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Foreword

In the decade since social networking was born, we have seen the power 
of platforms that unite humanity. Across our professional and personal lives, 
social platforms have truly changed the world. Social media has been the tool 
to ignite revolutions and elections, deliver real-time news, connect people 
and interests, and of course, drive commerce. In 2005, industry analysts 
were skeptical about how blogging and its successors could ever be used in 
business; today every single social channel has both B2C and B2B offerings 
sprinkled generously throughout the content.

As businesses figured out that they could use social networks to inter-
act directly with their customers and prospects, questions were immediately 
generated about efficacy and ROI. Was it just hype and noise, or were new 
audiences being reached and new opportunities created? For the first several 
years, the only way to answer these questions was anecdotally. Many brands 
and businesses viewed social media warily, feeling that nothing good could 
come from engaging in online discussions directly.

Things changed as the technology matured to offer tools for social listen-
ing. Whether for business, politics, or news, organizations learned they could 
identify trends and patterns in all the flotsam and jetsam of online content. 
Another leap forward occurred as analytics engines were applied to the vast 
stream of unstructured data, when suddenly big-picture profiles and behav-
iors could be identified.

Today, organizations of all sizes and missions are looking for ways to 
make sense of the information available on the social web. Analyzing social 
media, the right way at least, is now just as important as a brand presence or 
advertising strategy. When done correctly, the insights available can shape 
decisions, make organizations more responsive, and quell negative press 
before it takes off.

In Social Media Analytics, Matt Ganis and Avinash Kohirkar have set out a 
thorough approach to gaining business insights from social media. Matt and 
Avinash understand this challenge. Each has built his career on data analysis 
and insights, and they have specifically looked at social content for the last 
several years. They have examined key vectors of social participation, includ-
ing reach, eminence, engagement, and activation. They understand how to 
filter out noise and focus on relevant insight, building the right tools and 
conducting the right studies to demonstrate trends, correlations, and results.

xviii
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Social Media Analytics provides much-needed understanding of both what 
can be accomplished by examining social streams and why such insights mat-
ter. In the first part, the book looks at data identification, sources, determin-
ing relevancy, and time horizons. In Part II, several chapters explain ways to 
find data—what tools, how to understand output, and getting deep into the 
insights themselves. Part III goes further into interpreting data, looking at 
potential shortcomings of social analysis and useful ways of sharing insight 
through visualization.

Social media has evolved quickly from the initial hype, through the nay-
sayers, and to a point where it is no longer viewed as optional. Today, how-
ever, there are so many social channels, devising a strategy for sharing and 
leveraging the online conversation can make the difference between success 
and failure.

I invite you to think back nostalgically to the days of focus groups, printed 
surveys, and controlled messages. As those tools of the past have faded out, 
they’ve been replaced with a veritable deluge of information. Social Media 
Analytics will help you devise the right strategy to make data-driven decisions 
rather than reacting to that one nasty tweet, looking at the overall story your 
customers and prospects are sharing online.

 Ed Brill
Vice President, Social Business
IBM Corporation
Chicago, September 2015



Preface: Mining for Gold 
(or Digging in the Mud)

In The Adventure of the Six Napoleons by Arthur Conan Doyle, the     
famous sleuth Sherlock Holmes remarks to his sidekick, Watson:

“The Press, Watson, is a most valuable institution, if you only 
know how to use it.”

That statement, when applied to the wealth of data in social media chan-
nels today (loosely, “the press”), has never been more true. Companies are 
always looking for an “edge” in an attempt to find ways to remain relevant 
to their ever more vocal set of constituents. They are struggling to position 
themselves as trusted advisors or suppliers in a cut-throat environment of 
competitors, where consumers use public opinion (both good and bad) to 
share information and experiences at the speed of light (literally). When 
looking to explore this deluge of social media data, we must think and act 
like detectives. Careful investigations can, at times, lead to many revealing 
insights. This can be both time consuming and complex; it is work that 
requires a careful, methodical effort and not only requires patience and per-
severance, but at times also requires a creative streak or spark of insight.

This book, aimed at executives (or analysts) responsible for understand-
ing public opinion, brand management, and public perceptions, attempts to 
look at the processes and insights needed when attempting to answer ques-
tions within this massive amount of unstructured data we call social media.

Just What Do We Mean When We Say 
Social Media?

A social media website    doesn’t just give you information, but rather it is 
built around a way to interact with you while allowing access to the informa-
tion. This interaction could be collecting comments or suggestions on a blog 
or voting on a specific topic—allowing users to have a voice in a conversa-
tion as opposed to simply reading others’ opinions—this is why we call it a 
social media conversation.

xx
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Think of print media or a static web page or website as a one-way street, 
much like reading a newspaper or listening to a report on television; you 
have very limited ability to give your thoughts on the matter. (Radio talk 
shows at least allow users to call in to express their opinions—although ulti-
mately they have the ability to limit the conversation by cutting off the call 
at any point.) Social media can be considered a two-way street that enables 
communication between end users. Social media gives users on the Internet 
the ability to express their opinions and interact with each other at speeds 
unheard of in the past with traditional media. This popularity of social 
media continues to grow at an exponential rate.

Why Look at This Data?
Consider one of the most famous cases of using Twitter to            watch for 

customer satisfaction issues: @ComcastCares. As BusinessWeek’s Rebecca 
Reisner [1] said, Frank Eliason is probably the best known and most success-
ful customer care representative in the world (or at least the United States). 
In April 2008, Eliason’s team started monitoring Twitter traffic for men-
tions of his company, Comcast, made by disgruntled customers. (Comcast 
is one the largest providers of entertainment, information, and communica-
tions services and products in the United States, providing cable television, 
broadband Internet, and telephone services.) His tactic was to watch Twitter 
and immediately reach out to these customers who expressed dissatisfaction 
with Comcast’s customer service. The idea was to quiet the spread of any 
negative sentiment amongst Comcast customers, while providing a sense of 
personal touch to these frustrated clients.

According to a 2011 report (Eliason has since left Comcast for greener 
pastures), the new Comcast customer care division processed about 6,000 
blog posts and 2,000 Twitter messages per day, which resulted in faster cus-
tomer response times that directly translate into improved customer sat-
isfaction indexes  . While Comcast is not analyzing social media per se, it 
is watching issues related to perceived poor quality so that it can quickly 
address issues and interact with these customers.
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How Does This Translate into Business Value?
According to Eliason , Comcast was able to understand issues on Twitter 

far in advance of their call centers (that is, when customers would call in to 
tell of a problem) [2]. For example, during the NHL playoffs, a sports net-
work carried by Comcast           went off the air. People used Twitter to complain 
about Comcast, claiming the problem was poor service. However, in reality, 
all of the other networks were offline as well due to a lightning strike. The 
Comcast call center was able to find out the reason within a few minutes of 
it happening and was able to put up an automated message telling people 
what happened. In this case, Comcast estimated that it was able to save $1.2 
million by putting up a message about the outage. Customers were able to 
listen to the message and hang up rather than call in to complain, thus using 
valuable call center resources.

As another example, consider a new product launch. The marketing team 
spent hundreds of hours determining the best way to disseminate the mes-
sage of your new offering, and the company has spent millions on advertis-
ing, yet there appears to be lackluster acceptance.

Why?
One way to   listen to the man on the street is to scan various social media 

outlets such as discussion forums, blogs, or chatter on sites like Twitter 
or LinkedIn. Perhaps  you can pick up on messages or customer percep-
tions of your product or brand. Perhaps when you look at the discussion 
around your product, you’ll see something similar to the situation shown in 
Figure  I.1.
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Figure I.1 Social media remarks during an initial product announcement.

This graph was produced for one of the projects we worked with during 
its launch. Note the steep rise in conversation at the initial launch. Social 
media conversations went from 0 to more than 6,000 mentions over the 
course of a few days. This is great! But look at what happens next. The level 
of conversations fell off rapidly, with just a few isolated spikes in conversa-
tion (which were later revealed to be additional announcements). So in this 
case, it wasn’t so much that potential customers   didn’t like what they saw in 
the marketplace (of course, that may be the reason for the lack of conversa-
tion), but it appears more likely that the marketing campaign wasn’t resonat-
ing with the public to pick up and carry on the conversation. We look at this 
particular case in a bit more detail later, but the message here is that a simple 
analysis within social media can quickly reveal where your business plan 
might have gone awry.
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The Book’s Approach

“I keep six honest serving men; they taught me all I know; their names are 
What and Why and When and How and Where and Who.”

—Rudyard Kipling [3]

The process  of social media analysis involves essentially three steps: data 
identification, data analysis, and finally information interpretation. In explain-
ing each of these steps, we provide important insights and techniques that 
can be used to maximize the value derived at every point during the process. 
The approach we take is to first define a question to be answered (such as 
“What is the public’s perception of our company in the light of a natural 
disaster?”). In attempting to analyze these questions, we suggest that analysts 
think like detectives, always asking the important questions “Who? What? 
Where? When? Why? and How?” These questions help    in determining the 
proper data sources to evaluate, which can greatly affect the type of analysis 
that can be performed.

Data Identification

Any social media investigation is only as good as the data in which you are 
searching. The first part of this book explores proper data identification—or 
where   to look in this vast social media space. In searching for answers, keep 
in mind that we will be searching through massive amounts of unstructured 
data, all in an attempt to make sense out of what we find in the process. 
Once we uncover some interesting artifacts, we will be transforming them 
into (hopefully useful) information. In the long run, the ultimate business 
objective is to derive real business insight from this data, turning the infor-
mation we’ve gleaned from these sources into actionable knowledge.

 In the first part of this book, we explore the source of the data that will 
be under analysis. To ensure that what we are collecting is the proper data 
or it explores the correct conversations, we look into questions such as these:

■ Whose opinions or thoughts are we interested in?
■ Where are the conversations about the topic in question happening?
■ Do we      need to look at the question back in time or just current 

discussions?
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Data Analysis

In Part II of the book, we explore the data analysis techniques that can be 
utilized in answering questions within the data collection. Again, putting on 
our detective hats, we return to our “honest serving men” as described previ-
ously by Rudyard Kipling and    explore a variety of topics.

How we want to look at this newly uncovered information is important. 
A data model      is used to represent the unstructured data we collect and is 
an important (and complex) part of answering our questions. These data 
models are living and breathing entities that need to change over time or 
when newly discovered insights need to be incorporated into the model. 
These relatively long-running models tend to be complex and difficult to 
finalize, and as a result, many people may want to take a less-detailed view 
of the information. Many choose a real-time view     of the data, where watch-
ing metrics or trends in real time (or near real time) provides a valuable, yet 
low-cost, set of insights. As an alternative between long-running analysis and 
a real-time view lies a structured search model that allows for the searching 
of common words or phrases within a dataset in an attempt to reveal some 
insightful information. Each type of analysis has its pros and cons, many of 
which are explored within this section.

 In an attempt to understand what people are saying, we begin to explore 
some of the interpretations     of the data, looking at simple metrics such as:

■ In a collection that contains Twitter    data related to a new product or ser-
vice, what is the top hashtag?

■ Are those hashtags positive or negative in their sentiment?
■ What is the volume of conversation about the product or service? (Are 

people talking about it?)

Other techniques used to discern what people are talking about include 
the use of word clouds or the collection           of top word groups or phrases. These 
visualizations can help analysts understand the types of conversations that 
are being held about the company or service in question. More advanced 
analysis may include the use of a    relationship matrix that attempts to under-
stand the interrelationship between concepts or terms (for example, how is 
the public’s view of customer service correlated with perceived cleanliness of 
a store?).
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Marketing teams will be sponsoring advertising campaigns or coming out 
with press releases at strategic points during a new product release or during 
a particular point in time—all in an effort to attract new customers while 
exploiting the loyalty of their existing customer base. But is their message 
reaching the intended audience? The question of where people are talking 
becomes important in evaluating the outlets that people use when discuss-
ing a topic. If the company is advertising mainly in trade journals but there 
is a large amount of conversation happening in Twitter, would          the message 
be better spread via microblogging? (Or perhaps the use of microblogging 
can augment the marketing message?) Along those same lines, if we stand 
on a box in the center of a square and preach our message, do we want to 
do it in the middle of the night when the square is empty, or at lunchtime 
when the square is bustling with traffic. The same is true in the social media 
space: when we choose to disseminate information may be just as important 
as where.

Information Interpretation

Once we have all of this data reduced into information nuggets, making 
sense of the information becomes paramount  . In Part III, we demonstrate 
that the insights derived can be as varied as the original question that was 
posed at the beginning of the analysis. In some cases, the goal is not only 
to identify who is doing the talking in our analysis but, more importantly, 
who is influencing the conversation or who is influential in their thoughts 
and opinions. It’s important to remember what SunTzu once  said: “Keep 
your friends close, and your enemies closer.” The identification of the “mov-
ers and shakers” can be important in social media; these are the individuals 
we want to follow or attempt to get closer to in order to have them use 
their influence for us as opposed to against us. In other cases, what people 
are saying about a particular issue or topic is the object of the research. For 
example:

■ Are people excited about the newly designed web experience that our 
company just released, or are they talking about the difficulty in finding 
information within our website?

■ How critical are the outsourcing decisions that we just made to the brand 
perception of our company or product?



Preface: Mining for Gold (or Digging in the Mud) xxvii

■ What were the key issues or topics that people cited when they were 
expressing negative sentiment?

In our experience, we have also encountered cases in which the where is 
the most important finding. For a newly launched marketing campaign, is 
the conversation happening more in company-sponsored venues, or is it also 
happening in neutral venues? Analysis and insights around when are also 
important. For example, is the sentiment for your company becoming nega-
tive around the same time as the sentiment for a key competitor (perhaps 
indicating a downturn in your market)? More   importantly, has sentiment 
for your company or brand gone negative while the competition has gone 
positive?

Why You Should Read This Book
According to Merriam-Webster, Definition of SOCIAL MEDIA: forms of 

electronic communication (as Web sites for social networking and microblog-
ging) through which users create online communities to share information, ideas, 
personal messages, and other content (as videos) [4]. Use   of social media has 
grown exponentially over the past eight years (see Figure I.2) [2]. Thus, 
social media is a major contributor to the explosive growth of big data in our 
world.
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Research has   shown that the growth of social media use is far from over. 
According to Internet Statistics and Market Research Company eMarketer, 
in a report published in June 2013 [5], the current prediction is that one in 
four people across the globe will participate in social media by 2014. That’s 
an incredible number. Consider also:

■ Asia-Pacific will  have largest social network population worldwide 
through 2017.

■ The Middle-East and Africa will   have the second largest audience start-
ing next year, because their population penetration rates are among the 
lowest.

■ Asia-Pacific has the largest user base with 777 million people, where 
44.8% of social network users are expected at the end of the year.

■ The higher penetration of Internet users in India, Japan, Australia, South 
Korea, Brazil, Mexico, Russia, Middle-East, and Africa has        helped to 
revise the estimated number of social media users in 2013 by 100 million.

■ In 2014, the Middle East and Africa (MEA) region emerged as the second 
largest social media hub, with more than 248 million users surpassing 
Latin America in regions in the next year.

■ By the beginning of 2015, India was expected to surpass the United States 
as the second   largest social media country after China.

IBM CEO Ginni Rometty has     called big data the next great natural 
resource [6]. Getting in on the “ground floor” of anything can be challeng-
ing, but if you want to turn this natural resource into business value “gold,” 
you should read this book.

This book will serve the needs of a number of business users. Those users 
who are new to the subject will get a good overall understanding of the 
domain by reading the entire book. Those users who have some familiarity 
with either one or more of the sections of this book will be able to get addi-
tional techniques and methodologies to add to their repertoire. 

To enable you to apply the content from this book to your unique situa-
tion, we have included a number of case studies. The techniques and findings 
we present here are primarily based on over three years’ worth of hands-on 
experience in executing a variety of social media analytics projects for IBM 
and IBM’s clients. To protect proprietary information, we’ve edited the cases 
for illustrative purposes.



Preface: Mining for Gold (or Digging in the Mud) xxix

For example, we analyzed Twitter    content for about a month before the 
2014 Grammy Awards were announced and identified a list of potential 
winners. When the actual results came in, every single one of them was in 
the top three choices that we had predicted.

These are just some of the examples of value that people are finding 
by mining this new natural resource. We cover a variety of these use cases 
throughout the book. People have even used this new capability to fine-tune 
multimillion dollar marketing campaigns. And, in some cases, people have 
used analysis of Twitter data during the first two days of a conference and 
created talking points for an executive presentation on the third day.

By reading this book, you will get a broad understanding of the following 
topics:

■ What are the various types of social media analysis that can be done?
■ How do we collect the right kind of data for a project?
■ How do we analyze the data using a variety of tools and techniques to get 

the value from it?
■ How do we interpret the results and apply them for real business value?

What This Book Does and Does Not Focus On
A lot of good books out there are targeted at social business marketing 

managers and focused on how to effectively utilize social media channels to 
market their brand, their goods, and their services. We do not focus on that 
approach in this book.

This book is also not directed at technologists, architects, and program-
mers looking to implement the most effective technology solutions for social 
media analytics. We provide some information that might be helpful for this 
type of an audience, but this book is not primarily directed toward them.

This book also does not focus on a single technology platform or a single 
tool and therefore does not serve as a user manual for one of these products. 
The intention is to provide enough information to business users so that you 
can either build your technology solutions or buy solutions to serve your 
needs for extracting business value out of social media and textual content.
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Even though this book is primarily targeted to business users, we cover 
several technical aspects at length to equip business users with enough knowl-
edge to extract value from this book. Subsequent chapters cover enough 
detail, but what follows is a list of some of these key technology concepts 
with a high-level description.

■ Big Data—Big data    is usually characterized by a large volume of data, a 
large variety of data, and data that is moving at a large velocity (speed). 
For example, this includes the content flowing through the cables of your 
local cable TV provider during prime time or content being streamed by 
Netflix during the screening of an episode of House of Cards!

■ Natural Language Processing (NLP)—NLP involves      analysis of words 
used in our language. A simple application of NLP is a word cloud. A 
more complex ex ample of NLP includes analyzing streams of conversa-
tions and identifying dominant themes.

■ Sentiment Analysis—This is   a special case of natural language process-
ing. In this case, the content is analyzed by software and interpreted to 
identify if positive, negative, or a neutral sentiment is being expressed. 
For example, the sentence “I am very happy with the latest release of 
Product XYZ” is treated as expressing a positive sentiment, whereas the 
sentence “The installation process for Product XYZ is very difficult” is 
treated as negative. An example of neutral sentiment is “Product XYZ is 
supports platform A and system B.”

Endnotes
[1] Reisner, Rebecca. Comcast’s Twitter Man, Business Week, January 2009.
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[3] Kipling, Rudyard. The Elephant’s Child: From the Just So Stories. ABDO, 2005.
[4] “Social Media.” Merriam-Webster.com. Merriam-Webster, n.d. Web. Sept. 21 
2015. http://www.merriam-webster.com/dictionary/social media.
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Up to this   point, we have concerned ourselves with what data to analyze 
while ensuring that what we selected is germane to our topic. In this chapter, 
we explore how important it is to determine whose comments we are inter-
ested in. A few examples are as follows:

■ If we are interested in getting objective feedback            on a product from a 
specific company, we might want to make sure that we can identify 
or exclude this company’s employees from the pool of content under 
analysis.

■ Similarly, we need to ask: Are we interested in comments from the 
general public, or            are we interested in the comments of C-level 
employees (that is, chief marketing officers or chief information offi-
cers)?

■ Also, are             we interested only in people who have a positive bias toward 
a company or those with a strong negative bias?

31

Whose Comments Are 
We Interested In?

All opinions are not equal. Some are a very great deal more 
robust, sophisticated, and well supported in logic and argu-
ment than others.

—Douglas Adams, The Salmon of Doubt [1]

3
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Looking for the Right Subset of People

At the beginning of a social analytics project, analysts spend a fair amount 
of time thinking about the ultimate goals of the project and the results that 
we expect to get at the conclusion of the project. This upfront analysis will 
go a long way in determining the appropriate target segment of the analysis.

During the definition of a typical social media analysis project, request-
ers will (or should) explicitly point out the “who” (whose opinion are they 
interested in?) or will give the researcher or the model builder sufficient hints 
or guidance. Various attributes can be used to segment or target the audi-
ence that we’re interested in. Some of them are described in the following 
sections.

Employment

Do we want the opinions of employees or nonemployees?
For example, if a            company launches a new product or service and wants 

to see how the marketplace is reacting to that product or service in social 
media, it might prefer to exclude the comments of its own employees. In 
other situations, we might exclusively focus on the employee population 
if the intent is to learn how they are responding to a new product, service, 
or strategy. In a project that we worked on, IBM was interested in learning 
about the marketplace reaction of a brand-new product type. The market-
ing team specifically asked us to exclude the comments and sentiments of 
IBMers to understand sentiment from “neutral” people so as not to bias the 
results.

Sentiment

Are we looking for comments              from people with a positive bias or negative 
bias?

For example, if the object of social media analysis is to detect customer 
support issues, it makes sense to focus only on posts with a clear negative 
bias. You might argue that highlighting positive customer experiences is just 
as important and probably needs to be considered as well. Another common 
use case involves trying to compare the sentiment about a variety of products 
that a company is providing to the marketplace. In this situation, we may 
consider opinions from all ranges of demographics and keep score about the 
number of positive, negative, or neutral comments. Sometimes, the purpose 
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of a project is merely to find how many people or comments mention the 
company’s product versus a competitor’s product. In this case, we may (ini-
tially) ignore sentiment and consider all comments without exclusions.

A few years ago, there was a civil movement called Occupy Wall Street 
in the United States . Numerous people congregated around specific com-
mercial buildings to express their silent protests against what they believed 
to be unfair practices. During this time, as a validation of some of our ana-
lytics capabilities, we built an experimental social listening model to detect 
whether there was any impact to an IBM location  where some key customer 
meetings were being conducted. In this case, we built a model that focused 
on snippets of information that may have negative sentiment about IBM 
and then specifically looked for any mentions of protests or civil actions.

In many cases, sentiment is a result of an analysis phase. However, in 
some instances, the scope and nature of the project determine whether we 
should include comments only from people who have either a favorable view 
or an unfavorable view of our topic. In cases like these, we are able to take 
this information into account in the very initial phase of the project and 
focus only on a specific subset of people.

Location or Geography

Do we want to focus on comments from people who live in a specific 
location?

One of the            projects that we were involved in dealt with issues around 
water in South Africa. In this particular project, we were clearly interested in 
comments from people in South Africa about the variety of issues and ques-
tions around the current and future needs and use of clean and healthy water. 
Sometimes we may be interested in comments from all over the world, but 
valuable insights can emerge when we classify the analytics by region.

Language

Is the language of the content important to us?
Some projects           require us to understand what is specifically being said 

about a company’s product or service in a particular local language. For 
example, if a company wants to do some market research around the mar-
ket’s appetite for a machine translation tool in Spanish-speaking countries, 
it will be interested in content contributed by individuals in the Spanish 
language.
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Age

Is the age of content author important to the project at hand?
There is           a lot of discussion in popular media about the work habits of 

Generation Xers. Those in Generation X (or Gen X) were     born after the 
Western Post–World War II baby boom. As a point of reference, most con-
sider those with birth dates ranging from the early 1960s to the early 1980s 
as being part of this demographic. If a company’s Human Resources depart-
ment wanted to study the experience of its newly hired Gen Xers, we would 
have to determine a way to segment the population based on age.

Gender

Are we specifically interested in comments of men or women?
Gender also           becomes an important attribute upon which we may segment 

audience for a particular project. If an organization is creating training and 
educational materials to encourage more women to pursue higher studies in 
science- and mathematics-related disciplines, it may choose to focus exclu-
sively on comments and feedback from women. Similarly, if a health-care 
company is undertaking research about male-pattern baldness, it would be 
served well by segmenting its audience to include only men.

In one case, we were asked to evaluate the comments that were made in 
social media during the introduction of a new movie trailer. Our client was 
interested not only in the reaction to the trailer, and by association the movie 
itself, but also if certain themes resonated with either males, females, or both. 
Again, the goal was to determine not only likeability of the movie, but also 
keys in how to market it.

Profession/Expertise

Do we need            opinions from anybody in general, or do we need opinions 
from people who are working in a specific profession (such as the IT profes-
sion) in a specific industry (such as automotive)?

For example, if IBM is interested in learning about the reaction to the 
cognitive computing capabilities of IBM Watson in the area of health care, it 
is probably interested in the opinions of corporate users as opposed to home 
users.
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Eminence or Popularity

Are we            interested in opinions only from people of certain standing in the 
domain of the topic area?

A major aspect of a social media campaign for companies involves identi-
fying who might be an “influencer” in a particular topic area or industry. For 
performing this type of analysis, we tend to spend a lot of time in developing 
rules to ensure we are able to narrow the solution space to identify a small 
subset of individuals that a company should target its marketing messages to.

Role

When dealing             with social media analysis within a company’s intranet, are 
we interested in segmenting based on a specific job role?

For example, we are working on a project that computes a social score-
card for employees based on their participation in social media. There are 
some roles in which the job demands a lot of collaboration in social media, 
and then there are some people who might be working on highly specialized 
or highly sensitive projects in which they may not be allowed to share infor-
mation in social media. Here, the type of role is very important in interpret-
ing scores.

Specific People or Groups

Are we really           interested in narrowing down our analysis to comments 
about or comments from a specific individual or a specific set of individuals?

A couple of years ago, we were asked to build an application to capture 
and display sentiment in near real time about tennis players participating in 
the US Open  . In this case, we used names of players, their nicknames, and 
a variety of other aliases to ensure we were targeting the right segment. In 
another example, we were asked to identify how people in social media were 
reacting to a Lance Armstrong interview   with Oprah Winfrey.

Do We Really Want ALL the Comments?

In Chapter 1, we discussed the concept of bias—or the skewing of a data-
set based on a potentially inappropriate set of authors. Perhaps inappropri-
ate is too strong of a word, but in some cases you might want to exclude 
the comments of your company’s employees. At IBM, we           tend to look at 
ourselves as one of the best customers of our products and services, but 
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sometimes IBMers are also among our most vocal critics. If we are looking 
to understand the true concerns or thoughts of our external customers and 
clients, we may want to exclude the subset of IBMers from the conversation. 
This is an example of the employment attribute that we discussed previously. 
Again, the purpose isn’t to exclude because these comments aren’t valuable, 
but in the spirit of openness and true sentiment or feelings, it may be useful 
to separate the comments.

In one example, we were asked to look at the social media activity around 
a new product launch. The client’s concern was that while there was a tre-
mendous amount of money and time being invested in the various market-
ing campaigns, the sales hadn’t picked up as much as had been  anticipated. 
A quick analysis of the discussion around the topic showed the level of activ-
ity over a four-week period (see Figure 3.1).
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Figure 3.1 Social media remarks during an initial product announcement.

This graph shows the number of mentions of the particular product over 
time. It’s rather clear from this simple graphic that in the beginning, there 
was quite a bit of hype or discussion around this product launch, but over 
a short period of time, the discussion continued to decline almost to zero 
mentions.

What was even more disturbing about this analysis was who was having 
the conversations. We quickly looked at the top contributors to this thread 
of conversation and turned up the list shown in Figure 3.2.
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Figure 3.2 Top contributors to social media remarks during an initial product announcement.

A manual lookup of the top 10 users in this conversation revealed that at 
least 9 of them were employees of the company and represented nearly half 
the conversation (47%).

The conclusion           we drew was that in the various social media and news 
venues, the employees were chatting about the new release, but given the 
slope of the curve in Figure 3.1, that conversation didn’t sustain itself. After 
the employees stopped talking, there was virtually no conversation. Clearly, 
a new marketing plan was needed since what was being said wasn’t being 
repeated, commented on, or perhaps even resonating with the public.

Are They Happy or Unhappy?

I’ll never             forget the time I [Matt] was traveling to Las Vegas to speak at a 
trade show. It was a long flight, but when we landed and the plane was taxi-
ing to the gate, I simply tweeted “Viva Las Vegas” and was almost instantly 
greeted with a return tweet for a hotel/casino special. Someone was actually 
watching for conversation about the city, not just me, to send a special offer.
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Watching or monitoring social media for customer issues is still a growing 
trend. It provides the ability to respond to issues in a timely fashion as well as 
gives opportunities for additional business opportunities.

Consumers are using Twitter to  either ask questions about product- and 
service-related issues or to air complaints with increasing regularity. A study 
by Sprout Social found  that social media messages eliciting a direct response 
from companies had risen by 178% from 2012 to 2013 [2]. To stay com-
petitive, companies are choosing to watch for negative terms or concepts 
being used around a brand and head off a potential customer satisfaction 
problem later.

By listening to customer feedback in Twitter, companies like JetBlue have  
been able to build their reputation as responsive customer service organiza-
tions. Think about this from the consumers’ perspective. Airline delays can 
be one of the most common causes of customer frustration. Not only do 
these delays happen often, but those being delayed or inconvenienced can be 
pretty vocal about their feelings, especially when there is nothing to do but 
sit in an airline terminal with their smart phones.

Acknowledging this fact, @JetBlue ensures the company is responsive to 
its customers because it understands the importance of continued customer 
loyalty. JetBlue not only engages with happy customers but also responds to 
and helps frustrated customers as quickly as possible.

According to an article in AdWeek [3], due to a downpouring of rain in 
the Northeast that grounded most of JetBlue’s planes, the   company was fac-
ing a public relations storm that seemed unlikely to go away anytime soon. 
On this particular occasion, passengers were trapped in their planes (on the 
tarmac) in New York City for hours—going nowhere and growing more 
annoyed by the minute. In many cases, passenger delays stretched into days 
while over 1,000 flights were ultimately canceled.

Needless to say, customer concerns and outcries ran rampant. However, 
through social media channels, then-CEO David Neeleman reached  out 
to travelers of JetBlue to personally apologize for the issues and presented 
the company’s plans to improve service. The use of social media outlets to 
enable an open atmosphere of communication coupled with the company’s 
willing to admit (publically) its mistakes went a long way to turn a bad situ-
ation good.

The lesson?
Listening to the right content (in some cases, customer dissatisfaction) 

can provide an added vehicle to achieving customer loyalty and goodwill.
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JetBlue leveraged YouTube (a popular video-sharing site) to  explain the 
service failure and describe how it planned to improve its operations as a part 
of its effort to control the situation. Again, it did this by posting an apology 
by founder and then-CEO David Neeleman shortly after the trouble began. 
As a result, the company built a relationship with its customers.

This use of a social media source coupled with JetBlue’s complete open-
ness and willingness to take responsibility helped to push it over the media 
reports and resume its standing as a consumer favorite. What’s important is 
that despite the negative news coverage and complaints by consumer advo-
cacy groups, the airline was able to keep its place atop the J.D. Power North 
America Airline Satisfaction Study              for low-cost carriers going on 11 years in 
a row [4]!

So when we think about who we want to listen to, the answer, of course, 
is everybody. But by segmenting the comments into those with positive sen-
timents and those with negative sentiments, we can quickly respond to those 
urgent customer issues.

Location and Language

There are times when understanding the mood or the thoughts of a par-
ticular region of the world is of                      main importance. For example, if we are 
interested in understanding the social opinions or concerns of youths in 
India, monitoring data from the United States isn’t all that practical. Just 
to be complete in this thought, however, while we understand that there 
may be some spillover discussion in US-based traffic about conditions in 
India, the likelihood of finding any significant content is probably not worth 
the effort of having to discover it in a vast sea of other (unrelated) data. 
Obviously, this is a decision that needs to be made by each data scientist or 
organization; our intent is simply to point out where there may be value in 
looking only at a particular region in the world.

As an example, consider the diagram shown in Figure 3.3; it shows social 
media mentions for a particular bank we were working on an analysis for. 
The bank had recently made some announcements and was interested to see 
if there was an increase or decrease in social media traffic as (perhaps) a result 
of the media attention. Figure 3.3 shows a summary of the top 10 languages 
for all of the media mentions we were able to collect over the previous two 
days.
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Mentions by Different Natural Languages

Portuguese

Spanish

English

Turkish

Figure 3.3 Top 10 languages used in mentions.

What we were able to see was a large amount of traffic coming not from 
English (US) speaking individuals, but from Turkish social media partici-
pants. Not only that, but it appeared that Portuguese and Spanish num-
bers were almost equally as high. What was more interesting was that the 
announcements were made in the United States.

One of the interesting facts to gather would obviously be the location of 
the individuals making the comments. In some cases, this information is 
easy to retrieve—for example, through the use of GPS technology on mobile 
devices. In the case of Twitter, the use of geolocation                      can allow someone 
to find tweets that have been sent from a specific location. This could be 
a country, a city, or multiple regions around the world. When a Twitter 
user opts in to allow location-based services on his or her Twitter account, 
Twitter uses geotagging to categorize each tweet by location and makes that 
information available to subscribers of the data. In theory, this would give 
users of that data the ability to track tweets sent from a specific city or coun-
try. Unfortunately, the statistics on the use of this feature aren’t promising 
(yet), with only about 10% of the total population enabling the feature [5].

Lacking the exact geolocation, we could make the assumption that those 
posting in Turkish, for example, were originating their tweets from Turkey. 
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It may not be a perfect one-to-one match, but lacking any other informa-
tion, it’s the best we could do.

In this case, the bank in question had made an announcement (in the 
US press) about some branch closings in Europe. From the backlash we 
were able to mine from social media sources, it appears that those most 
widely affected customers were located in Spanish-speaking countries as well 
as Turkey. While we don’t know exactly how the bank handled this situation 
(our job was simply to discover any potential issues), we do know it immedi-
ately focused customer relations on branches and banking in those regions in 
an effort to                      minimize any fallout from its announcements.

Age and Gender

Understanding the demographics of just who is using social media to 
communicate is an important step                     in being able to understand what is being 
said about a company or brand.

Some of the current data provided by the Pew Research Center [6] around  
social media can give us a better idea of who is generating all of the traffic 
(and who is listening). Let’s not make a mistake here: according to this work, 
approximately 74% of Internet users are engaged in some form of social 
media (that’s over 2.2 billion individuals). While we’ve tried to summarize 
some of the more                     simple statistics in Table 3.1[7], some numbers should 
stand out:

■ In the 18–29-year-old bracket, there is 89% usage.
■ The 30–49-year-old bracket sits at 82%.
■ In the 50–64-year-old bracket, 65% are active on social media.
■ In the 65-plus bracket, 49% are using social media.

Time spent online using social media shows [8]:

■ The United States at 16 minutes of every hour
■ The Australians at 14 minutes for every hour
■ The United Kingdom users at 13 minutes

And while we’re at it, remember that 71% of users’ social media access 
comes from a mobile device [9], and women tend to dominate most of the 
social media platforms [10].
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Table 3.1 Social Media Demographics of Prominent US Sites as of December 2014

Gender Age Demographics

Social 
Media Site

Percent 
of Males 
polled that 
participated

Percent of 
Females 
polled that 
participated

Ages 
18–29

Ages 
30–49

Ages 
50–64

Ages 
65 
and 
older

Facebook 66% 76% 84% 79% 60% 45%

Twitter 17% 18% 31% 19% 9% 5%

Instagram 15% 20% 37% 18% 6% 1%

Pinterest 8% 33% 27% 24% 14% 9%

LinkedIn 24% 19% 15% 27% 24% 13%

Ultimately, we would like to include some of this demographics infor-
mation in an analysis, but the knowledge of this information is just as use-
ful. If, for example, we were wondering what the issues were surrounding 
health care (or other issues) post retirement in social media, we would be 
hard-pressed to find much discussion by that demographic in places such as 
Instagram or Twitter (since the number of participants in the 65 and older 
demographic seems to be quite low). That’s not to say the chatter wouldn’t 
be out there; there could be significant discussion by the children of those 
users in the 30–39-year-old demographic, but again, it may come with a dif-
ferent perspective. Similarly, based on this table, if we were interested in the 
content from females, Pinterest might be a good venue to consider                    .

Eminence, Prestige, or Popularity

What does it mean to be eminent? There are a number of online presen-
tations and seminars on increasing your social media eminence, or “digital 
footprint.” What are some attributes of eminent people? They tend to be 
in a position of superiority or distinction. Often they are high ranking or 
famous (either worldwide or within their social community or sphere of 
influence) and            have a tremendous amount of influence over those who hear 
what they have to say.

For example, if the president of the United States (or any world leader) 
makes a comment on some social or economic issue, that comment is usu-
ally picked up by the press and is on everyone’s lips by the time the eve-
ning news comes on (more so if it’s a controversial topic). These leaders 
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are highly influential and can literally change the minds or perspectives of 
millions of people in a relatively short time span. On the other hand, if coau-
thor Avinash Kohirkar makes  a public statement about the same topic, the 
results are vastly different. He may influence family and friends, but the net 
effect of his comments pale in comparison to those that are viewed with a 
higher degree of eminence.

So what do these users do to lay claim to being popular, prestigious, or 
eminent?

People who are perceived to have a high degree of social media eminence 
publish high-quality articles or blog entries. Other users rush to see what 
they have to say (and often repeat it or are influenced by it). Highly emi-
nent people are seen as those individuals who add value to online business 
discussions. Their eminence is further bolstered by others who have rated 
their contributions as valuable and have tagged them for reuse by others. 
In Chapter 11, we talk about how social analytics can be used to determine 
eminence!

It stands to reason that we would want to know what these people are 
saying. We also want to know if something was said in the social media con-
cerning our brands or products. It does make a difference if a comment was 
made by a simple techie (such as Avinash) or a world leader.

One of the challenges            in using eminence (or influence) as a metric is 
determining how to quantify it. There is a lot of discussion and debate in 
the industry about this topic, and there are lots of tools and approaches that 
people are using to measure influence [11]. To illustrate this point here, we 
are going to make some assumptions and come up with a simple formula.

In some of our work, we make the following assumptions:

■ Influential people are those who often have their comments repeated.
■ Influential people tend to have many people following them (that is, 

the interest in what they have to say is high).

Based on these assumptions, we defined a simple metric called “reach” 
that is a quantifiable way to determine how widespread someone’s message 
could be. Reach, to us, is simply the number of things that a person has said 
multiplied by the number of people listening. Is this metric perfect? No. But 
it is something to watch for: a person with a large reach is saying a lot and is 
also reaching a wide audience. Granted, someone could be blabbering about 
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some topic on social media and posting thousands of messages, all being 
received by a small handful of listeners. If that’s a concern, simply look to 
modify the definition of influence to something like that shown in Figure 
3.4.

Followers
Messages

Method 1:

Reach � Followers � Messages

Method 2:

Reach � (Followers � Messages) �

Figure 3.4 Simple formulas for calculating influence.

It is possible for a company to use the concept of influencers to effectively 
communicate a key marketing message broadly. Consider the effect a well-
known industry analyst who is constantly talking about security in financial 
institutions such as banks could have on the perception of various institu-
tions. In addition, if we follow this analyst, we will come to understand the 
social media venues that this analyst and others like him or her participate 
in. As an example, let’s assume that IBM acquired a company that specializes 
in fraud detection for banks. Our marketing teams in IBM will  be served 
well by posting about this event on the venues that this analyst is already 
quite active in. If the analyst is impressed by the acquisition and chooses to 
“like” it or “share” it, that message will be received by a large number of his 
or her followers.

How do we measure how influential someone is? Or how do we measure 
how effective a person’s messages are? We can look to see if that person has 
talked about a specific product or service and then measure the sales of that 
product or service to see if there is an increase (or decrease). However, that 
would be a difficult measurement and, quite honestly, wouldn’t represent 
the image or perception of the product or service, which could, at a later 
date, affect the sales.

Instead, we chose to look at someone’s reach, or how far and wide this 
person’s message could be spread. Figure 3.4 shows an example of how 
reach could be computed in a message system such as Twitter (although it’s 
equally applic able to any systems where a post is made and             others follow that 
posting).
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In Figure 3.4, we show that an individual’s reach can simply be calculated 
in one of two ways:

■ Method 1—Multiply the number of messages sent by the number 
of people that could read that message. If someone sends 1,000 mes-
sages and 10 people are following that person, the combined message 
has a calculated score of 10,000 (see Table 3.2).

■ Method 2—Multiply the number of messages sent by the number of 
people that could read the message and then multiply that result by 
the ratio of followers to messages.

Table 3.2 Example of Determining Someone’s Reach in Social Media

Followers Messages Reach (Method 1)
(Followers * messages)

Ratio Reach 
(Method 2)

10 1,000 10,000 0.01 100

200 50 10,000 4 40,000

In method 2, we’ve add another factor to our equation: the ratio of the 
number of followers to the number of messages produced. Doing so effec-
tively gives more weight to the person with a larger following. This produces 
perhaps a more meaningful score for our metric, where we might be more 
inclined to focus on the comments of the second user rather than those of 
the first.

Summary

As you can see, as we’re moving forward in these chapters, we’re try-
ing to get more and more specific about the data that is under analysis. In 
this chapter, we discussed the concept of the individual in the conversation, 
or the who. It’s a huge point that we need consider in any kind of analy-
sis we’re looking to perform. Remember, if you’re looking to understand 
the societal issues in, say, India, does it make sense to include opinions or 
thoughts of those people in the United States? Perhaps. But at a minimum, 
we believe you should at least consider breaking out the views of Indians to 
better understand your question at hand.
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If the public chatter about a new movie contains the words childish, silly, 
or waste of time, is it relevant? That depends. If the movie is geared for chil-
dren, and those are the views of adults, perhaps not. Remember, sometimes 
it’s not what is said, but who is saying it!
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