Minecraft in the Classroom

Ideas, inspiration, and student projects for teachers

Colin Gallagher, Editor

with Shane Asselstine · Dan Bloom · André Chercka · Adam Clark
Stephen Elford · David Lee · John Miller · Eric Walker · James York
Dedication

I dedicate this book to my family back home in Ireland. We may be far away, but you have always supported my decisions in life. I also dedicate this book to my wife, Sharyn, and my other family in Cleveland, Ohio. Thanks for putting up with me, everyone!

My friends in Singapore, in Ireland, and spread around the world. Thanks for making the journey fun. Block by block.
Acknowledgments

Thank you to all the teachers who agreed to take part in this book. I know it’s not the easiest of things to do, but you were all up for the challenge. Thank you also to all the teachers and students I’ve interviewed in my Minechat series on YouTube—you are truly inspiring.

Thanks must go out to the school administrators around the world (including my own) who put their trust in their teachers in implementing things like Minecraft in their schools.

Thanks to all my teaching colleagues who have put up with me and had faith in all the Minecraft projects we undertook.

Thanks to Rob and Joel and my wife, Sharyn, for taking the time to look over some chapters. Finally, thanks to Robyn and Cliff for keeping me on track throughout the making of this book.
Contents

Introduction vii

Part 1: Minecraft in Education: The Basics

1 What Is Minecraft? 3
 “Minecraft Is...” 3
 The Basics 4

2 Working with MinecraftEdu 13
 Getting MinecraftEdu 14
 Server Setup 17
 Getting Students into Your Minecraft World 23
 Accessing the Teacher Menu 27
 Using MinecraftEdu Blocks 33
 Making Your World Accessible from Outside Your School 35
 A Quick Word on Mods 35

3 Working with Regular Minecraft 39
 Installing the Minecraft Server 40
 Editing Minecraft Server Files 44

4 Minecraft in Education—Why? 53
 Collaboration 54
 Creativity 54
 Differentiation 55
 Digital Citizenship 56
 Engagement 56
 Fun 57
 Independence 57
 Leadership 57
 Relevance 58

Part 2: Minecraft Classroom Projects

5 Teaching with Minecraft Pocket Edition 61
 Project Summary 61
 Project Goals 62
 Learning Objectives 63
Organizing the Project .. 64
Getting Started ... 71
Completing the Tasks .. 73
Reflection and Assessment .. 78
Project Future ... 82
Resources .. 82

6.1 Minecraft and Teaching Humanities 85
Project Summary .. 87
Project Goals .. 90
Learning Objectives ... 92
Organizing the Project .. 93
Getting Started ... 101
Completing the Tasks ... 103
Reflection and Assessment 107
Project Future ... 110
Resources .. 111
References .. 113

6.2 Minecraft and Teaching Humanities 115
Project Summary .. 115
Project Goals .. 116
Learning Objectives ... 117
Organizing the Project .. 117
Getting Started ... 120
Completing the Tasks ... 121
Reflection and Assessment 123
Project Future ... 124
Resources .. 125

7.1 Minecraft and Teaching Science 127
Project Summary .. 127
Project Goals .. 130
Learning Objectives ... 131
Organizing the Project .. 131
Getting Started ... 132
Completing the Tasks ... 134
Reflection and Assessment 135
Project Future ... 135
Resources .. 136

7.2 Minecraft and Teaching Science 137
Project Summary .. 137
Project Goals .. 138
When I first installed and started playing Minecraft (alpha release) back in 2009, I didn’t know I was stumbling into something that was about to explode with popularity worldwide. Minecraft looked way different back then. There were no potions, no wolves, and no ender dragons, and there was no redstone. As I fashioned a rudimentary pickaxe out of wood and tunneled into a nearby mountain for the night, I was amazed at how engaged I was. For a game with graphics out of the ‘80s, the gameplay and engagement was something that I had not experienced before. As strange noises emerged out of the darkness of a cloudy full moon sky, I was thoroughly immersed in surviving the night and making it through to craft another day. Something was different about this game.
With each version of Minecraft that has been released, its creator, Markus Persson (Notch), has added and tweaked things. As Markus handed the reins to his trusty sidekick Jens “Jeb” Bergensten, Minecraft evolved; more and more people had their interest piqued, and more so when Creative mode was introduced in 2011. Creative mode removed all obstacles in the way of immediate creativity and building; there was now no need to spend time crafting materials.

The first time I became aware of Minecraft being used in education was when I stumbled upon some videos uploaded to YouTube by an American elementary school teacher, Joel Levin. I remember being very excited by what he was doing and how he had planned and crafted his Minecraft world to slowly introduce students to the nuances of playing Minecraft. He was steering them away from the aspects of Minecraft that had little educational value and corralling them into the areas where he saw massive educational potential. I also remember being very excited by how he was recording and uploading screencasts of his students’ experiences in Minecraft as they happened.

My adventure with Minecraft in my school started in 2012, when I organized an afterschool club for third through fifth grade students. I used an outside host to set up a creative world in which my students could unleash their creativity and imagination. With the afterschool club a roaring success, the third-grade teachers and I decided to integrate Minecraft into the third grade curriculum the following school year. The year after that, we integrated Minecraft into the first and second grade curriculum, but this time using MinecraftEdu.

Minecraft in the Classroom

Today it seems as though everyone is talking about Minecraft in education. When teachers see what students are doing, they quickly see how they can apply it in their classrooms, although some are unsure how to get started. With that in mind, I was determined to make sure teachers around the world could grasp what teachers are doing. For this they would need to see the Minecraft world and hear what teachers had to say about how they were using Minecraft in education. I started the Minechat series on YouTube to accomplish just that. I hope this book will build upon the Minechat series, provide a convenient repository of
examples of using Minecraft in education, and provide a framework for beginning the adventure of teaching and learning with Minecraft.

Minecraft has changed the way people look at a wide range of cultural norms—from education to urban planning. It has been turning heads since 2009, and in recent years it has been turning educators’ heads with its sandbox-like environment and its ability to be modified to suit curricula. Children and adults alike revel in the freedom Minecraft allows in planning, creating, and collaborating in many ways.

Minecraft doesn’t seem to be disappearing any time soon, so let’s start leveraging its appeal and engagement in teaching and learning.

Who Is This Book for?

This book is designed to help teachers get started with Minecraft, and to be inspired by what other teachers around the world are doing with Minecraft. This book is also for parents and families to be informed on how Minecraft is used in an educational context.

Who Am I?

My name is Colin Gallagher. I’m originally from Ireland, but I’ve been traveling the world working in the educational technology field since 2003. I’ve been working at ISS International School in Singapore since 2011, and in 2013 I also started working for Michigan State University as an online instructor for their Master’s in Educational Technology program. Along the way I’ve presented on many aspects of educational technology at conferences around Asia, including TEDx in Bangkok. I’ve become an Apple Distinguished Educator and a Google Certified Teacher and connected with many like-minded teachers around the world on Twitter and Google+.

I’ve played computer games all my life, and I find it a fun and engaging hobby. Education and gaming became intertwined when Minecraft started being used in teaching. For me that’s a perfect marriage.
I started wondering how teachers were becoming informed on Minecraft in education. The perfect way to know what people are doing is to see the world and hear the teacher, so I came up with the Minechat series on YouTube: http://goo.gl/peS1Qg. In it, I interview teachers over Skype while recording our tour around the world. Twenty-six episodes later and I’m still looking for more teachers to add to the channel to keep teachers inspired and informed about Minecraft in education.

I also wanted a place that teachers could join and just type up questions or add links to interesting Minecraft-related articles. For this, I created a Google+ Community: http://goo.gl/bBvRjW.

As of this writing, we have over 2000 members and counting.

With this book I’m hoping that teachers have an additional resource they can look at to garner ideas or to know who to contact with their questions about Minecraft in education.
This page intentionally left blank
You may have had to answer some questions from school administrators, parents, and other teachers as to why Minecraft is so important to implement in your school. Normally, just looking at teachers’ work online (especially in my Minechat series!) is enough to prove the benefits, but sometimes a clear set of reasons comforts people more.

If you ask teachers around the world why they use Minecraft, they might come up with a wide array of answers. I’ve listed my reasons in this chapter, but I’m sure I’ll add to the list as teachers find more incredible ways to use Minecraft in their teaching.
Collaboration

Working with other people is probably the most challenging aspect of school (and life). Teamwork activities happen regularly during the year in my school, and they involve students trying to learn a lot of very tough collaborative skills, such as negotiating, listening, following directions, and accepting criticism. I think that we, as adults, also struggle with these things at times.

In Minecraft, there is huge potential for developing these collaborative skills. I’ve talked with dozens of teachers about their Minecraft projects, and they explained that usually students work together to complete tasks. If they are not working together, they are usually in the same world trying to ignore distractions and avoid conflicts. Minecraft is, in essence, a social game. It begs to be played with other players. In an educational setting, students can work on collaborative skills in Minecraft when planning, building, and presenting a project as a group.

When students work as a group in Minecraft, it is vital that they work effectively. There’s something interesting about Minecraft: Often, at least initially, working together effectively does not happen. I think the freedom is too much for some students, or they have not adjusted to using Minecraft in an educational setting. Conversations, guidance, and advice between group members and between groups and teachers can help develop the collaborative skills needed for effective group work.

Creativity

Every generation has something that enables young people to let their creativity run wild. For my generation, that was probably Legos. Someone might argue that Legos were many generations’ outlet for creativity. I admit, though, that growing up in Ireland I had a lot of outside play and exploration, which also unleashed my creative side. A great big world awaits our students’ exploration, too, and not just in Minecraft.

Minecraft has enabled young people from kindergarten to college to start creating. Minecraft has inspired people to re-create everything from spacecrafts to entire cities. Minecraft has inspired people to create stories, poems, paintings, and animations. Creating things in Minecraft inspires creativity in other ways. For example, a very popular project to
have students undertake is to re-create their school. As this is being done, students are naturally compelled to think about what their ideal school looks like and what changes they would make to their current school.

You could look at an empty Minecraft world as a blank canvas awaiting a player’s unique creativity. The lines between art, design, architecture, and urban planning are becoming thinner in Minecraft. Without knowing it, children are sowing the seeds of their passions in life and of what may be in store for them in their professional careers.

Differentiation

We learn very early on as teachers that not every student is the same; they do not learn the same way, and they might not be able to convey their learning in the same way. I have had many students whose first language was not English or who found it difficult to write their final assessments because of learning disabilities. Differentiating for students generally means giving them different avenues to explore content, understand content, process that content, and create content.

Technology has always been a major factor in providing students those different avenues: video and audio platforms as instructional tools, animations and digital comic strips as tools to create content, and Google Apps as a way to organize learning.

Minecraft has been used to differentiate in a number of ways. You will see a lot of examples in this book about how it could work with the wide array of different learners in your class. You can create immersive worlds as a visual, interactive, and informational field trip so students can attain more than just words on a page. Students can create worlds to present their learning on a subject matter that they might not have been able to reproduce on paper. Some fifth grade students in my school last year created hydroelectric dams and solar panels within Minecraft as a way to demonstrate their learning on energy. The student that created the dam was not a native English speaker, but from looking at the intricate working parts on the dam, I could instantly see what he had learned.

As differentiation is such a widely discussed and important aspect of education, it is worth noting that Minecraft might not be the best tool for every aspect of differentiating for a student. We cannot dismiss it, though, because it’s another powerful tool you can use to help students.
Digital Citizenship

Digital citizenship goes hand in hand with collaboration and can be a vitally important lesson in managing a digital life for our students. Minecraft is a digital world and you do not see your collaborators face to face, which can lead to some interesting scenarios for our students. Usually it is hard for a student to communicate online with others; it is not something they have had to do before. They may have viewed YouTube videos and seen the horrendous comments and believed that “anything goes” online.

When griefing (damaging other people’s stuff) occurs in Minecraft, it can be an amazing moment for students to learn not just about digital citizenship but about property ownership, responsibility, and respect. You may find that the sweetest student in your class does some mean things once behind a computer screen. What students type in Minecraft when they think nobody is monitoring is another learning moment that deals with their perception of what they think is right and wrong to type online and how nothing online is temporary—there’s always a record somewhere.

A major spinoff from Minecraft is the amazing YouTube culture it has created—people who want to show off their Minecraft work make a YouTube channel. A lot of students in my school have Minecraft YouTube channels. Along with YouTube, sadly, comes a negative part of digital life: the criticisms, the trolling, and the dislikes. For students and adults alike, it is very difficult to take the anonymous and sometimes down-right nasty feedback. These can be very hard but powerful learning moments for students. Parents need to be aware of their students’ online activities, so I always conduct a yearly session with parents to educate them about how to manage their children’s digital lives.

Engagement

In this day and age, engaging students is difficult. Teachers have to stay current with modern teaching and best practices just to stay afloat in the classroom. Engagement is tricky because not every student is alike and they don’t all have the same interests.
I have been using Minecraft in school for four years, and I have not come across a student who did not like it and was not immediately engaged. That amounts to zero in about 250 students. That is one amazing statistic. Students are engaged with Minecraft, and it’s because of the reasons listed in this chapter: it’s a creative space, it’s fun, and it’s relevant to them.

Fun

Yes, fun is good. But is fun enough? Sometimes, but it’s best when fun is accompanied by engagement and a well-planned project. Students find Minecraft fun because they get to be creative and because it’s technology—and they like both those things because that’s where they are in their lives. They live with technology daily, and for children creativity is a major source of pride and a feeling of accomplishment. Adults like Minecraft because we can be creative again, and that’s fun.

Independence

The controls in Minecraft are not difficult to master. My first grade students had it down after a few sessions. When it comes to independence in the real world, younger students are still a little bit restricted, but inside Minecraft they can take control and do what they feel like doing. Students love showing off their work in any form, but from start to finish in Minecraft they are truly in charge of their creativities.

Leadership

In every school around the world is a student who knows Minecraft inside out. These students are often the second (or sometimes first) teachers of Minecraft in the class. The leadership these students take on is a powerful and meaningful experience for them, and most times they are students you would not pick out as natural leaders. Minecraft gives opportunities to students to lead, organize, and mentor their classmates, which leads to more confidence in themselves.
Relevance

Look around you in the restaurant at lunch; look around you on the bus or train to or from work. Most people are staring at devices instead of books or newspapers. Now this may be a good thing or a bad thing, but I’m not going to get into that. My point is that students were born into this world. Of course they should know about (paper) books, and books should be a part of their lives, but students see their parents with a technological device rather than a book every day.

Our students are in the middle of this world and living this life with us. Technology is relevant. Video games are relevant. This is what it’s going to be like for a very long time, and if we don’t make this a part of their educational life too then we are doing them a disservice.
Index

Numbers
1–9 keys, using to access blocks, 11
3D printing. See also Mineways; printing
 exporting map elements, 254–260
 learning in, 250
 learning opportunities, 267
 making in, 250
 performing, 251–253
 playing in, 250
 Printcraft server, 250
 resources, 267–268
101 Ideas for Minecraft Learners website, 268

A
account emails, registering, 14–16
Advanced Settings button, 22
Adventure mode, 184
AllGamer.net hosting service, 101–102, 112
animals, generating, 20
Asselstine, Shane “MisterA,” 163
assessment types
 formative, 78
 summative, 78

B
Block by Block, 248
Block Inspector, 33
Blockly interface, 239
blocks
 accessing, 11
 Border Block, 34
 Build Allow Block, 33
 Build Disallow Block, 33
 Foundation Block, 34
 Home Block, 36
 Information Block, 33
 Information Sign, 34
 removing, 9
 Spawn Block, 34
 Teleport Block, 34
 Bloom, Dan, 127
Boundaries and Volcanos project. See also
 volcano model rubric
 conducting research, 64–65
 duration, 64
 examples, 69–70
 finding seeds, 67–68
 future, 82
 geological features, 62–63
 goals, 62–63
 learning objectives, 63
 NGSS (Next Generation Science
 Standards), 61
 organizing, 64–70
 PBL (project-based learning), 62
 resources, 82–83
 sharing, 81–82
 skills and knowledge, 62–63
 student classroom time, 64
 summary, 61
 teacher prep time, 64
 teaching method, 62
 Bukkit server, 181

C
California Content Standards, 117
CCSS 5.MD.1 standard, 166
cell membrane, breaking apart, 133
cell model, creating, 130–131
Chang’an project
 build stage, 121
 building in Minecraft, 118–119
 completing tasks, 121–123
 design elements, 121–122
 design process, 121
 farming, 122
 future, 124–125
 getting started, 120–121
 goals, 116
 Google Docs, 119
 information gathering, 118
 learning objectives, 117
 marketplaces, 120
 organizing, 117–119
reflection and assessment, 123–124
resources, 125
summary, 115–116
time and tools, 117
writing, 119, 123
Chercka, André, 219
China project. See Chang’an project
Civcraft project
areas of conflict, 229
assignments in level 2, 227
civilization technologies, 224
collaboration, 222–223
completing tasks, 229–231
creating design, 224–225
division into tribes, 228
future, 233–234
game terrain, 220–221
getting started, 228–229
goals, 221–222
historical knowledge, 223
learning objectives, 222–223
lobby, 220
lobby design, 226–227
organizing, 224–227
playing, 233
reflection and assessment, 231–233
resources, 234
rules and premises, 225
session management, 228–229
summary, 219–220
technology alignment charts, 224
testing game concept, 223
time and tools, 227
Clarke, Adam, 249
client installation, 16–17
coding. See computer programming
command console
defaultgamemode command, 50
displaying, 43
help command, 50
op command, 50
time command, 50
weather command, 50
commands
//naturalize, 153
//replace, 153
computer programming, 238–239
ComputerCraft website, 238
crafting and mining, 4
custom NPCs mod
Measurement Map project, 151
using, 36
D
defaultgamemode command, 50
Denmark, data models of, 246–247
discounts, getting, 14
divergent boundary model rubric, 75
DMCA (Digital Millennium Copyright Act), 39
DNA extraction lab project
cell membrane, 133
completing tasks, 134–135
future, 135–136
getting started, 132–134
goals, 130–131
learning objectives, 131
Minecraft Cell activity, 128–130
organizing, 131–132
overview, 128–129
reflection and assessment, 135
resources, 136
single-player experience, 132
summary, 127–128
downloading Minecraft, 15
DynMap mod, 105, 112–113
E
E key, using to access inventory, 10
Elford, Stephen “EduElifie,” 137, 147
email address, verifying, 14–15
eula.txt file, editing for Mojang, 42
exhibits, creation process, 77–78
F
FileZilla website, 112
Flashforge dual extruder, 261
Forge Paintings GUI, 150
formative assessment, 78
future in education
Block by Block, 248
LearnToMod, 239–245
trends, 238
G
Gallagher, Colin, 197
game modes
 Creative, 6
 Hardcore, 6
 Survival, 5–6
gift code, redeeming, 15
Google Docs, using in Chang’an project, 119
Gravity Lab project
 completing tasks, 141–144
 future, 145
 gathering resources, 142–143
 getting started, 140–141
 goals, 138
 learning objectives, 138–139
 organizing, 139–140
 recording results, 143
 reflection and assessment, 144–145
 resources, 146
 roleplay, 142
 sharing, 145
 summary, 137–138
 test locations, 140–141
 time factor, 144

H
Hardcore mode, 6
head, moving, 9
help command, 50
“How We Organize Ourselves” unit. See transdisciplinary learning
humanities project. See Chang’an project; WoH (World of Humanities) project

I
IB (International Baccalaureate) framework, 197. See also transdisciplinary learning
IB Learner Profile, 200
installing
 client, 16–17
 server, 16–17, 40–44
inventory, accessing, 10
IP address
 entering for students, 26
 locating, 21, 43–44
ipconfig command, entering in console, 43

J
Japanese input, 192
jump key, 9

K
kanji, 194–195
keyboard, using with mouse, 10
 changing actions associated with, 12
 for moving around, 9
KM (Kotoba Miners) project
 activities, 185, 190
 activity development, 183–188
 Adventure mode, 184
 Bukkit server, 181
 chat box, 192
 completing tasks, 193–194
 Creative mode, 183
 curriculum development, 183
 designing activities, 187
 dialogue, 185
 Essentials plug-in, 193
 future, 194–195
 getting started, 193
 goals, 181–182
 grammar, 188, 190
 Group Manager plug-in, 193
 interaction, 185
 Japanese input, 192
 "JP Road,” 188–192
 learning area, 191
 learning objectives, 182
 lesson buildings, 188–192
 messages as text, 192
 organizing, 182–183
 plug-ins, 187, 192–193
 preventing griefing, 193
 reflection and assessment, 194
 resources, 195–196
 summary, 180–181
 Survival mode, 184, 186
 time and tools, 182–183
 World Guard plug-in, 193
Koivisto, Santeri, 91
Kokkendorf, Simon, 246
L

language learning. See KM (Kotoba Miners) project
LearnToMod, 239–245. See also programming
achievement badge, 241
Blockly, 239
getting started, 240–243
interface, 239, 242
MOD button, 242, 244
modding studio, 240, 245
programming drones, 243–245
setting up, 240–243
typing into chat area, 242
Lee, David, 61
Lego
release of Minecraft sets, 245
using Minecraft models, 266
Levin, Joel, 91
Login Mode menu, 24
logs folder, 49
looking around, 9

M

MakerBot website, 267
MakerWare
interface, 264
printing STL files, 263
map elements, exporting, 254–260
maps. See worlds
mashups, creating, 266
Mathlandia world, 148
MATTIS (Minecraft Advanced Touch Technology Interface System), 65
MCEdit website, 112, 268
Measurement Map project
backstory setup, 153–154
base world in WorldPainter, 152
command blocks, 153
completing tasks, 156–160
Custom NPCs mod, 151
Forge Paintings GUI, 150
future, 161
getting started, 155–156
goals, 149
//naturalize command, 153
organizing, 149–155
permanent night, 152
reflection and assessment, 160
//replace command, 153
resources, 161
scoreboard systems, 152–153
sharing, 160
summary, 147–148
textures file for Paintings++, 150
tools and time, 155, 159
medieval China project. See Chang’an project
message key, using, 11
Miller, John, 115
Minecraft
data models of Denmark, 246–247
defining, 3–4
downloading, 15
making real, 251
opera performed in, 245–246
video game, 91
Minecraft Cell activity, 128–130, 134
Minecraft in education
collaboration, 53
creativity, 53–54
differentiation, 55
digital citizenship, 56
engagement, 56–57
fun, 57
independence, 57
leadership, 57
relevance, 58
Minecraft PE (Pocket Edition)
Boundaries and Volcanos project, 61
completing tasks, 73–77
creating exhibits, 78
determining consequences, 71–72
defining, 3–4
downloading, 15
making real, 251
modeling drones, 243–245
setting up, 240–243
typing into chat area, 242
Minecraft server. See server
MinecraftEdu
classroom file, 23–24
comparing costs, 14
discounts, 14
explained, 14
feature additions, 96
launching, 17
Flashforge dual extruder, 261
MakerWare interface, 263
PLA (polylactic acid), 262
rafts and supports, 263–264
printing. See also 3D printing
email addresses, 25
passwords, 25
STL files, 263
troubleshooting, 264
programming. See also LearnToMod
drones in LearnToMod, 243–245
trend of, 238–239
PYP (Primary Years Program), 197, 200

R
realms, 8
redeeming gift code, 15
removing blocks, 9
Rempel, David, 107–108
//replace command, 153
resources
3D printing, 267–268
Boundaries and Volcanos project, 82–83
Chang’an project, 125
Civcraft project, 234
DNA extraction lab project, 136
Gravity Lab project, 146
KM (Kotoba Miners) project, 195–196
Measurement Map project, 161
Minecraft PE (Pocket Edition), 82–83
Momilani MCEdu Project, 177
transdisciplinary learning, 218
WoH (World of Humanities) project, 111–113
rubrics
convergent boundary model, 74
divergent boundary model, 75
transform boundary model, 76
video, 80
volcano model, 77

S
Save Map button, 21
science projects. See Boundaries and Volcanos project; DNA extraction lab project; Gravity Lab project
ScriptCraft website, 239
scroll wheel, using to access blocks, 11
seeds
Boundaries and Volcanos project, 67–68
generating worlds from, 20
seeds, 6–7
self-management skills, 199–200
server
1.8, 45
command console, 50–51
installation, 16–17
installing, 40–44
selecting, 26
setup, 17–23
stopping, 22, 43
stopping during installation, 41
server files, editing, 44–45
server screen options
Assignments, 23
Give, 23
Player Settings, 23
Server Information, 22
User Control, 23
World Information, 22
World Settings, 22
server.properties file
logs folder, 49
ops.json, 48
white-list.json, 48
world folder, 49
server.properties file settings
difficulty, 47
force-gamemode, 46
gamemode, 47
generate-structure, 48
level-type, 46
max-build-height, 47
max-players, 48
motd, 48
pvp, 47
resource-pack, 47
spawn-animals, 47
spawn-monsters, 48
spawn-npcs, 47
white-list, 47
sharing
Boundaries and Volcanos project, 81–82
Gravity Lab project, 145
Momilani MCEdu Project, 176
transdisciplinary learning, 216–217
WoH (World of Humanities) project, 109
single-player experience, 7, 132
skin, choosing, 27
Sky Tree Farms map, 165
social skills, 199
special educational needs. See Civcraft project
STL files, printing, 263
Stone Age project. See Civcraft project
stop command, using with server, 41, 43
Stop Server button, 22
structures, generating, 20
students, setup steps for, 24-27
summative assessment, 78
Survival mode
explained, 5-6
KM (Kotoba Miners) project, 184, 186

T
T key, using for messaging, 11
Tang Dynasty project. See Chang’an project
Teacher Gaming, LLC, 91
Teacher Menu
Assignments, 28, 30
Building Tools, 28, 31-32
Give, 28, 30
Personal Menu, 27-28
Player Management, 28-29
Player Settings, 28-29
Stations, 28, 31
tool tips, 27
World Settings, 27-28
teacher password, 18
teaching skills, 199
time command, 50
Tinkercad website, 267-268
transdisciplinary learning. See also IB (International Baccalaureate) framework
causation, 215
community in progress, 212
community rules, 207
community systems, 201
completing tasks, 210–212
connection, 215
digital citizenship, 198-199
formative assessment, 213–214
function, 215
getting started, 207-210
inside Minecraft, 205–206
key concepts, 215
maps for group planning, 203-204
needs and wants, 202
objectives, 199–200
outside Minecraft, 201-204
plug-ins, 206
project future, 218
project goals, 198-199
project organization, 200-206
project summary, 198
reflection and assessment, 212-215
resources, 218
rubric, 214
scope of inquiry, 199
self-management skills, 199-200
sharing, 216-217
social skills, 199
summative assessment, 214
thinking skills, 199
tools and time, 200-201
unit of inquiry, 198
transform boundary model rubric, 76
Tutorial World, starting server with, 18

U
Unicode input, 192
user names
entering, 48
numbering, 14

V
van So, Karel, 101
video rubric, 80
volcano model rubric, 77. See also Boundaries and Volcanos project

W
Walker, Eric, 85
weather command, 50
websites
101 Ideas for Minecraft Learners, 268
AllGamer.net, 112
ComputerCraft, 238
Danish data model, 246
FileZilla, 112
MakerBot, 267
MCEdit, 112, 268
MinecraftEdu, 111-112
Mineways, 268
Mojang, 67
MRemoteNG, 112
Opera craft, 245
Planet Minecraft, 112
ScriptCraft, 239
Tinkercad, 267–268
WoH (World of Humanities) project, 109, 111
WoH (World of Humanities) project activity illustrations, 100
AllGamer.net hosting service, 101
Ancient Babylon, 97
Ancient China, 98
Ancient Egypt, 97
Ancient Greece, 98
Ancient India, 98
Ancient Rome, 98
Arab and Islamic Worlds, 99
blended approach, 105
Carved Caves, 99
City of the Future, 99
completing tasks, 103–107
Coral Island of Creativity, 99
costs, 96
custom blocks, 96
duration, 94
DynMap mod, 105
effectiveness, 93
Fairytale Forest, 98
Galleon of the Explorers, 99
getting started, 101–102
goals, 90–91
Great Library of Alexandria, 98, 102
ground rules, 106–107
home page, 94
Humanities Treehouse, 97
interactive tasks, 99–100
Isles of Mythology, 98
learning objectives, 92–93
Lighthouse of Alexandria, 98
maintenance, 105
Mali and Sahara Desert, 98
map, 97
Medieval Times, 98
Meso-America, 98
Mesopotamia, 97
Minecraft environment, 94
monitoring, 105
Mysterious Clocktower, 99
observations, 104
organizing, 93–100
placing world on server, 101
prologue, 86–87
reception of, 104
reflection and assessment, 107–108
Refugee Camp survey, 108
resources, 111–113
results, 104
seed for landscape, 95
sharing, 109
Skull Island, 98
Sky Timeline, 98
structures, 95
student time spent, 94
summary, 87–90
supplemental context, 103
teacher prep time, 94
tools, 94
Undersea Bio Dome, 99
Valley of Geography, 97
Volcanic Isle, 99
website, 109, 111
world code, customizing, 21
world folder, 49
WorldPainter, base world in, 152
worlds
accessing outside of school, 35
creating, 19–20
editing, 42
flat, 20
generating from seeds, 20
loading last played, 19
versus maps, 22
Mathlandia, 148
Minecraft PE (Pocket Edition), 72–73
random, 20
selecting saved, 19
writing quality, improving, 123–124

Y
York, James, 179

Z
zero-tolerance policy, 71–72