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Preface to the Java SE 8 Edition

THE Java SE 8 Edition of The Java® Virtual Machine Specification incorporates
all the changes that have been made to the Java Virtual Machine since the Java SE
7 Edition in 2011. In addition, numerous corrections and clarifications have been
made to align with popular implementations of the Java Virtual Machine.

This Edition continues the tradition of specifying the abstract Java Virtual
Machine, serving as documentation for a concrete implementation only as a
blueprint documents a house. An implementation of the Java Virtual Machine must
embody this specification, but is constrained by it only where absolutely necessary.

Notable changes to the Java programming language in Java SE 8 have brought
corresponding changes to the Java Virtual Machine. To maximize binary
compatibility, it has been desirable to specify default methods directly in the
Java Virtual Machine, rather than relying on compiler magic that might not be
portable across vendors or product releases, and is certainly not applicable to
pre-existing class files. In the context of JSR 335, Lambda Expressions for the
Java Programming Language, Dan Smith at Oracle consulted with implementers
to determine how best to integrate default methods into the constant pool and
method structures, the method and interface method resolution algorithms, and the
bytecode instruction set. JSR 335 also introduced private and static methods
in interfaces at the class file level; they too have been carefully integrated with
interface method resolution.

A theme of Java SE 8 is co-evolution of the Java SE platform libraries with the
Java Virtual Machine. A small but useful example is support for method parameter
names at run time: storing such names in the class file structure goes hand in hand
with offering a standard API to retrieve them (java.lang.reflect.Parameter).
This illustrates an interesting development in the class file structure over the years:
the First Edition of this specification defined six attributes, of which three were
deemed critical to the Java Virtual Machine, while this Java SE 8 Edition defines
23 attributes, of which five are deemed critical to the Java Virtual Machine; that is
to say, attributes now exist primarily to support libraries and tools rather than the
Java Virtual Machine itself. To help readers understand the class file structure, this
specification more clearly documents the role of each attribute and the constraints
placed upon it.
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C H A P T E R 1
Introduction

1.1 A Bit of History

The Java® programming language is a general-purpose, concurrent, object-oriented
language. Its syntax is similar to C and C++, but it omits many of the features that
make C and C++ complex, confusing, and unsafe. The Java platform was initially
developed to address the problems of building software for networked consumer
devices. It was designed to support multiple host architectures and to allow secure
delivery of software components. To meet these requirements, compiled code had
to survive transport across networks, operate on any client, and assure the client
that it was safe to run.

The popularization of the World Wide Web made these attributes much more
interesting. Web browsers enabled millions of people to surf the Net and access
media-rich content in simple ways. At last there was a medium where what you
saw and heard was essentially the same regardless of the machine you were using
and whether it was connected to a fast network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web's HTML
document format was too limited. HTML extensions, such as forms, only
highlighted those limitations, while making it clear that no browser could include
all the features users wanted. Extensibility was the answer.

The HotJava browser first showcased the interesting properties of the Java
programming language and platform by making it possible to embed programs
inside HTML pages. Programs are transparently downloaded into the browser
along with the HTML pages in which they appear. Before being accepted by the
browser, programs are carefully checked to make sure they are safe. Like HTML
pages, compiled programs are network- and host-independent. The programs
behave the same way regardless of where they come from or what kind of machine
they are being loaded into and run on.
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A Web browser incorporating the Java platform is no longer limited to a
predetermined set of capabilities. Visitors to Web pages incorporating dynamic
content can be assured that their machines cannot be damaged by that content.
Programmers can write a program once, and it will run on any machine supplying
a Java run-time environment.

1.2 The Java Virtual Machine

The Java Virtual Machine is the cornerstone of the Java platform. It is the
component of the technology responsible for its hardware- and operating system-
independence, the small size of its compiled code, and its ability to protect users
from malicious programs.

The Java Virtual Machine is an abstract computing machine. Like a real computing
machine, it has an instruction set and manipulates various memory areas at run time.
It is reasonably common to implement a programming language using a virtual
machine; the best-known virtual machine may be the P-Code machine of UCSD
Pascal.

The first prototype implementation of the Java Virtual Machine, done at Sun
Microsystems, Inc., emulated the Java Virtual Machine instruction set in software
hosted by a handheld device that resembled a contemporary Personal Digital
Assistant (PDA). Oracle's current implementations emulate the Java Virtual
Machine on mobile, desktop and server devices, but the Java Virtual Machine
does not assume any particular implementation technology, host hardware, or
host operating system. It is not inherently interpreted, but can just as well be
implemented by compiling its instruction set to that of a silicon CPU. It may also
be implemented in microcode or directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language, only
of a particular binary format, the class file format. A class file contains Java
Virtual Machine instructions (or bytecodes) and a symbol table, as well as other
ancillary information.

For the sake of security, the Java Virtual Machine imposes strong syntactic and
structural constraints on the code in a class file. However, any language with
functionality that can be expressed in terms of a valid class file can be hosted by
the Java Virtual Machine. Attracted by a generally available, machine-independent
platform, implementors of other languages can turn to the Java Virtual Machine as
a delivery vehicle for their languages.
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The Java Virtual Machine specified here is compatible with the Java SE 8 platform,
and supports the Java programming language specified in The Java Language
Specification, Java SE 8 Edition.

1.3 Organization of the Specification

Chapter 2 gives an overview of the Java Virtual Machine architecture.

Chapter 3 introduces compilation of code written in the Java programming
language into the instruction set of the Java Virtual Machine.

Chapter 4 specifies the class file format, the hardware- and operating system-
independent binary format used to represent compiled classes and interfaces.

Chapter 5 specifies the start-up of the Java Virtual Machine and the loading, linking,
and initialization of classes and interfaces.

Chapter 6 specifies the instruction set of the Java Virtual Machine, presenting the
instructions in alphabetical order of opcode mnemonics.

Chapter 7 gives a table of Java Virtual Machine opcode mnemonics indexed by
opcode value.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 2
gave an overview of the Java programming language that was intended to support
the specification of the Java Virtual Machine but was not itself a part of the
specification. In The Java Virtual Machine Specification, Java SE 8 Edition, the
reader is referred to The Java Language Specification, Java SE 8 Edition for
information about the Java programming language. References of the form: (JLS
§x.y) indicate where this is necessary.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 8
detailed the low-level actions that explained the interaction of Java Virtual Machine
threads with a shared main memory. In The Java Virtual Machine Specification,
Java SE 8 Edition, the reader is referred to Chapter 17 of The Java Language
Specification, Java SE 8 Edition for information about threads and locks. Chapter
17 reflects The Java Memory Model and Thread Specification produced by the JSR
133 Expert Group.
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1.4 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE platform API. Whenever we refer to a class or interface (other than those
declared in an example) using a single identifier N, the intended reference is to the
class or interface named N in the package java.lang. We use the fully qualified
name for classes or interfaces from packages other than java.lang.

Whenever we refer to a class or interface that is declared in the package java or
any of its subpackages, the intended reference is to that class or interface as loaded
by the bootstrap class loader (§5.3.1).

Whenever we refer to a subpackage of a package named java, the intended
reference is to that subpackage as determined by the bootstrap class loader.

The use of fonts in this specification is as follows:

• A fixed width font is used for Java Virtual Machine data types, exceptions,
errors, class file structures, Prolog code, and Java code fragments.

• Italic is used for Java Virtual Machine "assembly language", its opcodes and
operands, as well as items in the Java Virtual Machine's run-time data areas. It is
also used to introduce new terms and simply for emphasis.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

This is non-normative information. It provides intuition, rationale, advice, examples, etc.

1.5 Feedback

Readers may send feedback about errors, omissions, and ambiguities in this
specification to jvms-comments_ww@oracle.com.

Questions concerning the generation and manipulation of class files by javac (the
reference compiler for the Java programming language) may be sent to compiler-
dev@openjdk.java.net.
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