A GUIDE TO SIX SIGMA AND PROCESS IMPROVEMENT FOR PRACTITIONERS AND STUDENTS

Second Edition

Foundations, DMAIC, Tools, Cases, and Certification
A GUIDE TO SIX SIGMA AND PROCESS IMPROVEMENT FOR PRACTITIONERS AND STUDENTS

Second Edition
This page intentionally left blank
A Guide to Six Sigma and Process Improvement for Practitioners and Students

Foundations, DMAIC, Tools, Cases, and Certification
Second Edition

Howard S. Gitlow
Richard J. Melnyck
David M. Levine
This book is dedicated to:
Shelly Gitlow
Ali Gitlow
Abraham Gitlow
Beatrice Gitlow

Jack Melnyck
Eileen Melnyck

Lee Levine
Reuben Levine
Contents

Section I Building a Foundation of Process Improvement Fundamentals

Chapter 1 You Don’t Have to Suffer from the Sunday Night Blues! 1

- What Is the Objective of This Chapter? ... 1
- Sarah’s Story .. 2
- Nine Principles of Process Improvement to Get the Most Out of This Book 3
- Structure of the Book .. 14
- Let’s Go! .. 16
- References .. 16

Chapter 2 Process and Quality Fundamentals 17

- What Is the Objective of This Chapter? ... 17
- Process Fundamentals .. 18
 - What Is a Process? ... 18
 - Where Do Processes Exist? ... 18
 - Why Does Understanding Processes Matter? 19
 - What Is a Feedback Loop and How Does It Fit into the Idea of a Process? . 19
 - Some Process Examples to Bring It All Together! 19
- Variation Fundamentals ... 24
 - What Is Variation in a Process? .. 24
 - Why Does Variation Matter? ... 25
 - What Are the Two Types of Variation? 25
 - How to Demonstrate the Two Types of Variation 27
 - Red Bead Experiment ... 30
- Quality Fundamentals ... 31
 - Goal Post View of Quality .. 31
 - Continuous Improvement Definition of Quality—Taguchi Loss Function 32
 - More Quality Examples ... 33
- Takeaways from This Chapter ... 33
- References .. 34
Chapter 3 Defining and Documenting a Process

What Is the Objective of This Chapter?
A Story to Illustrate the Importance of Defining and Documenting a Process
Fundamentals of Defining a Process
 Who Owns the Process? Who Is Responsible for the Improvement of the Process?
 What Are the Boundaries of the Process?
 What Are the Process’s Objectives? What Measurements Are Being Taken on the Process with Respect to Its Objectives?
Fundamentals of Documenting a Process
 How Do We Document the Flow of a Process?
 Why and When Do We Use a Flowchart to Document a Process?
 What Are the Different Types of Flowcharts and When Do We Use Each?
 What Method Do We Use to Create Flowcharts?
Fundamentals of Analyzing a Process
 How Do We Analyze Flowcharts?
 Things to Remember When Creating and Analyzing Flowcharts
Takeaways from This Chapter
References

Section II Creating Your Toolbox for Process Improvement

Chapter 4 Understanding Data: Tools and Methods
What Is the Objective of This Chapter?
What Is Data?
 Types of Numeric Data
Graphing Attribute Data
 Bar Chart
 Pareto Diagrams
 Line Graphs
Graphing Measurement Data
 Histogram
 Dot Plot
 Run Chart
Measures of Central Tendency for Measurement Data
 Mean
 Median
 Mode
Measures of Central Tendency for Attribute Data 61
 Proportion ... 61
Measures of Variation ... 62
 Range ... 62
 Sample Variance and Standard Deviation 63
 Understanding the Range, Variance, and Standard Deviation 64
Measures of Shape ... 66
 Skewness ... 66
More on Interpreting the Standard Deviation 68
How-To Guide for Understanding Data: Minitab 17 User Guide 70
 Using Minitab Worksheets ... 70
 Opening and Saving Worksheets and Other Components 71
 Obtaining a Bar Chart ... 74
 Obtaining a Pareto Diagram ... 76
 Obtaining a Line Graph (Time Series Plot) 78
 Obtaining a Histogram ... 79
 Obtaining a Dot Plot ... 82
 Obtaining a Run Chart .. 84
 Obtaining Descriptive Statistics .. 85
Takeaways from This Chapter ... 87
References ... 88
Additional Readings ... 88

Chapter 5 Understanding Variation: Tools and Methods 89
What Are the Objectives of This Chapter? 89
What Is Variation? ... 89
 Common Cause Variation ... 89
 Special Cause Variation ... 90
Using Control Charts to Understand Variation 90
 Attribute Control Charts ... 90
 Variables Control Charts ... 91
 Understanding Control Charts ... 91
 Rules for Determining Out of Control Points 93
Control Charts for Attribute Data .. 98
 P Charts ... 98
 C Charts .. 104
 U Charts .. 106
Chapter 6 Non-Quantitative Techniques: Tools and Methods 145

What Is the Objective of This Chapter? 145

High Level Overview and Examples of Non-Quantitative Tools and Methods 145

 Flowcharting ... 146
 Voice of the Customer (VoC) 146
 Supplier-Input-Process-Output-Customer (SIPOC) Analysis 149
 Operational Definitions .. 151
 Failure Modes and Effects Analysis (FMEA) 153
 Check Sheets .. 153
 Brainstorming .. 155
 Affinity Diagrams ... 156
 Cause and Effect (Fishbone) Diagrams 157
 Pareto Diagrams ... 159
 Gantt Charts ... 159
 Change Concepts ... 160
 Communication Plans .. 163
Chapter 7 Overview of Process Improvement Methodologies.............. 203
What Is the Objective of This Chapter? ... 203
SDSA Cycle. ... 203
 SDSA Example ... 204
PDSA Cycle ... 206
 PDSA Example ... 207
Kaizen/Rapid Improvement Events ... 209
 Kaizen/Rapid Improvement Events Example 210
DMAIC Model: Overview .. 212
 Define Phase .. 213
 Measure Phase ... 213
 Analyze Phase ... 214
 Improve Phase .. 216
 Control Phase .. 216
 DMAIC Model Example ... 216
DMADV Model: Overview .. 218
 Define Phase .. 218
 Measure Phase ... 218
 Analyze Phase ... 218
 Design Phase .. 219
Verify/Validate Phase ... 219
DMADV Model Example .. 219
Lean Thinking: Overview .. 221
The 5S Methods .. 221
Total Productive Maintenance (TPM) .. 223
Quick Changeover (Single Minute Exchange of Dies—SMED) 224
Poka-Yoke ... 225
Value Streams ... 226
Takeaways from This Chapter ... 227
References .. 228

Chapter 8 Project Identification and Prioritization:
Building a Project Pipeline ... 231

What Is the Objective of This Chapter? .. 231
Project Identification .. 231
 Internal Proactive .. 232
 Internal Reactive ... 234
 External Proactive ... 235
 External Reactive ... 236
Using a Dashboard for Finding Projects 238
 Structure of a Managerial Dashboard 238
 Example of a Managerial Dashboard 239
 Managing with a Dashboard .. 240
Project Screening and Scoping .. 240
 Questions to Ask to Ensure Project Is Viable 241
Estimating Project Benefits ... 242
Project Methodology Selection—Which Methodology Should I Use? 243
Estimating Time to Complete Project 245
Creating a High Level Project Charter 246
Problem Statement ... 247
Prioritizing and Selecting Projects .. 247
 Prioritizing Projects Using a Project Prioritization Matrix 248
 Final Project Selection ... 250
Executing and Tracking Projects .. 250
 Allocating Resources to Execute the Projects 250
 Monthly Steering Committee (Presidential) Reviews 251
Takeaways from This Chapter ... 251
References .. 252
Contents

Section III Putting It All Together—Six Sigma Projects

Chapter 9 Overview of Six Sigma Management 253
- What Is the Objective of This Chapter? 253
- Non-Technical Definition of Six Sigma Management 253
- Technical Definition of Six Sigma 253
- Where Did Six Sigma Come From? 253
- Benefits of Six Sigma Management 254
- Key Ingredient for Success with Six Sigma Management 255
- Six Sigma Roles and Responsibilities 255
 - Senior Executive ... 255
 - Executive Steering Committee 256
 - Project Champion .. 256
 - Process Owner .. 257
 - Master Black Belt .. 257
 - Black Belt .. 258
 - Green Belt ... 259
- Green Belt Versus Black Belt Projects 260
- Six Sigma Management Terminology 260
- Next Steps: Understanding the DMAIC Model 264
- Takeaways from This Chapter 264
- References ... 265
- Additional Readings ... 265
- Appendix 9.1 Technical Definition of Six Sigma Management 266

Chapter 10 DMAIC Model: “D” Is for Define 273
- What Is the Objective of This Chapter? 273
- Purpose of the Define Phase 273
- The Steps of the Define Phase 274
 - Activate the Six Sigma Team 274
 - Project Charter .. 276
 - SIPOC Analysis .. 283
 - Voice of the Customer Analysis 286
 - Definition of CTQ(s) .. 288
 - Create an Initial Draft of the Project Objective 289
- Tollgate Review: Go-No Go Decision Point 290
- Keys to Success and Pitfalls to Avoid in the Define Phase 291
Chapter 13 DMAIC Model: “I” is for Improve

What Is the Objective of This Chapter?

Purpose of the Improve Phase

The Steps of the Improve Phase

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate Alternative Methods for Performing Each Step in the Process</td>
<td>358</td>
</tr>
<tr>
<td>Select the Best Alternative Method (Change Concepts) for All of the CTQs</td>
<td>360</td>
</tr>
<tr>
<td>Create a Flowchart for the Future State Process</td>
<td>360</td>
</tr>
<tr>
<td>Identify and Mitigate the Risk Elements for New Process</td>
<td>361</td>
</tr>
<tr>
<td>Run a Pilot Test of the New Process</td>
<td>362</td>
</tr>
<tr>
<td>Collect and Analyze the Pilot Test Data</td>
<td>362</td>
</tr>
<tr>
<td>Go-No Go Decision Point</td>
<td>364</td>
</tr>
<tr>
<td>Keys to Success and Pitfalls to Avoid</td>
<td>365</td>
</tr>
</tbody>
</table>
Chapter 14 DMAIC Model: “C” Is for Control 375
What Is the Objective of This Chapter? 375
Purpose of the Control Phase 375
The Steps of the Control Phase 376
 Reduce the Effects of Collateral Damage to Related Processes 376
 Standardize Improvements (International Standards Organization [ISO]) 379
 Develop a Control Plan for the Process Owner 380
 Identify and Document the Benefits and Costs of the Project 383
 Input the Project into the Six Sigma Database 383
 Diffuse the Improvements throughout the Organization 383
 Conduct a Tollgate Review of the Project 384
Keys to Success and Pitfalls to Avoid 385
Case Study: Reducing Patient No Shows in an Outpatient Psychiatric Clinic—
Control Phase .. 386
 Reduce the Effects of Collateral Damage to Related Processes 386
 Standardize Improvements (International Standards Organization [ISO]) 386
 Develop a Control Plan for the Process Owner 387
 Financial Impact ... 387
 Input the Project into the Six Sigma Database 390
 Diffuse the Improvements throughout the Organization 390
 Champion, Process Owner, and Black Belt Review the Project 390
Takeaways from This Chapter 391
References .. 392
Additional Readings ... 392
Chapter 15 Maintaining Improvements in Processes, Products-Services, Policies, and Management Style. ... 393

What Is the Objective of This Chapter? .. 393
Improving Processes, Products-Services, and Processes: Revisited. 393
Case Study 1: Failure in the Act Phase of the PDSA Cycle in Manufacturing. 393
Case Study 2: Failure in the Act Phase of the PDSA Cycle in Accounts Receivable. ... 394
A Method for Promoting Improvement and Maintainability 396
Dashboards ... 396
Presidential Review of Maintainability Indicators .. 397
The Funnel Experiment and Successful Management Style 398
Rule 1 Revisited .. 398
Rule 4 Revisited .. 398
Succession Planning for the Maintainability of Management Style. 399
Succession Planning by Incumbent Model ... 399
Succession Planning by Creating Talent Pools Model 400
Succession Planning Using the Top-Down/Bottom-Up Model 400
Process Oriented Top-Down/Bottom-Up Succession Planning Model 401
Egotism of Top Management as a Threat to the Maintainability of Management Style ... 403
Six Indicators of Egotism That Threaten the Maintainability of Management Style ... 403
Summary ... 404
The Board of Directors Fails to Understand the Need for Maintainability in the Organization's Culture and Management Style 404
Definition of Culture/Management Style .. 404
Components of Board Culture .. 405
Shared Mission and Shared Values/Beliefs ... 405
Allocation of Work .. 405
Reducing Variability .. 406
Engagement ... 406
Trust ... 406
Takeaways from This Chapter ... 406
References ... 407
First, we thank the late W. Edwards Deming for his philosophy and guidance. Second, we thank everyone at the University of Miami and the University of Miami Miller School of Medicine for collaborating with us in all of our process improvement efforts. We have learned something from every single one of you! Third, we thank all the people who provided life lessons to us to make this book a reality. Finally, we thank Jeanne Glasser Levine for giving us the opportunity to write this second edition. Thank you one and all.
About the Authors

Dr. Howard S. Gitlow is Executive Director of the Institute for the Study of Quality, Director of the Master of Science degree in Management Science, and a Professor of Management Science, School of Business Administration, University of Miami, Coral Gables, Florida. He was a visiting professor at the Stern School of Business at New York University from 2007 through 2013, and a visiting professor at the Science University of Tokyo in 1990 where he studied with Dr. Noriaki Kano. He received his PhD in Statistics (1974), MBA (1972), and BS in Statistics (1969) from New York University. His areas of specialization are Six Sigma Management, Dr. Deming’s theory of management, Japanese Total Quality Control, and statistical quality control.

Dr. Gitlow is a Six Sigma Master Black Belt, a fellow of the American Society for Quality, and a member of the American Statistical Association. He has consulted on quality, productivity, and related matters with many organizations, including several Fortune 500 companies.

While at the University of Miami, Dr. Gitlow has received awards for outstanding teaching, outstanding writing, and outstanding published research articles.

Richard J. Melnyck is Assistant Vice President for Medical Affairs and Executive Director of Process Improvement at the University of Miami Miller School of Medicine and Health System. He is a Six Sigma Master Black Belt, the University of Miami faculty advisor for the American Society for Quality, the University of Miami Miller School of Medicine faculty advisor for the Institute for Healthcare Improvement, and a member of the Beta Gamma Sigma Sigma International Honor Society. Melnyck has taught process improvement in both the School of Business and the Miller School of Medicine at the University of Miami. He has consulted on quality, productivity, and related matters with many organizations. He received his MS in Management Science (2008), MBA (2002), and MS in Computer Information Systems (2002) from the University of Miami.
You Don’t Have to Suffer from the Sunday Night Blues!

What Is the Objective of This Chapter?

We all know someone who dreads Sunday night because he or she isn’t looking forward to going to work the next day. In fact, many of us know that person very well because that person is us!

Many employees are highly respected and well paid, and you may believe that they are happy with their jobs, but do not be fooled by their smiles. Many of them dislike their jobs. Many people are “burned out” at work. So, if you are an employee just trying to do your job and you think your job is boring, draining, and depressing, just think—you may have to do it for the rest of your work life! How’s that for something to look forward to?

Well, we are here to tell you that you don’t have to suffer from the Sunday night blues!

Before we tell you what you can do to make that happen we need to first tell you a little bit about intrinsic motivation. Intrinsic motivation comes from the sheer joy or pleasure of performing an act, in this case such as improving a process or making your job better. It releases human energy that can be focused into improvement and innovation of a system. As amazing as it may seem, work does not have to be a drain on your energy. If you can release the intrinsic motivation that lies within all of us it can actually fill you with energy so you can enjoy what you do and look forward to doing it, day after day and year after year. Many artists, athletes, musicians, and professors enjoy their work over the course of their lives. You can enjoy your work also, or at least you can enjoy it much more than you currently do. It just requires a redefinition of work and a management team that promotes the redefined view of work to release the intrinsic motivation within each of us.

In today’s world, many of us are asked to self-manage to a great extent, meaning we are given the autonomy and opportunity to direct our work to accomplish important organizational objectives. However, many of us do not take advantage of that opportunity. Why? The reason is that we do not have the tools to release that intrinsic motivation to make our jobs, our organizations, and most importantly our lives better. Now we do!

This book not only explains how it is possible for you to make both your work life and your personal life better using process improvement and Six Sigma, but it gives you the tools and methods to make it happen.
Sarah’s Story

Most people go into work every day and are confronted with a long list of crises that require immediate attention. Consider the story of Sarah who is an administrative assistant in a department in a large, urban, private university. Please note that Sarah has not read this book—yet. So she comes to work every day only to be greeted by a long to-do list of mini crises that are boring and repetitive. Sound familiar?

The mini crises include answering the same old questions from faculty and students, week after week after week:

- What room is my class in?
- Does the computer in room 312 work?
- What are my professor’s office hours?
- Are the copies I need for class (and requested only 5 minutes ago) ready? Blah, blah, blah.

These crises prevent Sarah from doing her “real” work, which keeps piling up. It is frustrating and depressing. If you ask Sarah what her job is, she will say: “I do whatever has to be done to get through the day without a major disaster.”

No one is telling Sarah she cannot improve her processes so that she doesn’t have to answer the same questions over and over again. In fact, her bosses would rather her not focus on answering the same old questions and instead prefer her to work on projects that actually add value. The problem is not that she doesn’t want to improve her processes; the problem is that she doesn’t know how.

Then one day somehow the stars align and Sarah finds a copy of our book on her desk, so she reads it. She starts to apply some of the principles of the book to her job and to her life, and guess what? Things begin to change for the better.

For example, instead of having people call her to see what room their class is in she employs something that she learns in the book called *change concepts*, which are approaches to change that have been found to be useful in developing solutions that lead to improvements in processes. In this case, she uses a change concept related to automation and sends out a daily autogenerated email to all students and staff to let them know what room their classes are located in. Utilizing the change concept eliminates the annoying calls she used to receive to see what room classes are in.

Can you identify with Sarah? Do you want to learn tools and methods that will help you transform your job, your organization, and your life? The upcoming chapters take you on that journey, the journey of process improvement.

Before we go through the structure of the book, it is important for you to understand some key fundamental principles. These are principles that you need to understand as a prerequisite to reading this book and are principles you need to keep referring back to if you want to
transform your job (to the extent management allows you to do it), your organization (if it is under your control), and your life through process improvement.

A young violinist in New York City asks a stranger on the street how to get to Carnegie Hall; the stranger’s reply is, “Practice, practice, practice.” The same thing applies to process improvement. The only way you get better at it is through practice, practice, practice, and it starts with the nine principles outlined in this chapter.

Nine Principles of Process Improvement to Get the Most Out of This Book

Process improvement and Six Sigma embrace many principles, the most important of which in our opinion are discussed in this section. When understood, these principles may cause a transformation in how you view life in general and work in particular (Gitlow, 2001; Gitlow, 2009).

The principles are as follows:

- **Principle 1**—Life is a process (a process orientation).
- **Principle 2**—All processes exhibit variation.
- **Principle 3**—Two causes of variation exist in all processes.
- **Principle 4**—Life in stable and unstable processes is different.
- **Principle 5**—Continuous improvement is always economical, absent capital investment.
- **Principle 6**—Many processes exhibit waste.
- **Principle 7**—Effective communication requires operational definitions.
- **Principle 8**—Expansion of knowledge requires theory.
- **Principle 9**—Planning requires stability. Plans are built on assumptions.

These principles are outlined in the following sections and appear numerous times throughout the book. Illustrated from the point of view of everyday life, it is your challenge to apply them to yourself, your job, and your organization.

Principle 1: Life is a process. A process is a collection of interacting components that transform inputs into outputs toward a common aim called a mission statement. Processes exist in all facets of life in general, and organizations in particular, and an understanding of them is crucial.

The transformation accomplished by a process is illustrated in Figure 1.1. It involves the addition or creation of time, place, or form value. An output of a process has *time value* if it is available when needed by a user. For example, you have food when you are hungry, or equipment and tools available when you need them. An output has *place value* if it is available where needed by a user. For example, gas is in your tank (not in an oil field), or wood
chips are in a paper mill. An output has *form value* if it is available in the form needed by a user. For example, bread is sliced so it can fit in a toaster, or paper has three holes so it can be placed in a binder.

Figure 1.1 Basic process

An example of a personal process is Ralph’s “relationship with women he dates” process. Ralph is 55 years old. He is healthy, financially stable, humorous, good looking (at least he thinks so!), and pleasant. At age 45 he was not happy because he had never had a long-term relationship with a woman. He wanted to be married and have children. Ralph realized that he had been looking for a wife for 20 years, with a predictable pattern of four to six month relationships—that is, two relationships per year on average; see **Figure 1.2**. That meant he had about 40 relationships over the 20 years.

Figure 1.2 Ralph’s relationship with women process

Ralph continued living the process shown in **Figure 1.2** for more than 20 years. It depressed and frustrated him, but he did not know what to do about it. Read on to the next principles to find out more about Ralph’s situation.
Chapter 1 You Don’t Have to Suffer from the Sunday Night Blues!

Principle 2: All processes exhibit variation. Variation exists between people, outputs, services, products, and processes. It is natural and should be expected, but it must be reduced. The type of variation being discussed here is the unit-to-unit variation in the outputs of a process (products or services) that cause problems down the production or service line and for customers. It is not diversity, for example, racial, ethnic, or religious, to name a few sources of diversity. Diversity makes an organization stronger due to the multiple points of view it brings to the decision making process.

Let’s go back to our discussion of unit-to-unit variation in the outputs of a process. The critical question to be addressed is: “What can be learned from the unit-to-unit variation in the outputs of a process (products or services) to reduce it?” Less variability in outputs creates a situation in which it is easier to plan, forecast, and budget resources. This makes everyone’s life easier.

Let’s get back to Ralph’s love life or lack thereof. Ralph remembered the reasons for about 30 of his 40 breakups with women. He made a list with the reason for each one. Then he drew a line graph of the number of breakups by year; see Figure 1.3.

![Time Series Plot of Number of Breakups](image)

Figure 1.3 Number of breakups by year

As you can see, the actual number of breakups varies from year to year. Ralph’s ideal number of breakups per year is zero; this assumes he is happy and in a long-term relationship with a woman whom he has children with. The difference between the actual number of breakups and the ideal number of breakups is unwanted variation. Process improvement and Six Sigma management help you understand the causes of unwanted waste and variation,
thereby giving you the insight you need to bring the actual output of a process and the ideal output of a process closer to each other.

Another example: Your weight varies from day to day. Your ideal daily weight would be some medically determined optimum level; see the black dots on Figure 1.4. Your actual daily weights may be something entirely different. You may have an unacceptably high average weight with great fluctuation around the average; see the fluctuating squares on Figure 1.4. Unwanted variation is the difference between your ideal weight and your actual weights. Process improvement and Six Sigma management help you understand the causes of this variation, thereby giving you the insight you need to bring your actual weight closer to your ideal weight.

![Actual versus ideal weights by day](image)

Figure 1.4 Actual versus ideal weights by day

Principle 3: Two causes of variation exist in all processes; they are special causes and common causes of variation. Special causes of variation are due to assignable causes external to the process. Common causes of variation are due to the process itself—that is, variation caused by the structure of the process. Examples of common causes of variation could be stress, values and beliefs, or the level of communication between the members of a family. Usually, most of the variation in a process is due to common causes. A process that exhibits special and common causes of variation is unstable; its output is not predictable in the future. A process that exhibits only common causes of variation is stable (although possibly unacceptable); its output is predictable in the near future.

Let’s visit Ralph again. Ralph learned about common and special causes of variation and began to use some basic statistical thinking and tools to determine whether his pattern of
breakups with women was a predictable system of common causes of variation. Ralph constructed a control chart (see Figure 1.5) of the number of breakups with women by year. After thinking about himself from a statistical point of view using a control chart, he realized his relationships with women were not unique events (special causes); rather, they were a common cause process (his relationship with women process).

![C Chart of Number of Breakups](image)

Figure 1.5 Number of breakups with women by year

Control charts are statistical tools used to distinguish special from common causes of variation. All control charts have a common structure. As Figure 1.5 shows, they have a center line, representing the process average, and upper and lower control limits that provide information on the process variation. Control charts are usually constructed by drawing samples from a process and taking measurements of a process characteristic, usually over time. Each set of measurements is called a subgroup, for example, a day or month. In general, the center line of a control chart is taken to be the estimated mean of the process; the upper control limit (UCL) is a statistical signal that indicates any point(s) above it are likely due to special causes of variation, and the lower control limit (LCL) is a statistical signal that indicates any point(s) below it are likely due to special causes of variation. Additional signals of special causes of variation are not discussed in this chapter, but are discussed later in the book.

Back to Ralph’s love life; Figure 1.5 shows that the number of breakups by year are all between the UCL = 5.174 and the LCL = 0.0. So, Ralph’s breakup process with women only exhibits its common causes of variation; it is a stable and predictable process, at least into the near future. This tells Ralph that he should analyze all 30 data points for all 20 years as being part
of his “relationship with women” process; he should not view any year or any relationship as special.

Ralph was surprised to see that the reasons he listed for the 30 breakups collapsed down to five basic categories, with one category containing 24 (80%) of the relationships. The categories (including repetitions) are grouped into the frequency distribution shown in Table 1.1.

Table 1.1 Frequency Distribution of Reasons for Breakups with Women for 20 Years

<table>
<thead>
<tr>
<th>Reason</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to commit</td>
<td>24</td>
<td>80.00</td>
</tr>
<tr>
<td>Physical</td>
<td>03</td>
<td>10.00</td>
</tr>
<tr>
<td>Sexual</td>
<td>01</td>
<td>3.33</td>
</tr>
<tr>
<td>Common interests</td>
<td>01</td>
<td>3.33</td>
</tr>
<tr>
<td>Other relationships</td>
<td>01</td>
<td>3.33</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Ralph realized that there were not 30 unique reasons (special causes) that moved him to break up with women. He saw that there were only five basic reasons (common causes of variation in his process) that contributed to his breaking up with women, and that “failure to commit” is by far the most repetitive common cause category.

Principle 4: Life in stable and unstable processes is different. This is a big principle. If a process is stable, understanding this principle allows you to realize that most of the crises that bombard you on a daily basis are nothing more than the random noise (common causes of variation) in your life. Reacting to a crisis like it is a special cause of variation (when it is in fact a common cause of variation) will double or explode the variability of the process that generated it. All common causes of variation (formerly viewed as crises) should be categorized to identify 80-20 rule categories, which can be eliminated from the process. Eliminating an 80-20 rule category eliminates all, or most, future repetition of the common causes (repetitive crises) of variation generated by the problematic component of the process.

Let’s return to the example of Ralph. Ralph realized that the 30 women were not individually to blame (special causes) for the unsuccessful relationships, but rather, he was to blame because he had not tended to his emotional well-being (common causes in his stable emotional process); refer to Figure 1.5. Ralph realized he was the process owner of his emotional process. Armed with this insight, he entered therapy and worked on resolving the biggest common cause category (80-20 rule category) for his breaking up with women, failure to commit.

The root cause issue for this category was that Ralph was not getting his needs met by the women. This translated into the realization that his expectations were too high because he had a needy personality. In therapy he resolved the issues in his life that caused him to be needy and thereby made a fundamental change to himself (common causes in his emotional
process). He is now a happily married man with two lovely children. Ralph studied and resolved the common causes of variation between his ideal and real self, and moved himself to his ideal; see the right side of Figure 1.6. He did this by recognizing that he was the process owner of his emotional process and that his emotional process was stable, and required a common cause type fix, not a special cause type fix. Ralph is the manager of his life; only he can change how he interacts with the women he forms relationships with.

![C Chart of Number of Breakups with Women by Before and After](image)

Figure 1.6 Number of breakups with women before and after therapy

Principle 5: Continuous improvement is always economical, absent capital investment. Continuous improvement is possible through the rigorous and relentless reduction of common causes of variation and waste around a desired level of performance in a stable process. It is always economical to reduce variation around a desired level of performance, without capital investment, even when a process is stable and operating within specification limits. For example, elementary school policy states that students are to be dropped off at 7:30 a.m. If a child arrives before 7:25 a.m., the teacher is not present and it is dangerous because it is an unsupervised environment. If a child arrives between 7:25 a.m. and 7:35 a.m., the child is on time. If a child arrives after 7:35 a.m., the entire class is disrupted. Consequently, parents think that if their child arrives anytime between 7:25 a.m. and 7:35 a.m. it is acceptable (within specification limits). However, principle 5 promotes the belief that for every minute a child is earlier or later than 7:30 a.m., even between 7:25 am and 7:35 am, a loss is incurred by the class. The further from 7:30 a.m. a child arrives to school, the greater the loss. Please note that the loss may not be symmetric around 7:30 a.m. Under this view, it is each parent’s job to continuously reduce the variation in the child’s arrival time to school. This minimizes
the total loss to all stakeholders of the child’s classroom experience (the child, classmates, teacher, and so on). Table 1.2 shows the loss incurred by the class of children in respect to accidents from early arrivals of children and the disruptions by late arrivals of children for a one year period.

Table 1.2 Loss from Minutes Early or Late

<table>
<thead>
<tr>
<th>Arrival Times (a.m.)</th>
<th># Minutes Early or Late</th>
<th>Loss to the Classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:26</td>
<td>4</td>
<td>2 accidents</td>
</tr>
<tr>
<td>7:27</td>
<td>3</td>
<td>2 accidents</td>
</tr>
<tr>
<td>7:28</td>
<td>2</td>
<td>1 accident</td>
</tr>
<tr>
<td>7:29</td>
<td>1</td>
<td>1 accident</td>
</tr>
<tr>
<td>7:30</td>
<td>0</td>
<td>0 accidents</td>
</tr>
<tr>
<td>7:31</td>
<td>1</td>
<td>1 minor disruption</td>
</tr>
<tr>
<td>7:32</td>
<td>2</td>
<td>1 minor disruption</td>
</tr>
<tr>
<td>7:33</td>
<td>3</td>
<td>1 medium disruption</td>
</tr>
<tr>
<td>7:34</td>
<td>4</td>
<td>1 major disruption</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6 accidents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 minor disruptions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 medium disruption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 major disruption</td>
</tr>
</tbody>
</table>

If parents can reduce the variation in their arrival time processes from the distribution in Table 1.2 to the distribution in Table 1.3, they can reduce the loss from early or late arrival to school. Reduction in the arrival time process requires a fundamental change to parents’ arrival time behavior, for example, laying out their child’s clothes the night before to eliminate time. As you can see, Table 1.2 shows 6 accidents, 2 minor disruptions, 1 medium disruption, and 1 major disruption, while Table 1.3 shows 4 accidents, 2 minor disruptions, and 1 medium disruption. This clearly demonstrates the benefit of continuous reduction of variation, even if all units conform to specifications.

Table 1.3 Improved Loss from Minutes Early or Late

<table>
<thead>
<tr>
<th>Arrival Times (a.m.)</th>
<th># Minutes Early or Late</th>
<th>Loss to the Classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:26</td>
<td>4</td>
<td>0 accidents</td>
</tr>
<tr>
<td>7:27</td>
<td>3</td>
<td>2 accidents</td>
</tr>
<tr>
<td>7:28</td>
<td>2</td>
<td>1 accident</td>
</tr>
<tr>
<td>7:29</td>
<td>1</td>
<td>1 accident</td>
</tr>
<tr>
<td>Arrival Times (a.m.)</td>
<td># Minutes Early or Late</td>
<td>Loss to the Classroom</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>7:30</td>
<td>0</td>
<td>0 accidents</td>
</tr>
<tr>
<td>7:31</td>
<td>1</td>
<td>1 minor disruption</td>
</tr>
<tr>
<td>7:32</td>
<td>2</td>
<td>1 minor disruption</td>
</tr>
<tr>
<td>7:33</td>
<td>3</td>
<td>1 medium disruption</td>
</tr>
<tr>
<td>7:34</td>
<td>4</td>
<td>0 disruptions</td>
</tr>
<tr>
<td>Total</td>
<td>4 accidents</td>
<td>2 minor disruptions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 medium disruption</td>
</tr>
</tbody>
</table>

Principle 6: Many processes exhibit waste. Processes contain both value added activities and non-value added activities. Non-value added activities in a process include any wasteful step that

- Customers are not willing to pay for
- Does not change the product or service
- Contains errors, defects, or omissions
- Requires preparation or setup
- Involves control or inspection
- Involves overproduction, special processing, and inventory
- Involves waiting and delays

Value added activities include steps that customers are willing to pay for because they positively change the product or service in the view of the customer. Process improvement and Six Sigma management promote reducing waste through the elimination of non-value added activities (streamlining operations), eliminating work in process and inventory, and increasing productive flexibility and speed of employees and equipment.

Recall Ralph and his love life dilemma. If you consider Ralph’s failure to commit as part of his relationship with women process, you can clearly see that it is a non-value added activity. This non-value added activity involves some wasteful elements. First, the women Ralph dates do not want to spend their valuable time dating a man who cannot commit to a long-term relationship. Second, the women ultimately feel tricked or lied to because Ralph failed to discuss his commitment issues early in the relationship. Third, the women resent the emotional baggage (unwanted inventory) that Ralph brings to the prospective relationship. Clearly, Ralph needed to eliminate these forms of waste from his love life.

Principle 7: Effective communication requires operational definitions. An operational definition promotes effective communication between people by putting communicable meaning into a word or term. Problems can arise from the lack of an operational definition
such as endless bickering and ill will. A definition is operational if all relevant users of the definition agree on the definition. It is useful to illustrate the confusion that can be caused by the absence of operational definitions. The label on a shirt reads “75% cotton.” What does this mean? Three quarters cotton on average over this shirt, or three quarters cotton over a month’s production? What is three quarters cotton? Three quarters by weight? Three quarters at what humidity? Three quarters by what method of chemical analysis? How many analyses? Does 75% cotton mean that there must be some cotton in any random cross-section the size of a silver dollar? If so, how many cuts should be tested? How do you select them? What criterion must the average satisfy? And how much variation between cuts is permissible? Obviously, the meaning of 75% cotton must be stated in operational terms; otherwise confusion results.

An operational definition consists of

- A criterion to be applied to an object or a group
- A test of the object or group in respect to the criterion
- A decision as to whether the object or group did or did not meet the criterion

The three components of an operational definition are best understood through an example. Susan lends Mary her coat for a vacation. Susan requests that it be returned clean. Mary returns it dirty. Is there a problem? Yes! What is it? Susan and Mary failed to operationally define clean. They have different definitions of clean. Failing to operationally define terms can lead to problems. A possible operational definition of clean is that Mary will get the coat dry-cleaned before returning it to Susan. This is an acceptable definition if both parties agree. This operational definition is shown here:

Criteria: The coat is dry-cleaned and returned to Susan.

Test: Susan determines if the coat was dry-cleaned.

Decision: If the coat was dry-cleaned, Susan accepts the coat. If the coat was not dry-cleaned, Susan does not accept the coat.

From past experience, Susan knows that coats get stained on vacation and that dry cleaning may not be able to remove a stain. Consequently, the preceding operational definition is not acceptable to Susan. Mary thinks dry cleaning is sufficient to clean a coat and feels the preceding operational definition is acceptable. Since Susan and Mary cannot agree on the meaning of clean, Susan should not lend Mary the coat.

An operational definition of clean that is acceptable to Susan follows:

Criteria: The coat is returned. The dry-cleaned coat is clean to Susan’s satisfaction or Mary must replace the coat, no questions asked.

Test: Susan examines the dry-cleaned coat.

Decision: Susan states the coat is clean and accepts the coat. Or, Susan states the coat is not clean and Mary must replace the coat, no questions asked.
Mary doesn’t find this definition of clean acceptable. The moral is: Don’t do business with people without operationally defining critical quality characteristics.

Operational definitions are not trivial. Statistical methods become useless tools in the absence of operational definitions because data does not mean the same thing to all its users.

Principle 8: Expansion of knowledge requires theory. Knowledge is expanded through revision and extension of theory based on systematic comparisons of predictions with observations. If predictions and observations agree, the theory gains credibility. If predictions and observations disagree, the variations (special and/or common) between the two are studied, and the theory is modified or abandoned. Expansion of knowledge (learning) continues forever.

Let’s visit Ralph again. He had a theory that each breakup had its own and unique special cause. He thought deeply about each breakup and made changes to his behavior based on his conclusions. Over time, Ralph saw no improvement in his relationships with women; that is, the difference between the actual number of breakups by year was not getting any closer to zero; that is a long-term relationship. Coincidentally, he studied process improvement and Six Sigma management and learned that there are two types of variation in a process, special and common causes. He used a control chart to study the number of breakups with women by year; refer to the left side of Figure 1.6. Ralph developed a new theory for his relationship with women process based on his process improvement and Six Sigma studies. The new theory recognized that all Ralph’s breakups were due to common causes of variation. He categorized them, went into therapy to deal with the biggest common cause problem, and subsequently, the actual number of breakups with women by year equaled the ideal number of breakups with women by year; refer to the right side of Figure 1.6. Ralph tested his new theory by comparing actual and ideal numbers, and found his new theory to be helpful in improving his relationship with women process.

Principle 9: Planning requires stability. Plans are built on assumptions. Assumptions are predictions concerning the future conditions, behavior, and performance of people, procedures, equipment, or materials of the processes required by the plan. The predictions have a higher likelihood of being realized if the processes are stable with low degrees of variation. If you can stabilize and reduce the variation in the processes involved with the plan, you can affect the assumptions required for the plan. Hence, you can increase the likelihood of a successful plan.

Example: Jan was turning 40 years old. Her husband wanted to make her birthday special. He recalled that when Jan was a little girl she dreamed of being a princess. So, he looked for a castle that resembled the castle in her childhood dreams. After much searching, he found a castle in the middle of France that met all the required specifications. It had a moat, parapets, and six bedrooms; perfect. Next, he invited Jan’s closest friends, three couples and two single friends, filling all six bedrooms. After much discussion with the people involved, he settled on a particular three day period in July and signed a contract with the count and countess who owned the castle. Finally, he had a plan and he was happy.

As the date for the party drew near, he realized that his plan was based on two assumptions. The first assumption was that the castle would be available. This was not a problem because
he had a contract. The second assumption was that all the guests would be able to go to the party. Essentially, each guest’s life is a process. The question is: Is each “guest’s life process” stable with a low enough degree of variation to be able to predict attendance at the party. This turned out to be a substantial problem. Due to various situations, several of the guests were not able to attend the party. One couple began to have severe marital problems. One member of another couple lost his job. Jan’s husband should have realized that the likelihood of his second assumption being realized was problematic and subject to chance; that is, he would be lucky if all the guests were okay at the time of the party. He found out too late that the second assumption was not met at the time of the party. If he had he realized this, he could have saved money and heartache by renting rooms that could be cancelled in a small castle-type hotel. As a postscript, the party was a great success!

Structure of the Book

We structured the book strategically into five main sections, each building upon each other and each expanding your knowledge so that eventually you can complete a process improvement project on your own.

We use the analogy of building a house in how we structured this book.

Section I—Building a Foundation of Process Improvement Fundamentals

- **Chapter 1**—You Don’t Have to Suffer from the Sunday Night Blues!
- **Chapter 2**—Process and Quality Fundamentals
- **Chapter 3**—Defining and Documenting a Process

One of the first steps to building a house is to lay down a foundation. The first section creates your foundation in process improvement by taking you through the process and quality fundamentals you need as you build up your knowledge base. It goes into further detail on many of our nine principles for process improvement, principles critical to your understanding of this material.

Section II—Creating Your Toolbox for Process Improvement

- **Chapter 4**—Understanding Data: Tools and Methods
- **Chapter 5**—Understanding Variation: Tools and Methods
- **Chapter 6**—Non-Quantitative Techniques: Tools and Methods
- **Chapter 7**—Overview of Process Improvement Methodologies
- **Chapter 8**—Project Identification and Prioritization: Building a Project Pipeline

You cannot build a house without tools and without understanding how and when to use them, right? The second section creates your toolbox for process improvement by not only teaching you the tools and methods you need to improve your processes but teaching you when and how to use them.
When you build a house you need a framework or guide to follow to make sure you build the house correctly; it’s called a blueprint! Once that beautiful house is built you need to maintain it so it stays beautiful, right?

The third section is analogous to the blueprint of a house, and it is where we put everything you have learned together to complete a project. We use a specific set of steps—kind of like a blueprint—to keep us focused and make sure we do the project correctly. Those steps are called the Six Sigma management style. Like the maintenance of a new house, once we improve the process, the last thing we want is for the process to backslide to its former problematic state. We show you how to maintain and sustain those improvements.

The fourth section of this book discusses an appropriate culture for a successful Six Sigma management style. We can use the house building analogy because a house has to be built on a piece of property that can support all its engineering, social, psychological, and so on needs and wants. Without a proper piece of property, the house could fall into a sinkhole.

The fifth section discusses how you can become Six Sigma certified at the Champion and Green Belt levels of certification. Certification is like getting your house a final inspection and receiving a Certificate of Occupancy so you can move in. (This section can be found online at www.ftpress.com/sixsigma.)
We hope you enjoy this book. Feel free to contact the authors concerning any mistakes you have found, or any ideas for improvement. Thank you for reading our book. We hope you find it an invaluable asset on your journey toward a Six Sigma management culture.

Howard S. Gitlow, PhD
Professor
Six Sigma Master Black Belt
Department of Management Science
University of Miami
hgitlow@miami.edu

Richard J. Melnyck, MBA, MS in MAS, and MAS in CIS
Six Sigma Master Black Belt
Assistant Vice President for Medical Affairs
Executive Director of Process Improvement
Office of the Senior Vice President for Medical Affairs and Dean
University of Miami Miller School of Medicine
rmelnyck2@med.miami.edu

David M. Levine, PhD
Professor Emeritus
Department of Statistics and Computer Information Systems
Baruch College
City University of New York
DavidMLevine@msn.com

Let’s Go!
We are excited to begin this journey with you—the journey of process improvement that we hope transforms your job and more importantly your life! While this is a technical book, we want to make it fun and interesting so that you will remember more of what we are teaching you. We tried to add humor and stories to make the journey a fun one. So what are we waiting for? Let’s go!

References
This page intentionally left blank
A

accounts receivable, 394-396
activating Six Sigma team
case study, 292-293
overview, 274-276
Act phase
PDSA cycle, 207
SDSA cycle, 204
actual versus ideal, 6
adopting new philosophy, 413
affinity diagrams
creating, 181-182
defined, 156
example, 156
purpose of, 156
affordances, 197
aim, 18
Allied Signal, 253
allocating
resources, 250-251
work, 405-406
alternative methods
generating
case study, 366-367
explained, 358-359
selecting
case study, 367-368
explained, 360-361
American National Standards Institute (ANSI)
standard flowchart symbols, 43-44
Analyze phase (DMADV cycle), 218-219
Analyze phase (DMAIC model)
case study: reducing patient no shows in outpatient psychiatric clinic, 344-355
current state flowchart, creating, 334, 344-345
data collection plan for Xs, 339-340, 348
FMEA (failure modes and effects analysis), 338
go-no go decision point, 342-343
hypotheses about relationship between critical Xs and CTQs, 342, 354
identification of Xs for CTQs, 335-338, 344-346
measurement system for Xs, validating, 340, 348
operational definitions for Xs, 338, 346-347
overview, 214-215
pitfalls to avoid, 343-344
purpose of, 333-334
test of theories to determine critical Xs, 340-342, 348-353
tips for success, 343-344
tollgate reviews, 354-355
ANSI (American National Standards Institute)
standard flowchart symbols, 43-44
anxiety, 423
appreciation of a system, 411
arbitrary goals, posters, and slogans, eliminating, 424
Arena, 359
assumptions in planning, 13-14
attribute check sheets, 177-178
attribute classification data
explained, 47-48
measures of central tendency, 61-62
attribute control charts, 90
attribute count data
explained, 48-49
graphing
bar charts, 50-51
line graphs, 52-54
Pareto diagrams, 51-52
attribute data, 47
c charts, 104-106
p charts, 98-104
u charts, 106-108
automation, 189
autonomous maintenance, 223
average, 266

B
background check process, 19-20
backsliding, preventing, 393
 board of directors culture, 404-406
 allocation of work, 405-406
 components of, 405
 engagement, 406
 reducing variability, 406
 shared values/beliefs, 405
 trust, 406
dashboards, 396-397
egotism, 403-404
failure in Act phase of PDSA cycle
 in accounts receivable, 394-396
 in manufacturing, 393-394
Funnel Experiment, 398-399
presidential review of maintainability indicators, 397
succession planning
 creating talent pools model, 400
 explained, 399
 incumbent model, 399-400
 process oriented top-down/bottom-up model, 401-403
 top-down/bottom-up model, 400-401
balanced scorecards, 232
Bar Chart: Data Options dialog box (Minitab), 74-75
bar charts
 explained, 50-51
 obtaining in Minitab, 74-76
Bar Charts dialog box (Minitab), 74-76
barriers, removing
 barrier between departments, 423-424
 barriers to pride of workmanship, 426-429
baseline data analysis for CTQs
 case study, 328-329
 explained, 317-321
benchmarking, 359, 367, 418
benefits of project
 Define phase (DMAIC model), 281-282
documenting
 case study, 387
 explained, 383
 best alternative method, selecting, 367-368
Black Belts, 258-260
board of directors, 404-406
Bossidy, Larry, 253
bottlenecks, 189
boundaries (process), 37-38
brainstorming, 358-359, 366
 conducting brainstorming sessions, 179-181
defined, 155
 example, 155-156
 purpose of, 155
business case
 case study, 293-294
 explained, 276-277

C
Calculator dialog box (Minitab), 78, 84
cause and effect (C&E) diagrams
 creating, 182
defined, 157
 examples, 157-159
 purpose of, 157
causes of variation, 6-8
C Chart dialog box (Minitab), 134
c charts, 104-106
 creating in Minitab, 134
 example, 105-106
 explained, 104
 when to use, 105
ceasing dependence on mass inspection, 413-414
C&E diagrams. See cause and effect (C&E) diagrams
Centers for Medicare and Medicaid Services (CMS), 237
central tendency, measures of
mean, 59
median, 60
mode, 60-61
proportion, 61-62
Champions, 256-257
change concepts, 2, 419
changing work environment, 191-192
defined, 160
designing systems to avoid mistakes, 196-197
eliminating waste, 187-188
enhancing producer/customer relationship, 193-194
example, 162-163
focusing on product/service, 197-198
generating
case study, 366-367
explained, 358-359
improving work flow, 188-190
managing time, 194-195
managing variation, 195-196
optimizing inventory, 190-191
overview, 185-187
purpose of, 162
selecting, 360-361, 367-368
70 change concepts, 359
changing
set points, 188
targets, 188
work environment, 191-192
charter. See project charter
charts
affinity diagrams
creating, 181-182
declared, 156
example, 156
purpose of, 156
bar charts
explained, 50-51
obtaining in Minitab, 74-76
cause and effect (C&E) diagrams
creating, 182
declared, 157
examples, 157-159
purpose of, 157
control charts, 7
attribute control charts, 90
case study (defective surgical screws), 119-125
c charts, 104-106, 134
choosing, 119
control limits, 93
explained, 90
I-MR (individuals and moving range) charts, 109-112, 136-137
p charts, 98-104, 131-133
rules for determining out of control points, 93-98
three-sigma limits, 93
type one errors, 92
type two errors, 92
u charts, 106-108, 134-136
variables control charts, 91
X Bar and R charts, 112-115, 137-139
X Bar and S charts, 115-119, 139-142
dot plots
explained, 55-56
obtaining in Minitab, 82-83
flowcharts
advantages of, 39-40
analyzing, 44-45
ANSI standard flowchart symbols, 43-44
creating, 165-166
current state flowchart, 334, 344-345
defined, 146
deployment flowcharts, 42-43, 148, 334
future state flowchart, 361, 368-369
process flowcharts, 40-41, 147, 334
purpose of, 146
simple generic flowchart, 39
symbols and functions, 165
Gage run charts, 313-317, 327
Gantt charts, 279-280
case study, 296-297
creating, 185
defined, 159
example, 161
purpose of, 160
histograms
explained, 54-55
obtaining in Minitab, 79-82
line graphs
explained, 52-54
obtaining in Minitab, 78-79
Pareto diagrams
creating, 182-185
definition of, 159
e\ncample, 159
explained, 51-52
obtaining in Minitab, 76-77
purpose of, 159
run charts
explained, 56-58
obtaining in Minitab, 84-85
checklist, measurement system analysis checklist, 126-127
check sheets
attribute check sheets, 177-178
defect location check sheets, 179
def\end{\textit{ed}, 153
e\ncample, 153-155
measurement check sheets, 178
purpose of, 153
classification data, 47
classifications, 188
clean workplace, 417
CMS (Centers for Medicare and Medicaid Services), 237
collateral damage to related processes, reducing
case study, 386
explained, 376-378
collecting baseline data for CTQs
case study, 328-329
explained, 317-321
common cause feedback loops, 23-24
common variation, 6-8, 89
explained, 25-26
Funnel Experiment, 27-29
Red Bead Experiment, 30-31
communication
communication plans
case study, 299, 300
creating, 198-200
def\end{\textit{ed}, 163
e\ncample, 164
explained, 282-283

pilot tests, 362
purpose of, 163
operational definitions, 11-13
competition, 411
complaints
customer feedback, 237
employee feedback, 234-235
compliance, regulatory, 237-238
constancy of purpose, 413
constraints, 197
contingency plans, 195
continuous data, 49-50
continuous improvement, 9-11, 414
continuous improvement definition of quality, 32-33
control charts, 7
attribute control charts, 90
case study (defective surgical screws), 119-125
c charts, 104-106
creating in Minitab, 134
explained, 104
when to use, 105
choosing, 119
control limits, 93
explained, 90
I-MR (Individuals and Moving Range) charts, 109-112
creating in Minitab, 136-137
explained, 109
p charts, 98-104
creating in Minitab, 131-133
explained, 98
p chart with equal subgroup size, 99-102
p chart with unequal subgroup size, 102-104
when to use, 98-99
rules for determining out of control points, 93-98
three-sigma limits, 93
type one errors, 92
type two errors, 92
u charts, 106-108
creating in Minitab, 134-136
explained, 107-108
explained, 106
when to use, 107
variables control charts, 91
X Bar and R charts, 112-115
example, 113-115
explained, 112
obtaining from Minitab, 137-139
X Bar and S charts, 115-119
example, 115-119
explained, 115
obtaining from Minitab, 139-142
count data, 47
Critical-to-Quality characteristics. See CTQs (Critical-to-Quality characteristics)
cross-training, 192
CTQs (Critical-to-Quality characteristics), 145, 260
baseline data analysis
 case study, 328-329
 explained, 317-321
data collection plan, 312-313, 325-326
defined, 145, 260, 333
definition of, 288-289, 308
measurement system, validating, 313-317
operational definitions, 312
operation definitions, 325-326
process capability estimation, 321-323
culture
 board of directors, 404-406
defined, 404-405
current state flowchart, creating
 case study, 344-345
 explained, 334
customer feedback, 237
customers
 customer focus groups, 236
customer segments, 285
customer surveys, 236
 identifying, 285
producer/customer relationship, enhancing, 193-194
Voice of the Customer analysis. See VoC (Voice of the Customer) analysis
D
dashboards, 232 238-240, 396-397
data
 attribute classification data
 explained, 47-48
 measures of central tendency, 61-62
 attribute count data
 explained, 48-49
 graphing, 50-54
 attribute data, 47
central tendency, measures of
 mean, 59
 median, 60
 mode, 60-61
 proportion, 61-62
defined, 47
measurement data, 49-50
 graphing, 54-58
 measures of central tendency, 59-61
shape, measures of, 66-68
skewness
 defined, 66
 negative or left skewness, 67-68
 positive or right skewness, 66-67
 symmetrical distribution, 66
variables, 47
 variation, measures of
 range, 62-63
 standard deviation, 63-66, 68-69
 variance, 63-66
database, inputting projects into, 383
data collection plan
 for CTQs, 312-313, 325-326
 VoC (Voice of the Customer) analysis, 167, 287
 for Xs, 339-340, 348
data interpretation, VoC (Voice of the Customer) analysis, 167, 288
data redundancy, 187
decision matrix, 361, 367
decision symbol, 43
defects, 289, 322
defined, 261, 289
defect location check sheets, 179
defect opportunities, 261, 289, 322
defective surgical screws case study, 119-125
detection, 414
DPMO (defects per million opportunities), 262
DPOs (defects per opportunity), 261
DPUs (defects per unit), 261
latent defects, 253
prevention, 414
Define phase (DMADV cycle), 218
Define phase (DMAIC model)
case study: reducing patient no shows in outpatient psychiatric clinic, 292-309
definition of CTQs, 288-289, 308
go-no go decision point, 290-291, 308-309
initial draft of project objective, 289-290, 308
overview, 213
pitfalls to avoid, 291-292
project charter, 276-283, 293-299
purpose of, 273-274
SIPOC analysis, 283-286, 299
Six Sigma team, activating, 274-276, 292-293
tips for success, 291-292
tollgate review, 290-291, 308-309
VoC (Voice of the Customer) analysis, 286-288, 299-308
defining processes
 boundaries, 37-38
 flowcharts, 40-41
 importance of, 35-36
 objectives, 38
 ownership, 36
Deming cycle, 417-419
Deming, W. Edwards, 27, 30. See also System of Profound Knowledge
 biographical information, 409
 quotations, 434-435
dependence on mass inspection, ceasing, 413-414
deployment flowcharts, 42-43, 148, 334
descriptive statistics, obtaining in Minitab, 85-87
desensitization, 196
Design for Six Sigma for Green Belts and Champions: Foundations, DMADV, Tools and Methods, Cases and Certification (Gitlow et al.), 359
designing systems to avoid mistakes, 196-197
Design of Experiments (DoE), 359
Design phase (DMADV cycle), 219
determining out of control points, 93-98
developing
 control plans
 case study, 387-389
 explained, 380-381
 hypotheses, 342
diagrams. See also charts
 affinity diagrams
 creating, 181-182
 defined, 156
 example, 156
 purpose of, 156
cause and effect (C&E) diagrams
 creating, 182
 defined, 157
 examples, 157-159
 purpose of, 157
Pareto diagrams, 51-52
 adding to Minitab worksheets, 76-77
 creating, 182-185
 definition of, 159
 example, 159
 purpose of, 159
differentiation, 196
diffusing improvements throughout organization
 case study, 390
 explained, 383-384
Display Descriptive Statistics dialog box (Minitab), 86
diversity, 5
DMADV model
 example, 219-221
 explained, 218
DMAIC model
 Analyze phase
 case study: reducing patient no shows in outpatient psychiatric clinic, 344-355
 current state flowchart, creating, 334, 344-345
 data collection plan for Xs, 339-340, 348
 FMEA (failure modes and effects analysis), 338
 go-no go decision point, 342-343
 hypotheses about relationship between critical Xs and CTQs, 342, 354
 identification of Xs for CTQs, 335-338, 344-346
 measurement system for Xs, validating, 340, 348
 operational definitions for Xs, 346-347, 338
 overview, 214-215
 pitfalls to avoid, 343-344
 purpose of, 333-334
 test of theories to determine critical Xs, 340-342, 348-353
 tips for success, 343-344
 tollgate reviews, 354-355
Control phase
 case study: reducing patient no shows in outpatient psychiatric clinic, 386-391
 collateral damage to related processes, reducing, 376-378
 control plans, developing, 380-381
 costs/benefits, documenting, 383
 diffusion of improvements, 383-384
 overview, 216
 pitfalls to avoid, 385
 projects, inputting into Six Sigma database, 383
 purpose of, 375-376
 standardization, 379-380
 tips for success, 385
 tollgate reviews, 384-385
Define phase
 case study: reducing patient no shows in outpatient psychiatric clinic, 292-309
 definition of CTQs, 288-289, 308
 go-no go decision point, 290-291, 308-309
 initial draft of project objective, 289-290, 308
 overview, 213
 pitfalls to avoid, 291-292
 project charter, 276-283, 293-299
 purpose of, 273-274
 SIPOC analysis, 283-286, 299
 Six Sigma team, activating, 274-276, 292-293
 tips for success, 291-292
 tollgate review, 290-291, 308-309
 VoC (Voice of the Customer) analysis, 286-288, 299-308
 example, 216-217
Improve phase
 alternative methods, generating, 358-359
 best alternative method, selecting, 360-361
 case study: reducing patient no shows in outpatient psychiatric clinic, 366-373
 future state flowchart, creating, 361
 go-no go decision point, 364-365
 overview, 216
 pilot testing, 362-364
 pitfalls to avoid, 365-366
 purpose of, 357-358
 risk mitigation, 362
tips for success, 365-366

tollgate reviews, 365
Measure phase
baseline data analysis for CTQs, 317-321, 328-329
data collection plan for CTQs, 312-313, 325-326
go-no go decision point, 323-324, 330
operational definitions for CTQs, 312, 325-326
overview, 213-214
pitfalls to avoid, 324
process capability estimation for CTQs, 321-323
purpose of, 311-312
tips for success, 324
tollgate reviews, 323-324, 330
validation of measurement system for CTQs, 326-327
Measure phase (DMAIC model)
validation of measurement system for CTQs, 313-317
overview, 212-213
documenting
costs/benefits
case study, 387
explained, 383
processes
flowcharts, 39-44
importance of, 35-36
DoE (Design of Experiments), 359
Do phase
PDSA cycle, 207
SDSA cycle, 203
dot plots
explained, 55-56
obtaining in Minitab, 82-83
Dotplots dialog box (Minitab), 82
DPMO (defects per million opportunities), 262
DPOs (defects per opportunity), 261
DPUs (defects per unit), 261
driving out fear, 423

E
education
encouraging, 430
quality in, 434
egotism, 403-404
80-20 rule, 8
eliminating
arbitrary goals, posters, and slogans, 424
management by objective, 425-426
waste, 187-188
work standards (quotas), 424-425
employee feedback, 234-235
employee focus groups, 233
employee forums, 233-234
employee surveys, 234
empowerment, 420-421
ending practice of awarding business on basis of price, 414-415
engagement, board of directors, 406
enhancing producer/customer relationship, 193-194
errors, 92
estimating
process capability for CTQs, 321-323
project benefits, 242
time to complete project, 245-246
executing projects, 250-251
executive steering committee, 256
expansion of knowledge through theory, 13
expectations, 193
experimental design, 359
external proactive sources, 235-236
external reactive sources, 236-238
extrinsic motivation, 410

F
failure in Act phase of PDSA cycle
in accounts receivable, 394-396
in manufacturing, 393-394
Failure Modes and Effects Analysis. See FMEA (Failure Modes and Effects Analysis)
fear, 423
feedback
 customer feedback, 237
 employee feedback, 234-235
loops
 common cause feedback loops, 23-24
 defined, 19
 lack of, 23
fishbone diagrams. See cause and effect (C&E) diagrams
5S methods, 221-223, 417
flowcharts
 advantages of, 39-40
 analyzing, 44-45
 ANSI standard flowchart symbols, 43-44
 creating, 165-166
 current state flowchart, creating, 334, 344-345
 defined, 146
 deployment flowcharts, 42-43, 148, 334
 future state flowchart, 361, 368-369
 process flowcharts, 40-41, 147, 334
 purpose of, 146
 simple generic flowchart, 39
 symbols and functions, 165
flowline symbol, 43
FMEA (Failure Modes and Effects Analysis), 283
 case study, 299-301, 346
 conducting, 174-177
 defined, 153
 example of, 175
 explained, 338
 purpose of, 153
focus groups
 customer focus groups, 236
 employee focus groups, 233
focus on product/service, 197-198
focus points, 288
forced ranking of employees, 428-429
form value, 4
forums, employee, 233-234
14 Points (Deming), 413-430
 adopting new philosophy, 413
 breaking down barriers between departments, 423-424
ceasing dependence on mass inspection, 413-414
creating constancy of purpose, 413
driving out fear, 423
eliminating arbitrary goals, posters, and slogans, 424
eliminating management by objective, 425-426
eliminating work standards (quotas), 424-425
encouraging education and self-improvement, 430
ending practice of awarding business on basis of price, 414-415
improving constantly the system of production and service, 415-421
instituting leadership, 422-423
reduction of variation and, 430-433
removing barriers to pride of workmanship, 426-429
taking action to accomplish transformation, 430
 training on the job, 421-422
Funnel Experiment, 27-29, 398-399
future state flowchart, 361, 368-369
G
Gage R&R studies, 127-131
Gage run charts, 313-317, 327
Gantt charts, 279-280
 case study, 296-297
 creating, 185
 defined, 159
 example, 161
 purpose of, 160
General Electric, 253
generating alternative methods
 case study, 366-367
 explained, 358-359
goal post view of quality, 31-32
goal statement, 278, 294
go-no go decision point
 Analyze phase, 342-343, 354-355
 Define phase, 290-291, 308-309
 Improve phase, 364-365, 373
 Measure phase, 323-324, 330
government, quality in, 434

graphing
attribute count data
 bar charts, 50-51
 line graphs, 52-54
 Pareto diagrams, 51-52
measurement data
 dot plots, 55-56
 histograms, 54-55
 run charts, 56-58
in Minitab
 bar charts, 74-76
 dot plots, 82-83
 histograms, 79-82
 line graphs, 78-79
 Pareto diagrams, 76-77
 run charts, 84-85
Green Belts, 259-260

H
handoffs, minimizing, 189
hard benefits, 281-282
Health Insurance Portability and Accountability Act (HIPAA), 237
health maintenance, 224
high-level project charters, 246-247, 275
HIPAA (Health Insurance Portability and Accountability Act), 237
histograms
 explained, 54-55
 obtaining in Minitab, 79-82
Histogram: Scale dialog box (Minitab), 81
Histograms dialog box (Minitab), 80
history of Six Sigma, 253-254
hypothesis development, 342

I
ideal versus actual, 6
identifying
 customers, 285
 inputs, 285
 outputs, 285
 potential Xs, 308
projects
 customer feedback, 237
 customer focus groups, 236
 customer surveys, 236
 employee feedback, 234-235
 employee focus groups, 233
 employee forums, 233-234
 employee surveys, 234
 managerial dashboards, 238-240
 project identification matrix, 231
 regulatory compliance issues, 237-238
 strategic/tactical plans, 232
 VoC (Voice of the Customer) interviews, 235-236
 VoE (Voice of the Employee) interviews, 232-233
suppliers, 285
impact/effort matrix, 360
improvements, maintaining, 393
 board of directors culture, 404-406
 dashboards, 396-397
 diffusing throughout organization
 case study, 390
 explained, 383-384
 egotism, 403-404
 failure in Act phase of PDSA cycle
 in accounts receivable, 394-396
 in manufacturing, 393-394
 Funnel Experiment, 398-399
 presidential review of maintainability indicators, 397
standardization
 case study, 386-387
 explained, 379-380
succession planning
 creating talent pools model, 400
 explained, 399
 incumbent model, 399-400
 process oriented top-down/bottom-up model, 401-403
 top-down/bottom-up model, 400-401
Improve phase (DMAIC model)
 alternative methods, generating, 358-359
 best alternative method, selecting, 360-361
 case study: reducing patient no shows in outpatient psychiatric clinic, 366-373
 future state flowchart, creating, 361
go–no go decision point, 364–365
overview, 216
pilot testing, 362–364
pitfalls to avoid, 365–366
purpose of, 357–358
risk mitigation, 362
tips for success, 365–366
tollgate reviews, 365
I–MR Chart: Options dialog box (Minitab), 136
I–MR (Individuals and Moving Range) charts, 109–112
creating in Minitab, 136–137
example, 109–112
explained, 109
incumbent succession planning model, 399–400
independent components, system of, 401
Individuals and Moving Range (I–MR) charts, 109–112
creating in Minitab, 136–137
example, 109–112
explained, 109
initial draft of project objective
case study, 308
explained, 289–290
inputs, 18, 285
inputting projects into Six Sigma database, 383
inspect all-or-none rule, 414
inspection, 194
intangible costs, 242, 281
intermediaries, 188
internal proactive sources
employee focus groups, 233
employee forums, 233–234
employee surveys, 234
explained, 232
strategic/tactical plans, 232
VoE (Voice of the Employee) interviews, 232–233
internal reactive sources, 234–235
International Standards Organization (ISO), 379–380
interrelated components, system of, 401
interviews
VoC (Voice of Customer) interviews, 235–236
VoE (Voice of the Employee) interviews, 232–233
intrinsic motivation, 1, 410
inventory optimization, 190–191
ISO (International Standards Organization), 379–380
J–K
JCAHO (Joint Commission on Accreditation of Healthcare Organizations), 237
Kaizen
example, 210–212
explained, 209–210
key performance indicators (KPIs), 232
knowledge
expanding through theory, 13
text of (Deming), 412
KPIs (key performance indicators), 232
kp rule, 414
L
latent defects, 253
LCL (lower control limit), 7, 92
leadership, 422–423
lean thinking, 341
5S methods, 221–223
overview, 221
poka-yoke, 224–225
SMED (Single Minute Exchange of Dies), 224–225
tools and methods, 359
TPM (Total Productive Maintenance), 223–224
value streams, 226–227
left skewness, 67–68
life as a process, 3–4
line graphs
explained, 52–54
obtaining in Minitab, 78–79
lower control limit (LCL), 7, 92
lower specification limit (LSL), 31
LSL (lower specification limit), 31

M
maintainability indicators, presidential review of, 397
maintaining improvements. See improvements, maintaining
maintenance
autonomous maintenance, 223
health maintenance, 224
planned maintenance, 223-224
Total Productive Maintenance (TPM), 223-224
“management by data,” 410
“management by guts,” 410
management by objectives (MBO), 425-426
management terminology, 260-264
CTQs. See CTQs (Critical-to-Quality characteristics)
defective, 261
defects, 261
DPMO (defects per million opportunities), 262
DPOs (defects per opportunity), 261
DPUs (defects per unit), 261
process sigma, 262-264
RTY (rolled throughput yield), 262
units, 261
yield, 262
management theory (Deming). See System of Profound Knowledge
managerial dashboards, 238-240
managing
time, 194-195
variation, 195-196
manufacturing, failure in Act phase of PDSA cycle, 393-394
market segmentation, 166-167
mass inspection, 413-414
Master Black Belts, 257-258
matrices
decision matrix, 361, 367
impact/effort matrix, 360
project identification matrix, 231
project prioritization matrix, 248-250
MBO (management by objectives), 425-426
mean, 59, 266, 341
measured day work, 424
measurement check sheets, 178
measurement data, 49-50
control charts, 108-109
I-MR (Individuals and Moving Range) charts, 109-112
X Bar and R charts, 112-115
X Bar and S charts, 115-119
graphing
dot plots, 55-56
histograms, 54-55
run charts, 56-58
measures of central tendency
mean, 59
median, 60
mode, 60-61
measurement system analysis checklist, 126-127
measurement systems analysis
for CTQs, 313-317, 326-327
explained, 126
Gage R&R studies, 127-131
measurement system analysis checklist, 126-127
for Xs, 340, 348
Measure phase (DMADV cycle), 218
Measure phase (DMAIC model)
baseline data analysis for CTQs, 317-321, 328-329
data collection plan for CTQs, 312-313, 325-326
go-no go decision point, 323-324, 330
operational definitions for CTQs, 312, 325-326
overview, 213-214
pitfalls to avoid, 324
process capability estimation for CTQs, 321-323
purpose of, 311-312
tollgate reviews, 323-324, 330
validation of measurement system for CTQs, 313-317, 326-327
measures. See statistical analysis
median, 60, 341
methodology selection, 243-245
milestones, 279-280, 295
minimizing handoffs, 189
Minitab, 70
bar charts, 74-76
control charts, 131
c charts, 134
I-MR (Individuals and Moving Range) charts, 136-137
p charts, 131-133
u charts, 134-136
X Bar and R charts, 137-139
X Bar and S charts, 139-142
zone limits, plotting, 131
descriptive statistics, 85-87
dot plots, 82-83
histograms, 79-82
line graphs, 78-79
Pareto diagrams, 76-77
run charts, 84-85
worksheets, 70-74
mission statements, 18
mistakes, designing systems to avoid, 196-197
mitigating risk
case study, 369
explained, 362
mode, 60-61
monthly steering committee reviews, 251
motivation, 1, 410
Motorola Corporation, 417
multiple processing units, 190

N
negative reactive behaviors, 423
negative skewness, 67-68
new paradigm of leadership, 434
nominal value, 31

non-quantitative tools
affinity diagrams, 156, 181-182
brainstorming, 155-156, 179-181
cause and effect (C&E) diagrams, 157-159, 182
change concepts
changing work environment, 191-192
defined, 160
designing systems to avoid mistakes, 196-197
eliminating waste, 187-188
enhancing producer/customer relationship, 193-194
example, 162-163
focusing on product/service, 197-198
improving work flow, 188-190
managing time, 194-195
managing variation, 195-196
optimizing inventory, 190-191
overview, 185-187
purpose of, 162
check sheets, 153-155, 177-178
communication plans, 163-164, 198-200
flowcharts, 146-148, 165-166
FMEA (Failure Modes and Effects Analysis), 153, 174-177
Gantt charts, 159-161, 185
operational definitions, 151-153
overview, 145
Pareto diagrams, 159, 182-185
SIPOC analysis, 149-151, 172-173
VoC (Voice of the Customer) analysis
case study: reducing patient no shows at outpatient psychiatric clinic, 168-172
data collection, 167
data interpretation, 167
defined, 146
market segmentation, 166-167
planning, 167
purpose of, 149
non-technical definition of Six Sigma, 253
normal distribution, 68, 266
numeric data
attribute classification data
explained, 47-48
measures of central tendency, 61-62
attribute count data
explained, 48-49
graphing, 50-54
attribute data, 47, 61-62
central tendency, measures of
mean, 59
median, 60
mode, 60-61
proportion, 61-62
measurement data, 49-50
graphing, 54-58
measures of central tendency, 59-61
shape, measures of, 66-68
skewness
defined, 66
negative or left skewness, 67-68
positive or right skewness, 66-67
symmetrical distribution, 66
variation, measures of
range, 62-63
standard deviation, 63-66, 68-69
variance, 63-66

outputs, 18, 285
overjustification, 413
ownership of processes, 36

P
paradigm shift, 433-434
Pareto Chart dialog box (Minitab), 76-77
Pareto diagrams
adding to Minitab worksheets, 76-77
creating, 182-185
definition of, 159
example, 159
explained, 51-52
purpose of, 159
passive baseline data, 318
patient no shows at outpatient psychiatric clinic (case study)

Analyze phase
current state process flowchart, 344-345
data collection plan for Xs, 348
FMEA (failure modes and effects analysis), 346
go-no go decision point, 354-355
hypotheses about relationship between critical Xs and CTQs, 354
identification of Xs for CTQs, 344-346
measurement system for Xs, validating, 348
operational definitions of Xs, 346-347
test of theories to determine critical Xs, 348-353
tollgate reviews, 354-355

Control phase, 386-391
collateral damage to related processes, reducing, 386
control plan, developing, 387-389
diffusion of improvements, 390
financial impact, 387, 390
project, inputting into Six Sigma database, 390
standardized improvements, 386-387
tollgate review, 390-391

Define phase
definition of CTQs, 308
go-no go decision point, 308-309
initial draft of project objective, 308

objectives of processes, 38
opening Minitab worksheets, 71-74
Open Worksheet dialog box (Minitab), 72
operational definitions, 11-13, 412, 416
creating, 173-174
defined, 151
example, 151-153
importance of, 153
of CTQs
case study, 325-326
explained, 312
purpose of, 151
for Xs
case study, 346-347
explained, 338
optimization, 190-191, 411
out of control points, determining, 93-98
outpatient psychiatric clinic case study. See patient no shows at outpatient psychiatric clinic (case study)
Index

project charter, 293-299
SIPOC analysis, 299
Six Sigma team, activating, 292-293
tollgate reviews, 308-309
VoC (Voice of the Customer) analysis, 299-308

Improve phase, 366-373
alternative methods, generating, 366-367
best alternative method, selecting, 367-368
future state flowchart, creating, 368-369
go-no go decision point, 373
pilot testing, 369-372
risk mitigation, 369
tollgate review, 373

Measure phase
baseline data analysis, 328-329
data collection plan for CTQs, 325-326
go-no go decision point, 330
operational definitions of CTQs, 325-326
tollgate review, 330
validation of measurement system for CTQs, 326-327
VoC (Voice of the Customer) analysis, 168-172

planned maintenance, 223-224
Plan phase (PDSA cycle), 206
plans
assumptions, 13-14
communication plan
case study, 299-300
explained, 282-283
communication plans
creating, 198-200
defined, 163
defined, 163
element, 164
explained, 163
contingency plans, 195
control plans, 380-381
risk abatement plan, 283, 299
stability, 13-14
strategic/tactical plans, 232
succession planning, 399-403
VoC (Voice of the Customer) analysis, 287

plotting zone limits, 131
poka-yoke, 224-225
positive skewness, 66-67
potential Xs, identifying, 308, 335-338
predictions, improving, 195
presidential review of maintainability indicators, 397
prevailing paradigm of leadership, 433
preventing backsliding. See backsliding, preventing
pride of workmanship, 426-429
prioritizing projects, 247-250
proactive data, 167
proactive sources. See external proactive sources; internal proactive sources
problem statements, 247, 277-278, 294
process capability estimation for CTQs, 321-323
processes, 17. See also quality: variation
analyzing, 44-45
defined, 18
defining, 35-38
DMAIC model. See DMAIC model
documenting
ANSI standard flowchart symbols, 43-44
benefits of flowcharts, 39-40

place value, 3
Plan-Do-Study-Act (PDSA) cycle, 417-419

pay system, 191
P Chart dialog box (Minitab), 132
p charts, 98-104
creating in Minitab, 131-133
explained, 98
p chart with equal subgroup size, 99-102
p chart with unequal subgroup size, 102-104
when to use, 98-99

PDSA (Plan-Do-Study-Act) cycle, 417-419
example, 207-209
explained, 206-207
failure in Act phase, 393-396
performance appraisal systems, 428
piecework, 424
pilot tests, 362-364
case study, 369-372
communication plans, 362
data analysis, 362-364
employee training, 362
pilot test charter, 362-363

Index 453
deployment flowcharts, 42-43

process flowcharts, 40-41

simple generic flowchart, 39

elements, 19-22

feedback loops, 19, 23-24

flowcharts, 39-41, 44-45, 147, 334

importance of, 19

maintaining improvements. See improvements, maintaining orientation, 410

process flowcharts, 40-41

process sigma, 262-264

variation. See variation

where processes exist, 18-19

process improvement methodologies

DMAIC model. See DMAIC model

Kaizen/Rapid Improvement Events

example, 210-212

explained, 209-210

lean thinking

5S methods, 221-223

overview, 221

poka-yoke, 224-225

SMED (Single Minute Exchange of Dies), 224-225

TPM (Total Productive Maintenance), 223-224

value streams, 226-227

non-quantitative tools. See non-quantitative tools

PDSA cycle

example, 207-209

explained, 206-207

principles, 3-14

continuous improvement, 9-11

expansion of knowledge through theory, 13

life as a process, 3-4

operational definitions, 11-13

special and common causes of variation, 6-8

stability in planning, 13-14

stable versus unstable processes, 8-9

variation in processes, 5-6

waste in processes, 11

SDSA cycle, 203-204

processing symbol, 43

process oriented top-down/bottom-up succession planning, 401-403

Process Owners, 257

process sigma, 262-264

producer/customer relationship, enhancing, 193-194

production, improving, 415-421

products

focus on, 197-198

maintaining improvements. See improvements, maintaining

Profound Knowledge, System of. See System of Profound Knowledge

Project Champions, 256-257

project charter, 276-283

benefits and costs, 281-282

business case, 276-277

case study, 293-299

communication plan, 282-283

goal statement, 278

high level project charter, 275

problem statement, 277-278

project plan with milestones, 279-280

project scope, 278-279

risk abatement plan, 283

roles and responsibilities, 282

project objective, initial draft of, 289-290, 308

project plan with milestones, 279-280, 295

project prioritization matrix, 248-250

projects

benefits, 242

executing, 250-251

identifying

customer feedback, 237

customer focus groups, 236

customer surveys, 236

employee feedback, 234-235

employee focus groups, 233

employee forums, 233-234

employee surveys, 234

managerial dashboards, 238-240

project identification matrix, 231

regulatory compliance issues, 237-238

strategic/tactical plans, 232
VoC (Voice of the Customer) interviews, 235-236
VoE (Voice of the Employee) interviews, 232-233
prioritizing, 247-250
screening and scoping, 278-279, 294-295
estimation of project benefits, 242
estimation of time to completion, 245-246
high-level project charters, 246-247
overview, 240-241
problem statements, 247
project methodology selection, 243-245
questions to ask, 241
selecting, 250
tracking, 250-251
proportion, 61-62
psychiatric clinic case study. See patient no shows at outpatient psychiatric clinic (case study)
psychology, 412-413
pull systems, 190
push systems, 190

Q-R
quality, 31-33, 434
quick changeover, 224-225
quotas, 424-425
quotations from W. Edwards Deming, 434-435
range, 62-63
ranking of employees, 428-429
Rapid Improvement Events, 209-210
reactive data, 167
reactive sources. See external reactive sources; internal reactive sources
recycling, 188
Red Bead Experiment, 30-31
reduction of patient no shows at outpatient psychiatric clinic. See patient no shows at outpatient psychiatric clinic (case study)
regulatory compliance issues, 237-238
reminders, 196
resources, allocating, 250-251
responsibilities (team), 282, 298
reviews
monthly steering committee reviews, 251
presidential review of maintainability indicators, 397
tollgate reviews
Analyze phase, 342-344, 354-355
Control phase, 384-385, 390-391
Define phase, 290-291, 308-309
Improve phase, 365, 373
Measure phase, 323-324, 330
right skewness, 66-67
risk mitigation, 362, 369
risk abatement plan, 283, 299
risk sharing, 192
roles
Black Belts, 258-259, 260
executive steering committee, 256
Green Belts, 259-260, 260
Master Black Belts, 257-258
Process Owners, 257
Project Champions, 256-257
Senior Executives, 255
RTY (rolled throughput yield), 262
Run Chart dialog box (Minitab), 85
run charts
explained, 56-58
obtaining in Minitab, 84-85
S
sampling, 188
Sarbanes Oxley Act (SOX), 237
Save Worksheet As dialog box (Minitab), 73
saving Minitab worksheets, 71-74
scope
case study, 294-295
project scope, 278-279
scoping projects
estimation of project benefits, 242
estimation of time to completion, 245-246
high-level project charters, 246-247
overview, 240-241
problem statements, 247
project methodology selection, 243-245
questions to ask, 241
scorecards, balanced, 232
screening projects
estimation of project benefits, 242
estimation of time to completion, 245-246
high-level project charters, 246-247
overview, 240-241
problem statements, 247
project methodology selection, 243-245
questions to ask, 241
SDSA (Standardize-Do-Study-Act) cycle, 203-204, 416-417
segmentation
customer segments, 285
market segmentation, 166-167
seiketsu, 417
seiri, 417
seiso, 417
seiton, 417
self-discipline, 222, 417
self-improvement, 430
Senior Executives, 255
service
focus on, 197-198
improving, 415-421
quality in, 434
maintaining improvements. See improvements, maintaining
set points, changing, 188
70 change concepts, 359
shape, measures of, 66-68
shared mission, 405
shared risks, 192
shared values/beliefs, 405
shitake, 417
shitsuke, 417
simulation, 359
Single Minute Exchange of Dies (SMED), 224-225
single suppliers, 414-415
SIPOC (Supplier-Input-Process-Output-Customer) analysis, 149
case study, 299
creating, 172-173
defined, 149
example, 149-151
explained, 283-286
purpose of, 149
Six Sigma
benefits of, 254
history of, 253-254
importance of, 272
management opportunities, 261
management terminology, 260-264
CTQs. See CTQs (Critical-to-Quality characteristics)
defective, 261
defects, 261
DPMO (defects per million opportunities), 262
DPOs (defects per opportunity), 261
DPUs (defects per unit), 261
process sigma, 262-264
RTY (rolled throughput yield), 262
units, 261
yield, 262
non-technical definition, 253
roles
Black Belts, 258-260
executive steering committee, 256
Green Belts, 259-260
Master Black Belts, 257-258
Process Owners, 257
Project Champions, 256-257
Senior Executives, 255
teams, activating
case study, 292-293
overview, 274-276
technical definition, 253, 266-272
normal distribution, 266
relationship between VoP and VoC, 266-271
tips for success, 255
skewness, 66-68
slogans, 424
SMART (Specific, Measurable, Attainable, Relevant, and Time Bound), 290
SMED (Single Minute Exchange of Dies), 224-225
Smith, Bill, 253
soft benefits, 281-282
sorting, 222, 417
SOX (Sarbanes Oxley Act), 237
special variation, 6-8, 90
explained, 25-26
Funnel Experiment, 27-29
Red Bead Experiment, 30-31
specification limits, 31
spic and span, 222, 417
stability in planning, 13-14
stable processes, 8-9
standard deviation, 68-69, 266, 341
standard flowchart symbols, 43-44
standardization, 195, 222, 417
case study, 386-387
explained, 379-380
improvements
case study, 386-387
explained, 379-380
Standardize-Do-Study-Act (SDSA) cycle, 203-204, 416-417
Standardize phase (SDSA cycle), 203
start/stop symbol, 43
statistical analysis, 341
central tendency
mean, 59
median, 60
mode, 60-61
proportion, 61-62
Minitab, 70
bar charts, 74-76
descriptive statistics, 85-87
dot plots, 82-83
histograms, 79-82
line graphs, 78-79
Pareto diagrams, 76-77
run charts, 84-85
worksheets, 70-74
shape (skewness), 66-68
variation
range, 62-63
standard deviation, 63-69
variance, 63-66
strategic/tactical plans, 232
Study phase (PDSA cycle), 207
Study phase (SDSA cycle), 203
subgroups, 7
substitution, 188
succession planning
creating talent pools model, 400
explained, 399
incumbent model, 399-400
process oriented top-down/bottom-up model, 401-403
top-down/bottom-up model, 400-401
suggestions
customer feedback, 237
employee feedback, 234-235
Supplier-Input-Process-Output-Customer analysis. See SIPOC (Supplier-Input-Process-Output-Customer) analysis
suppliers
identifying, 285
single suppliers, 414-415
surveys
customer surveys, 236
employee surveys, 234
symbols (flowchart), 43-44
symmetrical distribution, 44-44
synchronization, 189
system, appreciation of, 411
systematization, 222, 417
system of independent components, 401
system of interrelated components, 401
System of Profound Knowledge
appreciation of a system, 411
14 Points, 413-430
adopting new philosophy, 413
breaking down barriers between departments, 423-424
ceasing dependence on mass inspection, 413-414
creating constancy of purpose, 413
driving out fear, 423
eliminating arbitrary goals, posters, and slogans, 424
eliminating management by objective, 425-426
eliminating work standards (quotas), 424-425
encouraging education and self-improvement, 430
ending practice of awarding business on basis of price, 414-415
improving constantly the system of production and service, 415-421
instituting leadership, 422-423
reduction of variation and, 430-433
removing barriers to pride of workmanship, 426-429
taking action to accomplish transformation, 430
training on the job, 421-422
overview, 409-410
paradigms, 410-411
psychology, 412-413
purpose, 410
quality in service, government, and education, 434
quotations from W. Edwards Deming, 434-435
theory of knowledge, 412
theory of variation, 412
transformation, 433-434
tactical plans, 232
Taguchi Loss Function (TLF), 32-33
talent pool model of succession planning, 400
tampering, 195
tangible costs, 242, 281
targets, changing, 188
technical definition of Six Sigma, 253, 266-272
normal distribution, 266
relationship between VoP and VoC, 266-271
testing
pilot tests, 362-364
case study, 369-372
communication plans, 362
data analysis, 362-364
employee training, 362
pilot test charter, 362-363
test of theories to determine critical Xs, 340-342, 348-353
theory of knowledge, 412
theory of management. See System of Profound Knowledge
time of variation, 412
three-sigma limits, 93
time management, 194-195
time series plot, 78. See also line graphs
Time Series Plot: Simple dialog box (Minitab), 79
time to complete project, estimating, 245-246
time value, 3
TLF (Taguchi Loss Function), 32-33
tollgate reviews
Analyze phase
case study, 354-355
explained, 342-343
Control phase
case study, 390-391
explained, 384-385
Define phase, 290-291, 308-309
Improve phase
case study, 373
explained, 365
Measure phase, 323-324, 330
top-down/bottom-up model of succession planning, 400-401
TPM (Total Productive Maintenance), 223-224
tracking projects, 250-251
training, 192, 224, 421-422
transformation, 430, 433-434
type one errors, 92
type two errors, 92
U
U Chart dialog box (Minitab), 135
u charts, 106-108
creating in Minitab, 134-136
example, 107-108
explained, 106
when to use, 107
UCL (upper control limit), 7, 92
units, 261, 289, 322
unit-to-unit variation, 5-6
unstable processes, 8-9
unwanted variation, 6
USL (upper specification limit), 31
V
validating
measurement system for CTQs
case study, 326-327
explained, 313-317
measurement system for Xs
case, 348
explained, 340
value engineering, 188
values
form value, 4
nominal value, 31
place value, 3
time value, 3
value streams, 226-227
variability, reducing, 406
variables, 47
variables control charts, 91
variables data, 49-50
variation
common variation, 6-8, 25-26, 89
control charts
attribute control charts, 90
case study (defective surgical screws), 119-125
c charts, 104-106, 134
choosing, 119
control limits, 93
explained, 90
I-MR (Individuals and Moving Range) charts, 109-112, 136-137
p charts, 98-104, 131-133
rules for determining out of control points, 93-98
three-sigma limits, 93
type one errors, 92
type two errors, 92
u charts, 134-136
variables control charts, 91
X Bar and R charts, 112-115, 137-139
X Bar and S charts, 115-119, 139-142
defined, 5-6, 24-25, 89
Funnel Experiment, 27-29
importance of, 25
measurement systems analysis, 126-131
measures of
range, 62-63
standard deviation, 63-66, 68-69
variance, 63-66
Minitab, 131
c charts, 134
I-MR (Individuals and Moving Range) charts, 136-137
p charts, 131-133
u charts, 134-136
X Bar and R charts, 137-139
X Bar and S charts, 139-142
zone limits, plotting, 131
Red Bead Experiment, 30-31
reducing, 430-433
special variation, 6-8, 25-26, 90
theory of variation (Deming), 412
variation management, 195-196
Verify/Validate phase (DMADV cycle), 219
VoC (Voice of the Customer) analysis, 286-288
case study, 168-172, 299-308
data collection, 167, 287
data interpretation, 167, 288
defined, 146
interviews, 235-236
market segmentation, 166-167, 287
planning, 167, 287
purpose of, 149
Six Sigma, 266-271
VoE (Voice of the Employee) interviews, 232-233
VoP (Voice of the Process), 266-271
W
wait time, reducing, 195
waste
eliminating, 187-188
in processes, 11
Welch, Jack, 253
work environment, changing, 191-192
work flow, improving, 188-190
worksheets (Minitab)
bar charts, 74-76
descriptive statistics, 85-87
dot plots, 82-83
explained, 70-71
histograms, 79-82
line graphs, 78-79
opening, 71-74
Pareto diagrams, 76-77
run charts, 84-85
saving, 71-74
work standards (quotas), 424-425

X
X Bar and R charts, 112-115, 137-139
X Bar and S charts, 115-119, 139-142
Xbar-R Chart dialog box (Minitab), 138-140
Xbar-S Chart dialog box (Minitab), 141
Xs
data collection plan, 339-340
defined, 333
hypotheses about relationship between critical Xs and CTQs, 354
identification of potential Xs, 308, 335-338
operational definitions, 346-348
test of theories to determine critical Xs,
340-342, 348-353

Y-Z
yield, 262
zone limits, plotting, 131
ZQC (Zero Quality Control), 225