
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133960129
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133960129
https://plusone.google.com/share?url=http://www.informit.com/title/9780133960129
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133960129
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133960129/Free-Sample-Chapter

Swift for the Really Impatient

This page intentionally left blank

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Swift for the Really Impatient

Matt Henderson
Dave Wood

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014952492

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publica-
tion is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc., Permis-
sions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or
you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-396012-9
ISBN-10: 0-13-396012-9
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing: December 2014

Editor-in-Chief
Mark Taub

Senior Acquisitions Editor
Trina MacDonald

Development Editor
Tom Cirtin

Managing Editor
Kristy Hart

Senior Project Editor
Betsy Gratner

Copy Editor
Kitty Wilson

Indexer
Tim Wright

Proofreader
Leslie Joseph

Technical Reviewers
Rene Cacheaux
Ash Furrow

Editorial Assistant
Olivia Basegio

Cover Designer
Alan Clements

Senior Compositor
Gloria Schurick

To my mother and my father.

And to Clare.

—Matt Henderson

To my wife, Sabrina, who puts up with the crazy hours I put in and
always makes sure I at least take a break for dinner.

—Dave Wood

This page intentionally left blank

 vii

Contents

 Foreword . xi

 Preface . xiii

 Acknowledgments. xv

 About the Authors . xvi

Chapter 1 Introducing Swift . 1

1.1 Basic Syntax .2
1.1.1 Variables and Constants .2
1.1.2 String Interpolation .5
1.1.3 Control Flow .6

1.2 Basic Data Types .10
1.2.1 Int .10
1.2.2 Double and Float. .12
1.2.3 Bool .13
1.2.4 Strings. .14
1.2.5 Arrays .15
1.2.6 Dictionaries .19

Exercises .20

Chapter 2 Diving Deeper into Swift’s Syntax. 21

2.1 Optionals .22
2.2 Generics .25

viii Swift for the Really Impatient

 Contents

2.3 Type Annotations and Type Inference .28
2.4 Functions and Closures .29

2.4.1 Global Functions .30
2.4.2 Nested Functions .30
2.4.3 Closure Expressions. .31

2.5 Tuples .32
2.6 switch Statements and Pattern Matching .34
Exercises .37

Chapter 3 Objects and Classes . 39

3.1 Enumerations. .41
3.2 Classes. .45
3.3 Structures .49
3.4 Subclassing. .51
3.5 Overloading .52
3.6 Overriding .54
3.7 Initialization .55
3.8 Properties .57

3.8.1 Computed Properties .59
3.8.2 Property Observers .60
3.8.3 lazy Properties. .62

3.9 Subscripting .63
3.10 Protocols .65
3.11 Extensions .67
3.12 Access Control. .68
Exercises .73

Chapter 4 Optionals. 75

4.1 Optionals and nil .76
4.2 Validity Checking, Optional Binding, and Forced Unwrapping 78
4.3 Optional Chaining .81
4.4 Implicitly Unwrapped Optionals .86
Exercises .88

 ix

 Contents

Chapter 5 Generics. 91

5.1 Why Generics?. .92
5.2 Generic Functions. .92

5.2.1 Type Parameters .93
5.2.2 Using More Than One Type Parameter .94

5.3 Generic Types .94
5.3.1 Associated Types. .98
5.3.2 The where Clause .100

Exercises .101

Chapter 6 Functions and Closures . 103

6.1 Functions .104
6.1.1 Parameters .104
6.1.2 External Parameter Names .105
6.1.3 Default Parameter Values .107
6.1.4 Variadic and inout Parameters. .108
6.1.5 Return Types .110

6.2 Closures .112
6.2.1 Inferring Parameters and the Return Value .113
6.2.2 Trailing Closures .113

6.3 Functional Programming Patterns . 114
Exercises .117

Chapter 7 Working with Objective-C. 119

7.1 Interacting with C and Objective-C APIs .120
7.1.1 Optional Properties and Return Values .122
7.1.2 AnyObject Types .123
7.1.3 Subclassing, Extensions, and Protocols. .124
7.1.4 Automatically Converted Types .126
7.1.5 Selectors and Enums. .128
7.1.6 Working with C Code .129

7.2 Working with Swift and Objective-C in a Single Project130
Exercises .133

x Swift for the Really Impatient

 Contents

Chapter 8 Common Patterns . 135

8.1 Nested Types .136
8.2 Singletons .137
8.3 Using Grand Central Dispatch .139

8.3.1 dispatch_once .139
8.3.2 dispatch_async .139
8.3.3 dispatch_after .140
8.3.4 dispatch_apply .140

8.4 Sequences and Generators. .141
8.5 Operators .145

8.5.1 Operator Overloading .146
8.5.2 Custom Operators .147

Exercises .148

 Index . 149

 xi

Foreword

In March, 2008, Apple released an SDK for its wildly successful iPhone. That SDK,
and the App Store that would go live several months later, attracted a lot of atten-
tion. A lot of people coming to Apple’s platform for the first time were surprised
to find that the entire toolset was based around an obscure 25-year-old program-
ming language called Objective-C rather than a more widely used language like
C++ or Java.

Mac developers and those who followed Apple weren’t particularly surprised.
Objective-C had been the primary language used to develop Mac apps since
shortly after the NeXT acquisition in 1996. Unlike C++ or Java, which are
general-purpose languages used on numerous platforms and for a wide variety
of programming tasks, Apple chose to build first OS X and later iOS around a
language that it could control. The language grew slowly and with a very singular
focus on the development of GUI apps for Apple’s operating systems.

In many ways, Objective-C and the NeXT frameworks used to build applications
were years ahead of their time. Though never particularly successful as a commer-
cial venture, NeXT’s application-building tools were incredibly popular with those
who used it because it enabled developers to build applications much faster than
other tools on the market at the time.

But Objective-C is more than 30 years old now, and that’s a very long time in
terms of technology. While Objective-C has changed and evolved some, it really
hasn’t kept pace. Programming languages and compilers have evolved a lot in
the last few decades, and many people have been clamoring for a more “modern”
programming language for developing iOS and OS X apps.

At WWDC 2014, Apple surprised nearly everyone by announcing that it had a
new modern language called Swift.

Developed in secret over the course of four years, Swift is a very different
language. It has many interesting features that Objective-C lacks but uses the
same run time as Objective-C and is able to use all the existing frameworks and
libraries that make up the iOS and OS X SDKs.

xii Swift for the Really Impatient

 Foreword

But Swift really is different. It looks different. It feels different. You kind of even
have to “think different” to use it well.

Fortunately, you’ve picked up just the right book to help you think different. Matt
and Dave have done a great job taking you through this interesting but maybe just
a little scary new language. They walk you through the how and the why and will
help you steer clear of the many gotchas waiting for you as you get up to speed.

—Jeff LaMarche, author, Beginning iPhone Development: Exploring the iPhone
SDK (Apress); managing partner and founder, MartianCraft

 xiii

Preface

This book gives a concise introduction to Apple’s new programming language,
Swift. We’ve created this book for developers who are currently writing apps using
Objective-C and for developers who are looking to start writing apps and are
curious about what Swift offers.

This book is written in the “impatient” style and tries to mimic Cay Horstmann’s
style of presenting topics in a quick and clear manner that gives developers
enough information to be immediately productive. The code in this book is
primarily presented in short chunks designed to illustrate concepts. These code
snippets are designed to act as a quick reference and do not provide a cookbook of
complete examples that can be used directly.

Swift provides many exciting language features that aren’t present in
Objective-C, the current primary language for developing for Apple’s platforms.
These features are designed to make developers more productive and to make
their code less prone to errors. With Swift, developers are able to make use of a
strong type system and modern syntax to easily create powerful applications.
Chapter 1, “Introducing Swift,” and Chapter 2, “Diving Deeper into Swift’s
Syntax,” give a rapid introduction to Swift’s syntax, basic types, and features that
might be new concepts for Objective-C developers. Later chapters focus more
specifically on these features.

Like Objective-C, Swift is primarily an object-oriented language. Chapter 3,
“Objects and Classes,” introduces the major object types that are used heavily in
any Swift app. Using classes in Swift will be familiar to developers who come from
different object-oriented languages. In addition, Swift’s type system helps prevent
errors that are common with other languages.

Starting with Chapter 4, “Optionals,” this book goes into slightly more depth on
topics that might be less familiar to developers coming from Objective-C. Chap-
ter 4 focuses on optional types, a new fundamental concept that forces objects to
declare at the type level whether they might contain a missing or nil value. This
chapter begins to explore Swift’s focus on code safety. Chapter 5, “Generics,”
explores the concept of generics, which let developers abstract functionality for
reusable code while still maintaining type safety. In Swift, functions are a first
class type, which allows them to be passed around as parameters and returned as

xiv Swift for the Really Impatient

 Preface

values. Chapter 6, “Functions and Closures,” explores the functional program-
ming aspects of Swift.

The main reason to learn Swift is to be able to craft apps for iOS and Mac OS X.
Chapter 7, “Working with Objective-C,” focuses on how to use Swift with
Objective-C and Apple’s existing frameworks. Swift was designed to easily
integrate with existing Objective-C projects and the frameworks Apple provides
for making apps, but you need to know a few important things before you try to
combine Swift with C and Objective-C, and that’s what Chapter 7 covers.

By the time you reach Chapter 8, “Common Patterns,” you’ll have a firm under-
standing of how to make apps using Swift and the advantages of leveraging the
new features of Swift, so Chapter 8 focuses on practical use cases. Once you finish
Chapter 8, you’ll know how to deal with several situations that commonly come
up while developing apps.

At the end of each chapter, we’ve included exercises that will help you develop
your newly acquired skills. We encourage you to do the exercises to reinforce
what you’ve read. If you get stuck on an exercise, please visit our website at
http://SwiftForTheReallyImpatient.com, where we post solutions. You’ll also find
book errata and other interesting content at this site.

 NOTE

Throughout this book where a line of code is too long for the printed page,
a code-continuation arrow (➥) has been used to mark the continued line
of code.

http://SwiftForTheReallyImpatient.com

 xv

Acknowledgments

Our thanks go to our editors, Trina MacDonald and Betsy Gratner, for guiding
two unpublished authors through all the steps required to make this book happen.
Thanks to our reviewers, Rene Cacheaux, Tom Cirtin, Ash Furrow, Kitty Wil-
son, and Chris Zahn, who made all the chapters read easier and made sure we
kept up to date with all the Swift betas along the way. Thanks to our colleagues
at MartianCraft for always offering to help, no matter how obscure the develop-
ment problem, especially Jeff LaMarche for writing us a wonderful foreword and
Kyle Richter for encouraging us to write this book. Finally, we’d like to thank our
wives, Clare and Sabrina, for supporting us through the not entirely easy process
of creating our first book.

xvi Swift for the Really Impatient

About the Authors

Matt Henderson has been developing for Apple’s platforms since 2009 and is
currently a Cocoa engineer at MartianCraft. He’s given several presentations at
various user groups and conferences, including 360iDev, Cocoaheads Denver,
and Boulder iOS Meetup. He realized he might have a future in software when he
discovered it was easier for him to program his graphing calculator to solve equa-
tions than it was to study for his math tests. He thinks that the best debugging
technique is taking a walk outside in the sun or snow.

Dave Wood has be en developing for iOS since 2008 and OS X since 2009. He
began writing code at age 9 on a TI/99/4A and instantly fell in love. He has
worked on various types of projects, including systems that interface with stock
exchanges, news outlets, and banking systems, as well as newspaper websites and,
of course, mobile apps ranging from games, social networks, financial apps, and
productivity and developer apps. When possible, he enjoys whitewater kayaking
and scuba diving. Currently he runs his own development studio, Cerebral Gar-
dens, and freelances as a Cocoa engineer for MartianCraft.

1

1C H A P T E R 1

Introducing Swift

Topics in This Chapter
■ 1.1 Basic Syntax

■ 1.2 Basic Data Types

■ Exercises

Swift is a new programming language developed by Apple that was released to
developers at WWDC 2014. Swift can be used to develop applications for Apple’s
iOS and OS X platforms. It is designed to work with, but eventually replace,
Objective-C, the language originally used for developing applications on Apple’s
platforms.

Apple has a number of goals for Swift:

■ Make app development easier, with modern language features.

■ Produce safer code by preventing the most common programming errors.

■ Create easy-to-read code with clear and expressive syntax.

■ Be compatible with existing Objective-C frameworks, including the Cocoa and
Cocoa Touch frameworks.

This chapter introduces the basic syntax of Swift and lays the foundation you’ll
need for the rest of the book.

These are the key points in this chapter:

■ You use var to declare a variable and let to declare a constant.

■ You execute code conditionally with if or switch constructs.

■ You repeat code segments by looping with for, for-in, while, and do-while
loop constructs.

1.1 Basic Syntax

2 Swift for the Really Impatient

■ The basic data types are implemented as structs, which are passed by value
in code.

■ Since the basic types are structs, they may have additional properties or
methods available.

■ Arrays and dictionaries in Swift are more powerful collection types than their
Objective-C counterparts.

1.1 Basic Syntax
When you learn a new language, the first complete program you’re likely to see is
the famous “Hello World” example. In Swift, this program consists of just
one line:
println("Hello World")

The first thing you should notice here is what you don’t see. The code jumps right
into the guts of the program. You don’t need to set anything up to get started,
include or import a standard library, set up an initial main() function to be called
by the system, or even include a semicolon at the end of each line.

NOTE

Comments in Swift are the same as in Objective-C, with one powerful addition.
You can use // for a single-line comment, or you can use /* */ to surround
a multiline comment. Unlike C-based languages, Swift allows you to have
nested comments. This is very handy when you want to comment out a whole
section of code that may already have multiline comments included. Through-
out this book, we use // comments in the examples to show results and add
explanations.

1.1.1 Variables and Constants
A program that only prints a static line of text isn’t very useful. For a program
to be useful, it needs to be able to work with data, using variables and constants.
As their names imply, variables have contents that may change throughout the
execution of the code, while constants cannot be changed after they’re initialized.
Variables are said to be mutable; constants are immutable.

In Swift, you declare a variable by using the var keyword, and you declare a
constant by using the let keyword. This applies for all data types in Swift and is
different from Objective-C, where the type itself indicates whether it is mutable or

1.1 Basic Syntax

Chapter 1 ◆ Introducing Swift 3

not, such as NSArray versus NSMutableArray. With Swift, the mutable version of
an object is the same type as the immutable version—not a subclass.

For the rest of this chapter, what we say about variables applies equally to con-
stants (provided that we’re not talking about mutating data).

 NOTE

Before we look at specific types, it’s important to understand that all data
types in Swift are implemented as one of three different kinds of data struc-
tures. Each type is either an enum, a struct, or a class and thus may have
properties and/or methods available. We cover these in much greater detail
throughout the book, but a key fundamental you need to be aware of from the
start is the difference in how these data structures are passed around in your
code.

Swift employs some standard rules with regard to dealing with enums,
structs, and classes. Whenever an enum, or a struct is passed some-
where, it is passed by value; that is, a copy of the original is created, and that
copy is what’s assigned to the new variable. This allows the new variable to be
used, modified, or deleted without affecting the original. And the reverse is
also true: The original can be used, modified, or deleted without affecting the
new copy.

However, when a class is passed somewhere, it is passed by reference; that
is, a pointer to the original variable is assigned to the new variable. Changes
made to either variable will affect the other one.

All the basic types we’re about to cover are implemented under the hood as
structs, and so they are always copied and passed by value. Because they
are structs, it’s also possible for them to implement additional functionality
through properties and/or methods that you wouldn’t see from their
Objective-C counterparts.

Swift is a strongly typed language, which means that every variable is set to a spe-
cific type at compile time, and it can only contain values of that type throughout
its lifetime.

Two common types are Int and Float. (We’ll get into their details a little later.) If
you set a variable to be of type Int, it can only ever store Int values; it can never
be coerced into storing a Float. Types can never be implicitly converted into
other types. This means, for example, that you cannot add an Int to a Float. If
you need to add two numbers together, you need to make sure they’re the same
type or explicitly convert one to the other. This is part of what makes Swift a safe
language: The compiler prevents you from mixing types and possibly producing
unexpected results.

1.1 Basic Syntax

4 Swift for the Really Impatient

To see the dangers involved in mixing types, consider this C code:
int intValue = 0;

float floatValue = 2.5;

int totalValue = intValue + floatValue;

This code adds an int and a float together. What would total be equal to
here? Since the total is an int, it is unable to store the decimal portion of the
floatValue variable. floatValue must first be implicitly converted to an int
before it can be added to intValue and stored in totalValue. In this case, is the
developer expecting the compiler to round floatValue to 3, or is she expecting it
to just drop the decimal portion and instead add 2? Swift avoids this type of ambi-
guity by producing a compile-time error here, forcing you to tell it exactly what
you want to happen. This is one way Swift avoids common programming errors.

You need to give variables and constants names so that you can refer to them in
code. Names in Swift can be composed of most characters, including Unicode
characters. While it’s possible to use emoji and similar characters as variable
names, you should rarely, if ever, actually do it. Here is the minimum code for
declaring a variable:
var itemCount: Int

This code declares a variable named itemCount of type Int. A variable must be
set to an initial value before you can use it. You can do this when the variable is
declared, like this:
var itemCount: Int = 0

or you can do it at some later point, as long as you do it before you attempt to read
the value.

Swift has a feature called type inference. If the compiler has enough information
from the initial value you set to infer the type, you can omit the type of the vari-
able when you declare it. For example, if your variable is going to be an Int, you
can declare it like this:
var itemCount = 0

Because 0 is an Int, itemCount is inferred to be an Int. This is exactly the same
as the example above. The compiler generates exactly the same machine code.

If the variable’s initial value is set to the return value of a function, the compiler
will infer the type to be the same as the return value’s type.

1.1 Basic Syntax

Chapter 1 ◆ Introducing Swift 5

Given a function numberOfItems() that returns an Int and the following line:
var itemCount = numberOfItems()

the compiler will infer itemCount to be of type Int.

Since the compiler generates exactly the same code whether you explicitly set
the type or use type inference to let the compiler set the type for you, there is no
advantage or disadvantage to either method at run time. Of course, if you need
to explicitly set the type, you have no option. But in cases where the compiler
can infer the type, it’s up to you whether to let the compiler do so or whether you
explicitly set the type anyway. There are two things to consider when making this
decision. The first is readability. If, when you use type inference, the type of the
variable would still be clear to a future reader of the code, by all means save some
keystrokes and use type inference. If the initial value being set is the return value
of some uncommon function, it may be clearer to the future reader if you explic-
itly set the type. When reading the code at a later date, you don’t want to have to
look up what a function returns just to determine a variable’s type.

The second reason you might want to explicitly set a type when it can be inferred
is to add an additional safety check. This ensures that the type you’re expecting
the variable to be and the type being set match. If there’s a mismatch, you get a
compile-time error and can make the necessary corrections.

1.1.2 String Interpolation
You’ve already seen how to print a line of text to the console by using the println
command. You can add variables, constants, and other expressions to the output
by using string interpolation. You do so by including variables and expressions
directly in the string literal, surrounded by parentheses and escaped with a
backslash:
var fileCount = 99

println("There are \(fileCount) files in your folder")

//outputs: There are 99 files in your folder

This doesn’t apply just to println. You can use it anywhere a string literal is used:
var firstName = "Geoff"

var lastName = "Cawthorne"

var username = "\(firstName)\(lastName)\(arc4random() % 500)"

//username: GeoffCawthorne253

1.1 Basic Syntax

6 Swift for the Really Impatient

1.1.3 Control Flow
All but the simplest of programs require some sort of logic to determine what
actions should be taken. Decisions must be made based on the information the
program has available. Logic such as “If this, do that” or “Do this x many times”
determines the flow of an app and, thus, its result.

Conditionals

Swift offers both if and switch constructs for you to execute code conditionally.

Using if is the simpler of the two constructs and closely follows what you’re used
to in Objective-C. There are a few differences you need to be aware of, however.
The first difference continues Swift’s theme of reducing unnecessary syntax:
Swift does not require you to surround test expressions with parentheses, though
you may, if you desire. The second difference is that braces are required around
the conditional code. Third, the test expression must explicitly result in a true
or false answer; an Int variable with a value of 0 is not implicitly evaluated as
false, nor is a value of anything else implicitly evaluated as true.

Here is a minimal example:
var daysUntilEvent: Int = calculateDaysUntilEvent()

if daysUntilEvent > 0 {

 println("There is still time to buy a gift")

}

You can chain together multiple ifs with the else keyword:
var daysUntilEvent: Int = calculateDaysUntilEvent()

if daysUntilEvent > 0 {

 println("There is still time to buy a gift")

}

else if daysUntilEvent < 0 {

 println("You missed it, better pick up a belated card")

}

else {

 println("Better pick up the gift on the way")

}

The switch construct is an alternative to if statements. It is based on what
you’ve used in Objective-C, but in Swift, it is much more powerful. There are two
important differences you need to consider when using a switch in Swift. The

1.1 Basic Syntax

Chapter 1 ◆ Introducing Swift 7

first is that every possible option must be covered. A default case can be used
to accomplish this requirement. The second difference is a major change in how
cases are handled. In C-based languages, you need to include a break statement at
the end of each case, or execution will continue with the next case. This has been
the source of many errors over time. To prevent these errors in Swift, the design
was changed to automatically break when the next case begins. Some algorithms
may require the old behavior, so it is available to you through the use of the
fallthrough keyword.

Here’s a basic example of a switch in use:
var numberOfItemsInCart: Int = calculateNumberOfItemsInCart()

switch numberOfItemsInCart {

case 0:

 println("Cart is Empty")

case 1:

 println("1 item in cart, standard shipping applies")

default:

 println("\(numberOfItemsInCart) items, you quality for free
➥shipping")

}

We’ll cover advanced switch usage in Chapter 2, “Diving Deeper into Swift’s
Syntax.”

Loops

In Swift, for, for-in, while, and do-while are used for looping. These are similar
to what you’re used to in Objective-C, with only slight differences in the syntax.

Here is a basic for example:
for var i = 0; i < 10; ++i {

 println("i = \(i)")

}

Just as with if statements, you can omit the parentheses. In this example, i is
implicitly declared as an Int. The loop will iterate while i < 10, and it’s incre-
mented by 1 at the end of each iteration.

Another form of the for loop is the for-in loop. This lets you iterate through
each item in a collection, such as an array or a range.

1.1 Basic Syntax

8 Swift for the Really Impatient

Swift has two new range operators for creating ranges that can be used with
for-in loops. The ..< operator is the half-open range operator; it includes the
value on the left side but not the value on the right side. Here’s an example that
iterates 10 times, with i starting as 0 and ending as 9:
for i in 0 ..< 10 {

 println("i = \(i)")

}

The ... operator is the inclusive range operator. It includes the values on both
sides. This example iterates 10 times, with i starting as 1 and ending as 10:
for i in 1 ... 10 {

 println("i = \(i)")

}

When you use a for-in loop to iterate through a collection such as an Array, it
looks like this:
var itemIds: [Int] = generateItemIds()

for itemId in itemIds {

 println("itemId: \(itemId)")

}

The while loop iterates for as long as the test condition is true. If the test con-
dition is false at the start, the loop doesn’t iterate at all, and it is just skipped
entirely. For instance, this example will never actually print 100% complete since
the test condition becomes false once percentComplete == 100:
var percentComplete: Float = calculatePercentComplete()

while percentComplete < 100 {

 println("\(percentComplete)% complete")

 percentComplete = calculatePercentComplete()

}

If you change this to a do-while loop, the test condition is evaluated at the end
of the loop. This guarantees that the loop will iterate at least once and also means
it will iterate a final time when the test condition fails (which could be the first
iteration). This version updates the display one final time once the task being
monitored is complete:

1.1 Basic Syntax

Chapter 1 ◆ Introducing Swift 9

var percentComplete: Float = 0.0

do {

 percentComplete = calculatePercentComplete()

 println("\(percentComplete)% complete")

} while percentComplete < 100

When using a loop, there are times when you need to adjust the iterations by
either quitting iteration altogether or skipping a single iteration. Just as in
Objective-C, there are two keywords you can use for these purposes: break and
continue. You use break to immediately jump out of the loop and cancel any
further iterations:
var percentComplete: Float = 0.0

do {

 percentComplete = calculatePercentComplete()

 if taskCancelled() {

 println("cancelled")

 break

 }

 println("\(percentComplete)% complete")

} while percentComplete < 100

You use continue to end the current iteration and immediately start the next one:
var filesToDownload: [SomeFileClass] = filesNeeded()

for file in filesToDownload {

 if file.alreadyDownloaded {

 continue

 }

 file.download()

}

With nested loops, break and continue affect only the inner loop. Swift has a
powerful feature that Objective-C does not have: You can add labels to your loops
and then specify which loop you would like to break or continue out of. A label
consists of the name followed by a colon in front of the loop keyword:
var folders: [SomeFolderClass] = foldersToProcess()

outer: for folder in folders {

 inner: for file in folder.files {

 if shouldCancel() {

1.2 Basic Data Types

10 Swift for the Really Impatient

 break outer

 }

 file.process()

 }

}

1.2 Basic Data Types
Swift has a standard set of basic data types for storing numbers, strings, and Bool-
ean values.

By convention, types in Swift are named using camel case notation. Unlike in
Objective-C, there is no prefix (NS, CG, etc.) on the standard type names.

1.2.1 Int
For storing integer values, the basic type is Int. It is 32 bits deep on 32-bit devices
and 64 bits deep on 64-bit devices.

You can access the minimum and maximum values the type can store by using
the min and max static properties:
println("\(Int.min)")

//output on 32-bit device: -2147483648

//output on 64-bit device: -9223372036854775808

println("\(Int.max)")

//output on 32-bit device: 2147483647

//output on 64-bit device: 9223372036854775807

When you need an integer with a specific bit depth, you use Int8, Int16, Int32,
or Int64.

There are also unsigned variants of the Int types. You can prefix the Int type
name with a U to get the corresponding unsigned version: UInt8, UInt16, UInt32,
or UInt64.

1.2 Basic Data Types

Chapter 1 ◆ Introducing Swift 11

Because Swift is a strongly typed language, you can’t mix and match these Int
types haphazardly. You cannot even do basic math or comparisons with mixed
types. In Objective-C it’s common to see NSUInteger values assigned to or
compared with an NSInteger, with little regard for a possible overflow. This is
especially common when using the count property on an NSArray variable:
for (NSInteger i = 0; i < [someNSArray count]; ++i) {

 NSLog(@"%@", someNSArray[i]);

}

Since NSArray’s count method actually returns an NSUInteger value, this
example compares two different types. It even passes in the wrong type to the
array’s subscript. This is a bug just waiting to go BOOM!—most likely after you’ve
shipped the app, and a user has more data than you imagined or tested with, thus
hitting an overflow.

This sort of bug just can’t happen with Swift. The compiler won’t let you mix
unsigned and signed values, and it won’t let you mix variables with different bit
depths. Nor will it let you assign one type to another. For this reason, Apple rec-
ommends that you always use the Int type unless you specifically need a certain
bit depth or have to use an unsigned value (perhaps for really large numbers). This
helps you avoid having to convert one Int type to another. Apple has modified
the Cocoa classes to follow this guideline. As mentioned earlier in this chapter, in
Objective-C, NSArray’s count property returns an NSUInteger (unsigned), but in
Swift it returns an Int (signed), even though it can never be negative.

In cases in which you need to convert from one type to another, you can do so
by creating a new instance of the destination type, using the original value as its
initial value:
var a32BitInt: Int32 = 10

var a64BitInt: Int64 = Int64(a32BitInt)

//a64BitInt: 10 (in a 64-bit variable)

This works by creating a new Int64 with an initial value of a32BitInt.

Be careful, however, because this can create overflow situations. The compiler will
catch obvious overflows for you, but it cannot catch all instances, like this:
var a64BitInt: Int64 = Int64.max

var a32BitInt: Int32 = Int32(a64BitInt)

//error: a32BitInt overflows

1.2 Basic Data Types

12 Swift for the Really Impatient

 CAUTION

To ensure compatibility when transferring files between devices, any integer
variables that you’re writing to a file (or transmitting across a network) should
explicitly specify the bit depth. You should force the use of either 32- or 64-bit
variables to avoid possible type mismatches and/or corruption of the data
when reading in the saved values. If you store an Int on a 32-bit device and
then read it in on a 64-bit device, bad things can happen. Even if your app
doesn’t allow for transferring of files, a user can still restore settings originally
stored on a 32-bit device to a new 64-bit device and then encounter the same
problem. Use Int32, UInt32, Int64, or UInt64 for values you need to save.

1.2.2 Double and Float
When you need to work with decimal numbers in Swift, you can work with Float
and Double. Float is always a 32-bit value, while Double is always a 64-bit value,
regardless of the device architecture.

When using decimal literal values, the compiler always infers a Double type
and not a Float. Therefore, if you don’t need the precision of a 64-bit value, you
should explicitly declare the variable as a Float, like this:
var distance = 0.0

//distance is a Double

var seconds: Float = 0.0

//seconds is a Float

The following examples show some useful properties. These examples use a
Float, but they would work just the same with a Double:
var someFloat = Float.NaN

if someFloat.isNaN {

 println("someFloat is not a number")

}

someFloat = Float.in finity

if someFloat.isInfinite {

 println("someFloat is equal to infinity")

}

1.2 Basic Data Types

Chapter 1 ◆ Introducing Swift 13

someFloat = -Float.infinity

if someFloat.isInfinite {

 println("someFloat is equal to infinity,")

 println("even though it's really negative infinity")

}

if someFloat.isInfinite && someFloat.isSignMinus {

 println("someFloat is equal to negative infinity")

}

someFloat = 0/0

 if someFloat.isNaN {

 println("someFloat is not a number")

 println("note, we divided by zero and did not crash!")

}

1.2.3 Bool
The Bool type stores Boolean values and is very similar to what you’re used to in
Objective-C. However, Swift uses true and false rather than Objective-C’s YES
and NO.

In Objective-C, pretty much anything can be converted to a Boolean. If it is some-
thing, it’s treated as YES, and if it is nothing (e.g., nil), it’s NO. Here’s an example:
NSInteger someInteger = 0;

BOOL hasSome = someInteger;

//hasSome: NO

someInteger = 100;

hasSome = someInteger;

//hasSome: YES

NSObject* someObject = nil;

BOOL isValidObject = someObject;

//isValidObject: NO

This is not the case with Swift. With Swift, only expressions that explicitly return
a Bool may be used to define a Bool value. You can’t implicitly compare values to
0 or nil. Here’s an example:
var someInteger = 0

var hasSome:Bool = (someInteger != 0)

//hasSome: false

1.2 Basic Data Types

14 Swift for the Really Impatient

someInteger = 100

hasSome = (someInteger != 0)

//hasSome = true

1.2.4 Strings
Strings in Swift are very different from strings in Objective-C. In Swift, String
literals are simply text surrounded by double quotes:
var greetingString = "Hello World"

A String is implemented as a collection of Characters. Each Character rep-
resents a Unicode character, one of more than 110,000 characters and symbols
from more than 100 scripts. Characters are implemented with one of several
character encoding methods, such as UTF-8 or UTF-16. These encoding methods
use a variable number of bytes in memory to store each character. Because
characters vary in size, you cannot determine the length of a string by looking
at its size in memory, as you can in Objective-C. Instead, you must use the
countElements() function to determine how many characters are in a String.
countElements iterates through the string and looks at each character to deter-
mine the count. While Swift’s String is compatible with Objective-C’s NSString,
and you can use String wherever NSString is called for, the implementations are
different, and thus the element count may not be the same value you would get
from the NSString length property. This is because length returns the number
of 16-bit code units in the UTF-16 version of the NSString, and some Unicode
characters use more than 1. You can use the utf16Count property of a String to
access the NSStrings length equivalent:
var myPuppy = "Harlow looks just like this: "

println("\(countElements(myPuppy))")

//output: 30

println("\(myPuppy.utf16Count)")

//output: 31, uses 2 16-bit code units

You can concatenate Strings together by using the + operator:
var firstName = "Sabrina"

var lastName = "Wood"

var displayName = firstName + " " + lastName

//displayName: Sabrina Wood

1.2 Basic Data Types

Chapter 1 ◆ Introducing Swift 15

You can also append one string to another by using the += operator:
var name = "Katelyn"

name += " Millington"

//name: Katelyn Millington

Since a String is a collection of Characters, you can iterate through them by
using a for-in loop:
 var originalMessage = "Secret Message"

var unbreakableCode = ""

for character in originalMessage {

 unbreakableCode = String(character) + unbreakableCode

}

//unbreakableCode: egasseM terceS

Notice that you cannot concatenate a Character and a String together. You
must create a new String that contains the character and concatenate that to the
unbreakableCode variable.

The syntax for comparing strings is also much improved in Swift over
Objective-C. For example, compare the following Objective-C code:
NSString* enteredPasswordHash = @"someSaltedHash";

NSString* storedPasswordHash = @"someSaltedHash";

BOOL accessGranted = [enteredPasswordHash isEqualToString:
➥storedPasswordHash];

//accessGranted: YES

to this Swift code:
var enteredPasswordHash = "someSaltedHash"

var storedPasswordHash = "someSaltedHash"

var accessGranted = (enteredPasswordHash == storedPasswordHash)

//accessGranted: true

1.2.5 Arrays
Arrays are one of the collection types offered in Swift. An array is an ordered list
of items of the same type. In Swift, when you declare an array, you must specify
what type it will contain. Once you’ve done that, it can contain only that type.
This ensures that when you pull an item out of the array, you’re guaranteed to
have the type you expect.

1.2 Basic Data Types

16 Swift for the Really Impatient

To create an array literal, you surround a list of elements with square brackets, like
this:
var dogs = ["Harlow", "Cliff", "Rusty", "Mia", "Bailey"]

Be sure that all elements are of the same type, or you will receive a compile-time
error.

There are two ways to indicate the type of an array: the long form and the short
form. These two ways are equivalent and can be used interchangeably:

■ Long form: Array<ValueType>

■ Short form: [ValueType]

The syntax to declare and initialize an array using the short form is:
 var people: [String] = [] //explicit type

//or, alternately

var people = [String]() //implicit type

This example declares an array variable called people, which will contain String
values, and you initialize it to an empty array.

You can use type inference to let the compiler determine the types of objects in
the array, provided that you give enough information when you declare it:
let bosses = ["Jeff", "Kyle", "Marcus", "Rob", "Sabrina"]

Because you’re initializing the array with strings, the compiler infers that bosses
is an array of type [String].

 NOTE

When you create an immutable array in Swift, you cannot add, change, or
remove any items in that array. You can, however, change properties on the
elements of the array.

Given an array variable, there are several key methods you can use to access or
modify the contents:
var primaryIds: [Int] = [1, 2, 3]

//primaryIds: [1, 2, 3]

println(primaryIds.count)

//output: 3

primaryIds.append(4)

//primaryIds: [1, 2, 3, 4]

1.2 Basic Data Types

Chapter 1 ◆ Introducing Swift 17

primaryIds.insert(5, atIndex:0)

//primaryIds: [5, 1, 2, 3, 4]

primaryIds.removeAtIndex(1)

//primaryIds: [5, 2, 3, 4]

primaryIds.removeLast()

//primaryIds: [5, 2, 3]

primaryIds.removeAll()

//primaryIds: []

println(primaryIds.isEmpty)

//output: true

You can also use subscripting to access a specific element or range of elements:
var primaryIds: [Int] = [1, 2, 3]

//primaryIds: [1, 2, 3]

println(primaryIds[2])

//output: 3 (arrays are zero based)

primaryIds[2] = 12

//primaryIds: [1, 2, 12]

primaryIds[0...1] = [10]

//primaryIds: [10, 12]

//notice the [] surrounding the 10

println(primaryIds[3])

//error: 3 is beyond the bounds (0...2) of the array

Make sure you don’t attempt to access an element that is beyond the bounds of the
array, though, or you’ll encounter a run-time error, and your app will crash.

There are some important differences between the Objective-C NSArrays that
you’re used to and arrays in Swift. In Objective-C, you can only store objects
that are of type NSObject (or a subclass) in an NSArray. This is why classes such
as NSNumber exist: They’re object wrappers around basic types so you can use
them in collections. You don’t add 3 to an NSArray; you add an NSNumber with a
value set to 3 to the array. In Swift, you can add structs, enums, or classes to an
array, and because all the base types are implemented as structs, they can all be
easily added directly to an array, including literals such as 3. What happens when
they are added to the array, however, differs depending on the type that is added.
Recall the rules we discussed earlier, about how Swift passes structs compared
to how it passes classes. These rules come into play when you’re adding objects
to an array. If you add an enum or a struct to an array, you add a copy, not a
reference to the original object. If you add a class, however, you add a reference

1.2 Basic Data Types

18 Swift for the Really Impatient

to the object. The same rules apply when you pass an array. The array itself is
copied because it is a struct, and then each element is either copied or referenced,
depending on whether it is an enum, a struct, or a class.

This means you can alter what elements are in each array independently, without
affecting another array. If the elements are enums or structs, you can also alter
them independently. If the elements are classes, changing one element will have
an effect on the same element in the other array (as well as that object if it exists
outside the array).

Here you can see these concepts in action:
 var coordA = CGPoint(x: 1, y: 1)

var coordB = CGPoint(x: 2, y: 2)

var coords = [coordA, coordB]

//coordA/B are copied into the coords array

//coords: [{x 1 y 1}, {x 2 y 2}]

var copyOfCoords = coords

//copyOfCoords: [{x 1 y 1}, {x 2 y 2}]

coordA.x = 4

//coordA: {x 4 y 1}

//coords and copyOfCoords are unchanged

//coords: [{x 1 y 1}, {x 2 y 2}]

coords[0].x = 10

//coords: [{x 10 y 1}, {x 2 y 2}]

//copyOfCoords is unchanged, because each element is a struct

//copyOfCoords: [{x 1 y 1}, {x 2 y 2}]

Because arrays are collections, you can iterate over the contents by using a for-in
loop:
 for coord in coords {

 println("Coord(\(coord.x), \(coord.y))")

}

You can also use the enumerate() function to access an array index inside the
for-in loop:
 for (index, coord) in enumerate(coords) {

 println("Coord[\(index)](\(coord.x), \(coord.y))")

}

1.2 Basic Data Types

Chapter 1 ◆ Introducing Swift 19

1.2.6 Dictionaries
A dictionary is an unordered collection of items of a specific type, each associated
with a unique key.

As with arrays, there are two ways to indicate the type of a dictionary: the
long form and the short form. These two ways are equivalent and can be used
interchangeably:

■ Long form: Dictionary<KeyType, ValueType>

■ Short form: [KeyType: ValueType]

The syntax to declare and initialize a dictionary using the short form is:
 var people: [String:SomePersonClass] = [:] //explicit type

//or, alternately

var people = [String:SomePersonClass]() //implicit type

This example declares a dictionary variable called people, which will contain
SomePersonClass values associated with String keys, and you initialize it to an
empty dictionary.

You can use type inference to let the compiler determine the types of objects in
the dictionary when assigning a dictionary literal during the declaration:
 var highScores = ["Dave":101, "Aaron":102]

Because you’re initializing the dictionary with keys and values, the compiler infers
that the highScores variable is a dictionary of type [String:Int].

You can use any type that conforms to the Hashable protocol as the KeyType
value. All of Swift’s basic types are hashable by default, so any of them can be used
as a key.

You can access and/or manipulate specific values in a dictionary with
subscripting:
 println(highScores["Dave"])

//output: Optional(101)

highScores["Sarah"] = 103

//added a new player

println(highScores["Sarah"])

//output: Optional(103)

 //Don't worry about the Optional() portion of the output.

//We introduce that in Chapter 2, "Diving Deeper into

//Swift's Syntax."

Exercises

20 Swift for the Really Impatient

Because a dictionary is a collection, you can iterate through it with a for-in loop:
for (playerName, playerScore) in highScores {

 println("\(playerName): \(playerScore)")

}

You can determine the number of elements in a dictionary by using the count
property. Dictionaries also have two array properties, keys and values, that can
be iterated through independently.

Exercises
1. Declare and initialize a pair of variables for each type listed in this chapter,

both explicitly and using type inference. What do you need to do to get the
compiler to infer the Float type?

2. Create a constant with an emoji character in the name. Are you able to easily
use the constant? Does this help with the readability of your code?

3. How would you explicitly declare an array that stores another array of Ints as
each element? Show how you would access elements by using subscripts.

4. Set up a dictionary that uses Ints as the key. How is this different from using
an array? When could using a dictionary such as this be better than using an
array?

5. Create a Fizz Buzz implementation. Iterate through the numbers from 1 to 100.
If a number is evenly divisible by 3, print Fizz. If the number is evenly divisible
by 5, print Buzz. If the number is evenly divisible by both 3 and 5, print Fizz
Buzz. For all other numbers, just print the number.

 149

Symbols

<> (angle brackets), generic functions, 92

== operator, 79

+ operator function, 115

? (question mark), optional chaining, 85

A

access control, 40, 68-73

accessing values from implicitly unwrapped
optionals, 86

adding

labels to loops, 9

return types to functions, 110

Swift files to Objective-C projects, 131

algorithms, generics, 91-92

alloc method, 120

AnyObject types, 123-124

Apple framework, 120

arrays, 15-18

associated types, 98-99

B

binding data, 37

Bool data type, 13

break statement, 7

bridged types, 126-128

bridge header file (Objective-C), 131

C

calling functions in Objective-C, 121

camel-based names, 129

carousels, representing with generic types,
94-97

case statements, 36-37

chaining optionals, 75

Characters, 14

classes, 3, 40, 45-74

defining, order of items, 49

initializing, 120

instance methods, 45-49

nested types, defining, 136-137

Objective-C, 130

creating, 120

selectors, 128, 129

subclassing, 124-125

passing by reference, 3

properties, initializing, 55-57

protocols, 66

Index

Index

150 Swift for the Really Impatient

singletons, 137-138

subclassing, 51-52

type methods, 45-74

when to use, 51

class methods, 48

clauses, where clause, 100-101

closure expressions, 29-31

closures, 29, 112

argument names, 113

custom closures, 117

functional programming patterns, 115

nested functions, 30-31

syntax, 112-113

thread-safe, 141

trailing closures, 113-114

Cocoa framework, 119

collections

dictionaries, 19-20

in Objective-C, 127

combining

functions, 115

tuples and switch statements, 35

comments, 2

compatibility, Objective-C and Swift, 131-133

compiler, type inference, 28-29

computed properties, 57-60, 96

conditionals, 6-7

constraints, adding to type parameters, 93

control flow, 6

convenience initializers, 56

convenience keyword, 56

converting

between String and NSString, 126

NSArray to Array, 127

NSDictionary to Swift, 127

NSNumber to Swift, 127

Core Graphics framework, 130

count computed property, 96

creating

arrays, literals, 16

classes in Objective-C, 120-121

custom operators, 147-148

functions, 104

generic types, 94-97

implicitly wrapped optionals, 86

tuples, 32-33

C-style types, syntax, 130

currentPosition property, 96

custom closures, 117

custom operators, 147-148

customSort() function, 111

D

data binding, 36-37

data structures, 3

data types

arrays, 15-18

associated types, 98-101

Bool, 13

bridged types, 126-128

converting NSNumber to Swift type, 127

 Index

 151

C-style types, 129

Double, 12-13

Float, 12-13

generic types, 94

carousels, representing, 94-97

creating, 94

dictionaries, 94

extensions, 96

subclassing, 97

Int, 10-12

primitive data types, working with, 129

String, 14-15

dealloc method, 120

declaring

arrays, 16

dictionaries, 19

functions

external parameter names, 105

return types, 110-111

properties in Objective-C, 59

variables, 4

default level of access control, 72-73

default parameter values, 107-108

defining

classes

nested types, 136-137

order of items, 49

default value for parameters, 107

functions, 104

generators, 144

parameters, 105

deinit() function, 48, 120

designated initializers, 56

dictionaries, 19-20, 28, 94

dispatch_after() function, 140

dispatch_apply() function, 140

dispatch_async() function, 139-140

dispatch_once() function, 139

Double data type, 12-13

do-while loops, 8

downcasting, 127-128

E

enhancing readability of functions, 106

entities, access control, 68-73

enumeration, 40-45, 128

enums, 3

equality checking, 79

expected return values, handling in
Objective-C, 123

exposing Swift code to Objective-C, 133

expressions, closures, 112

custom closures, 117

functional programming patterns, 115

trailing closures, 114

extensions, 67-68, 96-97

external parameter names, 105

functions, 106

shorthand syntax, 107

Index

152 Swift for the Really Impatient

F

factory methods, 132

failable initializer, 77

fallthrough behavior, 34

final keyword, 54

finding return type with pattern
matching, 123

Float data type, 3, 12-13

fold functions, 116

forced unwrapping, 80

forcing requirements on associated
types, 101

for-in loops, 7-8

for loops, 7

frameworks

Apple framework, 120

Core Graphics framework, 130

Objective-C

AnyObject types, 123-124

bridged types, 126

importing, 120

primitive data types, working with, 129

functional programming patterns, 114-117

custom closures, 117

fold functions, 116

functions, 29, 103-104

calling in Objective-C, 121

closures, 112

argument names, 113

syntax, 113

thread-safe, 141

trailing closures, 113-114

combining, 115

customSort() function, 111

defining, 104

deinit() function, 120

dispatch_after() function, 140

dispatch_apply() function, 140

dispatch_async() function, 139-140

dispatch_once() function, 139

enhancing readability, 106

fold, 116

generic functions, 26-27, 92-93

syntax, 92

type parameters, 93

where clause, 100

init(), 47-74

nested functions, 30-31

NSJSONSerialization.JSONObjectWith-
Data() function, 123

operator overloading, 146-147

optional chaining, 85

parameters, 104-105

default parameter values, 107-108

external parameter names, 105-106

inferring, 113

inout keyword, 109

local parameter names, 106

modifying, 109

variadic parameters, 108-109

reduce() function, 115

 Index

 153

returning multiple values from, 33

return types, 110-111

sort() function, 110

tuples, 111-112

G

GCD (Grand Central Dispatch)

dispatch_after() function, 140

dispatch_apply() function, 140

dispatch_async() function, 139-140

dispatch_once() function, 139

generate() method, 141

generators, 141-145

generic functions, 92-93

syntax, 92

type parameters, 93-94

where clause, 100

generics, 21, 25-27, 91. See also generic types

generic functions, 92-93

syntax, 92

type parameters, 93

generic types, 94

reasons to use, 92

generic types, 94

carousels, representing, 94-97

creating, 94

dictionaries, 94

extensions, 96

subclassing, 97

getter method, 47-74, 59

global functions, 29

H-I

handling expected return values in
Objective-C, 123

if statements, optionals, 78

immutable variables, 2

implicitly unwrapped optionals, 75

accessing values, 86

creating, 86

initializing interdependent objects, 87

importing

Objective-C framework, 120

Swift classes to Objective-C, 131

import keyword, 120

inferring parameters, 113

infix operators, 145-146

inheritance, subclassing, 51-52

init() function, 47-74

init() method, 48-50

initialization, 55-57

classes, 120

dictionaries, 19

interdependent objects, 87

inout keyword, 109

instance methods, 45-74

Int data type, 10-12

integrating

Objective-C and Swift projects, 131

Objective-C in Swift projects, 133

interdependent objects, implicitly
unwrapped optionals, 87

Index

154 Swift for the Really Impatient

internal entities, 69

Int type, 3

invalid data

implicitly unwrapped optionals,
creating, 86

optional chaining, 81-83

functions, 85

methods, 83-84

on nested optional properties, 83

subscripting, 83-84

syntax, 82, 85

optionals, 75-78

equality checking, 79

forced unwrapping, 80

implicitly wrapped optionals, 86-87

using with if statements, 78

validity checking, 78-79

representing in Objective-C, 76

isEmpty property, 96

iterations

strings, 15

loops, 9

J-K

keywords

convenience, 56

final, 54

import, 120

inout, 109

lazy, 62-63

let, 2

override, 54

returned keywords, inferring, 113

var, 105

L

labels, adding to loops, 9

lazy properties, 63

let keyword, 2

levels of access control, 69

literals, creating, 16

local parameter names, 106

long form, declaring arrays, 16

loops, 7-9

do-while loops, 8

for-in loops, 7-8

for loops, 7

iterations, 9

labels, adding, 9

while loops, 8

M

matching ranges, 35

memory allocation in Swift, 120

methods

alloc method, 120

dealloc method, 120

factory methods, 132

generate() method, 141

init(), 48

next(), 96

optional chaining, 83-84

 Index

 155

overloading, 52-53

overriding, 40, 54-55

mixing variable types, 4

modifying functions, parameters, 109

multiple type parameters for generic
functions, 94

mutable variables, 2

N

nested comments, 2

nested functions, 29-31

nested optional properties, optional
chaining, 83

nested types, 136-137

nesting structs in classes, 138

next() method, 96

nil (Objective-C), 76-78, 122

NSArray variable, 11

NSDictionary, converting to Swift, 127

NSJSONSerialization.JSONObjectWith-
Data() function, 123

NSNumber, converting to Swift type, 127

NSString, converting to String, 126

O

Objective-C

AnyObject types, 122-124

bridged types, 126-128

classes, 130

creating, 120

selectors, 128-129

collections, 127

expected return values, handling, 123

functions, calling, 121

getter method, 59

importing, 120

integrating in Swift projects, 131

nil, 122

NSArray, converting to Array, 127

NSDictionary, converting to Swift, 127

NSNumber, converting to Swift type, 127

objects, creating, 121

optionals, 122

primitive data types, working with, 129

properties, declaring, 59

representing optional data, 76

structures, 51

subclassing, 124-125

Swift classes, importing, 131

types, 121

objects

AnyObject type in Objective-C, 122

subscripting, 63-64

observers, 60-62

operator overloading, 146-147

operators, 146

== operator, 79

+ operator function, 115

custom, 147-148

infix operators, 145

postfix operators, 145

prefix operators, 145

Index

156 Swift for the Really Impatient

optional binding, 80

optional chaining, 75, 81-83

functions, 85

methods, 83-84

on nested optional properties, 83

subscripting, 83-84

syntax, 82, 85

optionals, 21-24, 75-78

equality checking, 79

forced unwrapping, 80

implicitly unwrapped optionals, 75

accessing values, 86

initializing interdependent objects, 87

interdependent objects, 87

in Objective-C, 122

using with if statements, 78

validity checking, 78-79

order of processing, fold functions, 116

overloading, 52-53

overloading operators, 146-147

overriding, 54-55

P-Q

parameters, 104-105. See also closures

default parameter values, 107-108

defining, 105

external parameter names, 105-107

inferring, 113

inout keyword, 109

local parameter names, 106

modifying, 109

type parameters

adding constraints, 93

for generic functions, 93

variadic parameters, 108-109

parent methods, overriding, 54

pattern matching, 34, 37

finding return type, 123

matching ranges, 35

switch statements, 81

postfix operators, 145-146

prefix operators, 145-146

primitive data types, working with, 129

Printable protocol, 96-97

private entities, 69

projects (Objective-C), adding Swift files
to, 131

properties, 40, 57-59

computed properties, 57-60, 96

currentPosition property, 96

declaring in Objective-C, 59

initializing, 55-57

lazy properties, 62-63

observers, 60-62

stored properties, 57

synthesizing, 58

protocols, 40, 65-67

associated types, 98-99

Printable protocol, 96-97

Traversable protocol, 98

public entities, 69

 Index

 157

R

range operators, for-in loops, 8

reasons to use generics, 92

reduce() function, 115

representing

carousels with generic types, 94-97

optional data in Objective-C, 76

requirements, forcing on associated
types, 101

returned keywords, inferring, 113

returning

functions from functions, 110

multiple values from functions, 33

return types, 110-111

finding with pattern matching, 123

tuples, 111-112

S

selectors, 128-129

sequences, 143-145

setter method, 47

short form, declaring arrays, 16

shorthand syntax, external parameter
names, 107

single-line comments, 2

singletons, 137-138

soft singletons, 137-138

sort() function, 110

statements

case statements, 37

switch statements, 34-37

static variables, 138

stored properties, 57

strict singletons, 137

String data type

converting to NSString, 126

iterating, 15

string interpolation, 5

strings, 14

strongly typed languages, 3

structs, 3, 138

structures, 49

init() method, 50

in Objective-C, 51

when to use, 51

subclassing, 40, 51-52

generic types, 97

Objective-C, 124

Objective-C classes, 125

subscripting, 63-64, 83-84

Swift, integrating Objective-C in
projects, 131

switch statements, 36

fallthrough behavior, 34-35

flow control, 35

pattern matching, 37, 81

syntax, 2

closure expressions, 31

closures, 112-113

C-style types, 129-130

extensions, 68

generics, 25-27

Index

158 Swift for the Really Impatient

local parameter names, 106

optional chaining, 82, 85

optionals, 22-24

synthesizing properties, 58

T-U

thread-safe closures, 141

trailing closures, 113-114

Traversable protocol, 98

true singletons, 137

tuples, 32-35, 111-112

type inference, 4, 28-29

type methods, 45-74

type parameters

adding constraints, 93

for generic functions, 93

using multiple for generic functions, 94

types

in Objective-C, 121

mixing, 4

nested types, 136-137

variables, 3

V

validity checking, 78-79

values, accessing from implicitly unwrapped
optionals, 86, 107-108

variables, 5

declaring, 4

immutable, 2

mutable, 2

NSArray, 11

static variables, 138

string interpolation, 5

types, 3-4

variadic parameters, 108-109

var keyword, 105

W-X-Y-Z

where clause, 100-101

while loops, 8

writing code

closures, 112

argument names, 113

custom closures, 117

functional programming patterns, 115

syntax, 112-113

thread-safe, 141

trailing closures, 113-114

GCD

dispatch_after() function, 140

dispatch_apply() function, 140

dispatch_async() function, 139-140

dispatch_once() function, 139

nested types, 136

WWDC 2014 (Apple Worldwide Developers
Conference 2014), 1

Xcode, 131

aw_regthisprod_7x9.125.indd 1 12/5/08 3:36:19 PM

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 Introducing Swift
	1.1 Basic Syntax
	1.1.1 Variables and Constants
	1.1.2 String Interpolation
	1.1.3 Control Flow

	1.2 Basic Data Types
	1.2.1 Int
	1.2.2 Double and Float
	1.2.3 Bool
	1.2.4 Strings
	1.2.5 Arrays
	1.2.6 Dictionaries

	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H-I
	J-K
	L
	M
	N
	O
	P-Q
	R
	S
	T-U
	V
	W-X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

