Mastering Project Time Management, Cost Control, and Quality Management
Mastering Project Time Management, Cost Control, and Quality Management

Proven Methods for Controlling the Three Elements that Define Project Deliverables

Randal Wilson
I dedicate this book to my wife Dusty and son’s Nolan, Garrett, and Carlin, for their support and patience through this project.
Contents-at-a-Glance

Introduction ..1

Part I Project Time Management13
Chapter 1 Planning Schedule Management15
Chapter 2 Project Activity Requirements39
Chapter 3 Project Activity Sequencing75
Chapter 4 Resource Estimating113
Chapter 5 Project Activity Duration Analysis139
Chapter 6 Develop the Project Schedule153
Chapter 7 Control Project Schedule181

Part II Project Cost Management201
Chapter 8 Plan Cost Management203
Chapter 9 Estimate Project Costs221
Chapter 10 Develop Project Budget249
Chapter 11 Control Project Costs265

Part III Project Quality Management283
Chapter 12 Plan Quality Management285
Chapter 13 Conduct Quality Assurance301
Chapter 14 Control Project Quality319
Appendix A Change Control Process343
Bibliography ...347
Index ...349
Contents

Introduction ... 1
- The Triple Constraint ... 2
- Managing Change Requirements 4
- Managing Time, Cost, and Quality 7
 - Managing Project and Product Scope 7
- Time Management ... 8
- Cost Management ... 9
- Quality Management .. 9
- What Does the Customer Really Want? 10

Part I Project Time Management 13

Chapter 1 Planning Schedule Management 15
 1.1 Introduction .. 15
 1.2 Tools for Schedule Management Planning 16
 - Minimum Requirements ... 17
 - Plan Structures .. 18
 - Project Management Office (PMO) 23
 1.3 Information Gathering for the Schedule Management Plan 24
 - Project Charter .. 24
 - Project Manager’s Experience 25
 - Organizational Past Projects 26
 - Subject Matter Experts ... 27
 1.4 Schedule Management Plan Applications 28
 - Tactical Tool for Project Managers 28
 - Communications Tool for the Project Staff 29
 - Strategic Tool for the Organization 30
 1.5 Summary .. 31
 1.6 Review Questions ... 33
 1.7 Key Terms .. 34
 1.8 PMBOK® Connections (Fifth Edition) 35
1.9 Case Study (Use for Part I, Chapters 1–7) 35
 RE Construction—Custom Pebble Beach Home 35
1.10 Case Study Questions and Exercise 37
 Questions.. 37
 Exercise.. 38

Chapter 2 Project Activity Requirements 39

2.1 Introduction ... 39
2.2 Information-Gathering Guidelines 40
 What Information Is to Be Gathered?.............................. 41
 Who Is Gathering Information?...................................... 42
 Reliability of Information ... 44
 Information Accuracy .. 49
 Information Sources .. 50
2.3 Activity Information Based on Project Structure 51
 Linear (Traditional Sequential Process
 Development) .. 52
 Incremental (Traditional Progressive Stage
 Development) ... 53
 Iterative (Features Addition Development,
 Waterfall, Agile) .. 55
 Adaptive (Learn and Build Development,
 Agile) .. 58
 Extreme (Exploratory Development) 59
2.4 Define Activities .. 62
 Project Deliverable Decomposition 63
 Define Activity Requirements 65
 Work Breakdown Structure (WBS) 68
2.5 Summary ... 71
2.6 Review Questions ... 72
2.7 Key Terms ... 73
2.8 PMBOK® Connections (Fifth Edition) 73
2.9 Case Study Questions and Exercises (Use Case
 Study from Chapter 1) .. 74
 Questions.. 74
 Exercises.. 74
4.5 Resource Estimating by Project Structure 132
 Linear and Incremental .. 132
 Iterative and Adaptive 133
 Extreme ... 134
4.6 Summary ... 135
4.7 Review Questions ... 136
4.8 Key Terms ... 137
4.9 PMBOK® Connections (5th Ed.) 137
4.10 Case Study Questions and Exercise (Use Case Study from Chapter 1) .. 138
 Questions ... 138
 Exercise ... 138

Chapter 5 Project Activity Duration Analysis 139
5.1 Introduction .. 139
5.2 Duration Estimating Methods 140
 Subject Matter Expert Estimating (Delphi) 140
 Analogous Estimating 142
 Parametric Estimating 143
 Three-Point Estimating 144
 Contingency Estimating (Reserve Analysis) 147
5.3 Summary ... 149
5.4 Review Questions ... 150
5.5 Key Terms ... 150
5.6 PMBOK® Connections (Fifth Edition) 151
5.7 Case Study Questions and Exercise (Use Case Study from Chapter 1) .. 151
 Questions ... 151
 Exercise ... 151

Chapter 6 Develop the Project Schedule 153
6.1 Introduction .. 153
6.2 Information for Schedule Development 154
 Project Charter ... 155
 Project Deliverable Specifications 155
 Work Breakdown Structure 156
 Activity Information Checklist 156
 Project Scope Statement 157
7.4 Summary ... 197
7.5 Review Questions. 199
7.6 Key Terms ... 199
7.7 PMBOK® Connections (5th Ed.) 200
7.8 Case Study Questions and Exercise (Use Case
Study from Chapter 1) 200
 Questions ... 200
 Exercise ... 200

Part II Project Cost Management 201

Chapter 8 Plan Cost Management 203
 8.1 Introduction ... 203
 8.2 Information for Planning Costs 205
 Cost Definitions 205
 Project Charter 209
 Statement of Work 209
 Project Manager’s Experience 210
 Subject Matter Experts 210
 Project Structures 211
 8.3 Develop the Cost Management Plan 211
 Components of the Plan 212
 8.4 Cost Management Plan Applications 213
 Organizational Strategic Planning 214
 Tool for Manager’s Tactical Use 214
 8.5 Summary ... 216
 8.6 Review Questions 217
 8.7 Key Terms ... 218
 8.8 PMBOK Connections (5th Ed.) 218
 8.9 Case Study (Use for Part II, Chapters 8–11) ... 218
 Mass Brothers Automotive—IT Infrastructure
 Upgrade ... 218
 8.10 Case Study Questions and Exercises 220
 Questions ... 220
 Exercises ... 220
Chapter 9 Estimate Project Costs ... 221
 9.1 Introduction ... 221
 9.2 Project Cost Requirements 223
 Statement of Work ... 224
 Work Breakdown Structure 224
 Activity Information Checklist 225
 Scope Statement .. 226
 9.3 Cost Estimating Tools 227
 Cost Management Plan .. 228
 Cost Constraints .. 232
 Analogous Cost Estimating 234
 Parametric Cost Estimating 234
 Rough Order-of-Magnitude Estimating 235
 Subject Matter Experts ... 236
 Three-Point Cost Estimating 236
 Top-Down and Bottom-Up Estimating 239
 Contingency Cost Estimating 240
 9.4 Estimating Based on Project Structures 242
 Linear and Incremental ... 242
 Iterative and Adaptive ... 243
 Extreme ... 244
 9.5 Summary .. 245
 9.6 Review Questions ... 246
 9.7 Key Terms .. 247
 9.8 PMBOK® Connections (5th Ed.) 247
 9.9 Case Study Questions and Exercises (Use Case Study from Chapter 8) 248
 Questions .. 248
 Exercises .. 248

Chapter 10 Develop a Project Budget 249
 10.1 Introduction ... 249
 10.2 Purpose of a Project Budget 250
 Budget at Completion ... 251
 Project Budget Baseline .. 252
 Manage the Triple Constraint 252
Communicate Project Status 254
Organizational Planning 254
10.3 Budget Methods ... 255
 Cost Aggregation Method 256
 Time-Phased Method 256
 Top-Down Budgeting 257
 Analogous Budgeting 259
 Funding Limit Reconciliation 260
10.4 Summary .. 261
10.5 Review Questions 262
10.6 Key Terms ... 263
10.7 PMBOK® Connections (5th Ed.) 263
10.8 Case Study Questions and Exercises (Use Case Study from Chapter 8) ... 264
 Questions .. 264
 Exercises .. 264

Chapter 11 Control Project Costs. 265
11.1 Introduction .. 265
11.2 Cost Control Data 266
 Monitor Costs .. 267
 Cost Analysis Tools 269
11.3 Cost Control Techniques 272
 Integrated Change Control 272
 Contingency Control 273
 Contract Control .. 274
 Procurement Review and Approval 276
 Control Verification 276
11.4 Summary .. 277
11.5 Review Questions 279
11.6 Key Terms ... 280
11.7 PMBOK® Connections (5th Ed.) 280
11.8 Case Study Questions and Exercises
 (Use Case Study from Chapter 8) 281
 Questions .. 281
 Exercises .. 281
Part III Project Quality Management 283

Chapter 12 Plan Quality Management 285

12.1 Introduction 285
12.2 Components of a Quality Management Plan 286
 Establish Quality Monitoring 287
 Determine Analysis Methodologies 288
 Establish Quality Metrics 288
 Plan Quality Assurance 289
 Determine Cost of Quality 289
 Integrate a Change Control Process 290
 Determine Quality Controls 290
12.3 Tools for Quality Management Planning 291
 Statistical Sampling 291
 Design of Experiments 292
 Benchmarking 292
 Subject Matter Expert Meetings 293
 Brainstorming 294
12.4 Summary 294
12.5 Review Questions 295
12.6 Key Terms 296
12.7 PMBOK® Connections (5th Ed.) 296
12.8 Case Study (Use for Part III, Chapters 12–14) 297
 Lewton Telecom—Engineering Prototype Project 297
12.9 Case Study Questions and Exercises 298
 Questions 298
 Exercises 299

Chapter 13 Conduct Quality Assurance 301

13.1 Introduction 301
13.2 Project Quality Assurance Data 302
 Quality Management Plan 303
 Organizational Quality Standards 303
 Industry Quality Standards 305
 Customer Quality Standards 305
 Quality Metric 307
13.3 Quality Assurance Tools ... 307
 Quality Audits ... 308
 Process Analysis .. 308
13.4 Quality Assurance Results 312
 Continuous Improvement ... 313
 Process Capability .. 313
 Change Requests .. 313
13.5 Summary .. 314
13.6 Review Questions .. 315
13.7 Key Terms ... 316
13.8 PMBOK® Connections (5th Ed.) 316
13.9 Case Study Questions and Exercises (Use Case Study from Chapter 12) .. 316
 Questions .. 316
 Exercises .. 317

Chapter 14 Control Project Quality 319
14.1 Introduction .. 319
14.2 Establish What to Control .. 320
 Statement of Work ... 321
 Customer Specifications .. 321
 Workmanship Performance Reports 322
 Organizational Requirements 323
 Project Risk Register .. 324
14.3 Quality Control Tools and Techniques 324
 Inspections .. 325
 Statistical Sampling ... 326
 Design Review .. 327
 Seven Basic Quality Tools 328
14.4 QC Results .. 334
 Quality Improvements .. 335
 Updates to Project Schedule and Budget 335
 Verification of Deliverable Quality 336
 Project Process Updates ... 336
 Organizational Process Updates 337
14.5 Summary .. 337
14.6 Review Questions .. 340
CONTENTS

14.7 Key Terms .. 340
14.8 PMBOK® Connections (5th Ed.) 341
14.9 Case Study Questions and Exercises
 (Use Case Study from Chapter 12) 341
 Questions ... 341
 Exercises .. 341

Appendix A Change Control Process 343
Bibliography ... 347
Index ... 349
About the Author

Randal Wilson, MBA, PMP, serves as Visiting Professor of Project Management, Keller Graduate School of Management, at the Elk Grove, California DeVry University campus. His teaching style addresses Project Management concepts using not only academic course guidelines and text, but includes in-depth discussions in lectures using practical application from industry experience.

Mr. Wilson is currently Operations and Project Manager at Parker Hose and Fittings. He is responsible for five locations across Northern California and Nevada, as well as project management of redesigns and renovation of existing facilities and construction of new facilities.

Mr. Wilson was formally in the telecommunications industry as Senior New Product Introduction Engineer at REMEC, Inc., Senior New Product Introduction Engineer with Spectrian Corp., and Associate Design Engineer with American Microwave Technology. He also served as Senior Manufacturing Engineer at Hewlett Packard.

He is a certified Project Management Professional (PMP) of the Project Management Institute. He acquired an MBA with concentration in General Operations Management from Keller Graduate School of Management of DeVry University and a Bachelor of Science in Technical Management with concentration in Project Management from DeVry University in Fremont, California.
Introduction

Organizations will structure their operations based on strategic objectives and through acquisitions and management of resources. They will conduct daily work activities to produce products that will accomplish goals consistent with their strategic objectives. To be effective in structuring the organization and in acquiring and managing resources to perform daily activities, the project manager requires a management structure to design, organize, and manage resources to accomplish daily objectives. Management will be most concerned about the type of resources that will be selected—the cost of resources, materials, equipment, and facilities as well as the time to set up the operation and conduct daily work activity. Establishing an operation is typically an enormous amount of work. Further, once completed, management has the task of overseeing all resources to conduct daily work activities to manage three primary concerns: the cost incurred to conduct the operation and produce daily deliverables or products, the amount of time it takes to produce products, and the overall quality of the products when completed.

The operation is considered successful when it can produce products that can be sold at a market value that is higher than the cost to create the product—therefore, the products are profitable and beneficial to the organization. Part of this cost includes the amount of time it takes to create the product and whether the quality is acceptable within the marketplace at the price being offered. Operations managers, therefore, are given an operations budget for each department to manage all purchases to stay on budget and secure profit margins. Operations managers also have a schedule of deliveries for products and need to manage resources to ensure products are being created within a specific time frame to ensure quality and throughput are
maintained, which can also influence profitability. Managers need to utilize quality controls to ensure products are being maintained to a quality expectation of customers within the marketplace, which will also ensure ongoing sales and profitability.

Projects are similar to the structure of an operation; managers acquire resources to produce a deliverable where time, cost, and deliverable quality have to be managed to be successful. Project managers have the same responsibility as functional managers, but they are focused on a specific project to manage specific work activities for a single, unique deliverable. The exception with projects is that they are unique and typically performed only one time, so project managers have to go through all the tasks of designing and organizing a project structure that will only be conducted once and, therefore, have only one shot at effectively managing time, cost, and quality for one project deliverable. Organizations hire professional project managers to oversee projects because project management tools and techniques are typically used to ensure projects are managed for success. In the world of project management, project managers are primarily focused on designing a system of management plans that address all the aspects required to manage the “big three”: time, cost, and quality.

The Triple Constraint

As project managers assess the resources, materials and equipment, and facilities requirements, time, cost, and quality are the big three items they must consider not only in the selection, but also in the management of all resources throughout the project life cycle. This ensures a project is completed on schedule, on budget, and meeting the customer’s expectations of quality. An important aspect of managing time, cost, and quality for project work activities is the interconnection of these three elements. Any change to one of these elements has an effect on one or both of the others, which introduces constraints the project manager must manage. This is called the triple constraint (see Figure I.1).

The triple constraint imposes a project management dilemma. Not only does the project manager have to manage each component
of the triple constraint, but he also has to assess any changes to one and how it affects the other two.

![Triple Constraint Diagram]

Figure I.1 Triple constraint

Case Application

A project manager is overseeing a construction project in which the design of a custom, single-family home requires expensive custom-made windows that will need to be installed within a specific time frame of construction. The windows were designed in advance of the project, and orders were placed to ensure they will be completed and delivered to the jobsite when required. The project budget included the cost of the custom windows as approved by the homeowners. The project manager also selected a manufacturer that would be capable of producing the quality that the homeowners required. Shortly before the windows were to be delivered to the jobsite, the manufacturer notified the project manager that they were running behind schedule because of a delay in receiving exotic materials required in the custom windows. The windows would be two weeks late. The project manager reviewed the project schedule and determined that this would increase the duration of that segment of project work activity, which would in turn create other problems on the jobsite. Therefore, the windows would need to be installed as originally scheduled. The project manager communicated this to the manufacturer, and the manufacturer said an expedite fee could be paid so that would push the windows up in
the manufacturer’s schedule, ensuring they would be at the jobsite when required. A second option was that the manufacturer had a lesser-quality window that was already in stock and could be delivered on time. The project manager had to decide how to manage the triple constraint of staying on schedule, evaluating a potential budget increase, and managing quality for this particular situation. To keep the project on schedule, the project manager had the choice to pay a higher price to expedite the correct windows to be on the jobsite when needed or reduce the quality of the windows to ensure the schedule was maintained. The homeowners elected to pay the higher price to maintain the higher-quality windows and to stay on schedule.

In this example, the project manager had the typical dilemma of making choices to manage the three elements of the triple constraint to maintain a project schedule, budget, and level of quality. A change in one element had an impact on one or two of the other elements, which formed a constraint. Decisions then had to be made to manage the triple constraint.

To manage the triple constraint, the project manager must understand the overall scope of each work activity. He must also understand changes that may be allowed or elements of the triple constraint that cannot change. These changes or elements can force the decisions as to which changes will actually be made, which might affect one or both of the other two elements. In most cases, the project manager does have to consider some form of change, and the second important aspect of managing the triple constraint is the consideration and management of changes that will be required.

Managing Change Requirements

One of the aspects of managing projects that many project managers wish they did not have to contend with is the reality of changes that need to be made throughout the project life cycle. In most cases, the assessment of change requires the project manager to evaluate the
effects on the triple constraint and the best course of action allowed by either the schedule, budget, or customer demands. The project manager must be informed as to the importance of certain components of the triple constraint that might be more important and others that might be less important, allowing him the flexibility to make changes and decisions based on this knowledge. If a particular project has been designed in which the customer requirement is the project deliverable being available for delivery to the customer within a specific time frame, based on specific customer requirements, then the project has a high priority of schedule and possibly a lesser priority of cost or quality. In other cases, a project might have an open window of deliverability, but the quality of the product has to be maintained to specific customer requirements; therefore, the schedule and possibly the cost can fluctuate to manage the customer’s demand for quality.

A project manager must understand the scope of the project as it relates to the triple constraint and specific requirements that need to be met for cost, schedule, or quality so that he knows how to make changes and project decisions based on hard requirements that have to be met within the triple constraint. The focus then shifts to the management and control of change. This is a common problem seen on many projects; the project manager, although excellent at managing normal daily work activities, faces serious challenges in managing changes that may be required. One of the biggest risks on a project is the project manager causing problems due to a lack of experience or development of critical tools and techniques to manage and control change.

Project managers are successful in managing project work activities because they have an arsenal of tools and techniques as well as proven processes that will be selected at the beginning of the project and utilized throughout the project life cycle to ensure various elements of managing the triple constraint are performed correctly. One of the most important processes the project manager can have is a change management system that outlines an organized and specific course of events required to effectively manage change within a project environment. A sample template of a change control process can be found in Appendix A, “Change Control Process.” Using a tool such as the change analysis matrix shown in Figure I.2, you can see an illustration
of the effects that change can have within the triple constraint. The circle represents the deliverable and its associated quality (better quality = bigger circle; less quality = smaller circle) and changes in slowing or speeding up the schedule as well as increases or decreases in budget and how each potentially can affect the other two. For instance, an action that might be needed to improve quality may slow the schedule and cost more. Likewise, something required to speed up the schedule can reduce quality and cost less (see Figure I.2).

![Change analysis matrix](image)

Figure I.2 Change analysis matrix

If change is required to manage the triple constraint, it must be done efficiently and effectively to ensure the change is carried out without causing other problems within the work activity and to ensure that the change made was effective in accomplishing the goal of the change. All too often, project managers make changes but do not carry out the second component of monitoring and measuring the effects of the change to ensure it has accomplished what it was designed to do. In other cases, changes are made that clearly accomplish the immediate goal but have adverse effects on other work activities or components.
of the project that create more problems than the changes originally solved. Project managers need to ensure they are using a comprehensive and proven change management plan to make certain that changes to the project are evaluated, approved, and controlled. In addition, project managers should ensure that others within the organization who might have an expert assessment or managerial approval are included so that changes are appropriate. The ultimate goal in managing change reverts to the project manager’s requirement to manage the triple constraint and keep a project on schedule, within budget, and at the expected quality.

Managing Time, Cost, and Quality

In managing the triple constraint, project managers will discover other aspects of the project that have time, cost, and quality associated but are not directly involved in a work activity task or element of a project deliverable. Areas such as managing the project and product scope can introduce challenges in managing the triple constraint. Other areas, such as the cost of quality, the project manager’s time management system, and the management of risk, introduce areas of influence to the triple constraint the project manager must manage. These are difficult areas to quantify at the beginning of the project but nonetheless will be present throughout the project life cycle. The project manager should simply be aware of their existence and, when possible, design aspects of these influences into the schedule, budget, and quality management plan to ensure they are accounted for in some way.

Managing Project and Product Scope

The project manager has an incredible task at the beginning of a project to understand the overall project scope as well as the product scope to determine the boundaries of what the project is intending to accomplish as well as the specific requirements in developing a project deliverable. In some cases, the project manager will find the project drifting off into tangents that were not originally required but are utilizing resources and causing certain aspects of work activity to
fall behind schedule. The project manager must understand the importance of managing the scope of the project to ensure the triple constraint does not have to be managed because of unnecessary work that was not originally part of the project. The project manager also has to monitor the development of a project deliverable to ensure unnecessary additions to the deliverable—that were not originally required and that can increase costs and delay the schedule—are discovered and addressed through a change control process.

Time Management

One of the first components of developing an overall project management plan is to decipher all the individual components required as work activities to develop an overall project schedule. Once all the individual work activities have been identified, other elements, such as the project budget and quality management plan, can then be developed. Because the project manager develops a project schedule based on individual work activity durations, she needs to consider other factors that will influence both the work activity durations and the overall success of completing a project on schedule, such as the following:

- Time management of the project manager
- Time management of the project staff
- Time management of unrelated project activities

Depending on his organizational skills, a particular project manager might be very good at managing work activity schedules but struggle with his own time management for various reasons. In some cases, a project manager’s disorganization can influence the schedule of a project. For example, a project manager is responsible for critical tasks in the project and does not complete them on time. This could include the management of various meetings required for the project and throughout the organization, critical communications with project staff and other organizational human resources staff, or the preparation of critical documentation that is required either on the project or for other departments within the organization. All these can affect a project schedule if they’re not completed on time.
Another important aspect that project managers can struggle with is the management of project staff. This can include the timely direction of tasks that need to be performed, reports that need to be generated, or the inclusion to meetings where critical information from certain project staff will be required for project updates. The project manager must be good at managing project staff to ensure this does not become an influence to the overall project schedule. Project managers and project staff can sometimes be caught up in unrelated activities within the organization and external to the organization that can put the project work activity schedule at risk. Project managers must be aware that their number-one priority is the management of project work activities to stay on schedule. They must manage other nonrelated activities to ensure they do not influence the primary project schedule.

Cost Management

Much like the influences of time management, costs can be incurred throughout the project life cycle that the project manager simply did not consider as part of direct work activity costs but that do influence the project budget. Most of the project costs directly related to work activities are part of the budget baseline of estimates; however, added costs that happen throughout the project life cycle do occur, and the project manager must address these types of costs and their effect on the triple constraint and project budget. Other costs that are not related directly to the project work activity may include the price of quality and certain elements of risk or uncertainty that can introduce added expenses. This book addresses these added expenses so that the project manager is aware of not only the direct costs involved in estimating a project budget, but also the added costs to consider when evaluating all the costs in developing a project budget.

Quality Management

One of the most important aspects of the triple constraint that project managers need to address is ensuring quality expectations are being met in producing the deliverable required at each work activity
throughout the project life cycle to guarantee the completed project deliverable will be acceptable to the customer. This book also introduces several areas in which information can be gathered to define what quality requirements and expectations will be required for a project deliverable. At times, a project deliverable has been completed, but a customer refuses acceptance based on certain aspects of form, fit, or function that do not meet his requirements.

The first step in managing quality is to make sure the project manager understands the customer’s expectations. Customers do not always express all the specific requirements at the beginning of a project, which can be a challenge to the project manager and project team completing a project deliverable. Project managers and other project staff should be proactive in making sure they understand as much detail of the project deliverable, from a quality standpoint, as possible at the beginning to avoid quality expectation issues when the project is completed. It is also important for the project manager to understand the difference between a customer’s quality expectations and a customer’s quality requirements.

What Does the Customer Really Want?

When the project manager sets out to design a project that will produce a project deliverable, it is standard practice to review documents and communication outlining customer requirements at the beginning of a project. These documents should contain specific characteristics required by the customer. Documents such as a statement of work (SOW) or customer specification are typically used at the beginning of a project and should outline exactly what a customer is asking of the organization. But these documents might not always articulate exactly what the customer really wants. Therefore, the project manager has to expand the scope of understanding customer quality and must be proactive with soliciting as much information from the customer as she can to discern a more detailed quality expectation.

Customers can outline what the “requirements” might be for a specific project deliverable in the form of an SOW or specification. In some cases, however, customers might have assumptions about a particular level of quality, or items that might be included
as “industry-standard and normal to this type of project deliverable,” and the organization misinterprets unwritten quality expectations or does not understand them at all. Project managers and those assessing the initial statement of work at the beginning of a project might not be aware of these types of assumptions or certain industry standards, and these quality expectations will not be included as requirements. It is incumbent on the project manager and project staff to engage in communication outlining as much detail as possible and in some cases asking for details of various characteristics of a project deliverable that may stimulate the customer to articulate other expectations that can now be documented as requirements. The most important component in developing and approving a project is to understand what the customer really wants. In most cases, this is simply the organization’s ability to effectively communicate with a customer to develop a comprehensive and accurate project deliverable requirement.

As the project manager begins the process of developing the project schedule, budget of estimates, and quality management plan, it is imperative she begin with as much detailed information as possible to make these project artifacts accurate, which will allow her to effectively manage the triple constraint. Success in completing a project on schedule, on budget, and at the customer’s expected quality starts with accurate information at the beginning of the project. Project managers should acquire as much accurate and relevant information as possible to define the project deliverable to ensure project success at completion. This book explores the details involved in gathering information, analyzing work activity details, and developing comprehensive and accurate project schedules, budgets, and quality management processes using various tools and techniques.
This page intentionally left blank
Index

A

AC (actual cost), 188
accuracy
 of information, 49-50, 228
 level of, 213
activities, 39-40, 65-68
 activity information, 88-94
 activity information checklist, 67, 92-94, 156, 225
 baseline information, 214
 project charters, 88-91
 SOW (statement of work), 88
 WBS (work breakdown structure), 91-92
burst activities, 102
closing, 85-87
defining
 activity requirements, 65-68
 overview, 62-63
 project deliverable
 decomposition, 63-65
 WBS (work breakdown structure), 68-70
dependencies
 activity information, 88-94
 dependency determination, 94-96
 overview, 87
dependency matrix, 99
disposition, 162
duration analysis
 analogous estimating, 142-143
 contingency estimating, 146-149
 overview, 139-140
parametric estimating, 143-144
subject matter expert estimating, 140-142
summary, 149-150
three-point estimating, 144-146
hierarchy, 163
identification tree, 64-65
information gathering, 40-41
 accuracy of information, 49-50
 information-gathering teams, 42-44
 reliability of information, 44-49
 sources, 50-51
 type of information to be gathered, 41-42
labeling, 100-101
merge activities, 102
monitoring, 185-187
parallel activities, 102
project activity requirements
 activity definition, 62-70
 information gathering, 40-51
 project structures, 51-62
 summary, 71-72
project activity sequencing
 overview, 75-77
PDM (precedence diagramming method), 96-108
summarize, 108-109
work activity definition, 77-87
work activity dependencies, 87-96
serial activities, 101
work activity monitoring, 185-187
activity hierarchy, 163
activity-on-node, 99-100
actual cost (AC), 188
adaptive structure, 22, 58-59
cost estimating, 243-244
resource estimating, 133-134
administrative costs, 230
Agile, 21, 22, 55-59
alternatives analysis, 129
analogous estimating, 142-143
budgeting, 259-260
cost estimating, 234
analysis methodologies for quality management, 288
applications of cost management plans, 213-214
organizational strategic planning, 214
tool for manager’s tactical use, 214-216
approval, 82, 276
assurance, quality. See QA (quality assurance)
audits (quality), 307-308
availability, 127, 159

budget at completion (BAC), 189, 251-252
budget development. See also cost estimating
budget methods, 255-261
analogous budgeting, 259-260
cost aggregation method, 256
funding limit reconciliation, 260-261
overview, 255-256
time-phased method, 256-257
top-down budgeting, 257-258
overview, 249-250
purpose of project budget, 250-255
BAC (budget at completion), 251-252
communication of project status, 254
management of triple constraint, 252-254
organizational planning, 254-255
project budget baseline, 252
schedule/budget updates, 335-336
summary, 261-262
buffering (schedule), 167-169
burst activities, 102
business needs, developing, 343

C
capability, 126-127
capital equipment resources, 119
cause-and-effect diagrams, 328-329
CCM (critical chain method), 167-169
change analysis matrix, 6
change control process, 195-196, 343-345
change analysis matrix, 6
change management, 4-7, 84
integrated change control, 272-273
quality management, 290
change requests for QA (quality assurance), 313-314

B
BAC (budget at completion), 189, 251-252
backward pass, 105
baselines, 183-184
activity baseline information, 214
project budget baseline, 252, 268
benchmarking, 292-293
Beta Distribution (PERT) formula, 239
bottlenecks (resource), 90
bottom-up estimating, 240
brainstorming, 294
charters. See project structures
charts
check charts, 186-187, 329-330
control charts, 270-271, 332-333
flowcharts, 330-331
histograms, 332
check charts, 186-187, 329-330
checklists, activity information
checklist, 156
closing
activities, 85-87
procurements, 86-87
projects, 85-87
Communicate phase (change
control process), 344
communication
change control process, 344
communication of project
status, 254
schedule communication, 176
schedule management
plans, 29-30
conceptual planning, 77-79
conducting changes, 344
constraints, 124-126
cost, 232-233
triple constraint, 2-4
contingency control, 193, 273-274
contingency estimating, 146-149,
240-241
contingency funds, 208-209
contracted resources, 121
contracts
contract control, 274-275
cost management, 206
cost management plans, 215
fixed-price contracts, 274-275
fixed-price incentive-fee
contracts, 275
resource contracts, 194-195
time and materials contracts, 275
controlling, 83. See also cost control
cost aggregation method
budgeting, 256
cost analysis tools, 269-271
cost control
contingency control, 273-274
contract control, 274-275
control verification, 276-277
cost analysis tools, 269-271
cost monitoring, 267-269
integrated change control, 272-273
overview, 265-267
procurement review and
approval, 276
summary, 277-279
cost definitions, 205-209
cost estimating
analogous estimating, 234
bottom-up estimating, 240
contingency cost estimating,
240-241
cost constraints, 232-233
cost management plans, 228-233
cost classifications, 229-230
documentation, 230-232
measurement definitions,
228-229
estimating based on project
structures, 242-244
adaptive structure, 243-244
extreme structure, 244
incremental structure,
242-243
iterative structure, 243-244
linear structure, 242-243
overview, 221-223
parametric estimating, 234-235
project cost requirements,
223-227
activity information checklist,
225-226
overview, 223-224
scope statement, 226-227
SOW (statement of work), 224
WBS (work breakdown
structure), 224-225
rough order-of-magnitude estimating, 235-236
subject matter experts, 236
summary, 245-246
three-point estimating, 236-239
top-down estimating, 240
cost management, 216-217
applications, 213-214
organizational strategic planning, 214
tool for manager’s tactical use, 214-216
budget development
budget methods, 255-261
overview, 249-250
purpose of project budget, 250-255
summary, 261-262
cost control
contingency control, 273-274
contract control, 274-275
control verification, 276-277
cost analysis tools, 269-271
cost monitoring, 267-269
integrated change control, 272-273
overview, 265-267
procurement review and approval, 276
summary, 277-279
cost estimating
analogous estimating, 234
bottom-up estimating, 240
contingency cost estimating, 240-241
cost constraints, 232-233
cost management plans, 228-233
estimating based on project structures, 242-244
overview, 221-223
parametric estimating, 234-235
project cost requirements, 223-227
rough order-of-magnitude estimating, 235-236
subject matter experts, 236
summary, 245-246
three-point estimating, 236-239
top-down estimating, 240
cost management plans, 228-233
components, 212-213
cost classifications, 229-230
development, 211-212
documentation, 230-232
measurement definitions, 228-229
information for planning costs
cost definitions, 205-209
project charters, 209
project manager’s experience, 210
project structures, 211
SOW (statement of work), 209-210
subject matter experts, 210-211
overview, 9, 201, 203-205
summary, 216-217
cost management plans, 228-233
components, 212-213
cost classifications, 229-230
development, 211-212
documentation, 230-232
measurement definitions, 228-229
cost monitoring, 267-269
cost of quality, 289-290
cost performance index (CPI), 188
cost variance (CV), 188
CPI (cost performance index), 188
critical chain method, 167-169
critical path, 106-108, 164-165
currency formats, 229
customer evaluation, 84-85
customer quality standards, 305-306
customer requirements, 10-11, 313
QC (quality control), 321-322
scheduling, 159-160
customer-level cost constraints, 233
CV (cost variance), 188
INDEX 353

D

decomposition decision tree, 63-64
defining
title requirements, 65-68
conceptual planning, 77-79
customer/project team
evaluation, 84-85
overview, 62-63
project closure, 85-87
project deliverable
decomposition, 63-65
project development, 80
testing and validation, 80-82
WBS (work breakdown structure), 68-70
deliverables, 79
objectives, 78
deliverables
defining, 79
project deliverable specifications,
155-156
quality, verifying, 336
Delphi method, 140-142
published data estimating, 129-130
resource leveling, 130-132
dependencies (work activity)
activity information, 88-94
activity information checklist,
92-94
project charters, 88-91
SOW (statement of work), 88
WBS (work breakdown structure), 91-92
dependency determination, 94-96
overview, 87
design of experiments (DOE), 292
design review, 327-328
determinate estimating, 128-129
development
budget development. See also cost estimating
budget methods, 255-261
overview, 249-250

purpose of project budget,
250-255
summary, 261-262
business needs, 343
cost management plans, 211-212
project development, 80
project schedule development,
153-154
information for schedule development, 154-161
schedule documentation tools,
173-176
schedule structuring techniques, 161-172
summary, 177-178
diagrams. See also charts
cause-and-effect diagrams,
328-329
check charts, 329-330
flowcharts, 330-331
interrelationship diagrams, 311
mind-mapping diagrams, 310
network diagrams, 164-165, 311
Pareto diagrams, 331
scatter diagrams, 333-334
tree diagrams, 309-310
diagrams, interrelationship, 311
direct costs, 206, 229
direct resources, 117-118
discretionary dependencies, 95-96
documentation, 213
cost management plans, 230-232
schedule documentation tools,
173-176
schedule communication, 176
schedule management,
175-176
software tools, 173-175
DOE (design of experiments), 292
dropped baton, 167
duration analysis
analogous estimating, 142-143
contingency estimating, 146-149
overview, 139-140
parametric estimating, 143-144
subject matter expert estimating, 140-142
summary, 149-150
three-point estimating, 144-146

E

EAC (estimate at completion), 189
earned value analysis (EVA), 187-191, 269
earned value (EV), 188
elevating system constraints, 166
estimate at completion (EAC), 189
estimate to completion (ETC), 189
estimating

costs
analogous estimating, 234
bottom-up estimating, 240
contingency cost estimating, 240-241
cost constraints, 232-233
cost management plans, 228-233
estimating based on project structures, 242-244
overview, 221-223
parametric estimating, 234-235
project cost requirements, 223-227
rough order-of-magnitude estimating, 235-236
subject matter experts, 236
summary, 245-246
three-point estimating, 236-239
top-down estimating, 240
duration
analogous estimating, 142-143
contingency estimating, 146-149
parametric estimating, 143-144
subject matter expert estimating, 140-142
three-point estimating, 144-146
estimate at completion (EAC), 189
estimate to completion (ETC), 189
resources
adaptive project structure, 133-134
alternatives analysis, 129
contracted resources, 121
Delphi method, 129
determinate estimating, 128-129
direct resources, 117-118
extreme project structure, 134-135
incremental project structure, 132-133
indirect resources, 117-118
iterative project structure, 133-134
linear project structure, 132-133
organizational resources, 123
overview, 113-117
project resources, 118-120, 124-127
published data estimating, 129-130
resource leveling, 130-132
resource requirements, 122
summary, 135-136
ETC (estimate to completion), 189
EV (earned value), 188
EVA (earned value analysis), 187-191, 269
Excel, 173
excessive multitasking, 167
expected cost, 238
expedite fees, 207-208
experiments, design of, 292
exploiting system constraints, 166
Exploratory Development, 22, 59-62
external dependencies, 96
external factors for project schedule development, 159-160
extreme structure, 22, 59-62
cost estimating, 244
resource estimating, 134-135
F
facilities resources, 119-120
Features Addition Development, 21, 55-57
fees
 expedite fees, 207-208
 penalty fees, 208
 regulatory fees, 207-208
FF (Finish to Finish), 98
financial resources, 120
Finish to Finish (FF), 98
Finish to Start (FS), 98
fixed-price contracts, 274-275
fixed-price incentive-fee contracts, 275
float/slack calculation, 105-107
flowcharts, 330-331
forward pass, 103-105
FS (Finish to Start), 98
functional tests, 81
funding limit reconciliation, 260-261
G
gathering data, 343
Goldratt, Eliyahu, 166
A Guide to the Project Management Body of Knowledge (PMBOK®), Fifth Edition, 204
H
hierarchy of activities, 163
histograms, 332
historical derivative budgets, 259
historical information for budgets, 259
human resources, 119
I
identifying system constraints, 166
Implement phase (change control process), 344
incremental structure, 21, 53-55
cost estimating, 242-243
resource estimating, 132-133
indirect costs, 206, 229-230
indirect labor, 230
indirect materials, 230
indirect resources, 117-118
industry quality standards, 305
information technology, 120
inspections, 81, 325-326
integrated change control, 272-273
interrelationship diagrams, 311
iterative structure, 21, 55-57
cost estimating, 243-244
resource estimating, 133-134
J-K-L
labeling activities, 100-101
labor rates, 207
LCL (lower control limit), 271
Learn and Build Development, 22, 58-59
level
 of accuracy, 213, 228
 of precision, 213, 228
life cycle models. See project structures
linear structure, 20-21, 52-53
cost estimating, 242-243
resource estimating, 132-133
loading resources, 169-170
lower control limit (LCL), 271
M
management of triple constraint, 252-254
managerial influences in project schedule development, 158
mandatory dependencies, 95
materials resources, 120
matrices
 activity dependency matrix, 99
 change analysis matrix, 6
Measure phase (change control process), 344-345
measurement definitions, 228-229
meetings
 status meetings, 185, 268
 subject matter expert meetings, 293
merge activities, 102
metrics, quality, 288, 307
Microsoft Excel, 173
Microsoft Project, 175
milestone analysis, 192
mind-mapping diagrams, 310
monitoring, 82-83
 costs, 267-269
 quality, 287
 work activity, 185-187
Most Likely estimates, 237
multitasking, 167

N-O
network diagrams, 164-165, 311
objectives, defining, 78
operations, 1-2
Optimistic estimates, 237
organizational influences on project schedule development, 157-159
organizational past projects, gathering information from, 26
organizational planning
 budget development, 255
 QC (quality control), 323-324
 strategic planning, 214
organizational process updates, 337
organizational quality standards, 303-304
organizational resources, 123
organizational-level cost constraints, 232
overhead expenses, 229

P
padding (schedule), 167-169
parallel activities, 102
parametric estimating, 143-144, 234-235
Pareto diagrams, 331
Parkinson’s law, 168
past projects, gathering information from, 26
paths
 activity paths, 101-102
 project critical path, 107-108
 project path analysis, 103-107
PDM (precedence diagramming method)
 activity labeling, 100-101
 activity paths, 101-102
 activity relationships, 98-99
 activity-on-node, 99-100
 overview, 96-98
 project critical path, 107-108
 project path analysis, 103-107
penalty fees, 208
performance measurement, 213
PERT (Program Evaluation and Review Technique), 144-145, 239
Pessimistic estimates, 237
plan structures. See project structures
planned value (PV), 187-188
plans
 budgets. See budget development
 conceptual planning, 77-79
 cost management plans, 228-233
 components, 212-213
 cost classifications, 229-230
 development, 211-212
 documentation, 230-232
 measurement definitions, 228-229
 project plans, creating, 79
 quality management plans, 285-286
 analysis methodologies, 288
 benchmarking, 292-293
 brainstorming, 294
 change control process, 290
 cost of quality, 289-290
 DOE (design of experiments), 292
QA (quality assurance), 289
quality controls, 290-291
quality metrics, 288
quality monitoring, 287
statistical sampling, 291-292
summary, 294-295
schedule management plans
applications, 28-31
information gathering, 24-28
minimum requirements, 17-18
overview, 15-16
plan structures, 18-23
PMO (project management office), 23-24
summary, 31-33
PMO (project management office), 23-24
precedence diagramming method. See PDM (precedence diagramming method)
precision, level of, 213, 228
predecessor relationships, 94-95
predictive structure, 20-21
process analysis, 308-311
interrelationship digraphs, 311
mind-mapping diagrams, 310
network diagrams, 311
tree diagrams, 309-310
process capability (QA), 313
process updates
organizational process updates, 337
project process updates, 336-337
procurements
closing, 86-87
procurement action reports, 268-269
review and approval, 276
Program Evaluation and Review Technique (PERT), 144-145, 239
Progressive Stage Development, 21, 53-55
Project (Microsoft), 175
project activities. See activities
project activity duration analysis
analogous estimating, 142-143
contingency estimating, 146-149
overview, 139-140
parametric estimating, 143-144
subject matter expert estimating, 140-142
summary, 149-150
three-point estimating, 144-146
project activity requirements
activity definition
activity requirements, 65-68
overview, 62-63
project deliverable decomposition, 63-65
WBS (work breakdown structure), 68-70
information gathering, 40-41
accuracy of information, 49-50
information-gathering teams, 42-44
reliability of information, 44-49
sources, 50-51
type of information to be gathered, 41-42
overview, 39-40
project structures
adaptive structure, 58-59
extreme structure, 59-62
incremental structure, 53-55
iterative structure, 55-57
linear structure, 52-53
overview, 51-52
summary, 71-72
project activity sequencing
overview, 75-77
PDM (precedence diagramming method)
activity labeling, 100-101
activity paths, 101-102
activity relationships, 98-99
activity-on-node, 99-100
INDEX

overview, 96-98
project critical path, 107-108
project path analysis, 103-107
summary, 108-109
work activity definition, 77
conceptual planning, 77-79
customer/project team evaluation, 84-85
project closure, 85-87
project development, 80
testing and validation, 80-82
work activity dependencies
activity information, 88-94
dependency determination, 94-96
overview, 87
project charters, 24-25, 88-91, 209
project deliverable specifications, 155-156
project schedule development, 155
project closure, 85-87
project cost management. See cost management
project cost requirements, 223-227
activity information checklist, 225
overview, 223-224
scope statement, 226-227
SOW (statement of work), 224
WBS (work breakdown structure), 224-225
project critical path, 107-108
project deliverable decomposition, 63-65
project deliverable specifications, 155-156
project development, 80
project management office (PMO), 23-24
project manager’s experience, cost management plans, 210
project plans, creating, 79
project process updates, 336-337
project resources, 118-120, 124-127
availability, 127
capability, 126-127
constraints, 124-126
project risk register, 324
project schedule control. See schedule control
project schedule development. See schedule development
project scope, 7-8, 157
project scope statement, 226-227
project structures
adaptive structure, 58-59
cost management plans, 211
extreme structure, 59-62
incremental structure, 53-55
iterative structure, 55-57
linear structure, 52-53
overview, 51-52
schedule management, 18-23
adaptive structure, 22
extreme structure, 22
incremental structure, 21
iterative structure, 21
linear structure, 20-21
stages of development, 19-20
project time management. See time management
project-level cost constraints, 232-233
Propose phase (change control process), 343-344
proposing change, 343
publicizing changes, 344
published data estimating, 129-130
purchases, cost management, 206-207
PV (planned value), 187-188

Q

QA (quality assurance)
change requests, 313-314
continuous improvement, 313
customer quality standards, 305-306
industry quality standards, 305
organizational quality standards, 303-304
overview, 289, 301-302
process analysis, 308-311
 interrelationship digraphs, 311
 mind-mapping diagrams, 310
 network diagrams, 311
 tree diagrams, 309-310
process capability, 313
quality audits, 307-308
quality management plans, 303
quality metrics, 307
results, 312
summary, 314-315

QC (quality control)
 cause-and-effect diagrams, 328-329
 check charts, 329-330
 control charts, 332-333
 customer specifications, 321-322
 design review, 327-328
 flowcharts, 330-331
 histograms, 332
 inspections, 325-326
 organizational requirements, 323-324
 overview, 290-291, 319-320
 Pareto diagrams, 331
 project risk register, 324
 results, 334-337
 organizational process updates, 337
 project process updates, 336-337
 quality improvements, 335
 schedule/budget updates, 335-336
 verification of deliverable quality, 336
 scatter diagrams, 333-334
 SOW (statement of work), 321
 statistical sampling, 326-327
 summary, 337-339
 workmanship performance reports, 322-323
quality assurance. See QA (quality assurance)
quality audits, 307-308

quality control. See QC (quality control)

quality improvements, 335

quality management
 change control process, 343-345
 overview, 9-10, 283, 303

planning
 analysis methodologies, 288
 benchmarking, 292-293
 brainstorming, 294
 change control process, 290
 cost of quality, 289-290
 DOE (design of experiments), 292
 overview, 285-286
 QA (quality assurance), 289
 quality controls, 290-291
 quality metrics, 288
 quality monitoring, 287
 statistical sampling, 291-292
 subject matter experts, 293
 summary, 294-295

QA (quality assurance)
 change requests, 313-314
 continuous improvement, 313
 customer quality standards, 305-306
 industry quality standards, 305
 organizational quality standards, 303-304
 overview, 301-302
 process analysis, 308-311
 process capability, 313
 quality audits, 307-308
 quality management plans, 303
 quality metrics, 307
 results, 312
 summary, 314-315

QC (quality control)
 cause-and-effect diagrams, 328-329
 check charts, 329-330
 control charts, 332-333
 customer specifications, 321-322
design review, 327-328
flowcharts, 330-331
histograms, 332
inspections, 325-326
organizational requirements, 323-324
overview, 319-320
Pareto diagrams, 331
project risk register, 324
results, 334-337
scatter diagrams, 333-334
SOW (statement of work), 321
statistical sampling, 326-327
summary, 337-339
workmanship performance reports, 322-323
quality metrics, 288, 307
quality monitoring, 287

R
reevaluating for new system constraints, 166
regulatory fees, 208
relationships, activity, 98-99
reliability of information, 44-49
reports, 213-214
procurement action reports, 268-269
work performance reports, 268
reserve analysis, 146-149
resource bottlenecks, 90
resource contracts, 194-195
resource estimating
adaptive project structure, 133-134
alternatives analysis, 129
contracted resources, 121
Delphi method, 129
determinate estimating, 128-129
direct resources, 117-118
extreme project structure, 134-135
incremental project structure, 132-133
indirect resources, 117-118
iterative project structure, 133-134
linear project structure, 132-133
organizational resources, 123
overview, 113-117
project resources, 118-120, 124-127
availability, 127
capability, 126-127
constraints, 124-126
published data estimating, 129-130
resource leveling, 130-132
resource-constrained projects, 131-132
time-constrained projects, 130-131
resource requirements, 122
summary, 135-136
resource influences in project schedule development, 158-159
resource leveling, 130-132
resource-constrained projects, 131-132
time-constrained projects, 130-131
resource loading, 169-170
resource requirements, 122
resource-constrained projects, 131-132
review (procurements), 276
risk management, 215
risk register, 324
rough order-of-magnitude estimating, 235-236

S
sampling
QC (quality control), 326-327
quality management planning, 291-292
scatter diagrams, 333-334
scenario analysis, 171-172
schedule baselines, 183-184
schedule communication, 176
schedule control
change control, 195-196
contingency control, 193
EVA (earned value analysis), 187-191
milestone analysis, 192
overview, 181-183
resource contracts, 194-195
schedule baselines, 183-184
schedule crashing, 193-194
summary, 197-198
verification, 196-197
work activity monitoring, 185-187
schedule crashing, 193-194
schedule development
information for schedule development, 154-161
activity information checklist, 156
customer scheduling requirements, 159-160
external factors, 159-160
organizational influences, 157-159
project charters, 155
project deliverable specifications, 155-156
project scope statement, 157
WBS (work breakdown structure), 156
overview, 153-154
schedule documentation tools, 173-176
schedule communication, 176
schedule management, 175-176
software tools, 173-175
schedule structuring techniques, 161-172
activity disposition, 162
activity hierarchy, 163
critical chain method, 167-169
critical path method, 164-165
overview, 161-162
resource loading, 169-170
scenario analysis, 171-172
TOC (theory of constraints), 166-167
summary, 177-178
schedule management, 175-176
applications
communications tool for project staff, 29-30
strategic tool for organization, 30-31
tactical tool for project managers, 28-29
information gathering, 24-28
organizational past projects, 26
project charters, 24-25
project manager’s experience, 25-26
subject matter experts, 27-28
minimum requirements, 17-18
overview, 15-16
plan structures, 18-23
adaptive structure, 22
extreme structure, 22
incremental structure, 21
iterative structure, 21
linear structure, 20-21
stages of development, 19-20
PMO (project management office), 23-24
project schedule control
change control, 195-196
contingency control, 193
EVA (earned value analysis), 187-191
milestone analysis, 192
overview, 181-183
resource contracts, 194-195
schedule baselines, 183-184
schedule crashing, 193-194
summary, 197-198
verification, 196-197
work activity monitoring, 185-187
schedule/budget updates, 335-336
summary, 31-33
verification of deliverable quality, 336
schedule performance index (SPI), 189
schedule performance index (SPI), 189
schedule structuring techniques, 161-172
 activity disposition, 162
 activity hierarchy, 163
 critical chain method, 167-169
 critical path method, 164-165
 overview, 161-162
 resource loading, 169-170
 scenario analysis, 171-172
 TOC (theory of constraints), 166-167
schedule variance (SV), 188
scope
 of change, managing, 344
 overview, 7-8
 project scope statement, 157, 226-227
S-curve analysis, 269-270
self-protection, 167
sequencing activities
 overview, 75-77
PDM (precedence diagramming method)
 activity labeling, 100-101
 activity paths, 101-102
 activity relationships, 98-99
 activity-on-node, 99-100
 overview, 96-98
 project critical path, 107-108
 project path analysis, 103-107
summary, 108-109
work activity definition, 77
 conceptual planning, 77-79
 customer/project team evaluation, 84-85
 project closure, 85-87
 project development, 80
 testing and validation, 80-82
Sequential Process Development, 20-21, 52-53
serial activities, 101
SF (Start to Finish), 98
signing off, 343
skill sets, 159
sources of information, 50-51
SOW (statement of work), 88, 209-210
 project cost requirements, 224
 QC (quality control), 321
SPI (schedule performance index), 189
SS (Start to Start), 98
Start to Finish (SF), 98
Start to Start (SS), 98
statement of work (SOW), 88, 209-210
 project cost requirements, 224
 QC (quality control), 321
statistical sampling
 QC (quality control), 326-327
 quality management planning, 291-292
status meetings, 185, 268
status of project, communicating, 254
strategic tools for organizations, 30-31
structures. See project structures
student syndrome, 168
subject matter experts, 27-28, 186
 cost estimating, 236
 cost management plans, 210-211
 quality management planning, 293
 subject matter expert estimating, 140-142
successor relationships, 94-95
sustainability, 345
SV (schedule variance), 188
system constraints, theory of, 166-167

T
tactical tools for project managers, 28-29
tactical uses of cost management plans, 214-216
teams, information-gathering, 42-44
testing, 80-82
theory of constraints (TOC), 166-167
three-point estimating, 144-146, 236-239

time and materials contracts, 275

time buffers for work activities, 167-169

time management
 overview, 8-9, 13
 project activity duration analysis
 analogous estimating, 142-143
 contingency estimating,
 146-149
 overview, 139-140
 parametric estimating,
 143-144
 subject matter expert estimating, 140-142
 summary, 149-150
 three-point estimating, 144-146

project activity requirements
 activity definition, 62-70
 information gathering, 40-51
 overview, 39-40
 project structures, 51-62
 summary, 71-72

project activity sequencing
 overview, 75-77
 PDM (precedence diagramming method), 96-108
 summary, 108-109
 work activity definition, 77-87
 work activity dependencies, 87-96

project schedule control
 change control, 195-196
 contingency control, 193
 EVA (earned value analysis), 187-191
 milestone analysis, 192
 overview, 181-183
 resource contracts, 194-195
 schedule baselines, 183-184
 schedule crashing, 193-194
 summary, 197-198

verification, 196-197
work activity monitoring, 185-187

project schedule development
 information for schedule development, 154-161
 overview, 153-154
 schedule documentation tools, 173-176
 schedule structuring techniques, 161-172
 summary, 177-178

resource estimating
 adaptive project structure, 133-134
 alternatives analysis, 129
 contracted resources, 121
 Delphi method, 129
 determinate estimating, 128-129
 direct resources, 117-118
 extreme project structure, 134-135
 incremental project structure, 132-133
 indirect resources, 117-118
 iterative project structure, 133-134
 linear project structure, 132-133
 organizational resources, 123
 overview, 113-117
 project resources, 118-120, 124-127
 published data estimating, 129-130
 resource leveling, 130-132
 resource requirements, 122
 summary, 135-136

schedule management plans
 applications, 28-31
 information gathering, 24-28
 minimum requirements, 17-18
 overview, 15-16
 plan structures, 18-23
PMO (project management office), 23-24
summary, 31-33
time-constrained projects, 130-131
time-phased method budgeting, 256-257
TOC (theory of constraints), 166-167
top-down budgeting, 257-258
top-down estimating, 240
tree diagrams, 309-310
triple constraint, 2-4, 252-254

U
UCL (upper control limit), 271
units of measure, 212
updates
organizational process updates, 337
project process updates, 336-337
schedule/budget updates, 335-336
upper control limit (UCL), 271
upper specification limit (USL), 271
USL (upper specification limit), 271

V
VAC (variance at completion), 189
validation, 80-82, 343
values
EV (earned value), 188
PV (planned value), 187-188
variance at completion (VAC), 189
verification
control verification, 196-197, 276-277
deliverable quality, 336

W-X-Y-Z
waterfall, 55-57
WBS (work breakdown structure), 68-70, 91-92
project cost requirements, 224-225
project schedule development, 156
work, statement of, 88
work activities. See activities
work breakdown structure (WBS), 68-70, 91-92
project cost requirements, 224-225
project schedule development, 156
work performance reports, 268
workmanship performance reports, 322-323