
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133900699
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133900699
https://plusone.google.com/share?url=http://www.informit.com/title/9780133900699
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133900699
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133900699/Free-Sample-Chapter

The Java® Language
Specification

Java SE 8 Edition

This page intentionally left blank

The Java® Language
Specification

Java SE 8 Edition

James Gosling
Bill Joy

Guy Steele
Gilad Bracha
Alex Buckley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Copyright © 1997, 2014, Oracle and/or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood City, California 94065, U.S.A.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

This document is provided for information purposes only and the contents hereof are subject
to change without notice. This document is not warranted to be error-free, nor subject to
any other warranties or conditions, whether expressed orally or implied in law, including
implied warranties and conditions of merchantability or fitness for a particular purpose.
We specifically disclaim any liability with respect to this document and no contractual
obligations are formed either directly or indirectly by this document, except as specified in
the Limited License Grant herein at Appendix A. This document is subject to the Limited
License Grant included herein as Appendix A, and may otherwise not be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without
our prior written permission.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact U.S. Corporate and Government Sales, (800)
382-3419, corpsales@pearsontechgroup.com. For sales outside the United States,
please contact International Sales, international@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014936248
ISBN-13: 978-0-13-390069-9
ISBN-10: 0-13-390069-X

Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission to use material
from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

The Specification provided herein is provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A.

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann
Arbor, Michigan. First printing, May 2014.

To Maurizio, with deepest thanks.

This page intentionally left blank

vii

Table of Contents

Preface to the Java SE 8 Edition xxi

1 Introduction 1
1.1 Organization of the Specification 2
1.2 Example Programs 6
1.3 Notation 6
1.4 Relationship to Predefined Classes and Interfaces 7
1.5 Feedback 7
1.6 References 7

2 Grammars 9
2.1 Context-Free Grammars 9
2.2 The Lexical Grammar 9
2.3 The Syntactic Grammar 10
2.4 Grammar Notation 10

3 Lexical Structure 15
3.1 Unicode 15
3.2 Lexical Translations 16
3.3 Unicode Escapes 17
3.4 Line Terminators 19
3.5 Input Elements and Tokens 19
3.6 White Space 20
3.7 Comments 21
3.8 Identifiers 22
3.9 Keywords 24
3.10 Literals 24

3.10.1 Integer Literals 25
3.10.2 Floating-Point Literals 31
3.10.3 Boolean Literals 34
3.10.4 Character Literals 34
3.10.5 String Literals 35
3.10.6 Escape Sequences for Character and String Literals 37
3.10.7 The Null Literal 38

3.11 Separators 38
3.12 Operators 38

The Java® Language Specification

viii

4 Types, Values, and Variables 41
4.1 The Kinds of Types and Values 41
4.2 Primitive Types and Values 42

4.2.1 Integral Types and Values 43
4.2.2 Integer Operations 43
4.2.3 Floating-Point Types, Formats, and Values 45
4.2.4 Floating-Point Operations 48
4.2.5 The boolean Type and boolean Values 51

4.3 Reference Types and Values 52
4.3.1 Objects 53
4.3.2 The Class Object 55
4.3.3 The Class String 56
4.3.4 When Reference Types Are the Same 56

4.4 Type Variables 57
4.5 Parameterized Types 59

4.5.1 Type Arguments of Parameterized Types 60
4.5.2 Members and Constructors of Parameterized Types 63

4.6 Type Erasure 64
4.7 Reifiable Types 64
4.8 Raw Types 66
4.9 Intersection Types 70
4.10 Subtyping 71

4.10.1 Subtyping among Primitive Types 71
4.10.2 Subtyping among Class and Interface Types 71
4.10.3 Subtyping among Array Types 73
4.10.4 Least Upper Bound 73

4.11 Where Types Are Used 75
4.12 Variables 80

4.12.1 Variables of Primitive Type 81
4.12.2 Variables of Reference Type 81
4.12.3 Kinds of Variables 83
4.12.4 final Variables 85
4.12.5 Initial Values of Variables 87
4.12.6 Types, Classes, and Interfaces 88

5 Conversions and Contexts 91
5.1 Kinds of Conversion 94

5.1.1 Identity Conversion 94
5.1.2 Widening Primitive Conversion 94
5.1.3 Narrowing Primitive Conversion 96
5.1.4 Widening and Narrowing Primitive Conversion 99
5.1.5 Widening Reference Conversion 99
5.1.6 Narrowing Reference Conversion 99
5.1.7 Boxing Conversion 100
5.1.8 Unboxing Conversion 102
5.1.9 Unchecked Conversion 103
5.1.10 Capture Conversion 103

The Java® Language Specification

ix

5.1.11 String Conversion 105
5.1.12 Forbidden Conversions 106
5.1.13 Value Set Conversion 106

5.2 Assignment Contexts 107
5.3 Invocation Contexts 112
5.4 String Contexts 114
5.5 Casting Contexts 114

5.5.1 Reference Type Casting 117
5.5.2 Checked Casts and Unchecked Casts 121
5.5.3 Checked Casts at Run Time 122

5.6 Numeric Contexts 124
5.6.1 Unary Numeric Promotion 124
5.6.2 Binary Numeric Promotion 125

6 Names 129
6.1 Declarations 130
6.2 Names and Identifiers 137
6.3 Scope of a Declaration 139
6.4 Shadowing and Obscuring 142

6.4.1 Shadowing 144
6.4.2 Obscuring 147

6.5 Determining the Meaning of a Name 148
6.5.1 Syntactic Classification of a Name According to Context 149
6.5.2 Reclassification of Contextually Ambiguous Names 152
6.5.3 Meaning of Package Names 154

6.5.3.1 Simple Package Names 155
6.5.3.2 Qualified Package Names 155

6.5.4 Meaning of PackageOrTypeNames 155
6.5.4.1 Simple PackageOrTypeNames 155
6.5.4.2 Qualified PackageOrTypeNames 155

6.5.5 Meaning of Type Names 155
6.5.5.1 Simple Type Names 156
6.5.5.2 Qualified Type Names 156

6.5.6 Meaning of Expression Names 156
6.5.6.1 Simple Expression Names 156
6.5.6.2 Qualified Expression Names 157

6.5.7 Meaning of Method Names 160
6.5.7.1 Simple Method Names 160

6.6 Access Control 161
6.6.1 Determining Accessibility 162
6.6.2 Details on protected Access 166

6.6.2.1 Access to a protected Member 167
6.6.2.2 Qualified Access to a protected Constructor 167

6.7 Fully Qualified Names and Canonical Names 169

7 Packages 173
7.1 Package Members 173

The Java® Language Specification

x

7.2 Host Support for Packages 175
7.3 Compilation Units 177
7.4 Package Declarations 178

7.4.1 Named Packages 178
7.4.2 Unnamed Packages 179
7.4.3 Observability of a Package 179

7.5 Import Declarations 180
7.5.1 Single-Type-Import Declarations 180
7.5.2 Type-Import-on-Demand Declarations 183
7.5.3 Single-Static-Import Declarations 184
7.5.4 Static-Import-on-Demand Declarations 184

7.6 Top Level Type Declarations 185

8 Classes 189
8.1 Class Declarations 191

8.1.1 Class Modifiers 191
8.1.1.1 abstract Classes 192
8.1.1.2 final Classes 194
8.1.1.3 strictfp Classes 194

8.1.2 Generic Classes and Type Parameters 194
8.1.3 Inner Classes and Enclosing Instances 197
8.1.4 Superclasses and Subclasses 200
8.1.5 Superinterfaces 202
8.1.6 Class Body and Member Declarations 205

8.2 Class Members 206
8.3 Field Declarations 211

8.3.1 Field Modifiers 215
8.3.1.1 static Fields 216
8.3.1.2 final Fields 219
8.3.1.3 transient Fields 219
8.3.1.4 volatile Fields 220

8.3.2 Field Initialization 221
8.3.3 Forward References During Field Initialization 222

8.4 Method Declarations 225
8.4.1 Formal Parameters 226
8.4.2 Method Signature 230
8.4.3 Method Modifiers 231

8.4.3.1 abstract Methods 232
8.4.3.2 static Methods 233
8.4.3.3 final Methods 234
8.4.3.4 native Methods 235
8.4.3.5 strictfp Methods 235
8.4.3.6 synchronized Methods 235

8.4.4 Generic Methods 237
8.4.5 Method Result 237
8.4.6 Method Throws 238
8.4.7 Method Body 240

The Java® Language Specification

xi

8.4.8 Inheritance, Overriding, and Hiding 240
8.4.8.1 Overriding (by Instance Methods) 241
8.4.8.2 Hiding (by Class Methods) 245
8.4.8.3 Requirements in Overriding and Hiding 246
8.4.8.4 Inheriting Methods with Override-Equivalent

Signatures 250
8.4.9 Overloading 250

8.5 Member Type Declarations 254
8.5.1 Static Member Type Declarations 254

8.6 Instance Initializers 255
8.7 Static Initializers 255
8.8 Constructor Declarations 256

8.8.1 Formal Parameters 257
8.8.2 Constructor Signature 258
8.8.3 Constructor Modifiers 258
8.8.4 Generic Constructors 259
8.8.5 Constructor Throws 259
8.8.6 The Type of a Constructor 259
8.8.7 Constructor Body 259

8.8.7.1 Explicit Constructor Invocations 260
8.8.8 Constructor Overloading 264
8.8.9 Default Constructor 265
8.8.10 Preventing Instantiation of a Class 266

8.9 Enum Types 266
8.9.1 Enum Constants 267
8.9.2 Enum Body Declarations 268
8.9.3 Enum Members 271

9 Interfaces 277
9.1 Interface Declarations 278

9.1.1 Interface Modifiers 278
9.1.1.1 abstract Interfaces 279
9.1.1.2 strictfp Interfaces 279

9.1.2 Generic Interfaces and Type Parameters 279
9.1.3 Superinterfaces and Subinterfaces 280
9.1.4 Interface Body and Member Declarations 282

9.2 Interface Members 282
9.3 Field (Constant) Declarations 283

9.3.1 Initialization of Fields in Interfaces 285
9.4 Method Declarations 286

9.4.1 Inheritance and Overriding 287
9.4.1.1 Overriding (by Instance Methods) 288
9.4.1.2 Requirements in Overriding 289
9.4.1.3 Inheriting Methods with Override-Equivalent

Signatures 289
9.4.2 Overloading 290
9.4.3 Interface Method Body 291

The Java® Language Specification

xii

9.5 Member Type Declarations 291
9.6 Annotation Types 292

9.6.1 Annotation Type Elements 293
9.6.2 Defaults for Annotation Type Elements 297
9.6.3 Repeatable Annotation Types 298
9.6.4 Predefined Annotation Types 302

9.6.4.1 @Target 302
9.6.4.2 @Retention 303
9.6.4.3 @Inherited 304
9.6.4.4 @Override 304
9.6.4.5 @SuppressWarnings 305
9.6.4.6 @Deprecated 306
9.6.4.7 @SafeVarargs 307
9.6.4.8 @Repeatable 308
9.6.4.9 @FunctionalInterface 308

9.7 Annotations 308
9.7.1 Normal Annotations 309
9.7.2 Marker Annotations 311
9.7.3 Single-Element Annotations 312
9.7.4 Where Annotations May Appear 313
9.7.5 Multiple Annotations of the Same Type 318

9.8 Functional Interfaces 319
9.9 Function Types 323

10 Arrays 329
10.1 Array Types 330
10.2 Array Variables 330
10.3 Array Creation 332
10.4 Array Access 332
10.5 Array Store Exception 333
10.6 Array Initializers 335
10.7 Array Members 336
10.8 Class Objects for Arrays 338
10.9 An Array of Characters Is Not a String 339

11 Exceptions 341
11.1 The Kinds and Causes of Exceptions 342

11.1.1 The Kinds of Exceptions 342
11.1.2 The Causes of Exceptions 343
11.1.3 Asynchronous Exceptions 343

11.2 Compile-Time Checking of Exceptions 344
11.2.1 Exception Analysis of Expressions 346
11.2.2 Exception Analysis of Statements 346
11.2.3 Exception Checking 347

11.3 Run-Time Handling of an Exception 349

The Java® Language Specification

xiii

12 Execution 353
12.1 Java Virtual Machine Startup 353

12.1.1 Load the Class Test 354
12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve 354
12.1.3 Initialize Test: Execute Initializers 355
12.1.4 Invoke Test.main 356

12.2 Loading of Classes and Interfaces 356
12.2.1 The Loading Process 357

12.3 Linking of Classes and Interfaces 358
12.3.1 Verification of the Binary Representation 358
12.3.2 Preparation of a Class or Interface Type 359
12.3.3 Resolution of Symbolic References 359

12.4 Initialization of Classes and Interfaces 360
12.4.1 When Initialization Occurs 361
12.4.2 Detailed Initialization Procedure 363

12.5 Creation of New Class Instances 365
12.6 Finalization of Class Instances 369

12.6.1 Implementing Finalization 370
12.6.2 Interaction with the Memory Model 372

12.7 Unloading of Classes and Interfaces 373
12.8 Program Exit 374

13 Binary Compatibility 375
13.1 The Form of a Binary 376
13.2 What Binary Compatibility Is and Is Not 382
13.3 Evolution of Packages 383
13.4 Evolution of Classes 383

13.4.1 abstract Classes 383
13.4.2 final Classes 383
13.4.3 public Classes 384
13.4.4 Superclasses and Superinterfaces 384
13.4.5 Class Type Parameters 385
13.4.6 Class Body and Member Declarations 386
13.4.7 Access to Members and Constructors 387
13.4.8 Field Declarations 388
13.4.9 final Fields and static Constant Variables 391
13.4.10 static Fields 393
13.4.11 transient Fields 393
13.4.12 Method and Constructor Declarations 394
13.4.13 Method and Constructor Type Parameters 394
13.4.14 Method and Constructor Formal Parameters 395
13.4.15 Method Result Type 396
13.4.16 abstract Methods 396
13.4.17 final Methods 397
13.4.18 native Methods 397
13.4.19 static Methods 398
13.4.20 synchronized Methods 398

The Java® Language Specification

xiv

13.4.21 Method and Constructor Throws 398
13.4.22 Method and Constructor Body 398
13.4.23 Method and Constructor Overloading 399
13.4.24 Method Overriding 400
13.4.25 Static Initializers 400
13.4.26 Evolution of Enums 400

13.5 Evolution of Interfaces 400
13.5.1 public Interfaces 400
13.5.2 Superinterfaces 401
13.5.3 Interface Members 401
13.5.4 Interface Type Parameters 401
13.5.5 Field Declarations 402
13.5.6 Interface Method Declarations 402
13.5.7 Evolution of Annotation Types 403

14 Blocks and Statements 405
14.1 Normal and Abrupt Completion of Statements 405
14.2 Blocks 407
14.3 Local Class Declarations 407
14.4 Local Variable Declaration Statements 408

14.4.1 Local Variable Declarators and Types 409
14.4.2 Execution of Local Variable Declarations 410

14.5 Statements 410
14.6 The Empty Statement 412
14.7 Labeled Statements 413
14.8 Expression Statements 414
14.9 The if Statement 415

14.9.1 The if-then Statement 415
14.9.2 The if-then-else Statement 416

14.10 The assert Statement 416
14.11 The switch Statement 419
14.12 The while Statement 423

14.12.1 Abrupt Completion of while Statement 424
14.13 The do Statement 424

14.13.1 Abrupt Completion of do Statement 425
14.14 The for Statement 426

14.14.1 The basic for Statement 426
14.14.1.1 Initialization of for Statement 427
14.14.1.2 Iteration of for Statement 427
14.14.1.3 Abrupt Completion of for Statement 428

14.14.2 The enhanced for statement 429
14.15 The break Statement 432
14.16 The continue Statement 434
14.17 The return Statement 436
14.18 The throw Statement 437
14.19 The synchronized Statement 439
14.20 The try statement 440

The Java® Language Specification

xv

14.20.1 Execution of try-catch 444
14.20.2 Execution of try-finally and try-catch-finally 445
14.20.3 try-with-resources 447

14.20.3.1 Basic try-with-resources 448
14.20.3.2 Extended try-with-resources 451

14.21 Unreachable Statements 452

15 Expressions 459
15.1 Evaluation, Denotation, and Result 459
15.2 Forms of Expressions 460
15.3 Type of an Expression 461
15.4 FP-strict Expressions 462
15.5 Expressions and Run-Time Checks 462
15.6 Normal and Abrupt Completion of Evaluation 464
15.7 Evaluation Order 466

15.7.1 Evaluate Left-Hand Operand First 466
15.7.2 Evaluate Operands before Operation 468
15.7.3 Evaluation Respects Parentheses and Precedence 469
15.7.4 Argument Lists are Evaluated Left-to-Right 470
15.7.5 Evaluation Order for Other Expressions 471

15.8 Primary Expressions 471
15.8.1 Lexical Literals 472
15.8.2 Class Literals 473
15.8.3 this 474
15.8.4 Qualified this 475
15.8.5 Parenthesized Expressions 475

15.9 Class Instance Creation Expressions 476
15.9.1 Determining the Class being Instantiated 478
15.9.2 Determining Enclosing Instances 480
15.9.3 Choosing the Constructor and its Arguments 481
15.9.4 Run-Time Evaluation of Class Instance Creation

Expressions 484
15.9.5 Anonymous Class Declarations 485

15.9.5.1 Anonymous Constructors 485
15.10 Array Creation and Access Expressions 487

15.10.1 Array Creation Expressions 487
15.10.2 Run-Time Evaluation of Array Creation Expressions 488
15.10.3 Array Access Expressions 491
15.10.4 Run-Time Evaluation of Array Access Expressions 492

15.11 Field Access Expressions 494
15.11.1 Field Access Using a Primary 494
15.11.2 Accessing Superclass Members using super 497

15.12 Method Invocation Expressions 499
15.12.1 Compile-Time Step 1: Determine Class or Interface to

Search 500
15.12.2 Compile-Time Step 2: Determine Method Signature 502

15.12.2.1 Identify Potentially Applicable Methods 509

The Java® Language Specification

xvi

15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable
by Strict Invocation 511

15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable
by Loose Invocation 512

15.12.2.4 Phase 3: Identify Methods Applicable by Variable Arity
Invocation 513

15.12.2.5 Choosing the Most Specific Method 514
15.12.2.6 Method Invocation Type 516

15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate? 517
15.12.4 Run-Time Evaluation of Method Invocation 520

15.12.4.1 Compute Target Reference (If Necessary) 520
15.12.4.2 Evaluate Arguments 522
15.12.4.3 Check Accessibility of Type and Method 523
15.12.4.4 Locate Method to Invoke 524
15.12.4.5 Create Frame, Synchronize, Transfer Control 528

15.13 Method Reference Expressions 529
15.13.1 Compile-Time Declaration of a Method Reference 532
15.13.2 Type of a Method Reference 537
15.13.3 Run-Time Evaluation of Method References 539

15.14 Postfix Expressions 542
15.14.1 Expression Names 543
15.14.2 Postfix Increment Operator ++ 543
15.14.3 Postfix Decrement Operator -- 544

15.15 Unary Operators 544
15.15.1 Prefix Increment Operator ++ 546
15.15.2 Prefix Decrement Operator -- 546
15.15.3 Unary Plus Operator + 547
15.15.4 Unary Minus Operator - 547
15.15.5 Bitwise Complement Operator ~ 548
15.15.6 Logical Complement Operator ! 548

15.16 Cast Expressions 549
15.17 Multiplicative Operators 550

15.17.1 Multiplication Operator * 551
15.17.2 Division Operator / 552
15.17.3 Remainder Operator % 554

15.18 Additive Operators 556
15.18.1 String Concatenation Operator + 557
15.18.2 Additive Operators (+ and -) for Numeric Types 559

15.19 Shift Operators 561
15.20 Relational Operators 562

15.20.1 Numerical Comparison Operators <, <=, >, and >= 563
15.20.2 Type Comparison Operator instanceof 564

15.21 Equality Operators 565
15.21.1 Numerical Equality Operators == and != 566
15.21.2 Boolean Equality Operators == and != 567
15.21.3 Reference Equality Operators == and != 567

15.22 Bitwise and Logical Operators 568
15.22.1 Integer Bitwise Operators &, ^, and | 568

The Java® Language Specification

xvii

15.22.2 Boolean Logical Operators &, ^, and | 569
15.23 Conditional-And Operator && 570
15.24 Conditional-Or Operator || 570
15.25 Conditional Operator ? : 571

15.25.1 Boolean Conditional Expressions 579
15.25.2 Numeric Conditional Expressions 579
15.25.3 Reference Conditional Expressions 580

15.26 Assignment Operators 581
15.26.1 Simple Assignment Operator = 582
15.26.2 Compound Assignment Operators 588

15.27 Lambda Expressions 594
15.27.1 Lambda Parameters 596
15.27.2 Lambda Body 599
15.27.3 Type of a Lambda Expression 602
15.27.4 Run-Time Evaluation of Lambda Expressions 604

15.28 Constant Expressions 605

16 Definite Assignment 607
16.1 Definite Assignment and Expressions 613

16.1.1 Boolean Constant Expressions 613
16.1.2 Conditional-And Operator && 613
16.1.3 Conditional-Or Operator || 614
16.1.4 Logical Complement Operator ! 614
16.1.5 Conditional Operator ? : 614
16.1.6 Conditional Operator ? : 615
16.1.7 Other Expressions of Type boolean 615
16.1.8 Assignment Expressions 615
16.1.9 Operators ++ and -- 616
16.1.10 Other Expressions 616

16.2 Definite Assignment and Statements 617
16.2.1 Empty Statements 617
16.2.2 Blocks 617
16.2.3 Local Class Declaration Statements 619
16.2.4 Local Variable Declaration Statements 619
16.2.5 Labeled Statements 619
16.2.6 Expression Statements 620
16.2.7 if Statements 620
16.2.8 assert Statements 620
16.2.9 switch Statements 621
16.2.10 while Statements 621
16.2.11 do Statements 622
16.2.12 for Statements 622

16.2.12.1 Initialization Part of for Statement 623
16.2.12.2 Incrementation Part of for Statement 623

16.2.13 break, continue, return, and throw Statements 624
16.2.14 synchronized Statements 624
16.2.15 try Statements 624

The Java® Language Specification

xviii

16.3 Definite Assignment and Parameters 626
16.4 Definite Assignment and Array Initializers 626
16.5 Definite Assignment and Enum Constants 626
16.6 Definite Assignment and Anonymous Classes 627
16.7 Definite Assignment and Member Types 627
16.8 Definite Assignment and Static Initializers 628
16.9 Definite Assignment, Constructors, and Instance Initializers 628

17 Threads and Locks 631
17.1 Synchronization 632
17.2 Wait Sets and Notification 632

17.2.1 Wait 633
17.2.2 Notification 634
17.2.3 Interruptions 635
17.2.4 Interactions of Waits, Notification, and Interruption 635

17.3 Sleep and Yield 636
17.4 Memory Model 637

17.4.1 Shared Variables 640
17.4.2 Actions 640
17.4.3 Programs and Program Order 641
17.4.4 Synchronization Order 642
17.4.5 Happens-before Order 643
17.4.6 Executions 646
17.4.7 Well-Formed Executions 647
17.4.8 Executions and Causality Requirements 647
17.4.9 Observable Behavior and Nonterminating Executions 650

17.5 final Field Semantics 652
17.5.1 Semantics of final Fields 654
17.5.2 Reading final Fields During Construction 654
17.5.3 Subsequent Modification of final Fields 655
17.5.4 Write-Protected Fields 656

17.6 Word Tearing 657
17.7 Non-Atomic Treatment of double and long 658

18 Type Inference 659
18.1 Concepts and Notation 660

18.1.1 Inference Variables 660
18.1.2 Constraint Formulas 661
18.1.3 Bounds 661

18.2 Reduction 663
18.2.1 Expression Compatibility Constraints 663
18.2.2 Type Compatibility Constraints 667
18.2.3 Subtyping Constraints 668
18.2.4 Type Equality Constraints 670
18.2.5 Checked Exception Constraints 671

18.3 Incorporation 673
18.3.1 Complementary Pairs of Bounds 674

The Java® Language Specification

xix

18.3.2 Bounds Involving Capture Conversion 674
18.4 Resolution 675
18.5 Uses of Inference 677

18.5.1 Invocation Applicability Inference 678
18.5.2 Invocation Type Inference 679
18.5.3 Functional Interface Parameterization Inference 685
18.5.4 More Specific Method Inference 686

19 Syntax 689

Index 715

A Limited License Grant 755

This page intentionally left blank

xxi

Preface to the Java SE 8 Edition

IN 1996, James Gosling, Bill Joy, and Guy Steele wrote for the First Edition of
The Java® Language Specification:

"We believe that the Java programming language is a mature language, ready for
widespread use. Nevertheless, we expect some evolution of the language in the
years to come. We intend to manage this evolution in a way that is completely
compatible with existing applications."

Java SE 8 represents the single largest evolution of the Java language in its history.
A relatively small number of features - lambda expressions, method references, and
functional interfaces - combine to offer a programming model that fuses the object-
oriented and functional styles. Under the leadership of Brian Goetz, this fusion
has been accomplished in a way that encourages best practices - immutability,
statelessness, compositionality - while preserving "the feel of Java" - readability,
simplicity, universality.

Crucially, the libraries of the Java SE platform have co-evolved with the Java
language. This means that using lambda expressions and method references to
represent behavior - for example, an operation to be applied to each element in
a list - is productive and performant "out of the box". In a similar fashion, the
Java Virtual Machine has co-evolved with the Java language to ensure that default
methods support library evolution as consistently as possible across compile time
and run time, given the constraints of separate compilation.

Initiatives to add first-class functions to the Java language have been around since
the 1990s. The BGGA and CICE proposals circa 2007 brought new energy to
the topic, while the creation of Project Lambda in OpenJDK circa 2009 attracted
unprecedented levels of interest. The addition of method handles to the JVM in
Java SE 7 opened the door to new implementation techniques while retaining
"write once, run anywhere." In time, language changes were overseen by JSR 335,
Lambda Expressions for the Java Programming Language, whose Expert Group
consisted of Joshua Bloch, Kevin Bourrillion, Andrey Breslav, Rémi Forax, Dan
Heidinga, Doug Lea, Bob Lee, David Lloyd, Sam Pullara, Srikanth Sankaran, and
Vladimir Zakharov.

Programming language design typically involves grappling with degrees of
complexity utterly hidden from the language's users. (For this reason, it is often
compared to an iceberg: 90% of it is invisible.) In JSR 335, the greatest complexity

PREFACE TO THE JAVA SE 8 EDITION

xxii

lurked in the interaction of implicitly typed lambda expressions with overload
resolution. In this and many other areas, Dan Smith at Oracle did an outstanding job
of thoroughly specifying the desired behavior. His words are to be found throughout
this specification, including an entirely new chapter on type inference.

Another initiative in Java SE 8 has been to enhance the utility of annotations, one
of the most popular features of the Java language. First, the Java grammar has
been extended to allow annotations on types in many language constructs, forming
the basis for novel static analysis tools such as the Checker Framework. This
feature was specified by JSR 308, Annotations on Java Types, led by Michael Ernst
with an Expert Group of myself, Doug Lea, and Srikanth Sankaran. The changes
involved in this specification were wide-ranging, and the unstinting efforts of
Michael Ernst and Werner Dietl over many years are warmly recognized. Second,
annotations may be "repeated" on a language construct, to the great benefit of APIs
that model domain-specific configuration with annotation types. Michael Keith and
Bill Shannon in Java EE initiated and guided this feature.

Many colleagues in the Java Platform Group at Oracle have provided valuable
support to this specification: Leonid Arbouzov, Mandy Chung, Joe Darcy, Robert
Field, Joel Franck, Sonali Goel, Jon Gibbons, Jeannette Hung, Stuart Marks, Eric
McCorkle, Matherey Nunez, Mark Reinhold, Vicente Romero, John Rose, Georges
Saab, Steve Sides, Bernard Traversat, and Michel Trudeau.

Perhaps the greatest acknowledgement must go to the compiler engineers who
turn the specification into real software. Maurizio Cimadamore at Oracle worked
heroically from the earliest days on the design of lambda expressions and their
implementation in javac. Support for Java SE 8 features in Eclipse was contributed
by Jayaprakash Arthanareeswaran, Shankha Banerjee, Anirban Chakraborty,
Andrew Clement, Stephan Herrmann, Markus Keller, Jesper Møller, Manoj Palat,
Srikanth Sankaran, and Olivier Thomann; and in IntelliJ by Anna Kozlova, Alexey
Kudravtsev, and Roman Shevchenko. They deserve the thanks of the entire Java
community.

Java SE 8 is a renaissance for the Java language. While some search for the
"next great language", we believe that programming in Java is more exciting and
productive than ever. We hope that it continues to wear well for you.

Alex Buckley
Santa Clara, California

March, 2014

1

C H A P T E R 1
Introduction

THE Java® programming language is a general-purpose, concurrent, class-
based, object-oriented language. It is designed to be simple enough that many
programmers can achieve fluency in the language. The Java programming language
is related to C and C++ but is organized rather differently, with a number of aspects
of C and C++ omitted and a few ideas from other languages included. It is intended
to be a production language, not a research language, and so, as C. A. R. Hoare
suggested in his classic paper on language design, the design has avoided including
new and untested features.

The Java programming language is strongly and statically typed. This specification
clearly distinguishes between the compile-time errors that can and must be detected
at compile time, and those that occur at run time. Compile time normally consists
of translating programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed to execute
a program, optional machine code generation and dynamic optimization of the
program, and actual program execution.

The Java programming language is a relatively high-level language, in that details
of the machine representation are not available through the language. It includes
automatic storage management, typically using a garbage collector, to avoid
the safety problems of explicit deallocation (as in C's free or C++'s delete).
High-performance garbage-collected implementations can have bounded pauses to
support systems programming and real-time applications. The language does not
include any unsafe constructs, such as array accesses without index checking, since
such unsafe constructs would cause a program to behave in an unspecified way.

The Java programming language is normally compiled to the bytecode instruction
set and binary format defined in The Java Virtual Machine Specification, Java SE
8 Edition.

1 INTRODUCTION

2

1.1 Organization of the Specification

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describes the lexical structure of the Java programming language, which
is based on C and C++. The language is written in the Unicode character set. It
supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in all
implementations, and are various sizes of two's-complement integers, single- and
double-precision IEEE 754 standard floating-point numbers, a boolean type, and
a Unicode character char type. Values of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The
reference types are implemented by dynamically created objects that are either
instances of classes or arrays. Many references to each object can exist. All objects
(including arrays) support the methods of the class Object, which is the (single)
root of the class hierarchy. A predefined String class supports Unicode character
strings. Classes exist for wrapping primitive values inside of objects. In many
cases, wrapping and unwrapping is performed automatically by the compiler (in
which case, wrapping is called boxing, and unwrapping is called unboxing). Class
and interface declarations may be generic, that is, they may be parameterized by
other reference types. Such declarations may then be invoked with specific type
arguments.

Variables are typed storage locations. A variable of a primitive type holds a value
of that exact primitive type. A variable of a class type can hold a null reference or
a reference to an object whose type is that class type or any subclass of that class
type. A variable of an interface type can hold a null reference or a reference to an
instance of any class that implements the interface. A variable of an array type can
hold a null reference or a reference to an array. A variable of class type Object can
hold a null reference or a reference to any object, whether class instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the
compile-time type and, sometimes, the value of an expression. These conversions
include the boxing and unboxing conversions between primitive types and
reference types. Numeric promotions are used to convert the operands of a numeric
operator to a common type where an operation can be performed. There are no

Organization of the Specification 1.1

3

loopholes in the language; casts on reference types are checked at run time to ensure
type safety.

Chapter 6 describes declarations and names, and how to determine what names
mean (denote). The language does not require types or their members to be declared
before they are used. Declaration order is significant only for local variables, local
classes, and the order of initializers of fields in a class or interface.

The Java programming language provides control over the scope of names
and supports limitations on external access to members of packages, classes,
and interfaces. This helps in writing large programs by distinguishing the
implementation of a type from its users and those who extend it. Recommended
naming conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages
similar to the modules of Modula. The members of a package are classes, interfaces,
and subpackages. Packages are divided into compilation units. Compilation units
contain type declarations and can import types from other packages to give them
short names. Packages have names in a hierarchical name space, and the Internet
domain name system can usually be used to form unique package names.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields
(variables) and methods. Class variables exist once per class. Class methods operate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current object this during their execution,
supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementation
of each class is derived from that of a single superclass, and ultimately from the
class Object. Variables of a class type can reference an instance of that class or of
any subclass of that class, allowing new types to be used with existing methods,
polymorphically.

Classes support concurrent programming with synchronized methods. Methods
declare the checked exceptions that can arise from their execution, which allows
compile-time checking to ensure that exceptional conditions are handled. Objects
can declare a finalize method that will be invoked before the objects are discarded
by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration "headers" separate from the
implementation of a class nor separate type and class hierarchies.

1 INTRODUCTION

4

A special form of classes, enums, support the definition of small sets of values and
their manipulation in a type safe manner. Unlike enumerations in other languages,
enums are objects and may have their own methods.

Chapter 9 describes interface types, which declare a set of abstract methods,
member types, and constants. Classes that are otherwise unrelated can implement
the same interface type. A variable of an interface type can contain a reference
to any object that implements the interface. Multiple interface inheritance is
supported.

Annotation types are specialized interfaces used to annotate declarations. Such
annotations are not permitted to affect the semantics of programs in the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are
dynamically created objects and may be assigned to variables of type Object. The
language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with
the language semantics and concurrency mechanisms. There are three kinds of
exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declares it. This provides compile-time checking that exception handlers exist, and
aids programming in the large. Most user-defined exceptions should be checked
exceptions. Invalid operations in the program detected by the Java Virtual Machine
result in run-time exceptions, such as NullPointerException. Errors result from
failures detected by the Java Virtual Machine, such as OutOfMemoryError. Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A program
is normally stored as binary files representing compiled classes and interfaces.
These binary files can be loaded into a Java Virtual Machine, linked to other classes
and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some classes
may be instantiated to create new objects of the class type. Objects that are class
instances also contain an instance of each superclass of the class, and object creation
involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declares a finalizer, the finalizer is executed before the object

Organization of the Specification 1.1

5

is reclaimed to give the object a last chance to clean up resources that would not
otherwise be released. When a class is no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to
types on other types that use the changed types but have not been recompiled. These
considerations are of interest to developers of types that are to be widely distributed,
in a continuing series of versions, often through the Internet. Good program
development environments automatically recompile dependent code whenever a
type is changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no goto statement, but includes labeled break and continue
statements. Unlike C, the Java programming language requires boolean (or
Boolean) expressions in control-flow statements, and does not convert types to
boolean implicitly (except through unboxing), in the hope of catching more errors
at compile time. A synchronized statement provides basic object-level monitor
locking. A try statement can include catch and finally clauses to protect against
non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
local variables are definitely set before use. While all other variables are
automatically initialized to a default value, the Java programming language does
not automatically initialize local variables in order to avoid masking programming
errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 describes a variety of type inference algorithms used to test applicability
of generic methods and to infer types in a generic method invocation.

Chapter 19 presents a syntactic grammar for the language.

1 INTRODUCTION

6

1.2 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

class Test {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.print(i == 0 ? args[i] : " " + args[i]);
 System.out.println();
 }
}

On a machine with the Oracle JDK installed, this class, stored in the file Test.java,
can be compiled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hello, world.

1.3 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE platform API. Whenever we refer to a class or interface (other than those
declared in an example) using a single identifier N, the intended reference is to the
class or interface named N in the package java.lang. We use the canonical name
(§6.7) for classes or interfaces from packages other than java.lang.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

This is non-normative information. It provides intuition, rationale, advice, examples, etc.

The type system of the Java programming language occasionally relies on the
notion of a substitution. The notation [F1:=T1,...,Fn:=Tn] denotes substitution
of Fi by Ti for 1 ≤ i ≤ n.

Relationship to Predefined Classes and Interfaces 1.4

7

1.4 Relationship to Predefined Classes and Interfaces

As noted above, this specification often refers to classes of the Java SE
platform API. In particular, some classes have a special relationship with
the Java programming language. Examples include classes such as Object,
Class, ClassLoader, String, Thread, and the classes and interfaces in package
java.lang.reflect, among others. This specification constrains the behavior of
such classes and interfaces, but does not provide a complete specification for them.
The reader is referred to the Java SE platform API documentation.

Consequently, this specification does not describe reflection in any detail.
Many linguistic constructs have analogs in the Core Reflection API
(java.lang.reflect) and the Language Model API (javax.lang.model), but
these are generally not discussed here. For example, when we list the ways in which
an object can be created, we generally do not include the ways in which the Core
Reflection API can accomplish this. Readers should be aware of these additional
mechanisms even though they are not mentioned in the text.

1.5 Feedback

Readers may send feedback about errors, omissions, and ambiguities in The Java®

Language Specification to jls-comments_ww@oracle.com.

Questions concerning the behavior of javac (the reference compiler for the Java
programming language), and in particular its conformance to this specification,
may be sent to compiler-dev@openjdk.java.net.

1.6 References

Apple Computer. Dylan Reference Manual. Apple Computer Inc., Cupertino, California.
September 29, 1995.

Bobrow, Daniel G., Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales,
and David A. Moon. Common Lisp Object System Specification, X3J13 Document
88-002R, June 1988; appears as Chapter 28 of Steele, Guy. Common Lisp: The Language,
2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770-864.

Ellis, Margaret A., and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, Massachusetts, 1990, reprinted with corrections October 1992, ISBN
0-201-51459-1.

1 INTRODUCTION

8

Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-Wesley, Reading,
Massachusetts, 1989, ISBN 0-201-13688-0.

Harbison, Samuel. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISBN
0-13-596396.

Hoare, C. A. R. Hints on Programming Language Design. Stanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprinted in
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Association
for Computing Machinery, New York, October 1973.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Available
from Global Engineering Documents, 15 Inverness Way East, Englewood, Colorado
80112-5704 USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, 2nd ed. Prentice
Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Møller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading,
Massachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard Sweet. The Mesa Programming Language,
Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

Stroustrup, Bjarne. The C++ Progamming Language, 2nd ed. Addison-Wesley, Reading,
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

Unicode Consortium, The. The Unicode Standard, Version 6.0.0. Mountain View, CA, 2011,
ISBN 978-1-936213-01-6.

715

Index

Symbols
= operator, 582

assignment contexts, 109
expressions and run-time checks, 463, 464
normal and abrupt completion of evaluation,
465, 465

@Deprecated, 306
@FunctionalInterface, 308
@Inherited, 304
@Override, 304
@Repeatable, 308

repeatable annotation types, 298
@Retention, 303

repeatable annotation types, 298
@SafeVarargs, 307

formal parameters, 228
@SuppressWarnings, 305

checked casts and unchecked casts, 121
formal parameters, 228
requirements in overriding and hiding, 246
unchecked conversion, 103

@Target, 302
multiple annotations of the same type, 318
repeatable annotation types, 298
where annotations may appear, 313

A
abrupt completion of do statement, 425

do statement, 425
abrupt completion of for statement, 428

iteration of for statement, 428
abrupt completion of while statement, 424

while statement, 423
abstract classes, 192, 383

abstract methods, 232
anonymous class declarations, 485
array creation expressions, 487
final classes, 194
superinterfaces, 204

abstract interfaces, 279
abstract methods, 232, 396

abstract classes, 192
method body, 240
method declarations, 286

access control, 161
accessing superclass members using super,
498
class literals, 474
class modifiers, 191
constructor declarations, 256
default constructor, 265
enum body declarations, 269
explicit constructor invocations, 262
field access using a primary, 495
identify potentially applicable methods, 509
import declarations, 180
interface modifiers, 278
local class declarations, 407
member type declarations, 254
method declarations, 286
normal annotations, 309
objects, 54
qualified expression names, 158, 158, 158

INDEX

716

qualified type names, 156, 156
reference types and values, 53
requirements in overriding and hiding, 247
single-static-import declarations, 184
single-type-import declarations, 181
static-import-on-demand declarations, 184
superclasses and subclasses, 200
superinterfaces, 202
superinterfaces and subinterfaces, 280
type-import-on-demand declarations, 183

access to a protected member, 167
access to members and constructors, 387
accessing superclass members using super,
497

declarations, 132
field declarations, 213
field initialization, 221, 222
initialization of fields in interfaces, 285
instance initializers, 255
static methods, 234
syntactic classification of a name according
to context, 150

actions, 640
synchronization order, 642

additive operators, 556
constant expressions, 605
integer operations, 43

additive operators (+ and -) for numeric types,
559

binary numeric promotion, 126
floating-point operations, 48

an array of characters is not a String, 339
annotation type elements, 293

@Target, 303
annotation types, 293
declarations, 130, 131, 131
marker annotations, 311
normal annotations, 309

single-element annotations, 312
syntactic classification of a name according
to context, 150
where types are used, 76

annotation types, 292
@Target, 302
annotations, 308
declarations, 130
interface declarations, 278

annotations, 308
declarations, 132
defaults for annotation type elements, 297
syntactic classification of a name according
to context, 150

anonymous class declarations, 485
class instance creation expressions, 477, 477
class modifiers, 191
definite assignment and anonymous classes,
627
enum constants, 268
form of a binary, 377
initialization of fields in interfaces, 285
inner classes and enclosing instances, 197
syntactic classification of a name according
to context, 151
where types are used, 76, 77

anonymous constructors, 485
choosing the constructor and its arguments,
484
default constructor, 265
form of a binary, 381

argument lists are evaluated left-to-right, 470
array access, 332
array access expressions, 491

array access, 332
assignment operators, 582
compound assignment operators, 589
simple assignment operator =, 582

717

syntactic classification of a name according
to context, 151
unary numeric promotion, 125

array creation, 332
array creation and access expressions, 487

method reference expressions, 529
array creation expressions, 487

array creation, 332
array initializers, 335
objects, 53
syntactic classification of a name according
to context, 151
unary numeric promotion, 125
where types are used, 76, 78

array initializers, 335
array creation, 332
definite assignment and array initializers,
626
normal and abrupt completion of evaluation,
464
objects, 53
run-time evaluation of array creation
expressions, 488

array members, 336
declarations, 130, 130
happens-before order, 644
qualified expression names, 159

array store exception, 333
array variables, 332
assignment contexts, 109
expressions and run-time checks, 463, 464
normal and abrupt completion of evaluation,
465
variables, 80

array types, 330
annotation type elements, 294
enhanced for statement, 430
raw types, 66

reference types and values, 52
reifiable types, 65
where types are used, 77

array variables, 330
enhanced for statement, 431
formal parameters, 228
lambda parameters, 598

arrays, 329
array creation expressions, 487
kinds of variables, 83
when reference types are the same, 57

assert statement, 416
assert statements, 620
detailed initialization procedure, 365
when initialization occurs, 361

assert statements, 620
assignment contexts, 107

array initializers, 335
array store exception, 333
array variables, 332
class instance creation expressions, 478
execution of try-catch, 444
expressions and run-time checks, 463, 463
kinds of types and values, 42
lambda expressions, 595
method invocation expressions, 500
method reference expressions, 531
normal annotations, 310
reference conditional expressions, 580
return statement, 436
run-time evaluation of method references,
540
simple assignment operator =, 582, 583
switch statement, 420
throw statement, 437, 438
type of an expression, 461
variables, 80

assignment expressions, 615

INDEX

718

assignment operators, 581
assignment contexts, 107
assignment expressions, 615
evaluation order for other expressions, 471
field initialization, 221
final variables, 86
forms of expressions, 460
initial values of variables, 87
syntactic classification of a name according
to context, 151
variables, 80

asynchronous Exceptions, 343
causes of Exceptions, 343

B
basic for statement, 426

@Target, 303
for statements, 622
scope of a declaration, 140
syntactic classification of a name according
to context, 150
where types are used, 76

basic try-with-resources, 448
binary compatibility, 375
binary numeric promotion, 125

additive operators (+ and -) for numeric types,
559
division operator /, 552
integer bitwise operators &, ^, and |, 568
multiplicative operators, 550
numeric conditional expressions, 580
numeric contexts, 124
numerical comparison operators <, <=, >, and
>=, 563
numerical equality operators == and !=, 566
postfix decrement operator --, 544
postfix increment operator ++, 543

prefix decrement operator --, 547
prefix increment operator ++, 546
remainder operator %, 554
shift operators, 561

bitwise and logical operators, 568
constant expressions, 605

bitwise complement operator ~, 548
constant expressions, 605
integer operations, 43
unary numeric promotion, 125

blocks, 407, 617
blocks, 617
kinds of variables, 84
lambda body, 599
local class declarations, 407
scope of a declaration, 140

blocks and statements, 405
boolean conditional expressions, 579
boolean constant expressions, 613
boolean equality operators == and !=, 567

boolean type and boolean values, 51
boolean literals, 34

boolean type and boolean values, 51
boxing conversion, 101
constant expressions, 605
identifiers, 23
lexical literals, 473

boolean logical operators &, ^, and |, 569
boolean type and boolean values, 51
conditional-and operator &&, 570
conditional-or operator ||, 570

boolean type and boolean values, 51
boolean literals, 34
lexical literals, 473

bounds, 661
bounds involving capture conversion, 675
invocation applicability inference, 678
more specific method inference, 686

719

reduction, 663
bounds involving capture conversion, 674

incorporation, 673
boxing conversion, 100

assignment contexts, 107
casting contexts, 115
class literals, 473
conditional operator ? :, 579
creation of new class instances, 366
floating-point operations, 49
integer operations, 44
invocation contexts, 113
invocation type inference, 680
normal and abrupt completion of evaluation,
465
numeric conditional expressions, 579
objects, 53
postfix decrement operator --, 544
postfix increment operator ++, 543
prefix decrement operator --, 547
prefix increment operator ++, 546
type compatibility constraints, 668, 668

break statement, 432
break, continue, return, and throw statements,
624
labeled statements, 413
names and identifiers, 137
normal and abrupt completion of statements,
406

break, continue, return, and throw
statements, 624

C
capture conversion, 103

array access expressions, 491
assignment operators, 582
bounds, 662

cast expressions, 549
compile-time declaration of a method
reference, 533, 534
compile-time step 3: is the chosen method
appropriate?, 520
enhanced for statement, 430
expression compatibility constraints, 667,
667
field access using a primary, 495
function types, 325
intersection types, 70
least upper bound, 75
members and constructors of parameterized
types, 63
parameterized types, 59
qualified expression names, 158, 158, 158,
159, 159
reference conditional expressions, 580
resolution, 676
simple expression names, 157
subtyping among class and interface types,
72
type arguments of parameterized types, 61
type of a method reference, 538

cast expressions, 549
array types, 330
casting contexts, 114
compile-time step 3: is the chosen method
appropriate?, 519
constant expressions, 605
expressions and run-time checks, 463, 464
floating-point operations, 48
forms of expressions, 460
happens-before order, 644
integer operations, 43
intersection types, 70
normal and abrupt completion of evaluation,
465

INDEX

720

objects, 54
syntactic classification of a name according
to context, 151
type comparison operator instanceof, 564
unary operators, 544
where types are used, 76

casting contexts, 114
boolean type and boolean values, 51
cast expressions, 549, 550
expressions and run-time checks, 463, 464
happens-before order, 644
kinds of types and values, 42
lambda expressions, 595
method reference expressions, 531
objects, 54
reference equality operators == and !=, 567

casting conversions to primitive types, 116
casting conversions to reference types, 117
causes of Exceptions, 343
character literals, 34

boxing conversion, 101
comments, 22
constant expressions, 605
escape sequences for character and String
literals, 37
lexical literals, 473
unicode, 16

check accessibility of type and method, 523
run-time evaluation of method references,
540, 540, 541

checked casts and unchecked casts, 121
variables of reference type, 81

checked casts at run time, 122
checked casts and unchecked casts, 122

checked exception constraints, 671
choosing the constructor and its arguments,
481

anonymous constructors, 486

class instance creation expressions, 478
compile-time declaration of a method
reference, 533
default constructor, 265
expression compatibility constraints, 664
formal parameters, 257

choosing the most specific method, 514
compile-time declaration of a method
reference, 534, 535, 535
compile-time step 2: determine method
Signature, 504
conditional operator ? :, 572, 573
method and constructor overloading, 399
more specific method inference, 686, 686
phase 1: identify matching arity methods
applicable by strict invocation, 512
phase 2: identify matching arity methods
applicable by loose invocation, 513
phase 3: identify methods applicable by
variable arity invocation, 513

class body and member declarations, 205, 386
class members, 206
member type declarations, 254, 254
scope of a declaration, 140
what binary compatibility is and is not, 382

class declarations, 191
declarations, 130
reference types and values, 52
types, classes, and interfaces, 88

class instance creation expressions, 476
conditional operator ? :, 572, 573
constructor declarations, 256, 256
constructor overloading, 264
creation of new class instances, 365
exception analysis of expressions, 346
form of a binary, 379
forms of expressions, 460
functional interfaces, 319

721

initial values of variables, 87, 87
instance initializers, 255
invocation contexts, 112
invocation type inference, 681
kinds of variables, 84
method reference expressions, 529
names and identifiers, 138
objects, 53, 53
return statement, 436
run-time handling of an exception, 350
String conversion, 106
syntactic classification of a name according
to context, 151, 151, 151
types, classes, and interfaces, 88
where types are used, 76, 76, 77, 77

class literals, 473
declarations, 132
normal annotations, 310
syntactic classification of a name according
to context, 150

class loading, 356
causes of Exceptions, 343
class literals, 474
load the class test, 354

class members, 206
abstract classes, 192
declarations, 130
function types, 323
members and constructors of parameterized
types, 63
method invocation type, 516

class modifiers, 191
@Target, 302
anonymous class declarations, 485
local class declarations, 407
reference type casting, 118, 118, 118

class Object, 55
checked casts at run time, 122, 123

method invocation type, 517
class objects for arrays, 338

types, classes, and interfaces, 88
class String, 56

lexical literals, 473
literals, 24
objects, 53
String literals, 35, 36

class type parameters, 385
classes, 189

local class declarations, 407
package members, 173
qualified expression names, 158
reclassification of contextually ambiguous
names, 153
top level type declarations, 185

comments, 21
input elements and tokens, 20
lexical grammar, 9
lexical translations, 16
line terminators, 19
unicode, 16

compilation units, 177
determining accessibility, 162
host support for packages, 175
observability of a package, 179
package members, 173
reclassification of contextually ambiguous
names, 153, 153
scope of a declaration, 139
shadowing, 146
syntactic grammar, 10

compile-time checking of Exceptions, 344
checked exception constraints, 671

compile-time declaration of a method
reference, 532

checked exception constraints, 672
choosing the most specific method, 515

INDEX

722

compile-time step 2: determine method
Signature, 503
expression compatibility constraints, 666,
667
identify potentially applicable methods, 510
invocation type inference, 683, 683
method reference expressions, 531
phase 1: identify matching arity methods
applicable by strict invocation, 511
run-time evaluation of method references,
541

compile-time step 1: determine class or
interface to search, 500

class Object, 56
compile-time declaration of a method
reference, 532
identify potentially applicable methods, 509
method invocation type, 517
raw types, 68

compile-time step 2: determine method
Signature, 502

choosing the constructor and its arguments,
483, 483
compile-time declaration of a method
reference, 532
enum constants, 268
overloading, 251
what binary compatibility is and is not, 382

compile-time step 3: is the chosen method
appropriate?, 517

check accessibility of type and method, 523
choosing the most specific method, 515
create frame, synchronize, transfer control,
528
form of a binary, 379
locate method to invoke, 524, 524
method invocation expressions, 499
run-time evaluation of method references,
540, 541, 542

complementary pairs of bounds, 674
incorporation, 673

compound assignment operators, 588
evaluate left-hand operand first, 466

compute target reference (if necessary), 520
method reference expressions, 531

concepts and notation, 660
conditional expression type (primitive 3rd
operand, part i), 574
conditional expression type (primitive 3rd
operand, part ii), 575
conditional expression type (reference 3rd
operand, part i), 576
conditional expression type (reference 3rd
operand, part ii), 577
conditional expression type (reference 3rd
operand, part iii), 578
conditional operator ? :, 571, 614, 615

binary numeric promotion, 126
boolean type and boolean values, 51, 51
conditional operator ? :, 614, 615
constant expressions, 605
floating-point operations, 48
forms of expressions, 460, 461
identify potentially applicable methods, 511
integer operations, 43
objects, 55
phase 1: identify matching arity methods
applicable by strict invocation, 511

conditional-and operator &&, 570, 613
boolean type and boolean values, 51
conditional-and operator &&, 613
constant expressions, 605

conditional-or operator ||, 570, 614
boolean type and boolean values, 51
conditional-or operator ||, 614
constant expressions, 605
forms of expressions, 460

723

constant expressions, 605
assignment contexts, 108
boolean constant expressions, 613
class String, 56
creation of new class instances, 366
final fields and static constant variables, 391
final variables, 85
forms of expressions, 461
fp-strict expressions, 462
initialization of fields in interfaces, 285
normal annotations, 310
numeric conditional expressions, 579
objects, 53
String concatenation operator +, 557
String literals, 36
subsequent modification of final fields, 655
unreachable statements, 454, 454, 455

constraint formulas, 661
reduction, 663

constructor body, 259
constructor declarations, 256
definite assignment, constructors, and
instance initializers, 629
initial values of variables, 87
kinds of variables, 84
return statement, 436
this, 474

constructor declarations, 256
class body and member declarations, 206
creation of new class instances, 366
declarations, 131, 131
final fields, 219
raw types, 67
return statement, 436
run-time evaluation of class instance creation
expressions, 484
simple expression names, 157

syntactic classification of a name according
to context, 150
where types are used, 77

constructor modifiers, 258
@Target, 303

constructor overloading, 264
constructor Signature, 258

form of a binary, 380
constructor throws, 259

compile-time checking of Exceptions, 344
declarations, 132
syntactic classification of a name according
to context, 150
throw statement, 438
where types are used, 76, 78

context-free grammars, 9
compilation units, 177

continue statement, 434
break, continue, return, and throw statements,
624
labeled statements, 413
names and identifiers, 137
normal and abrupt completion of statements,
406

conversions and contexts, 91
parenthesized expressions, 476
type of an expression, 461

create frame, synchronize, transfer control,
528

run-time evaluation of method references,
540, 540, 541

creation of new class instances, 365
constructor declarations, 256
field initialization, 222
form of a binary, 377
instance initializers, 255
run-time evaluation of class instance creation
expressions, 484

INDEX

724

static fields, 216
String concatenation operator +, 557
when initialization occurs, 361

D
declarations, 130

functional interfaces, 322
members and constructors of parameterized
types, 64
names and identifiers, 137
syntactic classification of a name according
to context, 150
where types are used, 77, 78

default constructor, 265
form of a binary, 381
method and constructor declarations, 394

defaults for annotation type elements, 297
marker annotations, 312
single-element annotations, 312
syntactic classification of a name according
to context, 152

definite assignment, 607
assignment operators, 582
final variables, 85, 85, 86
initial values of variables, 87
inner classes and enclosing instances, 199
kinds of variables, 84
lambda body, 600
parenthesized expressions, 476

definite assignment and anonymous classes,
627
definite assignment and array initializers, 626
definite assignment and enum constants, 626
definite assignment and expressions, 613
definite assignment and member types, 627
definite assignment and parameters, 626
definite assignment and statements, 617

definite assignment and static initializers, 628
definite assignment and enum constants, 626
final fields, 219

definite assignment, constructors, and
instance initializers, 628

final fields, 219
detailed initialization procedure, 363

field initialization, 221, 221
final fields and static constant variables, 393
form of a binary, 377
initialization of fields in interfaces, 285
simple expression names, 157
static initializers, 255
throw statement, 439
when initialization occurs, 361

details on protected access, 166
determining accessibility, 163

determining accessibility, 162
top level type declarations, 185

determining enclosing instances, 480
anonymous constructors, 486
choosing the constructor and its arguments,
482, 482
class instance creation expressions, 478
compile-time declaration of a method
reference, 535
default constructor, 265
formal parameters, 257
inner classes and enclosing instances, 198
method reference expressions, 531
run-time evaluation of method references,
541

determining the class being instantiated, 478
abstract classes, 192
class instance creation expressions, 478
enum types, 267

determining the meaning of a name, 148
class members, 207

725

declarations, 131
interface members, 283
names and identifiers, 137
obscuring, 147
where types are used, 77

division operator /, 552
compound assignment operators, 590
evaluate operands before operation, 468
integer operations, 44
normal and abrupt completion of evaluation,
465

do statement, 424
boolean type and boolean values, 51
do statements, 622

do statements, 622

E
empty statement, 412

empty statements, 617
empty statements, 617
enhanced for statement, 429

@Target, 303
array variables, 331
for statements, 622
scope of a declaration, 141
syntactic classification of a name according
to context, 150
where types are used, 76

enum body declarations, 268
constructor declarations, 256
declarations, 130, 130, 131

enum constants, 267
@Target, 303
definite assignment and enum constants, 626
definite assignment and static initializers,
628
enum types, 267

normal annotations, 310
where types are used, 76

enum members, 271
declarations, 130
form of a binary, 381

enum types, 266
@Target, 302
abstract methods, 232
class declarations, 191
declarations, 130
normal annotations, 310
superclasses and subclasses, 200
switch statement, 420

equality operators, 565
constant expressions, 605

erasure, 64
assignment contexts, 109
cast expressions, 549
checked casts and unchecked casts, 122
checked casts at run time, 122
choosing the most specific method, 516
class type parameters, 385
compile-time step 3: is the chosen method
appropriate?, 519
constructor Signature, 258
create frame, synchronize, transfer control,
528
declarations, 131
evaluate arguments, 522
field declarations, 390
form of a binary, 378, 379, 380
invocation contexts, 114
method and constructor formal parameters,
396
method and constructor type parameters, 395
method result type, 396
method Signature, 230
raw types, 66

INDEX

726

requirements in overriding and hiding, 246
type variables, 58

escape sequences for character and String
literals, 37

character literals, 34
String literals, 35

evaluate arguments, 522
formal parameters, 229
variables of reference type, 81

evaluate left-hand operand first, 466
evaluate operands before operation, 468
evaluation order, 466
evaluation order for other expressions, 471
evaluation respects parentheses and
precedence, 469
evaluation, denotation, and result, 459

assert statement, 417
evolution of annotation types, 403
evolution of classes, 383
evolution of enums, 400
evolution of interfaces, 400
evolution of packages, 383
example programs, 6
exception analysis of expressions, 346

class instance creation expressions, 477
compile-time checking of Exceptions, 345
method invocation expressions, 499

exception analysis of statements, 346
compile-time checking of Exceptions, 345
explicit constructor invocations, 262
method throws, 238
throw statement, 438
try statement, 443

exception checking, 347
compile-time checking of Exceptions, 344
field initialization, 222
instance initializers, 255
method throws, 239

static initializers, 256
throw statement, 439, 439
try statement, 443
type of a lambda expression, 603

Exceptions, 341
floating-point operations, 49
integer operations, 44
normal and abrupt completion of statements,
406
throw statement, 437

execution, 353
execution of local variable declarations, 410
execution of try-catch, 444

try statement, 443
execution of try-finally and try-catch-finally,
445

try statement, 443
executions, 646

well-formed executions, 647
executions and causality requirements, 647
explicit constructor invocations, 260

anonymous constructors, 486, 486
constructor body, 259
creation of new class instances, 366
definite assignment, constructors, and
instance initializers, 629, 629
enum body declarations, 269
exception analysis of statements, 347
form of a binary, 379
inner classes and enclosing instances, 197,
198
instance initializers, 255
invocation contexts, 112
syntactic classification of a name according
to context, 151, 151
where types are used, 76, 77

expression compatibility constraints, 663
expression names, 543

727

declarations, 132
expression statements, 414, 620

evaluation, denotation, and result, 459
expression statements, 620
identify potentially applicable methods, 510
initialization of for statement, 427

expressions, 459
expressions and run-time checks, 462
extended try-with-resources, 451

F
feedback, 7
field (constant) declarations, 283

@Target, 303
array initializers, 335
array variables, 330, 331
declarations, 130
final variables, 85
interface body and member declarations, 282
kinds of variables, 83
obscuring, 147
shadowing, 144
syntactic classification of a name according
to context, 150
where types are used, 76

field access expressions, 494
assignment operators, 582
names and identifiers, 138
normal and abrupt completion of evaluation,
465
objects, 54
raw types, 68
simple assignment operator =, 582
static initializers, 256

field access using a primary, 494
field declarations, 211, 388, 402

array initializers, 335

array variables, 330, 331
class body and member declarations, 205
creation of new class instances, 366
declarations, 130
field declarations, 402
obscuring, 147
raw types, 67
reclassification of contextually ambiguous
names, 152
shadowing, 144
simple expression names, 157
syntactic classification of a name according
to context, 150
where annotations may appear, 314
where types are used, 76

field initialization, 221
definite assignment and static initializers,
628
definite assignment, constructors, and
instance initializers, 628
detailed initialization procedure, 364
exception checking, 347, 348
final fields and static constant variables, 393
initialization of fields in interfaces, 285
simple expression names, 157
static initializers, 255
this, 474

field modifiers, 215
@Target, 303
field declarations, 212

final classes, 194, 383
anonymous class declarations, 485
final methods, 234
superclasses and subclasses, 200
verification of the binary representation, 359

final field semantics, 652
memory model, 639

final fields, 219

INDEX

728

final fields and static constant variables, 391
field declarations, 402
final variables, 85
verification of the binary representation, 359

final methods, 234, 397
verification of the binary representation, 359

final variables, 85
constant expressions, 606, 606
detailed initialization procedure, 364
enum body declarations, 269
field initialization, 221
final fields, 219
final fields and static constant variables, 391
form of a binary, 377
initialization of fields in interfaces, 285
inner classes and enclosing instances, 197,
199, 199
lambda body, 600
local variable declarators and types, 410
narrowing reference conversion, 99
try statement, 442
try-with-resources, 448
when initialization occurs, 361

finalization of class instances, 369
class Object, 56
enum body declarations, 269
happens-before order, 643
kinds of variables, 83
unloading of classes and interfaces, 373

floating-point literals, 31
constant expressions, 605
lexical literals, 473

floating-point operations, 48
additive operators (+ and -) for numeric types,
561
division operator /, 553
multiplication operator *, 552
narrowing primitive conversion, 96

widening primitive conversion, 95
floating-point types, formats, and values, 45

cast expressions, 550
field declarations, 213
floating-point literals, 33
formal parameters, 229
fp-strict expressions, 462
lambda parameters, 598
lexical literals, 473, 473
local variable declarators and types, 410
narrowing primitive conversion, 97, 97
parenthesized expressions, 476
return statement, 437
unary minus operator -, 548

floating-point value set parameters, 46
floating-point types, formats, and values, 46,
46, 46

for statement, 426
boolean type and boolean values, 51
declarations, 131
initial values of variables, 87
kinds of variables, 84
local variable declaration statements, 409

for statements, 622
forbidden conversions, 106
form of a binary, 376

check accessibility of type and method, 523
compile-time step 3: is the chosen method
appropriate?, 519
final variables, 85
loading of classes and interfaces, 356
locate method to invoke, 524
resolution of symbolic references, 359
top level type declarations, 187
when reference types are the same, 56, 57

formal parameters, 226, 257
@Target, 303
array variables, 331

729

choosing the constructor and its arguments,
482
compile-time declaration of a method
reference, 537
compile-time step 3: is the chosen method
appropriate?, 519
declarations, 131, 131
default constructor, 265
definite assignment and parameters, 626,
626
evaluate arguments, 522
form of a binary, 381
formal parameters, 257
initial values of variables, 87, 87
invoke test.main, 356
kinds of variables, 83, 84
lambda parameters, 597, 598
method and constructor formal parameters,
395
method declarations, 226
reclassification of contextually ambiguous
names, 152, 152
scope of a declaration, 140, 140
shadowing and obscuring, 142
shared variables, 640
syntactic classification of a name according
to context, 150, 150, 150
this, 474
variables of reference type, 81
where types are used, 76, 76, 76, 77

forms of expressions, 460
boolean conditional expressions, 579
choosing the most specific method, 515
class instance creation expressions, 478
conditional operator ? :, 572, 572
expression compatibility constraints, 663,
663
identify potentially applicable methods, 511

lambda expressions, 594
method reference expressions, 531
more specific method inference, 687
numeric conditional expressions, 579
parenthesized expressions, 476

forward references during field initialization,
222

when initialization occurs, 361
fp-strict expressions, 462

additive operators (+ and -) for numeric types,
560
cast expressions, 550
constant expressions, 606
division operator /, 553
floating-point types, formats, and values, 45
formal parameters, 229
method declarations, 286
multiplication operator *, 551
return statement, 437
strictfp classes, 194
strictfp interfaces, 279
strictfp methods, 235
value set conversion, 106, 107
widening primitive conversion, 95

fully qualified names and canonical names,
169

compilation units, 177
form of a binary, 377, 380
import declarations, 180, 180
local class declarations, 407
named packages, 178
notation, 6
package members, 174
single-static-import declarations, 184
single-type-import declarations, 181
static-import-on-demand declarations, 184
top level type declarations, 185
type-import-on-demand declarations, 183

INDEX

730

function types, 323
checked exception constraints, 672
expression compatibility constraints, 666
type of a lambda expression, 602
type of a method reference, 538

functional interface parameterization
inference, 685

expression compatibility constraints, 664
type of a lambda expression, 602

functional interfaces, 319
@FunctionalInterface, 308
checked exception constraints, 671
expression compatibility constraints, 664
functional interface parameterization
inference, 685
identify potentially applicable methods, 510
lambda expressions, 595
method reference expressions, 531
type of a lambda expression, 602
type of a method reference, 537

G
generic classes and type parameters, 194

@Target, 303
capture conversion, 103
class instance creation expressions, 477
declarations, 130
form of a binary, 377
generic constructors, 259
generic methods, 237
parameterized types, 59
scope of a declaration, 140
syntactic classification of a name according
to context, 150
type variables, 57
types, classes, and interfaces, 89
where types are used, 76

generic constructors, 259
@Target, 303
class instance creation expressions, 477
declarations, 130
form of a binary, 377
scope of a declaration, 140
syntactic classification of a name according
to context, 150
type erasure, 64
type variables, 57
where types are used, 76

generic interfaces and type parameters, 279
@Target, 303
capture conversion, 103
declarations, 130
form of a binary, 377
parameterized types, 59
scope of a declaration, 140
subtyping among class and interface types,
72
superinterfaces, 203
syntactic classification of a name according
to context, 150
type variables, 57
types, classes, and interfaces, 89
where types are used, 76

generic methods, 237
@Target, 303
compile-time declaration of a method
reference, 537
compile-time step 2: determine method
Signature, 504
declarations, 130
form of a binary, 377
function types, 323, 323
method declarations, 226, 287
method invocation expressions, 500
method result, 238

731

method Signature, 230
scope of a declaration, 140
syntactic classification of a name according
to context, 150
type erasure, 64
type variables, 57
where types are used, 76

grammar notation, 10
grammars, 9

H
happens-before order, 643

executions, 646
executions and causality requirements, 649
finalization of class instances, 370

hiding (by class methods), 245
obscuring, 147
shadowing, 144

host support for packages, 175
top level type declarations, 187

I
identifiers, 22

declarations, 130
keywords, 24
lexical grammar, 9

identify potentially applicable methods, 509
compile-time declaration of a method
reference, 533, 533, 534
compile-time step 1: determine class or
interface to search, 500
compile-time step 2: determine method
Signature, 503
phase 1: identify matching arity methods
applicable by strict invocation, 511

phase 2: identify matching arity methods
applicable by loose invocation, 512
phase 3: identify methods applicable by
variable arity invocation, 513

identity conversion, 94
assignment contexts, 107
boxing conversion, 101
capture conversion, 104
casting contexts, 115
invocation contexts, 112, 113
numeric contexts, 124
unary numeric promotion, 124

if statement, 415
boolean type and boolean values, 51

if statements, 620
if-then statement, 415

if statements, 620
if-then-else statement, 416

if statements, 620
implementing finalization, 370
import declarations, 180

compilation units, 177
incorporation, 673
incrementation part of for statement, 623
inference variables, 660
inheritance and overriding, 287

compile-time checking of Exceptions, 345
compile-time declaration of a method
reference, 535
compile-time step 3: is the chosen method
appropriate?, 518
interface members, 283
method declarations, 287

inheritance, overriding, and hiding, 240
class Object, 56
compile-time declaration of a method
reference, 535
enum constants, 268

INDEX

732

function types, 323
inheriting methods with override-equivalent
signatures, 250, 289

variables of reference type, 81
initial values of variables, 87

array initializers, 335
creation of new class instances, 366
field initialization, 221
final fields and static constant variables, 393
initialization of fields in interfaces, 285
kinds of variables, 83, 83, 83
preparation of a class or interface type, 359
run-time evaluation of array creation
expressions, 488
run-time evaluation of class instance creation
expressions, 484
variables, 80

initialization of classes and interfaces, 360
causes of Exceptions, 343
initialize test: execute initializers, 356
objects, 53
preparation of a class or interface type, 359
run-time handling of an exception, 350
static fields, 216

initialization of fields in interfaces, 285
detailed initialization procedure, 364
field initialization, 221
final fields and static constant variables, 393

initialization of for statement, 427
initialization part of for statement, 623
initialize test: execute initializers, 355
inner classes and enclosing instances, 197

anonymous class declarations, 485
compile-time step 3: is the chosen method
appropriate?, 517
determining enclosing instances, 480
explicit constructor invocations, 261
form of a binary, 381

local class declarations, 407
method reference expressions, 531
qualified this, 475
when initialization occurs, 361

input elements and tokens, 19
invocation type inference, 681
lexical grammar, 9, 9
lexical translations, 16
unicode, 16

instance creation, 365, 476
conditional operator ? :, 572, 573
constructor declarations, 256, 256, 256
constructor overloading, 264
creation of new class instances, 365
exception analysis of expressions, 346
field initialization, 222
form of a binary, 377, 379
forms of expressions, 460
functional interfaces, 319
initial values of variables, 87, 87
instance initializers, 255, 255
invocation contexts, 112
invocation type inference, 681
kinds of variables, 84
method reference expressions, 529
names and identifiers, 138
objects, 53, 53
return statement, 436
run-time evaluation of class instance creation
expressions, 484
run-time handling of an exception, 350
static fields, 216
String concatenation operator +, 557
String conversion, 106
syntactic classification of a name according
to context, 151, 151, 151
types, classes, and interfaces, 88
when initialization occurs, 361

733

where types are used, 76, 76, 77, 77
instance initializers, 255

class body and member declarations, 206
definite assignment, constructors, and
instance initializers, 629
exception checking, 348
return statement, 436
simple expression names, 157
this, 474
throw statement, 439

instanceof operator, 564
expressions and run-time checks, 463
objects, 54
syntactic classification of a name according
to context, 151
where types are used, 76, 78

integer bitwise operators &, ^, and |, 568
binary numeric promotion, 126
integer operations, 43
shift operators, 562, 562

integer literals, 25
boxing conversion, 101
constant expressions, 605
lexical literals, 473

integer operations, 43
integral types and values, 43

character literals, 34
integer literals, 25
lexical literals, 473, 473, 473

interaction with the memory model, 372
interactions of waits, notification, and
interruption, 635
interface body and member declarations, 282

interface members, 282
member type declarations, 254, 254
scope of a declaration, 140

interface declarations, 278
declarations, 130

reference types and values, 52
types, classes, and interfaces, 88

interface members, 282, 401
check accessibility of type and method, 523
declarations, 130
form of a binary, 378, 380

interface method body, 291
superinterfaces, 204
this, 474

interface method declarations, 402
interface methods, 286

@Target, 303, 303
array variables, 331
declarations, 131, 131, 132
inheritance, overriding, and hiding, 241
interface body and member declarations, 282
raw types, 67
syntactic classification of a name according
to context, 150, 150, 150
where types are used, 76, 76, 76, 78

interface modifiers, 278
@Target, 302
static member type declarations, 255

interface type parameters, 401
interfaces, 277

package members, 173
qualified expression names, 158
reclassification of contextually ambiguous
names, 153
top level type declarations, 185

interruptions, 635
intersection types, 70

form of a binary, 378, 379
functional interfaces, 323
type variables, 58
where types are used, 77

introduction, 1
invocation applicability inference, 678

INDEX

734

invocation type inference, 679, 680, 680,
682
phase 1: identify matching arity methods
applicable by strict invocation, 512
phase 2: identify matching arity methods
applicable by loose invocation, 512
phase 3: identify methods applicable by
variable arity invocation, 513

invocation contexts, 112
class instance creation expressions, 478
constraint formulas, 661, 661
create frame, synchronize, transfer control,
528
expression compatibility constraints, 663
formal parameters, 229
kinds of types and values, 42
lambda expressions, 595
method invocation expressions, 500
method reference expressions, 531
reference conditional expressions, 580
type compatibility constraints, 668

invocation type inference, 679
expression compatibility constraints, 664,
667
invocation type inference, 681
method invocation type, 516

invoke test.main, 356
iteration of for statement, 427

J
Java Virtual Machine startup, 353

K
keywords, 24

identifiers, 23
lexical grammar, 9

primitive types and values, 42
kinds and causes of Exceptions, 342
kinds of conversion, 94
kinds of Exceptions, 342

compile-time checking of Exceptions, 345,
345
generic classes and type parameters, 195
method throws, 238, 239
narrowing primitive conversion, 97
throw statement, 438
widening primitive conversion, 95

kinds of types and values, 41
capture conversion, 103
lexical literals, 473
literals, 24
null literal, 38
throw statement, 438

kinds of variables, 83
formal parameters, 227

L
labeled statements, 413, 619

break statement, 432
continue statement, 434
labeled statements, 619
names and identifiers, 137

lambda body, 599
choosing the most specific method, 515
identify potentially applicable methods, 510,
510
kinds of variables, 84
type of a lambda expression, 603

lambda expressions, 594
exception analysis of expressions, 346
forms of expressions, 460, 461
functional interfaces, 319
identify potentially applicable methods, 510

735

return statement, 436
scope of a declaration, 140

lambda parameters, 596
array variables, 331
choosing the most specific method, 514, 514
compile-time step 2: determine method
Signature, 503
declarations, 131
kinds of variables, 84
phase 1: identify matching arity methods
applicable by strict invocation, 511
shadowing and obscuring, 142
syntactic classification of a name according
to context, 150
where types are used, 76

least upper bound, 73
intersection types, 70
resolution, 676

lexical grammar, 9
lexical literals, 472

kinds of types and values, 42
lexical structure, 15

lexical grammar, 9
lexical translations, 16
line terminators, 19

character literals, 34
input elements and tokens, 19
lexical translations, 16
white space, 20

link test: verify, prepare, (optionally) resolve,
354
linking of classes and interfaces, 358

causes of Exceptions, 343
check accessibility of type and method, 523
link test: verify, prepare, (optionally) resolve,
354
resolution of symbolic references, 360

literals, 24

lexical grammar, 9
lexical literals, 472

load the class test, 354
loading of classes and interfaces, 356

causes of Exceptions, 343
class literals, 474
load the class test, 354

loading process, 357
superclasses and subclasses, 202
superinterfaces and subinterfaces, 281

local class declaration statements, 619
local class declarations, 407

class instance creation expressions, 477
class modifiers, 191
form of a binary, 377
inner classes and enclosing instances, 197
local class declaration statements, 619
reclassification of contextually ambiguous
names, 153
shadowing and obscuring, 142

local variable declaration statements, 408,
619

@Target, 303
array initializers, 335
declarations, 131
initial values of variables, 87
initialization of for statement, 427
initialization part of for statement, 623
kinds of variables, 84
local variable declaration statements, 619
objects, 53
reclassification of contextually ambiguous
names, 152
scope of a declaration, 140
shadowing and obscuring, 142
shared variables, 640
syntactic classification of a name according
to context, 150

INDEX

736

where types are used, 76
local variable declarators and types, 409

array variables, 330, 331
locate method to invoke, 524

run-time evaluation of method references,
540, 540, 541

logical complement operator !, 548, 614
boolean type and boolean values, 51
constant expressions, 605
logical complement operator !, 614

M
marker annotations, 311

annotations, 308
meaning of expression names, 156

expression names, 543
forms of expressions, 460
names and identifiers, 137

meaning of method names, 160
names and identifiers, 137

meaning of package names, 154
names and identifiers, 137

meaning of packageortypenames, 155
type-import-on-demand declarations, 183

meaning of type names, 155
names and identifiers, 137

member type declarations, 254, 291
@Target, 302, 302
class body and member declarations, 205
class instance creation expressions, 477, 477
class modifiers, 191, 191
declarations, 130, 130, 130, 130
definite assignment and member types, 627,
627
form of a binary, 377, 377, 381, 381
inner classes and enclosing instances, 197,
197

interface body and member declarations, 282
interface modifiers, 279
member type declarations, 291
obscuring, 147, 147
qualified type names, 156, 156
reclassification of contextually ambiguous
names, 153, 153, 154, 154
reference types and values, 53, 53
shadowing, 144, 144
static-import-on-demand declarations, 185,
185
syntactic classification of a name according
to context, 150, 150
type-import-on-demand declarations, 183,
183
where types are used, 76, 76, 76, 76

members and constructors of parameterized
types, 63
memory model, 637

interaction with the memory model, 372
volatile fields, 220

method and constructor body, 398
method and constructor declarations, 394

method and constructor formal parameters,
395
method result type, 396

method and constructor formal parameters,
395

interface method declarations, 402
method and constructor overloading, 399

interface method declarations, 402
method and constructor throws, 398

interface method declarations, 402
method and constructor type parameters, 394

class type parameters, 385
method body, 240

abstract methods, 232
constructor body, 260

737

method declarations, 226
native methods, 235
this, 474

method declarations, 225, 286
@Target, 303, 303
array variables, 331
class body and member declarations, 205
declarations, 130, 131, 131, 132
evaluation, denotation, and result, 459
inheritance, overriding, and hiding, 241
interface body and member declarations, 282
raw types, 67, 67
return statement, 436
simple expression names, 157
syntactic classification of a name according
to context, 150, 150, 150, 150
where types are used, 76, 76, 76, 78

method invocation expressions, 499
anonymous constructors, 486, 486
compile-time declaration of a method
reference, 532
conditional operator ? :, 572, 573
constructor declarations, 257
declarations, 132
evaluation, denotation, and result, 459
exception analysis of expressions, 346
expressions and run-time checks, 463
field initialization, 221, 222
formal parameters, 229
forms of expressions, 461
happens-before order, 644
hiding (by class methods), 245
initial values of variables, 87
initialization of fields in interfaces, 285
instance initializers, 255
invocation contexts, 112
invocation type inference, 681
kinds of variables, 83, 84

lambda parameters, 598
method declarations, 226
names and identifiers, 138
normal and abrupt completion of evaluation,
465, 465
objects, 54
overloading, 251
overriding (by instance methods), 242
return statement, 436
run-time handling of an exception, 350
simple method names, 160
static initializers, 256
syntactic classification of a name according
to context, 150, 151, 152
this, 474
where types are used, 76, 77

method invocation type, 516
choosing the constructor and its arguments,
483, 483
compile-time declaration of a method
reference, 537
compile-time step 3: is the chosen method
appropriate?, 518
exception analysis of expressions, 346, 346
exception analysis of statements, 347
expression compatibility constraints, 667
invocation type inference, 679
type compatibility constraints, 668
type of a method reference, 538

method modifiers, 231
@Target, 303
method declarations, 226
objects, 55

method overriding, 400
method reference expressions, 529

access to a protected member, 167
declarations, 132
expressions and run-time checks, 463, 464

INDEX

738

form of a binary, 379
forms of expressions, 460, 461
functional interfaces, 319
identify potentially applicable methods, 510
names and identifiers, 138
syntactic classification of a name according
to context, 150, 151, 152
where types are used, 76, 77, 77

method result, 237
abstract classes, 192
abstract methods, 232
class literals, 473
constructor declarations, 256
function types, 323
functional interfaces, 319
interface method body, 291
method body, 240
method declarations, 226
requirements in overriding and hiding, 246
return statement, 436
type erasure, 64
where types are used, 76

method result type, 396
interface method declarations, 402

method Signature, 230
abstract classes, 192
abstract methods, 232
choosing the most specific method, 516
constructor Signature, 258
form of a binary, 379
functional interfaces, 319
hiding (by class methods), 245
inheritance and overriding, 287
inheritance, overriding, and hiding, 241, 241
inheriting methods with override-equivalent
signatures, 250, 289
interface members, 282
method declarations, 226, 287

method result, 238
overloading, 290
overriding (by instance methods), 241, 242,
288
requirements in overriding and hiding, 246
type erasure, 64

method throws, 238
abstract methods, 232
compile-time checking of Exceptions, 344
constructor throws, 259
declarations, 132
method declarations, 226
syntactic classification of a name according
to context, 150
throw statement, 438
where types are used, 76, 78

more specific method inference, 686
choosing the most specific method, 514

multiple annotations of the same type, 318
annotation types, 292
annotations, 308
class modifiers, 191
constructor modifiers, 258
enum constants, 268
field (constant) declarations, 283
field modifiers, 215
formal parameters, 228
generic classes and type parameters, 195
generic interfaces and type parameters, 280
interface modifiers, 278
lambda parameters, 598
local variable declaration statements, 409
method declarations, 286
method modifiers, 231
named packages, 178

multiplication operator *, 551
multiplicative operators, 550

binary numeric promotion, 126

739

constant expressions, 605
floating-point operations, 48
forms of expressions, 460
integer operations, 43

N
name classification, 149

access control, 161
declarations, 132
reference types and values, 53

name reclassification, 152
method invocation expressions, 499

named packages, 178
@Target, 302

names, 129
names and identifiers, 137

compile-time declaration of a method
reference, 535
import declarations, 180
local class declarations, 407
named packages, 178
shadowing and obscuring, 142

narrowing primitive conversion, 96
casting contexts, 115
floating-point operations, 49
narrowing primitive conversion, 97
postfix decrement operator --, 544
postfix increment operator ++, 543
prefix decrement operator --, 547
prefix increment operator ++, 546
widening and narrowing primitive
conversion, 99

narrowing reference conversion, 99
casting contexts, 115

native methods, 235, 397
method body, 240

new keyword, 476

conditional operator ? :, 572, 573
constructor declarations, 256, 256
constructor overloading, 264
creation of new class instances, 365
exception analysis of expressions, 346
form of a binary, 379
forms of expressions, 460
functional interfaces, 319
initial values of variables, 87, 87
instance initializers, 255
invocation contexts, 112
invocation type inference, 681
kinds of variables, 84
method reference expressions, 529
names and identifiers, 138
objects, 53, 53
return statement, 436
run-time handling of an exception, 350
String conversion, 106
syntactic classification of a name according
to context, 151, 151, 151
types, classes, and interfaces, 88
where types are used, 76, 76, 77, 77

non-atomic treatment of double and long, 658
normal and abrupt completion of evaluation,
464

causes of Exceptions, 343
normal and abrupt completion of statements,
406, 406
run-time handling of an exception, 350

normal and abrupt completion of statements,
405

interface method body, 291
method body, 240
normal and abrupt completion of evaluation,
466
run-time handling of an exception, 350

normal annotations, 309

INDEX

740

annotations, 308
defaults for annotation type elements, 297
names and identifiers, 138
syntactic classification of a name according
to context, 152

notation, 6
notification, 634
null literal, 38

compile-time step 3: is the chosen method
appropriate?, 518
identifiers, 23
kinds of types and values, 42
lexical literals, 473

numeric conditional expressions, 579
numeric contexts, 124

floating-point operations, 48
integer operations, 44

numerical comparison operators <, <=, >, and
>=, 563

binary numeric promotion, 126
floating-point operations, 48
floating-point types, formats, and values, 47
integer operations, 43

numerical equality operators == and !=, 566
binary numeric promotion, 126
floating-point operations, 48
floating-point types, formats, and values, 47
integer operations, 43

O
object creation, 365

constructor declarations, 256
field initialization, 222
form of a binary, 377
instance initializers, 255
run-time evaluation of class instance creation
expressions, 484

static fields, 216
String concatenation operator +, 557
when initialization occurs, 361

objects, 53, 55
checked casts at run time, 122, 123
method invocation type, 517
String literals, 36

obscuring, 147
labeled statements, 413
shadowing, 144

observability of a package, 179
qualified package names, 155
scope of a declaration, 139

observable behavior and nonterminating
executions, 650

actions, 640, 641
operators, 38

input elements and tokens, 20
lexical grammar, 9

operators ++ and --, 616
organization of the specification, 2
other expressions, 616
other expressions of type boolean, 615
overload resolution, 502, 509, 511, 512, 513,
514

choosing the constructor and its arguments,
483, 483, 483
choosing the most specific method, 514
compile-time declaration of a method
reference, 532, 533, 533, 534, 534, 534,
534, 534, 534, 534, 534, 534, 535, 535,
535, 535
compile-time step 1: determine class or
interface to search, 500
compile-time step 2: determine method
Signature, 503, 503, 503, 503, 503, 503,
503, 504
conditional operator ? :, 572, 573

741

enum constants, 268
invocation applicability inference, 678, 678
invocation type inference, 680
method and constructor overloading, 399
more specific method inference, 686, 686,
686, 686, 686
overloading, 251
phase 1: identify matching arity methods
applicable by strict invocation, 511, 512,
512
phase 2: identify matching arity methods
applicable by loose invocation, 512, 512,
513, 513
phase 3: identify methods applicable by
variable arity invocation, 513, 513, 513, 513
what binary compatibility is and is not, 382

overloading, 250, 290
constructor overloading, 264

overriding (by instance methods), 241, 288
final classes, 194
locate method to invoke, 525
superinterfaces, 204

P
package declarations, 178

compilation units, 177
declarations, 130

package members, 173
packages, 173
parameterized types, 59

annotation type elements, 294
capture conversion, 103, 104
checked casts and unchecked casts, 121
class literals, 474
declarations, 131
determining the class being instantiated, 478
field declarations, 390

functional interfaces, 323
generic classes and type parameters, 195
generic interfaces and type parameters, 280
method and constructor formal parameters,
396
method reference expressions, 530
method result type, 396
normal annotations, 310
raw types, 66
reference type casting, 117
reference types and values, 52
superclasses and subclasses, 200
superinterfaces, 202
superinterfaces and subinterfaces, 281
type erasure, 64
types, classes, and interfaces, 89
where types are used, 77

parenthesized expressions, 475
conditional operator ? :, 572, 572
constant expressions, 606
forms of expressions, 460
identify potentially applicable methods, 511
phase 1: identify matching arity methods
applicable by strict invocation, 511

phase 1: identify matching arity methods
applicable by strict invocation, 511

compile-time declaration of a method
reference, 534, 534, 534, 535, 535
compile-time step 2: determine method
Signature, 503, 503
invocation applicability inference, 678
more specific method inference, 686
phase 2: identify matching arity methods
applicable by loose invocation, 512
phase 3: identify methods applicable by
variable arity invocation, 513, 513

phase 2: identify matching arity methods
applicable by loose invocation, 512

INDEX

742

compile-time declaration of a method
reference, 534, 534
compile-time step 2: determine method
Signature, 503, 503
more specific method inference, 686
phase 1: identify matching arity methods
applicable by strict invocation, 512

phase 3: identify methods applicable by
variable arity invocation, 513

choosing the constructor and its arguments,
483
choosing the most specific method, 514
compile-time declaration of a method
reference, 534, 534
compile-time step 2: determine method
Signature, 503, 503
invocation applicability inference, 678
invocation type inference, 680
more specific method inference, 686
phase 2: identify matching arity methods
applicable by loose invocation, 513

poly expressions, 460
boolean conditional expressions, 579
choosing the most specific method, 515
class instance creation expressions, 478
conditional operator ? :, 572, 572
expression compatibility constraints, 663,
663
identify potentially applicable methods, 511
lambda expressions, 594
method reference expressions, 531
more specific method inference, 687
numeric conditional expressions, 579
parenthesized expressions, 476

postfix decrement operator --, 544
floating-point operations, 48, 49
integer operations, 43, 44

normal and abrupt completion of evaluation,
465
operators ++ and --, 616
variables, 80

postfix expressions, 542
final variables, 86
forms of expressions, 460
syntactic classification of a name according
to context, 151

postfix increment operator ++, 543
floating-point operations, 48, 49
integer operations, 43, 44
normal and abrupt completion of evaluation,
465
operators ++ and --, 616
variables, 80

potentially applicable methods, 509
compile-time declaration of a method
reference, 533, 533, 534
compile-time step 1: determine class or
interface to search, 500
compile-time step 2: determine method
Signature, 503
phase 1: identify matching arity methods
applicable by strict invocation, 511
phase 2: identify matching arity methods
applicable by loose invocation, 512
phase 3: identify methods applicable by
variable arity invocation, 513

predefined annotation types, 302
prefix decrement operator --, 546

floating-point operations, 48, 49
integer operations, 43, 44
normal and abrupt completion of evaluation,
465
operators ++ and --, 616
variables, 80

prefix increment operator ++, 546
floating-point operations, 48, 49

743

integer operations, 43, 44
normal and abrupt completion of evaluation,
465
operators ++ and --, 616
variables, 80

preparation of a class or interface type, 359
kinds of variables, 83
link test: verify, prepare, (optionally) resolve,
354

preventing instantiation of a class, 266
constructor declarations, 256

primary expressions, 471
access to a protected member, 167
forms of expressions, 460
postfix expressions, 542

primitive types and values, 42
class literals, 473
conditional operator ? :, 572
evaluation, denotation, and result, 459
kinds of types and values, 41
literals, 24
reifiable types, 65
unboxing conversion, 103
variables, 80
where types are used, 77

program exit, 374
programs and program order, 641

happens-before order, 644
synchronization order, 642

public classes, 384
public interfaces, 400

Q
qualified access to a protected constructor,
167
qualified expression names, 157

access control, 161

constant expressions, 606
field access expressions, 494
field declarations, 213
members and constructors of parameterized
types, 64

qualified package names, 155
qualified packageortypenames, 155
qualified this, 475

declarations, 132
syntactic classification of a name according
to context, 150

qualified type names, 156
access control, 161
members and constructors of parameterized
types, 64
single-static-import declarations, 184
single-type-import declarations, 181
static-import-on-demand declarations, 184
type-import-on-demand declarations, 183

R
raw types, 66

assignment contexts, 108
functional interfaces, 323
invocation contexts, 113
method reference expressions, 531
reifiable types, 65
subtyping among class and interface types,
72
type arguments of parameterized types, 61
unchecked conversion, 103
variables of reference type, 81
where types are used, 77

reading final fields during construction, 654
reclassification of contextually ambiguous
names, 152

method invocation expressions, 499

INDEX

744

reduction, 663
invocation applicability inference, 678

reference conditional expressions, 580
reference equality operators == and !=, 567

objects, 55
reference type casting, 117

casting contexts, 115
reference types and values, 52

class literals, 473
evaluation, denotation, and result, 459
initial values of variables, 87
kinds of types and values, 41
variables, 80

references, 7
reifiable types, 64

@SafeVarargs, 307
array creation expressions, 487
array initializers, 335
expressions and run-time checks, 463, 464
formal parameters, 228
method reference expressions, 531
type comparison operator instanceof, 564

relational operators, 562
constant expressions, 605

relationship to predefined classes and
interfaces, 7
remainder operator %, 554

evaluate operands before operation, 468
floating-point operations, 49
integer operations, 44
normal and abrupt completion of evaluation,
465

repeatable annotation types, 298
@Repeatable, 308
evolution of annotation types, 403
multiple annotations of the same type, 318

requirements in overriding, 289
variables of reference type, 81

requirements in overriding and hiding, 246
compile-time checking of Exceptions, 345
method throws, 239
requirements in overriding, 289, 289, 289
type of a lambda expression, 603
type of a method reference, 538
variables of reference type, 81

resolution, 675
invocation applicability inference, 679
invocation type inference, 681

resolution of symbolic references, 359
link test: verify, prepare, (optionally) resolve,
355

return statement, 436
break, continue, return, and throw statements,
624
constructor body, 260, 260
instance initializers, 255
interface method body, 291
method body, 240
normal and abrupt completion of statements,
406
static initializers, 255

run-time evaluation of array access
expressions, 492

array access, 333
evaluation order for other expressions, 471
normal and abrupt completion of evaluation,
465, 465

run-time evaluation of array creation
expressions, 488

evaluation order for other expressions, 471
initial values of variables, 87
kinds of variables, 83
normal and abrupt completion of evaluation,
464, 465

run-time evaluation of class instance creation
expressions, 484

745

evaluation order for other expressions, 471
normal and abrupt completion of evaluation,
464
throw statement, 439

run-time evaluation of lambda expressions,
604

creation of new class instances, 366
evaluation order for other expressions, 471
normal and abrupt completion of evaluation,
464

run-time evaluation of method invocation,
520

evaluation order for other expressions, 471
overloading, 251

run-time evaluation of method references,
539

creation of new class instances, 366
evaluation order for other expressions, 471
normal and abrupt completion of evaluation,
464

run-time handling of an exception, 349
expressions and run-time checks, 464
initial values of variables, 87
kinds of variables, 84
throw statement, 437
try statement, 443

S
scope of a declaration, 139

basic for statement, 427
class body and member declarations, 206
class declarations, 191
class literals, 474
compile-time step 1: determine class or
interface to search, 500
enhanced for statement, 430, 430
enum constants, 268

field declarations, 213
formal parameters, 228
forward references during field initialization,
222
generic classes and type parameters, 195
generic constructors, 259
generic interfaces and type parameters, 280
generic methods, 237
import declarations, 180
interface body and member declarations, 282
interface declarations, 278
lambda parameters, 598
local class declarations, 407
local variable declarators and types, 410
member type declarations, 254
method declarations, 226
named packages, 178
reclassification of contextually ambiguous
names, 152, 153
simple package names, 155
top level type declarations, 185
try statement, 442
try-with-resources, 448
type variables, 57

semantics of final fields, 654
separators, 38

lexical grammar, 9
shadowing, 144

compile-time step 1: determine class or
interface to search, 500
obscuring, 147
scope of a declaration, 139
simple expression names, 156

shadowing and obscuring, 142
basic for statement, 427
class body and member declarations, 206
class declarations, 191
enhanced for statement, 430

INDEX

746

enum constants, 268
field declarations, 213
formal parameters, 228
generic classes and type parameters, 195
generic constructors, 259
import declarations, 180
interface declarations, 278
lambda parameters, 598
local class declarations, 407
local variable declarators and types, 410
member type declarations, 254
method declarations, 226
named packages, 178
top level type declarations, 185
try statement, 442
try-with-resources, 448

shared variables, 640
happens-before order, 644

shift operators, 561
constant expressions, 605
integer operations, 43
unary numeric promotion, 125

simple assignment operator =, 582
assignment contexts, 109
expressions and run-time checks, 463, 464
normal and abrupt completion of evaluation,
465, 465

simple expression names, 156
constant expressions, 606
field access expressions, 494

simple method names, 160
method declarations, 226

simple package names, 155
simple packageortypenames, 155
simple type names, 156
single-element annotations, 312

annotation type elements, 295
annotations, 308

single-static-import declarations, 184
declarations, 130, 131
identify potentially applicable methods, 509
import declarations, 180
reclassification of contextually ambiguous
names, 153, 153
scope of a declaration, 139
simple method names, 160
single-type-import declarations, 181
syntactic classification of a name according
to context, 150

single-type-import declarations, 180
declarations, 130, 131
import declarations, 180
reclassification of contextually ambiguous
names, 153
scope of a declaration, 139
single-static-import declarations, 184
syntactic classification of a name according
to context, 150

sleep and yield, 636
standalone expressions, 460

boolean conditional expressions, 579
choosing the most specific method, 515
class instance creation expressions, 478
conditional operator ? :, 572, 572
expression compatibility constraints, 663,
663
identify potentially applicable methods, 511
lambda expressions, 594
method reference expressions, 531
more specific method inference, 687
numeric conditional expressions, 579
parenthesized expressions, 476

statements, 410
static fields, 216, 393

generic classes and type parameters, 195
kinds of variables, 83, 83

747

when initialization occurs, 361
static initializers, 255, 400

class body and member declarations, 206
definite assignment and static initializers,
628
exception checking, 347
final fields, 219
generic classes and type parameters, 195
inner classes and enclosing instances, 197
return statement, 436
simple expression names, 157
static initializers, 400
throw statement, 439

static member type declarations, 254
anonymous class declarations, 485
class modifiers, 191
generic classes and type parameters, 195
interface modifiers, 278, 279

static methods, 233, 398
generic classes and type parameters, 195
interface method declarations, 402
simple expression names, 157

static-import-on-demand declarations, 184
declarations, 130, 131
identify potentially applicable methods, 509
import declarations, 180
reclassification of contextually ambiguous
names, 153, 153
scope of a declaration, 139
simple method names, 160
syntactic classification of a name according
to context, 150
type-import-on-demand declarations, 183

strictfp classes, 194
fp-strict expressions, 462

strictfp interfaces, 279
fp-strict expressions, 462

strictfp methods, 235

fp-strict expressions, 462
String concatenation operator +, 557

boolean type and boolean values, 51
class String, 56
constructor declarations, 256
creation of new class instances, 366
floating-point operations, 48
integer operations, 44
normal and abrupt completion of evaluation,
464
objects, 53, 54
String contexts, 114
types, classes, and interfaces, 88

String contexts, 114
boolean type and boolean values, 51

String conversion, 105
String concatenation operator +, 557
String contexts, 114

String literals, 35
class String, 56
comments, 22
constant expressions, 605
creation of new class instances, 366
escape sequences for character and String
literals, 37
lexical literals, 473
reference equality operators == and !=, 567
unicode, 16

strings, 56
lexical literals, 473
literals, 24
objects, 53
String literals, 35, 36

subsequent modification of final fields, 655
subtyping, 71

assignment contexts, 108
checked casts and unchecked casts, 121
choosing the most specific method, 514

INDEX

748

constraint formulas, 661
invocation contexts, 113
method throws, 238
narrowing reference conversion, 99
parameterized types, 59
subtyping constraints, 668
type arguments of parameterized types, 61,
61
widening reference conversion, 99

subtyping among array types, 73
array types, 330

subtyping among class and interface types, 71
try statement, 442

subtyping among primitive types, 71
subtyping constraints, 668
superclasses and subclasses, 200

class members, 206
class Object, 55
enum types, 267
final classes, 194
kinds of variables, 83
loading process, 357
subtyping among class and interface types,
72
syntactic classification of a name according
to context, 150
where types are used, 76, 77

superclasses and superinterfaces, 384
loading process, 357
superinterfaces, 401
verification of the binary representation, 359

superinterfaces, 202, 401
checked casts at run time, 122
class members, 206
subtyping among class and interface types,
72
superinterfaces and subinterfaces, 281

syntactic classification of a name according
to context, 150
types, classes, and interfaces, 88
where types are used, 76, 77

superinterfaces and subinterfaces, 280
interface members, 282
loading process, 357
subtyping among class and interface types,
72
superclasses and subclasses, 202
superinterfaces, 203
syntactic classification of a name according
to context, 150
where types are used, 76, 77

switch statement, 419
scope of a declaration, 140, 140
switch statements, 621

switch statements, 621
synchronization, 632

objects, 55
synchronized methods, 235
synchronized statement, 439
volatile fields, 220

synchronization order, 642
actions, 640
interaction with the memory model, 372

synchronized methods, 235, 398
class Object, 56
synchronization, 632
synchronized statement, 440

synchronized statement, 439
create frame, synchronize, transfer control,
528
objects, 55
synchronization, 632
synchronized statements, 624

synchronized statements, 624

749

syntactic classification of a name according to
context, 149

access control, 161
declarations, 132
reference types and values, 53

syntactic grammar, 10
compilation units, 177
input elements and tokens, 20
lexical translations, 16

syntax, 689

T
this, 474

field initialization, 221, 222
initialization of fields in interfaces, 285
instance initializers, 255
static initializers, 256
static methods, 234

threads and locks, 631
objects, 55
throw statement, 437

throw statement, 437
break, continue, return, and throw statements,
624
causes of Exceptions, 343
exception analysis of statements, 346
initial values of variables, 87
kinds of variables, 84
normal and abrupt completion of statements,
406, 406
run-time handling of an exception, 349

top level type declarations, 185
class instance creation expressions, 477
class modifiers, 191
compilation units, 177
determining accessibility, 163
form of a binary, 377

host support for packages, 175
interface modifiers, 279
package members, 173, 174
scope of a declaration, 139, 139, 139
shadowing, 146
single-static-import declarations, 184
single-type-import declarations, 181
when initialization occurs, 361

transient fields, 219, 393
try statement, 440

@Target, 303
compile-time checking of Exceptions, 345
declarations, 131, 132
definite assignment and parameters, 626
exception analysis of statements, 347
expressions and run-time checks, 463, 464
final variables, 85
initial values of variables, 87
kinds of variables, 84
labeled statements, 413
method throws, 239
reclassification of contextually ambiguous
names, 152
run-time handling of an exception, 349
scope of a declaration, 141
shadowing and obscuring, 142
shared variables, 640
syntactic classification of a name according
to context, 151
throw statement, 437, 438, 438
try statements, 624
where types are used, 76, 78

try statements, 624
try-catch statement, 444

try statement, 443
try-catch-finally statement, 445

try statement, 443
try-finally statement, 445

INDEX

750

try statement, 443
try-with-resources, 447

@Target, 303
final variables, 85
local variable declaration statements, 409
scope of a declaration, 141
syntactic classification of a name according
to context, 150
try statement, 444
where types are used, 76

try-with-resources (basic), 448
try-with-resources (extended), 451
type arguments of parameterized types, 60

capture conversion, 103
checked casts and unchecked casts, 121
class instance creation expressions, 477, 477
constraint formulas, 661
explicit constructor invocations, 261
method invocation expressions, 500
method reference expressions, 530
reference types and values, 52
reifiable types, 65
subtyping among class and interface types,
72
subtyping constraints, 669
type equality constraints, 670
types, classes, and interfaces, 89
unchecked conversion, 103
where types are used, 77

type comparison operator instanceof, 564
expressions and run-time checks, 463
objects, 54
syntactic classification of a name according
to context, 151
where types are used, 76, 78

type compatibility constraints, 667
type equality constraints, 670
type erasure, 64

assignment contexts, 109
cast expressions, 549
checked casts and unchecked casts, 122
checked casts at run time, 122
choosing the most specific method, 516
class type parameters, 385
compile-time step 3: is the chosen method
appropriate?, 519
constructor Signature, 258
create frame, synchronize, transfer control,
528
declarations, 131
evaluate arguments, 522
field declarations, 390
form of a binary, 378, 379, 380
invocation contexts, 114
method and constructor formal parameters,
396
method and constructor type parameters, 395
method result type, 396
method Signature, 230
raw types, 66
requirements in overriding and hiding, 246
type variables, 58

type inference, 659
compile-time step 2: determine method
Signature, 504
generic constructors, 259
generic methods, 237

type of a constructor, 259
members and constructors of parameterized
types, 63

type of a lambda expression, 602
checked exception constraints, 671
expression compatibility constraints, 664
invocation type inference, 682, 683
lambda parameters, 597

type of a method reference, 537

751

checked exception constraints, 672
type of an expression, 461
type variables, 57

class literals, 474
field declarations, 390
generic classes and type parameters, 194
generic constructors, 259
generic interfaces and type parameters, 279
generic methods, 237
intersection types, 70
method and constructor formal parameters,
396
method result type, 396
reference types and values, 52
type erasure, 64
types, classes, and interfaces, 89
where types are used, 77

type-import-on-demand declarations, 183
declarations, 130
import declarations, 180
reclassification of contextually ambiguous
names, 153
scope of a declaration, 139
shadowing, 146
static-import-on-demand declarations, 185
syntactic classification of a name according
to context, 152

types, 41
capture conversion, 103
lexical literals, 473
literals, 24
null literal, 38
throw statement, 438

types, classes, and interfaces, 88
types, values, and variables, 41

U
unary minus operator -, 547

constant expressions, 605
floating-point operations, 48
integer literals, 30, 30
integer operations, 43
unary numeric promotion, 125

unary numeric promotion, 124
array access, 333
array access expressions, 491
array creation expressions, 487
bitwise complement operator ~, 548
numeric contexts, 124
shift operators, 561
unary minus operator -, 547
unary plus operator +, 547

unary operators, 544
final variables, 86

unary plus operator +, 547
constant expressions, 605
floating-point operations, 48
integer operations, 43
unary numeric promotion, 125

unboxing conversion, 102
additive operators, 556, 556
array creation expressions, 487
assert statement, 418
assignment contexts, 108
binary numeric promotion, 125
bitwise complement operator ~, 548
boolean equality operators == and !=, 567
boolean logical operators &, ^, and |, 569
casting contexts, 115, 115, 115
conditional operator ? :, 572, 579
conditional-and operator &&, 570, 570
conditional-or operator ||, 571, 571
do statement, 424

INDEX

752

equality operators, 565
floating-point operations, 49
if-then statement, 415
if-then-else statement, 416
integer bitwise operators &, ^, and |, 568
integer operations, 44
invocation contexts, 113
iteration of for statement, 427
logical complement operator !, 548
multiplicative operators, 550
numeric contexts, 124
numerical comparison operators <, <=, >, and
>=, 563
numerical equality operators == and !=, 566
postfix decrement operator --, 544
postfix increment operator ++, 543
prefix decrement operator --, 546
prefix increment operator ++, 546
switch statement, 421
unary minus operator -, 547
unary numeric promotion, 124, 124
unary plus operator +, 547
while statement, 423

unchecked conversion, 103
@SafeVarargs, 307
assignment contexts, 108
casting contexts, 115, 115
invocation contexts, 113
method result, 238
type compatibility constraints, 668
variables of reference type, 81

unicode, 15
character literals, 34
lexical grammar, 9
primitive types and values, 42
unicode escapes, 17

unicode escapes, 17

escape sequences for character and String
literals, 38
input elements and tokens, 19
lexical translations, 16
unicode, 16

unloading of classes and interfaces, 373
kinds of variables, 83

unnamed packages, 179
compilation units, 177

unreachable statements, 452
final fields and static constant variables, 391
instance initializers, 255
lambda body, 599
static initializers, 255

uses of inference, 677

V
value set conversion, 106

assignment contexts, 109
binary numeric promotion, 126
casting contexts, 115
compound assignment operators, 588, 590
create frame, synchronize, transfer control,
528
evaluation, denotation, and result, 459
floating-point types, formats, and values, 45
fp-strict expressions, 462
invocation contexts, 113
simple assignment operator =, 583, 584
unary minus operator -, 547
unary numeric promotion, 124

variables, 80
evaluation, denotation, and result, 459

variables of primitive type, 81
variables of reference type, 81

@SafeVarargs, 307
type of an expression, 461

753

variables, 80
verification of the binary representation, 358

link test: verify, prepare, (optionally) resolve,
354

volatile fields, 220
happens-before order, 644
synchronization order, 642

W
wait, 633

happens-before order, 643
wait sets and notification, 632

class Object, 56
well-formed executions, 647

executions, 646
what binary compatibility is and is not, 382
when initialization occurs, 361

final variables, 85
initialize test: execute initializers, 355

when reference types are the same, 56
checked casts at run time, 122
constraint formulas, 661
type equality constraints, 670

where annotations may appear, 313
annotation types, 292
annotations, 308
class modifiers, 191
constructor modifiers, 258
enum constants, 268
field (constant) declarations, 283
field modifiers, 215
formal parameters, 228
generic classes and type parameters, 195
generic interfaces and type parameters, 280
interface modifiers, 278
lambda parameters, 598
local variable declaration statements, 409

method declarations, 286
method modifiers, 231
named packages, 178

where types are used, 75
@Target, 303
lexical translations, 17
syntactic classification of a name according
to context, 150
where annotations may appear, 313

while statement, 423
boolean type and boolean values, 51
while statements, 621

while statements, 621
white space, 20

input elements and tokens, 20
lexical grammar, 9
lexical translations, 16

widening and narrowing primitive
conversion, 99

casting contexts, 115
widening primitive conversion, 94

assignment contexts, 107
binary numeric promotion, 126
casting contexts, 115, 115
invocation contexts, 112, 113
numeric contexts, 124
unary numeric promotion, 124, 124
widening and narrowing primitive
conversion, 99

widening reference conversion, 99
assignment contexts, 107
casting contexts, 115, 115
floating-point operations, 48
integer operations, 44
invocation contexts, 113, 113

word tearing, 657
write-protected fields, 656

	Table of Contents
	Preface to the Java SE 8 Edition
	1 Introduction
	1.1 Organization of the Specification
	1.2 Example Programs
	1.3 Notation
	1.4 Relationship to Predefined Classes and Interfaces
	1.5 Feedback
	1.6 References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

