components for success, 197
Menlo Worldwide Logistics case study, 197-198
players, 197
outsourced manufacturer collaboration, 204
overview, 189-190
reasons to outsource, 190-191
reverse logistics, 170
steps in outsourcing process, 191-192
traditional service providers, 192-193
overprocessing, 280
overproduction, 280
overtime, 77
ownership type (warehouses), 129-130

P
packaging, 141-142, 178
pallet positioning, 139
Pareto principle, 61
partnerships, 296
part-time workers, 77
pCards, 99
people-enabling software, 221
performance attributes (SCOR model), 6
periods of supply (POS), 65
physical distribution, 13
picking, 141
pickup and delivery, 113
pilferage, 140
pipeline, 108-109
place utility, 15
placing orders, 148
planning
aggregate planning and scheduling
demand options, 76-77
integrated business planning, 76
MPS (master production schedule), 78-80
MRP (Material Requirements Planning), 80-83
overview, 69
production strategies, 79
S&OP processes, 74-76
short-term scheduling, 83-86
strategies, 78
supply capacity options, 77
technology, 86
demand planning. See demand planning
forecasting
ABC method, 46-47
associative models, 40, 44-46
Delphi method, 39
demand drivers, 36-37
forecasting realities, 35-36
history of, 34-35
jury of executive opinion, 39
knowledge of products, 38-39
market surveys, 39
metrics, 46-48
overview, 33-34
process steps, 37-38
product lifestyles and, 40-42
pyramid approach to, 34-35
quantitative versus qualitative models, 38-40
technology and best practices, 48-49
time series models, 40, 42-43
types of forecasts, 36
inventory planning
 ABC method, 61-63
career outlook, 67
channels of distribution, 52
costs of inventory, 53-55
cycle counting, 63-64
 EOQ (Economic Order Quantity) inventory model, 55-57
hardware, 67
independent versus dependent demand inventory, 51-53
inventory control and accuracy, 63-64
 metrics, 64-65
overview, 51
ROP (Reorder Point) models, 57-61
software, 65-67
types of inventory, 53
typical planning and scheduling process, 51
 supply chain planning, 215
planning time fence (PTF), 80
players, 4PLs (fourth-party-logistics providers), 197
PLM (product lifecycle management) software, 214
point solutions, 213
point-of-use storage, 291
pooling, 113
Porter, Michael, 7
POS (periods of supply), 65
possession utility, 15
postponement, warehouses and, 134
predictive analytics, 266
prenegotiated blanket orders, 98
prenegotiated vendor-managed inventory (VMI), 98
preparing orders, 149
pre-S&OP meeting, 74
prescriptive analytics, 266
price negotiation, 95-96
price stabilization, 127
pricing
 competitive bidding, 97
cost based, 97
deregulation and, 115
market based, 97
price negotiation, 97-98
price stabilization, 127
priorities
 priority rules, 85
processing, 149
private carriers, 110-111
private warehouses, 129
probabilistic safety stock, 58-60
processes
 forecasting process steps, 37-38
 internal processes, 19
 process layouts, 250-252
procurement
 delivery, 99
 invoice approval, 100
 price negotiation, 97-98
 process overview, 93
 purchase orders, 98-99
 receipt of goods, 100
 requirements, 93-94
 specifications, establishing, 94-95
 supplier selection, 95-96
reverse logistics, 161-162
 analysis, 162
 processing, 162
 receiving, 161
 sorting and staging, 161-162
 support, 162
risk, 182
S&OP processes, 74-76
processing
orders, 148-149
priorities, 149
reverse logistics, 162
Proctor and Gamble, 36
procurement
defined, 8
delivery, 99
direct procurement, 93
few versus many suppliers, 92
indirect procurement, 93
invoice approval, 100
joint ventures, 92
make versus buy, 90
metrics, 100-101
near sourcing, 92
outsourcing, 90-91
overview, 89-90
price negotiation, 97-98
process overview, 93
purchase orders, 98-99
purchasing, 89
receipt of goods, 100
requirements, 93-94
in-sourcing, 91
specifications, 94-95
strategic sourcing, 89-90
supplier selection, 95-96
technology, 101
vertical integration, 92
virtual companies, 92-93
product collection system (reverse logistics), 164-165
product flow (warehouses), 136-137
product layouts, 250
product lifecycle management (PLM) software, 214
product lifecycles
forecasting and, 40-42
delay, 41-42
growth phase, 41
introduction phase, 41
maturity, 41
overview, 25
product location (reverse logistics), 164
production economies of scale, 127
Production Quantity EOQ model, 56
production strategies, 79
profitability, design for, 295
protecting profits with reverse logistics, 163
PTF (planning time fence), 80
public warehouses, 129, 192-193
publishing industry, return rates in, 160
pull systems, 291-292
purchase orders, 98-99
purchasing, 89
putaway, 140, 143
pyramid approach to forecasting, 34-35

Q
QR (quick response), 206-207
qualitative forecasting models
Delphi method, 39
jury of executive opinion, 39
knowledge of products, 38-39
market surveys, 39
quantitative versus qualitative models, 38-39
quality
customer service, 152
quality at the source, 290
strategy, 9
quantitative forecasting models
associative models, 40
correlation, 45
least squares method, 44
multiple regression, 46
quantitative versus qualitative models, 39-40
seasonality, 45-46
time series models, 42-43
components, 42-43
exponential smoothing, 43
moving average, 43
naive approach, 43
overview, 40
weighted moving average, 43
Quantity Discount EOQ model, 57
quick response (QR), 206-207

R
radio frequency identification (RFID), 67, 219
rail
domestic transportation, 106-107
international transportation, 178
rates (transportation), 114-116
effects of deregulation on pricing, 115
freight classifications, 115
rate determination, 116
raw materials, 53
recall, 159
receipt of goods, 100
receiving, 141, 161
reconsignment, 113
recovery, customer service, 153-154
recycling and waste disposal, 160, 165
refilling, 159
refurbishing, 158, 169-170
regional railroads, 107
regression
linear regression, 44
multiple regression, 46
reliability, 6
remanufacturing, 159-160, 169-170
Reorder Point models. See ROP (Reorder Point) models
repairs, 158
request for quotation (RFQ), 95
requests for proposals (RFPs), 95, 191
responsiveness, 6
retail industry
retail distribution warehouses, 127
retailer storage with customer pickup, 233-234
return rates, 160-161
S&OP (sales & operational planning), 76
return rates by industry, 160-161. See also reverse logistics
automotive industry, 160-161
computer industry, 160
publishing industry, 160
retail industry, 160-161
returns-to-revenue, 162
revenue, positively impacting with reverse logistics, 162-164
reverse logistics
challenges, 165-166
costs, 161
environmental considerations, 170-172
managing, 166-170
asset recovery, 170
CRCs (centralized return centers), 168-169
financial management, 170
gatekeeping, 167-168
information technology systems, 168
negotiation, 170
outsourcing, 170
remanufacture and refurbishment, 169-170
zero returns, 169
overview, 157-158
process steps, 161-162
analysis, 162
processing, 162
receiving, 161
sorting and staging, 161-162
support, 162
recall, 159
recycling and waste disposal, 160
refilling, 159
remanufacturing, 159-160
repairs and refurbishing, 158
return rates by industry, 160-161
 automotive industry, 160-161
 computer industry, 160
 publishing industry, 160
 retail industry, 160-161
strategic uses of, 162-164
system design, 162-164
 documentation, 165
 product collection system, 164-165
 product location, 164
 recycling or disposal centers, 165
warehouses, 129
RFID (radio frequency identification), 67, 219
RFPs (requests for proposals), 95, 191
RFQ (request for quotation), 95
risk management
 GSCM (global supply chain management), 181-185
 external risks, 182-183
 internal risks, 182
 potential risk identification and impact, 181
 risk mitigation, 184-185
 supply chain disruptions, 183
overview, 295
risk matrix, 181
ROP (Reorder Point) models, 57
 Fixed-Period model, 60-61
 Fixed-Quantity model, 57-60
 probabilistic safety stock, 58-60
 rule of thumb safety stock calculations, 60
 safety stock, 58
 Single-Period model, 61
routine viewpoint, 213
rule of thumb safety stock calculations, 60
rules, priority, 85
Ryder, 195-196
S
S&OP (sales & operational planning). See aggregate planning and scheduling
S&T (switching and terminal) carriers, 107
SaaS (software-as-a-service), 217, 219
safety stock
 explained, 58
 probabilistic safety stock, 58-60
 rule of thumb safety stock calculations, 60
sales, 8
sales & operational planning (S&OP). See aggregate planning and scheduling
sales documents, 119-120
Sawtooth model, 56
SCC (Supply Chain Council) SCOR model, 5-6
 illustration, 5
 metrics, 6-7
scheduling. See aggregate planning and scheduling
SCM (supply chain management), 4, 13
career outlook, 26-29, 293-294
certification programs, 24-29
competitive advantage, 9-10
CRM (custom relationship management)
 customer service, 150-154
 OMSs (order management systems), 155-156
 overview, 147-148, 150
defined, 4-5
GSCM (global supply chain management), 11
history of, 13-14
leverage effect, 8-9
opportunities and challenges, 23-26
optimization of supply chains, 298
order management
 order delivery, 150
 order placement, 148
 order preparation and loading, 149
 order processing, 148-149
 overview, 147-148
 process, 148
SCOR model, 5-6
 illustration, 5
 metrics, 6-7
segmentation, 10-11
strategy, 15
 elements and drivers, 17-19
 methodology, 19-23
 mission statement, 15-16
 strategic choices, 17
 SWOT analysis, 16-17
trends
 logistics trends, 295-296
 supply chain leadership trends, 296-297
 supply chain trends, 294-295
 technology trends, 297-299
value as utility, 14-15
Value Chain model, 7-8
scope, 6
SCOR model, 5-6, 267, 270-272
 illustration, 5
 metrics, 6-7
seasonality
 overview, 45-46
 seasonal demand, 127
 seasonal production, 126
segmenting supply chain, 10-11, 298
selecting suppliers, 95-96
sequencing, 84-85
services
 defined, 8
 service orientation, 298
 service scheduling, 85-86
 service utility, 15
setup costs, 54-55
shipment characteristics by mode of transportation, 106
shipment consolidation, 149
shipping, 112, 114, 141
shortest processing time (SPT), 85
short-term scheduling, 83-86
 FCS (finite capacity scheduling), 85
 sequencing, 84-85
 service scheduling, 85-86
 types of scheduling, 84
 typical planning and scheduling process, 83
short-term supply chain technology trends, 218
signals (tracking), 48
simulation, 298
single integrated solution software, 217
Single-Period model, 61
Six Sigma, 26, 201, 291-292
size of warehouses, 135-137
 cube utilization, 136
 number of stories, 135
 product flow, 136-137
skills waste, 280
small-package carriers, 107
Social Security Administration (SSA), 219
software
 aggregate planning and scheduling, 86
 forecasting software, 46-47
 inventory planning, 65-67
 procurement, 101
 software market (SCM software), 214-218
 best-in-class versus single integration solution, 217
BI (business intelligence), 216
consultants, 218
costs, 217
emerging trends, 219-221
short-term trends, 218
supply chain event management, 216
supply chain execution, 215-216
supply chain planning, 215
software-as-a-service (SaaS), 217, 219
TMS (transportation management systems), 122
SOLE (International Society for Logistics), 103
sorting and staging (reverse logistics), 161-162
source control, 290
sources of risk, 182-183
sourcing, 295
 multichannel sourcing, 296
 in-sourcing, 91
specifications (procurement), 94-95
SPT (shortest processing time), 85
SRM (supplier relationship management) software, 214
SSA (U.S. Social Security Administration), 219
stabilization of prices, 127
standardized work, 288
STB (Surface Transportation Board), 115
stopping in transit, 113
storage
 distribution network types, 228
 distributor storage with carrier delivery, 230-231
 distributor storage with customer pickup, 233-234
 distributor storage with last-mile delivery, 232-233
 e-business impact, 235-236
 manufacturer storage with direct shipping, 228-229
 manufacturer storage with direct shipping and in-transit merge, 229-230
 retailer storage with customer pickup, 233-234
 global intermediaries, 178
 point-of-use storage, 291
 warehouse storage, 141
stories (warehouse), 135
stowability, transportation costs and, 112
straight bill of lading, 117
strategic alliances. See supply chain partners
strategy, 15
 aggregate planning and scheduling, 78
 elements and drivers, 17-19
 GSCM (global supply chain management) strategy development, 175-177
 methodology, 19-23
 mission statement, 15-16
 reverse logistics, 162-164
 strategic choices, 17
 strategic collaboration, 202
 strategic sourcing, 89-90
 strategic viewpoint, 213
 strategic-level measurement, 268
 SWOT analysis, 16-17
subcontracting, 77
supplier relationship management (SRM) software, 214
suppliers
 collaboration with, 25
 few versus many suppliers, 92
 selecting, 95-96
 supplier collaboration, 204
 supplier management, 295
 supplier relationship management (SRM) software, 214
supply capacity options, 77
supply chain collaboration, 25
Supply Chain Council SCOR model. See SCC (Supply Chain Council) SCOR model
supply chain dashboard and KPIs, 273-274
supply chain defined, 4
supply chain disruptions, 183
supply chain execution, 215-216
supply chain integration. See also supply chain partners
collaboration methods, 206
CPFR (collaborative planning, forecasting, and replenishment), 208-210
ECR (Efficient Customer Response), 207-208
QR (quick response), 206-207
external integration, 201-206
benefits of, 206
customer collaboration, 204-205
levels of external collaboration, 202-203
Se-OP (sales & operational planning), 206
supplier collaboration, 204
supply chain collaboration by industry, 202
types of external collaboration, 203-204
internal integration, 200-201
overview, 199-200
supply chain partners
3PLs (third-party-logistics providers), 193-196
4PLs (fourth-party-logistics providers), 196-198
overview, 189-190
reasons to outsource, 190-191
steps in outsourcing process, 191-192
traditional service providers, 192-193
technology, 211
best of breed solutions, 213
bullwhip effect, 212
customer relationship management (CRM) software, 214
data versus information, 211-212
enterprise solutions, 213
information needs, 213-214
point solutions, 213
product lifecycle management (PLM) software, 214
supplier relationship management (SRM) software, 214
supply chain information flows, 212
supply chain software market, 214-218
XES (extended enterprise solutions), 213
supply chain management. See SCM (supply chain management)
supply chain operations
GSCM (global supply chain management), 11
challenges, 178-180
growth of globalization, 173-175
international transportation methods, 177-178
overview, 173
questions to ask when going global, 179-180
risk management, 181-185
strategy development, 175-177
procurement
delivery, 99
direct procurement, 93
few versus many suppliers, 92
indirect procurement, 93
invoice approval, 100
joint ventures, 92
make versus buy, 90
metrics, 100-101
near sourcing, 92
outsourcing, 90-91
overview, 89-90
price negotiation, 97-98
process overview, 93
purchase orders, 98-99
purchasing, 89
receipt of goods, 100
requirements, 93-94
in-sourcing, 91
specifications, 94-95
strategic sourcing, 89-90
supplier selection, 95-96
technology, 101
vertical integration, 92
virtual companies, 92-93

reverse logistics
challenges, 165-166
costs, 161
environmental considerations, 170-172
managing, 166-170
overview, 157-158
process steps, 161-162
recall, 159
recycling and waste disposal, 160
refilling, 159
remanufacturing, 159-160
repairs and refurbishing, 158
return rates by industry, 160-161
strategic uses of, 162-164
system design, 164-165

transportation systems
costs, 105
domestic transportation documents, 116-119
for-hire carriers, 110
history of, 103-105
international transportation documents, 119-122
international transportation methods, 177-178
legal types of carriage, 110-111
metrics, 122
modes, 105-110
overview, 103
private carriers, 110-111
rates charged, 114-116

TMS (transportation management systems), 122-123
transportation economics, 111-114
warehouse management
distribution warehouses, 125
economic benefits, 131-135
economic needs for warehousing, 126-127
facility layout, 137-140
general warehouses, 125
history of, 126
metrics, 142-143
overview, 125-126
packaging, 141-142
picking, 141
putaway, 140, 143
receiving, 141
shipping, 141
size of facility, 135-137
storage, 141
types of warehouses, 127-131
WMS (warehouse management system), 143-144
YMS (yard management system), 145

supply chain partners. See also supply chain integration
3PLs (third-party-logistics providers), 193-196
advantages, 194
disadvantages, 194-195
Ryder case study, 195-196
4PLs (fourth-party-logistics providers), 196-198
components for success, 197
Menlo Worldwide Logistics case study, 197-198
players, 197
overview, 189-190
reasons to outsource, 190-191
steps in outsourcing process, 191-192
traditional service providers, 192-193

supply chain planning, 215
Index

Surface Transportation Board (STB), 115
surveys, market surveys, 39
sustainability, 171, 295-299
switching and terminal (S&T) carriers, 107
SWOT analysis, 16-17
system design, reverse logistics, 162-164
documentation, 165
product collection system, 164-165
product location, 164
recycling or disposal centers, 165

tactical collaboration, 202
tactical viewpoint, 213
tactical-level measurement, 268
talent development, 295
TAPS (Trans-Alaska Pipeline System), 108
teams (Lean), 281-283
technology, 211
aggregate planning and scheduling, 86
best of breed solutions, 213
bullwhip effect, 212
customer relationship management (CRM) software, 214
data versus information, 211-212
emerging trends, 298
enterprise solutions, 213
information needs, 213-214
point solutions, 213
product lifecycle management (PLM) software, 214
supplier relationship management (SRM) software, 214
supply chain information flows, 212
supply chain software market, 214-218
 best-in-class versus single integration solution, 217
 BI (business intelligence), 216
 consultants, 218
 costs, 217
 emerging trends, 219-221
 short-term trends, 218
 supply chain event management, 216
 supply chain execution, 215-216
 supply chain planning, 215
trends in, 297-299
XES (extended enterprise solutions), 213
supply chain trends, 294-295
supply management, 215
supply planning cross-functional meeting, 74
supply risk, 182
support, reverse logistics, 162

330 Index
reverse logistics, 168
supplier relationship management (SRM) software, 214
supply chain information flows, 212
supply chain software market, 214-218
 best-in-class versus single integration solution, 217
 BI (business intelligence), 216
consultants, 218
costs, 217
emerging trends, 219-221
short-term trends, 218
supply chain event management, 216
supply chain execution, 215-216
supply chain planning, 215
technology trends, 297-299
transportation systems, 122
warehouse management
 WMS (warehouse management system), 143-144
 YMS (yard management system), 145
XES (extended enterprise solutions), 213
temporary workers, 77
terminal handling, 114
terminals, 105
terms of sale, 116-117, 120-121
third-party-logistics (3PL) providers, 193-196
 advantages, 194
 disadvantages, 194-195
 Ryder case study, 195-196
time series forecasting models, 42-43
 components, 42-43
 exponential smoothing, 43
 moving average, 43
 naive approach, 43
 overview, 40
 weighted moving average, 43
time strategy, 9
time utility, 15
TMS (transportation management systems), 122, 215-216
TNCs (transnational corporations), 174
TOFC (trailer on a flatcar), 108
tools (Lean), 286-287
 5S, 288-289
 batch size reduction and quick change-over, 289-290
 facility layout, 289
 point-of-use storage, 291
 pull systems/kanban, 291-292
 quality at the source, 290
 Six Sigma, 292
 standardized work, 288
 TPM (total productive maintenance), 291
 visual controls, 289
 work cells, 291-292
total cost minimized, 55
total productive maintenance (TPM), 291
Toyota, 278
TPM (total productive maintenance), 291
tracing, 114
tracking signals, 48
traditional service providers, 192-193
trailer on a flatcar (TOFC), 108
transactional elements, customer service, 151-152
transactions, 6
Trans-Alaska Pipeline System (TAPS), 108
transit privilege, 113
transit sheds, 178
transnational corporations (TNCs), 174
transportation management systems (TMS), 122, 215-216
transportation problem model, 245-246
transportation systems
costs, 105
domestic transportation documents, 116-119
 B/L (bill of lading), 117-118
 freight bills, 118
 freight claims, 119
 terms of sale, 116-117
for-hire carriers, 110
history, 103-105
international transportation documents, 119-122
 international B/L (bill of lading), 121-122
 sales documents, 119-120
 terms of sale, 120-121
 transport documents, 121
international transportation methods, 177-178
legal types of carriage, 110-111
metrics, 122
modes, 105-110
 air carriers, 108
 global intermediaries, 109-110
 intermodal carriers, 108
 motor carriers, 107
 pipeline, 108-109
 rail, 106-107
 shipment characteristics by mode of transportation, 106
overview, 103
private carriers, 110-111
rates charged, 114-116
 effects of deregulation on pricing, 115
 freight classifications, 115
 rate determination, 116
TMS (transportation management systems), 122
transportation economics, 110-111
 cost elements, 113-114
 cost factors, 111-112
 shipping patterns, 112
transportation waste, 280
trends in supply chain management
 logistics trends, 295-296
 supply chain leadership trends, 296-297
 supply chain trends, 294-295
 technology trends, 297-299
U
UFC (Uniform Freight Classification), 115
uniform bill of lading, 117
Uniform Freight Classification (UFC), 115
unique value proposal, 19
UPS, 196
U.S. Social Security Administration (SSA), 219
utilities, 14-15
V
Value Chain model, 7-8
value chains, 7-8
value stream maps (VSMs), 283-286
value-added activities, 279-280
value-added networks (VANs), 99
VANs (value-added networks), 99
varying inventory levels, 77
vehicles, 105, 114
vendor evaluation, 96
vertical integration, 92
VICS (Voluntary Inter-industry Commerce Solutions), 208
virtual companies, 92-93
visibility, 296
visual controls, 289
Vizio, 92
Voluntary Inter-industry Commerce Solutions (VICS), 208
warehouses by customer classification, 127-128
warehouses by ownership type, 129-130
warehouses by role in supply chain, 128-129
warehouse design and layout, 260-261
WMS (warehouse management system), 65-66, 143-144, 215
YMS (yard management system), 145
warehouse management systems (WMS), 65-66, 143-144, 215
waste (Lean), 280-281
waste disposal and recycling, 160, 165
ways, 105
websites
American Production and Inventory Control Society, 67
AST&L (American Society for Transportation & Logistics), 103
Council of Supply Chain Management Professionals, 67
Institute of Business Forecasting & Planning, 34
SOLE (International Society for Logistics), 103
WERC (Warehouse Educational and Research Council), 126
weighing, 114
weight, transportation costs and, 111
weighted factor rating analysis, 242-243
weighted moving average, 43
WERC (Warehouse Educational and Research Council), 126
WIP (work in progress), 53
WMS (warehouse management systems), 65-66, 143-144, 215
work cells, 291-292
layouts, 253-254
staffing and balancing, 258-259
work in progress (WIP), 53
workflow, 6

X-Y-Z

Xerox, 171
XES (extended enterprise solutions), 213

yard management system (YMS), 145
YMS (yard management system), 145

zero returns, 169