Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Names: Wedgwood, Ian, author.
Title: Lean Sigma : a practitioner’s guide / Ian D. Wedgwood, Ph.D.
Other titles: Lean Sigma (2007)
Classification: LCC HD69.P75 W44 2016 | DDC 658.4/013—dc23
LC record available at http://lccn.loc.gov/2015046788

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, March 2016
THIS BOOK IS DEDICATED TO MY WONDERFUL WIFE, VERONICA, FOR RELENTLESSLY
URGING ME TO WRITE THIS BOOK, BUT ALSO
FOR HER TIRELESS PATIENCE AND SUPPORT WHEN I FINALLY DID.
This page intentionally left blank
Contents

Preface xiii
Acknowledgments xvii
About the Author xix

Chapter 1 Introduction 1
Overview 1
Intended Audience 2
Prerequisites 2
Basics 3
How to Use This Book 9
And Finally . . . 12

Part I Project Roadmaps to Solve Business Problems 13

Chapter 2 Process Improvement Projects (DMAIC) 15
Overview 15
Define 15
Measure and Analyze 24
Improve 26
Control 33
CONTENTS

R: Resource Usage Is Too High (Headcount Reduction) 136
S: Inventory Is Too High 139
T: Waste/Process Loss Is Too High 144
U: High Forecast Variation 147
V: Not Enough Sales 152
W: Backlog of Orders Is Too High 154
X: Payments Made to Suppliers Not Optimized 155
Y: Accounts Receivable Are Too High 158

Chapter 7 Individual Step Process Problems 163
1: A Single Process Step Does Not Meet Takt 163
2: The Pace for a Single Process Step Is Too Slow 166
3: Too Much Variation in the Cycle Time of a Single Step 168

PART III Roadmaps to Guide in the Practical Application of Each Lean Sigma Tool 171

Chapter 8 Tools 173
01: 5 Whys 173
02: 5S 176
03: Affinity 184
04: ANOVA 187
05: Box Plot 196
06: Capability—Attribute 199
07: Capability—Continuous 201
08: Cause and Effect (C&E) Matrix 209
09: Chi-Square 213
10: Concept Ideation, Design, and Selection 219
11: Control Charts 226
12: Control Plan Summary 234
13: Core Process Map 242
14: Critical Path Analysis 246
15: Customer Interviewing 249
16: Customer Requirements Tree 258
17: Customer Surveys 261
18: D-Study 267
19: Demand Profiling 272
20: Demand Segmentation 277
This page intentionally left blank
There is absolutely no doubt that Lean and Six Sigma as process improvement methodologies deliver results, as proven consistently, countless times, over literally thousands of projects across hundreds of businesses. What is inconsistent, however, is the efficiency with which the Project Leaders (Belts) and Teams reach the delivered solution, and sometimes the effectiveness of the solution itself. Typically, this is considered to be the territory of the Consultant or Master Black Belt (MBB), whose role it is to guide the steps of the Black Belt or Green Belt through the available tools depending on the problem.

Therefore, the best guide requires

- Deep enough experience of how to tackle a specific problem to reach the solution with an efficient approach (as a Belt, I want to know exactly what path to follow in my project)
- Broad enough experience to do this across multiple different types of problems that might be addressed in a business (as a Program Leader, I need my MBB to know what path to follow for all projects and to guide my Belts accordingly)
- Technical skills to be able to guide the Belts in specific tool use (as a Belt, I want to know the practical steps involved in applying each tool)

Interestingly, this expands the common perception of the role of a Master Black Belt as a technical resource and measures that individual in addition by the efficiency and effectiveness of projects he or she oversees (i.e., the rate of generation of business value from those projects).
Surprisingly (and fortunately), when asked the route to solution for a particular type of problem, the experienced guides give remarkably consistent answers—it seems that if you have a specific problem type, you should follow a specific route to solution. The intent of this book, therefore, is to capture those experiences and for multiple given project types to lay down the appropriate routes to solution.

Audiences who will find this book valuable are

- Process Improvement Project Leaders (Green Belts and Black Belts), across all industries—Leading projects to improve processes using tools and methodologies that come under the Lean or Six Sigma banners
- Project Champions or Sponsors—Wondering what questions to ask of their Project Leaders and what they should see in terms of activity, as well as seeking to improve their project selection and scoping skills
- Technical Mentors (Master Black Belts)—Looking to improve their project and tools-mentoring skills, and to better select and scope projects
- Deployment Leaders—Seeking to better select and scope projects to improve the return on investment of the program
- Consultants—Brushing up on skills as both a Technical Mentor and Deployment Lead

The book is a little unusual in that it is designed to be a practical tool, used day to day by readers to guide them through how to solve as many different types of business problems as possible using the Lean Sigma methodologies and tools. It is not meant to be a technical reference to take the place of the statistical tomes that are readily available. By analogy, this is how to drive the car, not how the car works.

The book is also unusual in that it is not designed to be read linearly from cover to cover, mainly due to the following few simple issues:

- There are a multitude of different problem types.
- Each problem type has a different route to solution.
- The same tools are used in the solution of multiple problem types.
- The application of each tool can vary subtly depending on the problem.

The book’s structure is in a form that best helps the reader start with the problem in hand and quickly progress to the solution. To that end, following an introduction to the topic (Chapter 1), the book has three main parts:

- **Part I (Chapters 2–5):** Generalized roadmaps that describe the sequence of thought for the major types of Lean Sigma projects, from the commencement of the project
to completion. The text lists which tools to use, in which order, and why. To understand the application of a particular tool in more detail, the reader should refer to Part III.

- **Part II (Chapters 6–7)**: A wide range of focused roadmaps used within Lean Sigma projects that describe the route to detailed deconstruction and characterization of the specific business problems found. The text lists which tools to use, in which order, and why. To understand the application of a particular tool in more detail, the reader should refer to Part III.

- **Part III (Chapter 8)**: Individual tool roadmaps explaining in detail how to use each tool.

Throughout this book, I explain which tool to use and why it is used, so that Belts move from blind tool use to truly thinking about what they do and focusing on the end goal of improving the process. Processes and their respective problems are real-world phenomena, requiring practical actions and change. The best Belts I’ve found are the most practical thinkers, not theorists, because any tool, even based on the cleverest theory, is only as good as the practical business solution it provides.
This page intentionally left blank
I’d like to acknowledge the host of leaders, across dozens of clients, from whom I’ve had the good fortune to learn over the years and who helped shape the understanding shared in this book: in particular, Sam Lampugnani, Russell Schwartz, and Dr. John Nimmo at SunChemical; Dr. Al Landers, formerly at Huber Engineered Woods; Paul Fantelli, formerly at Lincoln Electric; Antonio Rodriguez at Celanese; John Murphy at CSX; Dave Petratis, formerly at Quanex; George Rommal, formerly at Air Products; Jim Bickel and Doug Sabotin at Columbus Regional Health; Bob Siegmann at Centerstone Behavioral Health; Kathy Rose at Floyd Memorial Health; Brian Daeger and Trish Hunter at Margaret Mary Health; Dr. Tim Phillippe at Christian Homes; Miguel de la Rosa at Genermasa; and Eric Thompson at Wyndham Worldwide.

I also want to recognize the multitude of great minds such as Dr. Stephen Zinkgraf and Dr. David Bacon for developing and progressing the Lean Sigma body of knowledge from its early beginnings to the level of sophistication found today. Included in this multitude are the experts in what were considered adjacent fields until fairly recently, such as Dr. Ed Barrows in the field of strategy development and execution and Dr. Russ Osmond in the field of human interaction.

Sincere thanks to Bernard Goodwin, Chris Guzikowski, Michelle Housley, Kesel Wilson, and the team at Prentice Hall, and especially to Barbara Wood for a truly incredible copyediting job.

As always, I just don’t have enough words to express my appreciation to my wife, Veronica, my sons, Christian and Sean, and my parents, who encourage and support me in everything I do.

The most important acknowledgment of all has to be to the host of Belts and Project Leaders across hundreds of companies in multiple industries, without whom all of this would be theory—to you we are all truly indebted.
This page intentionally left blank
About the Author

Ian Wedgwood, Ph.D., President and CEO of Haelan Group, has more than two decades of experience guiding organizations through change. He has led and facilitated dozens of Lean Sigma deployments in industries as diverse as healthcare, electronics, engineered materials, chemicals, banking, and hospitality, and has trained and mentored numerous executives, Champions, and Belts.

Prior to his consulting career, Ian worked for the global engineering group Invensys PLC facilitating major initiatives. One such initiative, building a new 180,000-square-foot manufacturing facility in Tijuana, Mexico, brought Ian to the United States, where he still lives with his wife, Veronica, and sons, Christian and Sean. Ian also led Invensys’s highly successful Lean Design for Six Sigma deployment. Some 380+ Design Belts within a single division yielded a 65 times return in less than two years.

Ian holds a Ph.D. and a First-Class Honors degree in applied mathematics from Scotland’s St. Andrew’s University. In addition to his consulting work, Ian serves on the faculty of the Jones Graduate School of Business at Rice University.

He also authored Lean Sigma: Rebuilding Capability in Healthcare, which is shaping how healthcare leaders think about Lean Sigma and its application to this industry in need.
This page intentionally left blank
The motivation for writing this book was a disappointing realization over many years of training and mentoring Project Leaders that there are plenty of technical texts explaining the painful underlying statistics in Six Sigma and Lean Sigma, but there are hardly any books explaining what to do from a practical standpoint. There are proliferations of books explaining at a high level the overall concept of a project, but next to none that take the Project Leader through a project, step by step. There are a multitude of books explaining just enough on project tools to suck the reader into buying consulting time from the author to apply them, but none that leave the reader in a position of practical self-sufficiency. Most unfortunately of all, there are a whole host of books written by theorists who have never led a project to solve a business problem using the methodologies they espouse, but very few ever written by those who have actually applied this stuff.

The aim here is to be different. The hope is that I have provided a book that can be used practically day to day by Process Improvement Leaders (from any industry), Champions, and Consultants to guide them through how to solve as many different types of business problems as possible. It is certainly not meant to be a technical text to take the place of the statistical tomes that are readily available—I’ll reference as many of those as I can along the way. By analogy, this is how to drive the car, not how the car works. In a field as passionate as Lean Sigma, I’m sure there will be disagreement at times with the order of tools used, so please remember that this is a guide—not the definitive solution.

I also hasten to add at this point that I don’t favor Lean over Six Sigma or vice versa. Let’s face it—we need them both, and by the end of this book, I probably will have offended both camps equally. The text is most certainly not for purists; it’s just about an approach that works.
INTENDED AUDIENCE

The primary audiences for this book are

- The host of Process Improvement Project Leaders (Green Belts and Black Belts), across all industries, who are leading projects to improve processes by shortening Lead Times, increasing capacity, improving yields and accuracy, reducing inventories, and so forth using tools and methodologies that come under the Lean or Six Sigma banners
- Project Champions or Sponsors who are wondering what questions to ask of their Project Leaders and what they should see in terms of activity, as well as those who are seeking to improve their project selection and scoping skills
- Technical Mentors (Master Black Belts) who are looking to improve their project- and tools-mentoring skills and to better select and scope projects
- Deployment Leaders who are seeking to better select and scope projects to improve return on investment (ROI) of a program
- Consultants who are brushing up on skills as both a Technical Mentor and a Deployment Lead

PREREQUISITES

This book specifically takes a project-based approach to process improvement. In order to ensure a usable text, it is necessary to make some basic assumptions before leading up to the project—in particular, the existence of the following:

- A clear business reason to do the project.¹
- A Project Leader (usually referred to as a Black Belt or Green Belt, depending on the level of training) to lead the project. It is usually best to have a Belt who is not from the functional groups impacted by the project if at all possible; that way, the Belt has no preconceived notions of a solution and can be relied upon to look at the process with a fresh set of eyes.
- A Team composed of people who live and breathe the process every day. Lean Sigma is certainly a team sport and should not be viewed as a “gladiator” undertaking. There should be no hero mentality in the solution of process problems.

• A committed Champion to remove potential roadblocks.²
• Time made available for the Team to complete the project, for both the Belt and the Team. If this is not the case, failure is just a few short weeks away.

These elements are absolutely necessary, but in this book I will not spend any more time on them because the focus here will be on the problem-solving roadmap itself and the tools therein.

Another significant assumption here is that the Project Leader will have gone through some basic Lean Sigma or Six Sigma training to at least the Green Belt level. It is possible to complete a project using just this text alone, but the intent is for this book to be a practical support guide as opposed to a technical teaching guide. I will endeavor to reference key technical texts throughout.

Basics

In order to better understand the detailed methods of Lean Sigma process improvement, it is important to first have a clear understanding of the basics involved. This begins with simple clarifications of what a process is, how it is defined, and then how it is improved.

A Process

The first thing to point out here is that Lean Sigma is a process improvement methodology, not a function or an activity improvement methodology. This is a key distinction in framing the project, and it is one that Champions frequently get wrong during project identification, scoping, and selection.

A process is a sequence of activities with a definite beginning and end, including defined deliverables. Also, a “something” travels through the sequence (typical examples include a product, an order, a patient, or an invoice). Resources are used to accomplish the activities along the way.

If you can’t see an obvious, single process in your project, you might have difficulty applying process improvement to it. The start and end points need to be completely agreed upon among the Belt, Champion, and Process Owner (if this is not the Champion). Clearly, if this is not the case, there will be problems later when the end results don’t match expectations.

ENTITIES

In the preceding definition of a process, there is a “something” that travels along it. For want of a better name, I’ll refer to this as an *entity*. Clearly, this entity can be fundamentally different from process to process, but there seem to be surprisingly few distinct types:

- **Human**: Employees, customers, patients
- **Inanimate**: Documents, parts, units, molecules
- **Abstract**: Email, telephone calls, orders, needs

The trick is to be able to identify the Primary Entity as it flows through the process with value being added to it (for example, a patient or perhaps the physical molecules of a product). There will, of course, be secondary entities moving around the process, but focus should be on identifying the primary.

Belts sometimes find this difficult when the entity changes form, splits, or replicates. For instance, in healthcare (in the ubiquitous medication delivery process), orders are typically entered into the electronic medical record (EMR) by the physician, and so the Primary Entity is the electronic order. The order is then converted to a work order by the system that can be accessed in the pharmacy. The work order is then fulfilled (meds are picked from an inventory), and effectively the Primary Entity changes to the medication itself, which will be sent back to the point of request.

Similarly, in an industrial setting, we might see the Primary Entity change from Customer need to sales order to production order to product.

DELIVERABLES

The last element of the definition of a process is the deliverables. This is often where novice Belts make the biggest mistakes. Simply put, the deliverables are the minimum set of physical entities and outcomes that a process has to yield in order to meet the downstream Customers’ needs.

The single most common mistake Belts make in process improvement is to improve a process based on what Customers say they *want* versus what they truly *need* (more about this in the section “Customer Interviewing” in Chapter 8, “Tools”).

The deliverables need to be thoroughly understood and agreed upon in the early stages of the project; otherwise later, during the analysis of exactly what in the process affects performance, the Belt will have the wrong focus.

If your project doesn’t have a start, an end, deliverables, or a Primary Entity, it probably isn’t a process and you will struggle to apply Lean Sigma to it. Table 1.1 gives examples of good and poor projects across varying industries.
Table 1.1 Examples of poor versus good projects

<table>
<thead>
<tr>
<th>Industry</th>
<th>Healthcare</th>
<th>Chemical Manufacturing</th>
<th>Discrete Manufacturing</th>
<th>Service/ Administrative</th>
<th>Transportation and Logistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of stay</td>
<td>Emergency</td>
<td>Length of stay</td>
<td>Accuracy</td>
<td>Accuracy</td>
<td>Accuracy</td>
</tr>
<tr>
<td></td>
<td>department,</td>
<td></td>
<td>Invoice, yield,</td>
<td>Invoice, yield</td>
<td>Invoice, bills of lading</td>
</tr>
<tr>
<td></td>
<td>operating room,</td>
<td></td>
<td>assay</td>
<td>yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>care units</td>
<td></td>
<td>Capacity</td>
<td>Capacity</td>
<td>Capacity</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td></td>
<td>Line, product,</td>
<td>Line, product</td>
<td>Line, product</td>
</tr>
<tr>
<td></td>
<td>Meds</td>
<td></td>
<td>vessel</td>
<td>vessel</td>
<td>product</td>
</tr>
<tr>
<td></td>
<td>Admin/ delivery,</td>
<td></td>
<td>Lead Time</td>
<td>Lead Time</td>
<td>Lead Time</td>
</tr>
<tr>
<td></td>
<td>charging, billing,</td>
<td></td>
<td>Delivery, production,</td>
<td>Delivery, production,</td>
<td>Delivery, delivery</td>
</tr>
<tr>
<td></td>
<td>patient handoffs</td>
<td></td>
<td>replenishment</td>
<td>replenishment</td>
<td>call center</td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td></td>
<td>Downtime</td>
<td>Downtime</td>
<td>Downtime</td>
</tr>
<tr>
<td></td>
<td>Emergency</td>
<td></td>
<td>Equipment, lines,</td>
<td>Equipment, lines,</td>
<td>Equipment, servers, lines</td>
</tr>
<tr>
<td></td>
<td>department,</td>
<td></td>
<td>vessel</td>
<td>lines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>operating room,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>radiology, lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiology, lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Downtime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment, rooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor Projects</td>
<td>Satisfaction³</td>
<td>Reduce healthcare costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfaction³</td>
<td>Patient, staff,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>physician</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Satisfaction is a useful metric, but it typically lags in the process and thus becomes difficult to deal with. Also, it is inherently affected by many noises in the process. Try to understand what in the process brings the satisfaction and perhaps target that in the project.
Table 1.1 Examples of poor versus good projects (continued)

<table>
<thead>
<tr>
<th>Industry</th>
<th>Healthcare</th>
<th>Chemical Manufacturing</th>
<th>Discrete Manufacturing</th>
<th>Service/ Administrative</th>
<th>Transportation and Logistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor Projects</td>
<td>Communication(^4)</td>
<td></td>
<td></td>
<td></td>
<td>Reduce office utility costs</td>
</tr>
<tr>
<td></td>
<td>Sales and marketing</td>
<td></td>
<td></td>
<td></td>
<td>Improve quality of master data in SAP/Oracle/etc.</td>
</tr>
<tr>
<td></td>
<td>Improve forecast accuracy(^5)</td>
<td></td>
<td></td>
<td></td>
<td>File all paper documents electronically</td>
</tr>
<tr>
<td></td>
<td>Cell phone consolidation</td>
<td></td>
<td></td>
<td></td>
<td>Electronic product catalog</td>
</tr>
<tr>
<td></td>
<td>Improve employee retention</td>
<td></td>
<td></td>
<td></td>
<td>Reduce DSO from 75 days to 30(^6)</td>
</tr>
<tr>
<td></td>
<td>Implement XYZ system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodologies

Six Sigma and Lean are both business improvement methodologies—more specifically, they are business process improvement methodologies. Their end goals are similar—better process performance—but they focus on different elements of a process. Unfortunately, both have been victims of bastardization (primarily out of ignorance of their merits) and often have been positioned as competitors when, in fact, they are wholly complementary.

For the purpose of this practical approach to process improvement:

- **Six Sigma** is a systematic methodology to home in on the key factors that drive the performance of a process, set them at the best levels, and hold them there for all time.
- **Lean** is a systematic methodology to reduce the complexity and streamline a process by identifying and eliminating sources of waste in the process—waste that typically causes a lack of flow.

In simple terms, Lean looks at what we *shouldn’t* be doing and aims to remove it; Six Sigma looks at what we *should* be doing and aims to get it right the first time and every time, so the process flows better and robustly delivers what it should, every time for all time.

4. Although communication is a process, it is not a fundamental Value Stream in an organization. Instead, look to mending the primary Value Streams first, and then it might even be possible to eliminate the need for person-to-person communication entirely.

5. It is best to tackle the responsiveness of the process before looking into forecasting (i.e., the more responsive my process, the less I have to worry about forecasting).

6. Although this is a legitimate project, it is large and difficult for a Green or Black Belt to handle. It usually requires running as a Master Black Belt program of projects.
LEAN SIGMA ROADMAPS

Lean Sigma is all about linkage of tools, not using tools individually. In fact, none of the tools are new—the strength of the approach is in the sequence of tools. The ability to understand the theory of tools is important, but this book is about how to apply and sequence the tools.

There are many versions of the Six Sigma roadmap, but not so many that fully incorporate Lean in a truly integrated Lean Sigma form. Figure 1.1 shows a robust version of a fully integrated approach developed by the author and the team at Haelan Group over many years. The roadmap follows the basic tried and tested DMAIC (Define, Measure, Analyze, Improve, and Control) approach from Six Sigma, but with Lean flow tools as well as Six Sigma statistical tools threaded seamlessly together throughout. As proven across a diverse range of organizations, the roadmap is equally at home in service industries, manufacturing industries of all types, and healthcare, including sharp-end hospital processes, even though at first glance some tools may lean toward only one of these. For example, despite being considered most at home in manufacturing, the best Pull Systems I’ve seen were for controlling replenishment in office supplies. Similarly, Workstation Design applies equally to a triage nurse as it does to an assembly worker.

The roadmap is a long way removed from its Six Sigma predecessors and is structured into three layers:

- Major phases
- Subphases or steps (the goals or the “what”)
- Tools (the “how” to achieve the “what”)

With this layered structure in place, the roadmap is goal-driven, depicts the critical-thinking sequence involved, and is completely generic as it relates to process performance improvement. The tools vary project by project, but these goals are consistent for all process improvement projects. The Lean and Six Sigma tools (and any others interchangeably for that matter) can be selected to meet the goals of any step.

This is done purposefully to ensure that the problem-solving approach isn’t just a list of tools in some order. It has meaning inherent to its structure. This is a crucial point to practitioners. Throughout this book, I’ll explain not only which tool to use, but also why it is used, so that Belts move from blind tool use to truly thinking about what they are doing and focusing on the end goal of improving the process.

The best Belts I’ve found were the most practical thinkers, not the theorists. This is a practical roadmap, and the user should try to focus on the underlying principle of “I’ll

7. Haelan Group, LLC is a professional services firm specializing in Lean and Lean Sigma deployments. For more information see www.haelangroup.com.
Figure 1.1 Integrated Lean Sigma roadmap
Source: © Haelan Group, LLC
apply the minimum practical sequence of tools to understand enough about my process to robustly make dramatic improvement for once and for all in my process.”

How to Use This Book

The intent of this book is that it be used as a tool to help Project Leaders guide a project, and thus it needs to be structured in a form that best helps the reader start with the problem in hand and quickly progress to the solution. I’m sure it is possible to read it from beginning to end; however, it is not designed with that purpose in mind. Its layout probably will be perceived as a little unorthodox, mainly due to a few simple issues:

- There are a multitude of different Problem Categories.
- Each Problem Category has a different route to a solution.
- The same tools are used in the solution of multiple Problem Categories.
- The application of each tool can vary subtly, depending on the problem.

This book is structured into three main parts (shown graphically in Figure 1.2):

Figure 1.2 Structure of this book
Part I: Project Roadmaps: There are many different incarnations of roadmaps, depending on the business need, and it is necessary to determine up front which is the most appropriate.

Process Improvement Project: In this case, there is an identified project. The current process is deficient in some way and therefore a change is required (this requires more than just the process to be standardized). However, that change isn’t obvious or unanimously agreed upon by all the key stakeholders, and therefore some data and analytics will likely be necessary. This type of project follows the ubiquitous DMAIC roadmap, as shown in Figure 1.1. For this type of project, Chapter 2 describes the route through the DMAIC roadmap. Part II (Chapters 6 and 7) supports this journey by describing the route to a solution for a wide range of problems and in essence the journey through the Measure and Analyze phases. The text lists some 25 or so Problem Categories with titles such as “The capacity of the process is too low.” Generally speaking, this is at an overall-process level (considering the process as a whole), in which case the categories are listed in Chapter 6. However, there are rare projects in which a significant amount of work has already been done on the process. In this case, the Problem Category might be at a within-process level where a single process step has been identified as being the problem area, in which case the categories are listed in Chapter 7.

The text lists which tools to use \((in \ italics\ like\ this)\), in which order, and why and in essence forms the detail behind the roadmap shown in Figure 1.1. The Belt/Team should follow the roadmap that best describes the process problem that they are encountering, based on key decision points listed in the text. For more details on a tool listed, the Belt/Team should refer to the tool detail in Part III (Chapter 8), where the tools are listed in alphabetical order.

Standardization Project: Here too there is an identified project. The current process, however, is not necessarily deficient; the issue is more that the operators aren’t consistent in their approach (this is a very common situation in service industries and healthcare). Since the goal is more one of standardizing the process versus changing it, no heavy data/analytics are necessary to understand the change. This project can follow the DMASC (Define, Measure, Analyze, Standardize, and Control) roadmap.

For this type of project, Chapter 3 describes the route through the entire project to completion. The text lists which tools to use \((in\ italics\ like\ this)\), in which order, and why. For more details on a tool listed, the Belt/Team should refer to the tool detail in Part III (Chapter 8), where the tools are listed in alphabetical order.
• **Accelerated Improvement Project (Kaizen):** In this case again, there is an identified project. The current process is deficient in some way and therefore a change is required. The change itself, however, is limited to a smaller subset of problems involving just streamlining or a reduction of complexity, rather than needing heavy data and analytics. This type of project can follow the Kaizen roadmap and if desired can be conducted in an event-based format, as opposed to a drawn-out project.

For this type of project, Chapter 4 describes the route through to project completion. In addition, Part II (Chapters 6 and 7) describing the route to a solution for a wide range of problems can provide guidance for which specific tools to use. The text lists which tools to use (*in italics like this*), in which order, and why. For more details on a tool listed, the Belt/Team should refer to the tool detail in Part III (Chapter 8), where the tools are listed in alphabetical order.

• **Discovery Project:** In some instances there is no obvious project related to a process or area of a business. This is often useful to businesses that are new to Lean Sigma and are not sure how to identify good projects to work on.

For this type of project, Chapter 5 shows a Discovery roadmap used to identify potential projects in a process where there are no obvious targets. The text lists which tools to use (*in italics like this*), in which order, and why. For more details on a tool listed, the Belt/Team should refer to the tool detail in Part III (Chapter 8), where the tools are listed in alphabetical order. After the project or multiple projects have been identified in the process using the Discovery roadmap, one will be selected (based on the project type: DMAIC, DMASC, or Kaizen), and the Team will follow the project roadmaps described in Part I.

• **Part II: Routes to a Solution:** Chapters 6 and 7 provide project roadmaps describing the route to a solution for a wide range of problems, particularly relevant in the Measure and Analyze phases in a DMAIC project or in support of a Kaizen Event, both described in Part I. The text lists which tools to use (*in italics like this*), in which order, and why. For more details on a tool listed, the Belt/Team should refer to the tool detail in Part III (Chapter 8), where the tools are listed in alphabetical order.

• **Part III (Chapter 8).** Individual roadmaps explain in detail how to use each tool.

Problem Categories

To use this book effectively, it will be necessary to identify the Problem Category based on the process issue(s) at hand. This might seem awkward to novice Belts, but it is an important skill to develop. Belts need to be able to step back from the process and see
the bigger picture before diving into the detail. Quite often, the inexperienced Champion and Process Owner can be a hindrance at this point by pushing the Belt down a road to a solution before truly understanding the underlying problem. The purpose of the Define tools, for example, is to provide an understanding of what, from the Customer’s perspective, the problem truly is and frame it in a measurable form. Only after the Define tools have been applied can the Belt confidently say which Problem Category he or she is dealing with.

AND FINALLY . . .

Processes and their respective problems are real-world phenomena, requiring practical actions and change. Any tool, even based on the cleverest theory, is only as good as the practical business solution it provides. To reiterate, this is about practical achievement versus theory; thus, at any point in the project, it is important to be able to answer

- What is the question?
- What tool could help answer the question?
- How do I get the necessary data for the tool?
- Based on the data, what is the tool telling me?
- What are the practical implications (the big “So what?!?” as is it often called)?
- What is the next question that arises based on where we’ve been?

The best Belts maintain this holistic viewpoint; the best Champions and Mentors keep pushing the Belts for the holistic view.

It is probably worthwhile to point out that no project is easy, but I hope this guide will bring a little clarity and confidence to those who have to navigate through it.

The only thing left to say at this point is “Good luck!” Even the best Belt needs some of that, too.
Index

Numbers
1-Sample t-Test
 interpreting output, 520–521
 other options, 521
 overview of, 516–517
 Paired t-Test vs., 528
 roadmap, 517–519
2-Factor Full Factorials, Characterizing DOE, 304–305, 312
2-Sample t-Test
 in process improvement (DMAIC), 37
 roadmap, 522–528
 in standardization project (DMASC), 55
2^k Factorials, Characterizing DOE, 304–305
5-Star rating, competencies, 69
5 Whys
 creating Customer Requirements Tree, 19–20, 79
 error-proofing in Poka Yoke, 412
 Fishbone Diagram using, 331–332
 other options, 174–175
 overview, 173–174
5S
 in accelerated improvement (Kaizen), 68, 73
 logistics, 176–177
 overview, 176
 in process improvement (DMAIC), 29, 36
 roadmap for, 178–184
setup/changeover takes too long, 128–129
in standardization project (DMASC), 54
A
Accelerated improvement (Kaizen)
 event, 62–71
 how to use this book, 11
 overview, 57–58
 post-event, 71–74
 pre-event, 59–62
 roadmap, 58
 streamlining with Spaghetti Map, 475–478
Accounts Payable problems, 155–157
Accounts Receivable too high, 158–161
Accuracy
 Accounts Receivable issues, 159–161
 Customer Requirements Tree, 258, 260
 data reliability and, 354, 357, 366
 doubling sample size and, 344
 measuring performance, 23, 78
 on-time delivery issues, 84–85
 performance characteristic is not good enough, 124
 RTY defect issues, 89–93
 sample size and, 344
Active listening, Customer Interviewing, 255
Activity, Value Stream Map, 533
Affinity diagram
after Customer Interview, 257
converting to Customer Requirements Tree, 259–260
in Discovery process, 79
interpreting output, 187
logistics, 185
overview, 184–185
in process improvement (DMAIC), 19
roadmap for, 185–187
in standardization project (DMASC), 44

Baseline measures
Accounts Receivable too high, 159
backlog of orders too high, 155
customer demand too variable, 109
high variation in forecasting, 149
intermittent process failure, 100
long Process Lead Time, 103
not enough sales, 152–153
payments to suppliers not optimized, 157
process fails to meet downstream demand, 105
in process improvement (DMAIC), 20–21, 24–25
process loss too high, 145
in Rapid Changeover (SMED), 456
resource usage too high, 138
setup/changeover takes too long, 127
single process step not meeting Takt Time, 164
for slow pace in single process step, 166–167
too many entity types, 113
too much unplanned maintenance, 130
too much variation in Cycle Time of single step, 169

Belbin
accelerated improvement (Kaizen), 64
process improvement (DMAIC), 17
standardization project (DMASC), 43

Benefits Expected section, Project Charter header, 438
Bills of Materials (BOMs), Pull Systems, 449, 452

Black Belts. See Project Leaders (Black Belts/Green Belts)

Blocking noise variables, DOE, 287, 303, 318
Box Plots, 196–198, 276–277

Brainstorming
Concept Ideation, Design, and Selection, 220–221
Core Process Map, 245
Discovery process, 78
Fishbone Diagram for, 330–333
in Murphy’s Analysis, 393
in process improvement (DMAIC), 18

Breakdown Maintenance, 516
Broad Inference studies, DOEs, 289
Business drivers (pillars), Process Scorecard, 425
Business value
as prerequisite, 2
in process improvement (DMAIC), 15
C
C&E. See Cause and Effect (C&E) Matrix
Calibration, Gage R&R Study vs., 367
Cancellations, and high schedule variation, 119
Capability
Attribute, 199–201
capacity of process too low, 88
for high Accounts Receivable, 159
high schedule variation, 116
high variation in forecasting, 149
in Measure phase, 45
on-time delivery issues, 84
process can't make product at all, 134–136
process loss too high, 145–147
resolving broken measurement system, 122
resolving high schedule variation, 118
resource usage too high, 138
setup/changeover takes too long, 127
for single process step not meeting Takt Time,
 164–165
for slow pace in single process step, 166–167
too much unplanned maintenance, 130–131
too much variation in Cycle Time of single step,
 169
verifying Control Plan effectiveness, 240
when payments made to suppliers not optimized, 157
Capability—Continuous
for bounds, 208
interpreting output, 204–206
for non-normal data, 206–207
overview, 201–203
roadmap, 203–204
for single-sided specifications, 208
Capacity
backlog of orders too high, 154–155
global process problems, 87–89
high variation in forecasting, 150
increasing/decreasing, 86
intermittent failure and enough, 99–102
not enough sales due to, 153
on-time delivery issues, 85–87
planned maintenance takes too long, 125–126
resolving high schedule variation, 117–118
Cause and Effect (C&E) Matrix
analyzing KPOVs and data, 342
broken measurement system, 123
as Fishbone Diagram, 330–333
high schedule variation, 120
overview and logistics, 209
process can't make product at all, 135–136
in Process FMEA, 419
product quality issues, 91–92
roadmap, 209–211
too many entity types, 114
too much unplanned maintenance, 132–133
Two-Phase, 211–213
Cellular Design, Kaizen, 68
Center points
 Characterizing DOE, 318
 Screening DOE, 303
Central Composite Design, Optimizing DOE, 323–325, 328
Central Limit Theorem, Control Charts, 233
Champions
 in accelerated improvement (Kaizen), 59, 64
 as audience for this book, 2
 as prerequisite, 3
 in process improvement (DMAIC), 16–17, 21
 in Process Management, 408–410
 in standardization project (DMASC), 42
Change management
 in accelerated improvement (Kaizen), 71
 Murphy’s Analysis for, 391–394
 in process improvement (DMAIC), 32–33
 in Process Management, 407–410
 in standardization project (DMASC), 51
Changeover Time
decreasing in high resource usage, 139
defined, 454
measuring %Uptime, 95
Rapid Changeover and, 454–461
reducing for high schedule variation, 117
too long, 126–129
in Value Stream Maps, 537
Characterizing Design. See DOE—Characterizing
Check sheets, KPOVs and data collection, 344–345
Checklists, in, Attribute MSA, 365
Chi-Square test
 interpreting output, 217–219
 in Multi-Vari Studies, 391
Chi-Square test (continued)
 overview, 213–216
 roadmap, 216–217
Coefﬁcient of Variation (COV) of demand,
 108–109, 280
Collection problems, Accounts Receivable, 160
Color-coding documents, in Poka Yoke, 414
Combo boxes (pull-down menus), Poka Yoke, 413
Common Cause variation, Control Charts, 232, 484
Communication, in Rapid Changeover, 456
Communication Plan
 accelerated improvement (Kaizen), 70
 process improvement (DMAIC), 32
 standardization project (DMASC), 50–51
Competencies
 accelerated improvement (Kaizen), 69, 74
 process improvement (DMAIC), 30, 36
 standardization project (DMASC), 50, 54
Components of Variance Plot, Gage R&R Study, 374
Concentration Diagram sheet, KPOVs and data
collection, 345–346
Concept
 accelerated improvement (Kaizen), 65–67
 process improvement (DMAIC), 27–28
 standardization project (DMASC), 48–49
Concept Ideation, Design, and Selection roadmap
 logistics, 220
 overview, 219–220
 version 1, 220–222
 version 2, 222–226
Conﬁrmation runs, DOE issues, 294
Consultants, as audience for this book, 2
Continuous data
 Capability. See Capability—Continuous
 KPOVs and, 339
 Measurement Systems Analysis of. See
 MSA—Continuous
Continuous Improvement, Pull Systems, 453
Contour Plots, Optimizing DOE, 319–321, 325–327
Control Charts
 1-Sample t-Test, 518
 2-Sample t-Test, 524
 in accelerated improvement (Kaizen), 58, 72
 in ANOVA analysis, 190
 interpreting output, 231–232
 other options, 232–234
 overview, 226–230
 in process improvement (DMAIC), 33
 roadmap for, 230–231
 in standardization projects (DMASC), 52
 in Statistical Process Control, 484–488
 in Test of Equal Variance, 495
Control Limits
 calculating Control Chart, 227
 Control Chart mistakes for SPC, 487
 Specification Limits vs., 232
Control phase
 Poka Yoke in, 410–414
 Process Boards in, 414–418
 process improvement (DMAIC), 33–37
 Process Management in, 407–410
 in standardization project (DMASC), 52–55
Control Plan
 in accelerated improvement (Kaizen), 72–74
 Process Boards in, 416–417
 process improvement (DMAIC), 34–37
 Process Management in, 408–410
 Process Scorecard in, 427
 in standardization project (DMASC), 52–54
 Statistical Process Control in, 485
Control Plan Summary
 in accelerated improvement (Kaizen), 74
 deﬁned, 34
 logistics, 236
 other options, 240–241
 overview, 234–236
 Process Boards, 416
 in process improvement (DMAIC), 36
 in Process Management, 409
 roadmap, 236–240
 in standardization project (DMASC), 51, 55
COPIs, constructing SIPOC, 473
Core Process Map (Level-0 Map)
 in Discovery process, 78
 logistics, 242–244
 other options, 245–246
 overview, 242
 in Process Scorecard, 425
 roadmap, 245
Corrective Maintenance, 515–516
COV (Coefficient of Variation) of demand, 108–109, 280
Critical Path Analysis
 long Process Lead Time, 104
 roadmap for, 246–248
 setup/changeover takes too long, 128
 slow pace in single process step, 167
Cross-Functional Map, Swimlane Map, 488–493
Cross-Resource Map, Swimlane Map, 488–493
Crossed MSA Study, 376–377
Curvature
 Central Composite Design for, 324–325
 Characterizing DOE, 318
 Screening DOE, 303
Customer demand, Load Chart for, 349–353
Customer Interviewing
 conducting, 254–257
 creating Customer Survey, 261
 in Discovery process, 79
 interpreting output, 258
 overview/logistics, 249
 planning and preparation, 250–254
 post-processing, 257
 in process improvement (DMAIC), 18–19
 using Customer Requirements Tree output, 258–261
 using Murphy’s Analysis for, 394
 VOC in Define phase and, 18–19
Customer/market value, DMAIC, 15
Customer Matrix, Customer Interviewing, 252–253
Customer Requirements. See Determine Customer Requirements
Customer Requirements Tree
 in Concept Ideation, Design, and Selection, 220–221
 Customer Interviews/Surveys in, 258
 in Discovery, 79
 in process improvement (DMAIC), 19–21
 Process Variables Map for, 429–430
 roadmap for, 258–261
 in standardization projects (DMASC), 44
Customer satisfaction, 341
Customer Surveys
 creating Sampling Plan, 264–267
 data collection method, 264
in Define phase, 19
 defining objective, 261–262
 designing, 262–264
 in Discovery, 79
 interpreting output, 267
KPOVs and data collection, 345
 overview of/logistics, 261
 using Customer Requirements Tree output, 258–261
Customers, identifying for SIPOC, 471–475
Cycle Time. See Process Cycle Time

D
D-Study
 logistics, 269
 overview, 267–268
 resolving broken measurement system, 123
 roadmap, 269–272
Data
 confirming integrity of, 354–355
 KPOVs and. See KPOVs (key process output variables) and data
 Process Scorecard, 425–428
 Replenishment Time, 508
Data Collection Plan
 for Customer Surveys, 264
 in Discovery process, 78
 following in Pareto Charts, 405
 KPOVs and, 344–348
 in Multi-Vari Studies, 387–388
Data Integrity Audits, 354–355
Data sheets, KPOVs and, 345, 347
Data source, Process Scorecard, 426
Day Sales Outstanding (DSO), Accounts Receivable, 158–161
Days on Hand (DOH), 140–142, 149–150
Debt, Accounts Receivable, 160
Decision criteria aids, Poka Yoke, 414
Decisions, Value Stream Maps, 534, 538
Defective entities
 identifying in Attribute MSA, 359
 narrowing scope with Pareto Chart, 404–406
 performance characteristic not good enough, 124–125
 preventing through Poka Yoke, 410–414
 quality and rework issues, 89–93
Defects per Million Opportunities (DPMO), 45, 200–201
Defects per Unit (DPU), 45, 199–201
Define phase, DMAIC
 5 Whys, 20
 Define the Customer Requirements, 18–20
 Define the Process, 17–18
 Determine Project Goals, 20–22
 Initiate the Project, 16–17
 overview, 15
 Problem Categories, 22–24
 tools for, 16
Define phase, DMASC, 42–44
Define process, SIPOC
 accelerated improvement (Kaizen), 64
 process improvement (DMAIC), 17–18
 standardization projects (DMASC), 42–43
Deliverables
 in process improvement, 4–6
 on-time delivery issues, 83–87
Delivery Time
 Global Process Cycle Time, 499
 high variation in forecasting and, 149
 Individual Step Cycle Time, 503
 on-time delivery issues, 83–87
 Process Lead Time, 503
 Replenishment Time, 509
 resource usage too high and, 139
 Takt Time, 513
Demand Profiling
 customer demand too variable, 110–111
 interpreting output, 274–275
 inventory too high, 143
 logistics, 273
 on-time delivery issues, 85–86
 other options, 275–277
 overview, 272–273
 roadmap, 273–274
Demand Segmentation, 113–114
 calculating Takt Time, 512
 customer demand is too variable, 109–110
 high variation in forecasting, 149–150
 interpreting output, 280–283
 inventory is too high, 141–142
 logistics, 277–278
 on-time delivery issues, 85
 overview, 277–278
 Pull System implementation, 449, 452
 roadmap, 278–280
Departments Affected section, Project Charter, 439–440
Deployment Leaders, as audience for this book, 2
Design FMEA, 418
Design for Six Sigma (DFSS), DMAIC, 18
Design Matrix
 Characterizing DOE, 306–307, 313
 Screening DOE, 296, 298
Destructive testing, 123
Detailed Value Stream Map, 530–537
Detailed Work Plan, DMAIC, 22
Detection ratings, Process FMEA, 421
Determine Customer Requirements
 in accelerated improvement (Kaizen), 65
 demand is too variable, 108–112
 in Lean Sigma, 8
 long Process Lead Time, 104
 process fails to meet downstream demand, 107
 in process improvement (DMAIC), 16, 18–20
 Review Customer Requirements in DMASC, 40
Determine Project Goals, Define phase, 20–22
Develop & Evaluate Measurement Systems
 in Lean Sigma, 8
 in process improvement (DMAIC), 25
 removed in standardization projects, 40
Develop the Concept
 in Lean Sigma, 8
 in process improvement (DMAIC), 26–28
 in standardization project (DMASC), 40
DFSS (Design for Six Sigma), DMAIC, 18
DISC
 accelerated improvement (Kaizen), 64
 process improvement (DMAIC), 17
 standardization project (DMASC), 43
Discovery process
 Core Process Map used in, 242–246
 overview, 75–77
 Process Scorecard in, 425
 tool approach to, 77–80
Discovery Project, 11
Discrimination, Gage R&R Study, 370, 372, 375
DMAIC (Define, Measure, Analyze, Improve, and Control) roadmap
Control phase, 33–37
Define phase, 15–24
Improve phase, 26–33
integrating change principles into, 407
Measure and Analyze phase, 24–25
overview, 15
understanding, 7–9
DMASC (Define, Measure, Analyze, Standardize, Control) roadmap. See Standardization project (DMASC)
Documentation
accelerated improvement (Kaizen), 69, 74
process improvement (DMAIC), 30, 36
standardization project (DMASC), 49, 54
DOE—Characterizing
introduction to, 284
Optimizing DOE using, 319, 328
other options, 318
overview, 303–311
quality of product issues, 93
roadmap, 311–317
DOE—Optimizing
introduction to, 284
overview, 318–327
Path of Steepest Ascent for two/more factors and, 328–330
roadmap, 327–328
DOE—Screening
introduction to, 283
Optimizing DOE using, 319, 327
other options, 303
overview, 294–297
roadmap, 297–303
DOE (Design of Experiments)
introduction to, 284
logistics, 289
other considerations, 293–294
quality of product and, 92–93
roadmap, 289–292
Downtime, too much unplanned maintenance, 131
DPMO (Defects per Million Opportunities), 45, 200–201
DPU (Defects per Unit), 45, 199–201
Drivers, Customer Requirements Tree, 260
DSO (Day Sales Outstanding), Accounts Receivable, 158–161
Duration of downtime, unplanned maintenance, 131
E
Economic Order Quantities, inventory is too high, 142–143
Education
accelerated improvement (Kaizen), 69–70
process improvement (DMAIC), 30
standardization project (DMASC), 50–51
Effectiveness, KPOVs and data, 340–341, 342
Efficiency, KPOVs and data, 341, 342
Effort, creating Murphy’s Analysis, 393
Entities
customer demand is too variable, 110–112
Cycle Time varying by types of, 498
Demand Segmentation and, 278
identifying in Load Chart, 350
in process improvement methodology, 4, 75
too many types of, 112–115
Epsilon value
Characterizing DOE, 311–312, 316
defined, 311
Screening DOE, 301–302
Equipment, Rapid Changeover, 456
Error-proofing
Attribute MSA, 365
Poka Yoke, 410–414
Event, Kaizen, 58, 62–71
Expected Benefits section, Project Charter header, 438
Experimentation, concept
accelerated improvement (Kaizen), 66
process improvement (DMAIC), 27
standardization projects, 48
External implementation, Pull Systems, 450–453
External operations, Rapid Changeover, 458
F
F-Test, Regression analysis, 465
Factor levels, DOE, 293
Factors (Xs), See DOE (Design of Experiments)
Failure Mode and Effects Analysis (FMEA)
error-proofing in Poka Yoke, 412
in Improve phase, 28
Failure Mode and Effects Analysis (continued)
Process FMEA, 418–423
quality of product issues, 91–92
resolving high schedule variation, 120
too much unplanned maintenance, 132–133
types of, 418
using Murphy’s Analysis prior to, 394
Failure Modes, Process FMEA, 419–422
Failure, process
identifying point of, 135
resolving high schedule variation, 118
resolving intermittent, 99–102
too much unplanned maintenance, 129–133
Faults, Attribute MSA, 364
Final Report
accelerated improvement (Kaizen), 74
process improvement (DMAIC), 37
Final Review
accelerated improvement (Kaizen), 74
standardization project (DMASC), 55
Finished Goods Out, process loss too high, 147
First Time Right, quality of product, 89
Fishbone Diagram
roadmap for, 330–333
too much unplanned maintenance, 132
when process can’t make product at all, 135
Fitted Line Plot
in Regression analysis, 462–464, 469
Residuals vs., 467–468
Flag, Value Stream Map, 533
Forecasting
high variation in, 147–151
using Demand Profile for rudimentary, 274
Forming
in accelerated improvement (Kaizen), 64
in process improvement (DMAIC), 17
in standardization project (DMASC), 43
Fractional Factorials, Screening Designs in DOE,
295–303
Frequency Plot Check sheet, KPOVs, 345–346
Full Factorials
Characterizing DOE. See DOE—Characterizing
Optimizing DOE, 322–324, 328
Screening in DOE, 295–296
Future state, Day 2 of Kaizen event, 63

G
Gage R&R (Gage Repeatability and Reproducibility)
Accounts Receivable too high, 159
backlog of orders too high and, 154
on Continuous measurement systems. See
MSA—Continuous
interpreting output of, 371–375
long process lead time, 103
on-time delivery issues, 84
process fails to meet downstream demand and,
105
process loss too high and, 146
single process step not meeting Takt Time, 164
too many entity types and, 113
understanding, 366–370
Gallup Patient Satisfaction score, 341
Gantt Chart, in Critical Path Analysis, 248
Gap Analysis
accelerated improvement (Kaizen), 69
Discovery process, 80
Skills Matrix as, 32
standardization project (DMASC), 50
Global Process Cycle Time. See Process Cycle Time
Global process problems
accelerated improvement (Kaizen), 70, 73
Accounts Receivable too high, 158–161
backlog of orders too high, 154–155
capacity too low, 87–89
demand from customer too variable, 108–112
ever enough capacity, but fails intermittently, 99–102
enough capacity, but lead time too long, 102–105
high forecast variation, 147–151
high schedule variation, 115–121
inventory too high, 139–144
measurement system broken, 121–124
not enough sales, 152–154
on-time delivery issues, 83–87
pace too slow, 96–99
performance characteristic not good enough,
124–125
planned maintenance takes too long, 125–126
process can’t make product at all, 134–136
resource usage too high (headcount reduction),
136–139
RTY, defects, accuracy, quality, scrap, and rework issues, 89–93
setup/changeover takes too long, 126–129
Takt time issues, 105–108
too many entity types, 112–115
too much unplanned maintenance, 129–133
%Uptime too low, 93–96
waste/process loss too high, 144–147
when payments made to suppliers not optimized, 155–157
Goal Tree, Project Charter, 435
Goals
in Control Plan Summary, 236
in Define phase, 20–22
process improvement (DMAIC), 16
in Process Scorecard, 426
Green Belts. See Project Leaders (Black Belts/Green Belts)

Handoff Maps, 106–107
intermittent process failure, 101–102
long Process Lead Time, 103
roadmap for, 334–337
Hawthorne Effect, measuring %Uptime, 95
Hazard Escalation Matrix, DMAIC, 22
Headcount reduction, resource usage, 136–139
High-level Value Stream Map, 530–532
High schedule variation, 115–121
Histograms, Regression analysis, 466–467
Hypotheses
1-Sample t-Test, 519
Multi-Vari Studies, 389–390
Normality Test, 396
Test of Equal Variance, 495

I-MR. See Individuals and Moving Range Chart (I-MR)
Ideal Cycle Time, calculating %Pace, 400–401
Impact/Effort Graph, in on-time delivery issues, 86–87
Impact, Murphy’s Analysis output, 393
Implementation Plan
accelerated improvement (Kaizen), 70
process improvement (DMAIC), 31
standardization project (DMASC), 51
Improve phase, DMAIC
change management methods in, 33
Communication plan in, 32
concept development, 27
concept signoff, 28
concept simulation/experimentation, 27–28
DMASC Standardization phase replacing, 40, 47–52
Implementation plan, 31–32
manufacturing vs. service processes, 27
piloting new process, 31–33
Process Triggers, 29
roadmap, 26
rollout, 33
Standard Work plan, 28–31
Improvement Plan, Rapid Changeover, 460–461
In-line testing, for measurement systems, 123
In-Process Kanban, 444–445
Individual Step Cycle Time
calculating for Load Chart, 350–352
does not meet Takt, 163–166
driving Process Cycle Time, 498
roadmap for, 500–503
slow pace in single process step, 166–168
too much variation, 168–170
Individuals and Moving Range Chart (I-MR)
in 1-Sample t-Test, 518
in 2-Sample t-Test, 524
as Control Chart, 227–230
in Test of Equal Variance, 495
Initiate the Project, Define phase, 16–17
Input/Output Map. See Process Variables Map (Input/Output Map)
Input variables (Xs)
identifying for SIPOC, 471–475
Process Variables Map identifying all, 429–432
resolving high schedule variation, 119–120
rework issues, 91–93
Statistical Process Control roadmap, 485–486
Inspection time, measuring %Uptime, 95
Integrity, confirming data, 354–355
Internal implementation, Pull Systems, 447–450
Internal operations, Rapid Changeover, 458
Interview Discussion Guide, Customer Interviewing, 250, 255
Interviews. See Customer Interviewing
Inventory buffers
customer demand is too variable, 112
long Process Lead Time, 104
planned maintenance takes too long, 125–126
process fails to meet downstream demand, 107
Inventory is too high
high variation in forecasting, 150
overview of, 139–144

J
Join, Value Stream Map, 535

K
k Factors, 304
Kaizen. See Accelerated improvement (Kaizen)
Kanbans (triggers)
in accelerated improvement (Kaizen), 67, 73
customer demand is too variable and, 111
in process improvement (DMAIC), 29, 35–36
in Pull System implementation, 444–453
in standardization project (DMASC), 49, 54
Kappa values, Attribute MSA, 362–363
Kolmogorov-Smirnov Normality Test, 395
KPIVs (key process input variables)
for Control Plan Summary, 235, 240–241
identifying with Fishbone Diagram, 330–333
for Process Boards, 417
for Process Scorecards, 425
for Process Variables Maps, 430
in Statistical Process Control, 485
KPOVs (key process output variables)
accelerated improvement (Kaizen), 65
for Control Plan Summary, 235, 240–241
for Process Boards, 417
in process improvement (DMAIC), 20
for Process Variables Maps, 429
in standardization project (DMASC), 44
KPOVs (key process output variables) and data
attribute measures, 339
conducting Attribute MSA, 359
continuous measures in, 339
in Data Integrity Audits, 355–356
effectiveness in, 340–341
efficiency in, 341
in Multi-Vari Studies, 386
in Nested ANOVA analysis, 378
operational definitions for, 341–342
overview, 337
predictors for, 340
results, 340
roadmap for, 342–348

L
Layout of process
accelerated improvement (Kaizen), 68
process improvement (DMAIC), 29, 30
Lean Sigma
DMAIC, 18–20
methodology, 6
process improvement methodology, 75
roadmaps, 7–9
Level-0 Map. See Core Process Map (Level-0 Map)
Load Chart
in accelerated improvement (Kaizen), 68
high resource usage, 138
long Process Lead Time, 104
process fails to meet downstream demand, 107
in process improvement (DMAIC), 30
roadmap for, 349–353
single process step not meeting Takt Time,
163–166
slow pace, 98–99
Loops, Value Stream Maps, 535, 538
Lost sale issues, 153
Lower Specification Limit (LSL), Capability,
202–206, 208
LSL (Lower Specification Limit), Capability,
202–206, 208

M
Maintenance
OEE for. See %Uptime, OEE
planned, 125–126
resolving high schedule variation, 119
Total Productive Maintenance, 514–516
unplanned, 129–133
Maintenance Prevention, 516
Major phases, Lean Sigma, 7–8
Management styles, DOE issues, 293
Mann-Whitney Test, 2-Sample t-Test, 525
Market FMEA, 418
Masks
improving reliability of Attribute MSA, 364
using in Poka Yoke, 413
Master Black Belts, as audience for this book, 2
Material Kanbans, 445–446
Mean (Normalized) Time Between Failures, 100
Mean of the Y data, ANOVA, 464
Mean Time Between Failures (MTBF)
to intermittent process failure, 100–101
too much unplanned maintenance, 130, 133
Mean value, 1-Sample t-Test, 516–521
Meanings, Value Stream Map, 533–536
Measure phase
process improvement (DMAIC), 24–25
standardization project (DMASC), 45–46
Statistical Process Control in, 484–488
Measurement systems
broken in global processes, 121–124
DOE issues, 293–294
Gage R&R analyzing variability of, 367
Measurement Systems Analysis. See MSA (Measurement Systems Analysis)
Meeting effectiveness tools
accelerated improvement (Kaizen), 64
process improvement (DMAIC), 17
standardization projects (DMASC), 43
Methodologies, process improvement, 6
Metric owner, Process Scorecard, 426
Metrics section, Project Charter header, 437–438
Milestone Plan, DMAIC, 21–22
MSA—Attribute
interpreting output, 360–365
logistics, 359
overview, 357–359
resolving broken measurement system, 122
roadmap for, 359–360
MSA—Continuous, 365–375
interpreting output, 371–375
logistics, 370
other options, 375
overview, 365–370
roadmap for, 370–371
MSA—Process Variation Study using Nested ANOVA, 375–380
MSA—Validity, 353–356
MSA (Measurement Systems Analysis), 342
in accelerated improvement (Kaizen), 73
for broken measurement system, 122, 124
creating Customer Requirements Tree, 260
in D-Study, 269
high Accounts Receivable, 158
high inventory, 141
high process loss, 145–146
high resource usage, 138
high schedule variation, 116
high variation in forecasting, 148
intermittent process failure, 100
long setup/changeover, 127
on-time delivery issues, 84
payments made to suppliers not optimized, 156–157
performance characteristics not good enough, 125
process failure to meet downstream demand, 105
in process improvement (DMAIC), 36
quality of product issues, 90
single process step not meeting Takt Time, 164
slow pace, 97
in standardization project (DMASC), 54
too many entity types, 113
too much unplanned maintenance, 130
too much variation in Cycle Time of single step, 169
%Uptime, 94–95
MTBF (Mean Time Between Failures)
to intermittent process failure, 100–101
too much unplanned maintenance, 130, 133
Multi-Cycle Analysis
applying Data Integrity Audits to, 355–356
high Accounts Receivable, 160
high resource usage, 138
Individual Step Cycle Time in, 501
long Process Lead Time, 104
not enough sales, 152–154
payments made to suppliers not optimized, 157
process failure to meet downstream demand, 107
Process Lead Time in, 505
roadmap, 380–386
slow pace, 98
Multi-Vari Studies
in Analyze phase, 25
Chi-Square as tool for, 213–219
Data Integrity Audits for, 355–356
high schedule variation issues, 120–121
quality of product issues, 92–93
Regression used in. See Regression
roadmap for, 386–391
unplanned maintenance issues, 133
Multiple Linear Regression, 462, 470–471
Murphy’s Analysis
in accelerated improvement (Kaizen), 65
in Discovery process, 78
in Process FMEA, 420
in process improvement (DMAIC), 18
roadmap for, 391–394
for Standard Work Instructions, 480
in standardization project (DMASC), 43–44, 46
N
Narrow Inference studies, in DOEs, 289
Nested ANOVA, 375–380
Network diagram (PERT Chart), Critical Path Analysis, 246–248
Network diagram (PERT Chart), in Critical Path Analysis, 246–248
Noise, eliminating to improve schedule, 116
Noise Variables
Blocking, 303
in DOE, 287–289
Screening Designs in DOE, 298
Non-normal Capability analysis, 206–207
Nonrandom experiments, DOE, 293
Normality Test
in 1-Sample t-Test, 518–519
in 2-Sample t-Test, 524
Capability for Continuous data, 204
Capability for Continuous non-normal data, 206–207
in Regression analysis, 466–467
roadmap for, 394–397
in Test of Equal Variance, 495
Normalized (Mean) Time Between Failures, 100
Norming
in accelerated improvement (Kaizen), 64
in process improvement (DMAIC), 17
in standardization project (DMASC), 43
NVA (non-value-added) activities
in Critical Path Analysis, 247–248
high schedule variation, 117
Lean Sigma, 8
long Process Lead Time, 103
in Multi-Cycle Analysis, 384
payments made to suppliers not optimized, 157
in process improvement (DMAIC), 25, 37
resource usage too high, 137–138
slow pace, 98, 167
in standardization project (DMASC), 46
too much variation in Cycle Time of single step, 169–170
in Value Stream Map, 536, 538
O
OEE (Overall Equipment Effectiveness)
capacity of process too low, 88
interpreting output, 402–403
logistics, 398
other options, 403
overview, 397
%Pace, 400–401
%Quality, 401
single process step not meeting Takt Time, 164
slow pace in single process step, 166–168
special cases, 401–402
%Uptime, 93, 398–400
Value Stream Map, 537
On-time delivery, global processes, 83–87
On Time in Full (OTIF), 149, 340
One-Way Analysis of Variance. See ANOVA (One-Way Analysis of Variance)
Operation Kanbans, 446
Operational definitions, KPOVs and data, 341–342
Operations Planning, Demand Segmentation for, 282–283
Operations process
eliminating noise to improve schedule, 116–117
Process Scorecard, 425
resolving high schedule variation, 119–120
Operator, Multi-Cycle Analysis, 384
Operator-Part Interaction Plot, Gage R&R Study, 372–373
Optimization Design, DOE, 93
Optimizing Design. See DOE—Optimizing
Order cancellations, not enough sales due to, 153–154
Organization requirement, Pull Systems, 443
Organizational Priority section, Project Charter header, 435–436
OTIF (On Time in Full), 149, 340
Output variables (Ys), rework issues, 91–93
Outputs, identifying for SIPOC, 471–475
Overall Equipment Effectiveness. See OEE (Overall Equipment Effectiveness)
Overlay, in Attribute MSA, 365

P
P-Charts, as Control Charts, 232
P/T Ratio (Precision to Tolerance Ratio)
 Gage R&R Study, 369–371, 374
 quality of product issues, 90
P-value (probability value)
 1-Sample t-Test, 517–521
 2-Sample t-Test, 522–528
 Characterizing DOE, 309–310
 Chi Square output, 214–219
 Multi-Vari Studies, 390
 Normality Test, 394–397
 Regression analysis, 463, 465–466
 Test of Equal Variance, 495–496
Pace
 long Process Lead Time, 104
 process fails to meet downstream demand, 107
 of process too slow, 96–99
 single process step not meeting Takt Time, 165
 single process step too slow, 166–168
%Pace, OEE
 calculating, 397–398
 interpreting output, 402–403
 overview of, 400
 special cases, 401–402
 variants, 400–401
Paired t-Tests, 522, 528–529
Pareto Charts
 inventory is too high, 142
 measuring intermittent process failure, 101
 measuring %Uptime, 95
 for Overall Equipment Effectiveness, 399
 process loss too high, 146–147
 roadmap for, 404–406
 of standardized effects, 300
 too much unplanned maintenance, 131
Part Plot, Gage R&R Study, 373
Parts per million defective (PPM), 206
Path of Steepest Ascent
 calculating for two or more factors, 328–330
 Optimizing DOE, 321–322, 328
Patterns, Demand Profiles exhibiting, 274
Payment terms, Accounts Receivable, 161
People, Rapid Changeover, 455
Percentage hit rate, on-time delivery issues, 84
Performance metrics
 capacity of process too low, 87–89
 characteristics not good enough, 124–125
 on-time delivery issues, 84
 process can’t make product at all, 134–136
 in standardization project (DMASC), 44, 45–46
Performance metrics, process improvement (DMAIC)
 Control phase, 36, 37
 Define phase, 20–21
 Improve phase, 33
 Measure phase, 24–25
 overview of, 16
Performing
 in accelerated improvement (Kaizen), 64
 in process improvement (DMAIC), 17
 in standardization project (DMASC), 43
PERT Chart (network diagram), Critical Path Analysis, 246–248
Physical Process Map. See Spaghetti Map (Physical Process Map)
Pie Charts, 399
Piloting new process
 in accelerated improvement (Kaizen), 70
 DOE issues, 294
 in process improvement (DMAIC), 31–33
 in standardization project (DMASC), 51
Pitfalls, Customer Interviewing, 256–257
Planned maintenance, 96, 125–126
POCIS, constructing SIPOC, 473
Poka Yoke (Mistake-Proofing)
 logistics, 412
 overview, 410–411
 requirements for Pull System, 443
 roadmap, 412–414
Post-event, Kaizen, 58, 71–74
PPM (parts per million defective), 206
Pre-event, Kaizen, 58, 59–62
Precision to Tolerance Ratio (P/T Ratio), 90, 369–371, 374
Predictive Maintenance, 516
Predictors, KPOVs and data, 340
Prerequisites, process improvement, 2
Press Ganey score, as effectiveness metric, 341
Preventive Maintenance, 515
Price, as effectiveness metric, 341
Primary Entity
 in detailed Value Stream Map, 532
 identifying in process improvement, 4
 in Multi-Cycle Analysis, 381, 384
Primary Performance Metric(s), 89–91
Probability Plot, Regression analysis, 466–467
Probing, in Customer Interviewing, 256
Problem Categories
 in accelerated improvement (Kaizen), 59–62, 65
customer demand is too variable, 110–111
global process. See Global process problems
high schedule variation, 117
how to use this book, 9–12
individual step process, 24, 163–170
for process as a whole, 22–23
Process audits, DMASC, 39–40
Process Boards, 408–409, 414–418
Process Cycle Time
 in accelerated improvement (Kaizen), 57, 59, 62, 68
 as efficiency metric, 341
 failure to meet downstream demand, 105–108
 high backlog of orders, 154–155
 high resource usage, 138
 high schedule variation, 115, 117
 high variation in forecasting, 147–148
 Individual Step. See Individual Step Cycle Time
 interpreting, 499
 Load Chart operators in, 349–353
 long Process Lead Time, 104
 low process capacity, 87–89
 not enough sales due to, 153
 on-time delivery issues, 85–86
 Problem Categories for single process step, 24
 in process improvement (DMAIC), 29–30
 Process Lead Time and, 503
 Replenishment Time and, 509
 roadmap, 497–500
 single process step not meeting Takt Time, 163–166
 in slow pace, 98–99, 167–168
 in standardization project (DMASC), 49
 Takt Time and, 510–514
too much variation of single step, 168–170
 in Value Stream Map, 537
 Process duration, resolving high schedule variation, 118
Process FMEA
 constructing, 419–422
 interpreting output, 422–423
 logistics, 419
 overview, 418
Process improvement (DMAIC)
 Control phase, 33–37
 Define phase. See Define phase, DMAIC
 how to use this book, 9
 Improve phase, 26–33
 Measure and Analyze phase, 24–25
 overview, 15
Process Lead Time
 accelerated improvement (Kaizen), 59, 62
customer demand is too variable, 111
 as efficiency metric, 341
 Global Process Cycle Time and, 498, 499
 high backlog of orders, 154–155
 high schedule variation, 115–121
 high variation in forecasting, 147
 Individual Step Cycle Time and, 503
 inventory is too high, 139–144
 minimizing using Critical Path Analysis, 246–248
 not enough sales due to, 153
 on-time delivery issues, 84–86
 Process Lead Time and, 503
 Replenishment Time and, 507, 509
 roadmap for, 503–506
 Takt Time and, 513
too long, 102–105
 in Value Stream Map, 537
 Process Map, creating Load Chart, 350
Process Owner(s) in accelerated improvement (Kaizen), 59, 64
Control Plan Summary and, 236, 239
in process improvement (DMAIC), 16–17, 21
in Process Management, 408–410
setting up Kanbans for Pull System, 446
in standardization project (DMASC), 42–43
Statistical Process Control and, 485
Process Scorecard/Dashboard in Discovery process, 78
logistics, 423–425
other options, 428
overview, 423
roadmap, 425–427
Process section, Project Charter header, 434
Process Triggers. See Triggers (Kanbans)
Process Variables Map (Input/Output Map)
high schedule variation, 119
process can't make product at all, 135
Process FMEA, 420
quality of product issues, 92
roadmap for, 429–432
Single-Phase C&E Matrix, 209
too much unplanned maintenance, 132
Two-Phase C&E Matrix, 211–212
Process variation. See Variation
Process Variation Study, using Nested ANOVA
improving measurement systems, 124
interpreting output, 378–380
overview, 375–377
roadmap, 378
Processes defined, 75
Discovery, 75–80
global problems of. See Global process problems
identifying for SIPOC, 471–475
in process improvement methodology, 3
Product portfolios, Demand Segmentation for, 282
Product redesign, Attribute MSA, 365
Production Planning, Demand Segmentation for, 282–283
Project Charter in accelerated improvement (Kaizen), 59
in Concept Ideation, Design, and Selection, 220
in Core Process Map, 245
in Discovery process, 77
in process improvement (DMAIC), 16, 21
in standardization project (DMASC), 42
Project Charter roadmap
Departments Affected section, 439–440
Expected Benefits section, 438
header information, 434
logistics, 434
Metrics section, 437–438
Organizational Priority section, 435–436
overview, 432–434
Process section, 434
Project Description section, 435
Project Scope section, 436–437
Schedule section, 440
Support Required section, 440–441
Team Members section, 439
Project Description section, Project Charter, 435
Project FMEA, 418
Project Leaders (Black Belts/Green Belts), 59
as audience for this book, 2
how to use this book, 9–11
as prerequisites, 2–3
in process improvement (DMAIC), 16–17, 21–22
in Process Management, 408–410
in standardization project (DMASC), 42
Project management, DMAIC, 21–22
Project roadmaps, 7–11
Project scope. See Scope
Projective property, Fractional Factorials, 295
Protected fields, Poka Yoke, 413
Pull-down menus (combo boxes), Poka Yoke, 413
Pull Systems accelerated improvement (Kaizen), 67
customer demand is too variable, 111
process improvement (DMAIC), 29, 35–36
standardization project (DMASC), 49
Pull Systems and Kanban roadmap
external implementation, 450–453
internal implementation, 447–450
logistics of, 447
other options, 453
overview of, 441–442
path to implementing, 444–446
Push Systems compared to, 443–444
rules, 442–443
Purchasing Planning, 143
Push Systems, Pull Systems vs., 443–444

%Quality, OEE
calculating, 397–398
interpreting output, 402–403
overview of, 401
special cases, 401–402
Quality of product
intermittent failure of process, 99–102
rework issues, 89–93
Quality performance, effectiveness metric, 340
Questions, Customer Interview, 250–252

R
R-Sq
ANOVA, 194
Characterizing DOE, 302, 309–311, 316–317
Optimizing DOE, 324–325
Regression analysis, 463–464, 470
R-Sq (adj)
ANOVA, 194, 196
Characterizing DOE, 302, 309–311, 316–317
Optimizing DOE, 324–325
Regression analysis, 463–464, 470–471
%R&R (Repeatability and Reproducibility)
Gage R&R Study, 370–371, 374
quality of product issues, 90
Randomization, DOE issues, 293
Range Charts, 233, 372
Rapid Changeover (SMED)
Critical Path Analysis used in, 246–248
logistics, 455–456
overview of, 454–455
roadmap, 456–461
setup/changeover takes too long, 127
Rationalizing portfolio, in variable customer
demand, 110
Raw materials, process loss too high and, 144–147
Redesign, Attribute MSA, 365
Reference materials, for measurement systems, 124
Regression, 468–470
in Characterizing DOE, 309–311, 315
in Demand Profiling, 275
high variation in forecasting, 151
as interpolation technique, 469
in Optimizing DOE, 324
other options, 470–472
overview of, 461–468
roadmap, 468
Reliability metrics
5S focus on, 179
Capability—Attribute, 201
defects and rework, 90
equipment. See %Uptime, OEE
intermittent failure of process, 99–102
in Measure phase, 24, 45
MSA—Attribute, 357–358, 362–364
MSA—Continuous, 366
MSA—Validity, 354–356
on-time delivery issues, 84
in Pull Systems, 443
quality of product, 89–93
resource usage too high, 139
verifying. See MSA (Measurement Systems
Analysis)
Reorder Points, inventory is too high, 142–143
Repeatability
Gage R&R analyzing, 367–368
interpreting output, 370–375
understanding, 368
Repeatability Variance Component, D-Study,
270–272
Repetition
in Attribute MSA appraisal, 363
as DOE technique, 289–290
Pull Systems using, 446
Replenishment Time
in accelerated improvement (Kaizen), 62
applying Demand Segmentation to, 281
Global Process Cycle Time, 499
Individual Step Cycle Time, 503
initial data capture and analysis, 62
interpreting output, 509
inventory is too high and, 139–140, 142–144
on-time delivery and, 84
practical application roadmap for, 506–509
Process Lead Time, 503–504
Pull Systems and, 449, 452
Takt Time, 513
Replication, in DOEs, 289
Reproducibility metrics
in Gage R&R, 367–368
interpreting output, 370–375
understanding, 368–369
Requirements, Customer Requirements Tree, 260
Reschedule rates, for high schedule variation, 119
Residual Error, ANOVA, 465
Residuals, in Regression analysis, 466–469
Resource usage too high, 136–139
Response Surface Methodology. See DOE—Optimizing
Responses (Ys). See DOE (Design of Experiments)
Results, KPOVs and data, 340
Review Customer Requirements (DMASC), 29, 40
Rework time, 89–93, 95
Risk Management Plan, DMAIC, 21
Risk Priority Numbers (RPNs)
in Poka Yoke, 412
in Process FMEA, 421–422
Roadmaps, Lean Sigma, 7–9
Roles
accelerated improvement (Kaizen), 30
Customer Interview Team, 254
process improvement (DMAIC), 17, 30
recording changeover on video, 127
standardization project (DMASC), 43, 49
Rolled Throughput Yield. See RTY (Rolled Throughput Yield)
Rollout
accelerated improvement (Kaizen), 63–64, 70
process improvement (DMAIC), 33
standardization project (DMASC), 51
Root cause
process can’t make product at all, 135–136
setup/changeover takes too long, 126
RPNs (Risk Priority Numbers)
in Poka Yoke, 412
in Process FMEA, 421–422
RTY (Rolled Throughput Yield)
capacity of process too low, 88
measuring intermittent process failure, 100
quality of product issues, 89–90
in standardization project (DMASC), 45
Rules
Kanban and Pull System, 448
Pull System, 442–443
Ryan-Joiner Normality Test, 395

S
Sales issues
backlog of orders too high, 154–155
problem of not enough, 152–154
Samples
DOE issues, 293
Gage R&R Study, 370
selecting in Attribute MSA roadmap, 359
Sampling Plan
Customer Interviews, 252–253
Customer Surveys, 264–267
Data Integrity Audits, 355–356
KPOVs and data roadmap, 343–344
Schedule, high variation in, 115–121
Schedule section, Project Charter header, 440
Scheduled Maintenance, 516
Scope
in accelerated improvement (Kaizen), 64–65
Control Plan Summary, 236
Individual Step Cycle Time, 502
narrowing with Pareto Chart, 404–406
process improvement (DMAIC), 15
Process Lead Time, 505
Rapid Changeover (SMED), 455
Replenishment Time, 508
section of Project Charter header, 436–437
Scoring bands, 428
Scoring matrix
5S audit, 179
concept design/selection, 224–226
Process FMEA, 420
Process Scorecard, 426
Screening Designs. See DOE—Screening
Seal defects, Multi-Vari Studies, 388–390
Security permissions, error-proofing in Poka Yoke, 414
Sense magnifiers, Attribute MSA, 364
Sequential experimentation, DOE
Fractional Factorials, 295
Optimizing DOE, 319
order of, 287–288
Setup Reduction Analysis, 127–128
Setup takes too long, 126–129
Shadowing
accelerated improvement (Kaizen), 59
process improvement (DMAIC), 17
standardization projects (DMASC), 42
Index

Signals, Kanban
- 444–445

Signoff
- accelerated improvement (Kaizen), 74
- Control Plan Summary roadmap, 239

Signoff, concept
- accelerated improvement (Kaizen), 67
- process improvement (DMAIC), 37
- standardization project (DMASC), 48–49

Signoff, project
- process improvement (DMAIC), 32, 34, 37
- standardization project (DMASC), 55

Silence, in Customer Interviewing, 256

Simple Linear Regression, 462–470

Simulation, concept
- accelerated improvement (Kaizen), 66
- process improvement (DMAIC), 27–28
- standardization project (DMASC), 48

Single Customer Effect, customer demand is too variable, 110

Single data points, Regression model, 470

Single Minute Exchange of Dies. See SMED (Single Minute Exchange of Dies)

Single-Phase C&E Matrix, 209–211

Single-sided specifications, Capability analysis, 208

SIPOC (Suppliers, Inputs, Process, Outputs, Customers)
- in accelerated improvement (Kaizen), 64
- customer demand is too variable, 109
- Discovery process, 77
- Murphy’s Analysis, 393
- practical application roadmap, 471–475
- Process Board roadmap, 417
- process fails to meet downstream demand, 105
- in process improvement (DMAIC), 17–18
- Process Variables Map, 429–430
- in standardization project (DMASC), 43

Six Sigma methodology, 6

Skills Matrix
- accelerated improvement (Kaizen), 69
- process improvement (DMAIC), 31
- standardization project (DMASC), 50

SMED (Single Minute Exchange of Dies)
- Rapid Changeover, 454–461
- setup/changeover takes too long, 127
- Time Analysis Chart, 458–460

Smooth-demand items, variation in forecasting, 150

Smoothing, variation in forecasting, 151

SOP (Standard Operating Procedure), Process Variables Map, 431

SPACER
- accelerated improvement (Kaizen), 64
- process improvement (DMAIC), 17
- standardization projects (DMASC), 43

Spaghetti Map (Physical Process Map), 128
- process fails to meet downstream demand, 106
- roadmap for, 475–478

Sparsity of Effects principle, Fractional Factorials, 295

SPC. See Statistical Process Control (SPC)

Special Cause variation, Control Charts, 232, 484

Split, Value Stream Map, 535

Sponsors, as audience for this book, 2

Stability, Control Charts checking, 204, 229

Standard inventory in process
- accelerated improvement (Kaizen), 68
- process improvement (DMAIC), 30

Standard Operating Procedure (SOP), Process Variables Map, 431

Standard Work Instructions (SWIs)
- in accelerated improvement (Kaizen), 68, 69
- in Control Plan Summary, 239–240
- defined, 29
- implementing Process Boards, 416–417
- logistics, 480
- overview of, 479
- in process improvement (DMAIC), 29–31
- in Process Management, 408
- for Pull Systems, 444
- roadmap, 480–483
- in standardization project (DMASC), 48–49

Standardization project (DMASC)
- Analyze phase, 46
- Control phase, 52–55
- Define phase, 42–44
- flow of, 39–40
- how to use this book, 10
- Measure phase, 45–46
- roadmap, 41
- Standardize phase, 47–52
- Standardize phase, DMASC, 47–52
Start, Value Stream Map, 533, 536, 538
Statistical Process Control (SPC)
 Control Charts vs., 226
 Control Plan Summary roadmap, 236
 interpreting output, 486–487
 logistics, 485
 overview of, 484–485
 in process improvement (DMAIC), 35
 roadmap, 485–486
Status, Process Scorecard, 426–427
Stop, Value Stream Map, 533, 538
Store, Value Stream Map, 535
Storming
 accelerated improvement (Kaizen), 64
 process improvement (DMAIC), 17
 standardization project (DMASC), 43
Stratification of data, KPOVs and, 342
Sub-Drivers, Customer Requirements Tree, 260
Subphases, Lean Sigma roadmap, 7–8
Supplier Kanbans, 445
Suppliers, identifying for SIPOC, 471–475
Support, Rapid Changeover (SMED), 455
Support Required section, Project Charter header, 440
Surveys, VOC in Define phase, 19
Swimlane Map
 in accelerated improvement (Kaizen), 67, 69, 73
 Critical Path Analysis, 247
 intermittent process failure, 101–102
 for long Process Lead Time, 103–104
 process failing to meet downstream demand, 106–107
 in process improvement (DMAIC), 28–30, 35
 setup/changeover takes too long, 128
 Standard Work Instructions, 479–480
 in standardization project (DMASC), 49, 53
Swimlane Map roadmap
 details of, 490–491
 interpreting output, 491–492
 logistics, 489
 other options, 493
 overview of, 488
SWIs, See Standard Work Instructions (SWIs)
Symbols, Value Stream Map, 533–536

t-Tests
 1-Sample, 516–521
 2-Sample, 522–528
 Paired, 528–529
TACT (Total Activity Cycle Time), Takt Time vs., 510
Takt, definition of, 510
Takt Time
 in accelerated improvement (Kaizen), 68
 backlog of orders too high, 154–155
 calculating for Load Chart, 349–353
 defined, 163
 for high resource usage, 138
 high variation in forecasting, 149–150
 interpreting Global Process Cycle Time, 499–500
 interpreting Individual Step Cycle Time, 168–170, 503
 interpreting output, 513–514
 interpreting Process Lead Time, 104, 503
 interpreting Replenishment Time, 509
 logistics, 512
 not enough sales due to, 153
 on-time delivery issues, 85–86
 overview of, 509–512
 process fails to meet downstream demand, 105–108
 in process improvement (DMAIC), 29–30
 resolving high schedule variation, 118
 roadmap, 512–513
 single process step not meeting, 163–166
 slow pace and, 98–99
 Value Stream Map and, 537
Target value, 1-Sample t-Test, 516–521
Team
 in accelerated improvement (Kaizen), 64
 Customer Interview, 254
 as prerequisite, 2–3
 in process improvement (DMAIC), 16–17
 standardization project (DMASC), 42–44, 47–52
Team Members section, Project Charter header, 439
Technical Mentors (Project Charter header), 2
Templates
in Attribute MSA, 364
in Poka Yoke, 413
Test of Equal Variance
in 2-Sample t-Test, 525
roadmap for, 494–496
in standardization project (DMASC), 55
Testing
improving measurement systems, 123
in process improvement (DMAIC), 37
Standard Work Instructions, 481–483
in standardization project (DMASC), 55
Throughput, capacity of process too low, 87–89
Time
Accounts Receivable too high and, 159–161
Global Process Cycle Time, 497–500
Individual Step Cycle Time, 500–503
inventory is too high, 139–144
Load Chart showing operators in Cycle Time,
349–353
on-time delivery issues, 84–87
planned maintenance takes too long, 125–126
process can’t make product at all, 134–136
Process Lead, 102–105, 503–506
Replenishment, 506–509
Takt, 509–514
Time Series Analysis, 151
Time Series Plot, 272–277
Title, Process Board, 417
To-Be Handoff Map, 336–337
Tools
Analyze phase roadmap, 25
Control phase roadmap, 33
Define phase roadmap, 16
how to use this book, 9–11
Improve phase roadmap, 26
Lean Sigma roadmap, 7–8
Measure phase roadmap, 24–25
Tools, practical application roadmap
5 Whys, 173–175
5S, 176–184
Affinity diagrams, 184–187
ANOVA, 187–196
Box Plot, 196–198
Capability—Attribute, 199–201
Capability—Continuous, 201–208
Cause and Effect Matrix, 209–213
Chi-Square, 213–219
Concept Ideation, Design, and Selection,
219–226
Control Charts, 226–234
Control Plan Summary, 234–241
Core Process Map, 242–246
Critical Path Analysis, 246–248
Customer Interviewing, 249–258
Customer Requirements Tree, 258–261
Customer Surveys, 261–267
D-Study, 267–272
Demand Profiling, 272–277
Demand Segmentation, 277–283
DOE—Characterizing, 303–318
DOE—Introduction, 283–294
DOE—Optimizing, 318–330
DOE—Screening, 294–303
Fishbone Diagram, 330–333
Handoff Map, 334–337
KPOVs and data, 337–349
Load Chart, 349–353
MSA—Attribute, 356–365
MSA—Continuous, 365–375
MSA—Process Variation Study (Nested
ANOVA), 375–380
MSA—Validity, 353–356
Multi-Cycle Analysis, 380–386
Multi-Vari Studies, 386–391
Murphy’s Analysis, 391–394
Normality Test, 394–397
Overall Equipment Effectiveness, 397–403
Pareto Chart, 404–406
Poka Yoke (mistake-proofing), 410–414
Process Board, 414–418
Process FMEA, 418–423
Process Performance Management, 407–410
Process Scorecard/Dashboard, 423–428
Process Variables Map (Input/Output Map),
429–432
Project Charter, 432–441
Pull Systems and Kanban, 441–454
Rapid Changeover (SMED), 454–461
Regression, 461–471
SIPOC, 471–475
Spaghetti Map (Physical Process Map), 475–478
Standard Work Instructions, 479–483
Statistical Process Control (SPC), 484–488
Swimlane Map, 488–493
t-Test—Paired, 528–529
t-Test, 1-Sample, 516–521
t-Test, 2-Sample, 522–528
Test of Equal Variance, 494–496
Time—Global Process Cycle Time, 497–500
Time—Individual Step Cycle Time, 500–503
Time—Process Lead Time, 503–506
Time—Replenishment Time, 506–509
Time—Takt Time, 509–514
Total Productive Maintenance, 514–516
Value Stream Map (VSM), 529–539
Total Activity Cycle Time (TACT), Takt Time vs., 510
Total Inventory Dollars, 141
Total Productive Maintenance (TPM) roadmap, 514–516
Total variability, Gage R&R analyzing, 367
Total Variation, ANOVA calculation, 465
Total Work Content
 accelerated improvement (Kaizen), 68
 planned maintenance takes too long, 126
 resource usage too high, 137–138
TPM (Total Productive Maintenance) roadmap, 514–516
 too much unplanned maintenance, 131
Tracking system, KPOVs, 344–345
Training
 accelerated improvement (Kaizen), 69, 70
 process improvement (DMAIC), 31–33, 36
 standardization project (DMASC), 50–51
 Teams in Kanban techniques, 449–450, 451
Transport, Value Stream Maps, 534
Traveler Check sheet, KPOVs, 345
Triggers (Kanbons)
 accelerated improvement (Kaizen), 67, 73
 customer demand is too variable, 111
 external implementation of Pull System, 450–453
 implementing Pull System, 444–446
 internal implementation of Pull System, 447–450
 process improvement (DMAIC), 29, 35–36
 standardization project (DMASC), 49, 54
Triggers, Value Stream Map, 534, 539
Try-storming device, Poka Yoke, 414
Two-Phase C&E Matrix, 209, 211–213

U
Unplanned maintenance
 measuring %Uptime, 96
 too much, 129–133
%Uptime, OEE
 calculating, 397–400
 defined, 397
 interpreting output, 402–403
 maintenance OEE vs. Lean Sigma, 397
 single process step not meeting Takt Time, 165
 special cases, 401–402
 too low, 88, 93–96
 variants, 399–400
Use Data to Identify Causes, standardization project (DMASC), 40
USL (Upper Specification Limit), Capability, 202–206, 208
Utilization, %Uptime vs., 93

V
VA (value-added) activities
 high resource usage, 138
 in Lean Sigma, 8
 in Multi-Cycle Analysis, 381
 in process improvement (DMAIC), 25
 in Process Variables Map, 430
 setup/changeover takes too long and, 126
 for slow pace in single process step, 167
 in standardization project (DMASC), 46
 %Uptime too low and, 93–96
 Value Stream Map, 536
Validation (Validity), 481–483
 in accelerated improvement (Kaizen), 71, 74
 capacity of process too low and, 88
 confirming data integrity, 354–355, 357, 366
 Control Plan Summary, 239
 high Accounts Receivable, 158
 high schedule variation, 116
 high variation in forecasting, 148–150
 intermittent process failure, 100
 inventory is too high, 141
 long Process Lead Time, 103
 MSA—Validity, 353–356
Validation (Validity) (continued)
of Process Board, 418
process fails to meet downstream demand, 105
of Process Scorecard, 427
resource usage too high, 138
setup/changeover takes too long, 127
in standardization project (DMASC), 52, 55
too much unplanned maintenance, 130
of Value Stream Map, 537
when payments made to suppliers not optimized, 156
Value-added. See VA (value-added) activities
Value Ratio, Value Stream Map, 537
Value Stream Map (VSM)
customer demand is too variable, 110
defined, 18
in Discovery process, 77
in Handoff Map, 334–335
high Accounts Receivable, 159–160
Individual Step Cycle Time, 501
intermittent process failure, 101
long Process Lead Time, 103
in Multi-Cycle Analysis, 382
process fails to meet downstream demand, 106
in Process Lead Time, 504–505
process loss is too high, 146
quality of product issues, 90–91
resource usage is too high, 138
slow pace, 98, 167
in standardization project (DMASC), 45–46
in Swimlane Map, 488–493
for too much variation in Cycle Time of single step, 169–170
when payments made to suppliers not optimized, 157
Value Stream Map (VSM) roadmap
high-level vs. detailed, 530–532
interpreting output, 538–539
logistics, 532
overview of, 529–530
steps in, 532–537
Variance Components, D-Study, 270–272
Variation
in Cycle Time, 498
Demand Segmentation and, 277–283
in forecasting, 148
Gage R&R analyzing process, 367
measuring performance of schedule, 116–121
single process step not meeting Takt Time, 165
in Statistical Process Control, 484
Test of Equal Variance comparing, 494–496
too much Cycle Time in single step, 168–170
Video
Rapid Changeover (SMED), 456–457
recording changeover on, 127–128
Visual aids, Attribute MSA, 365
Voice of the Customer (VOC)
Customer Interviews. See Customer Interviewing
Customer Requirements Tree. See Customer Requirements Tree
Customer Surveys. See Customer Surveys
in Poka Yoke, 412
in process improvement (DMAIC), 18
Process Scorecard, 425
VSM. See Value Stream Map (VSM)
W
Wait/Delay, Value Stream Map, 535
Waste
identifying. See Value Stream Map (VSM) roadmap
process loss too high and, 144–147
Weights, Process Scorecard, 428
Withdrawal Kanbans, 446
Work in progress (WIP), Process Cycle Time, 498
Work sequence
Kaizen, 68
process improvement (DMAIC), 30
Workforce breaks, measuring %Uptime, 96
Workstation Design, Kaizen, 68
X
X-bar Charts, 233–234, 371–372
Y
Ys for the process
process improvement (DMAIC), 20
standardization project (DMASC), 44
Z
Zones, in Demand Segmentation, 280–283
This page intentionally left blank
REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

- Download available product updates.
- Access bonus material when applicable.
- Receive exclusive offers on new editions and related products.
 (Just check the box to hear from us when setting up your account.)
- Get a coupon for 35% for your next purchase, valid for 30 days. Your code will be available in your InformIT cart. (You will also find it in the Manage Codes section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page under Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s foremost education company. At InformIT.com you can
- Shop our books, eBooks, software, and video training.
- Take advantage of our special offers and promotions (informit.com/promotions).
- Sign up for special offers and content newsletters (informit.com/newsletters).
- Read free articles and blogs by information technology experts.
- Access thousands of free chapters and video lessons.

Connect with InformIT—Visit informit.com/community
Learn about InformIT community events and programs.

informIT.com
the trusted technology learning source

Addison-Wesley • Cisco Press • IBM Press • Microsoft Press • Pearson IT Certification • Prentice Hall • Que • Sams • VMware Press