
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133923681
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133923681
https://plusone.google.com/share?url=http://www.informit.com/title/9780133923681
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133923681
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133923681/Free-Sample-Chapter

 Android™ Development
Patterns

This page intentionally left blank

 Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
 Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi

 Mexico City • São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

 Android™ Development
Patterns

Best Practices for
Professional Developers

 Phil Dutson

 Editor-in-Chief

Mark Taub

 Executive Editor

Laura Lewin

 Development Editor

Sheri Replin

 Managing Editor

Kristy Hart

 Project Editor

Elaine Wiley

 Copy Editor

Bart Reed

 Indexer

Tim Wright

 Proofreader

Laura Hernandez

 Technical Reviewers

Romin Irani
Douglas Jones
Raymond Rischpater

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact intlcs@pearson.com .

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2015958569

 Copyright © 2016 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit www.
pearsoned.com/permissions/ .

 Google Play is a trademark of Google, Inc.

 Android is a trademark of Google, Inc.

 ISBN-13: 978-0-133-92368-1
 ISBN-10: 0-133-92368-1

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

 First printing: February 2016

http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/

❖

 To all of those who believe in magic,
especially the digital kind.

❖

This page intentionally left blank

viivii

Contents

 Preface xiv

 1 Development Tools 1

Android Studio 1

Installing Android Studio 2

Using Android Studio 4

Starting a New Project 6

Standalone SDK Tools 9

Android Device Emulation 10

Android Virtual Device 11

GenyMotion 12

Xamarin Android Player 13

Version-Control Systems 14

Subversion 14

Git 14

Mercurial 15

Summary 15

 2 Testing and Debugging 17

Unit Testing 17

Integration Testing 20

Debugging 25

Profiling 25

Tracing 27

Messaging 29

Summary 32

 3 Application Structure 33

Manifests 34

Java 36

Res (Resources) 37

Drawable 37

Layout 39

Menu 39

viii Contentsviii Contents

Values 40

Other Resources 41

Gradle 41

Summary 42

 4 Components 45

Intents 45

Intent Filters 46

Broadcast Receivers 47

Activities 48

Creating an Activity 48

Activity Lifecycle 49

Fragments 52

Creating a Fragment 52

Communicating with Fragments 55

Loaders 56

Summary 58

 5 Views 59

The View Class 59

The AnalogClock Subclass 60

The ImageView Subclass 60

The KeyboardView Subclass 60

The MediaRouteButton Subclass 62

The ProgressBar Subclass 62

The Space Subclass 64

The SurfaceView Subclass 64

The TextView Subclass 65

The TextureView Subclass 65

The ViewGroup Subclass 66

The ViewStub Subclass 68

Creating a Custom View 68

Summary 70

ixix

 6 Layout 71

Layout Basics 71

Layout Measurements 72

Layout Coordinates 73

Layout Containers 74

Linear Layout 74

Relative Layout 76

Table Layout 79

Frame Layout 80

WebView 82

Summary 83

 7 App Widgets 85

App Widget Layouts 86

The AppWidgetProviderInfo Object 88

App Widget Sizing 89

Update Frequency 90

Preview Image 90

Widget Category 92

Widget Category Layout 92

Resizable Mode 93

Sample AppWidgetProviderInfo Object 93

The AppWidgetProvider Class 94

Application Manifest Entries 96

Summary 97

 8 Application Design: Using MVC 99

Model 100

View 101

Controller 102

Working Asynchronously 104

AsyncTask 105

Summary 106

Contents

xx

 9 Drawing and Animation 107

Graphics 107

Bitmaps 107

NinePatch 109

Drawables 111

OpenGL ES 114

Animation 117

View Animation 117

Property Animation 118

Drawable Animation 122

Transition Framework 123

Summary 125

 10 Networking 127

Accessing the Internet 127

Network Detection 127

Using an HTTP Client 129

Parsing XML 131

Handling Network Operations Asynchronously 133

Volley 135

Summary 138

 11 Working with Location Data 139

Permissions 139

Google Play Services Locations API 148

Summary 153

 12 Multimedia 155

Working with Audio 155

Audio Playback 156

Audio Recording 159

Working with Video 161

Video Playback 162

Summary 165

Contents

xixi

 13 Optional Hardware APIs 167

Bluetooth 167

Enabling Bluetooth 168

Discovering Devices with Bluetooth 169

Connecting via Bluetooth Classic 171

Communicating with BLE 173

Near Field Communication 176

ACTION_NDEF_DISCOVERED 177

ACTION_TECH_DISCOVERED 178

ACTION_TAG_DISCOVERED 179

Device Sensors 181

Detecting the Available Sensors 182

Reading Sensor Data 183

Summary 185

 14 Managing Account Data 187

Getting Accounts 187

Android Backup Service 188

Using Google Drive Android API 191

Using Google Play Games Services 195

Working with Saved Games 196

Summary 199

 15 Google Play Services 201

Adding Google Play Services 201

Using Google API Client 203

Google Fit 207

Enable API and Authentication 207

App Configuration and Connection 208

Nearby Messages API 209

Enabling Nearby Messages 209

Sending and Receiving Messages 210

Summary 214

 16 Android Wear 217

Android Wear Basics 217

Screen Considerations 218

Contents

xiixii

Debugging 221

Connecting to an Emulator 221

Connecting to a Wear Device 222

Communicating with Android Wear 224

Notifications 224

Sending Data 226

Summary 228

 17 Google Analytics 229

Adding Google Analytics 229

Google Analytics Basics 232

Events 233

Goals 234

Ecommerce 235

Custom Timings 235

Custom Dimensions 236

Custom Metrics 236

Summary 237

 18 Optimization 239

Application Optimization 239

Application First 239

Application Logging 241

Application Configuration 242

Memory Management 243

Garbage Collection Monitoring 245

Checking Memory Usage 245

Performance 247

Working with Objects 247

Static Methods and Variables 248

Enhanced for Loops 248

float, double, and int 249

Optimized Data Containers 249

Summary 249

Contents

xiiixiiiContents

 19 Android TV 251

The Big Picture 251

Ten-Foot View 252

TV Capabilities 254

Text, Color, and Bitmaps 255

Building an App 258

Emulation and Testing 261

Summary 263

 20 Application Deployment 265

Preparing for Deployment 265

Production Checklist 266

Certificate Keys 266

Contact Email 266

App Website 267

External Services or Servers 267

Application Icon 267

Licensing 268

Appropriate Package Name 268

Verifying Permissions and Requirements 269

Log and Debug Removal 270

Removal of Excess Unused Assets 270

Preparing for Google Play 270

Application Screenshots 271

Promo Video 271

High-Res Icon 271

Feature Graphic 272

Promo Graphic 272

Banner for Android TV 272

Getting Paid 272

APK Generation 273

Summary 274

 Index 275

 Preface
 The growth of Android since the launch of Cupcake has been astonishing. Today, Android
powers more than just mobile phones; it has become the go-to solution for manufacturers of
audio equipment, tablets, televisions, cars, and more.

 As the use of Android becomes more prevalent, the demand for developers who are familiar
with using it has also scaled. Developers who understand how the system can be built,
leveraged, and used are necessary to provide the next wave of amazing and must-have
applications.

 Many people around the world are being introduced to Android for the first time, and we as
developers need to make sure to provide them with a first-class experience that will put a smile
on their face and help them understand how truly amazing the Android system is.

 Why Development Patterns?

 In the fast-paced world of development, patterns are the time-saving solutions that developers
use and access to maximize their output and minimize time wasted creating a solution that will
ultimately fail.

 Android development is a special place that is both familiar and foreign to many Java and
object-oriented programmers. The relationship it has with the Java language and structure helps
to bring in developers who have experience and get them up to speed in an almost effortless
manner. However, there are some optimizations and memory-handling techniques that are not
optimal for the seasoned Java developer.

 This particular book is the bridge that helps seasoned developers understand the Android
way of building and thinking. It is written so that those new to Android development gain
a foundation for the platform and how to work with the many facets and intricacies that
Android brings to the table while giving some in-depth hints and strategies that advanced
developers will need to make their app a success.

 Who Should Read This Book?

 Anyone interested in how Android development works should find this book enjoyable and
helpful. Those just beginning their Android journey may not find this as complete of a volume,
but some development experience will help; however, those who are tenacious and don’t mind
getting elbows-deep should find this to be an acceptable companion on their quest toward
their perfect app.

 Those who are interested in seeing only theoretical development patterns with large
explanations about individual bit-shifting and hand-tuning memory management will be
disappointed in that this book instead focuses on how Android works together piece-by-piece
with example snippets that help solidify how things should be accomplished in a best-practices
manner.

xvPreface

 Getting Started

 For those new to developing Android applications, the minimum requirement is a computer
running either OS X, Windows, or Linux. On these systems, you should download Android
Studio from http://developer.android.com/sdk/ . Android Studio comes with the Android SDK.

 Full use of the Android SDK requires downloads of the version and sample code for which you
want to develop. Although you can certainly download only a specific version of Android, you
should download all versions of Android on which you want your app to work.

 You should also use the Android SDK to download system images of emulators or Android
Virtual Device (AVD) files. These system images allow you to test your app without actually
having an Android device.

 It is highly recommended that you acquire at least one Android device for testing, with a
preference of having multiple devices in many form-factors so that you can accurately test,
monitor, and experience your app as your users will.

 Visit the following websites to keep up on Android and see when new features are introduced
and how to use them:

 ■ StackOverflow : http://www.stackoverflow.com/

 ■ Official Android Developer Site : http://developer.android.com/

 ■ Android Developers Blog : http://android-developers.blogspot.com/

 ■ Google Developers on YouTube : https://www.youtube.com/user/androiddevelopers

 ■ Android Source Code (AOSP) : http://source.android.com/

 Book Structure

 This book starts with the basics of Android development, including how to set up an
environment. It takes you through the importance of creating a proper development flow and
adding testing to your app to make sure your code performs and behaves the way you expect.

 It continues step by step through the various pieces and parts that make up the Android
framework. This includes how applications are structured, using widgets and components, and
learning how to use and create views.

 You are then introduced to application design paradigms and learn how to make sure you
are creating an app that you can manage and update easily. This includes adding media and
network connections that will not end up wasting precious battery power and giving users the
most accurate and up-to-date information possible.

 Optional hardware components, Android Wear, and Android TV are also covered later in this
book to expose you to taking your app to the next level and exploring new opportunities. As
Android finds itself being included in more devices, you’ll understand how and why it is in
your best interest to provide apps to users who invest in these platforms.

http://developer.android.com/sdk/
http://www.stackoverflow.com/
http://developer.android.com/
http://android-developers.blogspot.com/
https://www.youtube.com/user/androiddevelopers
http://source.android.com/

xvi Preface

 Finally, you learn about some key optimization strategies as well as how to package your app
for distribution through enterprise systems, email, and the Google Play Store.

 When you are finished with this book, you will have an understanding of how the Android
system works and, more importantly, how to craft an app that is optimized, distributed, and
enjoyed by what will hopefully be millions of users.

 Register your copy of Android Development Patterns at informit.com for convenient access
to downloads, updates, and corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the product ISBN
 9780133923681 and click Submit. Once the process is complete, you will find any available
bonus content under “Registered Products.”

 Acknowledgments

 Creating a book is a monumental effort that is never accomplished without the help, effort,
guidance, and diligence of a small band of heroes. I could never have completed this work
without the correction of three of the greatest technical editors in the field today. Massive
thanks, a hat-tip, and cheers go to Romin Irani, Douglas Jones, and Ray Rischpater for each
bringing a personal penchant of perfection to the book and making sure I didn’t stray too far
off the established path.

 I also give an enthusiastic thanks to my development editor, Sheri Replin. Sheri has been great
to work with, and she tolerates the brief moments of madness I have where I am certain that
the words I have chosen make complete sentences when they are actually the inane babble
of a caffeine-deprived developer. Also, credit is due to my amazing copy editor, Bart Reed. He
miraculously managed to properly apply a clever and intelligent sheen to my stark ravings,
making the book read as it originally sounded in my head, as well as making it clear to the
reader.

 As always, the world-class team at Pearson deserves more thanks than I believe they get.
Specifically, I would like to call out Laura Lewin, Olivia Basegio, Elaine Wiley, Kristy Hart,
Mark Taub, and the entire production staff. The steps that are taken to create these volumes of
technical instruction do not happen overnight, and these fine folks have undergone hours of
meetings, emails, phone calls, and more to make sure that you get the greatest-and-latest book
possible.

 I want to thank my family for letting me disappear almost every night and every weekend for
the past year. It has been an epic struggle keeping the book on schedule, working a sometimes
more-than-full-time job, and also making sure that I attend the activities that matter most with
them. I believe that it is all of you who have let me keep a pretty good work-life-book balance.

 Finally, I thank you! Thank you for picking up this book and giving it a place on your shelf
(digital or otherwise). With all the amazing people I have had the opportunity to work
with, I believe we have crafted a book that will get you on the best path to creating Android
applications that will be used for years to come.

 About the Author

 Phil Dutson is a Solution Architect over client-side and mobile implementation for one of
the world’s largest e-commerce retailers in fitness equipment. He has been collecting and
developing for mobile devices since he got his hands on a US Robotics Pilot 5000. He is the
author of Sams Teach Yourself jQuery Mobile in 24 Hours (Sams, July 2012), jQuery, jQuery UI, and
jQuery Mobile: Recipes and Examples (Pearson, November 2012), Android Developer’s Cookbook,
Second Edition (Pearson, July 2013), and Responsive Mobile Design (Addison-Wesley Professional,
September 2014).

 5
 Views

 Of all the pieces of the Android system, views are probably the most used. Views are the core
building block on which almost every piece of the UI is built. They are versatile and, as such,
are used as the foundation for widgets. In this chapter, you learn how to use and how to create
your own view.

 The View Class

 A view is a rather generic term for just about anything that is used in the UI and that has a
specific task. Adding something as simple as a button is adding a view. Some widgets, including
 Button , TextView , and EditText widgets, are all different views.

 Looking at the following line of code, it should stand out that a button is a view:

 Button btnSend = (Button) findViewById(R.id.button);

 You can see that the Button object is defined and then set to a view defined in the application
layout XML file. The findViewById() method is used to locate the exact view that is being
used as a view. This snippet is looking for a view that has been given an id of button . The
following shows the element from the layout XML where the button was created:

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_text"
 android:id="@+id/button"
 android:layout_below="@+id/textView"
 android:layout_centerHorizontal="true" />

 Even though the element in the XML is <Button> , it is still considered a view. This is because
 Button is what is called an indirect subclass of View . In total, there are more than 80 indirect
subclasses of View as of API level 21. There are 11 direct subclasses of View : AnalogClock ,
 ImageView , KeyboardView , MediaRouteButton , ProgressBar , Space , SurfaceView ,
 TextView , TextureView , ViewGroup , and ViewStub .

60 Chapter 5 Views

 The AnalogClock Subclass

 The AnalogClock is a complex view that shows an analog clock with a minute-hand and an
hour-hand to display the current time.

 Adding this view to your layout XML is done with the following element:

 <AnalogClock
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/analogClock"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 This view can be attached to a surface by using the onDraw(Canvas canvas) method, and
it can be sized to scale to the screen it is being displayed on via the following method:

 onMeasure(int widthMeasureSpec, int heightMeasureSpec)

 It should be noted that if you decide to override the onMeasure() method, you must call
 setMeasuredDimension(int, int) . Otherwise, an IllegalStateException error will
be thrown.

 The ImageView Subclass

 The ImageView is a handy view that can be used to display images. It is smart enough to do
some simple math to figure out dimensions of the image it is displaying, which in turn allows
it to be used with any layout manager. It also allows for color adjustments and scaling the
image.

 Adding an ImageView to your layout XML requires the following:

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageView"
 android:src="@drawable/car"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 To show multiple figures, you can use multiple ImageView s within a layout. Similar to other
views, you can attach events such as a click event to trigger other behavior. Depending on
the application you are building, this may be advantageous versus requiring the user to click a
button or use another widget to complete an action.

 The KeyboardView Subclass

 The KeyboardView is one of the most interesting views that exist. This is one of the true
double-edged components of the Android system. Using the KeyboardView allows you to

61The View Class

create your own keyboard. Several keyboards exist in the Play store that you can download
right now and use on your Android device that are based on using the KeyboardView .

 The problem is that using an application with a custom keyboard means that all data entry
must pass through it. Every “keystroke” is passed through the application, and that alone tends
to send shivers down the spine of those who are security conscious. However, if you are an
enterprise developer and need a custom keyboard to help with data entry, then this view may
be exactly what you are looking for.

 Note

 The KeyboardView requires creating a new input type for your device, and the keyboard you
create will be accessible in all programs. This also means that users may opt to not use your
keyboard, and may even disable it as an option.

 Creating your own keyboard is an involved process. You need to do the following:

 ■ Create a service in your application manifest.

 ■ Create a class for the keyboard service.

 ■ Add an XML file for the keyboard.

 ■ Edit your strings.xml file.

 ■ Create the keyboard layout XML file.

 ■ Create a preview TextView .

 ■ Create your keyboard layout and assign values.

 The KeyboardView has several methods you can override to add functionality to your
keyboard:

 ■ onKey()

 ■ onPress()

 ■ onRelease()

 ■ onText()

 ■ swipeDown()

 ■ swipeUp()

 ■ swipeLeft()

 ■ swipeRight()

 You do not need to override all of these methods; you may find that you only need to use the
 onKey() method.

62 Chapter 5 Views

 The MediaRouteButton Subclass

 The MediaRouteButton that is part of the compatibility library is generally used when working
with the Cast API. This is where you need to redirect media to a wireless display or ChromeCast
device. This view is the button that is used to allow the user to select where to send the media.

 Note that per Cast design guidelines, the button must be considered “top level.” This means
that you can create the button as part of the menu or as part of the ActionBar. After you create
the button, you must also use the .setRouteSelector() method; otherwise, an exception will
be thrown.

 First, you need to add an <item> to your menu XML file. The following is a sample <item>
inside of the <menu> element:

 <item
 android:id="@+id/mediaroutebutton_cast"
 android:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
 android:actionViewClass="android.support.v7.app.MediaRouteButton"
 android:showAsAction="always"
 android:visible="false"
 android:title="@string/mediaroutebutton"/>

 Now that you have a menu item created, you need to open your MainActivity class and use
the following import:

 import android.support.v7.app.MediaRouteButton;

 Next, you need to declare it in your MainActivity class:

 private MediaRouteButton myMediaRouteButton;

 Finally, add the code for the MediaRouteButton to the menu of the onCreateOptionsMenu()
method. Remember that you must also use setRouteSelector() on the MediaRouteButton .
The following demonstrates how this is accomplished:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 getMenuInflater().inflate(R.menu.main, menu);

 myMediaRouteItem = menu.findItem(R.id.mediaroutebutton_cast);
 myMediaRouteButton = (MediaRouteButton) myMediaRouteItem.getActionView();
 myMediaRouteButton.setRouteSelector(myMediaRouteSelector);
 return true;
 }

 The ProgressBar Subclass

 The progress bar is a familiar UI element. It is used to indicate that something is happening
and how far along this process is. It is not always possible to determine how long an action will

63The View Class

take; luckily, the ProgressBar can be used in indeterminate mode. This allows an animated
circle to appear that shows movement without giving a precise measurement of the status of
the load.

 To add a ProgressBar , you need to add the view to your layout XML. The following shows
adding a “normal” ProgressBar :

 <ProgressBar
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/progressBar"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 Other styles of ProgressBar may also be used. To change the style, you need to add a property
to the <ProgressBar> element. The following styles may be used:

 Widget.ProgressBar.Horizontal
 Widget.ProgressBar.Small
 Widget.ProgressBar.Large
 Widget.ProgressBar.Inverse
 Widget.ProgressBar.Small.Inverse
 Widget.ProgressBar.Large.Inverse

 Depending on your implementation, you may apply the style either with your styles.xml or
from your attrs.xml . For the styles from styles.xml , you would use the following:

 style="@android:style/Widget.ProgressBar.Small"

 If you have styles inside your attrs.xml file that you want applied to the progress bar, use the
following property in the <ProgressBar> element:

 style="?android:attr/progressBarStyleSmall"

 If you are planning on using the indeterminate mode, you need to pass a property of
 android:indeterminate into the <ProgressBar> element. You may also specify the loading
animation by setting the android:indeterminateDrawable to a resource of your choosing.

 A ProgressBar that is determinate requires updates to be passed to it via the setProgress()
or incrementProgressBy() method. These methods should be called from a worker thread.
The following shows an example of a thread that uses a Handler and an int for keeping the
progress value, and a ProgressBar has been initialized:

 new Thread(new Runnable() {
 public void run() {
 while (myProgress < 100) {
 myProgress = doWork();
 myHandler.post(new Runnable() {
 public void run() {
 myProgressBar.setProgress(myProgress);
 }

64 Chapter 5 Views

 });
 }
 }
 }).start();

 The Space Subclass

 For those who have worked on layouts and visual interfaces, the Space view is one that is both
helpful and brings on somewhat lucid nightmares. This view is reserved to add “space” between
other views and layout objects.

 The benefit to using a Space is that it is a lightweight view that can be easily inserted and
modified to fit your needs without you having to do an absolute layout or extra work trying to
figure out how relative spacing would work on complex layouts.

 Adding a Space is done by adding the following to your layout XML:

 <Space
 android:layout_width="1dp"
 android:layout_height="40dp" />

 The SurfaceView Subclass

 The SurfaceView is used when rendering visuals to the screen. This may be as complex as
providing a playback surface for a live camera feed, or it can be used for rendering images on a
transparent surface.

 The SurfaceView has two major callbacks that act as lifecycle mechanisms that you
can use to your advantage: SurfaceHolder.Callback.surfaceCreated() and
 SurfaceHolder.Callback.surfaceDestroyed() . The time in between these methods
is where any work with drawing on the surface should take place. Failing to do so may cause
your application to crash and will get your animation threads out of sync.

 Adding a SurfaceView requires adding the following to your layout XML:

 <SurfaceView
 android:id="@+id/surfaceView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_weight="1" />

 Depending on how you are going to use your SurfaceView , you may want to use the follow-
ing callback methods:

 ■ surfaceChanged()

 ■ surfaceCreated()

 ■ surfaceDestroyed()

65The View Class

 Each of these callback methods gives you an opportunity to initialize values, change them,
and more importantly free some system resources up when it is released. If you are using a
 SurfaceView for rendering video from the device camera, it is essential that you release control
of the camera during the surfaceDestroyed() method. Failing to release the camera will
throw errors when you attempt to resume usage of the camera in either another application
or when your application is resumed. This is due to a new instance attempting to open on a
resource that is finite and currently marked as in use.

 The TextView Subclass

 The TextView is likely the first view added to your project. If you create a new project in
Android Studio that follows the default options, you will be given a project that contains a
 TextView with a string value of “Hello World” in it.

 To add a TextView , you need to add the following code to your layout XML file:

 <TextView
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 Note that in the previous example, the value for the TextView is taken from @string/
hello_world . This value is inside of the strings.xml file that is in your res/values folder
for your project. The value is defined in strings.xml as follows:

 <string name="hello_world">Hello world!</string>

 The TextView also contains a large number of options that can be used to help format, adjust,
and display text in your application. For a full list of properties, visit http://developer.android.
com/reference/android/widget/TextView.html .

 The TextureView Subclass

 The TextureView is similar to the SurfaceView but carries the distinction of being tied
directly to hardware acceleration. OpenGL and video can be rendered to the TextureView , but
if hardware acceleration is not used for the rendering, nothing will be displayed. Another differ-
ence when compared to SurfaceView is that TextureView can be treated like a View . This
allows you to set various properties including setting transparency.

 In similarity to SurfaceView , some methods need to be used with TextureView in order
for proper functionality. You should first create your TextureView and then use either
 getSurfaceTexture() or TextureView.SurfaceTextureListener before using
 setContentView() .

 Callback methods should also be used for logic handling while working with the TextureView .
Paramount among these callback methods is the onSurfaceTextureAvailable() method.
Due to TextureView only allowing one content provider to manipulate it at a time, the

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html

66 Chapter 5 Views

 onSurfaceTextureAvailable() method can allow you to handle IO exceptions and to make
sure you actually have access to write to it.

 The onSurfaceTextureDestroyed() method should also be used to release the content
provider to prevent application and resource crashing.

 The ViewGroup Subclass

 The ViewGroup is a special view that is used for combining multiple views into a layout. This
is useful for creating unique and custom layouts. These views are also called “compound views”
and, although they are flexible, they may degrade performance and render poorly based on the
number of children included, as well as the amount of processing that needs to be done for
layout parameters.

 CardView
 The CardView is part of the ViewGroup that was introduced in Lollipop as part of the v7
support library. This view uses the Material design interface to display views on “cards.” This is
a nice view for displaying compact information in a native Material style. To use the CardView ,
you can load the support library and wrap your view elements in it. The following demon-
strates an example:

 <RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">

 <android.support.v7.widget.CardView
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:id="@+id/card_view"
 android:layout_gravity="center"
 android:layout_width="200dp"
 android:layout_height="200dp"
 card_view:cardCornerRadius="4dp"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true">

 <TextView android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 </android.support.v7.widget.CardView>
 </RelativeLayout>

67The View Class

 This example shows a card in the center of the screen. The color and corner radius can be
changed via attributes in the <android.support.v7.widget.CardView> element. Using
 card_view:cardBackgroundColor will allow you to change the background color, and using
 card_view:cardCornerRadius will allow you to change the corner radius value.

 Note

 Using the CardView support library requires you to edit your Gradle build files. You need to add
the following line to the dependencies section in your build.gradle file:
 dependencies {
 compile 'com.android.support:cardview-v7:21.+'
 }

 You should change the version number targeted on the end to match your project target.

 RecyclerView

 The RecyclerView was also added in Lollipop as part of the v7 support library. This
view is a replacement for the aging ListView . It brings with it the ability to use a
 LinearLayoutManager , StaggeredLayoutManager , and GridLayoutManager as well as
animation and decoration support. The following shows how you can add this view to your
layout XML:

 <android.support.v7.widget.RecyclerView
 android:id="@+id/my_recycler_view"
 android:scrollbars="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

 Similar to with a ListView , after you have added the RecyclerView to your layout, you
then need to instantiate it, connect it to a layout manager, and then set up an adapter to
display data.

 You instantiate the RecyclerView by setting it up as follows:

 myRecyclerView = (RecyclerView) findViewById(R.id.my_recycler_view);

 The following shows connecting to a layout manager using the LinearLayoutManager that is
part of the v7 support library:

 myLayoutManager = new LinearLayoutManager(this);
 myRecyclerView.setLayoutManager(myLayoutManager);

 All that is left is to attach the data from an adapter to the RecyclerView . The following
demonstrates how this is accomplished:

 myAdapter = new MyAdapter(myDataset);
 myRecyclerView.setAdapter(myAdapter);

68 Chapter 5 Views

 The ViewStub Subclass

 The ViewStub is a special view that is used to create views on demand in a reserved space.
The ViewStub is placed in a layout where you want to place a view or other layout elements
at a later time. When the ViewStub is displayed—either by setting its visibility with
 setVisibility(View.VISIBLE) or by using the inflate() method—it is removed and the
layout it specifies is then injected into the page.

 The following shows the XML needed to include a ViewStub in your layout XML file:

 <ViewStub
 android:id="@+id/stub"
 android:inflatedId="@+id/panel_import"
 android:layout="@layout/progress_overlay"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom" />

 When the ViewStub is inflated, it will use the layout specified by the android:layout
property. The newly inflated view will then be accessible via code by the ID specified by the
 android:inflatedId property.

 Creating a Custom View

 When developing your own application, you may need a view that doesn’t come “out of the
box.” When this occurs you have two options: You can create a class for your own custom view
or you may extend one of the existing views.

 To create your own, you need to create a new class, have it extend View , and have it override at
least one method. You will also be adding the variables and logic needed to handle the custom
properties you will be adding to your view. The following shows a custom view along with the
values used as custom properties:

 public class MyView extends View {
 private int viewColor, viewBgColor;

 public MyView(Context context, AttributeSet attrs) {
 super(context, attrs);

 TypedArray a = context.getTheme().obtainStyledAttributes(attrs,
 R.styleable.MyView, 0, 0);

 try {
 viewColor = a.getInteger(R.styleable.MyView_viewColor);
 viewBgColor = a.getInteger(R.styleable.MyView_viewBgColor)
 } finally {
 a.recycle();
 }

69Creating a Custom View

 @Override
 protected void onDraw(Canvas canvas) {
 // draw your view
 }
 }
 }

 You want to be able to pass values through the XML when used with your application layout
XML. To do this you can add an XML file to the res/values folder. This folder houses
 <resources> with child <declare-styleable> elements. The following shows an example
of a custom view XML file:

 <?xml version="1.0" encoding="utf-8"?>
 <resources>
 <declare-styleable name="MyView">
 <attr name="viewColor" />
 <attr name="viewBgColor" />
 </declare-styleable>
 </resources>

 Now you can add your custom view to your application layout, but you need to add a prop-
erty so that your custom view can be found. This is done by adding the following line to your
layout element:

 xmlns:custom="http://schemas.android.com/apk/res/com.dutsonpa.mycustomview"

 Notice that you need to change the value to match your namespace by replacing
com.dutsonpa.myview with your own package name. Once you add that to your layout
element, you can add your custom view. This is done by referencing the package and then
adjusting or setting the values you want to use. The following shows an example of a custom
view being added with values being set:

 <com.dutsonpa.mycustomview.myview
 android:id="@+id/"
 custom:viewColor="#33FF33"
 custom:viewBgColor="#333333" />

 Notice that Android properties may be used and that your custom properties are used by
employing custom:valueName . This provides some flexibility by allowing some built-in
features to be mixed with your custom attributes.

 The last thing you should do is add getter and setter methods for your attributes. These can be
added to your class as follows:

 public void getViewColor() {
 return viewColor;
 }

http://schemas.android.com/apk/res/com.dutsonpa.mycustomview"

70 Chapter 5 Views

 public void getViewBgColor() {
 return viewBgColor;
 }

 public void setViewColor(int newViewColor) {
 viewColor=newViewColor;
 invalidate();
 requestLayout();
 }

 public void setViewBgColor(int newViewBgColor) {
 viewBgColor=newViewBgColor;
 invalidate();
 requestLayout();
 }

 By using invalidate() and requestLayout() , the layout is forced to redraw using the
 onDraw() method that is being employed by the custom view.

 Summary

 In this chapter, you learned what views are and how they are used in applications. You learned
that views have multiple subclasses that can be used as is or extended by making a custom
 View .

 You learned about the main subclasses and how to implement them into your application
layout XML file, as well as some code that may be used to accompany them.

 You also learned about two views that were introduced with Android Lollipop: CardView and
 RecyclerView . These views are complex ViewGroup s that can help display data in the Material
design style and update the aging ListView .

Index

 A
 ACCESS_COARSE_LOCATION permission,

 139 - 140

 ACCESS_FINE_LOCATION permission, 140

 ACCESS_NETWORK_STATE permission, 127

 accessing

 content providers, 100

 Internet, 127 - 130

 HTTP clients, 129 - 130

 mobile data connectivity,
detecting, 128

 network detection, 127 - 128

 Wi-Fi connectivity, detecting, 128

 AccountManager class, 187

 ACTION_NDEF_DISCOVERED intent,

filtering, 177 - 178

 ACTION_TAG_DISCOVERED intent, filtering,

 179 - 181

 ACTION_TECH_DISCOVERED intent, filtering,

 178 - 179

 Activities, 48 - 51

 adding to manifests folder, 49

 callback methods, 50 - 51

 creating, 48 - 49

 Fragments, adding, 55 - 56

 lifecycle, 49 - 51 , 101 - 102

 Loaders, 56 - 57

 Location API, 148 - 153

 location reporting application, 140 - 144

276 Activity-selection screen (Android Studio)

 manifests folder, 34 - 36

 starting, 4 - 9

 testing folders, creating, 18

 Recent Projects list, 4

 website , xv , 2

 Welcome Screen, 4

 Android TV, 251 - 252 . See also TVs

 advertisement services, 253

 app banners, 256 - 257 , 272

 apps, building, 258 - 261

 bitmaps, 258

 controls, 253

 debugging, 261 - 262

 device emulators, 262

 Focused state, 253

 guidelines

 color, 256

 text, 255 - 256

 Leanback, 252

 LinearLayout, 254

 recommendations, 257 - 258

 ten-foot view, 252 - 254

 web resources, 253

 widgets, 258

 Android Wear, 217 - 218

 BoxInsetLayout class, 219 - 220

 communicating with, 224 - 228

 notifications, 224 - 226

 sending data, 226 - 228

 comparing Wear and Android
devices, 218

 devices, connecting to, 222 - 224

 emulators, 221 - 222

 WatchViewStub class, 218 - 219

 Wearable UI Library, 218

 Activity-selection screen (Android Studio), 6

 ADT (Android Development Tools), 1

 migrating to Android Studio, 3 - 4

 advertisement services for Android TV, 253

 alpha, 118

 AnalogClock view, 60

 android avd command, 11

 Android Backup Services, 187 - 191

 Backup Service Key, 189 - 190

 preferences, backing up, 190 - 191

 Android Developers Blog, xv

 Android developers page (YouTube), xv

 Android Device Monitor, application

profiling, 26 - 27

 Android Player, website, 13

 Android SDK, xv

 downloading, 9

 Android SDK Manager, 10

 Android Source Code website, xv

 Android Studio, 1 - 2

 Activity-selection screen, 6

 Android TV apps, building, 258 - 261

 AVD Manager, launching, 11

 build problems, troubleshooting, 6 - 7

 Build Variants window, 19

 Design view, 7

 features, 8 - 9

 Gradle build system, 2

 installing, 2 - 4

 migration from ADT, 3 - 4

 Preview pane, 8

 projects

 closing, 9

 Gradle build system, 41 - 42

 java folder, 36 - 37

277 applications

 Google Fit, 207

 Location API, 148 - 153

 Nearby API, 209 - 214

 Nearby Messages API

 enabling, 209 - 210

 sending and receiving messages,
 210 - 214

 NFC, 176 - 181

 ACTION_NDEF_DISCOVERED
intent, filtering, 177 - 178

 ACTION_TAG_DISCOVERED
intent, filtering, 179 - 181

 ACTION_TECH_DISCOVERED
intent, filtering, 178 - 179

 NDEF messages, 176

 permissions, 177

 tags, 176 - 177

 app widgets, 85 - 86

 adding to lock screen, 92

 Android TV, 258

 AppWidgetProvider class, 94 - 96

 AppWidgetProviderInfo object, 89 - 93

 creating, 85 - 86

 layouts, 86 - 89

 home screen, 92 - 93

 sizing, 89 - 90

 XML layout file, 86 - 89

 manifest file entries, 96

 preview image, 90 - 92

 resizing, 93

 update frequency, 90

 Appium, 20

 Application object, extending, 239 - 241

 applications

 Android TV apps, building, 258 - 261

 asynchronous processing, 104 - 106

 animation, 117 - 125

 drawable animation, 122

 defining in XML, 122

 property animation, 118 - 121

 AnimatorSet subclass, 121

 defining in XML, 119

 ObjectAnimator subclass, 120 - 121

 ValueAnimator subclass, 120

 scale effect, 118

 transition framework, 123 - 125

 defining in XML, 123 - 124

 fade out/in transitions, 125

 view animation, 117 - 118

 alpha, 118

 creating, 118

 interpolators, 118

 rotate effect, 118

 translate effect, 118

 AnimatorSet subclass, 121

 annotations, 19

 ANR (Application Not Responding)

notices, 21

 APIs

 Bluetooth

 enabling, 168 - 169

 scanning for devices, 169 - 170

 stages of communication, 167 - 168

 device sensors, 181 - 185

 detecting, 182 - 183

 reading data, 183 - 185

 Google Drive Android API, 191 - 195

 client, creating, 191 - 192

 reading files, 193 - 194

 registering applications with
Developers Console, 191

 retrieving files, 193

 writing to files, 194 - 195

278 applications

 audio

 playback, 156 - 159

 recording, 159 - 161

 supported codecs, 155

 authentication, Google Fit, 207 - 208

 available memory, displaying, 27

 AVD (Android Virtual Device), 3 , 11 - 12

 scaling, 262

 virtual devices

 cloning, 11

 scaling, 11

 AVD Manager

 launching, 11

 Wear emulator, creating, 221 - 222

 B
 backing up

 preferences, 190 - 191

 user data, 188 - 191

 Backup Service Key, 189 - 190

 bitmaps, 107 - 111

 memory usage, 107 - 108

 NinePatch, 109 - 111

 Draw 9-patch utility, 110 - 111

 scaling, 108 - 109

 BLE (Bluetooth low energy), 167

 communicating with, 173 - 176

 GATT, 173

 scanning for devices, 170

 blogs, Android Developers Blog , xv

 Bluetooth

 BLE

 communicating with, 173 - 176

 GATT, 173

 discovery stage, 167

 enabling, 168 - 169

 components

 Activities, 48 - 51

 Fragments, 52 - 57

 Intents, 45 - 48

 deployment

 preparing for, 265

 production checklist, 266 - 270

 Google Services, enabling, 229 - 230

 location reporting

 Activity, 140 - 148

 layouts, 147 - 148

 services, 144 - 146

 optimizing

 Application object, extending,
 239 - 241

 logging, 241 - 242

 versioning your configuration,
 242 - 243

 profiling, 25 - 27

 registering with Android Backup
Service, 189

 registering with Developers
Console, 191

 AppWidgetProvider class, 94 - 96

 callback methods, 94

 methods, 95 - 96

 AppWidgetProviderInfo object, 89 - 93

 aspect ratio, 254

 Assert, What a Terrible Failure log level, 30

 asynchronous processing, 104 - 106

 AsyncTask, 105 - 106

 worker threads, 104 - 105

 AsyncTask, 105 - 106 , 133 - 135

 network handling, 133 - 135

 attributes, manifest file, 35

279 components

 SoundPool, 156 - 159

 WatchViewStub class, 218 - 219

 cloning virtual devices, 11

 closing

 Android Studio projects, 9

 HTTP connections, 129

 coarse location data, permissions, 139 - 140

 code repositories

 Git, 14 - 15

 Mercurial, 15

 Subversion, 14

 codecs

 supported audio codecs, 155

 supported video codecs, 161

 CollabNet, 14

 color, guidelines for Android TV, 256

 columns, table layout, 79 - 81

 commands, android avd, 11

 communicating

 with Android Wear, 224 - 228

 notifications, 224 - 226

 sending data, 226 - 228

 with BLE, 173 - 176

 with Fragments, 55 - 56

 comparing Wear and Android devices, 218

 components

 Activities, 48 - 51

 callback methods, 50 - 51

 creating, 48 - 49

 lifecycle, 49 - 51

 Fragments, 52 - 57

 adding to Activities, 55 - 56

 communicating with, 55 - 56

 creating, 52 - 55

 lifecycle, 53 - 55

 methods, 52 - 53

 exploration stage, 168

 Generic Access Profile, 167

 interaction stage, 168

 scanning for devices, 169 - 170

 Bluetooth Classic, 167 , 171 - 173

 bound state (services), 103

 BoxInsetLayout class, 219 - 220

 broadcast receivers, 47 - 48

 build problems, troubleshooting in Android

Studio, 6 - 7

 Build Variants window (Android Studio), 19

 build.gradle files, 42

 Business license (GenyMotion), 13

 buttons, 59

 C
 callback methods

 Activities, 50 - 51

 AppWidgetProvider class, 94

 cancelDiscovery() method, 169

 capturing heap dumps, 26 - 27

 CardView view, 66 - 67

 Cast API, MediaRouteButton, 62

 cells, sizing widgets, 89 - 90

 Certificate Authorities, 130

 CheckUrlTask class, 134

 child elements, aligning, 74 - 76

 classes

 AccountManager, 187

 AppWidgetProvider, 94 - 96

 AppWidgetProvider class

 callback methods, 94

 methods, 95 - 96

 BoxInsetLayout class, 219 - 220

 CheckUrlTask, 134

 singletons, 137

280 components

 location reporting application, 140 - 148

 Activity, 140 - 144

 layouts, 147 - 148

 services, 144 - 146

 queues with Volley, 135 - 136

 view animation, 118

 widgets, 85 - 86

 Cupcake , xiv

 custom dimensions, 236

 custom timings, 235 - 236

 custom views, creating, 68 - 70

 D
 DDMS (Dalvik Debug Monitor Server), 29

 Debug log level, 30

 debugging, 25 - 32 . See also testing

Android TV, 261 - 262

 Android Wear, 222 - 224

 messaging, 29 - 32

 profiling, 25 - 27

 available memory, displaying, 27

 heap dumps, capturing, 26 - 27

 tracing, 27 - 28

 declaration, manifest file, 34

 deploying applications

 APK generation, 273 - 274

 Google Play Store

 Android TV banners, 272

 charging for your app, 272 - 273

 feature graphic, 272

 high-res icon, 271 - 272

 promo graphic, 272

 promo video, 271

 screenshots, 271

 Intent filters, 46 - 47

 Intents, 45 - 48

 broadcast receivers, 47 - 48

 explicit Intents, 45

 implicit Intents, 46

 Loaders, 56 - 57

 connecting to the Internet, 127 - 130

 HTTP clients, 129 - 130

 network detection, 127 - 128

 Wi-Fi connectivity, detecting, 128

 ConnectivityManager, 128

 containers, 249

 layouts

 frame layout, 81 - 83

 linear layout, 74 - 77

 relative layout, 77 - 79

 table layout, 79 - 81

 content providers, 100 - 101

 accessing, 100

 deleting data from, 101

 inserting data, 100

 updating, 100

 Controller (MVC architecture), 102 - 104

 controlling layouts, 71

 CPU, profiling, 25 - 27

 creating

 Activities, 48 - 49

 broadcast receivers, 47 - 48

 custom views, 68 - 70

 Fragments, 52 - 55

 Intents

 explicit Intents, 46

 implicit Intents, 46

281drawable folder

 projects, starting, 6 - 9

 Recent Projects list, 4

 website, 2

 Welcome Screen, 4

 Android TV apps, building, 258 - 261

 Android Wear, 217 - 218

 asynchronous processing, 104 - 106

 Google Services, enabling, 229 - 230

 JDKs, 3

 MVC architecture, 99

 content providers, 100 - 101

 Controller, 102 - 104

 services, 102 - 104

 views, 101 - 102

 patterns, xiv

 device emulators, 10 - 13

 Android TV, 262

 Android Wear, 221 - 222

 AVD, 11 - 12

 GenyMotion, 12 - 13

 licensing, 13

 virtual devices

 cloning, 11

 profiling, 25 - 27

 Xamarin Android Player, 13

 dimensions, sizing widgets, 89 - 90

 discovery stage (Bluetooth), 167

 documentation for OpenGL ES, 117

 downloading

 Android SDK, 9

 Oracle VM Virtual Box, 12

 dp (density-independent) pixels, 72 - 73

 Draw 9-patch utility, 110 - 111

 drawable animation, 122

 defining in XML, 122

 drawable folder, 37 - 38

 preparing for, 265

 production checklist, 266 - 270

 certificate keys, 266

 contact email, 266

 external services, 267

 launcher icon, 267 - 268

 licensing, 268

 package name, 268 - 269

 removal of excess unused
assets, 270

 verifying permissions, 269

 Design view (Android Studio), 7

 detecting

 network connectivity, 127 - 128

 mobile data connectivity, 128

 Wi-Fi, 128

 sensors, 182 - 183

 “Developer mode”, enabling on Android

device, 25

 development . See also debugging;

emulators; testing

ADT, 1

 migrating to Android Studio, 3 - 4

 Android

 minimum requirements , xv

 websites

 Android Studio, 1 - 2

 Activity-selection screen, 6

 build problems, troubleshooting,
 6 - 7

 Build Variants window, 19

 Design view, 7

 features, 8 - 9

 Gradle build system, 2

 installing, 2 - 4

 Preview pane, 8

282 drawables

 file structure of projects

 java folder, 36 - 37

 manifests folder, 34 - 36

 Activities, adding, 49

 res folder, 37 - 41

 drawable subfolder, 37 - 38

 layout subfolder, 39

 menu subfolder, 39

 values subfolder, 40 - 41

 fine location data, permissions, 140

 Fitness API, enabling, 207 - 208

 Focused state, 253

 folders

 java folder, 36 - 37

 manifests folder, 34 - 36

 Activities, adding, 49

 res folder, 37 - 41

 drawable subfolder, 37 - 38

 layout subfolder, 39

 menu subfolder, 39

 values subfolder, 40 - 41

 testing folders, creating, 18

 for loops, 248 - 249

 Fragments, 52 - 57

 adding to Activities, 55 - 56

 communicating with, 55 - 56

 creating, 52 - 55

 lifecycle, 53 - 55

 Loaders, 56 - 57

 methods, 52 - 53

 views, 55

 frame layout, 81 - 83

 overlays, 81 - 82

 WebView view, 82 - 83

 drawables, 111 - 114

 primitive shapes, 111 - 113

 system drawables, 113 - 114

 E
 Eclipse IDE, 1

 ecocommerce, 235

 elements in manifest file, 35 - 36

 emulators, 10 - 13

 Android TV, 262

 Android Wear, 221 - 222

 AVD, 11 - 12

 GenyMotion, 12 - 13

 licensing, 13

 virtual devices

 cloning, 11

 heap dumps, capturing, 26 - 27

 profiling, 25 - 27

 scaling, 11

 Xamarin Android Player, 13

 Error log level, 30

 EULA (End User License Agreement), 268

 events, 233 - 234

 explicit Intents, 45

 creating, 46

 exploration stage (Bluetooth), 168

 extending the Application object, 239 - 241

 F
 fade out/in transitions, 125

 features

 of Android Studio, 8 - 9

 of Git, 15

 of Google Analytics, 232 - 233

 of Mercurial, 15

 of Subversion, 14

283Google Play Services

 features, 232 - 233

 funnels, 234

 goals, 234

 Google API Client, connecting to Google

Play Services, 203 - 206

 Google Drive Android API, 191 - 195

 applications, registering with
Developers Console, 191

 client, creating, 191 - 192

 reading files, 193 - 194

 retrieving files, 193

 writing to files, 194 - 195

 Google Fit, 207 - 209

 APIs, 207

 authentication, 207 - 208

 configuring, 208 - 209

 Google Payments Merchant Center,

 272 - 273

 Google Play Games Services, 195 - 199

 game saving, adding, 196 - 197

 loading saved games, 197 - 199

 Snapshots, 197

 Google Play Services, 201

 adding to Gradle file, 202

 available services, 202

 compiling, 202

 connecting to, 203 - 206

 Google Fit, 207 - 209

 APIs, 207

 authentication, 207 - 208

 configuring, 208 - 209

 Fitness API, enabling, 207 - 208

 initial setup, 201

 Location API, 148 - 153

 Nearby API, 209 - 214

 frameworks

 Robotium automation framework, 20

 transition framework, 123 - 125

 Free license (GenyMotion), 13

 functions

 getMemoryClass(), 244

 helper functions, 74

 funnels, 234

 Fused Location Provider, 148

 G
 game saving, adding to Google Play Games

Services, 196 - 197

 garbage collection

 minimizing, 244

 monitoring, 245

 GATT (Generic Attribute Profile), 173

 Generic Access Profile, 167

 GenyMotion, 12 - 13

 licensing, 13

 getActivity() method, 55

 getLoaderManager() method, 56

 getMemoryClass() function, 244

 getResponseCode() method, 133

 GLSurfaceView, setting up, 115 - 117

 goals (Google Analytics), 234

 Google accounts, retrieving from devices,

 187 - 188

 Google Analytics

 available statistics, 232

 custom dimensions, 236

 custom metrics, 236 - 237

 custom timings, 235 - 236

 ecocommerce, 235

 enabling, 230 - 232

 events, 233 - 234

284 Google Play Services

 Gradle build system, 2 , 41 - 42

 build.gradle files, 42

 Google Play Services, adding, 202

 gradle.build file, adding support for
JUnit, 18

 graphics . See also images

bitmaps, 107 - 111

 memory usage, 107 - 108

 scaling, 108 - 109

 drawables, 111 - 114

 shapes, 111 - 113

 system drawables, 113 - 114

 NinePatch, 109 - 111

 OpenGL ES, 114 - 117

 adding to manifest file, 114 - 115

 documentation, 117

 GLSurfaceView, setting up, 115 - 117

 NDK, 117

 texture compression, 115

 guidelines for Android TV

 color, 256

 text, 255 - 256

 H
 hasResolution() method, 204

 heap dumps, capturing, 26 - 27

 helper functions, 74

 home screen, widgets

 adding, 92

 layouts, 92 - 93

 Hovered state, 253

 HTTP clients, 129 - 130

 Nearby Messages API

 enabling, 209 - 210

 sending and receiving messages,
 210 - 214

 override methods, 204 - 206

 Google Play Store, listing your app with

 Android TV banners, 272

 charging for your app, 272 - 273

 feature graphic, 272

 high-res icon, 271 - 272

 promo graphic, 272

 promo video, 271

 screenshots, 271

 Google Services, enabling, 229 - 230

 Google (Android) TV, 251 - 252 . See also TVs

 advertisement services, 253

 app banners, 256 - 257 , 272

 apps, building, 258 - 261

 bitmaps, 258

 controls, 253

 debugging, 261 - 262

 device emulators, 262

 Focused state, 253

 guidelines

 color, 256

 text, 255 - 256

 Leanback, 252

 LinearLayout, 254

 recommendations, 257 - 258

 ten-foot view, 252 - 254

 web resources, 253

 widgets, 258

 GPS

 coarse location data, permissions,
 139 - 140

 fine location data, permissions, 140

285layout folder

 Intents, 45 - 48

 ACTION_NDEF_DISCOVERED intent,
filtering, 177 - 178

 ACTION_TAG_DISCOVERED intent,
filtering, 179 - 181

 ACTION_TECH_DISCOVERED intent,
filtering, 178 - 179

 broadcast receivers, 47 - 48

 explicit Intents, 45

 creating, 46

 implicit Intents, 46

 creating, 46

 interaction stage (Bluetooth), 168

 Internet, accessing, 127 - 130

 INTERNET permission, 127

 interpolators, 118

 J
 Java, similarity to Android , xiv

 java folder, 36 - 37

 JDKs (Java Development Kits), 3

 JetBrains IntelliJ IDEA, 1

 website, 9

 JRE (Java Runtime Environment), 3

 JsonArrayRequests, 137

 JsonObjectRequests, 137

 JUnit

 adding support for in gradle.build
file, 18

 annotations, 19

 K-L
 KeyboardView view, 60 - 61

 launching AVD Manager, 11

 layout folder, 39

 I
 IDEs (integrated development

environments) . See also development

Eclipse, 1

 emulators, 10 - 13

 AVD, 11 - 12

 GenyMotion, 12 - 13

 Xamarin Android Player, 13

 JDKs, 3

 JetBrains IntelliJ IDEA, 1

 website, 9

 imageRequests, 137

 images

 bitmaps, 107 - 111

 memory usage, 107 - 108

 NinePatch, 109 - 111

 scaling, 108 - 109

 drawables, 111 - 114

 primitive shapes, 111 - 113

 system drawables, 113 - 114

 ImageView view, 60

 implicit Intents, 46

 creating, 46

 Indie license (GenyMotion), 13

 Info log level, 30

 InformIT, book registration, xvi

 installing Android Studio, 2 - 4

 OS X, 2 - 3

 integration testing, 20 - 25 . See also unit

testing

 Monkey, 21 - 23

 monkeyrunner, 20 - 21

 UI Automation Viewer, 23 - 25

 intended audience for this book , xiv

 Intent filters, 46 - 47

286 layouts

 Loaders, 56 - 57

 loading saved games (Google Play),

 197 - 199

 Location API, 148 - 153

 location data

 Fused Location Provider, 148

 Location API, 148 - 153

 permissions

 coarse location data, 139 - 140

 fine location data, 140

 reporting application, creating, 140 - 148

 Activity, 140 - 144

 layouts, 147 - 148

 services, 144 - 146

 lock screen, widgets

 adding, 92

 layouts, 92 - 93

 Log class, 29

 log levels, setting in LogCat, 30 - 31

 LogCat, 29 - 32

 log levels, setting, 30 - 31

 options, 29 - 30

 logging, application logging, 241 - 242

 M
 manifest file

 attributes, 35

 declaration, 34

 elements, 35 - 36

 Intent filters, 46 - 47

 OpenGL ES, adding as feature, 114 - 115

 permissions, 127

 updating for app widgets, 96

 manifests folder, 34 - 36

 Activities, adding, 49

 layouts, 71 - 74

 Android Wear, 218 - 219

 controlling, 71

 coordinates, 73 - 74

 frame layout, 81 - 83

 overlays, 81 - 82

 WebView view, 82 - 83

 linear layout, 74 - 77

 LinearLayout, 254

 location reporting application, 147 - 148

 measurements, 72 - 73

 dp, 72 - 73

 size groupings, 73

 sp, 73

 relative layout, 77 - 79

 table layout, 79 - 81

 transitioning between, 123 - 125

 widgets, 86 - 89

 home screen, 92 - 93

 sizing, 89 - 90

 XML layout file, 86 - 89

 Leanback, 252

 libraries

 Leanback, 252

 Volley, 135 - 137

 queues, creating, 135 - 136

 requests, 136 - 137

 licensing

 EULA, 268

 GenyMotion, 13

 lifecycle

 of Activities, 49 - 51 , 101 - 102

 of Fragments, 53 - 55

 linear layout, 74 - 77

 LinearLayout, 254

 ListView, 55

287MVC (Model-View-Controller) architecture

 setPriority(), 152

 startDiscovery(), 169

 static methods, 248

 MIFARE Classic tags, 177

 migrating from ADT to Android Studio, 3 - 4

 minimizing garbage collection, 244

 minimum requirements for Android

development , xv

 mobile data connectivity, detecting, 128

 monitoring

 garbage collection, 245

 memory usage, 245 - 247

 Monkey, integration testing, 21 - 23

 monkeyrunner, 20 - 21

 multimedia

 audio

 playback, 156 - 159

 recording, 159 - 161

 supported codecs, 155

 video, 161 - 165

 playback, 162 - 165

 supported codecs, 161

 MVC (Model-View-Controller)

architecture, 99

 asynchronous processing, 104 - 106

 AsyncTask, 105 - 106

 worker threads, 104 - 105

 content providers, 100 - 101

 accessing, 100

 deleting data from, 101

 inserting data, 100

 updating, 100

 Controller, 102 - 104

 services, 102 - 104

 bound state, 103

 started state, 102

 views, 101 - 102

 measurements for layouts

 dp, 72 - 73

 size groupings, 73

 sp, 73

 MediaRouteButton view, 62

 memory

 available memory, displaying, 27

 images, storing, 107 - 108

 optimizing, 243 - 247

 IntentServices, 244

 minimizing garbage collection, 244

 Proguard, 244 - 245

 profiling, 25 - 27

 usage, monitoring, 245 - 247

 menu folder, 39

 Mercurial, 15

 messaging, 29 - 32

 LogCat

 log levels, setting, 30 - 31

 options, 29 - 30

 methods

 AppWidgetProvider class, 95 - 96

 cancelDiscovery(), 169

 Fragments, 52 - 53

 getActivity(), 55

 getLoaderManager(), 56

 hasResolution(), 204

 KeyboardView, 61

 onCreateLoader(), 57

 onLoaderReset(), 57

 onLoadFinished(), 57

 onPause(), 47 - 48

 onResume(), 47 - 48

 onUpdate(), 90

 registerReceiver(), 47 - 48

288 navigating X/Y axis with remote (Android TV)

 O
 ObjectAnimator subclass, 120 - 121

 Official Android Development Site, xv

 onCreateLoader() method, 57

 onLoaderReset() method, 57

 onLoadFinished() method, 57

 onPause() method, 47 - 48

 onResume() method, 47 - 48

 onUpdate() method, 90

 OpenGL ES, 114 - 117

 documentation, 117

 GLSurfaceView, setting up, 115 - 117

 NDK, 117

 texture compression, 115

 operating systems, installing Android

Studio on OS X, 2 - 3

 optimizing

 applications

 Application object, extending,
 239 - 241

 logging, 241 - 242

 versioning your configuration,
 242 - 243

 memory management, 243 - 247

 IntentServices, 244

 minimizing garbage collection, 244

 Proguard, 244 - 245

 performance, 247 - 249

 containers, 249

 layouts, 248 - 249

 objects, 247 - 248

 static methods, 248

 Oracle VM Virtual Box, 12

 OS X operating system, installing Android

Studio on, 2 - 3

 overlays, 81 - 82

 overscan, 254

 N
 navigating X/Y axis with remote

(Android TV), 253

 NDEF (NFC Data Exchange Format)

messages, 176

 NDK (Native Development Kit), 117

 Nearby API, 209 - 214

 Nearby Messages API

 enabling, 209 - 210

 sending and receiving messages,
 210 - 214

 nested XML tags, parsing, 132 - 133

 network detection, 127 - 128

 mobile data connectivity,
detecting, 128

 Wi-Fi connectivity, detecting, 128

 networking, 127

 AsyncTask, 133 - 135

 HTTP clients, 129 - 130

 Volley, 135 - 137

 queues, creating, 135 - 136

 requests, 136 - 137

 NFC (Near Field Communication), 176 - 181

 ACTION_NDEF_DISCOVERED intent,
filtering, 177 - 178

 ACTION_TAG_DISCOVERED intent,
filtering, 179 - 181

 ACTION_TECH_DISCOVERED intent,
filtering, 178 - 179

 NDEF messages, 176

 permissions, 177

 tags, 176 - 177

 NinePatch, 109 - 111

 Draw 9-patch utility, 110 - 111

 notifications (Android Wear), 224 - 226

289 publishing applications

 production checklist for application

deployment, 266 - 270

 certificate keys, 266

 contact email, 266

 external services, 267

 launcher icon, 267 - 268

 package name, 268 - 269

 profiling, 25 - 27

 ProgressBar view, 62 - 64

 projects

 Android Studio

 closing, 9

 starting, 4 - 9

 testing folders, creating, 18

 file structure

 java folder, 36 - 37

 manifests folder, 34 - 36

 res folder, 37 - 41

 Gradle build system, 41 - 42

 property animation, 118 - 121

 AnimatorSet subclass, 121

 defining in XML, 119

 ObjectAnimator subclass, 120 - 121

 ValueAnimator subclass, 120

 publishing applications

 APK generation, 273 - 274

 Google Play Store

 Android TV banners, 272

 charging for your app, 272 - 273

 feature graphic, 272

 high-res icon, 271 - 272

 promo graphic, 272

 promo video, 271

 screenshots, 271

 preparing for, 265

 P
 parsing XML, 131 - 133

 ignoring namespaces, 131

 nested tags, 132 - 133

 text values, retrieving, 131 - 132

 patterns , xiv

 performance

 optimizing, 247 - 249

 containers, 249

 for loops, 248 - 249

 objects, 247 - 248

 static methods, 248

 profiling, 25 - 27

 heap dumps, capturing, 26 - 27

 tracing, 27 - 28

 permissions

 location data

 coarse location data, 139 - 140

 fine location data, 140

 manifest file, 127

 NFC, 177

 verifying, 269

 pixels

 bitmaps, 107 - 111

 NinePatch, 109 - 111

 dp, 72 - 73

 playback

 audio, 156 - 159

 video, 162 - 165

 preferences, backing up, 190 - 191

 preparing for application deployment, 265

 Pressed state, 253

 Preview pane (Android Studio), 8

 previewImage property, 90 - 92

 primitive shapes, 111 - 113

290 publishing applications

 resizing

 images, 108 - 109

 widgets, 93

 retrieving user accounts from devices,

 187 - 188

 Robotium automation framework, 20

 rotate effect (animation), 118

 rows, table layout, 79 - 81

 S
 saved games, loading in Google Play

Games Services, 197 - 199

 scale effect (animation), 118

 scaling

 AVD, 262

 images, 108 - 109

 virtual devices, 11

 scripts, integration testing with

monkeyrunner, 20 - 21

 SDKs

 Android SDK, downloading, 9

 Android SDK Manager, 10

 Selenium WebDriver, 20

 sensors, 181 - 185

 detecting, 182 - 183

 Google Fit, 207 - 209

 reading data, 183 - 185

 services, 102 - 104

 bound state, 103

 location reporting application, 144 - 146

 started state, 102

 services available in Google Play

Services, 202

 setPriority() method, 152

 shapes, 111 - 113

 singletons, 137

 production checklist, 266 - 270

 certificate keys, 266

 contact email, 266

 external services, 267

 launcher icon, 267 - 268

 licensing, 268

 package name, 268 - 269

 removal of excess unused
assets, 270

 verifying permissions, 269

 Python scripts, integration testing with

monkeyrunner, 20 - 21

 Q-R
 queues, creating with Volley, 135 - 136

 random events, throwing with

Monkey, 21 - 23

 reading

 device sensor data, 183 - 185

 files from Google Drive Android API,
 193 - 194

 sensor data, 183 - 185

 Recent Projects list (Android Studio), 4

 recommendations for Android TV, 257 - 258

 recording audio, 159 - 161

 RecyclerView view, 67

 registering

 applications

 with Android Backup Services, 189

 with Developers Console, 191

 this book at InformIT , xvi

 registerReceiver() method, 47 - 48

 relative layout, 77 - 79

 requests (Volley), 136 - 137

 res folder, 37 - 41

 drawable subfolder, 37 - 38

 menu subfolder, 39

291tracing

 SurfaceView view, 64 - 65

 SVN. See Subversion

 system drawables, 113 - 114

 Systrace, 27 - 28

 T
 table layout, 79 - 81

 tags (NFC), 176 - 177

 ten-foot view, 252 - 254

 test classes

 annotations, 19

 writing, 18 - 19

 testing, 17

 integration testing, 20 - 25

 Monkey, 21 - 23

 monkeyrunner, 20 - 21

 UI Automation Viewer, 23 - 25

 unit testing, 17 - 20

 Appium, 20

 modules, 17

 Robotium automation
framework, 20

 test classes, writing, 18 - 19

 text, guidelines for Android TV, 255 - 256

 text values, retrieving from XML, 131 - 132

 texture compression, 115

 TextureView view, 65 - 66

 TextView view, 65

 threads

 UI, 104

 worker threads, 104 - 105

 throwing random events with

Monkey, 21 - 23

 Torvalds, Linus, 14

 tracing, 27 - 28

 size groupings for layouts, 73

 sizing

 images, 108 - 109

 widgets, 89 - 90

 Snapshots, 197

 sound packs, 159

 SoundPool class, 156 - 159

 sp (scale-independent pixels), 73

 Space view, 64

 StackOverflow website , xv

 stages of Bluetooth communication,

 167 - 168

 startDiscovery() method, 169

 started state (services), 102

 starting

 Android Studio projects, 4 - 9

 Activity-selection screen (Android
Studio), 6

 audio playback, 161

 AVD Manager, 11

 static methods, 248

 statistics available with Google

Analytics, 232

 storing

 code

 Git, 14 - 15

 Mercurial, 15

 Subversion, 14

 user data, 187 - 191

 styles for layouts

 frame layout, 81 - 83

 linear layout, 74 - 77

 relative layout, 77 - 79

 table layout, 79 - 81

 Subversion, 14

 features, 14

292 transition framework

 UI Automation Viewer, 23 - 25

 UI/Application Exerciser Monkey

 Monkey, integration testing, 21 - 23

 unit testing

 Appium, 20

 Robotium automation framework, 20

 test classes

 annotations, 19

 writing, 18 - 19

 testing folders, creating for your
project, 18

 unregisterReceiver() method, 47 - 48

 update frequency for widgets, 90

 updating

 content providers, 100

 location data, 152

 manifest file

 app widgets, 96

 URI (Uniform Resource Identifier), 100

 user accounts

 Android Backup Services

 Backup Service Key, 189 - 190

 preferences, backing up, 190 - 191

 backing up, 188 - 191

 retrieving from devices, 187 - 188

 utilities

 Draw 9-patch, 110 - 111

 Widget Preview, 90 - 92

 zipalign, 244 - 245

 UUID (Universally Unique Identifer), 171

 V
 ValueAnimator subclass, 120

 values folder, 40 - 41

 Verbose log level, 30

 transition framework, 123 - 125

 defining in XML, 123 - 124

 fade out/in transitions, 125

 transitions, 117

 translate effect (animation), 118

 troubleshooting Android Studio build

problems, 6 - 7

 TVs

 aspect ratio, 254

 functionality, 255

 overscan, 254

 U
 UI

 layouts, 71 - 74

 controlling, 71

 coordinates, 73 - 74

 measurements, 72 - 73

 lock screen

 widgets, adding, 92

 threads, 104

 views, 59 - 68

 AnalogClock view, 60

 buttons, 59

 ImageView, 60

 KeyboardView, 60 - 61

 MediaRouteButton, 62

 ProgressBar, 62 - 64

 Space, 64

 SurfaceView, 64 - 65

 TextureView, 65 - 66

 TextView, 65

 ViewGroup, 66 - 67

 ViewStub, 68

293widgets

 transitions, 117

 ViewGroup, 66 - 67

 CardView, 66 - 67

 RecyclerView, 67

 ViewStub, 68

 WebView, 82 - 83

 ViewStub view, 68

 virtual devices

 heap dumps, capturing, 26 - 27

 profiling, displaying available
memory, 27

 scaling, 11

 Volley, 135 - 137

 queues, creating, 135 - 136

 requests, 136 - 137

 W
 Warn log level, 30

 WatchViewStub class, 218 - 219

 Wearable UI Library, 218

 web resources for Android TV, 253

 websites

 Android development , xv

 Android Studio , xv , 2

 Git, 14

 Gradle, 42

 JetBrains IntelliJ IDEA, 9

 Robotium automation framework, 20

 Subversion, 14

 WebView view, 82 - 83

 Welcome Screen (Android Studio), 4

 Widget Preview utility, 90 - 92

 widgets, 85 - 86

 adding to lock screen, 92

 Android TV, 258

 AppWidgetProvider class, 94 - 96

 verifying permissions, 269

 version-control systems

 Git, 14 - 15

 Mercurial, 15

 Subversion, 14

 video

 playback, 162 - 165

 supported codecs, 161

 YouTube, Android developers page , xv

 view animation, 117 - 118

 alpha, 118

 creating, 118

 interpolators, 118

 rotate effect, 118

 scale effect, 118

 translate effect, 118

 ViewGroup view, 66 - 67

 CardView view, 66 - 67

 RecyclerView view, 67

 views, 59 - 68

 AnalogClock, 60

 buttons, 59

 custom views, creating, 68 - 70

 GLSurfaceView, setting up, 115 - 117

 ImageView, 60

 KeyboardView, 60 - 61

 ListView, 55

 MediaRouteButton, 62

 MVC architecture, 101 - 102

 overlays, 81 - 82

 ProgressBar, 62 - 64

 Space, 64

 SurfaceView, 64 - 65

 TextureView, 65 - 66

 TextView, 65

 transition framework, 123 - 125

294 widgets

 parsing, 131 - 133

 ignoring namespaces, 131

 nested tags, 132 - 133

 text values, retrieving, 131 - 132

 property animations, defining, 119

 sample animation XML, 118

 shapes, defining, 112 - 113

 transition frameworks, defining,
 123 - 124

 values folder, 40 - 41

 XmlPullParser, 131

 X/Y axis

 navigating with remotes
(Android TV), 253

 obtaining layout coordinates, 73 - 74

 translate effect (animation), 118

 Y-Z
 YouTube, Android developers page , xv

z-index, frame layout, 81 - 83

 zipalign tool, 244 - 245

 AppWidgetProviderInfo object, 89 - 93

 creating, 85 - 86

 layouts, 86 - 89

 home screen, 92 - 93

 sizing, 89 - 90

 XML layout file, 86 - 89

 manifest file entries, 96

 preview image, 90 - 92

 resizing, 93

 update frequency, 90

 Wi-Fi connectivity, detecting, 128

 worker threads, 104 - 105

 writing

 to files with Google Drive API, 194 - 195

 test classes, 18 - 19

 WTF (Assert, What a Terrible Failure)

tag, 32

 X
 Xamarin Android Player, 13

 XML

 custom views, 69

 drawable animation, defining, 122

 layout folder, 39

 layouts, 71

 measurements, 72 - 73

 widget layout files, 86 - 89

 manifest file, 34 - 36

 attributes, 35

 declaration, 34

 elements, 35 - 36

 Intent filters, 46 - 47

 OpenGL ES, adding as feature,
 114 - 115

 permissions, 127

 updating for app widgets, 96

	Acknowledgments
	About the Author
	Contents
	Preface
	5 Views
	The View Class
	The AnalogClock Subclass
	The ImageView Subclass
	The KeyboardView Subclass
	The MediaRouteButton Subclass
	The ProgressBar Subclass
	The Space Subclass
	The SurfaceView Subclass
	The TextView Subclass
	The TextureView Subclass
	The ViewGroup Subclass
	The ViewStub Subclass

	Creating a Custom View
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

