
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133902839
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133902839
https://plusone.google.com/share?url=http://www.informit.com/title/9780133902839
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133902839
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133902839/Free-Sample-Chapter

Bayesian Methods
for Hackers

T he Addison-Wesley Data and Analytics Series provides readers with practical
knowledge for solving problems and answering questions with data. Titles in this series
primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data

2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and compelling way

The series aims to tie all three of these areas together to help the reader build end-to-end
systems for fighting spam; making recommendations; building personalization;
detecting trends, patterns, or problems; and gaining insight from the data exhaust of
systems and user interactions.

Visit informit.com/awdataseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Addison-Wesley Data and Analytics Series

Bayesian Methods
for Hackers

Probabilistic Programming
and Bayesian Inference

Cameron Davidson-Pilon

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Davidson-Pilon, Cameron.
Bayesian methods for hackers : probabilistic programming and bayesian inference / Cameron Davidson-Pilon.

pages cm
Includes bibliographical references and index.
ISBN 978-0-13-390283-9 (pbk.: alk. paper)
1. Penetration testing (Computer security)–Mathematics. 2. Bayesian statistical decision theory.
3. Soft computing. I. Title.
QA76.9.A25D376 2015
006.3–dc23

2015017249

Copyright © 2016 Cameron Davidson-Pilon

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey 07675, or you
may fax your request to (201) 236-3290.

The code throughout and Chapters 1 through 6 in this book is released under the MIT License.

ISBN-13: 978-0-13-390283-9
ISBN-10: 0-13-390283-8
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2015

v

This book is dedicated to many important relationships: my parents,
my brothers, and my closest friends. Second to them, it is devoted
to the open-source community, whose work we consume every

day without knowing.

v

This page intentionally left blank

Contents

Foreword xiii

Preface xv

Acknowledgments xvii

About the Author xix

1 The Philosophy of Bayesian Inference 1
1.1 Introduction 1

1.1.1 The Bayesian State of Mind 1

1.1.2 Bayesian Inference in Practice 3

1.1.3 Are Frequentist Methods Incorrect? 4

1.1.4 A Note on “Big Data” 4

1.2 Our Bayesian Framework 5

1.2.1 Example: Mandatory Coin-Flip 5

1.2.2 Example: Librarian or Farmer? 6

1.3 Probability Distributions 8

1.3.1 Discrete Case 9
1.3.2 Continuous Case 10
1.3.3 But What Is λ? 12

1.4 Using Computers to Perform Bayesian Inference
for Us 12
1.4.1 Example: Inferring Behavior from

Text-Message Data 12

1.4.2 Introducing Our First Hammer: PyMC 14

1.4.3 Interpretation 18

1.4.4 What Good Are Samples from the Posterior,
Anyway? 18

1.5 Conclusion 20
1.6 Appendix 20

1.6.1 Determining Statistically if the Two λs Are
Indeed Different? 20

1.6.2 Extending to Two Switchpoints 22

1.7 Exercises 24
1.7.1 Answers 24

1.8 References 25

viii Contents

2 A Little More on PyMC 27
2.1 Introduction 27

2.1.1 Parent and Child Relationships 27

2.1.2 PyMC Variables 28

2.1.3 Including Observations in the Model 31

2.1.4 Finally. . . 33

2.2 Modeling Approaches 33

2.2.1 Same Story, Different Ending 35

2.2.2 Example: Bayesian A/B Testing 38

2.2.3 A Simple Case 38

2.2.4 A and B Together 41

2.2.5 Example: An Algorithm for Human
Deceit 45

2.2.6 The Binomial Distribution 45
2.2.7 Example: Cheating Among Students 46

2.2.8 Alternative PyMC Model 50

2.2.9 More PyMC Tricks 51

2.2.10 Example: Challenger Space Shuttle
Disaster 52

2.2.11 The Normal Distribution 55
2.2.12 What Happened the Day of the

Challenger Disaster? 61

2.3 Is Our Model Appropriate? 61

2.3.1 Separation Plots 64

2.4 Conclusion 68
2.5 Appendix 68

2.6 Exercises 69
2.6.1 Answers 69

2.7 References 69

3 Opening the Black Box of MCMC 71
3.1 The Bayesian Landscape 71

3.1.1 Exploring the Landscape Using
MCMC 76

3.1.2 Algorithms to Perform MCMC 78

3.1.3 Other Approximation Solutions to the
Posterior 79

3.1.4 Example: Unsupervised Clustering Using
a Mixture Model 79

Contents ix

3.1.5 Don’t Mix Posterior Samples 88

3.1.6 Using MAP to Improve Convergence 91

3.2 Diagnosing Convergence 92

3.2.1 Autocorrelation 92
3.2.2 Thinning 95

3.2.3 pymc.Matplot.plot() 97

3.3 Useful Tips for MCMC 98

3.3.1 Intelligent Starting Values 98

3.3.2 Priors 99
3.3.3 The Folk Theorem of Statistical

Computing 99

3.4 Conclusion 99
3.5 Reference 99

4 The Greatest Theorem Never Told 101
4.1 Introduction 101
4.2 The Law of Large Numbers 101

4.2.1 Intuition 101
4.2.2 Example: Convergence of Poisson Random

Variables 102
4.2.3 How Do We Compute Var(Z)? 106

4.2.4 Expected Values and Probabilities 106

4.2.5 What Does All This Have to Do with Bayesian
Statistics? 107

4.3 The Disorder of Small Numbers 107
4.3.1 Example: Aggregated Geographic Data 107

4.3.2 Example: Kaggle’s U.S. Census Return Rate
Challenge 109

4.3.3 Example: How to Sort Reddit
Comments 111

4.3.4 Sorting! 115

4.3.5 But This Is Too Slow for Real-Time! 117
4.3.6 Extension to Starred Rating Systems 122

4.4 Conclusion 122
4.5 Appendix 122

4.5.1 Derivation of Sorting Comments
Formula 122

4.6 Exercises 123
4.6.1 Answers 124

4.7 References 125

x Contents

5 Would You Rather Lose an Arm or a Leg? 127

5.1 Introduction 127
5.2 Loss Functions 127

5.2.1 Loss Functions in the Real World 129
5.2.2 Example: Optimizing for the Showcase

on The Price Is Right 131

5.3 Machine Learning via Bayesian Methods 139

5.3.1 Example: Financial Prediction 139

5.3.2 Example: Kaggle Contest on Observing
Dark Worlds 144

5.3.3 The Data 145
5.3.4 Priors 146
5.3.5 Training and PyMC Implementation 148

5.4 Conclusion 156
5.5 References 156

6 Getting Our Priorities Straight 157

6.1 Introduction 157
6.2 Subjective versus Objective Priors 157

6.2.1 Objective Priors 157

6.2.2 Subjective Priors 158

6.2.3 Decisions, Decisions . . . 159

6.2.4 Empirical Bayes 160

6.3 Useful Priors to Know About 161
6.3.1 The Gamma Distribution 161
6.3.2 The Wishart Distribution 161
6.3.3 The Beta Distribution 163

6.4 Example: Bayesian Multi-Armed Bandits 164

6.4.1 Applications 165

6.4.2 A Proposed Solution 165

6.4.3 A Measure of Good 169
6.4.4 Extending the Algorithm 173

6.5 Eliciting Prior Distributions from Domain
Experts 176

6.5.1 Trial Roulette Method 176
6.5.2 Example: Stock Returns 177

6.5.3 Pro Tips for the Wishart Distribution 184

6.6 Conjugate Priors 185

6.7 Jeffreys Priors 185

Contents xi

6.8 Effect of the Prior as N Increases 187
6.9 Conclusion 189
6.10 Appendix 190

6.10.1 Bayesian Perspective of Penalized Linear
Regressions 190

6.10.2 Picking a Degenerate Prior 192

6.11 References 193

7 Bayesian A/B Testing 195
7.1 Introduction 195
7.2 Conversion Testing Recap 195

7.3 Adding a Linear Loss Function 198

7.3.1 Expected Revenue Analysis 198

7.3.2 Extending to an A/B Experiment 202

7.4 Going Beyond Conversions: t-test 204

7.4.1 The Setup of the t-test 204

7.5 Estimating the Increase 207

7.5.1 Creating Point Estimates 210

7.6 Conclusion 211
7.7 References 212

Glossary 213

Index 217

This page intentionally left blank

Foreword

Bayesian methods are one of many in a modern data scientist’s toolkit. They can be used
to solve problems in prediction, classification, spam detection, ranking, inference, and
many other tasks. However, most of the material out there on Bayesian statistics and
inference focuses on the mathematical details while giving little attention to the more
pragmatic engineering considerations. That’s why I’m very pleased to have this book
joining the series, bringing a much needed introduction to Bayesian methods targeted at
practitioners.

Cameron’s knowledge of the topic and his focus on tying things back to tangible
examples make this book a great introduction for data scientists or regular programmers
looking to learn about Bayesian methods. This book is filled with examples, figures, and
working Python code that make it easy to get started solving actual problems. If you’re
new to data science, Bayesian methods, or new to data science with Python, this book will
be an invaluable resource to get you started.

—Paul Dix
Series Editor

This page intentionally left blank

Preface

The Bayesian method is the natural approach to inference, yet it is hidden from readers
behind chapters of slow, mathematical analysis. The typical text on Bayesian inference
involves two to three chapters on probability theory, then enters into what Bayesian
inference is. Unfortunately, due to the mathematical intractability of most Bayesian
models, the reader is only shown simple, artificial examples. This can leave the user with a
“So what?” feeling about Bayesian inference. In fact, this was my own prior opinion.

After some recent success of Bayesian methods in machine-learning competitions, I
decided to investigate the subject again. Even with my mathematical background, it took
me three straight days of reading examples and trying to put the pieces together to
understand the methods. There was simply not enough literature bridging theory to
practice. The problem with my misunderstanding was the disconnect between Bayesian
mathematics and probabilistic programming. That being said, I suffered then so the reader
would not have to now. This book attempts to bridge the gap.

If Bayesian inference is the destination, then mathematical analysis is a particular path
toward it. On the other hand, computing power is cheap enough that we can afford to
take an alternate route via probabilistic programming. The latter path is much more useful,
as it denies the necessity of mathematical intervention at each step; that is, we remove
often intractable mathematical analysis as a prerequisite to Bayesian inference. Simply put,
this latter computational path proceeds via small, intermediate jumps from beginning to
end, whereas the first path proceeds by enormous leaps, often landing far away from our
target. Furthermore, without a strong mathematical background, the analysis required by
the first path cannot even take place.

Bayesian Methods for Hackers is designed as an introduction to Bayesian inference from a
computational/understanding first, and mathematics second, point of view. Of course, as
an introductory book, we can only leave it at that: an introductory book. For the
mathematically trained, the curiosity this text generates may be cured by other texts
designed with mathematical analysis in mind. For the enthusiast with a less mathematical
background, or one who is not interested in the mathematics but simply the practice of
Bayesian methods, this text should be sufficient and entertaining.

The choice of PyMC as the probabilistic programming language is twofold. First, as of
this writing, there is currently no central resource for examples and explanations in the
PyMC universe. The official documentation assumes prior knowledge of Bayesian
inference and probabilistic programming. We hope this book encourages users at every
level to look at PyMC. Second, with recent core developments and popularity of the
scientific stack in Python, PyMC is likely to become a core component soon enough.

xvi

PyMC does have dependencies to run, namely NumPy and (optionally) SciPy. To not
limit the user, the examples in this book will rely only on PyMC, NumPy, SciPy, and
matplotlib.

The progression of the book is as follows. Chapter 1 introduces Bayesian inference and
its comparison to other inference techniques. We also see, build, and train our first
Bayesian model. Chapter 2 focuses on building models with PyMC, with a strong
emphasis on examples. Chapter 3 introduces Markov Chain Monte Carlo, a powerful
algorithm behind computational inference, and some techniques on debugging your
Bayesian model. In Chapter 4, we detour and again visit the issue of sample sizes in
inference and explain why understanding sample size is so important. Chapter 5 introduces
the powerful idea of loss functions, where we have not a model but a function that
connects inference to real-world problems. We revisit the idea of Bayesian priors in
Chapter 6, and give good heuristics to picking good priors. Finally, in Chapter 7, we
explore how Bayesian inference can be used in A/B testing.

All the datasets used in this text are available online at https://
github.com/CamDavidsonPilon/Probabilistic-Programming-and-
Bayesian-Methods-for-Hackers.

Preface

https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

Acknowledgments

I would like to acknowledge the many people involved in this book. First and foremost,
I’d like to acknowledge the contributors to the online version of Bayesian Methods for
Hackers. Many of these authors submitted contributions (code, ideas, and text) that helped
round out this book. Second, I would like to thank the reviewers of this book, Robert
Mauriello and Tobi Bosede, for sacrificing their time to peel through the difficult
abstractions I can make and for narrowing the contents down for a much more enjoyable
read. Finally, I would like to acknowledge my friends and colleagues, who supported me
throughout the process.

This page intentionally left blank

About the Author

Cameron Davidson-Pilon has seen many fields of applied mathematics, from
evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His
main contributions to the open-source community include Bayesian Methods for Hackers
and lifelines. Cameron was raised in Guelph, Ontario, but was educated at the University
of Waterloo and Independent University of Moscow. He currently lives in Ottawa,
Ontario, working with the online commerce leader Shopify.

This page intentionally left blank

This page intentionally left blank

Chapter 5
Would You Rather Lose an

Arm or a Leg?

5.1 Introduction
Statisticians can be a sour bunch. Instead of considering their winnings, they only measure
how much they have lost. In fact, they consider their wins to be negative losses. But what’s
interesting is how they measure their losses.

For example, consider the following:

A meteorologist is predicting the probability of a hurricane striking his city. He estimates, with
95% confidence, that the probability of it not striking is between 99% and 100%. He is very
happy with his precision and advises the city that a major evacuation is unnecessary.
Unfortunately, the hurricane does strike and the city is flooded.

This stylized example shows the flaw in using a pure accuracy metric to measure
outcomes. Using a measure that emphasizes estimation accuracy, while an appealing and
objective thing to do, misses the point of why you are even performing the statistical
inference in the first place: results of inference. Furthermore, we’d like a method that
stresses the importance of payoffs of decisions, not the accuracy of the estimation alone.
Read puts this succinctly: “It is better to be roughly right than precisely wrong.”[1]

5.2 Loss Functions
We introduce what statisticians and decision theorists call loss functions. A loss function
is a function of the true parameter, and an estimate of that parameter

L(θ , θ̂) = f (θ , θ̂)

The important point of loss functions is that they measure how bad our current estimate
is: The larger the loss, the worse the estimate is according to the loss function. A simple,
and very common, example of a loss function is the squared-error loss, a type of loss
function that increases quadratically with the difference, used in estimators like linear
regression, calculation of unbiased statistics, and many areas of machine learning

L(θ , θ̂) = (θ − θ̂)2

128 Chapter 5 Would You Rather Lose an Arm or a Leg?

The squared-error loss function is used in estimators like linear regression, calculation
of unbiased statistics, and many areas of machine learning. We can also consider an
asymmetric squared-error loss function, something like:

L(θ , θ̂) =


(θ − θ̂)2 θ̂ < θ

c(θ − θ̂)2 θ̂ ≥ θ , 0 < c < 1

which represents that estimating a value larger than the true estimate is preferable to
estimating a value that is smaller. A situation where this might be useful is in estimating
Web traffic for the next month, where an overestimated outlook is preferred so as to avoid
an underallocation of server resources.

A negative property about the squared-error loss is that it puts a disproportionate
emphasis on large outliers. This is because the loss increases quadratically, and not linearly,
as the estimate moves away. That is, the penalty of being 3 units away is much less than
being 5 units away, but the penalty is not much greater than being 1 unit away, though in
both cases the magnitude of difference is the same:

12

32 <
32

52 , although 3− 1 = 5− 3

This loss function implies that large errors are very bad. A more robust loss function
that increases linearly with the difference is the absolute-loss, a type of loss function that
increases linearly with the difference, often used in machine learning and robust statistics.

L(θ , θ̂) = |θ − θ̂ |

Other popular loss functions include the following.

m L(θ , θ̂) = 1
θ̂ 6=θ

is the zero-one loss often used in machine-learning classification
algorithms.

m L(θ , θ̂) = −θ̂ log(θ)− (1− θ̂) log(1− θ), θ̂ ∈ 0, 1, θ ∈ [0, 1], called the log-loss,
is also used in machine learning.

Historically, loss functions have been motivated from (1) mathematical ease and (2)
their robustness to application (that is, they are objective measures of loss). The first
motivation has really held back the full breadth of loss functions. With computers being
agnostic to mathematical convenience, we are free to design our own loss functions, which
we take full advantage of later in this chapter.

With respect to the second motivation, the above loss functions are indeed objective in
that they are most often a function of the difference between estimate and true parameter,

5.2 Loss Functions 129

independent of positivity or negativity, or payoff of choosing that estimate. This last
point—its independence of payoff—causes quite pathological results, though. Consider
our hurricane example: The statistician equivalently predicted that the probability of the
hurricane striking was between 0% and 1%. But if he had ignored being precise and
instead focused on outcomes (99% chance of no flood, 1% chance of flood), he might
have advised differently.

By shifting our focus from trying to be incredibly precise about parameter estimation to
focusing on the outcomes of our parameter estimation, we can customize our estimates to
be optimized for our application. This requires us to design new loss functions that reflect
our goals and outcomes. Some examples of more interesting loss functions include the
following.

m L(θ , θ̂) = |θ−θ̂ |
θ(1−θ) , θ̂ , θ ∈ [0, 1] emphasizes an estimate closer to 0 or 1, since if the

true value θ is near 0 or 1, the loss will be very large unless θ̂ is similarly close to 0
or 1. This loss function might be used by a political pundit who’s job requires him
or her to give confident “Yes/No” answers. This loss reflects that if the true
parameter is close to 1 (for example, if a political outcome is very likely to occur),
he or she would want to strongly agree so as to not look like a skeptic.

m L(θ , θ̂) = 1− e−(θ−θ̂)
2

is bounded between 0 and 1 and reflects that the user is
indifferent to sufficiently-far-away estimates. It is similar to the zero-one loss, but
not quite as penalizing to estimates that are close to the true parameter.

m Complicated non-linear loss functions can programmed:

def loss(true_value, estimate):
if estimate*true_value > 0:

return abs(estimate - true_value)
else:

return abs(estimate)*(estimate - true_value)**2

m Another example in everyday life is the loss function that weather forecasters use.
Weather forecasters have an incentive to report accurately on the probability of rain,
but also to err on the side of suggesting rain. Why is this? People much prefer to
prepare for rain, even when it may not occur, than to be rained on when they are
unprepared. For this reason, forecasters tend to artificially bump up the probability
of rain and report this inflated estimate, as this provides a better payoff than the
uninflated estimate.

5.2.1 Loss Functions in the Real World
So far, we have been acting under the unrealistic assumption that we know the true
parameter. Of course, if we know the true parameter, bothering to guess an estimate is
pointless. Hence a loss function is really only practical when the true parameter is
unknown.

130 Chapter 5 Would You Rather Lose an Arm or a Leg?

In Bayesian inference, we have a mindset that the unknown parameters are really
random variables with prior and posterior distributions. Concerning the posterior
distribution, a value drawn from it is a possible realization of what the true parameter
could be. Given that realization, we can compute a loss associated with an estimate. As we
have a whole distribution of what the unknown parameter could be (the posterior), we
should be more interested in computing the expected loss given an estimate. This expected
loss is a better estimate of the true loss than comparing the given loss from only a single
sample from the posterior.

First, it will be useful to explain a Bayesian point estimate. The systems and
machinery present in the modern world are not built to accept posterior distributions as
input. It is also rude to hand someone over a distribution when all they asked for was an
estimate. In the course of our day, when faced with uncertainty, we still act by distilling
our uncertainty down to a single action. Similarly, we need to distill our posterior
distribution down to a single value (or vector, in the multivariate case). If the value is
chosen intelligently, we can avoid the flaw of frequentist methodologies that mask the
uncertainty and provide a more informative result.The value chosen, if from a Bayesian
posterior, is a Bayesian point estimate.

If P(θ |X) is the posterior distribution of θ after observing data X , then the following
function is understandable as the expected loss of choosing estimate θ̂ to estimate θ :

l(θ̂) = Eθ
[

L(θ , θ̂)
]

This is also known as the risk of estimate θ̂ . The subscript θ under the expectation
symbol is used to denote that θ is the unknown (random) variable in the expectation,
something that at first can be difficult to consider.

We spent all of Chapter 4 discussing how to approximate expected values. Given N
samples θi, i = 1, ..., N from the posterior distribution, and a loss function L, we can
approximate the expected loss of using estimate θ̂ by the Law of Large Numbers:

1
N

N∑
i=1

L(θi, θ̂) ≈ Eθ
[

L(θ , θ̂)
]
= l(θ̂)

Notice that measuring your loss via an expected value uses more information from the
distribution than the MAP estimate—which, if you recall, will only find the maximum
value of the distribution and ignore the shape of the distribution. Ignoring information
can overexpose yourself to tail risks, like the unlikely hurricane, and leaves your estimate
ignorant of how ignorant you really are about the parameter.

Similarly, compare this with frequentist methods, that traditionally only aim to
minimize the error, and do not consider the loss associated with the result of that error.
Compound this with the fact that frequentist methods are almost guaranteed to never be
absolutely accurate. Bayesian point estimates fix this by planning ahead: If your estimate is
going to be wrong, you might as well err on the right side of wrong.

5.2 Loss Functions 131

5.2.2 Example: Optimizing for the Showcase on The Price Is
Right

Bless you if you are ever chosen as a contestant on The Price Is Right, for here we will show
you how to optimize your final price on the Showcase. For those who don’t know the
rules:

1. Two contestants compete in the Showcase.
2. Each contestant is shown a unique suite of prizes.
3. After the viewing, the contestants are asked to bid on the price for their unique suite

of prizes.
4. If a bid price is over the actual price, the bid’s owner is disqualified from winning.
5. If a bid price is under the true price by less than $250, the winner is awarded both

prizes.

The difficulty in the game is balancing your uncertainty in the prices, keeping your bid
low enough so as to not bid over, and to bid close to the price.

Suppose we have recorded the Showcases from previous The Price Is Right episodes and
have prior beliefs about what distribution the true price follows. For simplicity, suppose it
follows a Normal:

True Price ∼ Normal(µp, σp)

For now, we will assume µp = 35,000 and σp = 7,500.
We need a model of how we should be playing the Showcase. For each prize in the

prize suite, we have an idea of what it might cost, but this guess could differ significantly
from the true price. (Couple this with increased pressure from being onstage, and you can
see why some bids are so wildly off.) Let’s suppose your beliefs about the prices of prizes
also follow Normal distributions:

Prizei ∼ Normal(µi, σi), i = 1, 2

This is really why Bayesian analysis is great: We can specify what we think a fair price is
through the µi parameter, and express uncertainty of our guess in the σi parameter. We’ll
assume two prizes per suite for brevity, but this can be extended to any number. The true
price of the prize suite is then given by Prize1 + Prize2 + ε, where ε is some error term.
We are interested in the updated true price given we have observed both prizes and have
belief distributions about them. We can perform this using PyMC.

Let’s make some values concrete. Suppose there are two prizes in the observed prize
suite:

1. A trip to wonderful Toronto, Canada!

2. A lovely new snowblower!

132 Chapter 5 Would You Rather Lose an Arm or a Leg?

We have some guesses about the true prices of these objects, but we are also pretty
uncertain about them. We can express this uncertainty through the parameters of the
Normals:

Snowblower ∼ Normal(3000, 500)

Toronto ∼ Normal(12000, 3000)

For example, I believe that the true price of the trip to Toronto is 12,000 dollars, and
that there is a 68.2% chance the price falls 1 standard deviation away from this; that is, my
confidence is that there is a 68.2% chance the trip is in [9000, 15000]. These priors are
graphically represented in Figure 5.2.1.

We can create some PyMC code to perform inference on the true price of the suite, as
shown in Figure 5.2.2.

%matplotlib inline
import scipy.stats as stats
from IPython.core.pylabtools import figsize
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['savefig.dpi'] = 300
plt.rcParams['figure.dpi'] = 300

figsize(12.5, 9)

norm_pdf = stats.norm.pdf

plt.subplot(311)
x = np.linspace(0, 60000, 200)
sp1 = plt.fill_between(x, 0, norm_pdf(x, 35000, 7500),

color="#348ABD", lw=3, alpha=0.6,
label="historical total prices")

p1 = plt.Rectangle((0, 0), 1, 1, fc=sp1.get_facecolor()[0])
plt.legend([p1], [sp1.get_label()])

plt.subplot(312)
x = np.linspace(0, 10000, 200)
sp2 = plt.fill_between(x, 0, norm_pdf(x, 3000, 500),

color="#A60628", lw=3, alpha=0.6,
label="snowblower price guess")

p2 = plt.Rectangle((0, 0), 1, 1, fc=sp2.get_facecolor()[0])
plt.legend([p2], [sp2.get_label()])

plt.subplot(313)
x = np.linspace(0, 25000, 200)
sp3 = plt.fill_between(x , 0, norm_pdf(x, 12000, 3000),

5.2 Loss Functions 133

color="#7A68A6", lw=3, alpha=0.6,
label="trip price guess")

plt.autoscale(tight=True)
p3 = plt.Rectangle((0, 0), 1, 1, fc=sp3.get_facecolor()[0])
plt.title("Prior distributions for unknowns: the total price,\

the snowblower’s price, and the trip’s price")
plt.legend([p3], [sp3.get_label()]);
plt.xlabel("Price");
plt.ylabel("Density")

historical total prices

snowblower price guess

trip price guess

0

0 2000 4000 6000 8000 10000

0 5000 10000
Price

15000 20000 25000

0.00000
0.00001
0.00002
0.00003
0.00004

0.00006
0.00005

0.0000
0.0001
0.0002
0.0003

D
en

si
ty

0.0004

0.0006
0.0007
0.0008

0.0005

0.00000
0.00002
0.00004
0.00006

0.00010
0.00012

0.00008

10000 20000 30000 40000 50000 60000

Figure 5.2.1: Prior distributions for unknowns: the total price, the snowblower’s price, and the
trip’s price

import pymc as pm

data_mu = [3e3, 12e3]

data_std = [5e2, 3e3]

mu_prior = 35e3
std_prior = 75e2

(Continues)

134 Chapter 5 Would You Rather Lose an Arm or a Leg?

(Continued)

true_price = pm.Normal("true_price", mu_prior, 1.0 / std_prior ** 2)

prize_1 = pm.Normal("first_prize", data_mu[0], 1.0 / data_std[0] ** 2)
prize_2 = pm.Normal("second_prize", data_mu[1], 1.0 / data_std[1] ** 2)
price_estimate = prize_1 + prize_2

@pm.potential
def error(true_price=true_price, price_estimate=price_estimate):

return pm.normal_like(true_price, price_estimate, 1 / (3e3) ** 2)

mcmc = pm.MCMC([true_price, prize_1, prize_2, price_estimate, error])
mcmc.sample(50000, 10000)

price_trace = mcmc.trace("true_price")[:]

[Output]:

[-----------------100%-----------------] 50000 of 50000 complete in
10.9 sec

figsize(12.5, 4)

import scipy.stats as stats

Plot the prior distribution.
x = np.linspace(5000, 40000)
plt.plot(x, stats.norm.pdf(x, 35000, 7500), c="k", lw=2,

label="prior distribution\n of suite price")

Plot the posterior distribution, represented by samples from the MCMC.
_hist = plt.hist(price_trace, bins=35, normed=True, histtype="stepfilled")
plt.title("Posterior of the true price estimate")
plt.vlines(mu_prior, 0, 1.1*np.max(_hist[0]), label="prior’s mean",

linestyles="--")
plt.vlines(price_trace.mean(), 0, 1.1*np.max(_hist[0]), \

label="posterior’s mean", linestyles="-.")
plt.legend(loc="upper left");

Notice that because of the snowblower prize and trip prize and subsequent guesses
(including uncertainty about those guesses), we shifted our mean price estimate down
about $15,000 from the previous mean price.

A frequentist, seeing the two prizes and having the same beliefs about their prices,
would bid µ1 + µ2 = $35,000, regardless of any uncertainty. Meanwhile, the naive
Bayesian would simply pick the mean of the posterior distribution. But we have more
information about our eventual outcomes; we should incorporate this into our bid. We
will use the loss function to find the best bid (best according to our loss).

5.2 Loss Functions 135

prior distribution
of suite price
prior’s mean
posterior’s mean

5000
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

10000 15000 20000 25000 30000 35000 40000

Figure 5.2.2: Posterior of the true price estimate

What might a contestant’s loss function look like? I would think it would look
something like:

def showcase_loss(guess, true_price, risk=80000):
if true_price < guess:

return risk
elif abs(true_price - guess) <= 250:

return -2 * np.abs(true_price)
else:

return np.abs(true_price - guess - 250)

where risk is a parameter that defines how bad it is if your guess is over the true
price. I’ve arbitrarily picked 80,000. A lower risk means that you are more comfortable
with the idea of going over. If we do bid under and the difference is less than $250, we
receive both prizes (modeled here as receiving twice the original prize). Otherwise, when
we bid under the true price, we want to be as close as possible, hence the else loss
is a increasing function of the distance between the guess and true price.

For every possible bid, we calculate the expected loss associated with that bid. We vary
the risk parameter to see how it affects our loss. The results are shown in Figure 5.2.3.

figsize(12.5, 7)
NumPy-friendly showdown_loss
def showdown_loss(guess, true_price, risk=80000):

loss = np.zeros_like(true_price)
ix = true_price < guess
loss[˜ix] = np.abs(guess - true_price[˜ix])
close_mask = [abs(true_price - guess) <= 250]
loss[close_mask] = -2 * true_price[close_mask]
loss[ix] = risk
return loss

(Continues)

136 Chapter 5 Would You Rather Lose an Arm or a Leg?

(Continued)

guesses = np.linspace(5000, 50000, 70)
risks = np.linspace(30000, 150000, 6)
expected_loss = lambda guess, risk: showdown_loss(guess, price_trace,

risk).mean()

for _p in risks:
results = [expected_loss (_g, _p) for _g in guesses]
plt.plot(guesses, results, label="%d"%_p)

plt.title("Expected loss of different guesses, \nvarious risk levels of \
overestimating")

plt.legend(loc="upper left", title="risk parameter")
plt.xlabel("Price bid")
plt.ylabel("Expected loss")
plt.xlim(5000, 30000);

30000
54000
78000
102000
126000
150000

risk parameter

5000
0

20000

40000

60000

80000

100000

120000

140000

160000

10000 15000 20000
Price bid

E
xp

ec
te

d
lo

ss

25000 30000

Figure 5.2.3: Expected loss of different guesses, various risk levels of overestimating

Minimizing Our Losses It would be wise to choose the estimate that minimizes our
expected loss. This corresponds to the minimum point on each of the curves on the
previous figure. More formally, we would like to minimize our expected loss by finding
the solution to

arg min
θ̂

Eθ
[

L(θ , θ̂)
]

The minimum of the expected loss is called the Bayes action. We can solve for the
Bayes action using SciPy’s optimization routines. The function in fmin in the

5.2 Loss Functions 137

scipy.optimize module uses an intelligent search to find a minimum (not necessarily
a global minimum) of any univariate or multivariate function. For most purposes, fmin
will provide you with a good answer.

We’ll compute the minimum loss for the Showcase example in Figure 5.2.4.

import scipy.optimize as sop

ax = plt.subplot(111)

for _p in risks:
_color = ax._get_lines.color_cycle.next()
_min_results = sop.fmin(expected_loss, 15000, args=(_p,),disp=False)
_results = [expected_loss(_g, _p) for _g in guesses]
plt.plot(guesses, _results , color=_color)
plt.scatter(_min_results, 0, s=60,

color=_color, label="%d"%_p)
plt.vlines(_min_results, 0, 120000, color=_color, linestyles="--")
print "minimum at risk %d: %.2f"%(_p, _min_results)

plt.title("Expected loss and Bayes actions of different guesses, \n \
various risk levels of overestimating")

plt.legend(loc="upper left", scatterpoints=1,
title="Bayes action at risk:")

plt.xlabel("Price guess")
plt.ylabel("Expected loss")
plt.xlim(7000, 30000)
plt.ylim(-1000, 80000);

[Output]:

minimum at risk 30000: 14189.08
minimum at risk 54000: 13236.61
minimum at risk 78000: 12771.73
minimum at risk 102000: 11540.84
minimum at risk 126000: 11534.79
minimum at risk 150000: 11265.78

[Output]:

(-1000, 80000)

138 Chapter 5 Would You Rather Lose an Arm or a Leg?

30000
54000
78000
102000
126000
150000

Bayes action at risk:

10000
0

10000

20000

30000

40000

50000

60000

70000

80000

15000 20000
Price guess

E
xp

ec
te

d
lo

ss

25000 30000

Figure 5.2.4: Expected loss and Bayes actions of different guesses, various risk levels of
overestimating

As we decrease the risk threshold (care about overbidding less), we increase our bid,
willing to edge closer to the true price. It is interesting how far away our optimized loss is
from the posterior mean, which was about 20,000.

Suffice it to say, in higher dimensions, being able to eyeball the minimum expected loss
is impossible. That is why we require use of SciPy’s fmin function.

Shortcuts For some loss functions, the Bayes action is known in closed form. We list
some of them here.

m If using the mean-squared loss, the Bayes action is the mean of the posterior
distribution; that is, the value

Eθ [θ]

minimizes Eθ [(θ − θ̂)2]. Computationally, this requires us to calculate the average
of the posterior samples (see Chapter 4 on the Law of Large Numbers).

m Whereas the median of the posterior distribution minimizes the expected absolute
loss, the sample median of the posterior samples is an appropriate and very accurate
approximation to the true median.

m In fact, it is possible to show that the MAP estimate is the solution to using a loss
function that shrinks to the zero-one loss.

Maybe it is clear now why the first-introduced loss functions are used most often in the
mathematics of Bayesian inference: No complicated optimizations are necessary. Luckily,
we have machines to do the complications for us.

5.3 Machine Learning via Bayesian Methods 139

5.3 Machine Learning via Bayesian Methods
Whereas frequentist methods strive to achieve the best precision about all possible
parameters, machine learning cares to achieve the best prediction among all possible
parameters. Often, your prediction measure and what frequentist methods are optimizing
for are very different.

For example, least-squares linear regression is the simplest active machine-learning
algorithm. I say active, as it engages in some learning, whereas predicting the sample mean
is technically simpler, but is learning very little (if anything). The loss that determines the
coefficients of the regressors is a squared-error loss. On the other hand, if your prediction
loss function (or score function, which is the negative loss) is not a squared-error, your
least-squares line will not be optimal for the prediction loss function. This can lead to
prediction results that are suboptimal.

Finding Bayes actions is equivalent to finding parameters that optimize not parameter
accuracy but an arbitrary performance measure; however, we wish to define “performance” (loss
functions, AUC, ROC, precision/recall, etc.).

The next two examples demonstrate these ideas. The first example is a linear model
where we can choose to predict using the least-squares loss or a novel, outcome-sensitive
loss. The second example is adapted from a Kaggle data science project. The loss function
associated with our predictions is incredibly complicated.

5.3.1 Example: Financial Prediction
Suppose the future return of a stock price is very small, say 0.01 (or 1%). We have a model
that predicts the stock’s future price, and our profit and loss is directly tied to our acting on
the prediction. How should we measure the loss associated with the model’s predictions,
and subsequent future predictions? A squared-error loss is agnostic to the signage and
would penalize a prediction of −0.01 equally as badly as a prediction of 0.03:

(0.01− (−0.01))2 = (0.01− 0.03)2 = 0.004

If you had made a bet based on your model’s prediction, you would have earned money
with a prediction of 0.03, and lost money with a prediction of −0.01, yet our loss did not
capture this. We need a better loss that takes into account the sign of the prediction and
true value. We design a new loss that is better for financial applications, shown in Figure
5.3.1.

figsize(12.5, 4)
def stock_loss(true_return, yhat, alpha=100.):

if true_return*yhat < 0:
opposite signs, not good
return alpha*yhat**2 - np.sign(true_return)*yhat \

+ abs(true_return)
else:

return abs(true_return - yhat)
(Continues)

140 Chapter 5 Would You Rather Lose an Arm or a Leg?

(Continued)

true_value = .05
pred = np.linspace(-.04, .12, 75)

plt.plot(pred, [stock_loss(true_value, _p) for _p in pred], \
label = "loss associated with\n prediction if true value = 0.05", lw=3)

plt.vlines(0, 0, .25, linestyles="--")

plt.xlabel("Prediction")
plt.ylabel("Loss")
plt.xlim(-0.04, .12)
plt.ylim(0, 0.25)

true_value = -.02
plt.plot(pred, [stock_loss(true_value, _p) for _p in pred], alpha=0.6, \

label="loss associated with\n prediction if true value = -0.02", lw=3)
plt.legend()
plt.title("Stock returns loss if true value = 0.05, -0.02");

–0.04
0.00

0.05

0.10

0.15

0.20

0.25

–0.02 0.00
Prediction

Lo
ss

0.02 0.04 0.06 0.08

loss associated with
prediction if true value = 0.05

loss associated with
prediction if true value = −0.02

0.10 0.12

Figure 5.3.1: Stock returns loss if true value = 0.05, −0.02

Note the change in the shape of the loss as the prediction crosses 0. This loss reflects
that the user really does not want to guess the wrong sign, and especially doesn’t want to be
wrong and with a large magnitude.

Why would the user care about the magnitude? Why is the loss not 0 for predicting the
correct sign? Surely, if the return is 0.01 and we bet millions, we will still be (very) happy.

Financial institutions treat downside risk (as in predicting a lot on the wrong side) and
upside risk (as in predicting a lot on the right side) similarly. Both are seen as risky behavior
and are discouraged. Therefore, we have an increasing loss as we move further away from
the true price, with less extreme loss in the direction of the correct sign.

5.3 Machine Learning via Bayesian Methods 141

We will perform a regression on a trading signal that we believe predicts future returns
well. Our dataset is artificial, as most financial data is not even close to linear. In Figure
5.3.2, we plot the data along with the least-squares line.

code to create artificial data
N = 100
X = 0.025 * np.random.randn(N)
Y = 0.5 * X + 0.01 * np.random.randn(N)

ls_coef_ = np.cov(X, Y)[0,1]/np.var(X)
ls_intercept = Y.mean() - ls_coef_*X.mean()

plt.scatter(X, Y, c="k")
plt.xlabel("Trading signal")
plt.ylabel("Returns")
plt.title("Empirical returns versus trading signal")
plt.plot(X, ls_coef_ * X + ls_intercept, label="least-squares line")
plt.xlim(X.min(), X.max())
plt.ylim(Y.min(), Y.max())
plt.legend(loc="upper left");

–0.04

–0.02

0.00

0.02

0.04

R
et

ur
ns

–0.04 –0.02
Trading signal

0.00 0.02 0.04–0.06–0.08

least-squares line

Figure 5.3.2: Empirical returns versus trading signal

We perform a simple Bayesian linear regression on this dataset. We look for a model like

R = α + βx+ ε

where α,β are our unknown parameters and ε ∼ Normal(0, 1/τ). The most common
priors on β and α are Normal priors. We will also assign a prior on τ , so that σ = 1/

√
τ

is uniform over 0 to 100 (equivalently, then, τ = 1/Uniform(0, 100)2).

142 Chapter 5 Would You Rather Lose an Arm or a Leg?

import pymc as pm
from pymc.Matplot import plot as mcplot

std = pm.Uniform("std", 0, 100, trace=False)

@pm.deterministic
def prec(U=std):

return 1.0 / U **2

beta = pm.Normal("beta", 0, 0.0001)
alpha = pm.Normal("alpha", 0, 0.0001)

@pm.deterministic
def mean(X=X, alpha=alpha, beta=beta):

return alpha + beta * X

obs = pm.Normal("obs", mean, prec, value=Y, observed=True)
mcmc = pm.MCMC([obs, beta, alpha, std, prec])

mcmc.sample(100000, 80000);

[Output]:

[-----------------100%-----------------] 100000 of 100000 complete in
23.2 sec

For a specific trading signal, call it x, the distribution of possible returns has the form

Ri(x) = αi + βix+ ε

where ε ∼ Normal(0, 1/τi) and i indexes our posterior samples. We wish to find the
solution to

arg min
r

ER(x) [L(R(x), r)]

according to the loss given. This r is our Bayes action for trading signal x. In Figure 5.3.3,
we plot the Bayes action over different trading signals. What do you notice?

figsize(12.5, 6)
from scipy.optimize import fmin

def stock_loss(price, pred, coef=500):
sol = np.zeros_like(price)
ix = price*pred < 0
sol[ix] = coef * pred **2 - np.sign(price[ix]) * pred + abs(price[ix])
sol[˜ix] = abs(price[˜ix] - pred)
return sol

tau_samples = mcmc.trace("prec")[:]
alpha_samples = mcmc.trace("alpha")[:]
beta_samples = mcmc.trace("beta")[:]

5.3 Machine Learning via Bayesian Methods 143

N = tau_samples.shape[0]

noise = 1. / np.sqrt(tau_samples) * np.random.randn(N)

possible_outcomes = lambda signal: alpha_samples + beta_samples * signal \
+u noise

opt_predictions = np.zeros(50)
trading_signals = np.linspace(X.min(), X.max(), 50)
for i, _signal in enumerate(trading_signals):

_possible_outcomes = possible_outcomes(_signal)
tomin = lambda pred: stock_loss(_possible_outcomes, pred).mean()
opt_predictions[i] = fmin(tomin, 0, disp=False)

plt.xlabel("Trading signal")
plt.ylabel("Prediction")
plt.title("Least-squares prediction versus Bayes action prediction")
plt.plot(X, ls_coef_ * X + ls_intercept,

label="least-squares prediction")
plt.xlim(X.min(), X.max())
plt.plot(trading_signals, opt_predictions,

label="Bayes action prediction")
plt.legend(loc="upper left");

–0.04–0.06–0.08
–0.04

–0.03

–0.02

–0.01

0.00

0.01

0.02

0.03

–0.02 0.00
Trading signal

P
re

di
ct

io
n

0.02 0.04

least-squares prediction
Bayes action prediction

Figure 5.3.3: Least-squares prediction versus Bayes action prediction

What is interesting about Figure 5.3.3 is that when the signal is near 0, and many of the
possible returns are possibly both positive and negative, our best (with respect to our loss)

144 Chapter 5 Would You Rather Lose an Arm or a Leg?

move is to predict close to 0; that is, take on no position. Only when we are very
confident do we enter into a position. I call this style of model a sparse prediction,
where we feel uncomfortable with our uncertainty so choose not to act. (Compare this
with the least-squares prediction, which will rarely, if ever, predict 0.)

A good sanity check that our model is still reasonable is that as the signal becomes more
and more extreme, and we feel more and more confident about the positiveness/
negativeness of returns, our position converges with that of the least-squares line.

The sparse-prediction model is not trying to fit the data the best according to a
squared-error loss definition of fit. That honor would go to the least-squares model. The
sparse-prediction model is trying to find the best prediction with respect to our
stock loss-defined loss. We can turn this reasoning around: The least-squares model is
not trying to predict the best (according to a stock-loss definition of “predict”). That
honor would go the sparse-prediction model. The least-squares model is trying to find the
best fit of the data with respect to the squared-error loss.

5.3.2 Example: Kaggle Contest on Observing Dark Worlds
A personal motivation for learning Bayesian methods was trying to piece together the
winning solution to Kaggle’s Observing Dark Worlds contest. From the contest’s
website:[2]

There is more to the Universe than meets the eye. Out in the cosmos exists a form of matter that
outnumbers the stuff we can see by almost 7 to 1, and we don’t know what it is. What we do
know is that it does not emit or absorb light, so we call it Dark Matter.

Such a vast amount of aggregated matter does not go unnoticed. In fact we observe that this stuff
aggregates and forms massive structures called Dark Matter Halos.

Although dark, it warps and bends spacetime such that any light from a background galaxy which
passes close to the Dark Matter will have its path altered and changed. This bending causes the
galaxy to appear as an ellipse in the sky.

The contest required predictions about where dark matter was likely to be. The
winner, Tim Salimans, used Bayesian inference to find the best locations for the halos
(interestingly, the second-place winner also used Bayesian inference). With Tim’s
permission, we provide his solution[3] here.

1. Construct a prior distribution for the halo positions p(x), i.e. formulate our expectations
about the halo positions before looking at the data.

2. Construct a probabilistic model for the data (observed ellipticities of the galaxies) given the
positions of the dark matter halos: p(e|x).

3. Use Bayes’ rule to get the posterior distribution of the halo positions, i.e. use to [sic] the data
to guess where the dark matter halos might be.

4. Minimize the expected loss with respect to the posterior distribution over the predictions for
the halo positions: x̂ = arg minpredictionEp(x|e)[L(prediction, x)], i.e. tune our predictions to
be as good as possible for the given error metric.

5.3 Machine Learning via Bayesian Methods 145

The loss function in this problem is very complicated. For the very determined, the loss
function is contained in the file DarkWorldsMetric.py. Though I suggest not reading it all,
suffice it to say the loss function is about 160 lines of code—not something that can be
written down in a single mathematical line. The loss function attempts to measure the
accuracy of prediction, in a Euclidean distance sense, such that no shift bias is present.
More details can be found on the contest’s homepage.

We will attempt to implement Tim’s winning solution using PyMC and our knowledge
of loss functions.

5.3.3 The Data
The dataset is actually 300 separate files, each representing a sky. In each file, or sky, are
between 300 and 720 galaxies. Each galaxy has an x and y position associated with it,
ranging from 0 to 4,200, and measures of ellipticity: e1 and e2. Information about what
these measures mean can be found at https://www.kaggle.com/c/DarkWorlds
/details/an-introduction-to-ellipticity, but we only care about that for
visualization purposes. Thus, a typical sky might look like Figure 5.3.4.

from draw_sky2 import draw_sky

n_sky = 3 # choose a file/sky to examine
data = np.genfromtxt("data/Train_Skies/Train_Skies/\
Training_Sky%d.csv"%(n_sky),

dtype=None,
skip_header=1,
delimiter=",",
usecols=[1,2,3,4])

print "Data on galaxies in sky %d."%n_sky
print "position_x, position_y, e_1, e_2 "
print data[:3]

fig = draw_sky(data)
plt.title("Galaxy positions and ellipticities of sky %d."%n_sky)
plt.xlabel("x position")
plt.ylabel("y position");

[Output]:

Data on galaxies in sky 3.
position x, position y, e 1, e 2
[[1.62690000e+02 1.60006000e+03 1.14664000e-01 -1.90326000e-01]
[2.27228000e+03 5.40040000e+02 6.23555000e-01 2.14979000e-01]
[3.55364000e+03 2.69771000e+03 2.83527000e-01 -3.01870000e-01]]

https://www.kaggle.com/c/DarkWorlds/details/an-introduction-to-ellipticity
https://www.kaggle.com/c/DarkWorlds/details/an-introduction-to-ellipticity

146 Chapter 5 Would You Rather Lose an Arm or a Leg?

x position

y
po

si
tio

n

40003000200010000
0

1000

2000

3000

4000

Figure 5.3.4: Galaxy positions and ellipticities of sky 3

5.3.4 Priors
Each sky has one, two, or three dark matter halos in it. Tim’s solution details that his prior
distribution of halo positions was uniform; that is,

xi ∼ Uniform(0, 4200)

yi ∼ Uniform(0, 4200), i = 1, 2, 3

Tim and other competitors noted that most skies had one large halo, and other halos, if
present, were much smaller. Larger halos, having more mass, will influence the
surrounding galaxies more. He decided that the large halos would have a mass distributed

5.3 Machine Learning via Bayesian Methods 147

as a log-uniform random variable between 40 and 180; that is,

mlarge = log Uniform(40, 180)

and in PyMC,

exp_mass_large = pm.Uniform("exp_mass_large", 40, 180)
@pm.deterministic
def mass_large(u = exp_mass_large):

return np.log(u)

(This is what we mean when we say “log-uniform.”) For smaller galaxies, Tim set the
mass to be the logarithm of 20. Why did Tim not create a prior for the smaller mass, or
treat it as a unknown? I believe this decision was made to speed up convergence of the
algorithm. This is not too restrictive, as by construction, the smaller halos have less
influence on the galaxies.

Tim logically assumed that the ellipticity of each galaxy is dependent on the position of
the halos, the distance between the galaxy and halo, and the mass of the halos. Thus, the
vector of ellipticity of each galaxy, ei, are children variables of the vector of halo positions
(x, y), distance (which we will formalize), and halo masses.

Tim conceived a relationship to connect positions and ellipticity by reading literature
and forum posts. He supposed the following was a reasonable relationship:

ei|(x, y) ∼ Normal(
∑

j=halo positions

di, jmj f (ri, j), σ 2)

where di, j is the tangential direction (the direction in which halo j bends the light of
galaxy i), mj is the mass of halo j, and f (ri, j) is a decreasing function of the Euclidean distance
between halo j and galaxy i.

Tim’s function f was defined:

f (ri, j) =
1

min(ri, j, 240)

for large halos, and for small halos

f (ri, j) =
1

min(ri, j, 70)

This fully bridges our observations and unknown. This model is incredibly simple, and
Tim mentions that this simplicity was purposely designed; it prevents the model from
overfitting.

148 Chapter 5 Would You Rather Lose an Arm or a Leg?

5.3.5 Training and PyMC Implementation
For each sky, we run our Bayesian model to find the posteriors for the halo positions—we
ignore the (known) halo position. This is slightly different from perhaps more traditional
approaches to Kaggle competitions, where this model uses no data from other skies or
from the known halo location. That does not mean other data are not necessary; in fact,
the model was created by comparing different skies.

def euclidean_distance(x, y):
return np.sqrt(((x - y) **2).sum(axis=1))

def f_distance(gxy_pos, halo_pos, c):
foo_position should be a 2D numpy array.
return np.maximum(euclidean_distance(gxy_pos, halo_pos), c)[:,None]

def tangential_distance(glxy_position, halo_position):
foo_position should be a 2D numpy array.
delta = glxy_position - halo_position
t = (2*np.arctan(delta[:,1]/delta[:,0]))[:,None]
return np.concatenate([-np.cos(t), -np.sin(t)], axis=1)

import pymc as pm

Set the size of the halo’s mass.
mass_large = pm.Uniform("mass_large", 40, 180, trace=False)

Set the initial prior position of the halos; it’s a 2D Uniform
distribution.
halo_position = pm.Uniform("halo_position", 0, 4200, size=(1,2))

@pm.deterministic
def mean(mass=mass_large, h_pos=halo_position, glx_pos=data[:,:2]):

return mass/f_distance(glx_pos, h_pos, 240)*\
tangential_distance(glx_pos, h_pos)

ellpty = pm.Normal("ellipticity", mean, 1./0.05, observed=True,
value=data[:,2:])

mcmc = pm.MCMC([ellpty, mean, halo_position, mass_large])
map_ = pm.MAP([ellpty, mean, halo_position, mass_large])
map_.fit()
mcmc.sample(200000, 140000, 3)

[Output]:

[****************100%******************] 200000 of 200000 complete

In Figure 5.3.5, we plot a heatmap of the posterior distribution (this is just a scatter plot
of the posterior, but we can visualize it as a heatmap). As you can see in the figure, the red
spot denotes our posterior distribution over where the halo is.

5.3 Machine Learning via Bayesian Methods 149

t = mcmc.trace("halo_position")[:].reshape(20000,2)

fig = draw_sky(data)
plt.title("Galaxy positions and ellipticities of sky %d."%n_sky)
plt.xlabel("x position")
plt.ylabel("y position")
scatter(t[:,0], t[:,1], alpha=0.015, c="r")
plt.xlim(0, 4200)
plt.ylim(0, 4200);

The most probable position reveals itself like a lethal wound.

x position

y
po

si
tio

n

4000300020001000 1500 2500 35005000
0

1000

2000

3000

4000

3500

2500

1500

500

Figure 5.3.5: Galaxy positions and ellipticities of sky 3

150 Chapter 5 Would You Rather Lose an Arm or a Leg?

Associated with each sky is another data point, located in Training halos.csv,
that holds the locations of up to three dark matter halos contained in the sky. For example,
the night sky we trained on has halo locations

halo_data = np.genfromtxt("data/Training_halos.csv",
delimiter=",",
usecols=[1,2,3,4,5,6,7,8,9],
skip_header=1)

print halo_data[n_sky]

[Output]:

[3.00000000e+00 2.78145000e+03 1.40691000e+03 3.08163000e+03
1.15611000e+03 2.28474000e+03 3.19597000e+03 1.80916000e+03
8.45180000e+02]

The third and fourth column represent the true x and y position of the halo. It appears
that the Bayesian method has located the halo within a tight vicinity, as denoted by the
black dot in Figure 5.3.6.

fig = draw_sky(data)
plt.title("Galaxy positions and ellipticities of sky %d."%n_sky)
plt.xlabel("x position")
plt.ylabel("y position")
plt.scatter(t[:,0], t[:,1], alpha=0.015, c="r")
plt.scatter(halo_data[n_sky-1][3], halo_data[n_sky-1][4],

label="true halo position",
c="k", s=70)

plt.legend(scatterpoints=1, loc="lower left")
plt.xlim(0, 4200)
plt.ylim(0, 4200);

print "True halo location:", halo_data[n_sky][3], halo_data[n_sky][4]

[Output]:

True halo location: 1408.61 1685.86

Perfect. Our next step is to use the loss function to optimize our location. A naive
strategy would be to simply choose the mean:

mean_posterior = t.mean(axis=0).reshape(1,2)
print mean_posterior

[Output]:

[[2324.07677813 1122.47097816]]

5.3 Machine Learning via Bayesian Methods 151

x position

y
po

si
tio

n

4000300020001000 1500 2500 35005000
0

1000

2000

3000

4000

3500

2500

1500

500

true halo position

Figure 5.3.6: Galaxy positions and ellipticities of sky 3

from DarkWorldsMetric import main_score

_halo_data = halo_data[n_sky-1]

nhalo_all = _halo_data[0].reshape(1,1)
x_true_all = _halo_data[3].reshape(1,1)
y_true_all = _halo_data[4].reshape(1,1)
x_ref_all = _halo_data[1].reshape(1,1)
y_ref_all = _halo_data[2].reshape(1,1)
sky_prediction = mean_posterior

print "Using the mean:"
(Continues)

152 Chapter 5 Would You Rather Lose an Arm or a Leg?

(Continued)

main_score(nhalo_all, x_true_all, y_true_all, \
x_ref_all, y_ref_all, sky_prediction)

What’s a bad score?
print
random_guess = np.random.randint(0, 4200, size=(1,2))
print "Using a random location:", random_guess
main_score(nhalo_all, x_true_all, y_true_all, \

x_ref_all, y_ref_all, random_guess)
print

[Output]:

Using the mean:
Your average distance in pixels away from the true halo is

31.1499201664
Your average angular vector is 1.0
Your score for the training data is 1.03114992017

Using a random location: [[2755 53]]
Your average distance in pixels away from the true halo is

1773.42717812
Your average angular vector is 1.0
Your score for the training data is 2.77342717812

This is a good guess; it is not very far from the true location, but it ignores the loss
function that was provided to us. We also need to extend our code to allow for up to two
additional, smaller halos. Let’s create a function for automatizing our PyMC.

from pymc.Matplot import plot as mcplot

def halo_posteriors(n_halos_in_sky, galaxy_data,
samples = 5e5, burn_in = 34e4, thin = 4):

Set the size of the halo’s mass.

mass_large = pm.Uniform("mass_large", 40, 180)

mass_small_1 = 20
mass_small_2 = 20

masses = np.array([mass_large,mass_small_1, mass_small_2],
dtype=object)

Set the initial prior positions of the halos; it’s a 2D Uniform
distribution.
halo_positions = pm.Uniform("halo_positions", 0, 4200,

size=(n_halos_in_sky,2))

5.3 Machine Learning via Bayesian Methods 153

fdist_constants = np.array([240, 70, 70])

@pm.deterministic
def mean(mass=masses, h_pos=halo_positions, glx_pos=data[:,:2],

n_halos_in_sky = n_halos_in_sky):

_sum = 0
for i in range(n_halos_in_sky):

_sum += mass[i] / f_distance(glx_pos,h_pos[i, :],
fdist_constants[i])*\

tangential_distance(glx_pos, h_pos[i, :])

return _sum

ellpty = pm.Normal("ellipticity", mean, 1. / 0.05, observed=True,
value = data[:,2:])

map_ = pm.MAP([ellpty, mean, halo_positions, mass_large])
map_.fit(method="fmin_powell")

mcmc = pm.MCMC([ellpty, mean, halo_positions, mass_large])
mcmc.sample(samples, burn_in, thin)
return mcmc.trace("halo_positions")[:]

n_sky =215
data = np.genfromtxt("data/Train_Skies/Train_Skies/\
Training_Sky%d.csv"%(n_sky),

dtype=None,
skip_header=1,
delimiter=",",
usecols=[1,2,3,4])

There are 3 halos in this file.
samples = 10.5e5
traces = halo_posteriors(3, data, samples=samples,

burn_in=9.5e5,
thin=10)

[Output]:

[****************100%******************] 1050000 of 1050000 complete

fig = draw_sky(data)
plt.title("Galaxy positions, ellipticities, and halos of sky %d."%n_sky)
plt.xlabel("x position")
plt.ylabel("y position")

(Continues)

154 Chapter 5 Would You Rather Lose an Arm or a Leg?

(Continued)

colors = ["#467821", "#A60628", "#7A68A6"]

for i in range(traces.shape[1]):
plt.scatter(traces[:, i, 0], traces[:, i, 1], c=colors[i],

alpha=0.02)

for i in range(traces.shape[1]):
plt.scatter(halo_data[n_sky-1][3 + 2 * i],

halo_data[n_sky-1][4 + 2 * i],
label="true halo position", c="k", s=90)

plt.xlim(0, 4200)
plt.ylim(0, 4200);

[Output]:

(0, 4200)

As you can see in Figure 5.3.7, this looks pretty good, though it took a long time for
the system to (sort of) converge. Our optimization step would look something like this.

_halo_data = halo_data[n_sky-1]
print traces.shape

mean_posterior = traces.mean(axis=0).reshape(1,4)
print mean_posterior

nhalo_all = _halo_data[0].reshape(1,1)
x_true_all = _halo_data[3].reshape(1,1)
y_true_all = _halo_data[4].reshape(1,1)
x_ref_all = _halo_data[1].reshape(1,1)
y_ref_all = _halo_data[2].reshape(1,1)
sky_prediction = mean_posterior

print "Using the mean:"
main_score([1], x_true_all, y_true_all, \

x_ref_all, y_ref_all, sky_prediction)

What’s a bad score?
print
random_guess = np.random.randint(0, 4200, size=(1,2))
print "Using a random location:", random_guess
main_score([1], x_true_all, y_true_all, \

x_ref_all, y_ref_all, random_guess)
print

5.3 Machine Learning via Bayesian Methods 155

x position

y
po

si
tio

n

4000300020001000 1500 2500 35005000
0

1000

2000

3000

4000

3500

2500

1500

500

Figure 5.3.7: Galaxy positions, ellipticities, and halos of sky 215

[Output]:

(10000L, 2L, 2L)
[[48.55499317 1675.79569424 1876.46951857 3265.85341193]]
Using the mean:
Your average distance in pixels away from the true halo is

37.3993004245
Your average angular vector is 1.0
Your score for the training data is 1.03739930042

(Continues)

156 Chapter 5 Would You Rather Lose an Arm or a Leg?

(Continued)

Using a random location: [[2930 4138]]
Your average distance in pixels away from the true halo is

3756.54446887
Your average angular vector is 1.0
Your score for the training data is 4.75654446887

5.4 Conclusion
Loss functions are one of the most interesting parts of statistics. They directly connect
inference and the domain the problem is in. One thing not mentioned is that the loss
function is another degree of freedom in your overall model. This is a good thing, as we
saw in this chapter; loss functions can be used very effectively, but can be a bad thing, too.
An extreme case is that a practitioner can change his or her loss function if the results do
not fit the desired result. For this reason, it’s best to set the loss function as soon as possible
in the analysis, and have its derivation open and logical.

5.5 References
1. Read, Carveth. Logic: Deductive and Inductive. London: Simkin, Marshall, 1920, p. vi.

2. “Observing Dark Worlds,” Kaggle, accessed November 30, 2014, https://www
.kaggle.com/c/DarkWorlds.

3. Salimans, Tim. “Observing Dark Worlds,” Tim Salimans on Data Analysis, accessed
May 19, 2015, http://timsalimans.com/observing-dark-worlds/.

https://www.kaggle.com/c/DarkWorlds
http://timsalimans.com/observing-dark-worlds
https://www.kaggle.com/c/DarkWorlds

This page intentionally left blank

Index

Symbols and Numbers
α See Alpha (α) hyperparameter
β See Beta
0 See Gamma
φ (phi) cumulative distribution, 123
µ See Mu (µ) mean
ν (nu) parameter, in t-tests, 204–207
θ (theta), Jeffreys priors and, 185–189
σ (sigma), standard deviation, in t-tests,

204–207
τ (tau) See Tau (τ) parameter
ψ (psi), Jeffreys priors and, 185–187
λ See Lambda (λ) unknown parameter
95% least plausible value, 115–117

A
AAPL (Apple, Inc.) stock returns, 177–181
A/B testing

adding linear loss function, 196–197
BEST t-test and, 204–207
conversions and, 195–198
creating point estimates, 210–211
estimating increase in, 207–210
expected revenue analysis, 198–204
PyMC stategies for, 14–17
value of, 38

Absolute loss function, 128
Aggregated geographic data, Law of Large

Numbers and, 107–109
Algorithm(s)

Bayesian Bandits, 165–169
convergence in, 83
data-generation, 80
extending Bayesian Bandits, 173–175
MCMC, 78

optimization, 91–92
Privacy, 47–48

Alpha (α) hyperparameter
in empirical Bayes, 160
financial prediction and, 141–142
Gamma distribution for, 161–162
Normal distribution and, 58–59

Amazon.com, Inc. (AMZN) stock returns,
177–181

Apple, Inc. (AAPL) stock returns, 177–181
Asymmetric squared-error loss function, 128
Autocorrelation

diagnosing convergence, 92–95
plot tool and, 97–98
thinning and, 95–96

B
Bandits class, 166–169
Bayes, Thomas, 5
Bayes actions

arbitrary performance measure via, 139
financial prediction and, 142–143
of price estimates, 136–138
shortcuts, 138

Bayes’ Theorem
example of, 6–8
posterior probability via, 5
prior/posterior relatedness, 187–188

Bayesian A/B testing See A/B testing
Bayesian Bandits

algorithm, 165–169
algorithm extensions, 173–175
applications of, 165
overview of, 164–165
total regret and, 169–173

218 Index

Bayesian Estimation Supersedes the t-test
(BEST) model, 204–207

Bayesian inference
computers and, 12–14
in empirical Bayes, 160–161
exercises, Q & A, 24–25
interpretation of, 18
mathematics of, 6–8
overview of, 1–3
posterior probabilities in, 5–6
in practice, 3–4
probability distributions in, 8–12
PyMC stategies for, 14–17

Bayesian landscape
exploring with MCMC, 76–78
mixture model and, 80–87
prior distributions defining, 71–76

Bayesian point estimates, 130, 210–211
Bayesian p-values, model appropriateness

and, 63
BayesianStrategy class, 166–169
Belief, probability vs., 2–3
Bernoulli distribution, 39, 46
Bernoulli random variable

Bayesian Bandits algorithm and, 173–174
explanation of, 39
Normal distribution and, 57
sum of probabilities and, 68

BEST (Bayesian Estimation Supersedes the
t-test) model, 204–207

Beta hyperparameter
financial prediction and, 141–142
Gamma distribution for, 161–162
Normal distribution and, 58–59
sorting by lower bound and, 123

Beta posterior distribution, 164, 185
Beta prior distribution

Bayesian Bandits algorithm and, 174
in conjugate priors, 185
conversion testing and, 195–196
features of, 163–164

Biased data, 112
Big data, probability and, 4
Binary problem, 207
Binomial distribution

Beta distribution and, 164
of cheating frequency, 46–50

conversion testing and, 195–196
probability mass distributions in, 45–46

Burn-in period, 83, 92

C
Categorical variable, data points via, 80
Census mail-back rate challenge, 109–111
Center, posterior distribution of, 81, 85–86
Challenger disaster

plotting logistic function for, 52–55
PyMC model of, 55–61

Cheating, binomial distribution of, 46–50
Child variables, in PyMC modeling, 27–28
CI (credible interval), 60–61, 98
Clusters

assigning precision/center for, 80–81
data-generation algorithm for, 79–80
MCMC exploring, 82–85
posterior distribution of, 85–86
posterior-mean parameters for, 87–88
prediction for, 90–91

Computers, and Bayesian inference, 12–14
Computers, for Bayesian inference See

PyMC model-building
Confidence interval, 60, 98
Conjugate prior distributions, 184–185
Constant-prediction model, of probability,

66–67
Continuous problem, 207
Continuous random variables, 9, 10–12
Convergence

autocorrelation and, 92–95
MAP improving, 91–92
in MCMC algorithm, 83
of Poisson random variables, 102–105
of posterior distributions, 187–189
thinning and, 95–96

Conversions
A/B testing and, 38–39, 195–198
relative increase of, 209–210

Correlation
convergence and, 92–95
Wishart distribution and, 184–185

Covariance matrices
for stock returns, 182–184
Wishart distribution of, 161–163

Index 219

Credible interval (CI)
mcplot function and, 98
for temperatures, 60–61

Cronin, Beau, 15, 34
Curves, prior distributions and, 71–74

D
Daily return of stocks, 177–181
Data points, posterior labels of, 86–87
Datasets

algorithm for generating, 80
generating artificial, 35–37
model appropriateness and, 61–63
in Observing Dark Worlds contest,

145–146
plotting height distribution, 107–109
predicting census mail-back rate, 109–111

Decorators, deterministic, 30–31
Degenerate priors, 192–193
Deterministic variables

with Lambda class, 51
in PyMC modeling, 30–31, 48

Difference, sorting Reddit comments by, 111
Difference of means test, 38
Dirichlet distribution, 199–201
Discrete random variables, 8, 9–10
Disorder of Small Numbers

aggregated geographic data and, 107–109
census return rate challenge and, 109–111

Distributions
Bernoulli, 39, 46
Beta, 163–164, 174, 185, 195–196
binomial See Binomial distribution
conjugate, 184–185
Dirichlet, 199–201
Gamma, 161–162
multinomial, 198–202
Normal, 55–61, 80–81
Poisson, 9, 74–76
posterior See Posterior distribution(s)
prior See Prior distributions; Prior

distributions, choosing
probability, 8–12, 55–56
Wishart, 161–163, 178, 182, 184–185

Domain experts
prior distributions utilizing, 176

stock returns example See Stock returns
trial roulette method for, 176–177

Domain knowledge, 176, 178, 184
Downside risk, 140

E
Ellipticity of galaxies

data for, 145–146
implementing PyMC, 148–149
prior distributions for, 146–147
training data for, 150–156

Empirical Bayes
overview of, 160–161
Wishart distribution and, 184

Evidence, in probability, 4
Expected daily return of stocks, 177
Expected loss

Bayesian point estimate and, 130
financial prediction and, 139–144
minimizing, 136–138
Observing Dark Worlds contest See

Observing Dark Worlds contest solution
optimizing price estimates, 135–136

Expected revenue
A/B testing and, 202–204
analysis of, 198–202

Expected total regret, 171–173
Expected values, Law of Large Numbers

and, 106
Exponential density, 10
Exponential priors, 72–76
Exponential random variable, 10–12

F
Financial prediction, 139–144
Flat priors

features of, 157
Jeffreys priors and, 185–187

Flaxman, Abraham, 91
fmin algorithm, 91
fmin function, minimizing loss and, 136–138
Folk theorem of statistical computing, 99
Frequentist inference

Bayesian vs., 3–4
confidence interval, 60

220 Index

Frequentist inference (continued)
in empirical Bayes, 160–161
expected loss and, 130
optimizing price estimates, 134
of probability, 1–2
usefulness of, 4

G
Galaxy positions

data for, 145–146
implementing PyMC, 148–149
prior distributions for, 146–147
training data for, 150–156

Gamma (0) prior distribution, 161–162
Gamma (0) random variable, 161
Gelman, Andrew, 159
Goodness of fit, in PyMC model, 61–63
Google (GOOG) stock returns, 177–181

H
Halo positions

implementing PyMC, 148–149
prior distributions and, 146–147
training data for, 150–156

Height distribution, Law of Large Numbers
and, 107–109

Hierarchical algorithms, 173
Human deceit, binomial distribution of,

46–50
Hyper-parameter, 14

I
Independence of payoff, in loss function,

128–129
Indicator function, 106
Inference, Bayesian

computers and, 12–14
in empirical Bayes, 160–161
exercises, Q & A, 24–25
interpretation of, 18
mathematics of, 6–8
overview of, 1–3
posterior probabilities in, 5–6
in practice, 3–4

probability distributions in, 8–12
PyMC stategies for, 14–17

Informative priors See Subjective priors
Intuition, Law of Large Numbers and,

101–102

J
Jeffreys priors, 185–187

K
Kaggle competitions

Observing Dark Worlds contest See
Observing Dark Worlds contest solution

U.S. census return rate challenge,
109–111

Kahneman, Daniel, 6
Keynes, John Maynard, 3
Kruschke, John K., 204

L
Labels of data points, 86–87
Lambda (λ) unknown parameter

examination of, 12
exponential random variable and, 10–12
landscape formed by, 74–76
modeling, 12–14
Poisson distribution and, 9–10
statistical difference between, 20–22

Lambda class, 51
Landscape, Bayesian

exploring with MCMC, 76–78
mixture model for clustering, 80–87
prior distributions defining, 71–76

Laplace approximation
penalized linear regressions and, 192
of posterior distributions, 79

LASSO (Least Absolute Shrinkage and
Selection Operator) regression, 192

Law of Large Numbers
approximate expected loss via, 130
in Bayesian statistics, 107
census return rate failure, 109–111
computing variance/probabilities, 106

Index 221

convergence of Poisson variables and,
102–105

exercises, Q & A, 123–124
expected total regret and, 171–173
formula/explanation for, 101
intuition and, 101–102
ordering Reddit comments, 111–115
plotting height distribution failure,

107–109
returning samples and, 78
sorting by lower bounds, 117–121, 123
starred rating systems and, 122
using 95% least plausible value, 115–117

Learning rates, in Bayesian Bandits
algorithm, 173

Least Absolute Shrinkage and Selection
Operator (LASSO) regression, 192

Least-squares linear regression, 190–192
Least-squares loss, 139–144
Lift (relative increase), A/B testing and,

207–210
Linear regression, penalized, 190–192
Log loss function, 128
Logistic regression, separation plots and,

64–67
Log-scale, of expected total regret, 171–173
Log-uniform random variables, 146–147
Loss, expected

Bayesian point estimate and, 130
financial prediction and, 139–144
minimizing, 136–138
Observing Dark Worlds contest See

Observing Dark Worlds contest solution
optimizing price estimates, 135–136

Loss functions
A/B testing and, 198–202, 211–212
Bayesian point estimate and, 130
definition of, 127
financial prediction and, 139–144
minimizing loss, 136–138
motivations of, 128–129
Observing Dark Worlds contest See

Observing Dark Worlds contest solution
optimizing price estimates, 131–136, 184
shortcuts, 138
squared-error, 127–128, 139
unknown parameters and, 129–130

Lower bound
formula for, 123
posterior distributions against, 192–193
sorting by, 117–121

M
Machine learning, financial prediction and,

139–144
MAP See Maximum a posterior (MAP)
MAP.fit() methods, 91–92
Markov Chain Monte Carlo (MCMC)

additional steps of, 83–85
algorithms to perform, 78
autocorrelation and, 92–95
dependence between unknowns, 89–90
exploring cluster space, 82–83
exploring landscape with, 76–78
folk theorem of statistical computing, 99
good initial values for, 98–99
MAP for convergence, 91–92
plot visualization tool, 97–98
prediction for clusters, 90–91
in PyMC modeling, 16
thinning and, 95–96

Maximum a posterior (MAP)
improving convergence, 91–92
penalized linear regressions and,

191–192
mcplot function, 97–98
Mean See also Mu (µ) mean

of posterior distributions, 87–88
of posterior relative increase distribution,

210–211
Mean posterior correlation matrix,

182–183
Median, of posterior relative increase

distribution, 210–211
Minimum probability, 173
Mixed random variables, 9
Model instance, MCMC, 82
Modeling, Bayesian

appropriatenss of, 61–63
of clusters See Clusters
separation plots and, 64–67

The Most Dangerous Equation (Wainer),
109–111

222 Index

Mu (µ) mean
in Normal distribution, 55–61, 123
setting for clusters, 81
for stock returns, 181
in t-tests, 205–208

Multi-armed bandit dilemma See Bayesian
Bandits

Multinomial distribution, 198–202

N
Negative of the landscape, 91
Neufeld, James, 174
Normal distribution

assigning center for, 81
assigning precision for, 80–81
plotting Challenger data, 55–61

Normal random variables, 55–56, 89, 190
Nu (ν) parameter, in t-tests, 204–207

O
Objective priors

features of, 157
subjective vs., 159–160

Observing Dark Worlds contest solution
data for, 145–146
implementing PyMC, 148–149
prior distributions for, 146–147
solution overview, 144–145
training data for, 150–156

Optimization
predicting halo positions, 154
price estimates, 131–136
for stock returns, 184

O-ring, probability of defect, 52–55, 60–61
Outcome, loss function and, 128–129
Outcome-sensitive loss, 139–144
Overestimating, Bayes actions and, 136–138

P
Parent variables, 14, 27–28
pdf method, in conversion tests, 196–197
Penalized linear regressions, 190–192
Percentile, of posterior relative increase

distribution, 210–211
Perfect model, of probability, 66–67

Phi (φ), as cumulative distribution, 123
plot function, 97–98
Point estimates, 130, 210–211
Poisson distributions, 9, 74–76
Poisson random variables

Law of Large Numbers and, 102–105
probability mass function of, 9–10

Popularity, sorting by, 111
Posterior distribution(s)

alternative solutions to, 79
Bayesian Bandits algorithm, 168–169
of Best model parameters, 207
Beta, 164, 185
of cluster center/standard deviation,

85–86
of conversion rates, 196–197, 208–210
of expected revenue, 201–204
increasing sample size and, 187–189
MCMC determining, 76–78
mean/median of, 138
plotting 95% least plausible value,

115–117
point estimate and, 130
of price estimates, 134–135
of relative increase statistics, 210–211
for stock returns, 181–183
of true upvote ratios, 112–115

Posterior labels, of data points, 86–87
Posterior parameters, for simulated datasets,

62–63
Posterior probability

of delta, 41–45
of estimates, 60
example of, 8
explanation of, 3
MCMC converging toward, 76
of model parameters α and β, 57–58
of probability of defect, 60–61
pushed up by data, 74
in PyMC modeling, 16–17
separation plots and, 64–67
showing true value, 38–41
of unknown parameters, 22–23
updating, 5–6
value of, 18–20

Posterior-mean parameters, 87–88
Powell’s method, 91

Index 223

Prediction
financial, loss function and, 139–144
Observing Dark Worlds contest See

Observing Dark Worlds contest solution
sparse, 144

The Price is Right
minimizing loss and, 136–138
optimizing price estimates, 131–136

Principle of Indifference, 157
Prior distributions

defining Bayesian landscape, 71–74
exponential, 72–76
flat, 157, 185–187
of halo positions, 146–147
for unknowns, 133–134

Prior distributions, choosing
Beta distribution, 163–164
conjugate priors and, 184–185
decisions in, 159–160
degenerate priors and, 192–193
domain experts for, 176
empirical Bayes in, 160–161
extending Bayesian Bandits, 173–175
Gamma distribution and, 161
increasing sample size and, 187–189
Jeffreys priors and, 185–187
multi-armed bandits and See Bayesian

Bandits
objective priors, 157, 159–160
penalized linear regressions and,

190–192
stock returns example See Stock returns
subjective, 159–160, 178, 185
subjective priors, 158
taking care in, 99
trial roulette method, 176–177
Wishart distribution, 161–163

Prior probability
Bayesian inference and, 8
explanation of, 2–3
surface reflecting, 71–74

Privacy algorithm, 47–48
Probabilistic programming, 15
Probability density function

of exponential random variable, 10–12
for Gamma random variable, 161
of Normal random variables, 56

Probability distributions
classification of, 8–9
exponential variable, 10–12
Normal random variables, 55–56
Poisson variable, 9–10

Probability mass function
of binomial random variables, 45–46
of Poisson random variables, 9–10

Probability(ies)
adding evidence in, 4
Bayesian view of, 2–3
computing sum of, 68
of defect, 52–55, 59–61
exercises, Q & A, 24–25
of expected revenue, 202–204
frequentist view of, 1–2
Law of Large Numbers estimate of, 106
mathematics of, 6–8
posterior See Posterior probability
prior See Prior probability
from text-message data, 12–14
updating posterior, 5–6

Psi (ψ), Jeffreys priors and, 185–187
p-values, Bayesian, 63
PyMC model-building

A/B testing and, 38
alternative, 50–51
appropriateness of, 61–63
arrays of variables in, 52
autocorrelation function, 94
binomial distribution and, 45–46
built-in Lambda functions, 51
Challenger example, 52–55
clustering and, 80–81
cross-validating, 68
in dark matter contest, 148–149
deterministic variables, 30–31
exercises, Q & A, 69
frequency of cheating with, 46–50
generating artificial dataset, 35–37
including data in, 31–33
MAP for convergence, 91–92
Normal distribution and, 55–61
optimizing price estimates, 132–134
overview of, 14–17
plot visualization tool, 97–98
separation plots and, 64–67

224 Index

PyMC model-building (continued)
site A analysis, 38–41
site A and B analysis, 41–45
steps in data generation, 33–34
stochastic variables in, 28–30
thinning function, 96

pymc.deterministic wrapper, 30–31
pymc.Matplot module, 97–98
Python wrappers, deterministic, 30–31

R
Random guessing, total regret and,

169–171
Random location, in Observing Dark

Worlds contest, 152–155
Random matrices, in Wishart distribution,

161–163
random() method, of stochastic variable,

29–30
Random model, of probability, 66–67
Random variables

Bernoulli, 39, 57, 68, 173–174
continuous, 9, 10–12
convergence of average of,

102–105
discrete, 8, 9–10
exponential, 10–12
Gamma, 161–162
log-uniform, 146–147
mixed, 9
Normal, 55–56, 89, 190
overview of, 8–9
Poisson See Poisson random variables

Ratio, sorting by, 112–115
rdiscrete uniform function, 35–37
Read, Carveth, 127
Reddit comments

methods of sorting, 111–112
sorting, 115–117
sorting by lower bounds, 117–121,

123
true upvote ratio of, 112–115

Relative increase
A/B testing and, 207–210
point estimates of, 210–211

Return space representation of stock prices,
180

Revenue, expected
A/B testing and, 202–204
analysis of, 198–202

Reward extensions, for Bayesian Bandits
algorithm, 173–174

Ridge regression, 191
risk parameter

downside/upside, 140
overestimating and, 137–138
of price estimates, 135–136

rvs method, in conversion tests, 196

S
Salimans, Tim, 139–144 See also Observing

Dark Worlds contest solution
Samples

increasing size, priors and, 187–189
MCMC returning, 76–78
posterior, not mixing, 88–91
of small datasets, 107–111, 177
of unknown parameters, 82–85

SciPy optimization, 91, 136–138
Separation plots

for model comparison, 64–67
sum of probabilities and, 68

Sigma (σ) standard deviation, in t-tests,
204–207

Skewed data, 112
Small population sizes

census return rate prediction,
109–111

plotting height distribution, 107–109
Sorting

by 95% least plausible value, 115–117
by lower bounds, 117–121
of Reddit comments, 111–112
starred rating systems and, 122

Space, N-dimensional
MCMC searching, 76–78
Uniform priors and, 71–72

Sparse prediction, 144
Squared-error loss function

explanation of, 127–128
financial prediction and, 139–144

Index 225

Standard deviation
posterior distribution of, 80–81,

85–86
for stock returns, 182–183

Starred rating system extension, 122
Stochastic variables

assigning data points via, 80
fixed value for, 31–32
initializing, 29
model appropriateness and, 62–63
in PyMC modeling, 15–16, 28–29
random() method, 29–30

Stock returns
loss function optimization, 184
mean posterior correlation matrix for,

182–183
prior distributions for, 177–181

Subjective priors
conjugate priors as, 185
features of, 158
objective vs., 159–160
for stock returns, 178

Summary statistics, of relative increase,
210–211

Surfaces, prior distributions and, 71–74
Switchpoints

explanation of, 13
extending to two, 22–23
posterior samples and, 19–20

T
Tau (τ) parameter

in empirical Bayes, 160
precision, in clusters, 80–81
precision, of Normal distribution,

55–61
Temperature

credible intervals of, 59–61
defects of O-ring failure vs., 52–55

Temperature-dependent model, 64–67
Tesla Motors, Inc. (TSLA) stock returns,

177–181
Texting, Bayesian inference and, 12–14
Theta (θ), Jeffreys priors and, 185–187
Thinking, Fast and Slow (Kahneman), 6
Thinning, autocorrelation and, 95–96

Time (t)
autocorrelation and, 92–95
sorting Reddit comments by, 111–112

Total regret
expected, 171–173
strategies for, 169–171

Traces
increasing size, priors and,

187–189
MCMC returning, 76–78
not mixing posterior, 88–91
of small datasets, 107–111, 177
of unknown parameters, 82–85

Trial roulette method, for expert priors,
176–177

True upvote ratio, 112–115
True value

degenerate priors and, 192–193
expected squared-distance from,

104–105
financial prediction and, 139–144
of posterior distributions, 20–22

TSLA (Tesla Motors, Inc.) stock returns,
177–181

t-test, BEST model, 204–207

U
Uniform priors

as belief, 14
landscape formed by, 71–76
for true upvote ratios, 112–115
zero prior probability and, 192–193

Unknown parameters
dependence between, 88–91
loss function and, 129–130
posterior distribution of, 85–86
prior distributions for, 133–134
traces of, 82–85

Upside risk, 140
U.S. census mail-back rate challenge,

109–111

V
value attributes, MCMC algorithm and, 83
value parameter, specifying, 98–99

226 Index

Values, expected, 106
Variables

arrays of PyMC, 52
Categorical, 80
child, 27–28
deterministic, 30–31, 48, 51
log-uniform, 146–147
Normal random, 55–61, 89,

190
parent, 14, 27–28
random See Random variables
stochastic See Stochastic

variables
Variance (Var(Z)), computing, 106

Variational Bayes method, for
posterior distributions, 79

Visualization tool, 97–98

W
Wishart prior distribution

random matrices from, 161–163
for stock returns, 178, 182
tips for, 184–185

Wrappers, deterministic, 30–31

Z
Zero-one loss function, 128

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	5 Would You Rather Lose an Arm or a Leg?
	5.1 Introduction
	5.2 Loss Functions
	5.2.1 Loss Functions in the Real World
	5.2.2 Example: Optimizing for the Showcase on The Price Is Right

	5.3 Machine Learning via Bayesian Methods
	5.3.1 Example: Financial Prediction
	5.3.2 Example: Kaggle Contest on Observing Dark Worlds
	5.3.3 The Data
	5.3.4 Priors
	5.3.5 Training and PyMC Implementation

	5.4 Conclusion
	5.5 References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

