
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133905908
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133905908
https://plusone.google.com/share?url=http://www.informit.com/title/9780133905908
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133905908
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133905908/Free-Sample-Chapter

The Java® Virtual
Machine Specification

Java SE 8 Edition

This page intentionally left blank

The Java® Virtual
Machine Specification

Java SE 8 Edition

Tim Lindholm
Frank Yellin
Gilad Bracha
Alex Buckley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Copyright © 1997, 2014, Oracle and/or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood City, California 94065, U.S.A.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

This document is provided for information purposes only and the contents hereof are subject
to change without notice. This document is not warranted to be error-free, nor subject to
any other warranties or conditions, whether expressed orally or implied in law, including
implied warranties and conditions of merchantability or fitness for a particular purpose.
We specifically disclaim any liability with respect to this document and no contractual
obligations are formed either directly or indirectly by this document, except as specified in
the Limited License Grant herein at Appendix A. This document is subject to the Limited
License Grant included herein as Appendix A, and may otherwise not be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without
our prior written permission.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact U.S. Corporate and Government Sales, (800)
382-3419, corpsales@pearsontechgroup.com. For sales outside the United States,
please contact International Sales, international@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014936247
ISBN-13: 978-0-13-390590-8
ISBN-10: 0-13-390590-X

Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission to use material
from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

The Specification provided herein is provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A.

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann
Arbor, Michigan. First printing, May 2014.

To Sophia and Susan, in deepest appreciation.

This page intentionally left blank

vii

Table of Contents

Preface to the Java SE 8 Edition xv

1 Introduction 1
1.1 A Bit of History 1
1.2 The Java Virtual Machine 2
1.3 Organization of the Specification 3
1.4 Notation 4
1.5 Feedback 4

2 The Structure of the Java Virtual Machine 5
2.1 The class File Format 5
2.2 Data Types 6
2.3 Primitive Types and Values 6

2.3.1 Integral Types and Values 7
2.3.2 Floating-Point Types, Value Sets, and Values 8
2.3.3 The returnAddress Type and Values 10
2.3.4 The boolean Type 10

2.4 Reference Types and Values 11
2.5 Run-Time Data Areas 11

2.5.1 The pc Register 12
2.5.2 Java Virtual Machine Stacks 12
2.5.3 Heap 13
2.5.4 Method Area 13
2.5.5 Run-Time Constant Pool 14
2.5.6 Native Method Stacks 14

2.6 Frames 15
2.6.1 Local Variables 16
2.6.2 Operand Stacks 17
2.6.3 Dynamic Linking 18
2.6.4 Normal Method Invocation Completion 18
2.6.5 Abrupt Method Invocation Completion 18

2.7 Representation of Objects 19
2.8 Floating-Point Arithmetic 19

2.8.1 Java Virtual Machine Floating-Point Arithmetic and IEEE
754 19

2.8.2 Floating-Point Modes 20
2.8.3 Value Set Conversion 20

2.9 Special Methods 22
2.10 Exceptions 23
2.11 Instruction Set Summary 25

The Java® Virtual Machine Specification

viii

2.11.1 Types and the Java Virtual Machine 26
2.11.2 Load and Store Instructions 29
2.11.3 Arithmetic Instructions 30
2.11.4 Type Conversion Instructions 32
2.11.5 Object Creation and Manipulation 34
2.11.6 Operand Stack Management Instructions 34
2.11.7 Control Transfer Instructions 34
2.11.8 Method Invocation and Return Instructions 35
2.11.9 Throwing Exceptions 36
2.11.10 Synchronization 36

2.12 Class Libraries 37
2.13 Public Design, Private Implementation 37

3 Compiling for the Java Virtual Machine 39
3.1 Format of Examples 39
3.2 Use of Constants, Local Variables, and Control Constructs 40
3.3 Arithmetic 45
3.4 Accessing the Run-Time Constant Pool 46
3.5 More Control Examples 47
3.6 Receiving Arguments 50
3.7 Invoking Methods 51
3.8 Working with Class Instances 53
3.9 Arrays 55
3.10 Compiling Switches 57
3.11 Operations on the Operand Stack 59
3.12 Throwing and Handling Exceptions 60
3.13 Compiling finally 63
3.14 Synchronization 66
3.15 Annotations 67

4 The class File Format 69
4.1 The ClassFile Structure 70
4.2 The Internal Form of Names 74

4.2.1 Binary Class and Interface Names 74
4.2.2 Unqualified Names 75

4.3 Descriptors 75
4.3.1 Grammar Notation 75
4.3.2 Field Descriptors 76
4.3.3 Method Descriptors 77

4.4 The Constant Pool 78
4.4.1 The CONSTANT_Class_info Structure 79
4.4.2 The CONSTANT_Fieldref_info, CONSTANT_Methodref_info, and

CONSTANT_InterfaceMethodref_info Structures 80
4.4.3 The CONSTANT_String_info Structure 81
4.4.4 The CONSTANT_Integer_info and CONSTANT_Float_info

Structures 82

The Java® Virtual Machine Specification

ix

4.4.5 The CONSTANT_Long_info and CONSTANT_Double_info
Structures 83

4.4.6 The CONSTANT_NameAndType_info Structure 85
4.4.7 The CONSTANT_Utf8_info Structure 85
4.4.8 The CONSTANT_MethodHandle_info Structure 87
4.4.9 The CONSTANT_MethodType_info Structure 89
4.4.10 The CONSTANT_InvokeDynamic_info Structure 89

4.5 Fields 90
4.6 Methods 92
4.7 Attributes 95

4.7.1 Defining and Naming New Attributes 101
4.7.2 The ConstantValue Attribute 101
4.7.3 The Code Attribute 102
4.7.4 The StackMapTable Attribute 106
4.7.5 The Exceptions Attribute 113
4.7.6 The InnerClasses Attribute 114
4.7.7 The EnclosingMethod Attribute 116
4.7.8 The Synthetic Attribute 118
4.7.9 The Signature Attribute 118

4.7.9.1 Signatures 119
4.7.10 The SourceFile Attribute 123
4.7.11 The SourceDebugExtension Attribute 124
4.7.12 The LineNumberTable Attribute 124
4.7.13 The LocalVariableTable Attribute 126
4.7.14 The LocalVariableTypeTable Attribute 128
4.7.15 The Deprecated Attribute 129
4.7.16 The RuntimeVisibleAnnotations Attribute 130

4.7.16.1 The element_value structure 132
4.7.17 The RuntimeInvisibleAnnotations Attribute 135
4.7.18 The RuntimeVisibleParameterAnnotations Attribute 136
4.7.19 The RuntimeInvisibleParameterAnnotations Attribute 137
4.7.20 The RuntimeVisibleTypeAnnotations Attribute 139

4.7.20.1 The target_info union 144
4.7.20.2 The type_path structure 148

4.7.21 The RuntimeInvisibleTypeAnnotations Attribute 152
4.7.22 The AnnotationDefault Attribute 153
4.7.23 The BootstrapMethods Attribute 154
4.7.24 The MethodParameters Attribute 156

4.8 Format Checking 158
4.9 Constraints on Java Virtual Machine Code 159

4.9.1 Static Constraints 159
4.9.2 Structural Constraints 163

4.10 Verification of class Files 166
4.10.1 Verification by Type Checking 167

4.10.1.1 Accessors for Java Virtual Machine Artifacts 169
4.10.1.2 Verification Type System 173
4.10.1.3 Instruction Representation 177
4.10.1.4 Stack Map Frame Representation 178

The Java® Virtual Machine Specification

x

4.10.1.5 Type Checking Abstract and Native Methods 184
4.10.1.6 Type Checking Methods with Code 187
4.10.1.7 Type Checking Load and Store Instructions 194
4.10.1.8 Type Checking for protected Members 196
4.10.1.9 Type Checking Instructions 199

4.10.2 Verification by Type Inference 319
4.10.2.1 The Process of Verification by Type Inference 319
4.10.2.2 The Bytecode Verifier 319
4.10.2.3 Values of Types long and double 323
4.10.2.4 Instance Initialization Methods and Newly Created

Objects 323
4.10.2.5 Exceptions and finally 325

4.11 Limitations of the Java Virtual Machine 327

5 Loading, Linking, and Initializing 329
5.1 The Run-Time Constant Pool 329
5.2 Java Virtual Machine Startup 332
5.3 Creation and Loading 332

5.3.1 Loading Using the Bootstrap Class Loader 334
5.3.2 Loading Using a User-defined Class Loader 335
5.3.3 Creating Array Classes 336
5.3.4 Loading Constraints 336
5.3.5 Deriving a Class from a class File Representation 338

5.4 Linking 339
5.4.1 Verification 340
5.4.2 Preparation 340
5.4.3 Resolution 341

5.4.3.1 Class and Interface Resolution 342
5.4.3.2 Field Resolution 343
5.4.3.3 Method Resolution 344
5.4.3.4 Interface Method Resolution 346
5.4.3.5 Method Type and Method Handle Resolution 347
5.4.3.6 Call Site Specifier Resolution 350

5.4.4 Access Control 351
5.4.5 Overriding 352

5.5 Initialization 352
5.6 Binding Native Method Implementations 355
5.7 Java Virtual Machine Exit 355

6 The Java Virtual Machine Instruction Set 357
6.1 Assumptions: The Meaning of "Must" 357
6.2 Reserved Opcodes 358
6.3 Virtual Machine Errors 358
6.4 Format of Instruction Descriptions 359

mnemonic 360
6.5 Instructions 362

aaload 363

The Java® Virtual Machine Specification

xi

aastore 364
aconst_null 366
aload 367
aload_<n> 368
anewarray 369
areturn 370
arraylength 371
astore 372
astore_<n> 373
athrow 374
baload 376
bastore 377
bipush 378
caload 379
castore 380
checkcast 381
d2f 383
d2i 384
d2l 385
dadd 386
daload 388
dastore 389
dcmp<op> 390
dconst_<d> 392
ddiv 393
dload 395
dload_<n> 396
dmul 397
dneg 399
drem 400
dreturn 402
dstore 403
dstore_<n> 404
dsub 405
dup 406
dup_x1 407
dup_x2 408
dup2 409
dup2_x1 410
dup2_x2 411
f2d 413
f2i 414
f2l 415
fadd 416
faload 418
fastore 419
fcmp<op> 420
fconst_<f> 422

The Java® Virtual Machine Specification

xii

fdiv 423
fload 425
fload_<n> 426
fmul 427
fneg 429
frem 430
freturn 432
fstore 433
fstore_<n> 434
fsub 435
getfield 436
getstatic 438
goto 440
goto_w 441
i2b 442
i2c 443
i2d 444
i2f 445
i2l 446
i2s 447
iadd 448
iaload 449
iand 450
iastore 451
iconst_<i> 452
idiv 453
if_acmp<cond> 454
if_icmp<cond> 455
if<cond> 457
ifnonnull 459
ifnull 460
iinc 461
iload 462
iload_<n> 463
imul 464
ineg 465
instanceof 466
invokedynamic 468
invokeinterface 473
invokespecial 477
invokestatic 481
invokevirtual 484
ior 489
irem 490
ireturn 491
ishl 492
ishr 493
istore 494

The Java® Virtual Machine Specification

xiii

istore_<n> 495
isub 496
iushr 497
ixor 498
jsr 499
jsr_w 500
l2d 501
l2f 502
l2i 503
ladd 504
laload 505
land 506
lastore 507
lcmp 508
lconst_<l> 509
ldc 510
ldc_w 512
ldc2_w 514
ldiv 515
lload 516
lload_<n> 517
lmul 518
lneg 519
lookupswitch 520
lor 522
lrem 523
lreturn 524
lshl 525
lshr 526
lstore 527
lstore_<n> 528
lsub 529
lushr 530
lxor 531
monitorenter 532
monitorexit 534
multianewarray 536
new 538
newarray 540
nop 542
pop 543
pop2 544
putfield 545
putstatic 547
ret 549
return 550
saload 551
sastore 552

The Java® Virtual Machine Specification

xiv

sipush 553
swap 554
tableswitch 555
wide 557

7 Opcode Mnemonics by Opcode 559

Index 563

A Limited License Grant 581

xv

Preface to the Java SE 8 Edition

THE Java SE 8 Edition of The Java® Virtual Machine Specification incorporates
all the changes that have been made to the Java Virtual Machine since the Java SE
7 Edition in 2011. In addition, numerous corrections and clarifications have been
made to align with popular implementations of the Java Virtual Machine.

This Edition continues the tradition of specifying the abstract Java Virtual
Machine, serving as documentation for a concrete implementation only as a
blueprint documents a house. An implementation of the Java Virtual Machine must
embody this specification, but is constrained by it only where absolutely necessary.

Notable changes to the Java programming language in Java SE 8 have brought
corresponding changes to the Java Virtual Machine. To maximize binary
compatibility, it has been desirable to specify default methods directly in the
Java Virtual Machine, rather than relying on compiler magic that might not be
portable across vendors or product releases, and is certainly not applicable to
pre-existing class files. In the context of JSR 335, Lambda Expressions for the
Java Programming Language, Dan Smith at Oracle consulted with implementers
to determine how best to integrate default methods into the constant pool and
method structures, the method and interface method resolution algorithms, and the
bytecode instruction set. JSR 335 also introduced private and static methods
in interfaces at the class file level; they too have been carefully integrated with
interface method resolution.

A theme of Java SE 8 is co-evolution of the Java SE platform libraries with the
Java Virtual Machine. A small but useful example is support for method parameter
names at run time: storing such names in the class file structure goes hand in hand
with offering a standard API to retrieve them (java.lang.reflect.Parameter).
This illustrates an interesting development in the class file structure over the years:
the First Edition of this specification defined six attributes, of which three were
deemed critical to the Java Virtual Machine, while this Java SE 8 Edition defines
23 attributes, of which five are deemed critical to the Java Virtual Machine; that is
to say, attributes now exist primarily to support libraries and tools rather than the
Java Virtual Machine itself. To help readers understand the class file structure, this
specification more clearly documents the role of each attribute and the constraints
placed upon it.

PREFACE TO THE JAVA SE 8 EDITION

xvi

Many colleagues in the Java Platform Group at Oracle have provided valuable
support to this specification: Mandy Chung, Joe Darcy, Joel Franck, Staffan
Friberg, Yuri Gaevsky, Jon Gibbons, Jeannette Hung, Eric McCorkle, Matherey
Nunez, Mark Reinhold, John Rose, Georges Saab, Steve Sides, Bernard Traversat,
Michel Trudeau, and Mikael Vidstedt. Particular thanks to Dan Heidinga (IBM),
Karen Kinnear, Keith McGuigan, and Harold Seigel for their ironclad commitment
to compatibility and security in popular Java Virtual Machine implementations.

Alex Buckley
Santa Clara, California

March, 2014

1

C H A P T E R 1
Introduction

1.1 A Bit of History

The Java® programming language is a general-purpose, concurrent, object-oriented
language. Its syntax is similar to C and C++, but it omits many of the features that
make C and C++ complex, confusing, and unsafe. The Java platform was initially
developed to address the problems of building software for networked consumer
devices. It was designed to support multiple host architectures and to allow secure
delivery of software components. To meet these requirements, compiled code had
to survive transport across networks, operate on any client, and assure the client
that it was safe to run.

The popularization of the World Wide Web made these attributes much more
interesting. Web browsers enabled millions of people to surf the Net and access
media-rich content in simple ways. At last there was a medium where what you
saw and heard was essentially the same regardless of the machine you were using
and whether it was connected to a fast network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web's HTML
document format was too limited. HTML extensions, such as forms, only
highlighted those limitations, while making it clear that no browser could include
all the features users wanted. Extensibility was the answer.

The HotJava browser first showcased the interesting properties of the Java
programming language and platform by making it possible to embed programs
inside HTML pages. Programs are transparently downloaded into the browser
along with the HTML pages in which they appear. Before being accepted by the
browser, programs are carefully checked to make sure they are safe. Like HTML
pages, compiled programs are network- and host-independent. The programs
behave the same way regardless of where they come from or what kind of machine
they are being loaded into and run on.

1 INTRODUCTION

2

A Web browser incorporating the Java platform is no longer limited to a
predetermined set of capabilities. Visitors to Web pages incorporating dynamic
content can be assured that their machines cannot be damaged by that content.
Programmers can write a program once, and it will run on any machine supplying
a Java run-time environment.

1.2 The Java Virtual Machine

The Java Virtual Machine is the cornerstone of the Java platform. It is the
component of the technology responsible for its hardware- and operating system-
independence, the small size of its compiled code, and its ability to protect users
from malicious programs.

The Java Virtual Machine is an abstract computing machine. Like a real computing
machine, it has an instruction set and manipulates various memory areas at run time.
It is reasonably common to implement a programming language using a virtual
machine; the best-known virtual machine may be the P-Code machine of UCSD
Pascal.

The first prototype implementation of the Java Virtual Machine, done at Sun
Microsystems, Inc., emulated the Java Virtual Machine instruction set in software
hosted by a handheld device that resembled a contemporary Personal Digital
Assistant (PDA). Oracle's current implementations emulate the Java Virtual
Machine on mobile, desktop and server devices, but the Java Virtual Machine
does not assume any particular implementation technology, host hardware, or
host operating system. It is not inherently interpreted, but can just as well be
implemented by compiling its instruction set to that of a silicon CPU. It may also
be implemented in microcode or directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language, only
of a particular binary format, the class file format. A class file contains Java
Virtual Machine instructions (or bytecodes) and a symbol table, as well as other
ancillary information.

For the sake of security, the Java Virtual Machine imposes strong syntactic and
structural constraints on the code in a class file. However, any language with
functionality that can be expressed in terms of a valid class file can be hosted by
the Java Virtual Machine. Attracted by a generally available, machine-independent
platform, implementors of other languages can turn to the Java Virtual Machine as
a delivery vehicle for their languages.

Organization of the Specification 1.3

3

The Java Virtual Machine specified here is compatible with the Java SE 8 platform,
and supports the Java programming language specified in The Java Language
Specification, Java SE 8 Edition.

1.3 Organization of the Specification

Chapter 2 gives an overview of the Java Virtual Machine architecture.

Chapter 3 introduces compilation of code written in the Java programming
language into the instruction set of the Java Virtual Machine.

Chapter 4 specifies the class file format, the hardware- and operating system-
independent binary format used to represent compiled classes and interfaces.

Chapter 5 specifies the start-up of the Java Virtual Machine and the loading, linking,
and initialization of classes and interfaces.

Chapter 6 specifies the instruction set of the Java Virtual Machine, presenting the
instructions in alphabetical order of opcode mnemonics.

Chapter 7 gives a table of Java Virtual Machine opcode mnemonics indexed by
opcode value.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 2
gave an overview of the Java programming language that was intended to support
the specification of the Java Virtual Machine but was not itself a part of the
specification. In The Java Virtual Machine Specification, Java SE 8 Edition, the
reader is referred to The Java Language Specification, Java SE 8 Edition for
information about the Java programming language. References of the form: (JLS
§x.y) indicate where this is necessary.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 8
detailed the low-level actions that explained the interaction of Java Virtual Machine
threads with a shared main memory. In The Java Virtual Machine Specification,
Java SE 8 Edition, the reader is referred to Chapter 17 of The Java Language
Specification, Java SE 8 Edition for information about threads and locks. Chapter
17 reflects The Java Memory Model and Thread Specification produced by the JSR
133 Expert Group.

1 INTRODUCTION

4

1.4 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE platform API. Whenever we refer to a class or interface (other than those
declared in an example) using a single identifier N, the intended reference is to the
class or interface named N in the package java.lang. We use the fully qualified
name for classes or interfaces from packages other than java.lang.

Whenever we refer to a class or interface that is declared in the package java or
any of its subpackages, the intended reference is to that class or interface as loaded
by the bootstrap class loader (§5.3.1).

Whenever we refer to a subpackage of a package named java, the intended
reference is to that subpackage as determined by the bootstrap class loader.

The use of fonts in this specification is as follows:

• A fixed width font is used for Java Virtual Machine data types, exceptions,
errors, class file structures, Prolog code, and Java code fragments.

• Italic is used for Java Virtual Machine "assembly language", its opcodes and
operands, as well as items in the Java Virtual Machine's run-time data areas. It is
also used to introduce new terms and simply for emphasis.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

This is non-normative information. It provides intuition, rationale, advice, examples, etc.

1.5 Feedback

Readers may send feedback about errors, omissions, and ambiguities in this
specification to jvms-comments_ww@oracle.com.

Questions concerning the generation and manipulation of class files by javac (the
reference compiler for the Java programming language) may be sent to compiler-
dev@openjdk.java.net.

563

Index

A
a bit of history, 1
aaload, 201, 363

stack map frame representation, 180
aastore, 202, 364
abrupt method invocation completion, 18

Exceptions, 24
invokedynamic, 471
synchronization, 67

access control, 351
class and interface resolution, 343
field resolution, 343
interface method resolution, 347
method resolution, 345
type checking for protected members, 196

accessing the run-time constant pool, 46
accessors for Java Virtual Machine artifacts,
169

type checking instructions, 199
verification by type checking, 169

aconst_null, 203, 366
actual and computational types in the Java
Virtual Machine, 29

types and the Java Virtual Machine, 29, 29
aload, 367

astore, 372
wide, 557

aload, aload_<n>, 204
aload_<n>, 368

astore_<n>, 373
anewarray, 205, 369

multianewarray, 537
AnnotationDefault attribute, 153

annotations, 67
annotations, 67
areturn, 206, 370
arithmetic, 45
arithmetic instructions, 30

control transfer instructions, 35
array class loading, 336

creation and loading, 333
loading constraints, 337

array type codes, 540
arraylength, 207, 371

getfield, 437
stack map frame representation, 180

arrays, 55
assumptions: the meaning of "must", 357
astore, 372

aload, 367
wide, 557

astore, astore_<n>, 208
astore_<n>, 373

aload_<n>, 368
athrow, 209, 374

abrupt method invocation completion, 18
Exceptions, 23

attributes, 95
ClassFile structure, 74, 74
Code attribute, 105, 106
fields, 92, 92
methods, 95, 95

INDEX

564

B
baload, 210, 376

boolean type, 10
newarray, 541
stack map frame representation, 180

bastore, 211, 377
boolean type, 10
newarray, 541
stack map frame representation, 180

binary class and interface names, 74
annotations, 68
CONSTANT_Class_info structure, 80
creation and loading, 333
element_value structure, 133
field descriptors, 76
run-time constant pool, 330, 330

binding native method implementations, 355
invokeinterface, 474
invokespecial, 479
invokestatic, 482
invokevirtual, 485

bipush, 212, 378
boolean type, 10

primitive types and values, 6
bootstrap loader, 334

creation and loading, 333
Java Virtual Machine startup, 332
loading constraints, 337
notation, 4

BootstrapMethods attribute, 154
call site specifier resolution, 350
CONSTANT_InvokeDynamic_info
structure, 90

bytecode behaviors for method handles, 348
method type and method handle resolution,
348

bytecode verifier, 319

C
call site specifier resolution, 350

invokedynamic, 468
caload, 213, 379
castore, 214, 380
checkcast, 215, 381

instanceof, 467
class access and property modifiers, 71

ClassFile structure, 71, 72, 72
class and interface resolution, 342

anewarray, 369, 369
checkcast, 381, 382
class and interface resolution, 343
deriving a class from a class file
representation, 338, 339
field resolution, 343
instanceof, 466, 467
interface method resolution, 346
ldc, 510, 511
ldc_w, 512, 513
method resolution, 344, 344
method type and method handle resolution,
347
multianewarray, 536, 537
new, 538, 538

class file format, 5, 69
assumptions: the meaning of "must", 357
creation and loading, 333
reserved opcodes, 358

class libraries, 37
creation and loading, 332
initialization, 353

class loading, 332
access control, 351
class and interface resolution, 342
creating array classes, 336
format checking, 158

565

getfield, 436
invokespecial, 477
invokevirtual, 484
putfield, 545
run-time constant pool, 14, 329
verification, 340
verification type system, 174

ClassFile structure, 70
annotations, 68
attributes, 95
BootstrapMethods attribute, 154
Deprecated attribute, 129
deriving a class from a class file
representation, 338, 338
EnclosingMethod attribute, 116
format checking, 158
InnerClasses attribute, 114
invokespecial, 477
limitations of the Java Virtual Machine, 327,
327, 327, 327
loading using a user-defined class loader, 335
RuntimeInvisibleAnnotations attribute, 135
RuntimeInvisibleTypeAnnotations attribute,
152
RuntimeVisibleAnnotations attribute, 130
RuntimeVisibleTypeAnnotations attribute,
139
Signature attribute, 118
SourceDebugExtension attribute, 124
SourceFile attribute, 123
Synthetic attribute, 118
verification by type checking, 167

Code attribute, 102
attributes, 95
constraints on Java Virtual Machine Code,
159
defining and naming new attributes, 101
Exceptions, 25

frames, 15
limitations of the Java Virtual Machine, 327,
327
LineNumberTable attribute, 124
local variables, 16
LocalVariableTable attribute, 126
LocalVariableTypeTable attribute, 128
operand stacks, 17
RuntimeInvisibleTypeAnnotations attribute,
152
RuntimeVisibleTypeAnnotations attribute,
139
StackMapTable attribute, 106
throwing and handling Exceptions, 61, 63
verification by type checking, 168
verification of class files, 167

compiling finally, 63
astore, 372
astore_<n>, 373
jsr, 499
jsr_w, 500
more control examples, 47
ret, 549

compiling for the Java Virtual Machine, 39
instance initialization methods and newly
created objects, 324

compiling switches, 57
more control examples, 47

constant pool, 78, 329
ClassFile structure, 71
format checking, 158
getfield, 436
getstatic, 438
invokedynamic, 468, 468, 471
invokeinterface, 473
invokespecial, 477
invokestatic, 481
invokevirtual, 484

INDEX

566

ldc, 510, 510, 510, 510
ldc2_w, 514
ldc_w, 512, 512, 512
method type and method handle resolution,
348
putfield, 545
putstatic, 547
resolution, 342
run-time constant pool, 14, 329

constant pool tags, 79
constant pool, 79

constant value attribute types, 102
ConstantValue attribute, 102

CONSTANT_Class_info structure, 79
arrays, 57
binary class and interface names, 74
BootstrapMethods attribute, 156
ClassFile structure, 72
Code attribute, 105
CONSTANT_Fieldref_info,
CONSTANT_Methodref_info, and
CONSTANT_InterfaceMethodref_info
structures, 81
EnclosingMethod attribute, 117
Exceptions attribute, 113
InnerClasses attribute, 114
ldc_w, 512
run-time constant pool, 330
StackMapTable attribute, 109

CONSTANT_Fieldref_info,
CONSTANT_Methodref_info, and
CONSTANT_InterfaceMethodref_info
structures, 80

CONSTANT_MethodHandle_info structure,
88, 88, 88
instruction representation, 177
run-time constant pool, 330, 330, 330

CONSTANT_Integer_info and
CONSTANT_Float_info structures, 82

BootstrapMethods attribute, 156
floating-point types, value sets, and values, 9
ldc, 511
ldc_w, 513
run-time constant pool, 332, 332

CONSTANT_InvokeDynamic_info structure,
89

BootstrapMethods attribute, 154
instruction representation, 177
run-time constant pool, 331

CONSTANT_Long_info and
CONSTANT_Double_info structures, 83

BootstrapMethods attribute, 156
ClassFile structure, 71
floating-point types, value sets, and values, 9
ldc2_w, 514
run-time constant pool, 332, 332

CONSTANT_MethodHandle_info structure,
87

BootstrapMethods attribute, 155, 155, 156
run-time constant pool, 330

CONSTANT_MethodType_info structure, 89
BootstrapMethods attribute, 156
run-time constant pool, 331

CONSTANT_NameAndType_info structure,
85

binary class and interface names, 74
CONSTANT_Fieldref_info,
CONSTANT_Methodref_info, and
CONSTANT_InterfaceMethodref_info
structures, 81
CONSTANT_InvokeDynamic_info
structure, 90
EnclosingMethod attribute, 117
run-time constant pool, 332

CONSTANT_String_info structure, 81

567

BootstrapMethods attribute, 156
run-time constant pool, 331

CONSTANT_Utf8_info structure, 85
AnnotationDefault attribute, 154
attributes, 95
binary class and interface names, 74
BootstrapMethods attribute, 155
Code attribute, 103
CONSTANT_Class_info structure, 80
CONSTANT_MethodType_info structure,
89
CONSTANT_NameAndType_info structure,
85, 85
CONSTANT_String_info structure, 82
ConstantValue attribute, 102
Deprecated attribute, 130
descriptors, 75
element_value structure, 133, 134, 134
EnclosingMethod attribute, 117
Exceptions attribute, 113
fields, 91, 92
InnerClasses attribute, 114, 115
limitations of the Java Virtual Machine, 328
LineNumberTable attribute, 125
LocalVariableTable attribute, 126, 127, 127
LocalVariableTypeTable attribute, 128, 129,
129
methods, 94
run-time constant pool, 332
RuntimeInvisibleAnnotations attribute, 135
RuntimeInvisibleParameterAnnotations
attribute, 138
RuntimeVisibleAnnotations attribute, 131,
131, 132
RuntimeVisibleParameterAnnotations
attribute, 136
Signature attribute, 119, 119
SourceDebugExtension attribute, 124, 124

SourceFile attribute, 123, 123
StackMapTable attribute, 106
Synthetic attribute, 118

ConstantValue attribute, 101
initialization, 354
limitations of the Java Virtual Machine, 328

constraints, 336
creating array classes, 336
deriving a class from a class file
representation, 339
field resolution, 344
interface method resolution, 347
loading using a user-defined class loader, 335
method resolution, 345
preparation, 340

constraints on Java Virtual Machine Code,
159

Code attribute, 104
verification, 340, 340
verification of class files, 167

control transfer instructions, 34
creating array classes, 336

creation and loading, 333
loading constraints, 337

creation and loading, 332
access control, 351
class and interface resolution, 342
creating array classes, 336
format checking, 158
getfield, 436
invokespecial, 477
invokevirtual, 484
putfield, 545
run-time constant pool, 14, 329
verification, 340
verification type system, 174

INDEX

568

D
d2f, 383
d2f, d2i, d2l, 216
d2i, 384
d2l, 385
dadd, 217, 386
daload, 218, 388
dastore, 219, 389
data types, 6

baload, 376
bastore, 377

dcmp<op>, 220, 390
dconst_<d>, 221, 392
ddiv, 222, 393
defineclass, 338

creation and loading, 334
loading constraints, 337
loading using a user-defined class loader, 335
loading using the bootstrap class loader, 335

defining and naming new attributes, 101
ClassFile structure, 74
Code attribute, 106
fields, 92
methods, 95

Deprecated attribute, 129
deriving a class from a class file
representation, 338

creation and loading, 334
loading constraints, 337
loading using a user-defined class loader, 335
loading using the bootstrap class loader, 335

descriptors, 75
binary class and interface names, 74
format checking, 158

dload, 395
wide, 557

dload, dload_<n>, 223

dload_<n>, 396
dmul, 224, 397
dneg, 225, 399
drem, 226, 400
dreturn, 227, 402
dstore, 403

wide, 557
dstore, dstore_<n>, 228
dstore_<n>, 404
dsub, 229, 405
dup, 230, 406

operand stacks, 17
dup2, 233, 409
dup2_x1, 234, 410
dup2_x2, 235, 411
dup_x1, 231, 407
dup_x2, 232, 408
dynamic linking, 18

E
element_value structure, 132
EnclosingMethod attribute, 116
Exceptions, 23

abrupt method invocation completion, 18
athrow, 374
Code attribute, 104
normal method invocation completion, 18
synchronization, 67
throwing and handling Exceptions, 61, 63
Virtual Machine errors, 358

Exceptions and finally, 325
compiling finally, 63
jsr, 499
jsr_w, 500
ret, 549

Exceptions attribute, 113

569

F
f2d, 413
f2d, f2i, f2l, 237
f2i, 414
f2l, 415
fadd, 238, 416
faload, 239, 418
fastore, 240, 419
fcmp<op>, 241, 420
fconst_<f>, 242, 422
fdiv, 243, 423
feedback, 4
field access and property flags, 91

fields, 90, 91, 91, 91
field descriptors, 76

CONSTANT_Class_info structure, 80
CONSTANT_Fieldref_info,
CONSTANT_Methodref_info, and
CONSTANT_InterfaceMethodref_info
structures, 81
CONSTANT_NameAndType_info structure,
85
element_value structure, 133
fields, 90, 92
instruction representation, 178
LocalVariableTable attribute, 127
method type and method handle resolution,
348
putfield, 545
putstatic, 547
run-time constant pool, 330
RuntimeVisibleAnnotations attribute, 131
static constraints, 162
structural constraints, 165

field resolution, 343
getfield, 436, 436
getstatic, 438, 438
loading constraints, 337

putfield, 545, 546
putstatic, 547, 548
resolution, 342

fields, 90
attributes, 95
ClassFile structure, 73
ConstantValue attribute, 101
Deprecated attribute, 129
RuntimeInvisibleAnnotations attribute, 135
RuntimeInvisibleTypeAnnotations attribute,
152
RuntimeVisibleAnnotations attribute, 130
RuntimeVisibleTypeAnnotations attribute,
139
Signature attribute, 118
Synthetic attribute, 118

fload, 425
types and the Java Virtual Machine, 26
wide, 557

fload, fload_<n>, 244
fload_<n>, 426
floating-point arithmetic, 19
floating-point modes, 20

d2f, 383
f2d, 413
type conversion instructions, 32

floating-point types, value sets, and values, 8
CONSTANT_Integer_info and
CONSTANT_Float_info structures, 82
CONSTANT_Long_info and
CONSTANT_Double_info structures, 84
d2f, 383, 383
f2d, 413
floating-point modes, 20
invokedynamic, 469
ldc, 511
ldc2_w, 514
ldc_w, 513

INDEX

570

more control examples, 48
primitive types and values, 6

floating-point value set parameters, 9
floating-point types, value sets, and values, 8,
9, 9

fmul, 245, 427
fneg, 246, 429
format checking, 158

deriving a class from a class file
representation, 338

format of examples, 39
format of instruction descriptions, 359
frames, 15

aload, 367
aload_<n>, 368
anewarray, 369
areturn, 370
astore, 372
astore_<n>, 373
athrow, 374
checkcast, 381
dload, 395
dload_<n>, 396
dreturn, 402
dstore, 403
dstore_<n>, 404
dynamic linking, 18
fload, 425
fload_<n>, 426
format of instruction descriptions, 361
freturn, 432
fstore, 433
fstore_<n>, 434
getfield, 436
getstatic, 438
iinc, 461
iload, 462
iload_<n>, 463

instanceof, 466
invokedynamic, 468
invokeinterface, 473
invokespecial, 477
invokestatic, 481
invokevirtual, 484
ireturn, 491
istore, 494
istore_<n>, 495
Java Virtual Machine stacks, 12
ldc, 510
ldc2_w, 514
ldc_w, 512
limitations of the Java Virtual Machine, 327,
327
lload, 516
lload_<n>, 517
load and store instructions, 29
local variables, 16
lreturn, 524
lstore, 527
lstore_<n>, 528
multianewarray, 536
new, 538
normal method invocation completion, 18
operand stacks, 17
pc register, 12
putfield, 545
putstatic, 547
ret, 549
return, 550
use of constants, local variables, and control
constructs, 41
wide, 557

frem, 247, 430
freturn, 248, 432
fstore, 433

wide, 557

571

fstore, fstore_<n>, 249
fstore_<n>, 434
fsub, 250, 435

G
getfield, 251, 436
getstatic, 252, 438

initialization, 352
goto, 440
goto, goto_w, 253
goto_w, 441
grammar notation, 75

signatures, 120

H
heap, 13

I
i2b, 442
i2b, i2c, i2d, i2f, i2l, i2s, 254
i2c, 443
i2d, 444
i2f, 445
i2l, 446
i2s, 447
iadd, 255, 448

operand stacks, 17
iaload, 256, 449
iand, 257, 450
iastore, 258, 451
iconst_<i>, 452
idiv, 453
if<cond>, 261, 457
if_acmp<cond>, 259, 454
if_icmp<cond>, 260, 455

ifnonnull, 262, 459
ifnull, 263, 460
iinc, 264, 461

wide, 557
iload, 462

types and the Java Virtual Machine, 26
wide, 557

iload, iload_<n>, 265
iload_<n>, 463
imul, 266, 464
ineg, 267, 465
initialization, 352

ConstantValue attribute, 101
creation and loading, 334
getstatic, 438, 439
invokestatic, 481, 483
new, 538
preparation, 340
putstatic, 547, 548, 548
special methods, 22

InnerClasses attribute, 114
instance initialization methods and newly
created objects, 323
instanceof, 268, 466

checkcast, 382
instruction representation, 177

accessors for Java Virtual Machine artifacts,
171
verification by type checking, 169

instruction set summary, 25
instructions, 362

static constraints, 159
integral types and values, 7

invokedynamic, 469
primitive types and values, 6

interface method resolution, 346
invokeinterface, 473, 475
invokespecial, 477

INDEX

572

loading constraints, 337
internal form of names, 74
interpretation of field descriptors, 77

field descriptors, 76
verification type system, 174

interpretation of tag values as types, 133
element_value structure, 132, 133

interpretation of target_type values (part 1),
142

RuntimeVisibleTypeAnnotations attribute,
141

interpretation of target_type values (part 2),
143

RuntimeVisibleTypeAnnotations attribute,
141

interpretation of type_path_kind values, 150
type_path structure, 150

introduction, 1
invokedynamic, 269, 468

BootstrapMethods attribute, 154
CONSTANT_InvokeDynamic_info
structure, 89
run-time constant pool, 331

invokeinterface, 270, 473
invokespecial, 271, 477

ClassFile structure, 72
special methods, 22

invokestatic, 274, 481
initialization, 352

invokevirtual, 275, 484
invokedynamic, 468, 471
invokespecial, 480
special methods, 23

invoking methods, 51
ior, 276, 489
irem, 277, 490
ireturn, 278, 491
ishl, 492

ishl, ishr, iushr, 279
ishr, 493
istore, 494

wide, 557
istore, istore_<n>, 280
istore_<n>, 495
isub, 281, 496
iushr, 497
ixor, 282, 498

J
Java Virtual Machine, 2
Java Virtual Machine exit, 355
Java Virtual Machine floating-point
arithmetic and IEEE 754, 19
Java Virtual Machine instruction set, 357
Java Virtual Machine stacks, 12

frames, 15
Java Virtual Machine startup, 332

initialization, 353
jsr, 499

ret, 549, 549
returnaddress type and values, 10

jsr_w, 500
ret, 549
returnaddress type and values, 10

L
l2d, 501
l2d, l2f, l2i, 283
l2f, 502
l2i, 503
ladd, 284, 504
laload, 285, 505
land, 286, 506
lastore, 287, 507

573

lcmp, 288, 508
lconst_<l>, 289, 509
ldc, 510

call site specifier resolution, 351
ldc_w, 513

ldc, ldc_w, ldc2_w, 290
ldc2_w, 514
ldc_w, 512
ldiv, 291, 515
limitations of the Java Virtual Machine, 327

goto_w, 441
jsr_w, 500
method descriptors, 78

LineNumberTable attribute, 124
linking, 339

verification of class files, 166
lload, 516

wide, 557
lload, lload_<n>, 292
lload_<n>, 517
lmul, 293, 518
lneg, 294, 519
load and store instructions, 29
loading constraints, 336

creating array classes, 336
deriving a class from a class file
representation, 339
field resolution, 344
interface method resolution, 347
loading using a user-defined class loader, 335
method resolution, 345
preparation, 340

loading using a user-defined class loader, 335
creation and loading, 333
loading constraints, 337

loading using the bootstrap class loader, 334
creation and loading, 333
Java Virtual Machine startup, 332

loading constraints, 337
notation, 4

loading, linking, and initializing, 329
local variables, 16

Code attribute, 103
frames, 15
load and store instructions, 29
method descriptors, 78

LocalVariableTable attribute, 126
LocalVariableTypeTable attribute, 128
location of enclosing attribute for target_type
values, 144

RuntimeVisibleTypeAnnotations attribute,
141

lookupswitch, 295, 520
instruction set summary, 25

lor, 296, 522
lrem, 297, 523
lreturn, 298, 524
lshl, 525
lshl, lshr, lushr, 299
lshr, 526
lstore, 527

wide, 557
lstore, lstore_<n>, 300
lstore_<n>, 528
lsub, 301, 529
lushr, 530
lxor, 302, 531

M
method access and property flags, 93

methods, 93, 93, 93, 94, 94
method area, 13

creation and loading, 332
run-time constant pool, 14

method descriptors, 77

INDEX

574

areturn, 370
CONSTANT_Fieldref_info,
CONSTANT_Methodref_info, and
CONSTANT_InterfaceMethodref_info
structures, 81
CONSTANT_InvokeDynamic_info
structure, 90
CONSTANT_MethodType_info structure,
89
CONSTANT_NameAndType_info structure,
85
element_value structure, 134
instruction representation, 178
invokeinterface, 473
invokespecial, 477
invokestatic, 481
invokevirtual, 484
invoking methods, 51
limitations of the Java Virtual Machine, 327
method type and method handle resolution,
347, 348
MethodParameters attribute, 157
methods, 92, 94
run-time constant pool, 331
RuntimeInvisibleParameterAnnotations
attribute, 138
RuntimeVisibleParameterAnnotations
attribute, 137
special methods, 22
structural constraints, 164, 164

method descriptors for method handles, 349
method type and method handle resolution,
349

method invocation and return instructions, 35
normal method invocation completion, 18
synchronization, 36

method resolution, 344
interface method resolution, 346
invokeinterface, 474

invokespecial, 477, 478, 479
invokestatic, 481, 482
invokevirtual, 484, 485, 487
invoking methods, 53
loading constraints, 337

method type and method handle resolution,
347

call site specifier resolution, 350, 351, 351
CONSTANT_MethodHandle_info structure,
88
initialization, 353
invokevirtual, 486, 486, 487
ldc, 510, 511
ldc_w, 512, 513
special methods, 23

MethodParameters attribute, 156
methods, 92

AnnotationDefault attribute, 153
attributes, 95
ClassFile structure, 73
Code attribute, 102
Deprecated attribute, 129
Exceptions attribute, 113
floating-point modes, 20
method type and method handle resolution,
350
MethodParameters attribute, 156
RuntimeInvisibleAnnotations attribute, 135
RuntimeInvisibleParameterAnnotations
attribute, 137
RuntimeInvisibleTypeAnnotations attribute,
152
RuntimeVisibleAnnotations attribute, 130
RuntimeVisibleParameterAnnotations
attribute, 136
RuntimeVisibleTypeAnnotations attribute,
139
Signature attribute, 118

575

special methods, 22
synchronization, 36
Synthetic attribute, 118

mnemonic, 360
monitorenter, 303, 532

invokeinterface, 474
invokespecial, 478
invokestatic, 481
invokevirtual, 485
monitorexit, 534

monitorexit, 304, 534
areturn, 370
athrow, 374
dreturn, 402
freturn, 432
invokeinterface, 475
invokespecial, 479
invokestatic, 482
invokevirtual, 486
ireturn, 491
lreturn, 524
monitorenter, 532
return, 550

more control examples, 47
dcmp<op>, 390
fcmp<op>, 420

multianewarray, 305, 536

N
native method stacks, 14
native methods, 355

invokeinterface, 474
invokespecial, 479
invokestatic, 482
invokevirtual, 485

nested class access and property flags, 116
InnerClasses attribute, 116, 116

new, 306, 538
initialization, 352
StackMapTable attribute, 109

newarray, 307, 540
baload, 376
bastore, 377
boolean type, 10
multianewarray, 537

nop, 308, 542
normal method invocation completion, 18

synchronization, 67
notation, 4

O
Object creation and manipulation, 34

load and store instructions, 29
opcode mnemonics by opcode, 559
operand stack, 409, 410, 411, 408, 544
operand stack management instructions, 34
operand stacks, 17

Code attribute, 103
format of instruction descriptions, 361
frames, 15
load and store instructions, 29
structural constraints, 163

operations on the operand stack, 59
organization of the specification, 3
overriding, 352

invokevirtual, 484
preparation, 340
type checking abstract and native methods,
184
verification of class files, 167

P
pc register, 12

INDEX

576

pop, 543
pop, pop2, 309
pop2, 544
predefined class file attributes (by class file
version), 99

attributes, 96
predefined class file attributes (by location),
100

attributes, 96
ClassFile structure, 74
Code attribute, 105
fields, 92
methods, 95

predefined class file attributes (by section), 98
attributes, 95

preparation, 340
loading constraints, 337, 337

primitive types and values, 6
multianewarray, 536
new, 538
newarray, 540
preparation, 340

process of verification by type inference, 319
public design, private implementation, 37

reserved opcodes, 358
putfield, 310, 545
putstatic, 311, 547

initialization, 352

R
receiving arguments, 50

invoking methods, 52
reference types and values, 11

anewarray, 369
control transfer instructions, 35
field resolution, 344
interface method resolution, 347, 347

method resolution, 345, 345
multianewarray, 536
new, 538
newarray, 540
preparation, 340, 340, 340, 341, 341

representation of objects, 19
reserved opcodes, 358

static constraints, 159
resolution, 341

creation and loading, 334
loading constraints, 337

ret, 549
jsr, 499
jsr_w, 500
returnaddress type and values, 10
wide, 557

return, 312, 550
ret, 549

returnaddress type and values, 10
primitive types and values, 6

run-time constant pool, 14, 329
dynamic linking, 18
frames, 15
getfield, 436
getstatic, 438
invokedynamic, 468, 468, 471
invokeinterface, 473
invokespecial, 477
invokestatic, 481
invokevirtual, 484
ldc, 510, 510, 510, 510
ldc2_w, 514
ldc_w, 512, 512, 512
method type and method handle resolution,
348
putfield, 545
putstatic, 547
resolution, 342

577

run-time constant pool, 329
run-time data areas, 11
RuntimeInvisibleAnnotations attribute, 135
RuntimeInvisibleParameterAnnotations
attribute, 137
RuntimeInvisibleTypeAnnotations attribute,
152
RuntimeVisibleAnnotations attribute, 130

annotations, 67
element_value structure, 134
RuntimeInvisibleAnnotations attribute, 136
RuntimeInvisibleParameterAnnotations
attribute, 139
RuntimeVisibleParameterAnnotations
attribute, 137
RuntimeVisibleTypeAnnotations attribute,
141

RuntimeVisibleParameterAnnotations
attribute, 136
RuntimeVisibleTypeAnnotations attribute,
139

RuntimeInvisibleTypeAnnotations attribute,
153

S
saload, 313, 551
sastore, 314, 552
Signature attribute, 118
signatures, 119

LocalVariableTypeTable attribute, 129
Signature attribute, 118

sipush, 315, 553
SourceDebugExtension attribute, 124
SourceFile attribute, 123
special methods, 22

ClassFile structure, 74
Code attribute, 102

CONSTANT_Fieldref_info,
CONSTANT_Methodref_info, and
CONSTANT_InterfaceMethodref_info
structures, 81
CONSTANT_MethodHandle_info structure,
88
CONSTANT_NameAndType_info structure,
85
ConstantValue attribute, 101
constraints on Java Virtual Machine Code,
159
initialization, 352
instance initialization methods and newly
created objects, 324
invokedynamic, 469
invokeinterface, 473
invokespecial, 477, 480
invokestatic, 481
invokevirtual, 484, 484, 486
method area, 13
method invocation and return instructions, 35
method resolution, 344
methods, 92, 94, 94
new, 539
putfield, 545
putstatic, 547
static constraints, 161
structural constraints, 163
Synthetic attribute, 118
unqualified names, 75
working with class instances, 53

stack map frame representation, 178
accessors for Java Virtual Machine artifacts,
171
type checking load and store instructions,
194, 194
verification by type checking, 169

StackMapTable attribute, 106

INDEX

578

stack map frame representation, 179
verification by type checking, 168

startup, 332
initialization, 353

static constraints, 159
limitations of the Java Virtual Machine, 328

structural constraints, 163
limitations of the Java Virtual Machine, 328

structure of the Java Virtual Machine, 5
swap, 316, 554

operand stacks, 17
synchronization, 36, 66

areturn, 370, 370
athrow, 374, 375
dreturn, 402, 402
freturn, 432, 432
ireturn, 491, 491
lreturn, 524, 524
monitorenter, 532
monitorexit, 534, 535, 534
return, 550, 550
synchronization, 36, 66

Synthetic attribute, 118
methods, 94

T
tableswitch, 317, 555

instruction set summary, 25
target_info union, 144

RuntimeVisibleTypeAnnotations attribute,
141

throwing and handling Exceptions, 60
Exceptions, 25
more control examples, 47

throwing Exceptions, 36
type checking abstract and native methods,
184

verification by type checking, 169
type checking for protected members, 196

access control, 352
getfield, 251
invokevirtual, 275
verification by type checking, 169

type checking instructions, 199
stack map frame representation, 182
verification by type checking, 169

type checking load and store instructions, 194
stack map frame representation, 180
verification by type checking, 169

type checking methods with Code, 187
stack map frame representation, 179
StackMapTable attribute, 107
verification by type checking, 169

type conversion instructions, 32
type support in the Java Virtual Machine
instruction set, 28

types and the Java Virtual Machine, 26, 26
use of constants, local variables, and control
constructs, 43

type_path structure, 148
RuntimeVisibleTypeAnnotations attribute,
141

types and the Java Virtual Machine, 26
arithmetic instructions, 30
control transfer instructions, 35
data types, 6
dup, 406
dup_x1, 407
load and store instructions, 30
operand stack, 409, 409, 410, 410, 411,
411, 411, 411, 408, 408, 544, 544
pop, 543
stack map frame representation, 182
swap, 554
type conversion instructions, 32

579

U
unqualified names, 75

binary class and interface names, 74
CONSTANT_NameAndType_info structure,
85
fields, 91
LocalVariableTable attribute, 127
LocalVariableTypeTable attribute, 129
methods, 94
signatures, 120

use of constants, local variables, and control
constructs, 40

accessing the run-time constant pool, 46
more control examples, 47

user-defined class loaders, 335
creation and loading, 333
loading constraints, 337

V
value set conversion, 20

d2f, 383
d2i, 384
d2l, 385
dadd, 386
dastore, 389
dcmp<op>, 390
ddiv, 393
dmul, 397
dneg, 399
drem, 400
dreturn, 402
dstore, 403
dstore_<n>, 404
dsub, 405
f2d, 413
f2i, 414

f2l, 415
fadd, 416
fastore, 419
fcmp<op>, 420
fdiv, 423
floating-point modes, 20
fmul, 427
fneg, 429
frem, 430
freturn, 432
fstore, 433
fstore_<n>, 434
fsub, 435
invokeinterface, 474, 474
invokespecial, 478, 479
invokestatic, 482, 482
invokevirtual, 485, 485
putfield, 545
putstatic, 548

values of types long and double, 323
verification, 340

creation and loading, 334
verification by type checking, 167

StackMapTable attribute, 106, 106
verification by type inference, 319

verification by type checking, 167
verification of class files, 166

assumptions: the meaning of "must", 357
operand stacks, 17
verification, 340

verification type system, 173
accessors for Java Virtual Machine artifacts,
171
verification by type checking, 169

Virtual Machine errors, 358
Exceptions, 24

INDEX

580

W
wide, 318, 557

aload, 367
astore, 372
dload, 395
dstore, 403
fload, 425
fstore, 433
iinc, 461
iload, 462
istore, 494
lload, 516
lstore, 527
ret, 549

working with class instances, 53
accessing the run-time constant pool, 46
invoking methods, 52

	Table of Contents
	Preface to the Java SE 8 Edition
	1 Introduction
	1.1 A Bit of History
	1.2 The Java Virtual Machine
	1.3 Organization of the Specification
	1.4 Notation
	1.5 Feedback

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

