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   Preface  
 The growth of Android since the launch of Cupcake has been astonishing. Today, Android 
powers more than just mobile phones; it has become the go-to solution for manufacturers of 
audio equipment, tablets, televisions, cars, and more.  

 As the use of Android becomes more prevalent, the demand for developers who are familiar 
with using it has also scaled. Developers who understand how the system can be built, 
leveraged, and used are necessary to provide the next wave of amazing and must-have 
applications.  

 Many people around the world are being introduced to Android for the first time, and we as 
developers need to make sure to provide them with a first-class experience that will put a smile 
on their face and help them understand how truly amazing the Android system is.  

  Why Development Patterns?  

 In the fast-paced world of development, patterns are the time-saving solutions that developers 
use and access to maximize their output and minimize time wasted creating a solution that will 
ultimately fail.  

 Android development is a special place that is both familiar and foreign to many Java and 
object-oriented programmers. The relationship it has with the Java language and structure helps 
to bring in developers who have experience and get them up to speed in an almost effortless 
manner. However, there are some optimizations and memory-handling techniques that are not 
optimal for the seasoned Java developer.  

 This particular book is the bridge that helps seasoned developers understand the Android 
way of building and thinking. It is written so that those new to Android development gain 
a foundation for the platform and how to work with the many facets and intricacies that 
Android brings to the table while giving some in-depth hints and strategies that advanced 
developers will need to make their app a success.   

  Who Should Read This Book?  

 Anyone interested in how Android development works should find this book enjoyable and 
helpful. Those just beginning their Android journey may not find this as complete of a volume, 
but some development experience will help; however, those who are tenacious and don’t mind 
getting elbows-deep should find this to be an acceptable companion on their quest toward 
their perfect app.  

 Those who are interested in seeing only theoretical development patterns with large 
explanations about individual bit-shifting and hand-tuning memory management will be 
disappointed in that this book instead focuses on how Android works together piece-by-piece 
with example snippets that help solidify how things should be accomplished in a best-practices 
manner.   
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  Getting Started  

 For those new to developing Android applications, the minimum requirement is a computer 
running either OS X, Windows, or Linux. On these systems, you should download Android 
Studio from  http://developer.android.com/sdk/ . Android Studio comes with the Android SDK.  

 Full use of the Android SDK requires downloads of the version and sample code for which you 
want to develop. Although you can certainly download only a specific version of Android, you 
should download all versions of Android on which you want your app to work.  

 You should also use the Android SDK to download system images of emulators or Android 
Virtual Device (AVD) files. These system images allow you to test your app without actually 
having an Android device.  

 It is highly recommended that you acquire at least one Android device for testing, with a 
preference of having multiple devices in many form-factors so that you can accurately test, 
monitor, and experience your app as your users will.  

 Visit the following websites to keep up on Android and see when new features are introduced 
and how to use them:  

    ■    StackOverflow :  http://www.stackoverflow.com/    

   ■    Official Android Developer Site :  http://developer.android.com/    

   ■    Android Developers Blog :  http://android-developers.blogspot.com/    

   ■    Google Developers on YouTube :  https://www.youtube.com/user/androiddevelopers    

   ■    Android Source Code (AOSP) :  http://source.android.com/      

  Book Structure  

 This book starts with the basics of Android development, including how to set up an 
environment. It takes you through the importance of creating a proper development flow and 
adding testing to your app to make sure your code performs and behaves the way you expect.  

 It continues step by step through the various pieces and parts that make up the Android 
framework. This includes how applications are structured, using widgets and components, and 
learning how to use and create views.  

 You are then introduced to application design paradigms and learn how to make sure you 
are creating an app that you can manage and update easily. This includes adding media and 
network connections that will not end up wasting precious battery power and giving users the 
most accurate and up-to-date information possible.  

 Optional hardware components, Android Wear, and Android TV are also covered later in this 
book to expose you to taking your app to the next level and exploring new opportunities. As 
Android finds itself being included in more devices, you’ll understand how and why it is in 
your best interest to provide apps to users who invest in these platforms.  

http://developer.android.com/sdk/
http://www.stackoverflow.com/
http://developer.android.com/
http://android-developers.blogspot.com/
https://www.youtube.com/user/androiddevelopers
http://source.android.com/
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 Finally, you learn about some key optimization strategies as well as how to package your app 
for distribution through enterprise systems, email, and the Google Play Store.  

 When you are finished with this book, you will have an understanding of how the Android 
system works and, more importantly, how to craft an app that is optimized, distributed, and 
enjoyed by what will hopefully be millions of users. 

 Register your copy of  Android Development Patterns  at  informit.com  for convenient access 
to downloads, updates, and corrections as they become available.  To start the registration 
process, go to   informit.com/register   and log in or create an account. Enter the product ISBN 
 9780133923681  and click Submit. Once the process is complete, you will find any available 
bonus content under “Registered Products.”     
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 Views  

    Of all the pieces of the Android system, views are probably the most used. Views are the core 
building block on which almost every piece of the UI is built. They are versatile and, as such, 
are used as the foundation for widgets. In this chapter, you learn how to use and how to create 
your own view.   

     The  View  Class  

 A view is a rather generic term for just about anything that is used in the UI and that has a 
specific task. Adding something as simple as a button is adding a view. Some widgets, including 
 Button ,  TextView , and  EditText  widgets, are all different views.  

 Looking at the following line of code, it should stand out that a button is a view:  

  Button btnSend = (Button) findViewById(R.id.button);   

 You can see that the  Button  object is defined and then set to a view defined in the application 
layout XML file. The  findViewById()  method is used to locate the exact view that is being 
used as a view. This snippet is looking for a view that has been given an  id  of  button . The 
following shows the element from the layout XML where the button was created:  

  <Button
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:text="@string/button_text"
    android:id="@+id/button"
    android:layout_below="@+id/textView"
    android:layout_centerHorizontal="true" />   

 Even though the element in the XML is  <Button> , it is still considered a view. This is because 
 Button  is what is called an indirect subclass of  View . In total, there are more than 80 indirect 
subclasses of  View  as of API level 21. There are 11 direct subclasses of  View :  AnalogClock , 
 ImageView ,  KeyboardView ,  MediaRouteButton ,  ProgressBar ,  Space ,  SurfaceView , 
 TextView ,  TextureView ,  ViewGroup , and  ViewStub .  
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  The  AnalogClock  Subclass  

 The  AnalogClock  is a complex view that shows an analog clock with a minute-hand and an 
hour-hand to display the current time.  

 Adding this view to your layout XML is done with the following element:  

  <AnalogClock
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:id="@+id/analogClock"
    android:layout_centerVertical="true"
    android:layout_centerHorizontal="true" />   

 This view can be attached to a surface by using the  onDraw(Canvas canvas)  method, and 
it can be sized to scale to the screen it is being displayed on via the following method:  

  onMeasure(int widthMeasureSpec, int heightMeasureSpec)   

 It should be noted that if you decide to override the  onMeasure()  method, you must call 
 setMeasuredDimension(int, int) . Otherwise, an  IllegalStateException  error will 
be thrown.   

  The  ImageView  Subclass  

 The  ImageView  is a handy view that can be used to display images. It is smart enough to do 
some simple math to figure out dimensions of the image it is displaying, which in turn allows 
it to be used with any layout manager. It also allows for color adjustments and scaling the 
image.  

 Adding an  ImageView  to your layout XML requires the following:  

  <ImageView
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:id="@+id/imageView"
    android:src="@drawable/car"
    android:layout_centerVertical="true"
    android:layout_centerHorizontal="true" />   

 To show multiple figures, you can use multiple  ImageView s within a layout. Similar to other 
views, you can attach events such as a click event to trigger other behavior. Depending on 
the application you are building, this may be advantageous versus requiring the user to click a 
button or use another widget to complete an action.   

  The  KeyboardView  Subclass  

 The  KeyboardView  is one of the most interesting views that exist. This is one of the true 
double-edged components of the Android system. Using the  KeyboardView  allows you to 
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create your own keyboard. Several keyboards exist in the Play store that you can download 
right now and use on your Android device that are based on using the  KeyboardView .  

 The problem is that using an application with a custom keyboard means that all data entry 
must pass through it. Every “keystroke” is passed through the application, and that alone tends 
to send shivers down the spine of those who are security conscious. However, if you are an 
enterprise developer and need a custom keyboard to help with data entry, then this view may 
be exactly what you are looking for.  

  Note 

 The  KeyboardView  requires creating a new input type for your device, and the keyboard you 
create will be accessible in all programs. This also means that users may opt to not use your 
keyboard, and may even disable it as an option.   

 Creating your own keyboard is an involved process. You need to do the following:  

    ■   Create a service in your application manifest.   

   ■   Create a class for the keyboard service.   

   ■   Add an XML file for the keyboard.   

   ■   Edit your  strings.xml  file.   

   ■   Create the keyboard layout XML file.   

   ■   Create a preview  TextView .   

   ■   Create your keyboard layout and assign values.    

 The  KeyboardView  has several methods you can override to add functionality to your 
keyboard:  

    ■    onKey()    

   ■    onPress()    

   ■    onRelease()    

   ■    onText()    

   ■    swipeDown()    

   ■    swipeUp()    

   ■    swipeLeft()    

   ■    swipeRight()     

 You do not need to override all of these methods; you may find that you only need to use the 
 onKey()  method.   
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  The  MediaRouteButton  Subclass  

 The  MediaRouteButton  that is part of the compatibility library is generally used when working 
with the Cast API. This is where you need to redirect media to a wireless display or ChromeCast 
device. This view is the button that is used to allow the user to select where to send the media.  

 Note that per Cast design guidelines, the button must be considered “top level.” This means 
that you can create the button as part of the menu or as part of the ActionBar. After you create 
the button, you must also use the  .setRouteSelector()  method; otherwise, an exception will 
be thrown.  

 First, you need to add an  <item>  to your menu XML file. The following is a sample  <item>  
inside of the  <menu>  element:  

  <item
  android:id="@+id/mediaroutebutton_cast"
  android:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
  android:actionViewClass="android.support.v7.app.MediaRouteButton"
  android:showAsAction="always"
  android:visible="false"
  android:title="@string/mediaroutebutton"/>   

 Now that you have a menu item created, you need to open your  MainActivity  class and use 
the following import:  

  import android.support.v7.app.MediaRouteButton;   

 Next, you need to declare it in your  MainActivity  class:  

  private MediaRouteButton myMediaRouteButton;   

 Finally, add the code for the  MediaRouteButton  to the menu of the  onCreateOptionsMenu()  
method. Remember that you must also use  setRouteSelector()  on the  MediaRouteButton . 
The following demonstrates how this is accomplished:  

  @Override
  public boolean onCreateOptionsMenu(Menu menu) {
    super.onCreateOptionsMenu(menu);
    getMenuInflater().inflate(R.menu.main, menu);
  
    myMediaRouteItem = menu.findItem(R.id.mediaroutebutton_cast);
    myMediaRouteButton = (MediaRouteButton) myMediaRouteItem.getActionView();
    myMediaRouteButton.setRouteSelector(myMediaRouteSelector);
    return true;
  }    

  The  ProgressBar  Subclass  

 The progress bar is a familiar UI element. It is used to indicate that something is happening 
and how far along this process is. It is not always possible to determine how long an action will 
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take; luckily, the  ProgressBar  can be used in indeterminate mode. This allows an animated 
circle to appear that shows movement without giving a precise measurement of the status of 
the load.  

 To add a  ProgressBar , you need to add the view to your layout XML. The following shows 
adding a “normal”  ProgressBar :  

  <ProgressBar
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:id="@+id/progressBar"
    android:layout_centerVertical="true"
    android:layout_centerHorizontal="true" />   

 Other styles of  ProgressBar  may also be used. To change the style, you need to add a property 
to the  <ProgressBar>  element. The following styles may be used:  

  Widget.ProgressBar.Horizontal
  Widget.ProgressBar.Small
  Widget.ProgressBar.Large
  Widget.ProgressBar.Inverse
  Widget.ProgressBar.Small.Inverse
  Widget.ProgressBar.Large.Inverse   

 Depending on your implementation, you may apply the style either with your  styles.xml  or 
from your  attrs.xml . For the styles from  styles.xml , you would use the following:  

  style="@android:style/Widget.ProgressBar.Small"   

 If you have styles inside your  attrs.xml  file that you want applied to the progress bar, use the 
following property in the  <ProgressBar>  element:  

  style="?android:attr/progressBarStyleSmall"   

 If you are planning on using the indeterminate mode, you need to pass a property of 
 android:indeterminate  into the  <ProgressBar>  element. You may also specify the loading 
animation by setting the  android:indeterminateDrawable  to a resource of your choosing.  

 A  ProgressBar  that is determinate requires updates to be passed to it via the  setProgress()  
or  incrementProgressBy()  method. These methods should be called from a worker thread. 
The following shows an example of a thread that uses a  Handler  and an  int  for keeping the 
progress value, and a  ProgressBar  has been initialized:  

  new Thread(new Runnable() {
    public void run() {
      while (myProgress < 100) {
        myProgress = doWork();
        myHandler.post(new Runnable() {
          public void run() {
            myProgressBar.setProgress(myProgress);
          }
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        });
      }
    }
  }).start();    

  The  Space  Subclass  

 For those who have worked on layouts and visual interfaces, the  Space  view is one that is both 
helpful and brings on somewhat lucid nightmares. This view is reserved to add “space” between 
other views and layout objects.  

 The benefit to using a  Space  is that it is a   lightweight view that can be easily inserted and 
modified to fit your needs without you having to do an absolute layout or extra work trying to 
figure out how relative spacing would work on complex layouts.  

 Adding a  Space  is done by adding the following to your layout XML:  

  <Space
    android:layout_width="1dp"
    android:layout_height="40dp" />    

  The  SurfaceView  Subclass  

 The  SurfaceView  is used when rendering visuals to the screen. This may be as complex as 
providing a playback surface for a live camera feed, or it can be used for rendering images on a 
transparent surface.  

 The  SurfaceView  has two major callbacks that act as lifecycle mechanisms that you 
can use to your advantage:  SurfaceHolder.Callback.surfaceCreated()  and 
 SurfaceHolder.Callback.surfaceDestroyed() . The time in between these methods 
is where any work with drawing on the surface should take place. Failing to do so may cause 
your application to crash and will get your animation threads out of sync.  

 Adding a  SurfaceView  requires adding the following to your layout XML:  

  <SurfaceView
    android:id="@+id/surfaceView"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:layout_weight="1" />   

 Depending on how you are going to use your  SurfaceView , you may want to use the follow-
ing callback methods:  

    ■    surfaceChanged()    

   ■    surfaceCreated()    

   ■    surfaceDestroyed()     
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 Each of these callback methods gives you an opportunity to initialize values, change them, 
and more importantly free some system resources up when it is released. If you are using a 
 SurfaceView  for rendering video from the device camera, it is essential that you release control 
of the camera during the  surfaceDestroyed()  method. Failing to release the camera will 
throw errors when you attempt to resume usage of the camera in either another application 
or when your application is resumed. This is due to a new instance attempting to open on a 
resource that is finite and currently marked as in use.   

  The  TextView  Subclass  

 The  TextView  is likely the first view added to your project. If you create a new project in 
Android Studio that follows the default options, you will be given a project that contains a 
 TextView  with a string value of “Hello World” in it.  

 To add a  TextView , you need to add the following code to your layout XML file:  

  <TextView
    android:text="@string/hello_world"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content" />   

 Note that in the previous example, the value for the  TextView  is taken from  @string/
hello_world . This value is inside of the  strings.xml  file that is in your  res/values  folder 
for your project. The value is defined in  strings.xml  as follows:  

  <string name="hello_world">Hello world!</string>   

 The  TextView  also contains a large number of options that can be used to help format, adjust, 
and display text in your application. For a full list of properties, visit  http://developer.android.
com/reference/android/widget/TextView.html .   

  The  TextureView  Subclass  

 The  TextureView  is similar to the  SurfaceView  but carries the distinction of being tied 
directly to hardware acceleration. OpenGL and video can be rendered to the  TextureView , but 
if hardware acceleration is not used for the rendering, nothing will be displayed. Another differ-
ence when compared to  SurfaceView  is that  TextureView  can be treated like a  View . This 
allows you to set various properties including setting transparency.  

 In similarity to  SurfaceView , some methods need to be used with  TextureView  in order 
for proper functionality. You should first create your  TextureView  and then use either 
 getSurfaceTexture()  or  TextureView.SurfaceTextureListener  before using 
 setContentView() .  

 Callback methods should also be used for logic handling while working with the  TextureView . 
Paramount among these callback methods is the  onSurfaceTextureAvailable()  method. 
Due to  TextureView  only allowing one content provider to manipulate it at a time, the 

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html
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 onSurfaceTextureAvailable()  method can allow you to handle IO exceptions and to make 
sure you actually have access to write to it.  

 The  onSurfaceTextureDestroyed()  method should also be used to release the content 
provider to prevent application and resource crashing.   

  The  ViewGroup  Subclass  

 The  ViewGroup  is a special view that is used for combining multiple views into a layout. This 
is useful for creating unique and custom layouts. These views are also called “compound views” 
and, although they are flexible, they may degrade performance and render poorly based on the 
number of children included, as well as the amount of processing that needs to be done for 
layout parameters.  

   CardView   
 The  CardView  is part of the  ViewGroup  that was introduced in Lollipop as part of the v7 
support library. This view uses the Material design interface to display views on “cards.” This is 
a nice view for displaying compact information in a native Material style. To use the  CardView , 
you can load the support library and wrap your view elements in it. The following demon-
strates an example:  

  <RelativeLayout
    xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:tools="http://schemas.android.com/tools"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:paddingLeft="@dimen/activity_horizontal_margin"
    android:paddingRight="@dimen/activity_horizontal_margin"
    android:paddingTop="@dimen/activity_vertical_margin"
    android:paddingBottom="@dimen/activity_vertical_margin"
    tools:context=".MainActivity">
  
    <android.support.v7.widget.CardView
      xmlns:card_view="http://schemas.android.com/apk/res-auto"
      android:id="@+id/card_view"
      android:layout_gravity="center"
      android:layout_width="200dp"
      android:layout_height="200dp"
      card_view:cardCornerRadius="4dp"
      android:layout_centerVertical="true"
      android:layout_centerHorizontal="true">
  
    <TextView android:text="@string/hello_world"
      android:layout_width="wrap_content"
      android:layout_height="wrap_content" />
    </android.support.v7.widget.CardView>
  </RelativeLayout>   
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 This example shows a card in the center of the screen. The color and corner radius can be 
changed via attributes in the  <android.support.v7.widget.CardView>  element. Using 
 card_view:cardBackgroundColor  will allow you to change the background color, and using 
 card_view:cardCornerRadius  will allow you to change the corner radius value.  

  Note 

 Using the  CardView  support library requires you to edit your Gradle build files. You need to add 
the following line to the  dependencies  section in your  build.gradle  file:  
  dependencies {
    compile 'com.android.support:cardview-v7:21.+'
  }   

 You should change the version number targeted on the end to match your project target.    

   RecyclerView   

 The  RecyclerView  was also added in Lollipop as part of the v7 support library. This 
view is a replacement for the aging  ListView . It brings with it the ability to use a 
 LinearLayoutManager ,  StaggeredLayoutManager , and  GridLayoutManager  as well as 
animation and decoration support. The following shows how you can add this view to your 
layout XML:  

  <android.support.v7.widget.RecyclerView
      android:id="@+id/my_recycler_view"
      android:scrollbars="vertical"
      android:layout_width="match_parent"
      android:layout_height="match_parent"/>   

 Similar to with a  ListView , after you have added the  RecyclerView  to your layout, you 
then need to instantiate it, connect it to a layout manager, and then set up an adapter to 
display data.  

 You instantiate the  RecyclerView  by setting it up as follows:  

  myRecyclerView = (RecyclerView) findViewById(R.id.my_recycler_view);   

 The following shows connecting to a layout manager using the  LinearLayoutManager  that is 
part of the v7 support library:  

  myLayoutManager = new LinearLayoutManager(this);
  myRecyclerView.setLayoutManager(myLayoutManager);   

 All that is left is to attach the data from an adapter to the  RecyclerView . The following 
demonstrates how this is accomplished:  

  myAdapter = new MyAdapter(myDataset);
  myRecyclerView.setAdapter(myAdapter);     
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  The  ViewStub  Subclass  

 The  ViewStub  is a special view that is used to create views on demand in a reserved space. 
The  ViewStub  is placed in a layout where you want to place a view or other layout elements 
at a later time. When the  ViewStub  is displayed—either by setting its visibility with 
 setVisibility(View.VISIBLE)  or by using the  inflate()  method—it is removed and the 
layout it specifies is then injected into the page.  

 The following shows the XML needed to include a  ViewStub  in your layout XML file:  

  <ViewStub
      android:id="@+id/stub"
      android:inflatedId="@+id/panel_import"
      android:layout="@layout/progress_overlay"
      android:layout_width="match_parent"
      android:layout_height="wrap_content"
      android:layout_gravity="bottom" />   

 When the  ViewStub  is inflated, it will use the layout specified by the  android:layout  
property. The newly inflated view will then be accessible via code by the ID specified by the 
 android:inflatedId  property.    

  Creating a Custom View  

 When developing your own application, you may need a view that doesn’t come “out of the 
box.” When this occurs you have two options: You can create a class for your own custom view 
or you may extend one of the existing views.  

 To create your own, you need to create a new class, have it extend  View , and have it override at 
least one method. You will also be adding the variables and logic needed to handle the custom 
properties you will be adding to your view. The following shows a custom view along with the 
values used as custom properties:  

  public class MyView extends View {
    private int viewColor, viewBgColor;
  
    public MyView(Context context, AttributeSet attrs) {
      super(context, attrs);
  
      TypedArray a = context.getTheme().obtainStyledAttributes(attrs,
        R.styleable.MyView, 0, 0);
  
      try {
        viewColor = a.getInteger(R.styleable.MyView_viewColor);
        viewBgColor = a.getInteger(R.styleable.MyView_viewBgColor)
      } finally {
        a.recycle();
      }
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      @Override
      protected void onDraw(Canvas canvas) {
        // draw your view
      }
    }
  }   

 You want to be able to pass values through the XML when used with your application layout 
XML. To do this you can add an XML file to the  res/values  folder. This folder houses 
 <resources>  with child  <declare-styleable>  elements. The following shows an example
of a custom view XML file:  

  <?xml version="1.0" encoding="utf-8"?>
  <resources>
    <declare-styleable name="MyView">
      <attr name="viewColor" />
      <attr name="viewBgColor" />
    </declare-styleable>
  </resources>   

 Now you can add your custom view to your application layout, but you need to add a prop-
erty so that your custom view can be found. This is done by adding the following line to your 
layout element:  

  xmlns:custom="http://schemas.android.com/apk/res/com.dutsonpa.mycustomview"   

 Notice that you need to change the value to match your namespace by replacing  
com.dutsonpa.myview  with your own package name. Once you add that to your layout 
element, you can add your custom view. This is done by referencing the package and then 
adjusting or setting the values you want to use. The following shows an example of a custom 
view being added with values being set:  

  <com.dutsonpa.mycustomview.myview
    android:id="@+id/"
    custom:viewColor="#33FF33"
    custom:viewBgColor="#333333" />   

 Notice that Android properties may be used and that your custom properties are used by 
employing  custom:valueName . This provides some flexibility by allowing some built-in 
features to be mixed with your custom attributes.  

 The last thing you should do is add getter and setter methods for your attributes. These can be 
added to your class as follows:  

  public void getViewColor() {
    return viewColor;
  }
  

http://schemas.android.com/apk/res/com.dutsonpa.mycustomview"
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  public void getViewBgColor() {
    return viewBgColor;
  }
  
  public void setViewColor(int newViewColor) {
    viewColor=newViewColor;
    invalidate();
    requestLayout();
  }
  
  public void setViewBgColor(int newViewBgColor) {
    viewBgColor=newViewBgColor;
    invalidate();
    requestLayout();
  }   

 By using  invalidate()  and  requestLayout() , the layout is forced to redraw using the 
 onDraw()  method that is being employed by the custom view.    

     Summary  

 In this chapter, you learned what views are and how they are used in applications. You learned 
that views have multiple subclasses that can be used as is or extended by making a custom 
 View .  

 You learned about the main subclasses and how to implement them into your application 
layout XML file, as well as some code that may be used to accompany them.  

 You also learned about two views that were introduced with Android Lollipop:  CardView  and 
 RecyclerView . These views are complex  ViewGroup s that can help display data in the Material 
design style and update the aging  ListView .     
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