
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133892383
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133892383
https://plusone.google.com/share?url=http://www.informit.com/title/9780133892383
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133892383
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133892383/Free-Sample-Chapter

Praise for Advanced Android™ Application Development,
Fourth Edition

“This new edition of Advanced Android™ Application Development updates the definitive
reference for Android developers, covering all major revisions of Android, including
Android L. Whether you’re just getting started, or need to brush up on the latest features
of Android, this should be the first book you reach for.”
—Ray Rischpater, senior software engineer, Microsoft

“This is the most comprehensive reference for programming Android. I still turn to it
when I need to learn about a topic I am not familiar with.”
—Douglas Jones, senior software engineer, Fullpower Technologies

“The problem with many Android development titles is that they either assume the de-
veloper is completely new to development or is already an expert. Advanced Android™
Application Development, Fourth Edition, cuts the fluff and gets to the need to know of
modern Android development.”
—Phil Dutson, solution architect for mobile and UX, ICON Health & Fitness

“Advanced Android™ Application Development, Fourth Edition, is an excellent guide for
software developers, quality assurance personnel, and project managers who want to learn
to plan, develop, and manage professional Android applications. The book explains sev-
eral advanced Android topics through step-by-step running examples. The authors have
done a great job explaining various Android APIs for threading, networking, location-
based services, hardware sensors, animation, graphics, and more. This book is a classic
investment.”
—B.M. Harwani, author, The Android™ Tablet Developer’s Cookbook

This page intentionally left blank

Advanced
Android™

Application
Development

Fourth Edition

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Advanced
Android™

Application
Development

Fourth Edition

Joseph Annuzzi, Jr.
Lauren Darcey
Shane Conder

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
 Revision of: Android wireless application development. Volume II,
Advanced topics. ©2012.
 Includes bibliographical references and index.
 Summary: “This book—a renamed new edition of Android Wireless Application Develop-
ment, Volume II—is the definitive guide to advanced commercial-grade Android develop-
ment, updated for the latest Android SDK. The book serves as a reference for the Android
API.”— Provided by publisher.
 ISBN 978-0-13-389238-3 (pbk. : alk. paper)
 1. Application software—Development. 2. Android (Electronic resource) 3. Mobile
computing. 4. Wireless communication systems.75 I. Darcey, Lauren, 1977- author. II.
Conder, Shane, 1975- author. III. Title.
 QA76.76.A65A55 2015
 004.167—dc23

 2014033049

Copyright © 2015 Joseph Annuzzi, Jr., Lauren Darcey, and Shane Conder

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or
you may fax your request to (201) 236-3290.

Some figures that appear in this book have been reproduced from or are modifications
based on work created and shared by the Android Open Source Project and used
according to terms described in the Creative Commons 3.0 Attribution License.
(https://creativecommons.org/licenses/by/3.0/).

Some figures that appear in this book have been reproduced from or are modifications
based on work created and shared by Google and used according to terms described
in the Creative Commons Attribution 3.0 License. See https://developers.google.com/
site-policies.

Screenshots of Google products follow these guidelines:
http://www.google.com/permissions/using-product-graphics.html

The following are registered trademarks of Google:

Android™, Chrome™, Google Play™, Google Wallet™, Nexus™, Google Analytics™,
Dalvik™, Daydream™, Google Maps™, Google TV™, Google and the Google logo are
registered trademarks of Google Inc.

ISBN-13: 978-0-13-389238-3
ISBN-10: 0-13-389238-7

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann
Arbor, Michigan.
First printing, November 2014

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Full-Service
Production Manager
Julie B. Nahil

Project Manager
Thistle Hill Publishing
Services

Copy Editor
Barbara Wood

Indexer
Jack Lewis

Proofreader
Melissa Panagos

Technical Reviews
Douglas Jones
Raymond Rischpater
Valerie Shipbaugh

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Shepherd, Inc.

http://www.google.com/permissions/using-product-graphics.html
https://creativecommons.org/licenses/by/3.0/
https://developers.google.com/site-policies
https://developers.google.com/site-policies

v

This book is dedicated to Cleopatra (Cleo).
—Joseph Annuzzi, Jr.

This book is dedicated to ESC.
—Lauren Darcey and Shane Conder

v

This page intentionally left blank

Contents at a Glance
	 Contents xiii

	 Acknowledgments xxxiii

	 About the Authors xxxv

	 Introduction 1

I: Advanced Android Application Design Principles  9

	 1	 Threading and Asynchronous Processing  11

	 2	 Working with Services  19

	 3	 Leveraging SQLite Application Databases  35

	 4	 Building Android Content Providers  55

	 5	 Broadcasting and Receiving Intents  67

	 6	 Working with Notifications  77

II: Advanced Android User Interface Design Principles  95

	 7	 Designing Powerful User Interfaces   97

	 8	 Handling Advanced User Input  115

	 9	 Designing Accessible Applications  139

	 10	 Development Best Practices for Tablets, TVs,
and Wearables  151

III: Leveraging Common Android APIs  161

	 11	 Using Android Networking APIs  163

	 12	 Using Android Web APIs  175

	 13	 Using Android Multimedia APIs  191

	 14	 Using Android Telephony APIs  211

	 15	 Accessing Android’s Hardware Sensors  225

	 16	 Using Android’s Optional Hardware APIs  235

IV: Leveraging Google APIs  251

	 17	 Using Location and Map APIs  253

	 18	 Working with Google Cloud Messaging  271

	 19	 An Overview of In-App Billing APIs for Android   277

	 20	 Enabling Application Statistics with
Google Analytics  283

	 21	 An Overview of Google Play Game Services  295

V: Drawing, Animations, and Graphics Programming
with Android  303

	 22	 Developing Android 2D Graphics Applications  305

	 23	 Working with Animation  329

	 24	 Developing Android 3D Graphics Applications  345

	 25	 Using the Android NDK  377

VI: Maximizing Android’s Unique Features  389

	 26	 Extending Android Application Reach  391

	 27	 Enabling Application Search  415

	 28	 Managing User Accounts and Synchronizing
User Data  427

VII: Advanced Topics in Application Publication
and Distribution  437

	 29	 Internationalizing Your Applications  439

	 30	 Protecting Applications from Software Piracy  449

VIII: Preparing for Future Android Releases  457

	 31	 Introducing the L Developer Preview  459

x	 Contents at a Glance

	 Contents at a Glance	 xi

IX: Appendixes  467

	 A	 Quick-Start Guide: Android Debug Bridge  469

	 B	 Quick-Start Guide: SQLite   485

	 C	 Java for Android Developers  499

	 D	 Quick-Start Guide: Android Studio  507

	 E	 Answers to Quiz Questions  519

	 Index 527

This page intentionally left blank

Contents
	 Acknowledgments xxxiii

	 About the Authors xxxv

	 Introduction 1

Who Should Read This Book?  1

How This Book Is Structured  1

Key Questions Answered in This Book  3

An Overview of Changes in This Edition  4

The Development Environment Used in This Book  5

Supplementary Materials Available  6

Where to Find More Information  6

Conventions Used in This Book  7

Contacting the Authors  8

I: Advanced Android Application Design Principles  9

	 1	 Threading and Asynchronous Processing  11

The Importance of Processing Asynchronously  11

Working with the AsyncTask Class  12

Working with the Thread Class  15

Working with Loaders   16

Understanding StrictMode   17

Summary  17

Quiz Questions  17

Exercises  18

References and More Information  18

	 2	 Working with Services  19

Determining When to Use Services  19

Understanding the Service Lifecycle  20

Creating a Service  20

Controlling a Service  25

Implementing a Remote Interface  26

Implementing a Parcelable Class  28

Using the IntentService Class  30

Summary  33

xiv	 ﻿ Contents

Quiz Questions  34

Exercises  34

References and More Information  34

	 3	 Leveraging SQLite Application Databases  35

Storing Structured Data Using SQLite Databases  35

Creating a SQLite Database  36

Creating, Updating, and Deleting Database
Records  38

Working with Transactions  40

Querying SQLite Databases  40

Working with Cursors  41

Executing Simple Queries  43

Executing More Complex Queries Using
SQLiteQueryBuilder  44

Executing Raw Queries without Builders
and Column Mapping  45

Closing and Deleting a SQLite Database  45

Deleting Tables and Other SQLite Objects  46

Closing a SQLite Database  46

Deleting a SQLite Database Instance Using the
Application Context  46

Designing Persistent Databases  46

Keeping Track of Database Field Names  47

Extending the SQLiteOpenHelper Class  47

Binding Data to the Application User Interface  48

Working with Database Data Like Any Other Data  49

Binding Data to Controls Using Data Adapters  50

Summary  53

Quiz Questions  54

Exercises  54

References and More Information  54

	 4	 Building Android Content Providers  55

Acting as a Content Provider  55

Implementing a Content Provider Interface  55

Defining the Data URI  56

Defining Data Columns  56

	 Contents	 xv

Implementing Important Content Provider
Methods  57

Updating the Manifest File  62

Enhancing Applications Using Content Providers  62

Summary  65

Quiz Questions  65

Exercises  65

References and More Information  65

	 5	 Broadcasting and Receiving Intents  67

Sending Broadcasts  67

Sending Basic Broadcasts  68

Sending Ordered Broadcasts  68

Receiving Broadcasts  69

Registering to Receive Broadcasts  70

Handling Incoming Broadcasts from the System  71

Securing Application Broadcasts  73

Summary  74

Quiz Questions  74

Exercises  75

References and More Information  75

	 6	 Working with Notifications  77

Notifying the User  77

A Word on Compatibility  78

Notifying with the Status Bar  78

Using the NotificationManager Service  79

Creating a Simple Text Notification with an Icon  79

Working with the Notification Queue  80

Updating Notifications  81

Clearing Notifications  82

Vibrating the Phone  84

Blinking the Lights  84

Making Noise  86

Customizing the Notification  86

Expandable and Contractible Notifications  88

Notification Priority  90

Introducing the Notification Listener  91

xvi	 ﻿ Contents

Designing Useful Notifications  91

Summary  92

Quiz Questions  92

Exercises  92

References and More Information  92

II: Advanced Android User Interface Design Principles  95

	 7	 Designing Powerful User Interfaces   97

Following Android User Interface Guidelines  97

Enabling Action Bars  98

Building Basic Action Bars  98

Customizing Your Action Bar  101

Handling Application Icon Clicks on the
Action Bar  103

Working with Screens That Do Not Require
Action Bars  104

Contextual Action Mode  105

Working with Styles  106

Building Simple Styles  106

Leveraging Style Inheritance  109

Working with Themes  111

Summary  113

Quiz Questions  113

Exercises  113

References and More Information  114

	 8	 Handling Advanced User Input  115

Working with Textual Input Methods  115

Working with Software Keyboards  115

Working with Text Prediction and User
Dictionaries  118

Using the Clipboard Framework  118

Handling User Events  119

Listening for Touch Mode Changes  119

Listening for Events on the Entire Screen  120

Listening for Long Clicks  121

Listening for Focus Changes  122

	 Contents	 xvii

Working with Gestures  123

Detecting User Motions within a View  123

Handling Common Single-Touch Gestures  124

Handling Common Multitouch Gestures  129

Making Gestures Look Natural  133

Using the Drag-and-Drop Framework  134

Handling Screen Orientation Changes  134

Summary  137

Quiz Questions  137

Exercises  137

References and More Information  137

	 9	 Designing Accessible Applications  139

Exploring the Accessibility Framework  139

Leveraging Speech Recognition Services  141

Leveraging Text-to-Speech Services  145

Testing Application Accessibility  147

Summary  147

Quiz Questions  148

Exercises  148

References and More Information  148

	 10	 Development Best Practices for Tablets, TVs,
and Wearables  151

Understanding Device Diversity  151

Don’t Make Assumptions about Device
Characteristics  151

Designing Flexible User Interfaces  152

Attracting New Types of Users  153

Leveraging Alternative Resources  153

Using Screen Space Effectively on Big
Landscape Screens  153

Developing Applications for Tablets  154

Developing Applications for TV  155

Working with Google TV  156

Google TV Variations  156

Developing Applications for Wearables  158

Summary  159

xviii	 ﻿ Contents

Quiz Questions  159

Exercises  159

References and More Information  160

III: Leveraging Common Android APIs  161

	 11	 Using Android Networking APIs  163

Understanding Mobile Networking Fundamentals  163

Understanding StrictMode with Networking  164

Accessing the Internet (HTTP)  164

Reading Data from the Web  164

Using HttpURLConnection  165

Parsing XML from the Network  166

Handling Network Operations Asynchronously  167

Retrieving Android Network Status  171

Summary  173

Quiz Questions  173

Exercises  174

References and More Information  174

	 12	 Using Android Web APIs  175

Browsing the Web with WebView  175

Designing a Layout with a WebView Control  176

Loading Content into a WebView Control  176

Adding Features to the WebView Control  178

Managing WebView State  181

Building Web Extensions  182

Browsing the WebKit APIs  182

Extending Web Application Functionality
to Android  182

Debugging WebViews with Chrome DevTools  187

Working with Adobe AIR and Flash  187

Summary  188

Quiz Questions  188

Exercises  189

References and More Information  189

	 13	 Using Android Multimedia APIs  191

Working with Multimedia  191

	 Contents	 xix

Working with the Camera  192

Capturing Still Images Using the Camera  192

Configuring Camera Mode Settings  196

Working with Common Camera Parameters  197

Zooming the Camera  197

Sharing Images  198

Assigning Images as Wallpapers  199

Choosing among Various Device Cameras  199

Working with Video  200

Recording Video  200

Playing Video  202

Working with Face Detection  203

Working with Audio  204

Recording Audio  204

Playing Audio  205

Sharing Audio  206

Searching for Multimedia  207

Working with Ringtones  208

Introducing the Media Router  209

Summary  209

Quiz Questions  209

Exercises  210

References and More Information  210

	 14	 Using Android Telephony APIs  211

Working with Telephony Utilities  211

Gaining Permission to Access Phone State
Information  212

Requesting Call State  212

Requesting Service Information  214

Monitoring Signal Strength and Data
Connection Speed  214

Working with Phone Numbers  215

Using SMS  216

Default Messaging Application  216

SMS Provider  217

SMS Applications Other than the Default  217

xx	 ﻿ Contents

Making and Receiving Phone Calls  220

Making Phone Calls  220

Receiving Phone Calls  221

Working with SIP  222

Summary  223

Quiz Questions  223

Exercises  223

References and More Information  224

	 15	 Accessing Android’s Hardware Sensors  225

Interacting with Device Hardware  225

Using the Device Sensors  226

Working with Different Sensors  226

Configuring the Android Manifest File
for Sensors  227

Acquiring a Reference to a Sensor  227

Reading Sensor Data  228

Calibrating Sensors  229

Determining Device Orientation  230

Finding True North  230

Sensor Event Batching  230

Monitoring the Battery  231

Summary  232

Quiz Questions  233

Exercises  234

References and More Information  234

	 16	 Using Android’s Optional Hardware APIs  235

Working with Bluetooth  235

Checking for the Existence of Bluetooth
Hardware  236

Enabling Bluetooth  237

Querying for Paired Devices  237

Discovering Devices  237

Establishing Connections between Devices  238

Working with USB  239

Working with USB Accessories  240

Working as a USB Host  241

	 Contents	 xxi

Working with Android Beam  241

Enabling Android Beam Sending  241

Receiving Android Beam Messages  243

Configuring the Manifest File for Android Beam  244

Android Beam over Bluetooth  245

Introducing Host Card Emulation  245

Working with Wi-Fi  245

Introducing Wi-Fi Direct  245

Monitoring Wi-Fi State  246

Summary  248

Quiz Questions  248

Exercises  249

References and More Information  249

IV: Leveraging Google APIs  251

	 17	 Using Location and Map APIs  253

Incorporating Android Location APIs  253

Using the Global Positioning System (GPS)  254

Geocoding Locations  256

Doing More with Android Location-Based
Services  260

Incorporating Google Location Services APIs  260

Locating with the Fused Location Provider  260

Doing More with Google Location Services  261

Incorporating Google Maps Android API v2  262

Mapping Locations  263

Summary  268

Quiz Questions  268

Exercises  269

References and More Information  269

	 18	 Working with Google Cloud Messaging  271

An Overview of GCM  271

Understanding GCM Message Flow  272

Understanding the Limitations of the
GCM Service  272

Signing Up for GCM  273

xxii	 ﻿ Contents

Incorporating GCM into Your Applications  273

Exploring the GCM Sample Applications  274

What Alternatives to GCM Exist?  274

Summary  275

Quiz Questions  275

Exercises  275

References and More Information  276

	 19	 An Overview of In-App Billing APIs for Android   277

What Is In-App Billing?  277

Using In-App Billing  278

Leveraging Google Play In-App Billing APIs  279

Leveraging Amazon Appstore for Android In-App
Purchasing APIs  280

Leveraging PayPal Billing APIs  280

Leveraging Other Billing APIs  280

Summary  280

Quiz Questions  281

Exercises  281

References and More Information  281

	 20	 Enabling Application Statistics with Google
Analytics  283

Creating a Google Account for Analytics  283

Adding the Library to Your Android IDE Project  286

Collecting Data from Your Applications  287

Logging Different Events  287

Using the Google Analytics Dashboard  288

Gathering E-commerce Information  290

Logging E-commerce Events in Your
Applications  290

Reviewing E-commerce Reports  291

Tracking Ad and Market Referrals  292

Gathering Statistics  292

Protecting Users’ Privacy  293

Summary  293

Quiz Questions  293

Exercises  294

References and More Information  294

	 Contents	 xxiii

	 21	 An Overview of Google Play Game Services  295

Getting Up and Running with Google Play
Game Services  295

Incorporating Google Play Game Services
into Your Applications  296

Understanding Achievements  297

Understanding Leaderboards  298

Saving Game Data with Cloud Save  299

Introducing Multiplayer Gaming  299

Understanding Antipiracy  299

Summary  300

Quiz Questions  300

Exercises  300

References and More Information  301

V: Drawing, Animations, and Graphics Programming
with Android  303

	 22	 Developing Android 2D Graphics Applications  305

Drawing on the Screen  305

Working with Canvases and Paints  305

Understanding the Canvas Object  307

Understanding the Paint Object  307

Working with Text  310

Using Default Fonts and Typefaces  310

Using Custom Typefaces  310

Measuring Text Screen Requirements  312

Working with Bitmaps  312

Drawing Bitmap Graphics on a Canvas  313

Scaling Bitmap Graphics  313

Transforming Bitmaps Using Matrixes  313

Bitmap Performance Optimizations  314

Working with Shapes  315

Defining Shape Drawables as XML Resources  315

Defining Shape Drawables Programmatically  316

Drawing Different Shapes  317

Leveraging Hardware Acceleration Features  324

Controlling Hardware Acceleration  325

Fine-Tuning Hardware Acceleration  325

xxiv	 ﻿ Contents

Summary  326

Quiz Questions  326

Exercises  326

References and More Information  327

	 23	 Working with Animation  329

Animating Your Applications  329

Working with Drawable Animation  329

Working with View Animations  331

Working with Property Animation  336

Working with Different Interpolators  341

Animating Activity Launch  341

State Animations with Scenes and Transitions  342

Summary  342

Quiz Questions  342

Exercises  343

References and More Information  343

	 24	 Developing Android 3D Graphics Applications  345

Working with OpenGL ES  345

Leveraging OpenGL ES in Android  346

Ensuring Device Compatibility  346

Using OpenGL ES APIs in the Android SDK  347

Handling OpenGL ES Tasks Manually  347

Creating a SurfaceView  348

Starting Your OpenGL ES Thread  349

Initializing EGL  350

Initializing GL  352

Drawing on the Screen  353

Drawing 3D Objects  353

Drawing Your Vertices  353

Coloring Your Vertices  355

Drawing More Complex Objects  356

Lighting Your Scene  358

Texturing Your Objects  359

Interacting with Android Views and Events  362

Enabling the OpenGL Thread to Talk
to the Application Thread  362

	 Contents	 xxv

Enabling the Application Thread to Talk
to the OpenGL Thread  363

Cleaning Up OpenGL ES  365

Using GLSurfaceView (Easy OpenGL ES)  366

Using OpenGL ES 2.0  369

Configuring Your Application for OpenGL ES 2.0  369

Requesting an OpenGL ES 2.0 Surface  370

Exploring OpenGL ES 3.0  373

Summary  374

Quiz Questions  374

Exercises  374

References and More Information  375

	 25	 Using the Android NDK  377

Determining When to Use the Android NDK  377

Installing the Android NDK  378

Exploring the Android NDK Sample Application  379

Creating Your Own NDK Project  379

Calling Native Code from Java  380

Handling Parameters and Return Values  381

Using Exceptions with Native Code  382

Using Native Activities  384

Improving Graphics Performance  384

Comparing RenderScript to the NDK  385

Computing with RenderScript  385

Native RenderScript  385

Summary  386

Quiz Questions  386

Exercises  386

References and More Information  386

VI: Maximizing Android’s Unique Features  389

	 26	 Extending Android Application Reach  391

Enhancing Your Applications  391

Working with App Widgets  392

Creating an App Widget  393

Installing an App Widget to the Home Screen  400

Becoming an App Widget Host  401

Introducing Lock Screen App Widgets  401

Installing an App Widget to the Lock Screen  403

Working with Live Wallpapers  404

Creating a Live Wallpaper  404

Creating a Live Wallpaper Service  404

Creating a Live Wallpaper Configuration  406

Configuring the Android Manifest File
for Live Wallpapers  406

Installing a Live Wallpaper  407

Introducing Daydream  408

Acting as a Content Type Handler  410

Determining Intent Actions and MIME Types  411

Implementing the Activity to Process the
Intents  412

Registering the Intent Filter  412

Summary  413

Quiz Questions  413

Exercises  414

References and More Information  414

	 27	 Enabling Application Search  415

Making Application Content Searchable  415

Enabling Searches in Your Application  416

Creating a Search Configuration  417

Creating a Search Activity  422

Configuring the Android Manifest File for Search  423

Enabling Global Search  424

Updating a Search Configuration for Global
Searches  425

Updating Search Settings for Global Searches  425

Summary  426

Quiz Questions  426

Exercises  426

References and More Information  426

xxvi	 ﻿ Contents

	 Contents	 xxvii

	 28	 Managing User Accounts and Synchronizing
User Data  427

Managing Accounts with the Account Manager  427

Multiple Users, Restricted Profiles, and
Accounts  428

Synchronizing Data with Sync Adapters  429

Using Backup Services  430

Choosing a Remote Backup Service  430

Implementing a Backup Agent  431

Backing Up and Restoring Application Data  434

Summary  435

Quiz Questions  436

Exercises  436

References and More Information  436

VII: Advanced Topics in Application Publication
and Distribution  437

	 29	 Internationalizing Your Applications  439

Localizing Your Application’s Language  439

Internationalization Using Alternative Resources  439

Changing the Language Settings  442

Implementing Locale Support Programmatically  444

Right-to-Left Language Localization  445

Translation Services through Google Play  445

Using the Developer Console  446

Publishing Applications for Foreign Users  446

Summary  446

Quiz Questions  446

Exercises  447

References and More Information  447

	 30	 Protecting Applications from Software
Piracy  449

All Applications Are Vulnerable  449

Using Secure Coding Practices  450

Obfuscating with ProGuard  450

Configuring ProGuard for Your Android
Applications  451

Dealing with Error Reports after Obfuscation  452

Leveraging the License Verification Library  452

Other Antipiracy Tips  453

Summary  454

Quiz Questions  454

Exercises  455

References and More Information  455

VIII: Preparing for Future Android Releases  457

	 31	 Introducing the L Developer Preview  459

Exploring the L Developer Preview  459

Improving Performance  460

Improving the User Experience  461

Introducing Android TV  464

Understanding Android TV Development
Requirements  464

Understanding TV Application Hardware
Limitations  465

Summary  465

Quiz Questions  465

Exercises  466

References and More Information  466

IX: Appendixes  467

	 A	 Quick-Start Guide: Android Debug Bridge  469

Listing Connected Devices and Emulators  469

Directing ADB Commands to Specific Devices  470

Starting and Stopping the ADB Server  470

Stopping the ADB Server Process  470

Starting and Checking the ADB Server Process  470

Listing ADB Commands  470

Issuing Shell Commands  471

Issuing a Single Shell Command  471

Using a Shell Session  471

Using the Shell to Start and Stop the Emulator  471

xxviii	 ﻿ Contents

	 Contents	 xxix

Copying Files  472

Sending Files to a Device or Emulator  472

Retrieving Files from a Device or Emulator  472

Installing and Uninstalling Applications  473

Installing Applications  473

Reinstalling Applications  473

Uninstalling Applications  473

Working with LogCat Logging  474

Displaying All Log Information  474

Including Date and Time with Log Data  474

Filtering Log Information  474

Clearing the Log  476

Redirecting Log Output to a File  476

Accessing the Secondary Logs  476

Controlling the Backup Service  476

Forcing Backup Operations  477

Forcing Restore Operations  477

Wiping Archived Data  477

Generating Bug Reports  477

Using the Shell to Inspect SQLite Databases  478

Using the Shell to Stress Test Applications  478

Letting the Monkey Loose on Your Application  478

Listening to Your Monkey  478

Directing Your Monkey’s Actions  479

Training Your Monkey to Repeat His Tricks  480

Keeping the Monkey on a Leash  480

Learning More about Your Monkey  481

Installing Custom Binaries via the Shell  481

Summary  482

Quiz Questions  482

Exercises  483

References and More Information  483

	 B	 Quick-Start Guide: SQLite   485

Exploring Common Tasks with SQLite  485

Using the sqlite3 Command-Line Interface  486

Launching the ADB Shell  486

Connecting to a SQLite Database  486

xxx﻿	 Contents

Exploring Your Database  487

Importing and Exporting the Database
and Its Data  488

Executing SQL Commands on the Command
Line  490

Using Other sqlite3 Commands  490

Understanding SQLite Limitations  490

Learning by Example: A Student Grade Database  491

Designing the Student Grade Database
Schema  491

Creating Simple Tables with AUTOINCREMENT  492

Inserting Data into Tables  492

Querying Tables for Results with SELECT  493

Using Foreign Keys and Composite Primary
Keys  493

Altering and Updating Data in Tables  495

Querying Multiple Tables Using JOIN  495

Using Calculated Columns  496

Using Subqueries for Calculated Columns  497

Deleting Tables  497

Summary  497

Quiz Questions  498

Exercises  498

References and More Information  498

	 C	 Java for Android Developers  499

Learning the Java Programming Language  499

Learning the Java Development Tools  499

Familiarizing Yourself with Java Documentation  500

Understanding Java Shorthand  500

Chaining Methods and Unnecessary
Temp Variables  501

Looping Infinitely  501

Working with Unary and Ternary Operators  502

Working with Inner Classes  503

Summary  505

Quiz Questions  505

Exercises  505

References and More Information  505

	 Contents	 xxxi

	 D	 Quick-Start Guide: Android Studio  507

Getting Up and Running with Android Studio  507

Launching Android Studio for the First Time  508

Configuring Android Studio  508

Creating an Android Studio Project  509

Understanding the Android Studio
Project Structure  512

Learning about the Gradle Build System  513

Overview of the Android Studio User Interface  513

Introducing the Layout Editor  513

Working in Design View  514

Working in Text View  514

Using the Preview Controls  515

Debugging Your Android Studio Applications  515

Setting Breakpoints  515

Stepping through Code  516

Useful Keyboard Shortcuts  517

Summary  517

Quiz Questions  517

Exercises  518

References and More Information  518

	 E	 Answers to Quiz Questions  519

	 Index 527

This page intentionally left blank

Acknowledgments

This book is the result of collaboration among a great group, from the efforts of the team
at Pearson Education (Addison-Wesley), from the suggestions made by the technical
reviewers, and from the support of family, friends, coworkers, and acquaintances
alike. We’d like to thank the Android developer community, Google, and the Open
Handset Alliance for their vision and expertise. Special thanks go to Mark Taub for
believing in the vision for this edition; Laura Lewin, who was the driving force behind
the book—without her this book would not have become a reality; Olivia Basegio,
who was instrumental in orchestrating the efforts of everyone involved; Songlin Qiu
for performing countless iterations combing through the manuscript and making this
book ready for production; and the technical reviewers: Doug Jones who suggested
improvements of the fine details, Ray Rischpater, who made many beneficial
recommendations, and Valerie Shipbaugh who spotted areas in need of clarification
(as well as Mike Wallace, Mark Gjoel, Dan Galpin, Tony Hillerson, Ronan Schwarz,
and Charles Stearns, who reviewed previous editions and incarnations of this book).
Dan Galpin also graciously provided the clever Android graphics used for Tips, Notes,
and Warnings. We also thank Hans Bodlaender for letting us use the nifty chess font he
developed as a hobby project.

This page intentionally left blank

About the Authors

Joseph Annuzzi, Jr., is a freelance software architect, graphic artist, inventor, entrepre-
neur, and author. He usually can be found mastering the Android platform, implementing
cutting-edge HTML5 capabilities, leveraging various cloud technologies, speaking in dif-
ferent programming languages, working with diverse frameworks, integrating with vari-
ous social APIs, tinkering with peer-to-peer, cryptography, and biometric algorithms, or
creating stunningly realistic 3D renders. He is always on the lookout for disruptive Inter-
net and mobile technologies and has multiple patent applications in process. He graduated
from the University of California, Davis, with a BS in managerial economics and a minor
in computer science and lives where much of the action is: Silicon Valley.

When he is not working with technology, he has been known to lounge in the sun
on the beaches of the Black Sea with international movie stars; he has trekked through
the Bavarian forest in winter, has immersed himself in the culture of the Italian Mediter-
ranean, and has narrowly escaped the wrath of an organized crime ring in Eastern Europe
after his taxi dropped him off in front of the bank ATM they were liquidating. He also
lives an active and healthy lifestyle, designs and performs custom fitness training routines
to stay in shape, and adores his loyal beagle, Cleopatra.

Lauren Darcey is responsible for the technical leadership and direction of a small soft-
ware company specializing in mobile technologies, including Android and iOS consulting
services. With more than two decades of experience in professional software produc-
tion, Lauren is a recognized authority in application architecture and the development of
commercial-grade mobile applications. Lauren received a BS in computer science from
the University of California, Santa Cruz.

She spends her copious free time traveling the world with her geeky mobile-minded
husband and pint-sized geekling daughter. She is an avid nature photographer. Her work
has been published in books and newspapers around the world. In South Africa, she dove
with 4-meter-long great white sharks and got stuck between a herd of rampaging hip-
popotami and an irritated bull elephant. She’s been attacked by monkeys in Japan, got-
ten stuck in a ravine with two hungry lions in Kenya, gotten thirsty in Egypt, narrowly
avoided a coup d’état in Thailand, geocached her way through the Swiss Alps, drunk her
way through the beer halls of Germany, slept in the crumbling castles of Europe, and
gotten her tongue stuck to an iceberg in Iceland (while being watched by a herd of suspi-
cious wild reindeer). Most recently, she can be found hiking along the Appalachian Trail
with her daughter and documenting the journey with Google Glass.

xxxvi	 ﻿About the Authors

Shane Conder has extensive application development experience and has focused his
attention on mobile and embedded development for well over a decade. He has designed
and developed many commercial applications for Android, iOS, BREW, BlackBerry,
J2ME, Palm, and Windows Mobile—some of which have been installed on millions of
phones worldwide. Shane has written extensively about the tech industry and is known
for his keen insights regarding mobile development platform trends. Shane received a BS
in computer science from the University of California, Santa Cruz.

A self-admitted gadget freak, Shane always has the latest smartphone, tablet, or wear-
able. He enjoys traveling the world with his geeky wife, even if she did make him dive
with 4-meter-long great white sharks and almost get eaten by a lion in Kenya. He admits
that he has to take at least three devices with him when backpacking (“just in case”)—
even where there is no coverage. Lately, his smart watch collection has exceeded his
number of wrists. Luckily, his young daughter is happy to offer her own. Such are the
burdens of a daughter of engineers.

Introduction

Android is a popular, free, and open-source mobile platform that has taken the wireless
world by storm. This book and Introduction to AndroidTM Application Development: Android
Essentials, Fourth Edition, provide comprehensive guidance for software development
teams on designing, developing, testing, debugging, and distributing professional Android
applications. If you’re a veteran mobile developer, you can find tips and tricks to stream-
line the development process and take advantage of Android’s unique features. If you’re
new to mobile development, these books provide everything you need to make a smooth
transition from traditional software development to mobile development—specifically, its
most promising platform: Android.

Who Should Read This Book?
This book includes tips for successful mobile development based upon our years in the
mobile industry, and it covers everything you need to know to run a successful Android
project from concept to completion. We cover how the mobile software process differs
from traditional software development, including tricks to save valuable time and pitfalls
to avoid. Regardless of the size of your project, this book is for you.

This book was written for various audiences:

■■ Software developers who want to learn to develop professional Android
applications. The bulk of this book is targeted at software developers with Java
experience who do not necessarily have mobile development experience. More
seasoned developers of mobile applications can learn how to take advantage of
Android and how it differs from the other technologies on the mobile development
market today.

■■ Other audiences. This book is useful not only to software developers, but also
to corporations looking at potential vertical market applications, entrepreneurs
thinking about cool phone applications, and hobbyists looking for some fun with
their new phones. Businesses seeking to evaluate Android for their specific needs
(including feasibility analysis) can also find the information provided valuable. Any-
one with an Android handset and a good idea for a mobile application can put the
information in this book to use for fun and profit.

How This Book Is Structured
Advanced AndroidTM Application Development, Fourth Edition, focuses on advanced Android
topics, including leveraging various Android application programming interfaces (APIs)

2	 Introduction

for threading, networking, location-based services, hardware sensors, animation, graph-
ics, and more. Coverage of advanced Android application components, such as services,
application databases, content providers, and intents, is also included. Developers will
learn to design advanced user interface (UI) components and integrate their applications
deeply into the platform. Finally, developers will learn how to extend their applications
beyond traditional boundaries using optional features of the Android platform, including
the Android Native Development Kit (NDK), Google Cloud Messaging (GCM), Google
Play In-app Billing APIs, Google Analytics APIs, Android Wear, Google Play game ser-
vices, and more.

Advanced AndroidTM Application Development, Fourth Edition, is divided into nine parts.
Here is an overview of the various parts:

■■ Part I: Advanced Android Application Design Principles

Part I picks up where Introduction to AndroidTM Application Development: Android
Essentials, Fourth Edition, leaves off in terms of application design techniques. We
begin by talking about asynchronous processing. We then move on to some of the
more complex Android application components, such as services, application data-
bases (SQLite), content providers, intents, and notifications.

■■ Part II: Advanced Android User Interface Design Principles

Part II dives deeper into some of the more advanced user interface tools and tech-
niques available as part of the Android Software Development Kit (SDK), including
working with action bars, gathering input through nonstandard methods such as ges-
tures and voice recognition, and much more. You will also learn more about how to
develop applications that are accessible to different types of users with impairments.

■■ Part III: Leveraging Common Android APIs

Part III dives deeper into some of the more advanced and specialty APIs available as
part of the Android SDK, including networking, web APIs, multimedia (including
the camera), telephony, and hardware sensors.

■■ Part IV: Leveraging Google APIs

Part IV is for those developers who need to integrate with the many available
features provided by Google. We cover Google location services, Google Maps
Android services, Google Cloud Messaging, Google In-app Billing, Google Analyt-
ics, and Google Play game services.

■■ Part V: Drawing, Animations, and Graphics Programming with Android

Part V is for those developers incorporating graphics of any kind into their appli-
cations. We cover both 2D and 3D graphics (OpenGL ES), animation, and the
Android NDK.

■■ Part VI: Maximizing Android’s Unique Features

Part VI discusses some of the many ways the Android platform is different from
other mobile platforms and how your applications can leverage its unique features.
Here you will learn how to extend your application features beyond the traditional

	 Key Questions Answered in This Book	 3

borders of mobile applications, integrating them with the Android operating sys-
tem. App Widgets, enabling searches, and backups are just some of the topics
discussed.

■■ Part VII: Advanced Topics in Application Publication and Distribution

Part VII covers more advanced topics in application publication and distribution,
including how to internationalize your applications and taking measures to protect
your intellectual property from software pirates.

■■ Part VIII: Preparing for Future Android Releases

Part VIII introduces the newest version of the Android SDK, the L Developer Pre-
view. We highlight many of the most anticipated features available in this release,
including Android Runtime (ART), Project Volta, material design, and Android TV.

■■ Part IX: Appendixes

Part IX includes a helpful quick-start guide for the Android Debug Bridge (ADB)
tool, a refresher course on using SQLite, and a quick-start guide for the Android
Studio IDE. There is also an appendix discussing Java for Android developers and
one dedicated to providing answers to the quiz questions.

Key Questions Answered in This Book
This book answers the following questions:

1.	 How can developers write responsive applications?

2.	 How are Android applications structured? How are background operations handled
with services? What are broadcast intents and how can applications use them
effectively?

3.	 How do applications store data persistently using SQLite? How can applications act
as content providers and why would they want to do so?

4.	 How do applications interact with the Android operating system? How do applica-
tions trigger system notifications, access underlying device hardware, and monitor
device sensors?

5.	 How can developers design the best user interfaces for the devices of today and
tomorrow? How can developers work with 2D and 3D graphics and leverage ani-
mation opportunities on Android?

6.	 How can developers write high-performance, computationally intensive applica-
tions using native code?

7.	 What are some of the most commonly used APIs for networking, location services,
maps, multimedia, telephony, and Internet access?

8.	 What do managers, developers, and testers need to look for when planning, devel-
oping, and testing a mobile development application?

9.	 How do mobile teams design bulletproof Android applications for publication?

4	 Introduction

10.	 How can developers make their applications leverage everything Android has to
offer in the form of App Widgets, live wallpapers, and other system perks?

11.	 How can applications take advantage of some of the optional third-party APIs
available for use, such as Google Play’s In-app Billing and License Verification
Library, Google Analytics, Google Play game services, Google location services,
Google Maps Android v2 services, and Google Cloud Messaging services?

12.	 How can developers make use of new Android preview features such as the new
Android Studio or Android Wear?

An Overview of Changes in This Edition
When we began writing the first edition of this book, there were no Android devices on
the market. Today there are hundreds of types of devices shipping all over the world—
smartphones, tablets, e-book readers, smart watches, and specialty devices such as gaming
consoles, Google TV, and Google Glass.

The Android platform has gone through extensive changes since the first edition of
this book was published. The Android SDK has many new features, and the development
tools have received much-needed upgrades. Android, as a technology, is now on solid
footing in the mobile marketplace.

For this new edition, we took the opportunity to add content covering the latest and great-
est features Android has to offer—but don’t worry, it’s still the book readers loved the first,
second, and third time around; it’s just bigger, better, and more comprehensive. In addition to
adding new content, we’ve retested and upgraded all existing content (text and sample code)
for use with the latest Android SDKs available while still remaining backward compatible. We
created quiz questions to help readers ensure that they understand each chapter’s content, and
we added end-of-chapter exercises for readers to perform to dig deeper into all that Android
has to offer. The Android development community is diverse, and we aim to support all
developers, regardless of which devices they are developing for. This includes developers who
need to target nearly all platforms, so coverage in some key areas of older SDKs continues to
be included as it’s often the most reasonable option for compatibility.

Here are some of the highlights of the additions and enhancements we’ve made in this
edition:

■■ Coverage of the latest and greatest Android tools and utilities is included.
■■ The chapter on content providers has been rewritten with updated code samples in
reference to a simpler application.

■■ The chapter on notifications has been rewritten to include a new application
and code samples demonstrating how to create notifications with the new
NotificationCompat.Builder() class, and we show how to create expandable
and contractible notifications.

■■ There are totally new chapters that cover Google Cloud Messaging and Google
Play game services, and a new appendix that shows you how to get up and running
quickly with Android Studio.

	 The Development Environment Used in This Book	 5

■■ The chapter about location and map APIs has been rewritten to include the new
Google location services APIs and the Google Maps Android v2 APIs, allowing
you to build even more compelling location services into your applications.

■■ The chapter on Google Analytics has been rewritten and includes a new applica-
tion with updated code demonstrating how to make use of the latest version of the
Google Analytics SDK for Android.

■■ The telephony chapter includes information describing the latest changes that affect
Short Message Service (SMS) applications, discussing the behavioral differences
between the default SMS app and the nondefault SMS apps.

■■ We’ve added coverage of hot topics such as Android Wear, sensor event batch-
ing, state animations with scenes and transitions, OpenGL ES 3.0, Lock screen App
Widgets, Daydream, and Google Play App Translation Service.

■■ All chapters and appendixes now include quiz questions and exercises for readers to
test their knowledge of the subject matter presented.

■■ All existing chapters have been updated, often with entirely new sections.
■■ All sample code and accompanying applications have been updated to work with
the latest SDK.

As you can see, we cover many of the hottest and most exciting features that Android
has to offer. We didn’t take this revision lightly; we touched every existing chapter,
updated content, and added new chapters as well. Finally, we included many additions,
clarifications, and, yes, even a few fixes based upon the feedback from our fantastic (and
meticulous) readers. Thank you!

The Development Environment Used in This Book
The Android code in this book was written using the following development
environments:

■■ Windows 7, Windows 8, and Mac OS X 10.9.x
■■ Android ADT Bundle (20140321 files were used)
■■ Android Studio (135.1078000 files were used)
■■ Android SDK Version 4.4, API Level 19 (KitKat)
■■ Android SDK Tools Revision 22.6.4
■■ Android SDK Platform Tools 19.0.2
■■ Android SDK Build Tools 19.1
■■ Android Support Library Revision 19.1 (where applicable)
■■ Google Analytics App Tracking SDK version 4 (where applicable)
■■ Google Play services Revision 17 (where applicable)
■■ Android NDK r9d (the android-ndk-r9d-windows-x86.zip file was used)

6	 Introduction

■■ Java SE Development Kit (JDK) 6 Update 45, and JDK 7 Update 55
■■ Android devices: Nexus 4 and 5 (phones), Nexus 7 (first- and second-generation
7-inch tablet), Nexus 10 (10-inch tablet), including various other devices and form
factors

The Android platform continues to grow in market share against competing mobile
platforms, such as Apple iOS and BlackBerry. New and exciting types of devices reach
consumers’ hands at a furious pace. Developers have embraced Android as a target plat-
form to reach the device users of today and tomorrow.

Android’s latest major platform update, Android 4.4, frequently called by its code name
KitKat, has many new features that help differentiate Android from the competition. This
book features the latest SDK and tools available, but it does not focus on them to the detri-
ment of popular legacy versions of the platform. The book is meant to be an overall refer-
ence to help developers support all popular devices on the market today. As of the writing
of this book, a sizable proportion of users (23.9 percent) have devices that run Android 4.3
or 4.4. Of course, some devices receive upgrades, and users purchase new devices as they
become available, but for now, developers need to straddle this gap and support numerous
versions of Android to reach the majority of users in the field. In addition, the next version
of the Android operating system is likely to be released in the near future.

So what does this mean for this book? It means we provide legacy API support and
discuss some of the newer APIs available only in later versions of the Android SDK. We
discuss strategies for supporting all (or at least most) users in terms of compatibility. And
we provide screenshots that highlight different versions of the Android SDK, because
each major revision has brought with it a change in the look and feel of the overall plat-
form. That said, we are assuming that you are downloading the latest Android tools, so
we provide screenshots and steps that support the latest tools available at the time of writ-
ing, not legacy tools. Those are the boundaries we set when trying to determine what to
include or leave out of this book.

Supplementary Materials Available
The source code is also available for download from our book’s website: http://
advancedandroidbook.blogspot.com/2014/07/book-code-samples.html.

Where to Find More Information
There is a vibrant, helpful Android developer community on the Web. Here are a num-
ber of useful websites for Android developers and followers of the wireless industry:

■■ Android Developer website: The Android SDK and developer reference site:

http://developer.android.com/
■■ Google Plus: Android Developers Group:

https://plus.google.com/+AndroidDevelopers/posts

http://advancedandroidbook.blogspot.com/2014/07/book-code-samples.html
http://advancedandroidbook.blogspot.com/2014/07/book-code-samples.html
http://developer.android.com/
https://plus.google.com/+AndroidDevelopers/posts

	 Conventions Used in This Book	 7

■■ YouTube: Android Developers channels:

http://youtube.com/user/androiddevelopers
■■ Stack Overflow: The Android website with great technical information (complete
with tags) and an official support forum for developers:

http://stackoverflow.com/questions/tagged/android
■■ Open Handset Alliance: Android manufacturers, operators, and developers:

http://openhandsetalliance.com/
■■ Google Play: Buy and sell Android applications:

https://play.google.com/store
■■ Mobiletuts+: Mobile development tutorials, including Android:

http://code.tutsplus.com/categories/android-sdk
■■ Android Tools Project Site: The tools team discusses updates and changes:

https://sites.google.com/a/android.com/tools/recent
■■ FierceDeveloper: A weekly newsletter for wireless developers:

http://fiercedeveloper.com/
■■ XDA-Developers Android forum: From general development to ROMs:

http://forum.xda-developers.com/android
■■ Developer.com: A developer-oriented site with mobile articles:

http://developer.com/

Conventions Used in This Book
This book uses the following conventions:

■■ Code, directory paths, and programming terms are set in monospace font.
■■ Java import statements, exception handling, and error checking are often removed
from printed code samples for clarity and to keep the book at a reasonable length.

This book also presents information in the following types of sidebars:

Tip
Tips provide useful information or hints related to the current text.

Note
Notes provide additional information that might be interesting or relevant.

Warning
Warnings provide hints or tips about pitfalls that may be encountered and how to avoid
them.

http://youtube.com/user/androiddevelopers
http://stackoverflow.com/questions/tagged/android
http://openhandsetalliance.com/
http://code.tutsplus.com/categories/android-sdk
http://fiercedeveloper.com/
http://forum.xda-developers.com/android
http://developer.com/
https://play.google.com/store
https://sites.google.com/a/android.com/tools/recent

8	 Introduction

Contacting the Authors
We welcome your comments, questions, and feedback. We invite you to visit our blog at:

■■ http://advancedandroidbook.blogspot.com

Or, email us at:

■■ advancedandroidbook4e@gmail.com

Circle us on Google+:

■■ Joseph Annuzzi, Jr.: http://goo.gl/FBQeL
■■ Lauren Darcey: http://goo.gl/P3RGo
■■ Shane Conder: http://goo.gl/BpVJh

http://advancedandroidbook.blogspot.com
http://goo.gl/FBQeL
http://goo.gl/P3RGo
http://goo.gl/BpVJh

8
Handling Advanced User Input

Users interact with Android devices in many ways, including using keyboards, touch-
screen gestures, and even voice. Different devices support different input methods and
have different hardware. For example, certain devices have hardware keyboards, and
others rely only on software keyboards. In this chapter, you will learn about the different
input methods available to developers and how you can use them to great effect within
your applications.

Working with Textual Input Methods
The Android SDK includes input method framework classes that enable interested devel-
opers to use powerful input methods and create their own input methods, such as custom
software keyboards and other Input Method Editors (IMEs). Users can download custom
IMEs to use on their devices. For example, there’s nothing stopping a developer from
creating a custom keyboard with Lord of the Rings–style Elvish characters, smiley faces, or
Greek symbols.

Tip
Most device settings related to input methods are available under the Settings, Language &
input menu. Here, users can select the language, configure the custom user dictionary, and
make changes to how their keyboards function.

The Android SDK also includes a number of other text input utilities that might ben-
efit application users, such as text prediction, dictionaries, and the clipboard framework,
which can be used to enable sophisticated cut-and-paste features in your application for
text and much more.

Working with Software Keyboards
Because text input methods are locale-based (different countries use different alpha-
bets and keyboards) and situational (numeric versus alphabetic versus special keys), the
Android platform has trended toward software keyboards as opposed to relying on hard-
ware manufacturers to deliver specialized hardware keyboards.

116	 Chapter 8 Handling Advanced User Input

Choosing the Appropriate Software Keyboard
The Android platform has a number of software keyboards available for use. One of the
easiest ways to enable your users to enter data efficiently is to specify the type of input
expected in each text input field.

Tip
Many of the code examples provided in this section are taken from the
SimpleTextInputTypes application. The source code for this application is provided for
download on the book’s website.

For example, to specify an EditText that should take only capitalized textual input,
you can set the inputType attribute as follows:

<EditText
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:inputType="text|textCapCharacters">
</EditText>

Figure 8.1 shows a number of EditText controls with different inputType
configurations.

The input type dictates which software keyboard is used by default, and it enforces
appropriate rules, such as limiting input to certain characters. Figure 8.2 (left) illustrates
what the software keyboard looks like for an EditText control with its inputType attri-
bute set to all capitalized text input. Note that the software keyboard keys are all capital-
ized. If you were to set the inputType to textCapWords instead, the keyboard would
switch to lowercase after the first letter of each word and then back to uppercase after
a space. Figure 8.2 (middle) illustrates what the software keyboard looks like for an
EditText control with its inputType attribute set to number. Figure 8.2 (right) illus-
trates what the software keyboard looks like for an EditText control with its inputType
attribute set to textual input, where each sentence begins with a capital letter and the text
can be multiple lines.

Depending on the user’s keyboard settings (specifically, if the user has enabled
the Show correction suggestions and Auto-correction options in the Android Key-
board settings of the device), the user might also see suggested words or spelling
fixes while typing. For a complete list of inputType attribute values and their uses, see
http://developer.android.com/reference/android/R.attr.html#inputType.

Tip
You can also have your Activity react to the display of software keyboards (to adjust
where fields are displayed, for example) by requesting the WindowManager as a system
Service and modifying the layout parameters associated with the softInputMode field.

For more fine-tuned control over input methods, see the android.view.inputmethod
.InputMethodManager class.

http://developer.android.com/reference/android/R.attr.html#inputType

	 Working with Textual Input Methods	 117

Figure 8.1  EditText controls with different input types.

Providing Custom Software Keyboards
If you are interested in developing your own software keyboards, we highly recommend
the following references:

■■ IMEs are implemented as an Android Service. Begin by reviewing the Android
packages called android.inputmethodservice and android.view.inputmethod,
which can be used to implement custom input methods.

■■ The SoftKeyboard legacy sample application in the Android SDK provides an
implementation of a software keyboard.

■■ The Android Developers Blog has articles on on-screen input methods
(http://android-developers.blogspot.com/2009/04/updating-applications-for-on-screen.html)
and creating an input method (http://android-developers.blogspot.com/2009/04/
creating-input-method.html). Don’t forget to add voice typing to your input method
(http://android-developers.blogspot.com/2011/12/add-voice-typing-to-your-ime.html).

http://android-developers.blogspot.com/2009/04/updating-applications-for-on-screen.html
http://android-developers.blogspot.com/2009/04/creating-input-method.html
http://android-developers.blogspot.com/2009/04/creating-input-method.html
http://android-developers.blogspot.com/2011/12/add-voice-typing-to-your-ime.html

118	 Chapter 8 Handling Advanced User Input

Working with Text Prediction and User Dictionaries
Text prediction is a powerful and flexible feature that is available on Android devices.
We’ve already talked about many of these technologies in other parts of this book, but
they merit mentioning in this context as well:

■■ In Introduction to Android Application Development: Android Essentials, Fourth Edition, you
learned how to use AutoCompleteTextView and MultiAutoCompleteTextView
controls to help users input common words and strings.

■■ In Chapter 3, “Leveraging SQLite Application Databases,” you learned how to tie
an AutoCompleteTextView control to an underlying SQLite database table.

■■ In Introduction to Android Application Development: Android Essentials, Fourth Edition,
you learned about the UserDictionary content provider (android.provider
.UserDictionary), which can be used to add words to the user’s custom diction-
ary of commonly used words.

Using the Clipboard Framework
On Android devices running Android 3.0 and higher (API Level 11), developers can access
the clipboard to perform copy and paste actions. Previous to this, the clipboard had no
public API. To leverage the clipboard in your applications, you need to use the clipboard

Figure 8.2  The software keyboards associated with specific input types.

	 Handling User Events	 119

framework of the Android SDK. You can copy and paste different data structures—
everything from text to references to files to application shortcuts—as Intent objects.
The clipboard holds only a single set of clipped data at a time, and the clipboard is shared
across all applications, so you can easily copy and paste content between applications.

Copying Data to the System Clipboard
To save data to the system clipboard, call getSystemService() and request the clip-
board Service’s ClipboardManager (android.content.ClipboardManager). Then,
create a ClipData (android.content.ClipData) object and populate it with the data
you want to save to the clipboard. Finally, commit the clip using the ClipboardManager
class method setPrimaryClip().

Pasting Data from the System Clipboard
To retrieve data from the system clipboard, call getSystemService() and request the
clipboard Service’s ClipboardManager (android.content.ClipboardManager).
You can determine whether the clipboard contains data by using the hasPrimaryClip()
method. After you have determined whether there is valid data in the system clipboard,
you can inspect its description and type and ultimately retrieve the ClipData object
using the getPrimaryClip() method.

Handling User Events
You’ve seen how to do basic event handling in some of the previous control examples.
For instance, you know how to handle when a user clicks on a button. There are a num-
ber of other events generated by various actions the user might take. This section briefly
introduces you to some of these events. First, though, we need to talk about the input
states in Android.

Listening for Touch Mode Changes
The Android screen can be in one of two states. The state determines how the focus
on View controls is handled. When touch mode is on, typically only objects such as
EditText get focus when selected. Other objects, because they can be selected directly
by the user tapping on the screen, won’t take focus but instead trigger their action, if any.
When not in touch mode, however, the user can change focus among even more object
types. These include buttons and other views that normally need only a click to trigger
their action.

Knowing what mode the screen is in is useful if you want to handle certain events. If,
for instance, your application relies on the focus or lack of focus on a particular control,
your application might need to know whether the device is in touch mode because the
focus behavior is likely different.

120	 Chapter 8 Handling Advanced User Input

Your application can register to find out when the touch mode changes by using the
addOnTouchModeChangeListener() method in the android.view.ViewTree
Observer class. Your application needs to implement the ViewTreeObserver
.OnTouchModeChangeListener class to listen for these events. Here is a sample
implementation:

View all = findViewById(R.id.events_screen);
ViewTreeObserver vto = all.getViewTreeObserver();
vto.addOnTouchModeChangeListener(
 new ViewTreeObserver.OnTouchModeChangeListener() {
 public void onTouchModeChanged(
 boolean isInTouchMode) {
 events.setText("Touch mode: " + isInTouchMode);
 }
});

In this example, the top-level View in the layout is retrieved. A ViewTreeObserver
listens to a View and all its child View objects. Using the top-level View of the layout
means the ViewTreeObserver listens to events in the entire layout. An implementa-
tion of the onTouchModeChanged() method provides the ViewTreeObserver with a
method to call when the touch mode changes. It merely passes in which mode the View
is now in.

In this example, the mode is written to a TextView named events. We use this same
TextView in further event handling examples to show on the screen which events our
application has been told about. The ViewTreeObserver can enable applications to listen
to a few other events on an entire screen.

By running this sample code, we can demonstrate the touch mode changing to true
immediately when the user taps on the touchscreen. Conversely, when the user chooses
to use any other input method, the application reports that touch mode is false imme-
diately after the input event, such as a key being pressed.

Listening for Events on the Entire Screen
You saw in the last section how your application can watch for changes to the touch
mode state of the screen using the ViewTreeObserver class. The ViewTreeObserver
also provides other events that can be watched for on a full screen or an entire View and
all of its children. Some of these are:

■■ Draw or PreDraw: Get notified before the View and its children are drawn.
■■ GlobalLayout: Get notified when the layout of the View and its children might
change, including visibility changes.

■■ GlobalFocusChange: Get notified when the focus in the View and its children
changes.

Your application might want to perform some actions before the screen is drawn. You
can do this by calling the method addOnPreDrawListener() with an implementation
of the ViewTreeObserver.OnPreDrawListener class interface or by calling the method

	 Handling User Events	 121

addOnDrawListener() with an implementation of the ViewTreeObserver.OnDraw
Listener class interface.

Similarly, your application can find out when the layout or visibility of a View has
changed. This might be useful if your application dynamically changes the display con-
tents of a View and you want to check to see whether a View still fits on the screen. Your
application needs to provide an implementation of the ViewTreeObserver.OnGlobal
LayoutListener class interface to the addGlobalLayoutListener() method of the
ViewTreeObserver object.

Finally, your application can register to find out when the focus changes between a
View control and any of its child View controls. Your application might want to do this
to monitor how a user moves about on the screen. When in touch mode, though, there
might be fewer focus changes than when touch mode is not set. In this case, your appli-
cation needs to provide an implementation of the ViewTreeObserver.OnGlobalFocus
ChangeListener class interface to the addGlobalFocusChangeListener() method.
Here is a sample implementation of this:

vto.addOnGlobalFocusChangeListener(new
 ViewTreeObserver.OnGlobalFocusChangeListener() {
 public void onGlobalFocusChanged(
 View oldFocus, View newFocus) {
 if (oldFocus != null && newFocus != null) {
 events.setText("Focus \nfrom: " +
 oldFocus.toString() + " \nto: " +
 newFocus.toString());
 }
 }
 });

This example uses the same ViewTreeObserver, vto, and TextView events as the
previous example. It shows that both the currently focused View object and the previ-
ously focused View object are passed to the listener as method parameters. From here,
your application can perform needed actions.

If your application merely wants to check values after the user has modified a particu-
lar View object, though, you might need to register to listen for focus changes only of
that particular View object. This is discussed later in this chapter.

Listening for Long Clicks
You can add a context menu or a contextual action bar to a View that is activated when
the user performs a long click on that View. A long click is typically when a user presses
on the touchscreen and holds a finger there until an action is performed. However, a long
press event can also be triggered if the user navigates there with a non-touch method,
such as via a keyboard or a button. This action is also often called a press-and-hold action.

Although the context menu is a great typical use case for the long-click event, you can
listen for the long-click event and perform any action you want. However, this is the same
event that triggers the context menu. If you’ve already added a context menu to a View,
you might not want to listen for the long-click event as other actions or side effects might

122	 Chapter 8 Handling Advanced User Input

confuse the user or even prevent the context menu or contextual action bar from showing.
As always with good user interface design, try to be consistent for usability’s sake.

Tip
Usually a long click is an alternative action to a standard click. If a left-click on a computer is
the standard click, a long click can be compared to a right-click.

Your application can listen to the long-click event on any View. The following exam-
ple demonstrates how to listen for a long-click event on a Button control:

Button long_press = (Button) findViewById(R.id.long_press);
long_press.setOnLongClickListener(new View.OnLongClickListener() {
 public boolean onLongClick(View v) {
 events.setText("Long click: " + v.toString());
 return true;
 }
});

First, the Button object is requested by providing its identifier. Then the setOnLong
ClickListener() method is called with our implementation of the View.OnLong
ClickListener class interface. The View on which the user long-clicked is passed in to
the onLongClick() event handler. Here again we use the same TextView as before to
display text saying that a long click occurred.

Listening for Focus Changes
We have already discussed listening for focus changes on an entire screen. All View
objects, though, can also trigger a call to listeners when their particular focus state
changes. You do this by providing an implementation of the View.OnFocusChange
Listener class to the setOnFocusChangeListener() method. The following is an
example of how to listen for focus change events with an EditText control:

TextView focus = (TextView) findViewById(R.id.text_focus_change);
focus.setOnFocusChangeListener(new View.OnFocusChangeListener() {
 public void onFocusChange(View v, boolean hasFocus) {
 if (hasFocus) {
 if (mSaveText != null) {
 ((TextView)v).setText(mSaveText);
 }
 } else {
 mSaveText = ((TextView)v).getText().toString();
 ((TextView)v).setText("");
 }
 }

In this implementation, we also use a private member variable of type String for
mSaveText. After retrieving the EditText control as a TextView, we do one of two
things. If the user moves focus away from the control, we store the text in mSaveText
and set the text to empty. If the user changes focus to the control, though, we restore this
text. This has the amusing effect of hiding the text the user entered when the control is
not active. This can be useful on a form on which a user needs to make multiple, lengthy

	 Working with Gestures	 123

text entries but you want to provide an easy way for the user to see which one to edit.
It is also useful for demonstrating a purpose for the focus listeners on a text entry. Other
uses might include validating text a user enters after the user navigates away or prefilling
the text entry the first time the user navigates to it with something else entered.

Working with Gestures
Android devices often rely on touchscreens for user input. Users are now quite comfort-
able using common finger gestures to operate their devices. Android applications can
detect and react to one-finger (single-touch) and two-finger (multitouch) gestures. Users
can also use gestures with the drag-and-drop framework to enable the arrangement of
View controls on a device screen.

Note
Even early Android devices supported simple single-touch gestures. Support for multitouch
gestures was added in the Android 2.2 SDK and is available only on devices with capacitive
touchscreen hardware. Some capacitive hardware is capable of tracking up to ten different
points at once.

One of the reasons that gestures can be a bit tricky is that a gesture can be made of
multiple touch events or motions. Different sequences of motion add up to different ges-
tures. For example, a fling gesture involves the user pressing a finger down on the screen,
swiping across the screen, and lifting the finger up off the screen while the swipe is still
in motion (that is, without slowing down to stop before lifting the finger). Each of these
steps can trigger motion events to which applications can react.

Detecting User Motions within a View
By now you’ve come to understand that Android application user interfaces are built
using different types of View controls. Developers can handle gestures much as they do
click events within a View control using the setOnClickListener() and setOnLong
ClickListener() methods. Instead, the onTouchEvent() callback method is used to
detect that some motion has occurred within the View region.

The onTouchEvent() callback method has a single parameter, a MotionEvent object.
The MotionEvent object contains all sorts of details about what kind of motion occurs
in the View, enabling the developer to determine what sort of gesture is happening by
collecting and analyzing many consecutive MotionEvent objects. You can use all of the
MotionEvent data to recognize and detect every kind of gesture you can possibly imag-
ine. Alternatively, you can use built-in gesture detectors provided in the Android SDK to
detect common user motions in a consistent fashion. Android currently has two different
classes that can detect navigational gestures:

■■ The GestureDetector class can be used to detect common single-touch gestures.
■■ The ScaleGestureDetector can be used to detect multitouch scale gestures.

124	 Chapter 8 Handling Advanced User Input

It is likely that more gesture detectors will be added in future versions of the Android
SDK. You can also implement your own gesture detectors to detect any gestures not
supported by the built-in ones. For example, you might want to create a two-fingered
rotate gesture to, say, rotate an image, or a three-fingered swipe gesture that brings up an
options menu.

In addition to common navigational gestures, you can use the android.gesture
package with the GestureOverlayView to recognize commandlike gestures. For
instance, you can create an S-shaped gesture that brings up a search or a zigzag gesture
that clears the screen on a drawing app. Tools are available for recording and creating
libraries of this style of gesture. As it uses an overlay for detection, it isn’t well suited for
all types of applications. This package was introduced in API Level 4.

Warning
The type and sensitivity of the touchscreen can vary by device. Different devices can detect
different numbers of touch points simultaneously, which affects the complexity of gestures
you can support.

Handling Common Single-Touch Gestures
Introduced in API Level 1, the GestureDetector class can be used to detect ges-
tures made by a single finger. Some common single-finger gestures supported by the
GestureDetector class include:

■■ onDown: Called when the user first presses the touchscreen.
■■ onShowPress: Called after the user first presses the touchscreen but before lifting
the finger or moving it around on the screen; used to visually or audibly indicate
that the press has been detected.

■■ onSingleTapUp: Called when the user lifts up (using the up MotionEvent) from
the touchscreen as part of a single-tap event.

■■ onSingleTapConfirmed: Called when a single-tap event occurs.
■■ onDoubleTap: Called when a double-tap event occurs.
■■ onDoubleTapEvent: Called when an event within a double-tap gesture occurs,
including any down, move, or up MotionEvent.

■■ onLongPress: Similar to onSingleTapUp, but called if the user holds down a fin-
ger long enough to not be a standard click but also without any movement.

■■ onScroll: Called after the user presses and then moves a finger in a steady motion
before lifting the finger. This is commonly called dragging.

■■ onFling: Called after the user presses and then moves a finger in an accelerating
motion before lifting it. This is commonly called a flick gesture and usually results in
some motion continuing after the user lifts the finger.

	 Working with Gestures	 125

You can use the interfaces available with the GestureDetector class to listen for
specific gestures such as single and double taps (see GestureDetector.OnDouble
TapListener), as well as scrolls and flings (see the documentation for Gesture
Detector.OnGestureListener). The scrolling gesture involves touching the screen
and moving a finger around on it. The fling gesture, on the other hand, causes (though
not automatically) the object to continue to move even after the finger has been lifted
from the screen. This gives the user the impression of throwing or flicking the object
around on the screen.

Tip
You can use the GestureDetector.SimpleOnGestureListener class to listen to any
and all of the gestures recognized by the GestureDetector.

Let’s look at a simple example. Let’s assume you have a game screen that enables the
user to perform gestures to interact with a graphic on the screen. We can create a custom
View class called GameAreaView that can dictate how a bitmap graphic moves around
within the game area based upon each gesture. The GameAreaView class can use the
onTouchEvent() method to pass along MotionEvent objects to a GestureDetector.
In this way, the GameAreaView can react to simple gestures, interpret them, and make
the appropriate changes to the bitmap, including moving it from one location to another
on the screen.

Tip
How the gestures are interpreted and what actions they cause are completely up to the
developer. You can, for example, interpret a fling gesture and make the bitmap graphic
disappear . . . but does that make sense? Not really. It’s important to always make the
gesture jibe well with the resulting operation in the application so that users are not
confused. Users are now accustomed to specific screen behavior based on certain gestures,
so it’s best to use the expected convention, too.

In this case, the GameAreaView class interprets gestures as follows:

■■ A double-tap gesture causes the bitmap graphic to return to its initial position.
■■ A scroll gesture causes the bitmap graphic to “follow” the motion of the finger.
■■ A fling gesture causes the bitmap graphic to “fly” in the direction of the fling.

Tip
Many of the code examples provided in this section are taken from the SimpleGestures
application. The source code for this application is provided for download on the book’s
website.

To make these gestures work, the GameAreaView class needs to include the appro-
priate gesture detector, which triggers any operations upon the bitmap graphic. Based
upon the specific gestures detected, the GameAreaView class must perform all transla-
tion animations and other graphical operations applied to the bitmap. To wire up the

126	 Chapter 8 Handling Advanced User Input

GameAreaView class for gesture support, we need to implement several important
methods:

■■ The class constructor must initialize any gesture detectors and bitmap graphics.
■■ The onTouchEvent() method must be overridden to pass the MotionEvent data
to the gesture detector for processing.

■■ The onDraw() method must be overridden to draw the bitmap graphic in the
appropriate position at any time.

■■ Various methods are needed to perform the graphics operations required to make a
bitmap move around on the screen, fly across the screen, and reset its location based
upon the data provided by the specific gesture.

All these tasks are handled by our GameAreaView class definition:

public class GameAreaView extends View {
 private static final String DEBUG_TAG =
 "SimpleGestures->GameAreaView";
 private GestureDetector gestures;
 private Matrix translate;
 private Bitmap droid;
 private Matrix animateStart;
 private Interpolator animateInterpolator;
 private long startTime;
 private long endTime;
 private float totalAnimDx;
 private float totalAnimDy;

 public GameAreaView(Context context, int iGraphicResourceId) {
 super(context);
 translate = new Matrix();
 GestureListener listener = new GestureListener(this);
 gestures = new GestureDetector(context, listener, null, true);
 droid = BitmapFactory.decodeResource(getResources(),
 iGraphicResourceId);
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 boolean retVal = false;
 retVal = gestures.onTouchEvent(event);
 return retVal;
 }

 @Override
 protected void onDraw(Canvas canvas) {
 Log.v(DEBUG_TAG, "onDraw");
 canvas.drawBitmap(droid, translate, null);
 }

	 Working with Gestures	 127

 public void onResetLocation() {
 translate.reset();
 invalidate();
 }

 public void onMove(float dx, float dy) {
 translate.postTranslate(dx, dy);
 invalidate();
 }

 public void onAnimateMove(float dx, float dy, long duration) {
 animateStart = new Matrix(translate);
 animateInterpolator = new OvershootInterpolator();
 startTime = android.os.SystemClock.elapsedRealtime();
 endTime = startTime + duration;
 totalAnimDx = dx;
 totalAnimDy = dy;
 post(new Runnable() {
 @Override
 public void run() {
 onAnimateStep();
 }
 });
 }

 private void onAnimateStep() {
 long curTime = android.os.SystemClock.elapsedRealtime();
 float percentTime = (float) (curTime - startTime) /
 (float) (endTime - startTime);
 float percentDistance = animateInterpolator
 .getInterpolation(percentTime);
 float curDx = percentDistance * totalAnimDx;
 float curDy = percentDistance * totalAnimDy;
 translate.set(animateStart);
 onMove(curDx, curDy);

 if (percentTime < 1.0f) {
 post(new Runnable() {
 @Override
 public void run() {
 onAnimateStep();
 }
 });
 }
 }
}

As you can see, the GameAreaView class keeps track of where the bitmap graphic
should be drawn at any time. The onTouchEvent() method is used to capture
motion events and pass them along to a gesture detector whose GestureListener
we must implement as well (more on this in a moment). Typically, each method of
the GameAreaView applies some operation to the bitmap graphic and then calls the
invalidate() method, forcing the View to be redrawn.

128	 Chapter 8 Handling Advanced User Input

Now we turn our attention to the methods required to implement specific gestures:

■■ For double-tap gestures, we implement a method called onResetLocation() to
draw the bitmap graphic in its original location.

■■ For scroll gestures, we implement a method called onMove() to draw the bitmap
graphic in a new location. Note that scrolling can occur in any direction—it simply
refers to a finger swipe on the screen.

■■ For fling gestures, things get a little tricky. To animate motion on the screen
smoothly, we used a chain of asynchronous calls and a built-in Android interpolator
to calculate the location in which to draw the graphic based upon how long it has
been since the animation started. See the onAnimateMove() and onAnimate
Step() methods for the full implementation of fling animation.

Now we need to implement our GestureListener class to interpret the appropriate
gestures and call the GameAreaView methods we just implemented. Here’s an implemen-
tation of the GestureListener class that our GameAreaView class can use:

private class GestureListener extends
 GestureDetector.SimpleOnGestureListener {

 GameAreaView view;

 public GestureListener(GameAreaView view) {
 this.view = view;
 }

 @Override
 public boolean onDown(MotionEvent e) {
 return true;
 }

 @Override
 public boolean onFling(MotionEvent e1, MotionEvent e2,
 final float velocityX, final float velocityY) {
 final float distanceTimeFactor = 0.4f;
 final float totalDx = (distanceTimeFactor * velocityX / 2);
 final float totalDy = (distanceTimeFactor * velocityY / 2);

 view.onAnimateMove(totalDx, totalDy,
 (long) (1000 * distanceTimeFactor));
 return true;
 }

 @Override
 public boolean onDoubleTap(MotionEvent e) {
 view.onResetLocation();
 return true;
 }

	 Working with Gestures	 129

 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2,
 float distanceX, float distanceY) {
 view.onMove(-distanceX, -distanceY);
 return true;
 }
}

Note that you must return true for any gesture or motion event that you want to
detect. Therefore, you must return true in the onDown() method as it happens at the
beginning of a scroll-type gesture. Most of the implementation of the GestureListener
class methods involves our interpretation of the data for each gesture. For example:

■■ We react to double taps by resetting the bitmap to its original location using the
onResetLocation() method of our GameAreaView class.

■■ We use the distance data provided in the onScroll() method to determine
the direction to use in the movement to pass in to the onMove() method of the
GameAreaView class.

■■ We use the velocity data provided in the onFling() method to determine
the direction and speed to use in the movement animation of the bitmap.
The timeDistanceFactor variable with a value of 0.4 is subjective; it gives
the resulting slide-to-a-stop animation enough time to be visible but is short
enough to be controllable and responsive. You can think of it as a high-friction
surface. This information is used by the animation sequence implemented in the
onAnimateMove() method of the GameAreaView class.

Now that we have implemented the GameAreaView class in its entirety, you can
display it on a screen. For example, you might create an Activity that has a user inter-
face with a FrameLayout control and add an instance of a GameAreaView using the
addView() method. Figure 8.3 shows a gesture example of dragging a droid around a
screen.

Tip
To support the broadest range of devices, we recommend supporting simple, one-fingered
gestures and providing alternative navigational items for devices that don’t support
multitouch gestures. However, users are beginning to expect support for multitouch gestures
now, so use them where you can and where they make sense. Resistive touchscreens
remain uncommon, typically appearing only on lower-end devices.

Handling Common Multitouch Gestures
Introduced in API Level 8 (Android 2.2), the ScaleGestureDetector class can be used
to detect two-fingered scale gestures. The scale gesture enables the user to move two

130	 Chapter 8 Handling Advanced User Input

fingers toward and away from each other. Moving the fingers apart is considered scaling
up; moving the fingers together is considered scaling down. This is the “pinch-to-zoom”
style often employed by map and photo applications.

Tip
You can use the ScaleGestureDetector.SimpleOnScaleGestureListener class to
detect scale gestures detected by the ScaleGestureDetector.

Let’s look at another example. Again, we use the custom View class called
GameAreaView, but this time we handle the multitouch scale event. In this way, the
GameAreaView can react to scale gestures, interpret them, and make the appropriate
changes to the bitmap, including growing or shrinking it on the screen.

Tip
Many of the code examples provided in this section are taken from the SimpleMulti
TouchGesture application. The source code for this application is provided for download on
the book’s website.

Figure 8.3  Using gestures to drag the droid around the screen.

	 Working with Gestures	 131

To handle scale gestures, the GameAreaView class needs to include the appropri-
ate gesture detector, a ScaleGestureDetector. The GameAreaView class needs to be
wired up for scale gesture support similarly to the single-touch gestures implemented
earlier, including initializing the gesture detector in the class constructor, overriding the
onTouchEvent() method to pass the MotionEvent objects to the gesture detector, and
overriding the onDraw() method to draw the View appropriately as necessary. We also
need to update the GameAreaView class to keep track of the bitmap graphic size (using a
Matrix) and provide a helper method for growing or shrinking the graphic. Here is the
new implementation of the GameAreaView class with scale gesture support:

public class GameAreaView extends View {
 private ScaleGestureDetector multiGestures;
 private Matrix scale;
 private Bitmap droid;

 public GameAreaView(Context context, int iGraphicResourceId) {
 super(context);
 scale = new Matrix();
 GestureListener listener = new GestureListener(this);
 multiGestures = new ScaleGestureDetector(context, listener);
 droid = BitmapFactory.decodeResource(getResources(),
 iGraphicResourceId);
 }

 public void onScale(float factor) {
 scale.preScale(factor, factor);
 invalidate();
 }

 @Override
 protected void onDraw(Canvas canvas) {
 Matrix transform = new Matrix(scale);
 float width = droid.getWidth() / 2;
 float height = droid.getHeight() / 2;
 transform.postTranslate(-width, -height);
 transform.postConcat(scale);
 transform.postTranslate(width, height);
 canvas.drawBitmap(droid, transform, null);
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 boolean retVal = false;
 retVal = multiGestures.onTouchEvent(event);
 return retVal;
 }
}

As you can see, the GameAreaView class keeps track of what size the bitmap should
be at any time using the Matrix variable called scale. The onTouchEvent() method is
used to capture motion events and pass them along to a ScaleGestureDetector gesture
detector. As before, the onScale() helper method of the GameAreaView applies some
scaling to the bitmap graphic and then calls the invalidate() method, forcing the View
to be redrawn.

132	 Chapter 8 Handling Advanced User Input

Now let’s take a look at the GestureListener class implementation necessary to
interpret the scale gestures and call the GameAreaView methods we just implemented.
Here’s the implementation of the GestureListener class:

private class GestureListener implements
 ScaleGestureDetector.OnScaleGestureListener {

 GameAreaView view;

 public GestureListener(GameAreaView view) {
 this.view = view;
 }

 @Override
 public boolean onScale(ScaleGestureDetector detector) {
 float scale = detector.getScaleFactor();
 view.onScale(scale);
 return true;
 }

 @Override
 public boolean onScaleBegin(ScaleGestureDetector detector) {
 return true;
 }

 @Override
 public void onScaleEnd(ScaleGestureDetector detector) {
 }
}

Remember that you must return true for any gesture or motion event that you want
to detect. Therefore, you must return true in the onScaleBegin() method as it
happens at the beginning of a scale-type gesture. Most of the implementation of the
GestureListener methods involves our interpretation of the data for the scale gesture.
Specifically, we use the scale factor (provided by the getScaleFactor() method) to
calculate whether we should shrink or grow the bitmap graphic, and by how much. We
pass this information to the onScale() helper method we just implemented in the Game
AreaView class.

Now, if you were to use the GameAreaView class in your application, scale gestures
might look something like Figure 8.4.

Note
The Android emulator does not currently support multitouch input, although there is
experimental support in the works. You will have to run and test multitouch input such as
the scale gesture using a device running Android 2.2 or higher.

	 Working with Gestures	 133

Making Gestures Look Natural
Gestures can enhance your Android application user interfaces in new, interesting, and
intuitive ways. Closely mapping the operations being performed on the screen to the
user’s finger motion makes a gesture feel natural and intuitive. Making application opera-
tions look natural requires some experimentation on the part of the developer. Keep in
mind that devices vary in processing power, and this might be a factor in making things
seem natural. Minimal processing, even on fast devices, will help keep gestures and the
reaction to them smooth and responsive, and thus natural-feeling.

Figure 8.4  The result of scale-down (left) and scale-up (right) gestures.

134	 Chapter 8 Handling Advanced User Input

Using the Drag-and-Drop Framework
On Android devices running Android 3.0 and higher (API Level 11), developers can
access the drag-and-drop framework to perform drag-and-drop actions. You can drag and
drop View controls within the scope of a screen or Activity class.

The drag-and-drop process basically works like this:

■■ The user triggers a drag operation. How this is done depends on the application,
but long clicks are a reasonable option for selecting a View for a drag under the
appropriate conditions.

■■ The data for the selected View control is packaged in a ClipData object (also used
by the clipboard framework), and the View.DragShadowBuilder class is used to
generate a little visual representation of the item being dragged. For example, if you
were dragging a filename into a directory bucket, you might include a little icon of
a file.

■■ You call the startDrag() method on the View control to be dragged. This starts
a drag event. The system signals a drag event with ACTION_DRAG_STARTED, which
listeners can catch.

■■ There are a number of events that occur during a drag that your application can
react to. The ACTION_DRAG_ENTERED event can be used to adjust the screen con-
trols to highlight other View controls that the dragged View control might want to
be dragged over to. The ACTION_DRAG_LOCATION event can be used to determine
where the dragged View is on the screen. The ACTION_DRAG_EXITED event can be
used to reset any screen controls that were adjusted in the ACTION_DRAG_ENTERED
event.

■■ When the user ends the drag operation by releasing the shadow item over a spe-
cific target View on the screen, the system signals a drop event with ACTION_DROP,
which listeners can catch. Any data can be retrieved using the getClipData()
method.

For more information about the drag-and-drop framework, see the Android SDK
documentation. There you can also find a great example of using the drag-and-drop
framework called DragAndDropDemo.java.

Handling Screen Orientation Changes
Android devices have both landscape and portrait modes and can seamlessly transition
between these orientations. The Android operating system automatically handles these
changes for your application, if you so choose. You can also provide alternative resources,
such as different layouts, for portrait and landscape modes. Also, you can directly access
device sensors such as the accelerometer, which we talk about in Chapter 15, “Accessing
Android’s Hardware Sensors,” to capture device orientation along three axes.

	 Handling Screen Orientation Changes	 135

However, if you want to listen for simple screen orientation changes programmatically
and have your application react to them, you can use the OrientationEventListener
class to do this within your Activity.

Tip
Many of the code examples provided in this section are taken from the SimpleOrientation
application. The source code for this application is provided for download on the book’s
website.

Warning
Orientation changes are best tested on real devices, not with the emulator.

Implementing orientation event handling in your Activity is simple. Simply instanti-
ate an OrientationEventListener and provide its implementation. For example, the
following Activity class called SimpleOrientationActivity logs orientation infor-
mation to LogCat:

public class SimpleOrientationActivity extends Activity {
 OrientationEventListener mOrientationListener;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mOrientationListener = new OrientationEventListener(this,
 SensorManager.SENSOR_DELAY_NORMAL) {

 @Override
 public void onOrientationChanged(int orientation) {
 Log.v(DEBUG_TAG,
 "Orientation changed to " + orientation);
 }
 };

 if (mOrientationListener.canDetectOrientation() == true) {
 Log.v(DEBUG_TAG, "Can detect orientation");
 mOrientationListener.enable();
 } else {
 Log.v(DEBUG_TAG, "Cannot detect orientation");
 mOrientationListener.disable();
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 mOrientationListener.disable();
 }
}

You can set the rate to check for orientation changes to a variety of different values.
There are other rate values appropriate for game use and other purposes. The default rate,

136	 Chapter 8 Handling Advanced User Input

SENSOR_DELAY_NORMAL, is most appropriate for simple orientation changes. Other values,
such as SENSOR_DELAY_UI and SENSOR_DELAY_GAME, might make sense for your application.

After you have a valid OrientationEventListener object, you can check if it can
detect orientation changes using the canDetectOrientation() method, and enable and
disable the listener using its enable() and disable() methods.

The OrientationEventListener has a single callback method, which enables you
to listen for orientation transitions, the onOrientationChanged() method. This method
has a single parameter, an integer. This integer normally represents the device tilt as a
number between 0 and 359:

■■ A result of ORIENTATION_UNKNOWN (-1) means the device is flat (perhaps on a
table) and the orientation is unknown.

■■ A result of 0 means the device is in its “normal” orientation, with the top of the
device facing in the up direction. (“Normal” is defined by the device manufacturer.
You need to test on each device to find out for sure what “normal” means.)

■■ A result of 90 means the device is tilted 90 degrees, with the left side of the device
facing in the up direction.

■■ A result of 180 means the device is tilted 180 degrees, with the bottom side of the
device facing in the up direction (upside down).

■■ A result of 270 means the device is tilted 270 degrees, with the right side of the
device facing in the up direction.

Figure 8.5 shows an example of how the device orientation might read when the
device is tilted to the right by 91 degrees.

Figure 8.5  Orientation of the device as reported by an
OrientationEventListener.

	 References and More Information	 137

Summary
The Android platform enables great flexibility when it comes to ways that users can
provide input to the device. Developers benefit from the fact that many powerful input
methods are built into the View controls themselves, just waiting to be leveraged. Appli-
cations can take advantage of built-in input methods, such as software keyboards, or can
customize them for special purposes. The Android framework also includes powerful
features, such as a clipboard Service, gesture support, and a drag-and-drop framework,
that your applications can use. It is important to support a variety of input methods in
your applications, as users often have distinct preferences and not all methods are available
on all devices.

Quiz Questions
1.	 True or false: IME stands for Input Method Editor.

2.	 Name the observer discussed in this chapter that listens to a View and all its child
View objects.

3.	 What are two classes that are able to detect navigational gestures?

4.	 What method is called for a dragging single-finger gesture?

5.	 True or false: The MultiGestureDetector class can be used to detect two-
fingered scale gestures.

Exercises
1.	 Use the online documentation to create a list of the core gestures supported by

Android.

2.	 Modify the SimpleGestures application so that it makes use of the double-touch
drag gesture design pattern.

3.	 Use the online documentation to create a list of the different inputType constants
and their associated constant values.

References and More Information
Android API Guides: “Copy and Paste”:

http://d.android.com/guide/topics/text/copy-paste.html
Android SDK Reference regarding the ClipboardManager:

http://d.android.com/reference/android/content/ClipboardManager.html

http://d.android.com/guide/topics/text/copy-paste.html
http://d.android.com/reference/android/content/ClipboardManager.html

138	 Chapter 8 Handling Advanced User Input

Android SDK Reference regarding the ClipData class:
http://d.android.com/reference/android/content/ClipData.html

Android API Guides: “Drag and Drop”:
http://d.android.com/guide/topics/ui/drag-drop.html

Android SDK Reference regarding the android.gesture package:
http://d.android.com/reference/android/gesture/package-summary.html

Android Design: “Gestures”:
http://d.android.com/design/patterns/gestures.html

http://d.android.com/reference/android/content/ClipData.html
http://d.android.com/guide/topics/ui/drag-drop.html
http://d.android.com/reference/android/gesture/package-summary.html
http://d.android.com/design/patterns/gestures.html

Index

Symbols
* (asterisk), filtering log information, 475

. (dot), sqlite3 commands, 486

; (semicolon), sqlite3, 490

A
AbstractAccountAuthenticator class, 428

AbstractThreadedSyncAdapter class, 429

AccelerateDecelerateInterpolator, 341

AccelerateInterpolator, 341

ACCESS_COARSE_LOCATION permission, 212

Access control, SQLite limitations, 491

Access points, listing, 248

Accessible applications

framework, 139–141
overview of, 139
quiz Q & A, 148, 520
speech recognition services, 141–145
testing, 147
text-to-speech services, 145–147

Accessories

new Android hardware, 239–240
USB, 240–242

Account authenticator, 428

Account provider, 428

AccountManager class, 427–429

Accounts. See User accounts

ACCURACY_COARSE, location services, 255

ACCURACY_COARSE_LOCATION, 261

ACCURACY_FINE, location services, 255

ACCURACY_FINE_LOCATION, 261

Achievements, Google Play game services,
297–298

Action bars

building basic, 98–101
contextual action mode, 105–106
customizing, 101–103
handling application icon clicks on,

103–104
overview of, 98–99
working with screens not requiring,

104–105
ActionMode class, 104

ACTION_RECOGNIZE_SPEECH, 145

ACTION_REQUEST_DISCOVERABLE intent,
Bluetooth, 237

ACTION_REQUEST_ENABLE intent,
Bluetooth, 237

ActionScript 3, 188

ACTION_SEARCH, 422–423

ACTION_VIEW intent, Google Maps, 263

Activity class

application acting as content filter,
410–412

asynchronously loading data, 16
AsyncTask, 13–14
building action bars, 98–101
configuring default messaging, 217
creating App Widget, 393
creating search, 422–423
data for Google Analytics, 287
gathering statistics, 292
GLSurfaceView, 366–369
IntentService class, 31–33
launching browser, 176
native activities, 384

OpenGL/application threads,
362–364

removing action bars, 104–105
software keyboards, 116
themes, 111–113
Thread class, 15–16

Activity launch, 341, 422

Activity lifecycle

AsyncTask class, 12–14
spanning processing across, 19
text notifications, 80

ActivityOptions class, 341

Activity recognition APIs, Google location
services, 261–262

<activity> tag

application acting as content filter, 411
enabling application search, 424
hardware acceleration control, 325
registering intent filter, 413
themes, 111

ADB (Android Debug Bridge)

accessing sqlite3 from, 486
backup service controls, 476–477
copying files, 472
directing commands to specific

devices, 470
generating bug reports, 477–478
inspecting SQLite databases with

shell, 478
installing custom binaries, 481–482
installing/uninstalling applications, 473
issuing shell commands, 471–472
listing all commands, 470–471
listing connected devices/

emulators, 469
with LogCat logging, 474–476
overview of, 469
quiz Q & A, 482, 526

528 accuracy_coarse_location

starting ADB server, 470
stopping ADB server, 470
stress testing applications with shell,

478–481
addGlobalLayoutListener() method, 121

addHelper() method, 432–434

addJavascriptInterface() method, 183, 187

addOnDrawListener() method, 121

addOnPreDrawListener() method, 120

addOnTouchModeChangeListener()
method, 120

addURI() method, 419

ADK (Android Accessory Development Kit),
139, 239–240

Admin permissions, Bluetooth, 235,
237–238

Admin section, Google Analytics, 284–285

Adobe Air, 187–188

Adobe Flash, 187–188

ADT (Android Development Tools), 111, 500

ADT-1 Developer Kit, Android TV, 465

Ahead-of-time (AOT) compilation, ART
runtime, 460

AIDL (Android Interface Definition
Language), 26–28

AIR, Adobe, 187–188

AlarmManager class, App Widgets, 396

Alarms, system event, 208

Alerts, proximity, 260

All Apps button, language settings, 442

Alpha transparency transformations,
334–335

ALTER TABLE, SQLite limitations, 491

Alternative resources

changing language settings, 442–444
device diversity, 153
internationalization, 439–442

Amazon Appstore for Android, 280

Android 4.4 (KitKat), 6, 508

Android Accessory Development Kit (ADK),
139, 239–240

Android Backup Service, 430–435

Android Beam

configuring manifest file, 244–245
enabling sending, 241–243
host card emulation, 245
over Bluetooth, 245
overview of, 241
receiving messages, 243–244

Android Debug Bridge. See ADB (Android
Debug Bridge)

Android Developers Blog, 117

Android Development Tools (ADT), 111, 500

Android IDE, 499–500

Android Interface Definition Language
(AIDL), 26–28

Android location APIs

doing more, 260
geocoding locations, 256–260
GPS, 254–256
overview of, 253

Android NDK (Native Development Kit)

drawbacks, 377–378
improving graphics performance,

384–385
installing, 378
leveraging OpenGL ES, 346
quiz Q & A, 386, 524
RenderScript vs., 385–386
sample application, 379
when to use, 377–378

Android NDK (Native Development Kit),
creating project

calling native code from Java,
380–381

overview of, 379–380

529Android NDK

Android NDK (Native Development Kit),
creating project (continued)

parameters and return values, 381–382
using exceptions with native code,

382–383
using native activities, 384

Android Runtime (ART), L Developer
Preview, 460–461

Android SDK

configuring Android Studio, 508–509
getting familiar with Java

documentation, 500
License Agreement, 174
OpenGL ES APIs in, 347
OpenGL ES in Android, 346
using Android NDK vs., 377–378
versions of OpenGL ES, 346

Android Studio

configuring, 508–509
creating project, 509–512
debugging applications, 515–517
getting up and running, 507–508
Gradle build system, 513
keyboard shortcuts, 517
launching for first time, 508
Layout Editor, 513–515
learning Java development tools, 500
overview of, 507
project structure, 512
quiz Q & A, 517–518, 526
user interface, 513–514

Android TV, 464–465

Android Wear API, 158–159

android.accounts package, 427–429

android.animation package, 339

android.database.sqlite package, 36

AndroidManifest.xml file

building content provider, 62
configuring Android Beam, 244–245
configuring App Widgets, 399
configuring live wallpapers, 406–407
configuring search, 423–424
creating Service, 20
enabling vibration with notifications, 84
permissions, 25
registering backup agent, 434
securing application broadcasts, 74
working with themes, 111–113

android.permission.INTERNET permission,
175–176

android.transition, animation, 342

android.view.animation package

alpha transparency transformations, 335
Interpolator class, 341
loading animations, 334
moving transformations, 336
rotating transformations, 335
scaling transformations, 336
tweened animations, 333

android.webkit package, 182–187

animate() method, property animations,
339–340

animateCamera() method, 267

Animation

Activity launch, 341
drawable, 329–331
GIF images, 329–331
in L Developer Preview, 462–463
property, 336–341
quiz Q & A, 342–343, 524
scenes and transitions for state, 342
types of graphic, 329

530 Android NDK

view, 331–336
working with interpolators, 341

AnimationDrawable class, 330

AnimationListener class, 334

AnimationSet, 333

AnimationUtils helper class, 334

Animator.AnimatorPauseListener, property
animation, 337

ANR (Application Not Responding) events,
11–12

Anti-aliasing, Paint, 307

AnticipateInterpolator, 341

AnticipateOvershootInterpolator, 341

Antipiracy. See also Software piracy
protection, 299–300

AOT (ahead-of-time) compilation, ART
runtime, 460

API Access link, maps, 263

APIs, Android

Android Wear, 158–159
multimedia. See Multimedia APIs

networking. See Networking APIs

optional hardware. See Hardware
APIs

telephony. See Telephony APIs

web APIs. See Web APIs

Apple, Siri speech-recognizing assistant, 139

Application Context, SQLite database, 36, 46

Application lifecycle, 41

Application Not Responding (ANR) events,
11–12

Applications

App Widgets tied to underlying, 392
content providers for, 62–65
gathering statistics. See Google
Analytics

gathering statistics from, 292

handling icon clicks on action bar,
103–104

searching. See Search

<application> tag, AndroidManifest.xml file

controlling hardware acceleration, 325
registering backup agent, 434
restricted profiles, 429
right-to-left language localization, 445

AppStateManager class, 299

AppWidgetProvider class, 395–397

<appwidget-provider> tag, 394, 402

App Widgets

adding to Lock screen, 401–403
becoming host, 401
calculating size of, 394
configuring Android manifest file

for, 399
creating, 393–396
defined, 392
installing to Home screen, 400–401
updating, 397–399
using remote views, 396–397
working with, 392–393

Archived data, wiping, 477

Arcs, drawing, 320–322

ArgbEvaluator class, property
animation, 337

ARMv5TE devices, Android NDK, 379–380

ArrayAdapter, binding data to controls, 53

Arrays, drawing vertices, 353–355

ART (Android Runtime), L Developer
Preview, 460–461

Asterisk (*), filtering log information, 475

Asynchronous network operations,
167–169, 260

AsyncTask class, 12–14, 168, 314

Attributes, property animation, 338

531Attributes, property animation

Audiences

attracting new types of device, 153
for this book, 1

Audio

playing, 205–206
recording, 204–205
ringtones, 208–209
sharing, 206–207

AudioManager, 206

Auditing, SQLite limitations, 491

Authors of this book, contacting, 8

AutoCompleteTextView control, 50, 53, 118

AUTOINCREMENT, SQLite database
tables, 492

AVD, Android location services APIs, 256

B
Background processing

AsyncTask, 12–14
Service, 19–20, 22–24

Backup agent, 431–434

Backup helper, 431–432

Backup Manager, 434–435, 476–477

Backup service

choosing remote, 430–431
controlling using ADB command,

476–477
forcing backup operations, 477
forcing restore operations, 477
implementing backup agent, 432–435
overview of, 430
registering with Android, 432
requesting backup, 434
requesting restore, 435
wiping archived data, 477

BaseColumns interface, database field
names, 47

BaseGameActivity class, Google Play game
services, 296–297

BasicGLThread class, OpenGL ES, 349–350

basicNativeCall() method, 381

Battery

monitoring use of, 231–233
optimization in Project Volta, 461

beginTransaction() method, SQLite database
transactions, 40

Bidi Formatter utility class, 445

BigPictureStyle class, notifications, 88–90

bigText() method, notifications, 88–90

BigTextStyle class, notifications, 88–90

Binding data, to application user interface,
48–53

bindService() method, 20–21, 27

Bitmap graphics

2D applications, 312–315
buffering issues of large, 170
drawable animation, 330–331
drawing on Canvas, 313
performance optimizations, 314–315
scaling, 313
texturing 3D objects, 361–362
transforming using Matrix, 313–314
working with, 312
working with view animations,

331–332
BLE (Bluetooth Low Energy) peripheral

devices, 235–236

Blinking lights, notifications, 84–85

Blocking operations, 11

Bluetooth

Android Beam over, 245
Android support for, 235–236
checking hardware for, 236–237
discovering devices, 237–238
enabling, 237

532 Audiences

establishing connections between
devices, 238–239

querying for paired devices, 237
quiz Q & A, 248, 522

BluetoothAdapter class, 236–238

BLUETOOTH_ADMIN permission, 235,
237–238

Bluetooth Low Energy (BLE) peripheral
devices, 235–236

BLUETOOTH permission, 235

BluetoothSocket object, 238

Body text, notifications, 79

BounceInterpolator, animation, 341

Breakpoints, debugging Android Studio
applications, 515–516

BroadcastIntent class, 31–32, 207, 231

BroadcastReceiver class

default messaging application, 217
GSM message flow, 272
monitoring device battery, 231–233
monitoring Wi-Fi state, 247
receiving broadcasts, 69–71

Broadcasts

overview of, 67
quiz Q & A, 74, 520
receiving, 69–74
securing application, 73–74
sending, 67–68

Browser chrome, WebView control, 179–180

Buffering issues, large bitmaps, 170

Buffers

coloring vertices, 355–356
converting arrays to, 354–355
drawing complex 3D, 356–358
texture coordinate, 361–362

build() method

animating map camera, 267
creating text notification with icon, 80

Builder classes, 290–291, 501

Built-in functions, SQLite limitations, 491

Button control

applying styles, 108
IntentService, 31–33
listening for long click on, 122
recording speech, 145
web extensions, 183, 185

ByteBuffer, drawing 3D objects,
356–358

C
C2DM (Cloud to Device Messaging), 271

CacheManager class, WebKit API, 182

calculateAndDisplayFPS() method, OpenGL,
362–364

Calculated columns, SQLite database,
496–497

calculateSignalLevel() method, WifiManager,
247–248

Calibration, sensor, 229–230

Call button, phone calls, 220–221

Calls class, 221–222

CallVoidMethod() function, exceptions with
native code, 383

Camera, positioning and animating map,
266–268

Camera class

assigning still images as
wallpaper, 199

capturing still images, 192–196
choosing among devices, 199–200
common parameters, 197
configuring settings, 196
face detection, 203–204
sharing images, 198
working with multimedia, 191–192
zooming, 197

533Camera class

CameraPosition object, 267

CameraSurfaceView class, 192–196

Campaign tracking, Google Play, 292

cancel() method, notifications, 83

cancelDiscovery() method, Bluetooth
devices, 238

canDetectOrientation() method, screens, 136

Canvas object

drawing bitmaps, 313
drawing on screen with Paint and,

305–309
hardware acceleration and, 325
understanding, 307

capture() method, Camera, 196

CardView, L Developer Preview, 462

CCS (Cloud Connection Server), Google,
272, 274

Chaining methods, Java, 501

CHANGE_WIFI_STATE permission, 246

Character encodings, internationalization, 445

CheckJNI tool, 460

Chess Utrecht font, 311–312

Chrome DevTools, debugging WebView, 187

Chromium rendering engine, WebView, 175

Circles, drawing, 319–320

Classes, Java

documentation, 500
method chaining in builder-style, 501
working with inner, 503–504

Classic Bluetooth. See also Bluetooth,
235–236

cleanupgl() method, OpenGL ES, 366

clear() method, wallpaper, 199

Clearing log, 476

Click events, long click, 121–122

Client, integrating GCM on Android,
273–274

Clipboard framework, textual input, 118–119

ClipboardManager, 119

ClipData object, 119, 134

close() method

Cursor management, 41
SQLite database, 46

Cloud Connection Server (CCS), Google,
272, 274

Cloud Save, game data, 299

Cloud to Device Messaging (C2DM), 271

Code

ProGuard, 450–452
secure practices, 450

Color

3D objects, 355–356, 358–360
building simple styles, 107–109
Google TV, 157
indicator lights for notifications,

84–85
L Developer Preview, 462
Paint, 307–309

Columns

building content provider, 56–57
data types for SQLite database, 492
raw queries, 45
SQLite database calculated, 496–497

compare() method, PhoneNumberUtils, 215

compareSignalLevel() method, WifiManager,
247–248

Compatibility

development environments, 6
notifications and, 78–79
OpenGL ES device, 346–347

Complex queries, 43–44

Composite primary keys, SQLite database
tables, 493–494

Concurrency, SQLite limitations, 490

CONFIG_CHECK_GL_ERROR flag, initializing
GLS, 351

534 CameraPosition object

Configuration Activity, App Widgets, 395

Connections

between Bluetooth devices, 238–239
buffering of large bitmaps over

slow, 170
fused location provider, 261
geocoding requiring network, 260
implementing remote interface, 27
retrieving Android network status,

171–173
to Service, 20–21
to SQLite database, 486–487

ConnectivityManager class, 171–173

ConsoleMessage class, WebKit API, 182

Constants, Sensor class, 227

Content

loading into WebView, 176–178
selling through billing APIs, 278
web extensions, 183

Content providers

acting as, 55
data columns, 56–57
data URI, 56
delete() method, 60–61
enhancing applications, 62–65
getType() method, 61–62
insert() method, 59
interface, 55–56
query() method, 57–58
quiz Q & A, 65, 519
searches in applications, 417–420
sharing images, 198
SQLite database acting as, 485
update() method, 59–60
updating manifest file, 62
UriMatcher class, 58–59
UserDictionary, 118

ContentResolver

retrieving content provider data,
64–65

sharing audio, 206
sharing images, 198

Content type filters, 410–413

ContentValues object, update(), 38–39

Context menu, long-click events, 121

Contextual action mode, action bars,
105–106

Contractible notifications, 88–90

Controls

for accessibility, 140
binding data to, 50–53
hardware acceleration, 325

Conventions, used in this book, 7

CookieManager class, WebKit API, 182

Copying

ADB commands for files, 472
data to system clipboard, 119

CREATE_AUTHOR_TABLE, SQL, 37

CreateBeamUrisCallback interface, Android
Beam, 245

createBitmap() method, 313

CreateNdefMessage() method, Android
Beam, 242–243

CREATE TABLE SQL statement, 37

CREATE TRIGGER SQL statement, 38

Credentials, user account, 428

Criteria object, device location, 255

CursorLoader, search Activity, 423

Cursor object

binding data to controls, 50–53
content provider query(), 57
querying SQLite databases, 41–42
retrieving content provider data, 64

Custom binaries, installing, 481–482

535Custom binaries, installing

CustomGL2SurfaceView class, OpenGL ES
2.0, 370

Customizing

action bar, 101–103
backup services, 431
Home screen wallpaper, 192, 199
notifications, 86–88
software keyboards, 117
typefaces, 310–312
View controls for accessibility, 140

Custom Locale application, 442

CustomRenderer class, OpenGL ES 2.0, 370

CycleInterpolator, animation, 341

Cygwin 1.7 or later, Android NDK, 378

D
Dalvik Debug Monitor Service. See DDMS

(Dalvik Debug Monitor Service)

Data

adding to SQLite database, 492
altering/updating in SQLite

database, 495
backup services, 430–435
binding to application user interface,

48–53
building content provider, 56–57
collecting for Google Analytics, 287
gathering statistical, 292–293
Google Analytics tracking

e-commerce, 290–292
reading sensor, 228–229
retrieving content provider, 64–65
synchronizing, 429–430

Data adapters, 50–53

dataChanged() method, backups, 434

Data sources, 16

Data types, 492

DateFormat utility class, localizing
language, 445

Daydream (screen saver), 408–410

DDMS (Dalvik Debug Monitor Service)

dumping database contents, 489
inspecting database files, 485
simulating call states, 213

deactivate() method, Cursor, 41

Debug certificate, 263–265

Debugging

with ADB. See ADB (Android
Debug Bridge)

Android NDK applications, 379
Android Studio applications, 515–517
ART runtime improvements, 460
database files with DDMS, 485, 489
on devices connected to USB

hardware, 239
error reports after ProGuard tool, 452
WebView control, 187

DecelerateInterpolator, animation, 341

Default Keymap Reference, Android
Studio, 517

Default messaging application, 215–216

delete() method, content provider, 60–61

deleteDatabase() method, SQLite, 46

Design

accessibility. See Accessible
applications

useful notifications, 91–92
user interface. See User interface

Design view, Android Studio, 514

Development environments, used in this
book, 5–6

Devices

attracting new types of users, 153
copying files to, 472
determining locale of, 444

536 CustomGL2SurfaceView class, OpenGL ES 2.0

determining location of, 254–256
directing ADB commands to

specific, 470
disallowing sqlite3, 487
flexible user interfaces for, 152
indicator light support, 84–85
input methods, 115
installing custom binaries, 481–482
listing all Android connected, 469
live wallpaper warning, 406
notification support, 78
OpenGL ES compatibility with,

346–347
presumptions about features, 151–152
retrieving files from, 472
sensor support, 227
testing sensors on physical, 227
using Multimedia APIs. See
Multimedia APIs

devices command, adb command, 469

Dimensions, flexible user interface, 152

dimens.xml file, styles, 107–109

disable() method, screen orientation, 136

Discovering devices, Bluetooth, 237–238

doAlert() function, web extensions, 185

doConsoleLog() function, web extensions, 185

Documentation, Java, 500

doInBackground() method, AsyncTask, 13

Domain-specific language (DSL), Gradle, 513

doServiceStart() method, 22

doSetFormText() function, web extensions,
185–186

Dot (.), sqlite3 commands, 486

doToast() function, web extensions, 185

Double-tap gestures, 124–125, 128–129

DragAndDropDemo.java, 134

Drag-and-drop framework, 134

Dragging, single-touch gesture, 124

DragShadowBuilder class, 134

draw() method, coloring vertices, 355–356

Drawable animations, 329–331

Drawable object, 171

Drawable resources, L Developer
Preview, 462

drawFrame() method, 366–367, 372,
384–385

Drawing 2D objects

with canvases and paint, 305–308
overview of, 305
with radial gradients, 309
with sweep gradients, 309
with text, 310–312

Drawing 3D objects

coloring vertices, 355–356
complex objects, 356–358
defined, 345
lighting scene, 358–359
setting up screen, 353–354
texturing objects, 359–362
vertices, 353–355

Drawing on screen

2D objects. See Drawing 2D
objects

3D objects. See Drawing 3D
objects

DreamService class, Daydream, 409

droid_wallpaper.xml, 407

DROP TABLE command, SQLite database,
46, 497

DSL (domain-specific language), Gradle, 513

dump command, sqlite3, 488

dumpsys batterystats, Project Volta, 461

duration attribute, property animation, 338

duration property, tweened animations, 333

537duration property, tweened animations

E
E-commerce overview reports, Google

Analytics, 290–292

EditText control

basic searches, 417
building styles, 106–109
choosing software keyboard, 116–117
listening for focus changes, 122–123
making phone calls, 220–221
speech recognition, 141
working with phone numbers, 215

EGL (Embedded-System Graphics Library),
345, 350–352

EGL10.EGL_DEFAULT_DISPLAY, GLS, 351

eglDestroyContext() method,
OpenGL ES, 366

eglDestroySurface() method,
OpenGL ES, 366

eglMakeCurrent() method, OpenGL ES, 366

eglTerminate() method, OpenGL ES, 366

elevation attribute, CardView, 462

Embedded-System Graphics Library (EGL),
345, 350–352

Emulators

allowing sqlite3 command, 487
copying files to, 472
installing custom binaries, 481–482
locating your, 256
network settings, 173
nonsupport for simulating hardware

sensors, 225
retrieving files from, 472
using ADB shell to start/stop, 471–472
using ADB to list all Android

connected, 469
enable() method

Bluetooth, 237
screen orientation, 136

endTransaction() method, SQLite
databases, 40

Enunciation, speech recognition, 142

Error checking, conventions used in this
book, 7

Evaluator classes, property animation, 337

Event handling

View control, 140
WebView control, 179–180
XML Pull Parser, 167

Events

filtering logs of certain severity, 475
gathering statistics, 292
Google Analytics Dashboard

reports, 288
interacting with OpenGL ES and

Android, 362–365
listening for focus changes, 122–123
listening for long clicks, 121–122
listening for on entire screen,

120–121
listening for touch mode changes,

119–120
live wallpaper responding to

user, 406
logging e-commerce, in Google

Analytics, 290–291
logging in Google Analytics, 287
stress testing applications with

monkey, 478–481
ExceptionDescribe() function, native

code, 383

Exception handling

conventions used in this book, 7
networking code and, 165

ExceptionOccurred() function, native
code, 383

Exceptions, with native code, 384

execSQL() method, SQLite database, 37

538 E-commerce overview reports, Google Analytics

execute() method

executing tasks in parallel, 14
launching AsyncTask, 13–14
parallel execute, 14

executeOnExecutor() method, parallel
execute, 14

Exerciser Monkey tool, ADB shell, 478–481

Expandable notifications, 88–90

exported attribute, <intent-filter> tag, 74

Exporting, database/data with sqlite3, 488

Extending Android application reach

acting as content type handler,
410–411

with App Widgets. See App Widgets

with Daydream, 408–410
determining Intent actions/MIME

types, 411–413
with live wallpapers, 404–408
overview of, 391–392
quiz Q & A, 413–414, 524–525

extensions, building web, 182–187

Extract as Style, styles, 111

EXTRA_LANGUAGE_MODEL,
RecognizerIntent, 145

EXTRA_PROMPT, RecognizerIntent, 145

F
Face class, Camera, 203–204

Face detection, 203–204

Features

adding to WebView, 176–178
antipiracy tips, 453
avoiding presumptions about device,

151–154
specifying multimedia, 191–192

Field names, tracking database, 47

FileBackupHelper class, 432–434

File Explorer, 485, 489

FileLock, backup helper, 434

File pointers, Cursor objects as, 41–42

Files

Android Studio project structure, 512
executing SQL scripts with

sqlite3, 489
implementing backup helper for, 432
redirecting log output to, 476
sending output with sqlite3, 488
SQLite databases as private, 485
standard format for database, 485

fillAfter property, moving
transformations, 336

Filtering log information, LogCat, 474–475

findViewById() method, web extensions, 183

Finger gestures. See Gestures

Fingerprint, map API key, 263–264

Flash

optimizing for Google TV, 157
working with, 187–188

Flickr image, displaying, 170–171

Fling gestures, 124–125, 128

FloatBuffer() method, drawing vertices,
354–355

FloatEvaluator class, property
animation, 337

Folders, Android Studio projects, 512

Fonts

conventions used in this book, 7
customizing typefaces, 310–312
enabling accessibility, 140
modifying WebView control, 178
using default, 310

for-each loops, looping infinitely, 502

Foreground, designing notifications, 91

Foreign keys, SQLite database, 37–38,
493–494

for loops, looping infinitely, 501–502

539for loops, looping infinitely

format() method, locale strings, 445

formatJapaneseNumber() method, phone
numbers, 215

formatNumber() method, phone numbers,
215–216

Fragment

asynchronously loading data to, 16
gathering statistics, 292
launching Google Maps, 265–266
for tablets, 155
for user interfaces, 152

Frame-by-frame animations, 329–331

Frame rate, OpenGL/application threads,
363–364

FrameLayout, 349

Freemium business model, 277–279

fromAlpha value, alpha transparency
transformations, 334–335

fromDegrees property, transformations, 335

fromXDelta, fromYDelta values,
transformations, 336

fromXScale, fromYScale values,
transformations, 335–336

Front-facing camera, 199–200

FTS3 extension, SQLite, 420

Functions, Service for routine/regular, 19

Fused location provider, Google location
services, 260–261

G
GameHelper class, Google Play game

services, 296–297

Gaming

design challenges of, 154
Google Play. See Google Play game
services

secure coding practices, 450
Garbage collection (GC), ART runtime, 460

GC (garbage collection), ART runtime, 460

GCM (Google Cloud Messaging)

alternatives to, 274–275
incorporating into applications,

273–274
limitations of, 272–273
message flow, 272
overview of, 271–272
quiz Q & A, 275, 522
sample applications, 274
signing up for, 273

Geocaching, 260

Geocoding, 256–260

Geofencing APIs, 262

GeomagneticField class, true north, 230

gesture package, 124

GestureDetector class, 123–129

GestureListener class, 129, 132

GestureOverlayView, 124

Gestures

common multitouch, 133
common single-touch, 124–129
detecting user motions within View,

123–124
natural-looking, 133
user input with, 123
using drag-and-drop framework, 134

getAccessoryList() method, USB, 240

getAccountByType() method, user
accounts, 428

getActualDefaultRingtoneUri() method, 209

getAddressLine() method, geocoding, 258

getAllocationByteCount() method,
bitmaps, 314

getAllProviders() method, device
location, 254

getApiClient() method, Google Play game
services, 297

540 format() method, locale strings

getAuthToken() method, user accounts, 428

getAvailableLocales() method, Locale
class, 444

getBestProvider() method, device location,
254–255

getBondedDevices() method, Bluetooth, 237

getCallState() method, 212–213

getClipData() method, drag-and-drop, 134

getConfiguredNetworks() method,
WifiManager, 248

getDefault() method

Locale class, 444
SmsManager, 218

getDefaultAdapter() method, Bluetooth,
236–237

getDefaultSensor(), 227

getDesiredMinimumHeight() method,
wallpaper, 199

getDesiredMinimumWidth() method,
wallpaper, 199

getDeviceList() method, USB host, 241

getDrawable() method, wallpaper, 199

getFragmentManager() method, Google
Maps, 265–266

getFromLocation() method, geocoding, 257

getFromLocationName() method,
geocoding, 259

getHeight() method, Canvas, 307

getHolder() method, SurfaceView, 348

getLocality() method, geocoding, 257

getMap() method, Google Maps, 265–266

getMaxAddressLineIndex() method,
geocoding, 258

GetMethodID() function, native code
exceptions, 383

getNumberOfCameras() method, 200

getOrientation() method, 230

getRoaming() method, 214

getScaleFactor() method, multitouch
gestures, 132

getScanResults() method, Wi-Fi state, 247

getSettings() method, WebView, 178

getString() method, Cursor, 42

getSupportFragmentManager() method,
Google Maps, 265–266

getSystemService() method

copying/pasting data, 119
determining device location, 254
NotificationManager, 79
retrieving Android network status,

172
USB accessories, 240
working as USB host, 241

getTextBounds() method, measuring
screen, 312

getType() method, content providers, 61–62

getWidth() method, Canvas, 307

GitHub account, PayPal billing APIs, 280

GL (Graphics Library), 345

GL_COLOR_ARRAY, vertices, 355–356

GL_COLOR_MATERIAL, lighting scenes,
358–360

glColorPointer() method, vertices, 355–356

glCompileShader() method,
OpenGL ES 2.0, 372

GLDebugHelper class, GLS, 351–352

glDrawArrays() method, vertices, 353–355

glDrawElements() method

complex 3D objects, 356–357
vertices, 353–355

GL_LINE_LOOP, drawing 3D objects, 357

Global Positioning System (GPS), 21–25, 254

Global searches, enabling, 424–425

glRotatef() method, drawing 3D objects, 353

glShaderSource() method, OpenGL ES 2.0, 372

541glShaderSource() method, OpenGL ES 2.0

GLSurfaceView, 347, 366–369

GL_TEXTURE_COORD_ARRAY state, 3D
objects, 361–362

gluLookAt() method, drawing 3D objects, 353

gluPerspective() method, OpenGL ES, 352

glUseProgram() method, OpenGL ES 2.0, 372

GLUT (OpenGL Utility Toolkit), 352

GLUtils.texImage2D() method, 3D objects,
361–362

GL_VERTEX_ARRAY state, drawing
vertices, 355

glVertexPointer() method, drawing vertices,
353–355

Gmail, Google Cloud Messaging service, 272

gms.common.api package, Google Play
game services, 296–297

GNU Awk, Android NDK, 378

GNU Make 3.81, Android NDK, 378

go() method, scene state transitions, 342

Google account, creating, 272, 283–285

Google Analytics

adding library to Android IDE
project, 286–287

Admin section, 284–285
collecting data, 287
creating Google account, 283–285
gathering e-commerce data, 290–292
gathering statistics, 292–293
logging different events, 287
overview of, 283
protecting user privacy, 293
quiz Q & A, 293–294, 523
Reporting section, 284–285
tracking ad/market referrals, 292

Google Analytics Dashboard, 288–290

GoogleApiClient object, 297

Google APIs for Android

in-app billing. See In-app billing
APIs

enabling application statistics. See
Google Analytics

GCM. See GCM (Google Cloud
Messaging)

location and maps. See Location and
map APIs

Google Cast SDK, 209

Google Cloud Messaging. See GCM (Google
Cloud Messaging)

Google Developer Console, 263, 273

Google location services APIs, 260–262

Google Maps Android API v2

creating long-lasting/shareable debug
key, 264–265

launching with location URI,
263–265

mapping fragments, 265–266
marking spot, 265–266
overview of, 262
positioning/animating map camera,

266–268
Google Play

adding services library to Android
IDE project, 286–287

Android location APIs on devices
without, 253

in-app billing APIs, 279
applications for tablets, 155
campaign tracking, 292
GCM for Android, 272
Google location services APIs,

260–262
publishing applications for foreign

users, 446
publishing native Google TV

apps, 157
translation services, 445

Google Play Developer Console,
295–296, 446

542 GLSurfaceView

Google Play game services

achievements, 297–298
antipiracy, 299–300
getting started, 295–296
incorporating into applications,

296–297
leaderboards, 298
multiplayer gaming, 299
overview of, 295
quiz Q & A, 300, 523
quota and rate limiting, 298
saving game data, 299

google-play-services_lib project, 286

Google TV, 155–158

Google Wallet, 446

GPS (Global Positioning System),
21–25, 254

GpsSatellite class, 260

GpsStatus class, 260

GpsStatus.Listener class, 260

GPXService class, 20–21, 26–28

Gradients, Paint, 307–309

Gradle build system, Android Studio,
512–513

Graphical Layout editor, styles, 111

Graphics

alternative resources for, 153
Android NDK. See Android NDK
(Native Development Kit)

animation. See Animation

designing layouts with WebView, 176
designing UI with stretchable, 152
L Developer Preview optimization,

460–461
using space on big landscape screens,

153–154
Graphics, 2D applications

drawing on screen, 305–309

hardware acceleration features,
324–326

overview of, 305
quiz Q & A, 326, 523
working with bitmaps, 312–315
working with shapes, 315–324
working with text, 310–312

Graphics, 3D applications

cleaning up OpenGL ES, 365–366
coloring vertices, 355–356
drawing more complex objects,

356–358
drawing vertices, 353–355
interacting with Android views/

events, 362–365
lighting scene, 358–360
live wallpapers, 404–408
OpenGL ES 2.0, 369–373
OpenGL ES 3.0, 373–374
OpenGL ES, APIs in Android

SDK, 347
OpenGL ES, handling tasks, 347–353
OpenGL ES, working manually,

345–347
quiz Q & A, 374, 524
texturing objects, 359–362
using GLSurfaceView, 366–369

Graphics Library (GL), 345

GridView control, contextual action, 105

H
Haptic feedback, accessibility, 140

Hardware

2D acceleration features, 324–326
checking for Bluetooth, 236–237
limitations of TV application, 465
optional multimedia device, 191

543Hardware

hardwareAccelerated attribute, 325

Hardware APIs

Android Beam, 241–245
Bluetooth. See Bluetooth

quiz Q & A, 248–249, 522
USB, 239–241
Wi-Fi, 245–248

Hardware sensors

acquiring reference to, 227
batching calls, 230
calibrating, 229–230
configuring Android manifest file

for, 227
determining device orientation, 230
finding true north, 230
interacting with device hardware,

guidelines, 225–226
monitoring battery, 231–233
quiz Q & A, 233, 522
reading data, 228–229
using device, 226
working with different, 226–227

Heads-up notifications, L Developer
Preview, 463

hello-jni native library, Android NDK, 379

HelloStudio module, Android Studio,
510–512

help command, ACB, 470

Helper methods, WifiManager, 247–248

hint attribute, basic search, 417

historian.par (Battery Historian), Project
Volta, 461

Home screen

accessing App Widget on, 393
changing language settings, 442
Google Analytics Dashboard

reports, 288

installing App Widget to, 394, 400–401
installing live wallpaper on, 407–408

Host

App Widget, 392, 401
working as USB, 241

Host card emulation applications, Android
Beam, 245

HTTP

GCM for Android, 272, 274
transferring data to and from network,

164–166
HttpURLConnection, 165–166

I
Icons

creating simple text notification,
79–80

displaying on notification queue,
80–82

expandable notifications, 89–90
handling application icon clicks on

action bar, 103–104
as notification component, 79
updating notifications, 83

IDE (integrated development environment).
See Android Studio

Identifiers

deleting SQLite database records,
39–40

Notification, 80–81
Images

camera. See Still images

displaying from network resource,
170–171

storing in database, 53
ImageSwitcher, 171

ImageView background, animation,
330–331, 334

544 hardwareAccelerated attribute

IMEs (Input Method Editors), 115, 117

Import statement, conventions used in this
book, 7

Importing, database/data with sqlite3, 489

In-app billing APIs

Amazon Appstore for Android, 280
antipiracy tips, 453
Google Play, 279
other, 280
PayPal, 280
quiz Q & A, 281, 523
understanding, 277–278
using, 278–279

includeInGlobalSearch attribute, global
searches, 425

Index arrays, drawing 3D objects, 356–358

Indicator lights, notifications, 84–85

Indices of table, listing with sqlite3, 487

Infinite loops, Java, 501–502

inflate() method, themes, 112

Inheritance, style, 109–111

Initialization

GLS, 350–352
OpenGL ES, 352

initialLayout attribute, App Widgets, 394

Inner classes, Java, 503–504

Input

Android applications leveraging
speech, 139

methods. See User input methods

Input Method Editors (IMEs), 115, 117

InputStream

connections between Bluetooth
devices, 238

displaying images from network
resource, 171

reading data from Web, 165

inputType attribute values, software
keyboard, 116–117

insert() method

adding data to content provider, 59
records in SQLite database, 38

insertImage() method, sharing images, 198

insertOrThrow() method, SQLite database
records, 38

Installation

Android NDK, 378
Android Studio, 507
App Widget to Home screen, 394,

400–401
of custom binaries, 481–482
live wallpaper, 407–408
Lock screen App Widget, 403
using ADB, 473

install command, ADB, 473

Integrated Raster Imaging System Graphics
Library (IRIS GL), 345

IntelliJ IDEA, Android Studio based on, 507

Intent action namespace, 67

Intent object

application acting as content filter,
410–413

clearing notifications, 82–83
controlling Service, 25
global searches, 425
implementing remote interface, 26–28
launching browser, 176
launching Google Maps, 263
making phone calls, 220–221
as notification component, 79
receiving phone calls, 221–222
recording speech, 142–145
searching for multimedia, 207–208
textual input, 119

545Intent object

Intent objects, broadcasts

overview of, 67
quiz Q & A, 74
receiving broadcasts, 69–73
securing application broadcasts, 73–74
sending broadcasts, 67–68

IntentService class, 30–33

Interacting with Android views/events, 3D
graphics, 362–365

Interface. See User interface

Internationalizing applications

alternative resources for, 439–442
language settings, 442–444
locale support programmatically,

444–445
localizing language, 439
publishing applications for foreign

users, 446
quiz Q & A, 446–447, 525
right-to-left language localization, 445
translation services via Google

Play, 445
INTERNET permission, playing video, 202

Internet, transferring data, 164–166

Interoperability, Android application, 391

Interpolators, 341

IntEvaluator class, property animation, 337

Introduction to this book

changes in this edition, 4–5
contacting authors, 8
conventions used, 7
development environments used, 5–6
questions answered, 3–4
structure used, 1–3
supplementary materials, 6
where to find more information, 6–7
who should read it, 1

invalidate() method, gestures, 127, 131

IN_VEHICLE, activity recognition APIs, 261

IRemoteInterface, 26–28

IRIS GL (Integrated Raster Imaging System
Graphics Library), 345

isAfterLast() method, Cursor, 41–42

isDiscovering() method, Bluetooth
devices, 238

isEmergencyNumber() method,
PhoneNumberUtils, 215

isHardwareAccelerated() method, View
control, 326

IS_RINGTONE flag, 207

isVideoSnapshotSupported() method, 201

Iterating query results, with Cursor, 41–42

J
Java

calling native code from, 377–378,
380–381

supporting Open GL ES 2.0 with
Android, 369–373

susceptible to reverse engineering, 450
Java, for Android developers

familiarity with Java
documentation, 500

learning Java development tools,
499–500

learning Java programming
language, 499

quiz Q & A, 505, 526
understanding Java shorthand,

500–504
Javadocs, 500

JavaScript, 178, 183–187

JavaScriptExtensions class, 184

@JavascriptInterface annotation,
warning, 184

546 Intent objects, broadcasts

javaThrowsException() method, native
code, 383

JIT (just-in-time) compilation, ART
runtime, 460

JNI bindings, debugging, 460

JNIEnv object, native code, 382–383

/jni subdirectory, NDK project, 379–380

JobScheduler API, Project Volta, 461

Jobs, Steve, 98

Joins, SQLite, 491, 495

jse.javaMethod(), web extensions, 184

K
Keyboards. See Software keyboards

Keyboard shortcuts, Android Studio, 517

Key handling, GLSurfaceView, 368

Keymap quick reference card, Android
Studio, 517

keytool command-line tool, debug key,
264–265

Killing services, 20

kill-server command, ADB server, 470

KitKat (Android 4.4), 6, 508

L
label attribute, basic searches, 417

Language & input settings, 442

Languages

international. See Internationalizing
applications

speech recognition services, 146
Latency, controlling network, 173

Latitude

geocoding locations, 256, 258–260
geofencing APIs, 262
launching Google Maps, 263

Launching Android Studio, 508

launchRecognizer value, voice search, 420

launchWebSearch value, voice search, 420

Layout

applying styles, 106–109
creating App Widget, 394
designing devices with flexible, 152
designing with WebView control, 176
internationalization via alternative

resources, 440–442
right-to-left language localization, 445
style inheritance, 109–111
themes, 111–113
using RemoteViews, 397
using space on big landscape screens,

153–154
web extensions, 183

Layout Editor, Android Studio, 513–515

LBS (location-based services), 145

L Developer Preview, or Android L

Android TV, 464–465
improving performance, 460–461
improving user experience, 461–464
new APIs added to, 459–460
quiz Q & A, 465, 526
setting up SDK, 459

Leaderboards, Google Play game
services, 298

LEDs, notifications, 84–85

Library services, Google Analytics SDK for
Android, 286–287

/libs folders, Android Studio, 512

License Verification Library (LVL), 452–453

Lifecycle

Activity, 12–14
broadcast receiver, 69
Cursor objects, 41
Service, 20
Service vs. Activity, 21

547Lifecycle

Lighting scenes, OpenGL ES, 358–359

Linear gradients, 308

LinearInterpolator, animation, 341

lint tool, accessibility issues, 141

listen() method, TelephonyManager, 213,
214–215

Listeners, using inner classes, 504

Listening

for events on entire screen, 120–121
for long clicks, 121–122
for touch mode changes, 119–120

LISTEN_SERVICE_STATE flag, 213

ListView control

binding data to controls, 50–53
contextual action mode, 105
retrieving content provider data, 64

Live wallpapers

configuring, 406–407
creating, 404–406
installing, 407–408
overview of, 404

loadAndCompileShader() method, OpenGL
ES 2.0, 371–372

loadData() method, WebView, 177

Loader class, 12, 16

LoaderManager, 16

loadInBackground() method, search
Activity, 423

Loading animations, 334

Loading content, 176–178, 183

Loading images, 314

loadUrl() method, WebChromeClient, 179

LocalBroadcastManager class, 74

Locale

changing language settings, 442–444
implementing programmatically,

444–445

internationalization via alternative
resources, 439–442

Localizing application language

changing language settings, 442–444
implementing programmatically,

444–445
overview of, 439
right-to-left, 445
using alternative resources, 439–442

Location and map APIs

Android location APIs. See Android
location APIs

Google location services APIs,
260–262

Google Maps Android API v2,
262–268

GPS, 254–256
quiz Q & A, 268–269, 522

Location-based services (LBS), 145

Location class, Parcelable interface, 26

LocationListener object, 254–255

LocationManager, 254–255, 260

LOCATION_SERVICE, 254

Location URI, launching Google Maps
with, 263

Lock, for file backups, 433

Lock screen

App Widgets, 393, 401–403
L Developer Preview

improvements, 463
logcat command, 474

LogCat utility, 473–474

Logging

e-commerce events in Google
Analytics, 290–291

events in Google Analytics, 287
with LogCat utility, 474–476

Long-click event, listening for, 121–122

548 Lighting scenes, OpenGL ES

Long-form dictation, SpeechRecognizer, 141

Longitude

geocoding locations, 256, 258–260
geofencing APIs, 262
launching Google Maps with location

URI, 263
Looping infinitely, Java, 501–502

LVL (License Verification Library), 452–453

M
makeCustomAnimation() method, 341

makeScaleUpAnimation() method, 341

makeThumbnailScaleUpAnimation()
method, 341

Map API key, 263–265

Map APIs. See Google Maps Android API v2

MapFragment, 265–266

mapping.txt, 452

Marker, Google Maps, 266–267

Material design, L Developer Preview,
461–463

Material theme, L Developer Preview, 462

Matrix class, transforming bitmaps,
313–314

Measuring text screen requirements, 312

MediaController, 202–203

MediaDrm class, 202

MediaPlayer object, 202–203, 205–206

MediaRecorder object, 200–201, 204–205

MediaRouteProvider APIs, 209

Media router APIs, 209

Media router library, multimedia APIs, 209

MediaScannerConnection class, 198

MEDIA_SEARCH, 207–208

MediaStore content provider, 198, 206

Memory, bitmap optimization, 313–314

MenuInflater, contextual action mode, 104

Message flow, Google Cloud Messaging,
272, 273–274

Metadata, NotificationListenerService, 91

<meta-data> manifest tag

Android Backup Service, 431
App Widgets, 399
Google Cloud Save, 299
Google Maps Android, 265
search, 423–424

Methods

building content provider, 57–62
chaining in Java, 501

MIME types

application acting as content filter,
410–413

building content provider, 61–62
overview of, 411

minSdkVersion, action bars, 101

MMS (Multimedia Messaging Service),
216–217

monkey application, 472, 478–481

monospace font

conventions used in this book, 7
drawing on screen, 310

MotionEvent object, gesture detectors, 123

Mouse-overs, WebView control, 178

moveToFirst() method, Cursor, 41–42

moveToNext() method, Cursor, 41–42

Moving transformations, 336

mSaveText, listening for focus changes,
122–123

MultiChoiceModeListener(), contextual action
mode, 105

Multimedia APIs

media router library, 209
overview of, 191
playing audio, 205–206
playing video, 202–203

549Multimedia APIs

Multimedia APIs (continued)
quiz Q & A, 209–210, 521
recording audio, 204–205
recording video, 200–201
ringtones, 208–209
searching for multimedia, 207–208
sharing audio, 206–207
working with, 191–192
working with face detection, 203–204

Multimedia APIs, still images

assigning as wallpaper, 199
capturing with camera, 192–196
choosing among device cameras,

199–200
common camera parameters, 197
configuring camera mode settings, 196
sharing images, 198
zooming camera, 197

Multimedia Messaging Service (MMS),
216–217

Multiplayer gaming, Google Play game
services, 299

Multiple processors, 16

Multiple users, creating on devices,
428–429

Multitouch gestures, 123, 129–133

MyOnClickListener class, using inner
classes, 504

N
name attribute, Google Cloud Save, 299

Naming conventions

applications for tablets, 155
content provider URI, 56

National Geospatial-Intelligence Agency
(NGA), World Magnetic Model, 230

Native Android applications, Adobe Air
and, 188

NativeBasicsActivity.java, 380–381

native_basics.c file, 381

Native code. See Android NDK (Native
Development Kit)

Native Development Kit. See Android NDK
(Native Development Kit)

Native Google TV apps, 157–158

Native libraries, Android NDK

building own NDK project, 380
building sample application, 379
improving performance, 384–385
only on Android 1.5 and higher,

377–378
Navigation

detecting gestures, 123
optimizing web applications for

Google TV, 157
user interface. See Action bars

NdefMessage, 242–243

NDEF (NFC Data Exchange Format) Push
over NFC, 241–243

NDK. See Android NDK (Native Development
Kit)

ndk-build script, building own NDK
project, 380

Nesting transactions, SQLite, 40, 491

NetworkInfo objects, Android network
status, 172

Networking APIs

accessing Internet, 164–166
Android network status, 171–173
asynchronous operations, 12, 167–171
mobile networking, 163
overview of, 163
parsing XML from network, 166–167
quiz Q & A, 173, 521
StrictMode, 164

NetworkOnMainThreadException, 164

550 Multimedia APIs

Network operator name, requesting service
information, 214

Network resources, displaying images,
170–171

New Project creation wizard, Android Studio,
509–512

NfcAdapter class, Android Beam, 242–243

NFC Data Exchange Format (NDEF) Push
over NFC, 241–243

NGA (National Geospatial-Intelligence
Agency), World Magnetic Model, 230

Noise, notifications, 86

Nonprimitive types, 53, 170–171

Nonprofit Khronos Group, OpenGL ES, 345

Normal broadcasts, 67

Notification.Builder() class, 78, 80–81, 83

NotificationCompat library, 78

NotificationCompat.Builder class, 79, 85–86,
88–90

NotificationListenerService, 91

NotificationManager object, 79, 80–81, 83

Notification queue

clearing, 82–83
customizing, 86–88
expandable and contractible

notifications, 88–90
setting priority, 90–91
updating, 81–82
working with, 80–81

Notifications

blinking lights, 84–85
clearing, 82–83
communicating data to user, 24
compatibility, 78
components of simple, 79
customizing, 86–88
designing useful, 91–92
expandable and contractible, 88–90

GCM for Android, 271–272
L Developer Preview enhanced,

463–464
making noise, 86
notification listener, 91
notification queue, 80–81
notifying user, 77–78
quiz Q & A, 92, 520
setting priority, 90–91
simple text with icon, 79–80
sounds of system events, 208
with status bar, 78–79
updating, 81–82
using NotificationManager service, 79
vibrating phone, 84
for wearables, 158

notify() method, 79–81

notifyBuilder variable, 79

O
ObjectAnimator class, property

animation, 337

Offload processing, 12, 20

onActionItemClicked() method, contextual
action mode, 104

onActivityResult() method, recording
speech, 145

onAnimateMove() method, fling gestures, 128

onAnimateStep() method, fling gestures, 128

onBackup() method, 431, 433–434

ON_BICYCLE, activity recognition APIs, 261

onBind() method

creating Service, 21
implementing remote interface, 26–28

onClick() method

building basic action bars, 100
building web extensions, 185

551onClick() method

onClick() method (continued)
geocoding locations, 258
playing audio, 205
recording audio, 204–205
recording video, 201

onConnected() method, fused location
provider, 261

onConnectionFailed() method, fused location
provider, 261

OnConnectionFailedListener, 261

onConsoleMessage() method, web
extensions, 183

OnCreate() method

action bars, 104–105
AsyncTask class, 13
data for Google Analytics, 287
Google Play game services, 297
remote interface, 27
search Activity, 423
Service, 20–21, 25
SQLiteOpenHelper, 47–48
Thread class, 15–16
wallpaper Service, 405
web extensions, 183–184

onCreateLoader() method, 16

onCreateOptionsMenu(), search, 420–421

onDeleted() method, AppWidgetProvider, 396

OnDestroy() method

Cursor management, 41
data for Google Analytics, 287
Service, 20–21, 24–25
wallpaper Service, 405

onDisabled() method, AppWidgetProvider, 395

onDisconnected() method, fused location
provider, 261

onDoubleTap()method, gestures, 124,
128–129

onDoubleTapEvent() method, gestures,
124–125

onDown() method, gestures, 124, 128–129

onDowngrade() method, SQLiteOpenHelper,
47–48

onDraw() method

Canvas object, 305–306
single-touch gestures, 126

onDrawFrame() method

Android NDK, 385
GLSurfaceView, 367–368
OpenGL ES 2.0, 372

onEnabled() method, AppWidgetProvider, 395

onFaceDetection() callback event, 203–204

onFling() method, gestures, 124, 129

OnFocusChangeListener class, 122–123

ON_FOOT, activity recognition APIs, 261

OnGlobal LayoutListener class, 121

onInit() method, TTS, 146

OnInitListener interface, TTS, 146

onJsBeforeUnload() method,
WebChromeClient, 179

onKeyDown() method, OpenGL ES,
364–365, 368

onKeyUp() method, OpenGL ES, 365

onLoaderReset() method, Loaders, 16

onLoadFinished() method, Loaders, 16

onLocationChanged() method, device
location, 255–256

onLocationChanged() method, geocoding
location, 257

onLongPress() method, GestureDetector, 124

onMove() method, gestures, 128–129

onNewIntent() method, search Activity, 423

onOpen() method, SQLiteOpenHelper, 47–48

onOptionsItemSelected() method, action
bar, 104

552 onClick() method

onOrientationChanged() method, screen, 136

onPause() method, Cursor, 41

onPause() method, WebView, 179–180

onPerformSync() method, sync adapters, 429

onPostExecute() method, AsyncTask, 13

OnPreDrawListener class, 120

onPreExecute() method, AsyncTask, 13

onProgressUpdate() method, AsyncTask, 13

onReceive() callback method, broadcasts,
69, 71

onResetLocation() method, gestures,
128–129

onRestore() method, 431, 433–434

onResume() method

avoiding logging of, 292
Cursor management, 41
WebView state, 179

onScaleBegin() method, multitouch
gestures, 132

onScale() helper method, multitouch
gestures, 131

onScroll() method, gestures, 124, 129

onSensorChanged() method, 228–229

onServiceConnected() method, remote
interface, 27

onServiceDisconnected() method, remote
interface, 27–28

onShowPress() method, gestures, 124

onSingleTapConfirmed() method,
gestures, 124

onSingleTapUp() method, gestures, 124

onStartCommand() method, Service,
20–22, 25

onStart() method, Service, 20–22, 25

onSurfaceChanged() method, wallpaper
Service, 405

onSurfaceCreated() method, wallpaper
Service, 405

onSurfaceCreate() method, OpenGL
ES 2.0, 370

onSurfaceDestroyed() method, wallpaper
Service, 405

onTouchEvent() method, gestures, 123,
125–127, 131

onTouchEvent() method, wallpaper
Service, 405

onTouchModeChanged() method, 120

OnTouchModeChangeListener class, 120

onUpdate() method, App Widget,
395–396, 398

onUpgrade() method, SQLiteOpenHelper,
47–48

onVisibilityChanged() method, wallpaper, 405

OpenGL ES

cleaning up, 365–366
ensuring device compatibility,

346–347
GLSurfaceView, 366–369
handling tasks manually, 347–353
initializing, 352–353
leveraging in Android, 346
OpenGL ES 2.0, 369–373
OpenGL ES 3.0, 373–374
overview of, 345
using APIs in Android SDK, 347

OpenGL ES 3.1, 460–461

OpenGL rendering pipeline, 2D graphics, 321

OpenGL Utility Toolkit (GLUT), 352

openOrCreateDatabase() method, SQLite
database, 36

Operations, asynchronous networking,
167–171

Options menu resource file, action bars,
100–101

Ordered broadcasts, 67

553Ordered broadcasts

Orientation

alternative resources for, 153
changing screen, 134–136
determining device, 230
developing tablet applications, 155
using space on big landscape screens,

153–154
OrientationEventListener class, 135–136

OutOfMemoryError, bitmap optimization,
313–314

Output, speech, 139

OutputStream, Bluetooth devices, 238

Ovals, drawing, 319–320

OvalShape object, 319–320

Overflow menu icon, action bars, 101

OvershootInterpolator, animation, 341

P
Paint object

anti-aliasing, 307
drawing text, 309
gradients, 307
hardware acceleration and, 325
setting properties via XML, 316
styles, 307
understanding, 307
working with canvases and, 305–306
working with color, 307

Parallel execute, 14, 16

Parameters class, camera, 196–197

Parameters, NDK project, 381–382

Parcelable class, 26, 28–30

Parents, style inheritance, 109–111

Parsing XML from network, 166–167

Password protection, software piracy, 450

Pasting data, from system clipboard, 119

Paths, drawing, 322–324

PathShape, 323–324

pause Timers() method, WebView, 180

PayPal billing APIs, 280

peek Drawable() method, wallpaper, 199

PendingIntent, 88–90, 260

Percentage, of battery use, 233

Performance optimization

2D bitmaps, 313
3D graphics in Android NDK,

384–385
L Developer Preview, 460–461

Permissions

Bluetooth, 235
camera, 192
content provider access, 64
fused location provider, 261
location of device, 254–255
making phone calls, 220
monitoring battery use, 231
monitoring Wi-Fi state, 246
phone state information, 212
recording video, 201, 205
sending broadcasts, 67–68
sending/receiving SMS messages, 218
setting wallpaper, 199
sounds of system events, 209
using Google Analytics SDK for

Android, 286
using GPS in your applications, 254
vibration with notifications, 84
video from Internet resource, 202
WebView control, 175–176
Wi-Fi Direct on Android, 246
working with SIP, 221

permitAll() method, skipping StrictMode,
17, 164

Persistent databases, 46–48

554 Orientation

Personalizing devices, 199, 208–209

Phone calls, 220–222

PhoneNumberUtils class, 215–216, 445

PhoneStateListener, 214–215

Pinch-to-zoom, multitouch gestures,
129–130

Plug-ins, WebView, 178

postDelayed() method, View class, 15

post() method

OpenGL ES, 362–364
View class, 15–16

Power issues

battery life, 231–233, 461
Daydream, 408
live wallpaper, 406

Precision updates, AppWidgetProvider, 396

Preferences, backing up shared, 432

PrefListenerService class, 398

Press-and-hold action, long-click events, 121

Preview All Screen Sizes, Android Studio, 514

Preview controls, Android Studio, 515

previewImage field, App Widgets, 394

Preview window, Android Studio, 514–515

Pricing, antipiracy tips, 454

Printing debug information, 478

Priorities, setting notification, 90–91

Privacy, 74, 408

Processors, 16

Programmatically

defining property animation, 339–341
defining shape drawables, 316–317
defining tweened animations, 333
implementing locale support, 444–445

ProgressBar control, 13, 202–203, 220

ProGuard, 287, 450–452

proguard-project.txt file, 451

Projects, Android Studio, 509, 512

Project Volta, L Developer Preview, 461

Properties

SQLite database, 37
typeface, 310

Property animation

defined, 329
defining as XML resources, 337–339
defining/modifying programmatically,

339–341
working with, 336–337

propertyName attribute, property
animation, 338

Provider(s)

account, 428
App Widget, 392–396
content. See Content providers

fused location, 260–261
location, 254–256
SMS, 217
Telephony API service, 214

Publishing applications for foreign
users, 446

publishProgress() method, AsyncTask, 13

pull command, retrieving files, 472

Pull Parser, XML, 166–167

push command, copying files, 472

Push messaging services, 271–273, 275

Q
Queries, paired Bluetooth devices, 237

Queries, SQLite database

complex queries, 44
to multiple tables, 495
overview of, 40–41
raw queries, 45
with SELECT, 493
simple queries, 43–44

555Queries, SQLite database

Queries, SQLite database (continued)
subqueries for calculated columns, 497
using calculated columns, 496–497
using sqlite3 to test, 490
working with cursors, 41–42

query() method

content provider, 57–58
enabling search suggestions, 419
executing simple queries, 43–44
retrieving content provider data, 64

Questions, answered in this book, 3–4

queueEvent() method, GLSurfaceView, 368

Quick Search Box, global searches, 424–425

Quick-Start Guides

ADB. See ADB (Android Debug
Bridge)

Android Studio. See Android Studio

SQLite. See SQLite databases

Quotas, Google Play game services, 298

R
Radial gradients, 309

Rate limiting management, Google Play
game services, 298

Raw HTML, WebView control, 177

rawquery() method, 45

readFromParcel() method, Parcelable
class, 29

Reading

data from Web, 164–165
sensor data, 228–229
text to user, 145–147

READ_PHONE_STATE permission, 212

readText() method, text-to-speech, 147

Real-time multiplayer APIs, Google Play
game services, 299

<receiver> tag, App Widgets, 399

Receiving

Android Beam messages, 243–244
broadcasts, 69–73
phone calls, 221–222
SMS messages, 218

RecognizerIntent intent, recording speech,
142–145

Reconfigure() method, bitmaps, 314

Recording

audio, 204–205
video, 200–201

Records

deleting SQLite database, 39–40
inserting SQLite database, 38
query results corresponding to

returned, 41
updating SQLite database, 38–39

recordSpeech() method, speech
recognition, 145

Rectangles, drawing, 318–319

RectEvaluator class, property animation, 337

RectShape object, 318

recycle() method, transforming bitmaps, 313

RecyclerView, L Developer Preview, 462

Referential integrity, SQLite limitations, 491

registerListener() method, sensors, 228–230

registerReceiver() method, sticky
broadcasts, 67

Registration

of applications using ADB, 431
of backup agent in manifest file, 434
receiving broadcasts and, 69–71

Reinstallation, of applications using
ADB, 473

release() method, playing audio, 206

Remote backup service, 430–431

Remote interface, 19, 26–28

556 Queries, SQLite database

RemoteViews class

App Widgets, 396–400
customizing notifications, 86–88

remove() method, SQLite database records,
39–40

Renderer class, GLSurfaceView, 366–369

RenderScript

Android NDK vs., 385–386
computing with, 385
deprecated in Android 4.1, 374

repeatCount attribute, property animation,
338–339

repeatMode attribute, property animation,
338–339

Reports, generating bug

Android Debug Bridge, 477
Google Analytics, 284–285
Google Analytics Dashboard, 288–290

requestLocationUpdates() method, 254

requestRestore() method, 435

requestStop() method, OpenGL ES
thread, 350

requiredAccountType attribute, restricted
profiles, 429

/res/animator/grow.xml, animations, 333

/res/animator/resource, animations,
332–333, 337–339

/res/drawable, internationalization, 441

/res/drawable/resource, shape drawables,
315–316

/res/layout, internationalization, 440–441

/res/values, internationalization, 440–441

/res/values/styles.xml, styles, 106–109

/res/xml, live wallpaper, 406

Resolution, bitmap, 314

Restore, forcing, 477

RestoreObserver object, 435

restrictedAccountType attribute,
profiles, 429

Restricted profiles, tablets, 428–429

Return values, building NDK project,
381–382

Reverse geocoding, 256

RFCOMM connections, Bluetooth, 235

Right-to-left (RTL) language localization, 445

RingtoneManager object, 208–209

Ringtones, 207–209

Roaming, 214

RotateAnimation class, 335

Rotating transformations, 335

RoundRectShape object, 318–319

RTL (right-to-left) language localization, 445

runOnUiThread() method, Activity, 15

Runtime, L Developer Preview, 460–462

S
sample.html file, 185

Sans Serif typeface, drawing on screen, 310

Saving, game data with Cloud Save, 299

Scale

bitmaps, 313
designing flexible user interfaces, 152
loading content into WebView, 178
monitoring battery use, 233
working with transformations,

335–336
ScaleAnimation class, 336

ScaleGestureDetector class, 123, 129–131

Scenes

lighting 3D, 358–360
state animations with, 342

Schema

creating SQLite database, 37–38
designing SQLite database, 491–492

557Schema

Schema (continued)
listing for database with sqlite3, 488
listing for table with sqlite3, 487

Screens

2D drawing on. See Drawing 2D
objects

3D drawing on. See Drawing 3D
objects

designing flexible user interfaces, 152
handling orientation changes, 134–136
listening for events on entire, 120–121
listening for focus changes, 122–123
listening for long-click event, 121–122
listening for touch mode changes,

119–120
optimizing web applications for

Google TV, 157
removing action bars from, 104–105
using alternative resources for, 153
using space effectively on big

landscape, 153–154
WebView control as entire, 178

Screen saver, Daydream, 408–410

Scripts, SQL, 489

Scroll gestures, 124–125, 128–129

SDK Manager, Android Studio, 508–509

Search

in-application, 416–417
basic, 417
configuring Android manifest file for,

423–424
creating search Activity, 422–423
global, 424–425
making application content searchable,

415–416
multimedia APIs, 207–208
quiz Q & A, 426, 525
requesting, 420–421

suggestions, 417–420
voice, 420

Search button, deprecated, 420

SearchManager class, 417

searchSuggestAuthority attribute, 418

searchSuggestThreshold attribute, 418

SearchView class, 420–421

Secondary logs, accessing, 476

Security

application broadcast, 73–74
host card emulation applications, 245
JavaScript control for Android app, 187
software piracy. See Software piracy
protection

SSL, 164–166
video content, with MediaDrm

class, 202
Seed feature, stress testing applications, 480

SELECT statement, querying SQLite
database tables, 493

Semicolon (;), sqlite3, 490

sendBroadcast() method, 67

Sending

broadcasts, 67–68
enabling Android Beam, 241–243
SMS, 218–220

sendOrderedBroadcast() method, 67

sendStickyBroadcast() method, 67

sendStickyOrderedBroadcast() method, 67

Sensor class, 226–227

SensorEvent class, 228

SensorEventListener object, 228

SensorManager class, 226–227

Sensors. See Hardware sensors

separator command, sqlite3, 489

Sequential tweened animations, 333

Serial number, ADB commands to specific
devices, 470

558 Schema

Serif typeface, drawing on screen, 310

Servers

alternative to GCM, 275
integrating GCM on Android

application, 274
Service class

creating App Widget, 393
creating App Widget update Service,

398–399
implementing Daydream, 409
updating App Widget, 398–399
working with live wallpapers, 404–408

ServiceConnection object, remote interface,
27–28

Service information, requesting, 214

<service> manifest tag

configuring App Widgets, 399
configuring live wallpapers, 406–407
creating Service, 25
implementing remote interface, 27
registering Service implementation, 20

Services

controlling, 25
creating, 20–25
default messaging applications, 217
implementing IMEs as Android, 117
implementing IntentService class, 30–33
implementing Parcelable class, 28–30
implementing remote interface, 26–28
lifecycle, 20
overview of, 19
quiz Q & A, 34, 519
when to use, 19

Service Set Identifier (SSID), Wi-Fi state, 247

ServiceState object, call state, 213–214

Session Initiation Protocol (SIP), Telephony
API, 222–223

<set> tag, tweened animations, 333

setAccuracy() method, location of device, 255

setAutoCancel() method, notifications, 83

setBackground() method, drawable
animations, 330

setBeam PushUris() method, Android Beam
over Bluetooth, 245

setBitmap() method, wallpaper, 199

setBuiltInZoomControls() method,
WebView, 178

setClass() method, broadcasts, 74

setcolor() method, Paint, 307

setContentDescription() method,
accessibility, 140

setContentText() method, notifications, 80,
87, 89

setContentTitle() method, notifications, 80,
87, 89

setContentView() method, themes, 112

setContentView() method, WebView, 178

setDataSource() method, playing audio, 205

setDisplayHomeAs UpEnabled() method,
icon clicks, 104

setEGLContextClient Version() method,
OpenGL ES 2.0, 370

setFlags() method, hardware
acceleration, 325

setHapticFeedbackEnabled() method,
accessibility, 140

setHTMLText() method, web extensions,
185–186

setInitialScale() method, WebView, 178

setInterpolator() method, interpolator, 341

setJavaScriptEnabled() method

web extensions, 183

WebView, 178

setLayerType() method, hardware
acceleration, 325

setLightTouchEnabled() method,
WebView, 178

559setLightTouchEnabled() method, WebView

setMediaController() method, VideoView,
202–203

setNdefPushMessageCallback() method,
Android Beam, 242

setNotificationUri() method, content
provider, 57

setOnClickListener() method, 123, 504

setOnCompletionListener() method, video,
202–203

setOneShot() method, drawable
animation, 330

setOnFocusChangeListener() method, focus
changes, 122–123

setOnLongListener() method, View, 123

SetPackage() methods, application
broadcasts, 74

setParameters() method, camera, 196

setPowerRequirement() method, location of
device, 255

setPreviewFormat() method, camera, 195

setPrimaryClip() method, copying/
pasting, 119

setResource() method, wallpaper, 199

setShader() method, Paint, 307–309

setSound() method, notifications, 86

setStream() method, wallpaper, 199

setStyle() method, notifications, 88–90

setSupportZoom() method, WebView, 178

setTables() method, content provider, 57

setTarget() method, property animations, 339

setTheme(), 111–113

Settings

Daydream, 409
WebView, 178–179

Settings, Language & import menu, 115

setTint() method, drawable resources at
runtime, 462

setVibrate() method, notifications, 84

setVideoURI() method, video, 202–203

setWebChromeClient() method, 179

SGI (Silicon Graphics), and OpenGL, 345

SHA-1 fingerprint, map API key, 263–264

Shaders, OpenGL ES 2.0, 370–373

Shadows, L Developer Preview, 462–463

ShapeDrawable

defining as XML resources, 315–316
defining programmatically, 316–317
using ArcShape object, 320–322
using OvalShape object, 319–320
using PathShape object, 323–324
using RectShape object, 318
using RoundRectShape object,

318–319
using view animations, 331–332

Shapes

defining shape drawables, 315–317
drawing arcs, 320–322
drawing ovals and circles, 319–320
drawing paths, 322–324
drawing rectangles and squares, 318
drawing rectangles with rounded

corners, 318–319
Shared

audio, 206–207
preference files, backing up, 432
still images, 198

Shell commands, ADB

accessing sqlite3 tool, 486
inspecting SQLite databases, 478
installing custom binaries via, 481–482
issuing single shell commands, 471
starting and stopping emulator,

471–472
stress testing applications, 478–481
using shell session, 471

Shorthand, Java, 500–504

560 setMediaController() method, VideoView

showAsAction attribute, action bar, 102–103

showVoiceSearchButton value, voice
search, 420

shutdown() method, text-to-speech, 147

Sidebars, conventions used in this book, 7

Signal strength, Telephony API, 214–215

Silicon Graphics (SGI), and OpenGL, 345

SIM operator name, requesting service
information, 214

SimpleAccessProvider application, 63–64

SimpleAppWidgetActivity, 397

SimpleBackup application, 430–435

SimpleBroadcasts application. See
Broadcasts

SimpleCursorAdapter

binding data to controls, 50–53
creating search Activity, 423
retrieving content provider data, 64

SimpleDataUpdateService class, App
Widgets, 398

SimpleGestures application, 125–129

SimpleIntentService application, 31–33

SimpleInternationalization application. See
Internationalizing applications

SimpleLiveWallpaper application, 406

SimpleNetworking application, 164–166

SimpleNotifications application. See
Notifications

SimpleOnScaleGestureListener class,
multitouch, 130

SimpleOpenGL application. See Graphics, 3D
applications

SimpleOrientation application, 135–136

SimplePropertyAnimation application,
337–341

Simple queries, 43–44

SimpleSearchableActivity, 422–423

SimpleSearchProvider application. See
Content providers

SimpleSpeech application, 141–145

SimpleTextInputTypes application. See
Textual input methods

SimpleWeb application. See Web APIs

SimpleWebExtension application, 183–187

SimpleWireless application, 238–239

Simultaneous tweened animations, 333

Single-touch gestures

GestureDetector class detecting, 123
handling common, 124–129
overview of, 123

SIP (Session Initiation Protocol), Telephony
API, 222–223

Siri speech-recognizing assistant, Apple, 139

Size

calculating App Widget, 394
GCM for Android limits, 272
SQLite limits, 491

Smartphones

audience for, 153
challenges of games for, 154
Fragment-based design for, 152
scaling graphics for, 154
tablets vs., 154

SmartSmoothZoom() method, camera, 197

SMS

applications other than default,
217–218

default messaging application, 215–216
overview of, 216
permissions to send/receive

messages, 218
sending, 218–220

SmsManager, 218–220

SMS Provider, 217

SoftKeyboard legacy sample
application, 117

Software developers, 1, 6–7

561Software developers

Software keyboards

choosing appropriate, 116–117
customizing, 117–118
input using, 115
Speech Recording option, 141–142
text input, 115

Software piracy protection

obfuscating with ProGuard, 450–452
other antipiracy tips, 453–454
overview of, 449
quiz Q & A, 454, 525
secure coding practices, 450
using License Verification Library,

452–453
vulnerability of all applications, 449

speak() method, text-to-speech, 147

speech package, 141–145

Speech recognition framework, accessibility,
141–145

SpeechRecognizer class, 141

SQL

executing commands on sqlite3, 490
executing scripts from files with

sqlite3, 489
SQLite databases. See also sqlite3

command-line

binding data to application user
interface, 48–53

closing and deleting, 45–46
common tasks, 485
content providers. See Content
providers

creating, 36–38
deleting records, 39–40
designing persistent databases, 46–48
inserting records, 38
inspecting using ADB shell, 478
limitations of, 490–491

562 Software keyboards

overview of, 35, 485
querying, 40–45
quiz Q & A, 54, 519
storing structured data, 35–36
transactions, 40
updating records, 38–39

SQLite databases, example

altering/updating data in tables, 495
calculated columns, 496–497
creating tables with

AUTOINCREMENT, 492
deleting tables, 497
designing schema, 491
foreign/composite primary keys,

493–494
inserting data into tables, 492–493
overview of, 491
querying multiple tables using

JOIN, 495
querying tables for results with

SELECT, 493
quiz Q & A, 498, 526
setting typeface, 492
subqueries for calculated columns, 497

SQLite FTS3 extension, 420

sqlite3 command-line

connecting to SQLite database,
486–487

debugging tool for database state, 36
executing SQL commands, 490
exploring database, 487–488
finding application database file on

device, 36
importing/exporting database and its

data, 488–489
inspecting SQLite database via ADB

shell, 478
launching ADB shell, 486

563Structure, of this book

other commands, 490
overview of, 486
using ADB shell interface to run, 472

SQLiteDatabase instance, 36, 37

SQLiteOpenHelper class, 46–48

SQLiteQueryBuilder, 44, 57–58

Squares, drawing, 322–324

/src folders, Android Studio project, 512

SSID (Service Set Identifier), Wi-Fi state, 247

startActivity() method, 221, 263

startActivityForResult() method, 145, 237

startAngle parameter, arcshape, 321–322

start command, emulator, 472

startDiscovery() method, Bluetooth
devices, 238

startDrag() method, drag-and-drop, 134

start() method

drawable animation, 330
property animations, 339

startOffset property, tweened animation, 333

startscan() method, Wi-Fi state, 247

start-server command, ADB server, 470

startService() method, 20, 25

State

animations with scenes/transitions, 342
managing WebView, 181–182
monitoring Wi-Fi, 246–248
permission to access information on

phone, 212
requesting call, 212–214

Static inner classes, 504

Statistics. See Google Analytics

Status bar

customizing notifications, 86–88
displaying notification queue on,

80–82
notifications displayed on, 77–78

notifying users with, 78–79
updating notifications, 81–83

Status, retrieving Android network, 171–173

Stepping through code, Android Studio, 516

Sticky broadcasts, 67

STILL, activity recognition APIs, 261

Still images

assigning as wallpaper, 199
camera mode settings, 196
camera parameters, 197
capturing with camera, 192–196
choosing device camera, 199–200
debugging with Chrome

DevTools, 187
sharing images, 198
during video sessions, 201
working with multimedia, 191–192
zooming camera, 197

stop command, emulator, 471

stopFaceDetection(), camera, 204

stop() method

drawable animations, 331
playing audio, 205

stopService() method, 20, 25

stopSmooth Zoom() method, camera, 197

Storage

gathering statistics and avoiding, 292
SQLite databases for structured data,

35–36
SQLite limitations for procedures, 491

STREAM_NOTIFICATION, making noise, 86

Stretchable graphic formats, 152

StrictMode

impact on networking code, 164
networking code requiring, 12
responsiveness of applications, 17

Structure, of this book, 1–3

Styles

L Developer Preview
improvements, 462

leveraging inheritance, 109–111
notification, 88–90
Paint, 307, 323–324
simple, 106–109
themes, 111–113
user interface design, 106

<style> tag, 106, 111–113

submitScore() method, leaderboards, 298

Subqueries, SQLite database, 497

supportsRtl attribute, RTL language
localization, 445

@SuppressWarnings option, exceptions with
native code, 383

surfaceCreated() method

Camera, 192–195
starting OpenGL ES thread, 349–350

surfaceDestroyed() method, Camera,
193, 195

SurfaceHolder, 193–195, 202–203

SurfaceHolder.Callback, SurfaceView,
348–349

SurfaceView

creating for OpenGL ES, 348–349
enabling OpenGL threads, 362–365
initializing GLS, 352
initializing OpenGL ES, 352
OpenGL ES 2.0, 370–373
OpenGL ES APIs in Android

SDK, 347
starting OpenGL ES thread, 349–350

sweepAngle parameter, arcshape, 321–322

Sweep gradients, 309

Sync adapters, synchronizing data with,
429–430

Synchronizing data

not using backup services for, 430
notifications, L Developer

Preview, 463
overview of, 429–430

Syntax, Java, 500–504

Synthesized speech, text-to-speech, 145

System images, Android TV, 464–465

System-wide accounts, 428

T
Tables, SQLite database

adding data, 492
altering/updating data, 495
creating, 37, 492
deleting, 46, 497
dumping contents with sqlite3,

488–489
foreign/composite primary keys,

493–494
listing available with sqlite3, 487
querying, 493
querying multiple, 495

Tablets

attracting new types of users, 153
designing flexible user interface, 152
developing applications,

154–155
overview of, 151
quiz Q & A, 159, 521
using screen space effectively,

153–154
takePicture() method, Camera class,

195, 201

TalkBack application, accessibility, 140

Target Class, application broadcasts, 74

564 Styles

Telephony APIs

making phone calls, 220–221
monitoring signal strength/data speed,

214–215
permission to access information, 212
quiz Q & A, 223, 521–522
receiving phone calls, 221–222
requesting call state, 212–214
requesting service information, 214
using SMS, 216–220
working with phone numbers,

215–216
working with SIP, 222–223
working with telephony utilities,

211–212
TelephonyManager object, 212–214

Temp variables, unnecessary Java, 501

10-foot experience, Google TV, 157

Ternary operations, Java, 503

Testing

Android Wear, 158
applications for ART, 460
asynchronous code on real devices, 12
backup services, 435
custom locales, 442
Google Play game services, 296
SQL queries with sqlite3, 490

Text

drawing on screen, 310–312
layouts with WebView, 176
measuring screen for, 312
prediction, 118

Text notifications

components, 79
creating with icon, 79–80
customizing, 86–88

displaying on notification queue,
80–82

expandable and contractible, 88–90
updating, 83

Text-to-speech (TTS) services, accessibility,
145–147

Textual input methods

customizing software keyboards,
117–118

overview of, 115
text prediction and user

dictionaries, 118
using clipboard framework, 118–119
working with software keyboards,

115–117
Texturing objects, 3D graphics, 359–362

Text view, Android Studio, 514–515

TextView control

building simple styles, 106–109
implementing text-to-speech, 147
parallel execute to update, 14
updating in UI, 13
updating with Thread, 16
working with view animations,

331–332
Themes, user interface design, 111–113

Third-party services

in-app billing APIs, 280
backup services, 430
push messaging services, 275
that use ADB for package

installation, 473
Thread class

asynchronous network operations,
168–169

offload processing off main UI
thread, 12

working with, 15–16

565Thread class

Threading and asynchronous processing

AsyncTask class, 12–14
importance of, 11–12
Loaders, 16
overview of, 11
quiz Q & A, 17–18, 519
StrictMode, 17
Thread class, 15–16

ThreadPoolExecutor, 16

Throttling mechanism, Google Cloud
Messaging, 272

ThrowNew() method, exceptions with native
code, 382–383

Ticker text, 79–82

TILTING, activity recognition APIs, 262

timeDistanceFactor, single-touch
gestures, 129

TimeEvaluator class, property animation, 337

time mode, LogCat logging, 474

tint attribute, drawable resources at
runtime, 462

Title text, notifications, 79, 90

toAlpha value, 334–335

Toast messages, 24

ToDegrees property, rotating
transformations, 335

toggleFPSDisplay() method, OpenGL/
application threads, 365

Tokens, 272, 428

Touch mode, listening for changes, 119–120

toXDelta, fromYDelta values, 336

toXScale, toYScale values, 335–336

Tracking ID, Google account for
Analytics, 284

TransactionBuilder class, 290–292

Transactions, SQLite application
databases, 40

Transformations, animation, 333

TransitionManager, 342

Transitions, state animations with, 342

TranslateAnimation class, 336

Translation services, internationalizing
applications, 445

Transparency, alpha transformations,
334–335

Trial editions, preventing application piracy
with free, 454

Triggers

creating SQLite database, 37–38
SQLite limitations, 491

True north, finding, 230

try/catch block, SQLite database
transactions, 40

TTS (text-to-speech) services, accessibility,
145–147

Turn-based multiplayer APIs, Google Play
game services, 299

TV

Android, 464–465
attracting new types of users, 153
Google, 155–158
overview of, 151
quiz Q & A, 159, 521
using screen space effectively, 153–154

Tweened animations. See View (tweened)
animations

TYPE_ALARM, system events, 208

Typefaces, 310–312

TYPE_NOTIFICATION, 208

TYPE_ORIENTATION sensor value, 230

U
UI thread

AsyncTask class, 12–14
moving network operations off main,

167–171

566 Threading and asynchronous processing

offload processing of main, 12
starting OpenGL ES, 349–350
Thread class, 15–16

Unary operations, Java, 502

unbindService() method, remote interface,
27–28

Uninstallation, of applications using
ADB, 473

uninstall command, 473

UNKNOWN, activity recognition APIs, 262

updateAppWidget() method, 398

update() method

building content provider, 59–60
records in SQLite database, 38–39

updatePeriodMillis attribute, App
Widgets, 394

Updates

Android Studio versions, 507
antipiracy tips, 453
App Widgets, 394–399
content provider, 62
data in SQLite database tables, 495
global search, 425

UriMatcher class, 57, 58–59, 419

URIs

building content provider, 56
enabling search suggestions, 419
locating content, 63–64

URL object, 165–166, 171

URLUtil class, WebKit API, 182

USB, 239–241

UsbAccessory object, 240

UsbManager class, 240–241

Use case. See Extending Android application
reach

User accounts

backup service. See Backup service

managing with Account Manager,
427–428

multiple users, restricted profiles and,
428–429

overview of, 427
synchronizing data, 429–430

User dictionaries, 118

User input methods

accessibility with alternative, 140
fine-tuned control over, 116
gestures. See Gestures

quiz Q & A, 137, 520
screen orientation changes, 134–136
speech recognition services,

141–145
textual, 115–119
user events, 119–123

User interface

action bars. See Action bars

Android guidelines, 97–98
Android Studio, 513–515
binding data to application, 48–53
challenges of games, 154
content provider and, 55–56
contextual action mode,

105–106
creating devices with flexible, 152
defining App Widgets, 396–397
device diversity and, 151–154
Google TV variations, 156–158
overview of, 97
quiz Q & A, 113
state animations with scenes/

transitions, 342
style inheritance, 109–111
styles, 106–109
themes, 111–113

567User interface

UserDictionary content provider, 118

Users

attracting to new types of devices, 153
designing notifications, 77–79, 91–92
with disabilities. See Accessible
applications

L Developer Preview improvements
for, 461–464

protecting privacy when collecting
statistics, 293

Users overview reports, Google Analytics, 288

<uses-feature> manifest tag

configuring Android Beam, 244–245
configuring for Open GL ES 2.0, 369
configuring sensors, 227
configuring USB, 240–241
declaring Bluetooth, 237
declaring device features, 152
improving performance with Android

NDK, 384
OpenGL ES device compatibility,

346–347
requesting CAMERA permissions, 192
using GPS, 254

<uses-sdk> manifest tag

configuring for Open GL ES 2.0, 384
creating Android NDK Project, 380
creating live wallpaper, 407
improving graphics performance, 380

V
Validation, parsing XML, 167

ValueAnimator class, property animation, 337

valueFrom attribute, property animation,
338–339

valueTo attribute, property animation,
338–339

valueType attribute, property animation, 338

Variables, unnecessary Java temp, 501

Verbose logging, 478

Versions

Android SDK OpenGL ES, 346
Android Studio updates, 507
devices running Android NDK,

377–378
preventing application piracy by

blocking old, 453–454
Vertex buffer, drawing vertices, 353–355

Vertices

coloring, 355–356
drawing 3D objects, 353–354
lighting scenes, 358–360

Vibration, phone notifications, 83

Video

playing, 202–203
recording, 200–201

VideoView widget, 202–203

view.accessibility package, 140

View attribute values, 106

View class, 305–306

View controls

accessibility, 140
detecting user motion, 123–124
handling user events, 119–123
hardware acceleration, 325–326
property animations, 339–341
varying for animation, 331

ViewGroup, scene state transitions, 342

View hierarchies, RemoteViews, 396

View objects

contextual action mode, 105
making styles, 111
themes, 111–113

Viewport, OpenGL ES, 352

ViewPropertyAnimator class, 337, 340

568 UserDictionary content provider

Views

interacting with OpenGL ES and
Android, 362–365

SQLite limitations, 491
ViewTreeObserver class, 120–121

View (tweened) animations

alpha transparency transformations,
334–335

defined, 329
defining as XML resources, 332–333
defining programmatically, 333
defining simultaneous/sequential, 333
loading, 334
moving transformations, 336
rotating transformations, 335
scaling transformations, 335–336
working with, 331–332

View widgets, L Developer Preview, 462–463

Voice search, enabling, 420

Vulnerabilities, software piracy
protection, 450

W
Wallpaper

live, 404–408
still images as, 192, 199

WallpaperManager class, 192, 199

WallpaperService class, 404–408

<wallpaper> XML tag, 406

Wearables

attracting new types of users, 153
developing applications, 158–159
quiz Q & A, 159, 521

Web APIs

browsing with WebView. See
WebView control

building web extensions, 182–187

debugging WebViews, 187
overview of, 175
quiz Q & A, 188, 521
working with Adobe AIR and Flash,

187–188
WebBackForwardList class, WebKit API, 182

WebChromeClient class, 179–181, 183–184

WebHistoryItem class, WebKit API, 182

WebKit rendering engine, 175, 182

WebSettings class, WebView, 178–179

WebViewClient class, 179

WebView control

adding browser chrome, 179–181
adding features, 178
browsing Web, 175–176
building web extensions, 182–187
designing layout, 176
handling events, 179–180
loading content, 176–178
managing state, 181–182
modifying settings, 178–179

WHERE clause

executing simple queries, 43–44
remove() method, 39–40
update() method, 38

Wi-Fi

monitoring state, 246–248
overview of, 245
Wi-Fi Direct, 245–246

WifiManager object, 246–248

WifiP2pManager class, 246

Wildcards, enabling search, 419–420

Work queue, 30–33

World Magnetic Model, 230

writeToParcel() method, Parcelable class, 29

wtf error, filtering log events, 475

569wtf error, filtering log events

X
XML

creating App Widget, 393–394
creating search configuration, 417–420
defining property animation, 337–339
defining shape drawables, 315–316
defining tweened animations, 332–333
editor, in Android Studio text view,

514–515
parsing from network, 166–167

XMLPullParser()method, 166–167

XMPP, 275

Z
Zoom

camera settings, 197
modifying WebView control, 178

570 XML

	Contents
	Acknowledgments
	About the Authors
	Introduction
	Who Should Read This Book?
	How This Book Is Structured
	Key Questions Answered in This Book
	An Overview of Changes in This Edition
	The Development Environment Used in This Book
	Supplementary Materials Available
	Where to Find More Information
	Conventions Used in This Book
	Contacting the Authors

	8 Handling Advanced User Input
	Working with Textual Input Methods
	Handling User Events
	Working with Gestures
	Handling Screen Orientation Changes
	Summary
	Quiz Questions
	Exercises
	References and More Information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

