COMPUTER AND COMMUNICATION NETWORKS

Second Edition
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Catalog-in-Publication Data
Mir, Nader F.
pages cm
Includes bibliographical references and index.
TK5105.5.M567 2015
004.6—dc23 2014037209

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.

To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, December 2014
To Shahrzad and Navid
Contents

Preface xxiii
About the Author xxxvii

PART I: Fundamental Concepts 1

1 Packet-Switched Networks 3
1.1 Basic Definitions in Networks 4
1.1.1 Packet Switching Versus Circuit Switching 5
1.1.2 Data, Packets, and Frames 6
1.1.3 The Internet and ISPs 7
1.1.4 Classification of ISPs 9
1.2 Types of Packet-Switched Networks 11
1.2.1 Connectionless Networks 11
1.2.2 Connection-Oriented Networks 13
1.3 Packet Size and Optimizations 15
1.4 Foundation of Networking Protocols 17
1.4.1 Five-Layer TCP/IP Protocol Model 18
1.4.2 Seven-Layer OSI Model 20
1.5 Addressing Scheme in the Internet 21
1.5.1 IP Addressing Scheme 22
1.5.2 Subnet Addressing and Masking 24
1.5.3 Classless Interdomain Routing (CIDR) 26
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>Equal-Sized Packets Model</td>
<td>28</td>
</tr>
<tr>
<td>1.7</td>
<td>Summary</td>
<td>28</td>
</tr>
<tr>
<td>1.8</td>
<td>Exercises</td>
<td>29</td>
</tr>
<tr>
<td>1.9</td>
<td>Computer Simulation Project</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>Overview of Networking Devices</td>
<td>37</td>
</tr>
<tr>
<td>2.1</td>
<td>Network Interface Cards (NICs)</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Switching and Routing Devices</td>
<td>40</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Layer 1 Devices</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Layer 2 Devices</td>
<td>42</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Layer 3 Devices</td>
<td>44</td>
</tr>
<tr>
<td>2.3</td>
<td>Wireless Switching and Routing Devices</td>
<td>47</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Wireless Access Points and Base Stations</td>
<td>47</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Wireless Routers and Switches</td>
<td>48</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Antennas in Wireless Devices</td>
<td>49</td>
</tr>
<tr>
<td>2.4</td>
<td>Modems</td>
<td>50</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Basic Modulation: ASK, FSK, and PSK</td>
<td>51</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Practical Modulation: 4-QAM and QPSK</td>
<td>53</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Digital Subscriber Line (DSL) Modems</td>
<td>55</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Cable Modems</td>
<td>57</td>
</tr>
<tr>
<td>2.5</td>
<td>Multiplexers</td>
<td>58</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Frequency-Division Multiplexing (FDM)</td>
<td>59</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Time-Division Multiplexing</td>
<td>61</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary</td>
<td>66</td>
</tr>
<tr>
<td>2.7</td>
<td>Exercises</td>
<td>67</td>
</tr>
<tr>
<td>2.8</td>
<td>Computer Simulation Project</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>Data Links and Link Interfaces</td>
<td>71</td>
</tr>
<tr>
<td>3.1</td>
<td>Data Links</td>
<td>72</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Data Link Types</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>Link Encoder</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Error Detection and Correction on Links</td>
<td>77</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Error Detection Methods</td>
<td>78</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Cyclic Redundancy Check (CRC) Algorithm</td>
<td>79</td>
</tr>
<tr>
<td>3.4</td>
<td>Flow Control on Links</td>
<td>85</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Stop-and-Wait Flow Control</td>
<td>85</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Sliding-Window Flow Control</td>
<td>88</td>
</tr>
</tbody>
</table>
4 Local Area Networks and Networks of LANs 115
4.1 LANs and Basic Topologies 116
4.2 LAN Protocols 117
 4.2.1 Logical-Link Control (LLC) 118
 4.2.2 Media Access Control (MAC) 118
4.3 Networks of LANs 121
 4.3.1 LAN Networking with Layer 1 Devices 121
 4.3.2 LAN Networking with Layer 2 Devices 123
 4.3.3 Networking with Layer 2 and 3 Devices 128
4.4 MAC/IP Address Conversion Protocols 130
 4.4.1 Address Resolution Protocol (ARP) 130
 4.4.2 Reverse Address Resolution Protocol (RARP) 132
4.5 Spanning-Tree Protocol (STP) 133
4.6 Virtual LANs (VLANs) 136
 4.6.1 VLAN Switches 137
 4.6.2 VLAN Trunking Protocol (VTP) and IEEE 802.1Q 138
4.7 Wireless LANs 139
 4.7.1 Infrared LANs 140
 4.7.2 Spread-Spectrum LANs 141
 4.7.3 Narrowband RF LANs 141
 4.7.4 Home RF and Bluetooth LANs 141
4.8 IEEE 802.11 Wireless LAN Standard 142
4.8.1 IEEE 802.11 Physical Layer 144
4.8.2 802.11 MAC Layer 145
4.8.3 WiFi Networks 149
4.9 Case Study: DOCSIS, a Cable TV Protocol 151
4.10 Summary 152
4.11 Exercises 153
4.12 Computer Simulation Project 157

5 Wide-Area Routing and Internetworking 159
5.1 IP Packets and Basic Routing Policies 160
5.1.1 Packet Fragmentation and Reassembly 163
5.1.2 Internet Control Message Protocol (ICMP) 164
5.1.3 Obtaining and Assigning IP Addresses 165
5.1.4 Dynamic Host Configuration Protocol (DHCP) 167
5.1.5 Network Address Translation (NAT) 169
5.1.6 Universal Plug and Play (UPnP) 172
5.2 Path Selection Algorithms 173
5.2.1 Dijkstra’s Algorithm 174
5.2.2 Bellman-Ford Algorithm 176
5.2.3 Packet Flooding Algorithm 177
5.2.4 Deflection Routing Algorithm 178
5.3 Intradomain Routing Protocols 178
5.3.1 Open Shortest Path First (OSPF) Protocol 180
5.3.2 Routing Information Protocol (RIP) 183
5.4 Interdomain Routing Protocols 188
5.4.1 Autonomous System (AS) 189
5.4.2 Border Gateway Protocol (BGP) 189
5.5 Internet Protocol Version 6 (IPv6) 196
5.5.1 IPv6 Addressing Format 197
5.5.2 Extension Header 198
5.5.3 Packet Fragmentation 198
5.5.4 Other Features of IPv6 199
5.6 Congestion Control at the Network Layer 199
5.6.1 Unidirectional Congestion Control 201
5.6.2 Bidirectional Congestion Control 202
5.6.3 Random Early Detection (RED) 203
5.6.4 A Quick Estimation of Link Blocking 205
5.6.5 Lee’s Serial and Parallel Connection Rules 206
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>Summary</td>
<td>207</td>
</tr>
<tr>
<td>5.8</td>
<td>Exercises</td>
<td>209</td>
</tr>
<tr>
<td>5.9</td>
<td>Computer Simulation Project</td>
<td>213</td>
</tr>
<tr>
<td>6</td>
<td>Multicast Routing and Protocols</td>
<td>215</td>
</tr>
<tr>
<td>6.1</td>
<td>Basic Definitions and Techniques</td>
<td>216</td>
</tr>
<tr>
<td>6.1.1</td>
<td>IP Multicast Addresses</td>
<td>217</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Basic Multicast Tree Algorithms</td>
<td>218</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Classification of Multicast Protocols</td>
<td>220</td>
</tr>
<tr>
<td>6.2</td>
<td>Local and Membership Multicast Protocols</td>
<td>221</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Internet Group Management Protocol (IGMP)</td>
<td>221</td>
</tr>
<tr>
<td>6.3</td>
<td>Intradomain Multicast Protocols</td>
<td>223</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Multicast Backbone (MBone)</td>
<td>224</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Distance Vector Multicast Routing Protocol (DVMRP)</td>
<td>224</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Multicast OSPF (MOSPF) Protocol</td>
<td>225</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Protocol-Independent Multicast (PIM)</td>
<td>227</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Core-Based Trees (CBT) Protocol</td>
<td>230</td>
</tr>
<tr>
<td>6.4</td>
<td>Interdomain Multicast Protocols</td>
<td>231</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Multiprotocol BGP (MBGP)</td>
<td>231</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Multicast Source Discovery Protocol (MSDP)</td>
<td>234</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Border Gateway Multicast Protocol (BGMP)</td>
<td>236</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary</td>
<td>237</td>
</tr>
<tr>
<td>6.6</td>
<td>Exercises</td>
<td>238</td>
</tr>
<tr>
<td>6.7</td>
<td>Computer Simulation Project</td>
<td>241</td>
</tr>
<tr>
<td>7</td>
<td>Wireless Wide Area Networks and LTE Technology</td>
<td>243</td>
</tr>
<tr>
<td>7.1</td>
<td>Infrastructure of Wireless Networks</td>
<td>244</td>
</tr>
<tr>
<td>7.2</td>
<td>Cellular Networks</td>
<td>246</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Cellular Network Devices and Operation</td>
<td>247</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Handoff</td>
<td>253</td>
</tr>
<tr>
<td>7.3</td>
<td>Mobile IP Management in Cellular Networks</td>
<td>259</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Home Agents and Foreign Agents</td>
<td>260</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Agent Discovery Phase</td>
<td>261</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Registration</td>
<td>262</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Mobile IP Routing</td>
<td>263</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Generations of Cellular Networks</td>
<td>267</td>
</tr>
<tr>
<td>7.4</td>
<td>Long-Term Evolution (LTE) Technology</td>
<td>268</td>
</tr>
<tr>
<td>7.4.1</td>
<td>LTE Networking Devices</td>
<td>269</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Call Establishment in LTE Cells</td>
<td>271</td>
</tr>
</tbody>
</table>
Contents

7.4.3 Handoff in LTE 271
7.4.4 Downlink and Uplink Schemes in LTE 273
7.4.5 Frequency Reuse 273

7.5 Wireless Mesh Networks (WMNs) with LTE 277
7.5.1 Applications of Mesh Networks 277
7.5.2 Physical and MAC Layers of WMNs 279

7.6 Characterization of Wireless Channels 280
7.6.1 Capacity Limits of Wireless Channels 283
7.6.2 Channel Coding 283
7.6.3 Flat-Fading Countermeasures 284
7.6.4 Intersymbol Interference Countermeasures 284

7.7 Summary 285

7.8 Exercises 286

7.9 Computer Simulation Project 288

8 Transport and End-to-End Protocols 289
8.1 Overview of the Transport Layer 290
8.1.1 Interaction of Transport Layer and Adjacent Layers 291
8.1.2 Transport Layer Protocols 294

8.2 User Datagram Protocol (UDP) 295
8.2.1 UDP Segments 295
8.2.2 Applications of UDP 297

8.3 Transmission Control Protocol (TCP) 298
8.3.1 TCP Segment 299
8.3.2 A TCP Connection 301
8.3.3 Window-Based Transmission and Sliding Window in TCP 305
8.3.4 Applications of TCP 306

8.4 Mobile Transport Protocols 307
8.4.1 UDP for Mobility 307
8.4.2 TCP for Mobility 307

8.5 TCP Congestion Control 309
8.5.1 Additive Increase, Multiplicative Decrease Control 309
8.5.2 Slow-Start Method 311
8.5.3 Fast Retransmit and Fast Recovery Methods 312

8.6 Summary 315

8.7 Exercises 316

8.8 Computer Simulation Project 319
9 Basic Network Applications and Management 321
 9.1 Overview of the Application Layer 322
 9.1.1 Client/Server Model 323
 9.1.2 Graphical User Interface (GUI) 324
 9.2 Domain Name System (DNS) 325
 9.2.1 Domain Name Space 325
 9.2.2 Name/Address Mapping 327
 9.2.3 DNS Message Format 329
 9.3 Electronic Mail (E-Mail) 330
 9.3.1 Basic E-Mail Structure and Definitions 330
 9.3.2 Simple Mail Transfer Protocol (SMTP) 333
 9.3.3 Post Office Protocol, Version 3 (POP3) 334
 9.3.4 Internet Mail Access Protocol (IMAP) 335
 9.4 World Wide Web (WWW) 335
 9.4.1 Hypertext Transfer Protocol (HTTP) 336
 9.4.2 Web Caching (Proxy Server) 341
 9.4.3 Webmail 342
 9.5 Remote Login Protocols 342
 9.5.1 TELNET Protocol 343
 9.5.2 Secure Shell (SSH) Protocol 344
 9.6 File Transfer and FTP 346
 9.6.1 File Transfer Protocol (FTP) 346
 9.6.2 Secure Copy Protocol (SCP) 346
 9.7 Peer-to-Peer (P2P) Networking 347
 9.7.1 P2P File Sharing Protocols 348
 9.7.2 P2P Database Sharing Protocols 353
 9.7.3 Estimation of Peer Connection Efficiency 355
 9.8 Network Management 356
 9.8.1 Elements of Network Management 358
 9.8.2 Structure of Management Information (SMI) 359
 9.8.3 Management Information Base (MIB) 359
 9.8.4 Simple Network Management Protocol (SNMP) 360
 9.9 Summary 362
 9.10 Exercises 363
 9.11 Computer Simulation Projects 366
10 Network Security 369
10.1 Overview of Network Security 370
 10.1.1 Elements of Network Security 370
 10.1.2 Classification of Network Attacks 371
10.2 Security Methods 375
10.3 Symmetric-Key Cryptography 377
 10.3.1 Data Encryption Standard (DES) 377
 10.3.2 Advanced Encryption Standard (AES) 379
10.4 Public-Key Cryptography 380
 10.4.1 RSA Algorithm 381
 10.4.2 Diffie-Hellman Key-Exchange Protocol 382
10.5 Authentication 383
 10.5.1 Hash Function 383
 10.5.2 Secure Hash Algorithm (SHA) 385
10.6 Digital Signatures 387
10.7 Security of IP and Wireless Networks 387
 10.7.1 IP Security and IPsec 387
 10.7.2 Security of Wireless Networks and IEEE 802.11 389
10.8 Firewalls and Packet Filtering 391
 10.8.1 Packet Filtering 393
 10.8.2 Proxy Server 395
10.9 Summary 396
10.10 Exercises 397
10.11 Computer Simulation Project 399

PART II: Advanced Concepts 401

11 Network Queues and Delay Analysis 403
11.1 Little’s Theorem 404
11.2 Birth-and-Death Process 406
11.3 Queueing Disciplines 408
11.4 Markovian FIFO Queueing Systems 409
 11.4.1 $M/M/1$ Queueing Systems 409
 11.4.2 Systems with Limited Queueing Space: $M/M/1/b$ 414
 11.4.3 $M/M/a$ Queueing Systems 415
 11.4.4 Models for Delay-Sensitive Traffic: $M/M/\infty$ 420
 11.4.5 $M/M/\infty$ Queueing Systems 422
Contents

11.5 Non-Markovian and Self-Similar Models 424
11.5.1 Pollaczek-Khinchin Formula and $M/G/1$ 424
11.5.2 $M/D/1$ Models 427
11.5.3 Self-Similarity and Batch-Arrival Models 427
11.6 Networks of Queues 428
11.6.1 Burke’s Theorem 428
11.6.2 Jackson’s Theorem 433
11.7 Summary 437
11.8 Exercises 438
11.9 Computer Simulation Project 444

12 Advanced Router and Switch Architectures 445
12.1 Overview of Router Architecture 446
12.2 Input Port Processor (IPP) 447
12.2.1 Packet Parser 448
12.2.2 Packet Partitioner 449
12.2.3 Input Buffer 450
12.2.4 Routing Table (IPv4 and IPv6) 450
12.2.5 Multicast Scheduler 452
12.2.6 Forwarding Table and Packet Encapsulator 452
12.3 Output Port Processor (OPP) 453
12.3.1 Output Buffer 453
12.3.2 Reassembler and Resequencer 454
12.3.3 Error Control 454
12.4 Central Controller 454
12.4.1 Contention Resolution Unit 455
12.4.2 Congestion Controller 457
12.5 Switch Fabric 457
12.5.1 Complexity of Switch Fabrics 458
12.5.2 Crossbar Switch Fabrics 459
12.5.3 Clos Switch Fabrics 460
12.5.4 Concentration and Expansion Switch Fabrics 465
12.5.5 Shared-Memory Switch Fabrics 468
12.5.6 Performance Improvement in Switch Fabrics 469
12.6 Multicasting Packets in Routers 475
12.6.1 Tree-Based Multicast Algorithm 476
12.6.2 Packet Recirculation Multicast Algorithm 479
12.7 Summary 480
12.8 Exercises 481
12.9 Computer Simulation Project 484

13 Quality of Service and Scheduling in Routers 485
13.1 Overview of Quality of Service (QoS) 486
13.2 Integrated Services QoS 486
 13.2.1 Traffic Shaping 488
 13.2.2 Admission Control 494
 13.2.3 Resource Reservation Protocol (RSVP) 495
13.3 Differentiated Services QoS 495
 13.3.1 Per-Hop Behavior (PHB) 497
13.4 Resource Allocation 497
 13.4.1 Management of Resources 498
 13.4.2 Classification of Resource-Allocation Schemes 499
 13.4.3 Fairness in Resource Allocation 500
13.5 Packet Scheduling 501
 13.5.1 First-In, First-Out Scheduler 502
 13.5.2 Priority Queueing Scheduler 503
 13.5.3 Fair Queueing Scheduler 507
 13.5.4 Weighted Fair Queueing Scheduler 508
 13.5.5 Deficit Round-Robin Scheduler 511
 13.5.6 Earliest Deadline First Scheduler 512
13.6 Summary 512
13.7 Exercises 513
13.8 Computer Simulation Project 517

14 Tunneling, VPNs, and MPLS Networks 519
14.1 Tunneling 520
 14.1.1 Point-to-Point Protocol (PPP) 521
 14.1.2 IPv6 Tunneling and Dual-Stack Lite 522
14.2 Virtual Private Networks (VPNs) 524
 14.2.1 Remote-Access VPN 526
 14.2.2 Site-to-Site VPN 526
 14.2.3 Security in VPNs 528
14.3 Multiprotocol Label Switching (MPLS) 528
 14.3.1 Labels and Label Switch Routers (LSRs) 529
 14.3.2 Label Binding and Switching 531
14.3.3 Routing in MPLS Domains 534
14.3.4 MPLS Packet Format 536
14.3.5 Multi-Tunnel Routing 537
14.3.6 Traffic Engineering 538
14.3.7 MPLS-Based VPNs 539
14.4 Summary 540
14.5 Exercises 540
14.6 Computer Simulation Project 543

15 All-Optical Networks, WDM, and GMPLS 545
15.1 Overview of Optical Networks 546
15.1.1 Fiber Optic Links 547
15.1.2 SONET/SDH Standards 547
15.1.3 Generalized MPLS (GMPLS) Protocol 548
15.1.4 Passive Optical Networks (PONs) 551
15.2 Basic Optical Networking Devices 553
15.2.1 Tunable Lasers 553
15.2.2 Optical Buffers or Delay Elements 553
15.2.3 Optical Amplifiers 553
15.2.4 Optical Filters 554
15.2.5 Wavelength-Division Multiplexer (WDM) 555
15.2.6 Optical Switches 556
15.3 Large-Scale Optical Switches 558
15.3.1 Crossbar Optical Switches 559
15.3.2 Spanke-Beneš Optical Switch 560
15.4 Structure of Optical Cross Connects (OXC)s 560
15.4.1 Structure of Wavelength Routing Nodes 561
15.5 Routing in All-Optical Networks 563
15.5.1 Wavelength Routing Versus Broadcasting 564
15.5.2 Blocking Estimation over Lightpaths 565
15.6 Wavelength Allocation in Networks 567
15.6.1 Wavelength Allocation without Dependency 568
15.6.2 Wavelength Allocation with Dependency 569
15.7 Case Study: An All-Optical Switch 569
15.7.1 Self-Routing in SSN 571
15.7.2 Wavelength Assignment in SSN 571
15.8 Summary 572
15.9 Exercises 573
15.10 Computer Simulation Project 575
16 Cloud Computing and Network Virtualization 577
 16.1 Cloud Computing and Data Centers 578
 16.1.1 Platforms and APIs 581
 16.1.2 Cloud Computing Service Models 581
 16.1.3 Data Centers 583
 16.1.4 Virtualization in Data Centers 584
 16.2 Data Center Networks (DCNs) 588
 16.2.1 Load Balancer 589
 16.2.2 Traffic Engineering 591
 16.2.3 DCN Architectures 591
 16.2.4 Multicast Methods 594
 16.3 Network Virtualization 595
 16.3.1 Network Virtualization Components 596
 16.4 Overlay Networks 600
 16.5 Summary 601
 16.6 Exercises 602
 16.7 Computer Simulation Projects 605

17 Software-Defined Networking (SDN) and Beyond 607
 17.1 Software-Defined Networking (SDN) 608
 17.1.1 Separation of Control and Data Planes 609
 17.1.2 Programmability of the Control Plane 612
 17.1.3 Standardization of Application Programming Interfaces (APIs) 613
 17.2 SDN-Based Network Model 613
 17.2.1 Control Plane 614
 17.2.2 Data Plane Interface (OpenFlow Protocol) 615
 17.3 Small-Size SDN Architectures 620
 17.3.1 Scalability of SDN 620
 17.3.2 Multicasting in SDN-Based Networks 621
 17.4 SDN Architectures for Clouds 621
 17.4.1 Software-Defined Compute and Storage 621
 17.4.2 Application Delivery in Data Centers by SDN 622
 17.5 Network Functions Virtualization (NFV) 623
 17.5.1 Abstract Model of NFV 624
 17.5.2 Distributed NFV-Based Networks 626
 17.5.3 Virtualized Services 627
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.6</td>
<td>Information-Centric Networking (ICN)</td>
<td>627</td>
</tr>
<tr>
<td>17.6.1</td>
<td>Named Objects</td>
<td>628</td>
</tr>
<tr>
<td>17.6.2</td>
<td>ICN Routing and Network Management</td>
<td>628</td>
</tr>
<tr>
<td>17.6.3</td>
<td>ICN Security</td>
<td>631</td>
</tr>
<tr>
<td>17.7</td>
<td>Network Emulators for Advanced Networks</td>
<td>632</td>
</tr>
<tr>
<td>17.7.1</td>
<td>Mininet</td>
<td>632</td>
</tr>
<tr>
<td>17.8</td>
<td>Summary</td>
<td>635</td>
</tr>
<tr>
<td>17.9</td>
<td>Exercises</td>
<td>636</td>
</tr>
<tr>
<td>17.10</td>
<td>Computer Simulation Projects</td>
<td>638</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Voice over IP (VoIP) Signaling</td>
<td>641</td>
</tr>
<tr>
<td>18.1</td>
<td>Public Switched Telephone Networks (PSTN)</td>
<td>642</td>
</tr>
<tr>
<td>18.1.1</td>
<td>SS7 Network</td>
<td>644</td>
</tr>
<tr>
<td>18.1.2</td>
<td>Circuit-Switched Networks</td>
<td>647</td>
</tr>
<tr>
<td>18.2</td>
<td>Overview of Voice over IP (VoIP)</td>
<td>649</td>
</tr>
<tr>
<td>18.3</td>
<td>H.323 Protocol</td>
<td>652</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Main Components of H.323 Protocol</td>
<td>652</td>
</tr>
<tr>
<td>18.3.2</td>
<td>H.323 Protocol Organization</td>
<td>653</td>
</tr>
<tr>
<td>18.3.3</td>
<td>RAS Signaling</td>
<td>655</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Call Signaling</td>
<td>659</td>
</tr>
<tr>
<td>18.3.5</td>
<td>Control Signaling</td>
<td>662</td>
</tr>
<tr>
<td>18.3.6</td>
<td>Conference Calling with H.323 Protocol</td>
<td>665</td>
</tr>
<tr>
<td>18.4</td>
<td>Session Initiation Protocol (SIP)</td>
<td>666</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Main Components of SIP</td>
<td>667</td>
</tr>
<tr>
<td>18.4.2</td>
<td>SIP Messages</td>
<td>669</td>
</tr>
<tr>
<td>18.4.3</td>
<td>SIP Protocol Organization</td>
<td>671</td>
</tr>
<tr>
<td>18.4.4</td>
<td>Registration Process</td>
<td>672</td>
</tr>
<tr>
<td>18.4.5</td>
<td>Call Establishment</td>
<td>673</td>
</tr>
<tr>
<td>18.4.6</td>
<td>Features and Extensions</td>
<td>674</td>
</tr>
<tr>
<td>18.5</td>
<td>Softswitch Methods and MGCP</td>
<td>678</td>
</tr>
<tr>
<td>18.6</td>
<td>VoIP and Multimedia Internetworking</td>
<td>679</td>
</tr>
<tr>
<td>18.6.1</td>
<td>SIP to H.323 Internetworking</td>
<td>679</td>
</tr>
<tr>
<td>18.6.2</td>
<td>SIP to PSTN Internetworking</td>
<td>681</td>
</tr>
<tr>
<td>18.6.3</td>
<td>Wireless Cellular Multimedia Internetworking</td>
<td>682</td>
</tr>
<tr>
<td>18.7</td>
<td>Summary</td>
<td>684</td>
</tr>
<tr>
<td>18.8</td>
<td>Exercises</td>
<td>685</td>
</tr>
<tr>
<td>18.9</td>
<td>Computer Simulation Projects</td>
<td>689</td>
</tr>
</tbody>
</table>
19 Media Exchange and Voice/Video Compression 693
 19.1 Overview of Data Compression 694
 19.2 Digital Voice and Compression 695
 19.2.1 Sampling 695
 19.2.2 Quantization and Encoding 696
 19.3 Still Images and JPEG Compression 701
 19.3.1 Raw-Image Sampling and DCT 702
 19.3.2 Quantization 705
 19.3.3 Encoding 706
 19.4 Moving Images and MPEG Compression 707
 19.5 Compression Methods with Loss 709
 19.5.1 Basics of Information Theory 710
 19.5.2 Entropy of Information 710
 19.5.3 Shannon’s Coding Theorem 711
 19.5.4 Compression Ratio and Code Efficiency 713
 19.6 Compression Methods without Loss 713
 19.6.1 Run-Length Encoding 714
 19.6.2 Huffman Encoding 715
 19.6.3 Lempel-Ziv Encoding 716
 19.7 Scanned Document Compression 717
 19.8 Summary 718
 19.9 Exercises 719
 19.10 Computer Simulation Project 724

20 Distributed and Cloud-Based Multimedia Networking 725
 20.1 Real-Time Media Exchange Protocols 726
 20.1.1 Real-Time Transport Protocol (RTP) 727
 20.1.2 Analysis of Jitter in RTP Traffic 731
 20.1.3 Real-Time Transport Control Protocol (RTCP) 732
 20.1.4 Real Time Streaming Protocol (RTSP) 735
 20.1.5 Stream Control Transmission Protocol (SCTP) 735
 20.1.6 HTTP-Based Streaming 740
 20.2 Distributed Multimedia Networking 741
 20.2.1 Content Distribution (Delivery) Networks (CDNs) 741
 20.2.2 IP Television (IPTV) and VoD 745
 20.2.3 Online Gaming 751
20.3 Cloud-Based Multimedia Networking 751
 20.3.1 Distributed Media Mini-Clouds 752
 20.3.2 Cloud-Based Interactive Voice Response (IVR) 754
20.4 Self-Similarity and Non-Markovian Streaming 756
 20.4.1 Self-Similarity with Batch Arrival Models 757
20.5 Summary 759
20.6 Exercises 761
20.7 Computer Simulation Project 764

21 Mobile Ad-Hoc Networks 765
21.1 Overview of Wireless Ad-Hoc Networks 766
21.2 Routing in Ad-Hoc Networks 767
 21.2.1 Classification of Routing Protocols 768
21.3 Routing Protocols for Ad-Hoc Networks 769
 21.3.1 Destination-Sequenced Distance-Vector (DSDV) Protocol 769
 21.3.2 Cluster-Head Gateway Switch Routing (CGSR) Protocol 771
 21.3.3 Wireless Routing Protocol (WRP) 772
 21.3.4 Dynamic Source Routing (DSR) Protocol 773
 21.3.5 Temporally Ordered Routing Algorithm (TORA) 774
 21.3.6 Associativity-Based Routing (ABR) Protocol 775
 21.3.7 Ad-Hoc On-Demand Distance Vector (AODV) Protocol 776
21.4 Security of Ad-Hoc Networks 783
 21.4.1 Types of Attacks 783
 21.4.2 Criteria for a Secure Routing Protocol 784
21.5 Summary 785
21.6 Exercises 786
21.7 Computer Simulation Projects 787

22 Wireless Sensor Networks 789
22.1 Sensor Networks and Protocol Structures 790
 22.1.1 Clustering in Sensor Networks 790
 22.1.2 Protocol Stack 791
 22.1.3 Sensor Node Structure 793
22.2 Communication Energy Model 794
22.3 Clustering Protocols 799
 22.3.1 Classification of Clustering Protocols 800
 22.3.2 LEACH Clustering Protocol 800
Contents

22.3.3 DEEP Clustering Protocol 801
22.3.4 Reclustering 805

22.4 Routing Protocols 805
 22.4.1 Intracluster Routing Protocols 806
 22.4.2 Intercluster Routing Protocols 808

22.5 Other Related Technologies 811
 22.5.1 ZigBee Technology and IEEE 802.15.4 811

22.6 Case Study: Simulation of a Sensor Network 812
 22.6.1 Cluster-Head Constellation and Distribution of Load 812
 22.6.2 Optimum Percentage of Cluster Heads 814

22.7 Summary 814
22.8 Exercises 815
22.9 Computer Simulation Projects 815

A Glossary of Acronyms 817

B RFCs 823

C Probabilities and Stochastic Processes 827
 C.1 Probability Theory 827
 C.1.1 Bernoulli and Binomial Sequential Laws 828
 C.1.2 Counting and Sampling Methods 828
 C.2 Random Variables 828
 C.2.1 Basic Functions 829
 C.2.2 Conditional Functions 829
 C.2.3 Popular Random Variables 830
 C.2.4 Expected Value and Variance 831
 C.2.5 A Function of a Random Variable 832
 C.3 Multiple Random Variables 832
 C.3.1 Basic Functions of Two Random Variables 833
 C.3.2 Two Independent Random Variables 833
 C.4 Stochastic (Random) Processes 834
 C.4.1 IID Random Process 834
 C.4.2 Brownian Motion Random Process 834
 C.5 Theory of Markov Chains 835
 C.5.1 Continuous-Time Markov Chains 835

D Erlang-B Blocking Probability Table 837

Index 841
Preface

This textbook represents more than a decade of work. During this time, some material became obsolete and had to be deleted. In my days as a telecommunication engineer and then a university professor, much has changed in the fields of data communications and computer networks. Nonetheless, this text covers both the foundations and the latest advanced topics of computer communications and networking.

The Internet is a revolutionary communication vehicle by which we all conveniently communicate every day and do business with one another. Because of its complexities at both hardware and software levels, the Internet is a challenge to those who want to study this field. The growing number and variety of communication services introduces other challenges to experts of computer networks. Such experts are in need of effective references having in-depth balanced analysis, architecture, and description, and enabling them to better design emerging communication networks. This book fills the gaps in current available texts.

Objectives

This textbook offers a mix of theory, architecture, and applications in computer networking. The lack of computer communications books presenting moderate analysis with detailed figures covering both wireline and wireless communication technologies led me to write this book. The main objective of this book is to help readers learn the fundamentals and certain advanced concepts of computer and communication networks, using a unified set of symbols throughout a single textbook. The preparation of this book responds to the explosive demand for learning computer communication science and engineering.
This book targets two groups of people. For people in academia, at both the undergraduate and graduate levels, the book provides a thorough design and performance evaluation of communication networks. The book can also give researchers the ability to analyze and simulate complex communication networks. For engineers who want to work in the communication and networking industry and need a reference covering various angles of computer networks, this book provides a variety of learning techniques: exercises, case studies, and computer simulation projects. The book makes it easy and fun for an engineer to review and learn from a reliable networking reference covering all the necessary concepts and performance models.

Organization of This Book

The range of topics presented in this text allows instructors to choose the topics best suited for their classes. Besides the explanations provided in each chapter, readers will learn how to model a communication network and how to mathematically analyze it. Readers of this text will benefit from the combination of theory and applications presented in each chapter, with the more theoretical portions of each chapter challenging those readers who are more ambitious.

This book is organized into 22 chapters in two main parts, as follows. The ten chapters of Part I cover the fundamental topics in computer networking, with each chapter serving as a base for the following chapter. Part I of the book begins with an overview of networking, focusing on TCP/IP schemes, describing routing and multicasting in regular networks and wireless networks, and ending with a discussion of network applications, P2P networking, network management, and security. Part I is most appropriate for readers with no experience in computer communications. The 12 chapters in Part II cover detailed analytical aspects and offer a closer perspective of advanced networking protocols: architectures of switches and routers, delay and congestion analysis, label switching, virtual private networks, optical networks, cloud computing, SDN, data compression, voice over IP (VoIP), multimedia networking, ad-hoc networking, and sensor networks. An overview of the 22 chapters is as follows:

- **Chapter 1, Packet-Switched Networks**, introduces computer networks, touching on the need for networks, explaining relevant packet-switched networks, and giving an overview of today’s Internet. Fundamental concepts, such as messages, packets, and frames and packet switching versus circuit switching, are defined. Various types of packet-switched networks are defined, and how a
message can be handled by either connection-oriented networks or connectionless networks is explained. The second part of the chapter presents basics of the five- and seven-layer Internet Protocol reference models, as well as Internet and addressing scheme. Finally, this chapter presents a detailed analysis of packet size and optimization.

- Chapter 2, Overview of Networking Devices, introduces the overall architectures of regular and wireless networking devices. The chapter starts with introducing network interface cards (NICs), followed by switching and routing devices, such as hubs, bridges, switches, and routers. These devices are used to switch packets from one path to another. The devices include both wireline and wireless devices used as user, server, or network equipment. Networking modems are used for access to the Internet from remote and residential areas. Finally, multiplexers are used in all layers of a network and are utilized to combine data from multiple lines into one line.

- Chapter 3, Data Links and Link Interfaces, focuses on the links and transmission interfaces, the two basic components that networking starts with. This chapter presents both wired and wireless links and describes their characteristics, advantages, and channel access methods. This chapter also presents various error-detection and correction techniques at the link level and discusses the integrity of transmitted data. The chapter further presents link-layer stop-and-wait and sliding-window flow controls. We then proceed to presenting methods of link and then channel access by multiple users, both in regular and wireless environments. Finally, at the end of the chapter, the link aggregation method is described. The method combines multiple network links to increase throughput beyond what a single link can sustain. Link aggregation also has a second benefit of providing redundancy in case one of the links fails. We then introduce the well-known Link Aggregation Control Protocol (LACP).

- Chapter 4, Local Area Networks and Networks of LANs, explores the implementation of small networks, using the functional aspects of the fundamental knowledge gained in Chapters 1, 2, and 3 on basic protocols, devices, and links, respectively. The chapter provides some pointers for constructing a network with those devices and making connections, gives several examples of local area networks (LANs), and explains how such LANs are internetworked. Next, the chapter explores address conversion protocols by which addresses at layers 2 and 3 are converted to one another. The chapter at this point proceeds to the very important topic of the Spanning-Tree Protocol (STP). STP prevents frames or
packets from the looping that causes infinite circulation of frames in a network. Virtual LANs (VLANs) are the next topic. A VLAN methodology allows a single LAN to be partitioned into several seemingly and virtually separate LANs. At the end of the chapter, a reader can see an overview of wireless local area networks including WiFi, and wireless LANs and associated standards such as IEEE 802.11.

- **Chapter 5, Wide-Area Routing and Internetworking**, focuses on routing in wide area networks (WANs) and introduces related routing algorithms and protocols. We begin the chapter with some IP packet format and basic routing policies such as the Internet Control Message Protocol (ICMP), Dynamic Host Configuration Protocol (DHCP), and Network Address Translation (NAT). We then proceed to explain path selection algorithms such as the Open Shortest Path First (OSPF) protocol, and the Routing Information Protocol (RIP) followed by the interdomain routing protocols with a focus on the Border Gateway Protocol (BGP) covering both internal BGP (iBGP) and external BGP (eBGP). The chapter then presents IPv6 and its packet format. The chapter finally covers congestion-control algorithms at the network layer: network-congestion control and link-flow control, and especially looks at random early detection for congestion control and describes a useful technique to estimate the link-blocking probability.

- **Chapter 6, Multicast Routing and Protocols**, covers the multicast extension of routing protocols in the Internet. First, the chapter defines basic terms and algorithms: multicast group, multicast addresses, and multicast tree algorithms, which form the next set of foundations for understanding packet multicast in the Internet. Two main classes of protocols are discussed: intradomain multicast routing protocols, by which packets are multicast within a domain; and interdomain routing protocol, by which packet multicast among domains is managed.

- **Chapter 7, Wireless Wide Area Networks and LTE Technology**, presents the basics of wireless wide area networking. The chapter discusses challenges in designing a wireless network: management of mobility, network reliability, and frequency reuse. The chapter then shifts to cellular networks, one of the main backbones of our wireless wide area networking infrastructure. The mobile IP in cellular networks is then presented, in which a mobile user can make a data connection while changing its location. The chapter then focuses on wireless mesh networks (WMNs). Finally, the chapter proceeds to the presentation of the fourth-generation wireless wide area networks called Long-Term Evolution (LTE).
• **Chapter 8, Transport and End-to-End Protocols**, first looks at the basics of the transport layer and demonstrates how a simple file is transferred. This layer handles the details of data transmission. Several techniques for Transmission Control Protocol (TCP) congestion control are discussed. Next, congestion-avoidance methods, which are methods of using precautionary algorithms to avoid a possible congestion in a TCP session, are presented. The chapter ends with a discussion of methods of congestion control.

• **Chapter 9, Basic Network Applications and Management**, presents the fundamentals of the application layer, which determines how a specific user application should use a network. Among the applications are the Domain Name System (DNS); e-mail protocols, such as SMTP and Webmail, the World Wide Web (WWW), remote login, File Transfer Protocol (FTP), and peer-to-peer (P2P) networking. Finally, the chapter proceeds to the presentation of network management techniques and protocol.

• **Chapter 10, Network Security**, focuses on security aspects of networks. After introducing network threats, hackers, and attacks, this chapter discusses cryptography techniques: public- and symmetric-key protocols, encryption standards, key-exchange algorithms, authentication methods, digital signature and secure connections, firewalls, IPsec, and security methods for virtual private networks. This chapter also covers some security aspects of wireless networks.

• **Chapter 11, Network Queues and Delay Analysis**, begins Part II of the book by discussing how packets are queued in buffers. Basic modeling theorems are presented such as Little’s theorem, the Markov chain theorem, and birth and death processes. Queueing-node models are presented with several scenarios: finite versus infinite queueing capacity, one server versus several servers, and Markovian versus non-Markovian systems. Non-Markovian models are essential for many network applications, as multimedia traffic cannot be modeled by Markovian patterns. In addition, delay analysis, based on networks of queues, is discussed. Burke’s theorem is applied in both serial and parallel queueing nodes. Jackson’s theorem is presented for situations in which a packet visits a particular queue more than once, resulting in loops or feedback.

• **Chapter 12, Advanced Router and Switch Architectures**, looks inside structures of advanced Internet devices such as switches and routers. The chapter begins with general characteristics and block diagrams of switches and routers followed by basic features of input port processors (IPPs) and output port processors (OPPs) as the interfacing processors to central controllers and switch fabrics.
The details of IPPs and OPPs with several regular IP and IPv6 examples for building blocks such as routing tables, packet parsers, and packet partitioners are presented. A number of switch fabric structures are introduced starting with the building block of crossbar switch fabric. In particular, a case study at the end of chapter combines a number of buffered crosspoints to form a buffered crossbar. A number of other switch architectures—both blocking and nonblocking, as well as shared-memory, concentration-based, and expansion-based switching networks—are presented. The chapter also introduces packet multicast techniques and algorithms used within the hardware of switches and routers.

- **Chapter 13, Quality of Service and Scheduling in Routers**, covers quality-of-service issues in networking. The two broad categories of QoS discussed are the integrated services approach, for providing service quality to networks that require maintaining certain features in switching nodes; and the differentiated services approach (DiffServ), which is based on providing quality-of-service support to a broad class of applications. These two categories include a number of QoS protocols and architectures, such as traffic shaping, admission control, packet scheduling, reservation methods, the Resource Reservation Protocol (RSVP), and traffic conditioner and bandwidth broker methods. This chapter also explains fundamentals of resource allocation in data networks.

- **Chapter 14, Tunneling, VPNs, and MPLS Networks**, starts by introducing a useful Internet technique called tunneling, used in advanced, secured, and high-speed networking. The chapter explains how networks can be tunneled to result in virtual private networks (VPNs) by which a private-sector entity tunnels over the public networking infrastructure, maintaining private connections. Another related topic in this chapter is multiprotocol label switching (MPLS) networks, in which networks use labels and tunnels to expedite routing.

- **Chapter 15, All-Optical Networks, WDM, and GMPLS**, presents principles of fiber-optic communications and all-optical switching and networking. The optical communication technology uses principles of light emission in a glass medium, which can carry more information over longer distances than electrical signals can carry in a copper or coaxial medium. The discussion on optical networks starts with basic optical devices, such as optical filters, wavelength-division multiplexers (WDMs), optical switches, and optical buffers and optical delay lines. After detailing optical networks using routing devices, the chapter discusses wavelength reuse and allocation as a link in all-optical networks.
Generalized multiprotocol label switching (GMPLS) technology, which is similar to MPLS studied in the previous chapter, is applied to optical networks and is also studied in this chapter. The chapter ends with a case study on an optical switching network, presenting a new topology: the spherical switching network (SSN).

- **Chapter 16, Cloud Computing and Network Virtualization**, covers basics of cloud computing, large data centers, networking segments of data centers, and virtualization in networking. Data center and cloud computing architectures continue to target support for tens of thousands of servers, massive data storage, terabits per second of traffic, and tens of thousands of tenants. First, the chapter defines basic terms such as virtualization, virtual machines, and the structure of large data centers constructed from server racks and large data bases. The chapter also presents data center networks (DCNs). In a data center, server and storage resources are interconnected with packet switches and routers to construct the DCN.

- **Chapter 17, Software-Defined Networking (SDN) and Beyond**, covers primarily advanced paradigms in control and management of networks. Growth at the infrastructure and applications of the Internet causes profound changes in the technology ecosystems of Internet-related industries. Software-Defined Networking (SDN) is a networking paradigm by which a central software program known as “controller” (or SDN controller) determines and controls the overall network behavior resulting in potential improvement in the network performance. This chapter focuses on the fundamentals of SDN and a couple of other alternative innovative networking features, and describes the details of related topics such as OpenFlow switches and flow tables in switches. Protocols such as network functions virtualization (NFV) and Information-Centric Networking (ICN) are other advanced network control and management topics covered in this chapter. Finally, the chapter concludes with a section that presents network emulators such as the Mininet emulator.

- **Chapter 18, Voice over IP (VoIP) Signaling**, presents the signaling protocols used in voice over IP (VoIP) telephony and multimedia networking. The chapter starts with reviewing the basics of call control and signaling in the traditional Public Switched Telephone Network (PSTN). The chapter then presents two important voice over IP (VoIP) protocols designed to provide real-time service to the Internet, the Session Initiation Protocol (SIP) and the H.323 series
of protocols. At the end of the chapter, a reader can find presentations on a series of internetworking examples between a set of callers, each supplied through a different Internet service provider and a different protocol.

- **Chapter 19, Media Exchange and Voice/Video Compression**, focuses on data-compression techniques for voice and video to prepare digital voice and video for multimedia networking. The chapter starts with the analysis of information-source fundamentals, source coding, and limits of data compression, and explains all the steps of the conversion from raw voice to compressed binary form, such as sampling, quantization, and encoding. The chapter also summarizes the limits of compression and explains typical processes of still-image and video-compression techniques, such as JPEG, MPEG, and MP3.

- **Chapter 20, Distributed and Cloud-Based Multimedia Networking**, presents the transport of real-time voice, video, and data in multimedia networking. The chapter first presents protocols designed to provide real-time transport, such as the Real-time Transport Protocol (RTP). Also discussed are the HTTP-based streaming which is a reliable TCP-based streaming, and the Stream Control Transmission Protocol (SCTP), which provides a general-purpose transport protocol for transporting stream traffic. The next topic is streaming video using content distribution (delivery) networks (CDNs). We then present Internet Protocol television (IPTV). IPTV is a system through which television services are delivered using the Internet. Video on demand (VoD) as a unique feature of IPTV is also described in this chapter. Next, cloud-based multimedia networking is introduced. This type of networking consists of distributed and networked services of voice, video, and data. For example, voice over IP (VoIP), video streaming, or interactive voice response (IVR) for recognizing human voice, can be distributed in various clouds of services. The chapter ends with detailed streaming source modeling using self-similarity analysis.

- **Chapter 21, Mobile Ad-Hoc Networks**, presents a special type of wireless network, known as a mobile ad-hoc network (MANET). Ad-hoc networks do not need any fixed infrastructure to operate and they support dynamic topology scenarios where no wired infrastructure exists. The chapter explains how a mobile user can act as a routing node and how a packet is routed from a source to its destination without having any static router in the network. The chapter also discusses table-driven routing protocols such as DSDV, CGSR, and WRP, and also source-initiated routing protocols, as well as DSR, ABR, TORA, and AODV. At the end of the chapter, we discuss the security of ad-hoc networks.
• Chapter 22, Wireless Sensor Networks, presents an overview of such sensor networks and describes intelligent sensor nodes, as well as an overview of a protocol stack for sensor networks. The chapter explains how the “power” factor distinguishes the routing protocols of sensor networks from those of computer networks and describes clustering protocols in sensor networks. These protocols specify the topology of the hierarchical network partitioned into nonoverlapping clusters of sensor nodes. The chapter also presents a typical routing protocol for sensor networks, leading to a detailed numerical case study on the implementation of a clustering protocol. This chapter ends with ZigBee technology, based on IEEE standard 802.15.4. This technology uses low-power nodes and is a well-known low-power standard.

Exercises and Computer Simulation Projects

A number of exercises are given at the end of each chapter. The exercises normally challenge readers to find the directions to solutions in that chapter. The answers to the exercises may be more elusive, but this is typical of real and applied problems in networking. These problems encourage the reader to go back through the text and pick out what the instructor believes is significant.

Besides typical exercises, there are numerous occasions for those who wish to incorporate projects into their courses. The computer simulation projects are normally meant to be a programming project but the reader can use a simulation tool of choice to complete a project. Projects listed at the end of a chapter range from computer simulations to partial incorporation of hardware design in a simulation.

Appendixes

The book’s appendixes make it essentially self-sufficient. Appendix A, Glossary of Acronyms, defines acronyms. Appendix B, RFCs, encourages readers to delve more deeply into each protocol presented in the book by consulting the many requests for comments (RFCs) references. Appendix C, Probabilities and Stochastic Processes, reviews probabilities, random variables, and random processes. Appendix D, Erlang-B Blocking Probability Table, provides a numerically expanded version of the Erlang-B formula presented in Chapter 11. This table can be used in various chapters to estimate traffic blocking, which is one of the main factors in designing a computer network.
Instructions and Instructor Supplements

This textbook can be used in a variety of ways. An instructor can use Part I of the book for the first graduate or a senior undergraduate course in networking. Part II of the text is aimed at advanced graduate courses in computer networks. An instructor can choose the desired chapters, depending on the need and the content of the course. The following guidelines suggest the adoption of chapters for five different courses:

- **First undergraduate course in Computer Networking**: Chapters 1, 2, 3, 4, and 5 and another chapter such as part of Chapter 6, 7, 8, or 9.
- **First graduate course in Computer Networking**: Chapters 1 through 10 with less emphasis on Chapters 1 and 2.
- **Second graduate course in Advanced Computer Networking**: Chapters 11 through 17.
- **Graduate course in Convergent Data, Voice and Video over IP**: Chapters 7, 9, 16, 18, 19, and 20.
- **Graduate course in Wireless Networking**: Chapters 2, 3, 4, 7, 9, 16, 21, and 22, and other wireless network examples presented in various chapters such the wireless VoIP signaling covered in Chapter 18.

An instructor’s solutions manual and other instructional material, such as PowerPoint presentations, will be available to instructors. Instructors should go to Pearson’s Instructor Resource Center (http://www.pearsonhighered.com/educator/profile/ircHomeTab.page) for access to ancillary instructional materials.

Acknowledgments

Writing a text is rarely an individual effort. Many experts from industry and academia graciously provided help. I would like to thank them all very warmly for their support. Many of them have given me invaluable ideas and support during this project. I should acknowledge all those scientists, mathematicians, professors, engineers, authors, and publishers who helped me in this project.

I am honored to publish this book with the world’s greatest publishing company, Prentice Hall. I wish to express my deep gratitude to everyone there who made an effort to make this project succeed. In particular, I would like to thank editor-in-chief Mark L. Taub and senior acquisitions editor Trina MacDonald for all their advice. Trina, with her outstanding professional talent, provided me with invaluable information and directed me toward the end of this great and challenging project. I would also like to
thank managing editor John Fuller, full-service production manager Julie Nahil, development editor Songlin Qiu, freelance project manager Vicki Rowland, freelance copy editor/proofreader Andrea Fox, and all the other experts for their outstanding work but whom I did not get a chance to acknowledge by name in this section, including the marketing manager, the compositors, the indexer, and the cover designer; many thanks to all. Last but not least, I would like to thank Pearson sales representative Ellen Wynn, who enthusiastically introduced the first edition of my manuscript to the publisher.

I am deeply grateful to the technical editors, and all advisory board members of this book. In particular, I thank Professor George Scheets, Professor Zongming Fei, and Dr. Parviz Yegani for making constructive suggestions that helped me reshape the book to its present form. In addition, I would like to especially recognize the following people, who provided invaluable feedback from time to time during the writing phases of the first and second editions of the book. I took all their comments seriously and incorporated them into the manuscript. I greatly appreciate their time spent on this project.

Professor Nirwan Ansari (New Jersey Institute of Technology)
Professor Mohammed Atiquzzaman (University of Oklahoma)
Dr. Radu Balan (Siemens Corporate Research)
Dr. Greg Bernstein (Grotto Networking)
R. Bradley (About.com)
Deepak Biala (OnFiber Communications)
Dr. Robert Cane (VPP, United Kingdom)
Kevin Choy (Atmel, Colorado)
Dr. Kamran Eftekhar (University of California, San Diego)
Professor Zongming Fei (University of Kentucky)
Dr. Carlos Ferari (JTN-Network Solutions)
Dr. Jac Grolan (Alcatel)
Professor Jim Griffioen (University of Kentucky)
Ajay Kalambor (Cisco Systems)
Parviz Karandish (Softek, Inc.)
Aurna Ketaraju (Intel)
Dr. Hardeep Maldia (Sermons Communications)
Will Morse (Texas Safe-Computing)
Professor Sarhan Musa (P. V. Texas A&M University)
Professor Achille Pattavina (Politecnico di Milano TNG)
Dr. Robert J. Paul (NsIM Communications)
Bala Peddireddi (Intel)
Christopher H. Pham (Cisco Systems)
Jasmin Sahara (University of Southern California)
Dipti Sathe (Altera Corporation)
Dr. Simon Sazeman (Sierra Communications and Networks)
Professor George Scheets (Oklahoma State University)
Professor Mukesh Singhal (University of Kentucky)
Professor Kazem Sohraby (University of Arkansas)
Dr. Richard Stevensson (BoRo Comm)
Professor Jonathan Turner (Washington University)
Kavitha Venkatesan (Cisco Systems)
Dr. Belle Wei (California State University, Chico)
Dr. Steve Willmard (SIM Technology)
Dr. Parviz Yegani (Juniper Networks)
Dr. Hemeret Zokhil (JPLab)

I am thankful to my graduate students who helped me throughout the long phase of preparing the manuscript of this textbook. Over the past several years, more than 112 of my graduate students read various portions of this book and made constructive comments. I wish them all the best for their honest support and verbal comments on early versions of this book used in my class lectures. I am especially thankful to the following graduate students who voluntarily reviewed some sections of the book while taking my networking courses: Howard Chan, Robert Bergman, Eshetie Liku, Andrew Cole, Jonathan Hui, Lisa Wellington, and Sithaporn Pumpichet. Special thanks to Marzieh Veyseh for making all the information about sensor networks available for Chapter 22.

Last but not least, I am indebted to my parents who opened the door to the best education for me and supported me all my life; and above all, I want to thank my family who supported and encouraged me in spite of all the time it took me away from them to work on this book. It was a long and difficult journey for them.
How to Contact the Author

Please feel free to send me any feedback at the Department of Electrical Engineering, Charles W. Davidson College of Engineering, San Jose State University, San Jose, California 95192, U.S.A., or via e-mail at nader.mir@sjsu.edu. I would love to hear from you, especially if you have suggestions for improving this book. I will carefully read all review comments. You can find out more about me at www.engr.sjsu.edu/nmir. I hope that you enjoy the text and that you receive from it a little of my enthusiasm for computer communications and networks.

—Nader F. Mir
San Jose, California
This page intentionally left blank
Nader F. Mir received the B.Sc. degree (with honors) in electrical engineering in 1985, and the M.Sc. and Ph.D. degrees, both in electrical engineering, from Washington University in St. Louis, Missouri, in 1990 and 1995, respectively.

He is currently a professor, and served as the associate chair, at the Department of Electrical Engineering, Charles W. Davidson College of Engineering, San Jose State University, California. He also serves as the academic coordinator of the university’s special graduate programs offered at several Silicon Valley companies such as Lockheed-Martin Space Systems Company.

Dr. Mir is a well-known expert in patent and technology litigation cases in the areas of communications, telecommunications, and computer networks, and has worked as a patent consultant for leading companies in the field such as Google, Cisco, Netflix, Sony, Tekelec, and YouTube (Google).

Dr. Mir is internationally known through his research and scholarly work, and has been invited to speak at a number of major international conferences. He has published more than 100 refereed technical journal and conference articles, all in the field of communications and computer networking. This textbook is now a worldwide adopted university textbook and has been translated into several languages, such as Chinese.

He was granted a successful U.S. Patent (Patent 7,012,895 B1), claiming an invention related to hardware/protocol for use in high-speed computer communication networks.

Dr. Mir has received a number of prestigious national and university awards and research grants. He is the recipient of a university teaching award and also a university
research excellence award. He is also the recipient of a number of outstanding presentation awards from leading international conferences.

He is currently the technical editor of *IEEE Communications Magazine*. He has held several other editorial positions such as editor of *Journal of Computing and Information Technology*, guest editor for computer networking at *CIT Journal*, and editorial board member of the *International Journal of Internet Technology and Secured Transactions*. He is a senior member of the IEEE and has also served as a member of the technical program committee and steering committee for a number of major IEEE communications and networking conferences such as WCNC, GLOBECOM, and ICC and ICCCCN conferences.

Prior to his current position, he was an associate professor at his current school, and assistant professor at University of Kentucky in Lexington. From 1994 to 1996, he was a research scientist at the Advanced Telecommunications Institute, Stevens Institute of Technology in New Jersey, working on the design of advanced communication systems and high-speed computer networks. From 1990 to 1994, he was with the Computer and Communications Research Center at Washington University in St. Louis and worked as a research assistant on the design and analysis of a high-speed switching systems project. From 1985 to 1988, he was with Telecommunication Research & Development Center (TRDC), Surrey, and as a telecommunications system research and development engineer, participated in the design of a high-speed digital telephone Private Branch Exchange (PBX), and received the best “design/idea” award.
This page intentionally left blank
CHAPTER 1

Packet-Switched Networks

Computer and communication networks provide a wide range of services, from simple networks of computers to remote-file access to digital libraries, voice over IP (VoIP), Internet gaming, cloud computing, video streaming and conferencing, television over Internet, wireless data communication, and networking billions of users and devices. Before exploring the world of computer and communication networks, we need to study the fundamentals of packet-switched networks as the first step. Packet-switched networks are the backbone of the data communication infrastructure. Therefore, our focus in this chapter is on the big picture and the conceptual aspects of this backbone highlighted as:

- Basic definitions in networks
- Types of packet-switched networks
- Packet size and optimizations
- Foundation of networking protocols
- Addressing scheme in the Internet
- Equal-sized packet model
Chapter 1. Packet-Switched Networks

We start with the basic definitions and fundamental concepts, such as messages, packets, and frames, and packet switching versus circuit switching. We learn what the Internet is and how Internet service providers (ISPs) are formed. We then proceed to types of packet-switched networks and how a message can be handled by either connection-oriented networks or connectionless networks. Because readers must get a good understanding of packets as data units, packet size and optimizations are also discussed.

We next briefly describe specific type of networks used in the Internet. Users and networks are connected together by certain rules called protocols. The Internet Protocol (IP), for example, is responsible for using prevailing rules to establish paths for packets. Protocols are represented by either the TCP/IP model or the OSI model. The five-layer TCP/IP model is a widely accepted Internet backbone protocol structure. In this chapter, we give an overview of these five layers and leave any further details to be discussed in the remaining chapters. Among these five layers, the basics of IP packets and network addressing are designated a separate section in this chapter, entitled IP Packets and Addressing. We make this arrangement because basic definitions related to this layer are required in the following few chapters.

As numerous protocols can be combined to enable the movement of packets, the explanation of all other protocols will be spread over almost all upcoming chapters. In the meantime, the reader is cautiously reminded that getting a good grasp of the fundamental material discussed in this chapter is essential for following the details or extensions described in the remainder of the book. At the end of this chapter, the equal-sized packet protocol model is briefly introduced.

1.1 Basic Definitions in Networks

Communication networks have become essential media for homes and businesses. The design of modern computer and communication networks must meet all the requirements for new communication applications. A ubiquitous broadband network is the goal of the networking industry. Communication services need to be available anywhere and anytime. The broadband network is required to support the exchange of multiple types of information, such as voice, video, and data, among multiple types of users, while satisfying the performance requirement of each individual application. Consequently, the expanding diversity of high-bandwidth communication applications calls for a unified, flexible, and efficient network. The design goal of modern communication networks is to meet all the networking demands and to integrate capabilities of networks in a broadband network.
Packet-switched networks are the building blocks of computer communication systems in which data units known as packets flow across networks. The goal of a broadband packet-switched network is to provide flexible communication in handling all kinds of connections for a wide range of applications, such as telephone calls, data transfer, teleconferencing, video broadcasting, and distributed data processing. One obvious example for the form of traffic is multi-rate connections, whereby traffic containing several different bit rates flows to a communication node. The form of information in packet-switched networks is always digital bits. This kind of communication infrastructure is a significant improvement over the traditional telephone networks known as circuit-switched networks.

1.1.1 Packet Switching Versus Circuit Switching

Circuit-switched networks, as the basis of conventional telephone systems, were the only existing personal communication infrastructures prior to the invention of packet-switched networks. In the new communication structure, voice and computer data are treated the same, and both are handled in a unified network known as a packet-switched network, or simply an integrated data network. In conventional telephone networks, a circuit between two users must be established for communication to occur. Circuit-switched networks require resources to be reserved for each pair of end users. This implies that no other users can use the already dedicated resources for the duration of network use and thus the reservation of network resources for each user may result in inefficient use of available bandwidth.

Packet-switched networks with a unified, integrated data network infrastructure collectively known as the Internet can provide a variety of communication services requiring different bandwidths. The advantage of having a unified, integrated data network is the flexibility to handle existing and future services with remarkably better performance and higher economical resource utilizations. An integrated data network can also derive the benefits of central network management, operation, and maintenance. Numerous requirements for integrated packet-switched networks are explored in later chapters:

- Having robust routing protocols capable of adapting to dynamic changes in network topology
- Maximizing the utilization of network resources for the integration of all types of services
Chapter 1. Packet-Switched Networks

- Providing quality of service to users by means of priority and scheduling
- Enforcing effective congestion-control mechanisms that can minimize dropping packets

Circuit-switched networking is preferred for real-time applications. However, the use of packet-switched networks, especially for the integration and transmission of voice and data, results in the far more efficient utilization of available bandwidth. Network resources can be shared among other eligible users. Packet-switched networks can span a large geographical area and comprise a web of switching nodes interconnected through transmission links. A network provides links among multiple users facilitating the transfer of information. To make efficient use of available resources, packet-switched networks dynamically allocate resources only when required.

1.1.2 Data, Packets, and Frames

A packet-switched network is organized as a multilevel hierarchy. In such a network, digital data are fragmented into one or more smaller units of data, each appended with a header to specify control information, such as the source and the destination addresses, while the remaining portion carries the actual data, called the payload. This new unit of formatted message is called a packet, as shown in Figure 1.1. Packets are forwarded to a data network to be delivered to their destinations. In some circumstances, packets may also be required to be attached together or further partitioned, forming a new packet having a new header. One example of such a packet is referred to as frame. Sometimes, a frame may be required to have more than one header to carry out additional tasks in multiple layers of a network.

As shown in Figure 1.2, two packets, A and B, are being forwarded from one side of a network to the other side. Packet-switched networks can be viewed from...
either an external or an internal perspective. The external perspective focuses on the network services provided to the upper layers; the internal perspective focuses on the fundamentals of network topology, the structure of communication protocols, and addressing schemes.

A single packet may even be split into multiple smaller packets before transmission. This well-known technique is called packet fragmentation. Apart from measuring the delay and ensuring that a packet is correctly sent to its destination, we also focus on delivering and receiving packets in a correct sequence when the data is fragmented. The primary function of a network is directing the flow of data among the users.

1.1.3 The Internet and ISPs

The Internet is the collection of hardware and software components that make up our global communication network. The Internet is indeed a collaboration of interconnected communication vehicles that can network all connected communicating devices and equipment and provide services to all distributed applications. It is almost impossible to plot an exact representation of the Internet, since it is continuously being expanded or altered. One way of imagining the Internet is shown in Figure 1.3, which illustrates a big-picture view of the worldwide computer network.

To connect to the Internet, users need the services of an Internet service provider (ISP). ISPs consist of various networking devices. One of the most essential networking devices is a router. Routers are network “nodes” that can operate to collectively form a network and to also connect ISPs together. Routers contain information about the network routes, and their tasks are to route packets to requested destinations.

Users, networking devices, and servers are connected together by communication links. Routers operate on the basis of one or more common routing protocols. In

![Figure 1.2](image-url)
computer networks, the entities must agree on a protocol, a set of rules governing data communications and defining when and how two users can communicate with each other. Each country has three types of ISPs:

- National ISPs
- Regional ISPs
- Local ISPs

![Diagram of the Internet, a global interconnected network](image)

At the top of the Internet hierarchy, national ISPs connect nations or provinces together. The traffic between each two national ISPs is very heavy. Two ISPs are connected together through complex switching nodes called border routers (or gateway routers). Each border router has its own system administrator. In contrast, regional ISPs are smaller ISPs connected to a national ISP in a hierarchical chart.

Each regional ISP can give services to part of a province or a city. The lowest networking entity of the Internet is a local ISP. A local ISP is connected to a regional ISP or directly to a national service provider and provides a direct service to end users called hosts. An organization that supplies services to its own employees can also be a local ISP.
1.1 Basic Definitions in Networks

Figure 1.4 illustrates a different perspective of the global interconnected network. Imagine the global network in a hierarchical structure. Each ISP of a certain hierarchy or tier manages a number of other network domains at its lower hierarchy. The structure of such networks resembles the hierarchy of nature from the universe to atoms and molecules. Here, Tier 1, Tier 2, and Tier 3 represent, respectively, a national ISP, a regional ISP, and a local ISP.

1.1.4 Classification of ISPs

In most cases, a separate network managed by a network administrator is known as a *domain*, or an *autonomous system*. A domain is shown by a cloud in this book. Figure 1.5 shows several domains. An autonomous system can be administered by an *Internet service provider* (ISP). An ISP provides Internet access to its users. Networks under management of ISPs can be classified into two main categories: *wide area networks* (WANs) and *local area networks* (LANs). A wide area network can be as large as the entire infrastructure of the data network access system known as the Internet.
A communication network can also be of wireless type both at LAN or WAN scales. We refer to such networks as wireless networks.

Figure 1.5 shows several major WANs each connected to several smaller networks such as a university campus network. Depending on the size of the network, a smaller network can be classified as a LAN or as a WAN. The major WANs are somehow connected together to provide the best and fastest communication for customers. One of the WANs is a wide area wireless network that connects wireless or mobile users to destination users. We notice that aggregated traffic coming from wireless equipment such as smartphone and a mobile laptop in the wide area wireless network is forwarded to a link directed from a major node. The other WAN is the telephone network known as public-switched telephone network (PSTN) that provides telephone services.

As an example of the local area network, a university campus network is connected to the Internet via a router that connects the campus to an Internet service provider. ISP users from a residential area are also connected to an access point router of the wide area ISP, as seen in the figure. Service providers have varying policies to overcome the problem of bandwidth allocations on routers. An ISP’s routing server is conversant with
the policies of all other service providers. Therefore, the “ISP server” can direct the received routing information to an appropriate part of the ISP. Finally, on the left side of Figure 1.5, we see the data center network connected to the wide area packet-switched network. Cloud computing data centers contain databases and racks of servers that provide brilliant data processing services; these are discussed in detail in Chapter 16.

Network nodes (devices) such as routers are key components that allow the flow of information to be switched over other links. When a link failure occurs in a packet-switched network, the neighboring routers share the fault information with other nodes, resulting in updating of the routing tables. Thus, packets may get routed through alternative paths bypassing the fault. Building the routing table in a router is one of the principal challenges of packet-switched networks. Designing the routing table for large networks requires maintaining data pertaining to traffic patterns and network topology information.

1.2 Types of Packet-Switched Networks

Packet-switched networks are classified as connectionless networks and connection-oriented networks, depending on the technique used for transferring information. The simplest form of a network service is based on the connectionless protocol that does not require a call setup prior to transmission of packets. A related, though more complex, service is the connection-oriented protocol in which packets are transferred through an established virtual circuit between a source and a destination.

1.2.1 Connectionless Networks

Connectionless networks, or datagram networks, achieve high throughput at the cost of additional queuing delay. In this networking approach, a large piece of data is normally fragmented into smaller pieces, and then each piece of data is encapsulated into a certain “formatted” header, resulting in the basic Internet transmission packet, or datagram. We interchangeably use packets and datagrams for connectionless networks. Packets from a source are routed independently of one another. In this type of network, a user can transmit a packet anytime, without notifying the network layer. A packet is then sent over the network, with each router receiving the packet forwarding it to the best router it knows, until the packet reaches the destination.

The connectionless networking approach does not require a call setup to transfer packets, but it has error-detection capability. The main advantage of this scheme is its capability to route packets through an alternative path in case a fault is present on the
desired transmission link. On the flip side, since packets belonging to the same source may be routed independently over different paths, the packets may arrive out of sequence; in such a case, the misordered packets are resequenced and delivered to the destination.

Figure 1.6 (a) shows the routing of three packets, packets 1, 2, and 3, in a connectionless network from point A to point B. The packets traverse the intermediate nodes in a store-and-forward fashion, whereby packets are received and stored at a node on a route; when the desired output port of the node is free for that packet, the output is forwarded to its next node. In other words, on receipt of a packet at a node, the packet must wait in a queue for its turn to be transmitted. Nevertheless, packet loss may still occur if a node’s buffer becomes full. The node determines the next hop read from the packet header. In this figure, the first two packets are moving along the path A, D, C, and B, whereas the third packet moves on a separate path, owing to congestion on path A–D.

The delay model of the first three packets discussed earlier is shown in Figure 1.7. The total transmission delay for a message three packets long traversing from the source node A to the destination node B can be approximately determined. Let t_p be the propagation delay between each of the two nodes, t_f be the time it takes to inject a packet onto a link, and t_r be the total processing delay for all packets at each node. A packet is processed once it is received at a node. The total transmission delay, D_p, for n_b nodes and n_p packets, in general is

$$D_p = [n_p + (n_b - 2)]t_f + (n_b - 1)t_p + n_b t_r. \quad (1.1)$$

In this equation, t_r includes a certain crucial delay component, primarily known as the packet-queueing delay plus some delay due to route finding for it. At this point,
we focus only on t_p and t_f, assume t_r is known or given, and will discuss the queueing delay and all components of t_r in later chapters, especially in Chapter 11.

Example. Figure 1.7 shows a timing diagram for the transmission of three (instead of two) packets on path A, D, C, B in Figure 1.6(a). Determine the total delay for transferring these three packets from node A to node B.

Solution. Assume that the first packet is transmitted from the source, node A, to the next hop, node D. The total delay for this transfer is $t_p + t_f + t_r$. Next, the packet is similarly transferred from node D to the next node to ultimately reach node B. The delay for each of these jumps is also $t_p + t_f + t_r$. However, when all three packets are released from node A, multiple and simultaneous transmissions of packets become possible. This means, for example, while packet 2 is being processed at node A, packet 3 is processed at node D. Figure 1.7 clearly shows this parallel processing of packets. Thus, the total delay for all three packets to traverse the source and destination via two intermediate nodes is $D_p = 3t_p + 5t_f + 4t_r$.

Connectionless networks demonstrate the efficiency of transmitting a large message as a whole, especially in noisy environments, where the error rate is high. It is obvious that the large message should be split into packets. Doing so also helps reduce the maximum delay imposed by a single packet on other packets. In fact, this realization resulted in the advent of connectionless packet switching.

1.2.2 Connection-Oriented Networks

In connection-oriented networks, or virtual-circuit networks, a route setup between a source and a destination is required prior to data transfer, as in the case of conventional telephone networks. In this networking scheme, once a connection or a path
is initially set up, network resources are reserved for the communication duration, and all packets belonging to the same source are routed over the established connection. After the communication between a source and a destination is finished, the connection is terminated using a connection-termination procedure. During the call setup, the network can offer a selection of options, such as best-effort service, reliable service, guaranteed delay service, and guaranteed bandwidth service, as explained in various sections of upcoming chapters.

Figure 1.6 (b) shows a connection-oriented network. The connection set-up procedure shown in this figure requires three packets to move along path A, D, C, and B with a prior connection establishment. During the connection set-up process, a virtual path is dedicated, and the forwarding routing tables are updated at each node in the route. Figure 1.6 (b) also shows acknowledgement packets in connection-oriented networks initiated from destination node B to source node A to acknowledge the receipt of previously sent packets to source node. The acknowledgement mechanism is not typically used in connectionless networks. Connection-oriented packet switching typically reserves the network resources, such as the buffer capacity and the link bandwidth, to provide guaranteed quality of service and delay. The main disadvantage in connection-oriented packet-switched networks is that in case of a link or switch failure, the call set-up process has to be repeated for all the affected routes. Also, each switch needs to store information about all the flows routed through the switch.

The total delay in transmitting a packet in connection-oriented packet switching is the sum of the connection set-up time and the data-transfer time. The data-transfer time is the same as the delay obtained in connectionless packet switching. Figure 1.8 shows the overall delay for the three packets presented in the previous example. The transmission of the three packets starts with connection request packets and then
connection accept packets. At this point, a circuit is established, and a partial path bandwidth is reserved for this connection. Then, the three packets are transmitted. At the end, a connection release packet clears and removes the established path.

The estimation of total delay time, \(D_t \), to transmit \(n_p \) packets is similar to the one presented for connectionless networks. For connection-oriented networks, the total time consists of two components: \(D_p \), which represents the time to transmit packets, and \(D_c \), which represents the time for the control packets. The control packets’ time includes the transmission delay for the connection request packet, the connection accept packet, and the connection release packet:

\[
D_t = D_p + D_c. \tag{1.2}
\]

Another feature, called cut-through switching, can significantly reduce the delay. In this scheme, the packet is forwarded to the next hop as soon as the header is received and the destination is parsed. We see that the delay is reduced to the aggregate of the propagation times for each hop and the transfer time of one hop. This scheme is used in applications in which retransmissions are not necessary. Optical fiber transmission has a very low loss rate and hence uses cut-through switching to reduce the delay in transmitting a packet. We will further explain the concept of cut-through switching and its associated devices in Chapters 2 and 12.

1.3 Packet Size and Optimizations

Packet size has a substantial impact on the performance of data transmission. Consider Figure 1.9, which compares the transmission of a 16-byte message from node A to node B through nodes D and C. Assume that for this transmission we would like to compare the transmission of the message with two different packet

![Figure 1.9](image-url)
sizes but each requiring the same-size packet header of 3 bytes. In the first scheme
shown in part (a) of the figure, the message is converted to a packet, P_1, with
16-byte payload and 3-byte header. When the packet is received by node B, a total
of 57-byte units have elapsed. If the message is fragmented into two packets, P_1 and
P_2, of 8 bytes each as shown in part (b) of the figure, the total elapsed time becomes
44-byte units of delay.

The reason for the time reduction in the second case is the parallel transmission
of two packets at nodes D and C. The parallel transmission of multiple packets
can be understood better by referring again to Figure 1.7 or 1.8 in which the times
of packets 2 and 1 are coinciding on the times of packets 3 and 2 in nodes D or
C. The trend of delay reduction using smaller packets, however, is reversed at a
certain point, owing to the dominance of packet overhead when a packet becomes
very small.

To analyze packet size optimization, consider a link with a speed of s b/s or a rate
of μ packets per second. Assume that packets of size $d + h$ are sent over this link at
the rate λ packets per second, where d and h are the sizes of the packet data and the
packet header, respectively, in bits. Clearly,

$$\mu = \frac{s}{d + h}. \tag{1.3}$$

We define link utilization to be $\rho = \lambda/\mu$. Then the percentage of link utilization used
by data, ρ_d, is obtained by

$$\rho_d = \rho \left(\frac{d}{d + h} \right). \tag{1.4}$$

The average delay per packet, D, can be calculated by using $\mu - \lambda$, where this term
exhibits how close the offered load is to the link capacity:

$$D = \frac{1}{\mu - \lambda}. \tag{1.5}$$

Using Equations (1.3) and (1.4), we can rewrite the average delay per packet as

$$D = \frac{1}{\mu(1 - \rho)} = \frac{d + h}{s(1 - \rho)} = \frac{d + h}{s \left[1 - \frac{\rho_d}{d} (d + h) \right]}. \tag{1.6}$$
1.4 Foundation of Networking Protocols

Apparently, the optimum size of a packet depends on several contributing factors. Here, we examine one of the factors by which the delay and the packet size become optimum. For optimality, consider d as one possible variable, where we want

$$\frac{\partial D}{\partial d} = 0.$$ \hspace{1cm} (1.7)

This releases the two optimum values (we skip from the detail of derivation):

$$d_{opt} = b \left(\frac{\sqrt{\rho_d}}{1 - \sqrt{\rho_d}} \right)$$ \hspace{1cm} (1.8)

and

$$D_{opt} = \frac{b}{s} \left(\frac{\sqrt{\rho_d}}{1 - \sqrt{\rho_d}} \right)^2.$$ \hspace{1cm} (1.9)

Note that here, d_{opt} and D_{opt} are optimized values of d and D, respectively, given only the mentioned variables. The optimality of d and D can also be derived by using a number of other factors that will result in a more accurate approach.

1.4 Foundation of Networking Protocols

As discussed earlier in this chapter, users and networks are connected together by certain rules and regulations called network communication protocols. The Internet Protocol (IP), for example, is responsible for using prevailing rules to establish paths for packets. Communication protocols are the intelligence behind the driving force of packets and are tools by which a network designer can easily expand the capability of networks. One growth aspect of computer networking is clearly attributed to the ability to conveniently add new features to networks. New features can be added by connecting more hardware devices, thereby expanding networks. New features can also be added on top of existing hardware, allowing the network features to expand.

Protocols of communication networks are represented by either the TCP/IP model or its older version, the OSI model. The five-layer TCP/IP model is a widely accepted Internet backbone protocol structure. In this section, we describe the basics of these five layers and leave further details to be discussed in the remaining chapters.
However, among these five layers, the basics of IP packets and network addressing are designated a separate section, 1.5 IP Packets and Addressing. As stated before, we make this arrangement because basic definitions related to this layer are required in the following chapters, mostly in Part I of this book.

1.4.1 Five-Layer TCP/IP Protocol Model

The basic structure of communication networks is represented by the *Transmission Control Protocol/Internet Protocol* (TCP/IP) model. This model is structured in five layers. An end system, an intermediate network node, or each communicating user or program is equipped with devices to run all or some portions of these layers, depending on where the system operates. These five layers, shown in Figure 1.10, are as follows:

1. Physical layer
2. Link layer
3. Network layer
4. Transport layer
5. Application layer

![Figure 1.10](image_url)
Layer 1, known as the physical layer, defines electrical aspects of activating and maintaining physical links in networks. The physical layer represents the basic network hardware. The physical layer also specifies the type of medium used for transmission and the network topology. The details of this layer are explained in later chapters, especially in Chapters 3, 4, 6, 13, 15, 17, and 20.

Layer 2, the link layer, provides a reliable synchronization and transfer of information across the physical layer for accessing the transmission medium. Layer 2 specifies how packets access links and are attached to additional headers to form frames when entering a new networking environment, such as a LAN. Layer 2 also provides error detection and flow control. This layer is discussed further in Chapters 3 and 4 and the discussion is extended in almost all other chapters.

Layer 3, the network layer (IP) specifies the networking aspects. This layer handles the way that addresses are assigned to packets and the way that packets are supposed to be forwarded from one end point to another. Some related parts of this layer are described in Chapters 5, 6, and 7, and the discussion is extended in other chapters such as Chapters 10, 12, 13, 14, 15, 16, 21, and 22.

Layer 4, the transport layer, lies just above the network layer and handles the details of data transmission. Layer 4 is implemented in the end points but not in network routers and acts as an interface protocol between a communicating device and a network. Consequently, this layer provides logical communication between processes running on different hosts. The concept of the transport layer is discussed in Chapter 8, and the discussion is extended in other chapters such as Chapters 9, 14, 17, 18, 20, 21, and 22.

Layer 5, the application layer, determines how a specific user application should use a network. Among such applications are the Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), and the World Wide Web (WWW). The details of layer 5 are described in Chapter 9, and descriptions of other advanced applications such as voice over IP (VoIP) are extended in other chapters such as Chapters 18, 19, and 20.

The transmission of a given message between two users is carried out by (1) flowing the data down through each and all layers of the transmitting end, (2) sending it to certain layers of protocols in the devices between two end points, and (3) when the message arrives at the other end, letting the data flow up through the layers of the receiving end until it reaches its destination.

Hosts
A network host is a computing device connected to a computer network and is assigned a network layer address. A host can offer information resources, services, and applications to users or other nodes on the network. Figure 1.10 illustrates a
scenario in which different layers of protocols are used to establish a connection between two hosts. A message is transmitted from host 1 to host 2, and, as shown, all five layers of the protocol model participate in making this connection. The data being transmitted from host 1 is passed down through all five layers to reach router R1. Router R1 is located as a gateway to the operating regions of host 1 and therefore does not involve any tasks in layers 4 and 5. The same scenario is applied at the other end: router R2. Similarly, router R2, acting as a gateway to the operating regions of host 2, does not involve any tasks in layers 4 and 5. Finally at host 2, the data is transmitted upward from the physical layer to the application layer.

The main idea of the communication protocol stack is that the process of communication between two end points in a network can be partitioned into layers, with each layer adding its own set of special related functions. Figure 1.11 shows a different way of realizing protocol layers used for two hosts communicating through two routers. This figure illustrates a structural perspective of a communication setup and identifies the order of fundamental protocol layers involved.

1.4.2 Seven-Layer OSI Model

The open systems interconnection (OSI) model was the original standard description for how messages should be transmitted between any two points. To the five TCP/IP layers, OSI adds the following two layers below the application layer:

1. **Layer 5**, the session layer, which sets up and coordinates the applications at each end
2. **Layer 6** the presentation layer, which is the operating system part that converts incoming and outgoing data from one presentation format to another

The tasks of these two additional layers are dissolved into the application and transport layers in the newer five-layer TCP/IP model. The OSI model is becoming less popular. TCP/IP is gaining more attention, owing to its stability and its ability to offer better communication performance. Therefore, this book focuses on the five-layer model.

![Figure 1.11](image) Structural view of protocol layers for two hosts communicating through two routers
1.5 Addressing Scheme in the Internet

An addressing scheme is clearly a requirement for communications in a computer network. With an addressing scheme, packets are forwarded from one location to another. Each of the three layers, 2, 3, and 4, of the TCP/IP protocol stack model produces a header, as indicated in Figure 1.12. In this figure, host 1 communicates with host 2 through a network of seven nodes, R1 through R7, and a payload of data encapsulated in a frame by the link layer header, the network layer header, and the transport layer header is carried over a link. Within any of these three headers, each source or destination is assigned an address as identification for the corresponding protocol layer. The three types of addresses are summarized as follows.

- **Link layer (layer 2) address.** A 6-byte (48-bit) field called Media Access Control (MAC) address that is represented by a 6-field hexadecimal number, such as 89-A1-33-2B-C3-84, in which each field is two bytes long. Every input or output of a networking device has an interface to its connected link, and every interface has a unique MAC address. A MAC address is known only locally at the link level. Normally, it is safe to assume that no two interfaces share the same MAC address. A link layer header contains both MAC addresses of a source interface and a destination interface, as seen in the figure.

- **Network layer (layer 3) address.** A 4-byte (32-bit) field called Internet Protocol (IP) address that is represented by a 4-field dot-separated number, such as 192.2.32.83, in which each field is one byte long. Every entity in a network must have an IP address in order to be identified in a communication. An IP address can be known globally at the network level. A network layer header contains both IP addresses of a source node and a destination node, as seen in the figure.

- **Transport layer (layer 4) address.** A 2-byte (16-bit) field called port number that is represented by a 16-bit number, such as 4,892. The port numbers identify the two end hosts’ ports in a communication. Any host can be running several network applications at a time and thus each application needs to be identified by another host communicating to a targeted application. For example, source host 1 in Figure 1.12 requires a port number for communication to uniquely identify an application process running on the destination host 2. A transport layer header contains the port numbers of a source host and a destination host, as seen in the figure. Note that a transport-layer “port” is a logical port and not an actual or a physical one, and it serves as the end-point application identification in a host.
Chapter 1. Packet-Switched Networks

Chapter 1. Packet-Switched Networks

1.5.1 IP Addressing Scheme

The details of the link layer header, including the MAC addresses and all other of the header’s fields are described in Chapter 4. The details of the network layer header fields, including the IP addresses and all other of the header’s fields are presented in Chapter 5. Finally, the details of the transport layer header, including the port numbers and all other of the header’s fields are explained in Chapter 8. In the meanwhile, some of the basic IP addressing schemes are presented in the next section, as understanding IP addressing will help us better understand the upcoming networking concepts.

1.5.1 IP Addressing Scheme

The IP header has 32 bits assigned for addressing a desired device on the network. An IP address is a unique identifier used to locate a device on the IP network. To make the system scalable, the address structure is subdivided into the network ID and the host ID. The network ID identifies the network the device belongs to; the host ID identifies the device. This implies that all devices belonging to the same network have a single network ID. Based on the bit positioning assigned to the network ID and the host ID, the IP address is further subdivided into classes A, B, C, D (multicast), and E (reserved), as shown in Figure 1.13.

![Figure 1.12 A typical frame structure that is forwarded over a link](image-url)
Consider the lengths of corresponding fields for each class shown in this figure:

- Class A starts with 0 followed by 7 bits of network ID and 24 bits of host ID.
- Class B starts with 10 followed by 14 bits of network ID and 16 bits of host ID.
- Class C starts with 110 followed by 21 bits of network ID and 8 bits of host ID.
- Class D starts with 1110 followed by 28 bits. Class D is used only for multicast addressing by which a group of hosts form a multicast group and each group requires a multicast address. Chapter 6 is entirely dedicated to multicast techniques and routing.
- Class E starts with 1111 followed by 28 bits. Class E is reserved for network experiments only.

For ease of use, the IP address is represented in *dot-decimal* notation. The address is grouped into four dot-separated bytes. For example, an IP address with 32 bits of all 0s can be shown by a dot-decimal form of 0.0.0.0 where each 0 is the representation of 00000000 in a logic bit format.

A detailed comparison of IP addressing is shown in the Table 1.1. Note that in this table, each of the “number of available network addresses” and the “number of available
Chapter 1. Packet-Switched Networks

Table 1.1 Comparison of IP addressing schemes

<table>
<thead>
<tr>
<th>Class</th>
<th>Bits to Start</th>
<th>Size of Network ID Field</th>
<th>Size of Host ID Field</th>
<th>Number of Available Network Addresses</th>
<th>Number of Available Host Addresses per Network</th>
<th>Start Address</th>
<th>End Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>7</td>
<td>24</td>
<td>126</td>
<td>16,777,214</td>
<td>0.0.0.0</td>
<td>127.255.255.255</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>16,382</td>
<td>65,534</td>
<td>128.0.0.0</td>
<td>191.255.255.255</td>
</tr>
<tr>
<td>C</td>
<td>110</td>
<td>21</td>
<td>8</td>
<td>2,097,150</td>
<td>254</td>
<td>192.0.0.0</td>
<td>223.255.255.255</td>
</tr>
<tr>
<td>D</td>
<td>1110</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>224.0.0.0</td>
<td>239.255.255.255</td>
</tr>
<tr>
<td>E</td>
<td>1111</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>240.0.0.0</td>
<td>255.255.255.255</td>
</tr>
</tbody>
</table>

host addresses per network” has already been decreased by 2. For example, in class A, the size of the network ID field is indicated in the table to be $N = 7$; however, the number of available network addresses is presented as $2^N - 2 = 128 - 2 = 126$. The subtraction of 2 adjusts for the use of the all-bits-zero network ID (0 in decimal) and the all-bits-one network ID (127 in decimal). These two network IDs, 0 and 127, are reserved for management and cannot be available for any other use. The same argument is true for the number of available host addresses, where with the size of the host ID field indicated as $N = 24$, we can have $2^N - 2 = 16,777,216 - 2 = 16,777,214$ host addresses per network available for use. The last two columns of the table show the start address and the end address of each class, including the reserved addresses explained earlier.

Example. A host has an IP address of 10001000 11100101 11001001 00010000. Find the class and decimal equivalence of the IP address.

Solution. The host’s IP address belongs to class B, since it starts with 10. Its decimal equivalent is 136.229.201.16.

1.5.2 Subnet Addressing and Masking

The concept of subnetting was introduced to overcome the shortcomings of IP addressing. Managing a large number of hosts is an enormous task. For example, a company that uses a class B addressing scheme can support up to 65,535 hosts on one network. If the company has more than one network, a multiple-network address scheme, or subnet scheme, is used. In this scheme, the host ID of the original IP address is subdivided into subnet ID and host ID, as shown in Figure 1.14.
Depending on the network size, different values of subnet ID and host ID can be chosen. Doing so would prevent the outside world from being burdened by a shortage of new network addresses. To determine the subnetting number, a subnet mask—logic AND function—is used. The subnet mask has a field of all 0s for the host ID and a field of all 1s for the remaining field.

Example. Given an IP address of 150.100.14.163 and a subnet mask of 255.255.255.128, determine the maximum number of hosts per subnet.

Solution. Figure 1.15 shows the details of the solution. Masking 255.255.255.128 on the IP address results in 150.100.14.128. Clearly, the IP address 150.100.14.163 is a class B address. In a class B address, the lower 16 bits are assigned to the subnet and host fields. Applying the mask, we see that the maximum number of hosts is \(2^7 = 128\).
Example. A router attached to a network receives a packet with the destination IP address 190.155.16.16. The network is assigned an address of 190.155.0.0. Assume that the network has two subnets with addresses 190.155.16.0 and 190.155.15.0 and that both subnet ID fields have 8 bits. Demonstrate the details of routing the packet.

Solution. When it receives the packet, the router determines to which subnet the packet needs to be routed, as follows: The destination IP address is 190.155.16.16, the subnet mask used in the router is 255.255.255.0, and the result is 190.155.16.0. The router looks up its routing table for the next subnet corresponding to the subnet 190.155.16.0, which is subnet 2. When the packet arrives at subnet 2, the router determines that the destination is on its own subnet and routes the packet to its destination.

1.5.3 Classless Interdomain Routing (CIDR)

The preceding section described an addressing scheme requiring that the address space be subdivided into five classes. However, giving a certain class C address space to a certain university campus does not guarantee that all addresses within the space can be used and therefore might waste some addresses. This kind of situation is inflexible and would exhaust the IP address space. Thus, the classful addressing scheme consisting of classes A, B, C, D, and E results in an inefficient use of the address space.

A new scheme, with no restriction on the classes, emerged. Classless interdomain routing (CIDR) is extremely flexible, allowing a variable-length prefix to represent the network ID and the remaining bits of the 32-field address to represent the hosts within the network. For example, one organization may choose a 20-bit network ID, whereas another organization may choose a 21-bit network ID, with the first 20 bits of these two network IDs being identical. This means that the address space of one organization contains that of another one.

CIDR results in a significant increase in the speed of routers and has greatly reduced the size of routing tables. A routing table of a router using the CIDR address space has entries that include a pair of network IP addresses and the mask. Super-net is a CIDR technique whereby a single routing entry is sufficient to represent a group of adjacent addresses. Because of the use of a variable-length prefix, the routing table may have two entries with the same prefix. To route a packet that
matches both of these entries, the router chooses between the two entries, using the longest-prefix-match technique.

Example. Assume that a packet with destination IP address 205.101.0.1 is received by router R1, as shown in Figure 1.16. Find the final destination of the packet.

Solution. In the table entries of router R1, two routes, L1 and L2, belonging to 205.101.8.0/20 and 205.101.0.0/21, respectively, are initially matched with the packet’s IP address. CIDR protocol then dictates that the longer prefix must be the eligible match. As indicated at the bottom of this figure, link L1, with its 21-bit prefix, is selected, owing to a longer match. This link eventually routes the packet to the destination network, N3.

CIDR allows us to reduce the number of entries in a router’s table by using an *aggregate technique*, whereby all entries that have some common partial prefix can be combined into one entry. For example, in Figure 1.16, the two entries 205.101.8.0/20 and 205.101.0.0/21 can be combined into 205.101.0.0/20, saving one entry in the table. Combining entries in routing tables not only saves space but also enhances the speed of the routers, as each time, routers need to search among fewer addresses.
1.6 Equal-Sized Packets Model

A networking model in which packets are of equal size can also be constructed. Equal-sized packets, or *cells*, bring a tremendous amount of simplicity to the networking hardware, since buffering, multiplexing, and switching of cells become extremely simple. However, a disadvantage of this kind of networking is the typically high overall ratio of header to data. This issue normally arises when the message size is large and the standard size of packets is small. As discussed in Section 1.3, the dominance of headers in a network can cause delay and congestion.

One of the networking technologies established using the equal-sized packets model is *asynchronous transfer mode* (ATM). The objective of ATM technology is to provide a homogeneous backbone network in which all types of traffic are transported with the same small fixed-sized *cells*. One of the key advantages of ATM systems is flexible processing of packets (cells) at each node. Regardless of traffic types and the speed of sources, the traffic is converted into 53-byte ATM cells. Each cell has a 48-byte data payload and a 5-byte header. The header identifies the virtual channel to which the cell belongs. However, because the high overall ratio of header to data in packets results in huge delays in wide area networks, ATM is rarely deployed in networking infrastructure and therefore we do not expand our discussion on ATM beyond this section.

1.7 Summary

This chapter established a conceptual foundation for realizing all upcoming chapters. First, we clearly identified and defined all basic key terms in networking. We showed a big-picture view of computer networks in which from one side, mainframe servers can be connected to a network backbone, and from the other side, home communication devices are connected to a backbone network over long-distance telephone lines. We illustrated how an Internet service provider (ISP) controls the functionality of networks. ISPs have become increasingly involved in supporting packet-switched networking services for carrying all sorts of data, not just voice, and the cable TV industry.

The transfer of data in packet-switched networks is organized as a multilevel hierarchy, with digital messages fragmented into units of formatted messages, or packets. In some circumstances, such as local area networks, packets must be modified further, forming a smaller or larger packet known as a frame. Two types of packet-switched networks are networks using connectionless protocol, in which no particular advanced connection is required, and networks using connection-oriented protocol, in which an advance dedication of a path is required.
A packet's size can be optimized. Using the percentage of link utilization by data, ρ_d, as a main variable, we showed that the optimized packet size and the optimized packet delay depend on ρ_d. The total delay of packet transfer in a connectionless network may be significantly smaller than the one for a connection-oriented network since if you have a huge file to transfer, the set-up and tear-down times may be small compared to the file transfer time.

This chapter also covered a tremendous amount of fundamental networking protocol material. We presented the basic structure of the Internet network protocols and an overview of the TCP/IP layered architecture. This architectural model provides a communication service for peers running on different machines and exchanging messages.

We also covered the basics of protocol layers: the network layer and the structure of IPv4 and IPv6. IP addressing is further subdivided as either classful or classless. Classless addressing is more practical for managing routing tables. Finally, we compared the equal-sized packet networking environment to IP networks. Although packet multiplexing is easy, the traffic management is quite challenging.

The next chapter focuses on the fundamental operations of networking devices and presents an overview of the hardware foundations of our networking infrastructure. Networking devices are used to construct a computer network.

1.8 Exercises

1. We transmit data directly between two servers 6,000 km apart through a geostationary satellite situated 10,000 km from Earth exactly between the two servers. The data enters this network at 100Mb/s.
 (a) Find the propagation delay if data travels at the speed of light \(2.3 \times 10^8\) m/s).
 (b) Find the number of bits in transit during the propagation delay.
 (c) Determine how long it takes to send 10 bytes of data and to receive 2.5 bytes of acknowledgment back.

2. We would like to analyze a variation of Exercise 1 where servers are placed in substantially closer proximity to each other still using satellite for communication. We transmit data directly between two servers 60 m apart through a geostationary satellite situated 10,000 km from Earth exactly between the two servers. The data enters this network at 100Mb/s.
 (a) Find the propagation delay if data travels at the speed of light \(2.3 \times 10^8\) m/s).
 (b) Find the number of bits in transit during the propagation delay.
 (c) Determine how long it takes to send 10 bytes of data and to receive 2.5 bytes of acknowledgment back.
3. Stored on a flash memory device is a 200 megabyte (MB) message to be transmitted by an e-mail from one server to another, passing three nodes of a connectionless network. This network forces packets to be of size 10KB, excluding a packet header of 40 bytes. Nodes are 400 miles apart, and servers are 50 miles away from their corresponding nodes. All transmission links are of type 100Mb/s. The processing time at each node is 0.2 seconds.
 (a) Find the propagation delays per packet between a server and a node and between nodes.
 (b) Find the total time required to send this message.

4. Equation (1.2) gives the total delay time for connection-oriented networks. Let t_p be the packet propagation delay between each two nodes, t_{f1} be the data packet transfer time to the next node, and t_1 be the data packet processing time. Also, let t_{f2} be the control-packet transfer time to the next node, and t_{c2} be the control-packet processing time. Give an expression for D in terms of all these variables.

5. Suppose that a 200MB message stored on a flash memory device attached to a server is to be uploaded to a destination server through a connection-oriented packet-switched network with three serially connected nodes. This network forces packets to be of size 10KB, including a packet header of 40 bytes. Nodes are 400 miles apart from each other and each server is 50 miles away from its corresponding node. All transmission links are of type 100Mb/s. The processing time at each node is 0.2 seconds. For this purpose, the signaling packet is 500 bits long.
 (a) Find the total connection request/accept process time.
 (b) Find the total connection release process time.
 (c) Find the total time required to send this message.

6. We want to deliver a 12KB message by uploading it to the destination’s Web site through a 10-node path of a virtual-circuit packet-switched network. For this purpose, the signaling packet is 500 bits long. The network forces packets to be of size 10KB including a packet header of 40 bytes. Nodes are 500 miles apart. All transmission links are of type 1Gb/s. The processing time at each node is 100 ms per packet and the propagation speed is 2.3×10^8 m/s.
 (a) Find the total connection request/accept process time.
 (b) Find the total connection release process time.
 (c) Find the total time required to send this message.
7. Consider five serial connected nodes A, B, C, D, E and that 100 bytes of data are supposed to be transmitted from node A to E using a protocol that requires packet headers to be 20 bytes long.
 (a) Ignore t_p, t_r, and all control signals; and sketch and calculate total t_f in terms of byte-time to transmit the data for cases in which the data is converted into 1 packet, 2 packets, 5 packets, and 10 packets.
 (b) Put all the results obtained from part (a) together in one plot and estimate where the plot approximately shows the minimum delay (no mathematical work is needed, just indicate the location of the lowest delay transmission on the plot).

8. To analyze the transmission of a 10,000-bit-long packet, we want the percentage of link utilization used by the data portion of a packet to be 72 percent. We also want the ratio of the packet header, h, to packet data, d, to be 0.04. The transmission link speed is $s = 100$ Mb/s.
 (a) Find the link utilization, ρ.
 (b) Find the link capacity rate, μ, in terms of packets per second.
 (c) Find the average delay per packet.
 (d) Find the optimum average delay per packet.

9. Consider a digital link with a maximum capacity of $s = 100$ Mb/s facing a situation resulting in 80 percent utilization. Equal-sized packets arrive at 8,000 packets per second. The link utilization dedicated to headers of packets is 0.8 percent.
 (a) Find the total size of each packet.
 (b) Find the header and data sizes for each packet.
 (c) If the header size is not negotiable, what would the optimum size of packets be?
 (d) Find the delay for each optimally sized packet.

10. Develop a signaling delay chart, similar to Figures 1.7 and 1.8, for circuit-switched networks. From the mentioned steps, get an idea that would result in the establishment of a telephone call over circuit-switched networks.

11. In practice, the optimum size of a packet estimated in Equation (1.7) depends on several other contributing factors.
 (a) Derive the optimization analysis, this time also including the header size, h.
 In this case, you have two variables: d and h.
 (b) What other factors might also contribute to the optimization of the packet size?

12. Specify the class of address and the subnet ID for the following cases:
 (a) A packet with IP address 127.156.28.31 using mask pattern 255.255.255.0
 (b) A packet with IP address 150.156.23.14 using mask pattern 255.255.255.128
 (c) A packet with IP address 150.18.23.101 using mask pattern 255.255.255.128
13. Specify the class of address and the subnet ID for the following cases:
 (a) A packet with IP address 173.168.28.45 using mask pattern 255.255.255.0
 (b) A packet with IP address 188.145.23.1 using mask pattern 255.255.255.128
 (c) A packet with IP address 139.189.91.190 using mask pattern 255.255.255.128

14. Apply CIDR aggregation on the following IP addresses: 150.97.28.0/24, 150.97.29.0/24, and 150.97.30.0/24.

15. Apply CIDR aggregation on the following IP addresses: 141.33.11.0/22, 141.33.12.0/22, and 141.33.13.0/22.

16. Use the subnet mask 255.255.254.0 on the following IP addresses, and then convert them to CIDR forms:
 (a) 191.168.6.0
 (b) 173.168.28.45
 (c) 139.189.91.190

17. A certain organization owns a subnet with prefix 143.117.30.128/26.
 (a) Give an example of one of the organization’s IP addresses.
 (b) Assume the organization needs to be downsized, and it wants to partition its block of addresses and create three new subnets, with each new block having the same number of IP addresses. Give the CIDR form of addresses for each of the three new subnets.

18. A packet with the destination IP address 180.19.18.3 arrives at a router. The router uses CIDR protocols, and its table contains three entries referring to the following connected networks: 180.19.0.0/18, 180.19.3.0/22, and 180.19.16.0/20, respectively.
 (a) From the information in the table, identify the exact network ID of each network in binary form.
 (b) Find the right entry that is a match with the packet.

19. Part of a networking infrastructure consists of three routers R1, R2, and R3 and six networks N1 through N6, as shown in Figure 1.17. All address entries of each router are also given as seen in the figure. A packet with the destination IP address 195.25.17.3 arrives at router R1.
 (a) Find the exact network ID field of each network in binary form.
 (b) Find the destination network for the packet (proof needed).
 (c) Specify how many hosts can be addressed in network N1.
20. Consider an estimated population of 620 million people.
 (a) What is the maximum number of IP addresses that can be assigned per
 person using IPv4?
 (b) Design an appropriate CIDR to deliver the addressing in part (a).

21. A router with four output links L1, L2, L3, and L4 is set up based on the following
 routing table:

Mask Result	Link
192.5.150.16	L3
192.5.150.18	L2
129.95.38.0	L1
129.95.38.15	L3
129.95.39.0	L2
Unidentified	L4

 The router has a masking pattern of 255.255.255.240 and examines each packet
 using the mask in order to find the right output link. For a packet addressed to
 each of the following destinations, specify which output link is found:
 (a) 192.5.150.18
 (b) 129.95.39.10
 (c) 129.95.38.15
 (d) 129.95.38.149
22. A router with four output links L1, L2, L3, and L4 is set up based on the following routing table:

<table>
<thead>
<tr>
<th>Mask Result</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.5.150.0</td>
<td>L1</td>
</tr>
<tr>
<td>129.95.39.0</td>
<td>L2</td>
</tr>
<tr>
<td>129.95.38.128</td>
<td>L3</td>
</tr>
<tr>
<td>Unidentified</td>
<td>L4</td>
</tr>
</tbody>
</table>

The router has two masking patterns of 255.255.255.128 and 255.255.255.1 and examines each packet using these masks in the preceding order to find a right output link among L1, L2, and L3. If a mask finds one of the three outputs, the second mask is not used. Link L4 is used for those packets for which none of the masks can determine an output link. For a packet addressed to a destination having each of the following IP addresses, specify which mask pattern finds a link for the packet and then which output port (link) is found:

(a) 129.95.39.10
(b) 129.95.38.16
(c) 129.95.38.149

1.9 Computer Simulation Project

1. **Simulation of Networking Packets.** Write a computer program in C or C++ to simulate a “packet.” Each packet must have two distinct parts: header and data. The data is fixed on 10 bytes consisting of all logic 1s. The header is 9 bytes long and consists of three fields only: priority (1 byte), source address (4 bytes), and destination address (4 bytes).

(a) For a Packet A, initialize the priority field to be 0, and source and destination addresses to be 10.0.0.1 and 192.0.1.0, respectively.
(b) For a Packet B, initialize the priority field to be 1, and source and destination addresses to be 11.1.0.1 and 192.0.1.0, respectively.
(c) For a Packet C, initialize the priority field to be 0, and source and destination addresses to be 11.1.0.1 and 192.0.1.0, respectively.
(d) Demonstrate that your program can create the packets defined in parts (a), (b), and (c).
(e) Extend your program such that a comparator looks at the priority fields and destination addresses of any combination of two packets. If the destination addresses are the same, it chooses the packet with the highest priority and leaves the packet with lower priority in a register with incremented priority. Otherwise, it chooses randomly one of the packets and leaves the other one in the register with incremented priority. Show that your program is capable of choosing Packet B.
Index

4G, 258, 581

A
Abort chunks, 737
ABR (Associative-Based Routing) Protocol, 775–776
Abstract syntax notation one (ASN.1) language, 359
Access networks in IPTV, 747
Access points, 139–140
Accounting, network management for, 358
Accuracy of routing algorithms, 162
ACK frames, 148
ACK/NAK process in DHCP, 169
Acknowledgment (ACK) field, 299, 301, 304, 338
Acknowledgment number field, 299
ACMs (address release messages), 646
Acronyms, 817–822
Active attacks, 783
Ad-hoc networks, 245
MANETs. See Mobile ad-hoc networks (MANETs)
WMN support for, 279
Ad Hoc On-Demand Distance Vector (AODV) protocol
new nodes for, 782–783
route discovery and establishment in, 778–781
route maintenance in, 781–782
routing process in, 778–779
Adaptability of routing algorithms, 162
Adapters for ARP, 132
Adaptive modulation, 284
Adaptive protocols, 768
Adaptive reservation schemes, 500

Additional information field, 329–330
Additive increase, multiplicative decrease (AIMD) congestion control, 309–311
Address autoconfiguration procedure, 266–267
Address field, 147
Address family identifier field, 186
Address mapping in DNS, 327–329
Address release messages (ACMs), 646
Address Resolution Protocol (ARP), 39, 130–132
Addresses
distributed hash table objects, 353
Internet, 21–22
IP. See IP addresses
MAC, 21–22, 130–133, 153
in mobile IP, 260–261
routing tables. See Routing tables
Admission control, 494–495
Admission in RAS signaling, 657
ADSL (asymmetric DSL), 56
ADUs (application data units), 728
Advanced Encryption Standard (AES) protocol, 379–380
Agent address field, 361
Agents
mobile IP, 260–261
network management, 358
SIP, 671–683
Aggregate switches, 130, 589
Aggregate technique in CIDR, 27
Aggregation, link, 107–109
AIMD (Additive increase, multiplicative decrease) congestion control, 309–311
Alerting call-signaling messages, 659
All-optical networks, 563–566
All-optical switches, 563, 569–572
Aloha-based protocols, 105–106
American Standard Code for Information Interchange (ASCII), 331
Amplifiers in optical networks, 553–554
Amplitude shift keying (ASK), 52–53
Answer field, 329
Answer messages (ANMs), 646–647
Antennas, 48–49, 75
Anycast addresses, 198
AODV. See Ad Hoc On-Demand Distance Vector (AODV) protocol
APIs (application programming interfaces), 324–325
cloud computing, 579, 581
ICN, 628
software-defined networking, 613
Application data units (ADUs), 728
Application delivery in software-defined networking, 622–623
Application layer, 321–322
DNS, 325–330
e-mail, 330–335
FTP, 346–347
network management, 356–362
overview, 323–325
packet filtering, 394–395
peer-to-peer networks, 347–356
remote login protocols, 342–346
in TCP/IP protocol model, 19
WWW, 335–342
Application programming interfaces (APIs), 324–325
cloud computing, 579, 581
ICN, 628
software-defined networking, 613
Application service providers (ASPs), 622–623
Application-specific type RTCP packets, 732
Arbitration units, 456
Area ID field, 182
ARP (Address Resolution Protocol), 39, 130–132
ARQ (automatic repeat request)
in channel coding, 283–284
in sliding window flow control, 92
in stop-and-wait flow control, 87–88
in TCP, 298
AS (autonomous system), 189
ASCII (American Standard Code for Information Interchange), 331
ASK (amplitude shift keying), 52–53
ASN.1 (abstract syntax notation one) language, 359
ASNs (autonomous system numbers), 189
ASPs (application service providers), 622–623
Associative-Based Routing (ABR) Protocol, 775–776
Associativity in ABR, 775–776
Associativity ticks, 775–776
Asymmetric cryptography, 380
Asymmetric DSL (ADSL), 56
Asynchronous MAC protocols, 118
Asynchronous Transfer Mode (ATM) technology, 28
Attacks
on ad-hoc networks, 783–784
categories, 371–375
Attenuation, bit, 78
Audio
conferencing, 582, 751
IVR databases, 754–755
streaming, 708–709
Authentication, 383
categories, 377
cellular networks, 254
digital signatures for, 387
hash functions, 383–384
SHA, 385–387
Authentication field, 182
Authentication data field, 388
Authentication type field, 182
Authentication Web portals (AWPs), 620
Authenticity
in ad-hoc networks, 784
in security, 370
Authoritative servers, 328
Authority field, 329–330
Authorization in ad-hoc networks, 785
Automatic discovery of services, 767
Automatic repeat request (ARQ)
in channel coding, 283–284
in sliding window flow control, 92
in stop-and-wait flow control, 87–88
in TCP, 298
Automatic updates for layer 2 devices, 125
Autonomous system (AS), 189
Autonomous system numbers (ASNs), 189
Availability in cloud computing, 579
Index

Average queue length in RED, 204
Await-reply packets, 776
AWPs (authentication Web portals), 620

B
B (bidirectional) frames, 708
Back-off mode, 94
Back-off time, 143
Back-pressure signaling, 201
Backbones, 224
Balance equations in queueing, 416–420
Bandwidth
ADSL, 56
link aggregation, 107
RAS signaling, 657–658
TCP, 309
Bandwidth brokers, 496
Base station controllers (BSCs), 247, 250, 253
Base stations
cellular networks, 246–247
ICR, 808
LTE (eNodeB), 267–272, 752, 753, 756
media mini-clouds, 752–753, 756
mobile IP in, 307
sensor networks, 791
wireless, 48
Batch arrival models
queuing, 427–428
self-similarity with, 757–759
Batches of traffic units, 757
Bellman-Ford algorithm, 176–177, 185
Bernoulli random variables, 830
Bernoulli trials, 828
Best-effort models, 486, 498
BGMP (Border Gateway Multicast Protocol), 236–237
BGP (border gateway protocol), 188–189
details, 192–195
MBGP, 231–234
in MPLS, 529
packets, 190–192
Border routers, 7
Bridge port extensions (BPEs), 599
Bridge protocol data units (BPDUs), 134–135
Bridges
in LANs, 42–43, 121, 123, 128
in wireless networks, 142
Broadband networks, 4
Broadcast-and-prune algorithm, 220
Broadcast translated circuits (BTCs), 475
Broadcasts
in optical networks, 560
in star topologies, 117
in switching networks, 458
vs. wavelength routing, 564
Brownian random process, 758, 834–835
Browsers, 336
BSCs (base station controllers), 247, 250, 253
BTCs (broadcast translated circuits), 475
Bucket depth in traffic shaping, 493
Buffered switching networks, 458, 471–475
Buffers
 ARP, 39–40
 input port processors, 450
 optical networks, 553, 557
 output port processors, 453–454
Burk’s theorem, 428–432
Bursts in multimedia networking, 757–759
Bus topology, 116–117
Busy states in queuing, 408
BYE packets, 732
Bytestreams in TCP, 298

C
Cable modem termination system (CMTS), 151–152
Cable modems, 51, 57–58
Cable TV (CATV) systems, 151–152
Caching, Web, 341–342
Call agents, 678
Call establishment
 cellular networks, 250–251
 LTE, 270
 SIP, 673–674
Call-on-hold feature, 675
Call Proceeding messages, 659–661
Call progress messages (CPMs), 646–647
Call signaling, 654, 659–662
Calls in cellular networks. See Cellular networks
Cantor switch fabrics, 470–471
Capabilities exchange in control signaling, 662–663
Capability Option Negotiation field, 233
Capacity in wireless channels, 283
Carrier protocols, 521
Carrier Sense Multiple Access (CSMA) protocol, 93–97
Cascaded nodes, Burk’s theorem for, 428–431
Case studies
 all-optical switches, 569–572
 sensor network simulation, 812–814
CATV (Cable TV) systems, 151–152
CBT (core-based trees) protocol, 230–231
CC (complete call) messages, 253
CCK (complementary code keying), 145
CCN (Content-Centric Networking), 628, 630
CDF (cumulative distribution function), 829, 833
CDMA (code-division multiple access), 100–104
CDNs (content distribution [delivery] networks), 741–745
Cell sectoring, 277
Cell splitting, 276
Cells, ATM, 28
Cellular networks, 72, 246
 call establishment and termination, 250–251
 devices and operation, 247–249
 generations, 267–268
 handoffs, 253–259
 mobile IP management, 259–268
 multimedia networking, 682–684
 paging, 253
 registration and IMSI assignment, 250–251
 roaming, 252–253
Central controllers, 44–45, 454–455
 congestion controllers, 457
 contention resolution units, 455–457
Central media coordinators, 756
Central schedulers for input buffers, 450
Centralized access, 146
Centralized clustering, 800
Centralized protocols
 ad-hoc networks, 768
 MAC, 118
Centralized routing
 intradomain routing protocols, 179
 in sensor networks, 806
Certificates in SHA, 386
CFE (contention-free end) frames, 148
CGSR (Cluster-Head Gateway Switch Routing) protocol, 771–772
Channels
 ADSL, 56
 cable modem, 57
 cellular networks, 248
 coding, 283–284
 FDM, 59
 handoffs, 253–254
 TDM, 61–64
 wireless access, 97–107
 for wireless links, 280–285
Chapman-Kolmogorov theory, 256, 836
Checksum bits, 454
Checksum field, 182
Checksums, 454
 Internet, 79
 in IP packets, 161
 in TCP segments, 300
 in UDP segments, 296–297
Chipping rate in CDMA, 101
Choke packets, 201–202
Index

Chords in distributed hash tables, 354–355
Chunks
 BitTorrent, 350–351
 SCTP, 736–737
CIC (circuit identification code), 645
CIDR (Classless Interdomain Routing), 26–27, 194
Ciphersuites, 386
Ciphertext, 377
Circuit identification code (CIC), 645
Classes of IP address, 23
Classifiers, packet, 501
Classless Interdomain Routing (CIDR), 26–27, 194
Clear packets, 775
Clear to Send (CTS) frames, 148
Client/server model, 323–325
Clients
 application buffers, 740
 BitTorrent, 350
 TCP buffers, 740
 VTP modes, 139
Clipping in TDM, 64–65
Clos networks
 blocking estimates for, 462–463
 five-stage, 464–465
Clos switch fabric, 460–462
Cloud-based multimedia networking, 751–752
 IVR, 754–756
 mini-clouds, 752–753
Cloud computing, 577–578, 725–726
 content servers, 746
 data center networks, 588–595
 data centers, 578–588
 service models, 581–583
 software-defined networking, 621–623
Cluster-Head Gateway Switch Routing (CGSR) protocol, 771–772
Cluster heads, 771, 812–814
Cluster-member tables, 771
Clustering, 799–800
 classification of, 800
 DEEP, 801–805
 LEACH, 800–801
 in sensor networks, 790–791
CMTS (cable modem termination system), 151–152
Coaxial cable, 74
Cochannel cells, 273–275
Code-efficiency in compression, 713
Code field in ICMP, 164
Coding for flat fading, 284
Cognitive radios, 279
Cohen, Bram, 349
Collisions
 Carrier Sense Multiple Access protocol, 93–97
 wireless environments, 106
Collocated foreign addresses, 262
Combined switching networks, 469
Command field, 186–187
Commodification in cloud computing, 579
Common SCTP headers, 736
Communication energy model, 794–799
Community clouds, 580
Complementary code keying (CCK), 145
Complements of events, 827
Complete call (CC) messages, 253
Complexity of switching networks, 458
Compression, 693–694
 digital voice, 695–701
 lossless, 713–717
 lossy, 709–713
 moving images, 707–709
 overview, 694–695
 scanned documents, 717–718
 still images, 701–707
Compression ratio, 713
Concentration switches, 465–468
Conditional functions in probability, 829
Conferencing
 ad-hoc networks, 767
 H.323 protocol, 665–666
Confidentiality in security, 370
Configuration, network management for, 358
Congestion, 199–201
 bidirectional, 202–203
 link blocking, 205–207
 RED, 203–205
 TCP, See Transmission Control Protocol (TCP)
 unidirectional, 201–202
Congestion controllers, 457
Congestion threshold, 312
Congestion window, 309–310
Connect call-signaling messages, 659, 662
Connection accept packets, 15
Connection-oriented networks, 11–15
Connection-oriented services, 294
Connection release packet, 15
Connection request packets, 14
Connection rules in link blocking, 205–207
Connectionless networks, 11–13
Connectionless routing, 776
Connectionless services, 294
Connections
 HTTP, 338
 P2P networks, 355–356
 reliability, 259
 TCP, 301–305
Constellation diagrams, 54
Content centers in cloud-based multimedia, 752
Content-Centric Networking (CCN), 628, 630
Content control servers, 741–742
Content distribution (delivery) networks (CDNs), 741–745
Content providers, 741
Contention-access MAC protocols, 119–121
Contention access method for links, 92–93
Contention-free end (CFE) frames, 148
Contention resolution
 central controllers, 455–457
 optical networks, 557–558
Continuous probability functions, 829–830
Continuous-time Markov chains, 835–836
Continuous time stochastic processes, 834
Contributing source count (CC) field, 729
Contributing source identifier (CSRC) field, 730
Control channels in cellular networks, 248
Control chunks, 737
Control frames, 148
Control planes in software-defined networking, 609–615
Control segments, 653
Control signals, 654, 662–665, 802
Controlled-load service classes, 487
Controllers in routers, 454–457
Convergence
 RIP, 187
 routing algorithms, 163
Cookie acknowledgment chunks, 738
Copy switch fabric, 475–476
Core-based trees (CBT) protocol, 230–231
Core networks in IPTV, 746–747
Core of optical cable, 74
Core points
 CBT, 230–231
 sparse-mode algorithm, 220
Core switches, 130, 589
Costs, routing, 173, 179
Count field, 733
Count-to-infinity restrictions, 187
Counters in OpenFlow, 617
Counting in probability, 828
Couplers in optical networks, 556, 560
CPMs (call progress messages), 646–647
CRC field
 IEEE 802.11, 148
 SSH Packets, 345
CRGs. See Cyclic redundancy checks (CRCs)
Cross connect tables, 550
Crossbar switching, 459–460
buffers, 471–475
in optical networks, 559–560
Crossovers in optical networks, 558
Crosspoints
crossbar switch fabrics, 459–460
multipath buffered crosbars, 471–472
Crosstalk, 77, 558
Cryptography. See also Encryption
 overview, 375–377
 public-key, 380–383
 symmetric-key, 377–380
CSMA (Carrier Sense Multiple Access) protocol, 93–97
CSMA/CA method, 143
CTS (Clear to Send) frames, 148
Cumulative distribution function (CDF), 829, 833
Cumulative number of packets lost field, 734
Customer edge routers, 539
Cut-through switching, 15, 43–44
Cyclic redundancy checks (CRCs), 79–80
effectiveness, 83
implementing, 84
at receivers, 81–82
in routers, 454
at transmitters, 80
D
Data-acquisition phase in ICR, 810
Data-carrying frames, 148
Data center networks (DCNs), 10, 580, 588–589
 architectures, 591–594
 load balancers, 589–591
 multicast methods, 594–595
 traffic engineering, 591
Data centers (DCs)
 overview, 578–581, 583–584
<table>
<thead>
<tr>
<th>Index</th>
<th>847</th>
</tr>
</thead>
<tbody>
<tr>
<td>platforms and APIs, 581</td>
<td></td>
</tr>
<tr>
<td>service models, 581–583</td>
<td></td>
</tr>
<tr>
<td>virtualization, 584–588</td>
<td></td>
</tr>
<tr>
<td>Data/CFE-ACK frames, 149</td>
<td></td>
</tr>
<tr>
<td>Data/CFE ACK/CFE-Poll frames, 149</td>
<td></td>
</tr>
<tr>
<td>Data/CFE-Poll frames, 149</td>
<td></td>
</tr>
<tr>
<td>Data Encryption Standard (DES) protocol, 377–379</td>
<td></td>
</tr>
<tr>
<td>Data field, 120</td>
<td></td>
</tr>
<tr>
<td>Data finders in ICN, 630</td>
<td></td>
</tr>
<tr>
<td>Data frames, 148</td>
<td></td>
</tr>
<tr>
<td>Data links, 71–73</td>
<td></td>
</tr>
<tr>
<td>encoders, 75–77</td>
<td></td>
</tr>
<tr>
<td>error detection and correction in, 77–85</td>
<td></td>
</tr>
<tr>
<td>flow control, 85–92</td>
<td></td>
</tr>
<tr>
<td>link aggregation, 107–109</td>
<td></td>
</tr>
<tr>
<td>multiple user access, 92–97</td>
<td></td>
</tr>
<tr>
<td>types, 73–75</td>
<td></td>
</tr>
<tr>
<td>wireless. See Wireless links</td>
<td></td>
</tr>
<tr>
<td>Data over Cable Service Interface Specification (DOCSIS), 151–152, 552</td>
<td></td>
</tr>
<tr>
<td>Data planes, 609–611, 615–619</td>
<td></td>
</tr>
<tr>
<td>Data transfer phase for TCP, 303–304</td>
<td></td>
</tr>
<tr>
<td>Database description packets, 182</td>
<td></td>
</tr>
<tr>
<td>Database sharing in P2P networks, 347, 353–355</td>
<td></td>
</tr>
<tr>
<td>Datagram networks, 11–13</td>
<td></td>
</tr>
<tr>
<td>Datagram, 11, 325</td>
<td></td>
</tr>
<tr>
<td>DCF (distributed coordination function) algorithm, 146–147</td>
<td></td>
</tr>
<tr>
<td>DCNs. See Data center networks (DCNs)</td>
<td></td>
</tr>
<tr>
<td>DCs. See Data centers (DCs)</td>
<td></td>
</tr>
<tr>
<td>DCT (discrete cosine transform) process, 701–705</td>
<td></td>
</tr>
<tr>
<td>Decentralized clustering, 800</td>
<td></td>
</tr>
<tr>
<td>Decentralized Energy-Efficient Cluster Propagation (DEEP) protocol, 801–805</td>
<td></td>
</tr>
<tr>
<td>Decision-feedback equalizers (DFEs), 285</td>
<td></td>
</tr>
<tr>
<td>Decryption</td>
<td></td>
</tr>
<tr>
<td>AES, 380</td>
<td></td>
</tr>
<tr>
<td>RSA, 382</td>
<td></td>
</tr>
<tr>
<td>DEEP (Decentralized Energy-Efficient Cluster Propagation) protocol, 801–805</td>
<td></td>
</tr>
<tr>
<td>Deep fading, 282</td>
<td></td>
</tr>
<tr>
<td>Deficit round-robin (DRR) scheduler, 511</td>
<td></td>
</tr>
<tr>
<td>Deflected packets, 458</td>
<td></td>
</tr>
<tr>
<td>Deflection routing, 178, 557–558</td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td></td>
</tr>
<tr>
<td>connectionless networks, 12–13</td>
<td></td>
</tr>
<tr>
<td>CSMA, 95–96</td>
<td></td>
</tr>
<tr>
<td>optical networks, 553</td>
<td></td>
</tr>
<tr>
<td>packet size in, 15–17</td>
<td></td>
</tr>
<tr>
<td>priority queues, 506</td>
<td></td>
</tr>
<tr>
<td>queuing systems for, 419–420</td>
<td></td>
</tr>
<tr>
<td>software-defined networking, 610</td>
<td></td>
</tr>
<tr>
<td>Delay since last SR field, 734</td>
<td></td>
</tr>
<tr>
<td>DELETE method in HTTP, 339</td>
<td></td>
</tr>
<tr>
<td>Delta routing, 263–264</td>
<td></td>
</tr>
<tr>
<td>Demultiplexers in OFDM, 60</td>
<td></td>
</tr>
<tr>
<td>Denial-of-service attacks, 374–375</td>
<td></td>
</tr>
<tr>
<td>Dense-mode algorithm, 220</td>
<td></td>
</tr>
<tr>
<td>Dense-mode PIM, 227</td>
<td></td>
</tr>
<tr>
<td>Dependency</td>
<td></td>
</tr>
<tr>
<td>wavelength allocation with, 569</td>
<td></td>
</tr>
<tr>
<td>wavelength allocation without, 568–569</td>
<td></td>
</tr>
<tr>
<td>DES (Data Encryption Standard) protocol, 377–379</td>
<td></td>
</tr>
<tr>
<td>Designated routers (DRs)</td>
<td></td>
</tr>
<tr>
<td>IGMP, 221–222</td>
<td></td>
</tr>
<tr>
<td>PIM, 228–229</td>
<td></td>
</tr>
<tr>
<td>Designated switches, 134–135</td>
<td></td>
</tr>
<tr>
<td>Destination address field</td>
<td></td>
</tr>
<tr>
<td>Ethernet LAN frames, 120</td>
<td></td>
</tr>
<tr>
<td>IP packets, 162</td>
<td></td>
</tr>
<tr>
<td>IPv6 packets, 196</td>
<td></td>
</tr>
<tr>
<td>Destination host unreachable message, 165</td>
<td></td>
</tr>
<tr>
<td>Destination point codes (DPCs), 645</td>
<td></td>
</tr>
<tr>
<td>Destination port field</td>
<td></td>
</tr>
<tr>
<td>TCP segments, 299</td>
<td></td>
</tr>
<tr>
<td>UDP segments, 296</td>
<td></td>
</tr>
<tr>
<td>Destination port number field, 736</td>
<td></td>
</tr>
<tr>
<td>Destination ports</td>
<td></td>
</tr>
<tr>
<td>transport layer, 292</td>
<td></td>
</tr>
<tr>
<td>UDP, 296</td>
<td></td>
</tr>
<tr>
<td>Destination-Sequenced Distance Vector (DSDV) protocol, 769–771</td>
<td></td>
</tr>
<tr>
<td>DFEs (decision-feedback equalizers), 285</td>
<td></td>
</tr>
<tr>
<td>DFT (discrete Fourier transform), 60</td>
<td></td>
</tr>
<tr>
<td>DHCP (Dynamic Host Configuration Protocol), 167–169</td>
<td></td>
</tr>
<tr>
<td>DHTs (distributed hash tables), 353–355</td>
<td></td>
</tr>
<tr>
<td>Differentiated services code points (DSCPs), 497</td>
<td></td>
</tr>
<tr>
<td>Differentiated services (DS) QoS, 495–497</td>
<td></td>
</tr>
<tr>
<td>Diffie-Hellman key-exchange protocol, 382–383</td>
<td></td>
</tr>
<tr>
<td>DiffServ field, 497</td>
<td></td>
</tr>
<tr>
<td>Diffused configuration, 140</td>
<td></td>
</tr>
<tr>
<td>DIFS (distributed IFS coordination function), 147</td>
<td></td>
</tr>
<tr>
<td>Digital certificates, 386</td>
<td></td>
</tr>
<tr>
<td>Digital modulation techniques, 50–51</td>
<td></td>
</tr>
<tr>
<td>Digital signatures, 377, 387</td>
<td></td>
</tr>
<tr>
<td>Digital subscriber line (DSL) modems, 51, 55–57</td>
<td></td>
</tr>
</tbody>
</table>
Digital video broadcasting (DVB), 746
Digital voice compression
quantization and encoding in, 696–701
signal sampling in, 695–696
Dijkstra’s algorithm, 174–176, 180, 226
Direct paths for wireless links, 280
Direct routing
mobile IP, 263–264
sensor networks, 806–807
Direct-sequence spread spectrum (DSSS)
CDMA, 103–104
physical layer, 144
Direct sequences in CDMA, 103
Directed beam configuration, 140
Directed diffusion, 806
Directional antennas, 49
Directional couplers, 556
Directional transmission links, 73
Discarded packets, 458
Discovery
DHCP, 168–169
Gatekeeper, 655–656
mobile IP agents, 261
route. See Route discovery
Discrete cosine transform (DCT) process, 701–705
Discrete Fourier transform (DFT), 60
Discrete probability functions, 829
Discrete-time Markov chains, 835
Discrete time stochastic processes, 834
Disengage messages in RAS signaling, 658
Distance tables, 772
Distance vector algorithm, 776
Distance Vector Multicast Routing Protocol (DVMRP), 224–225
Distance vector routing, 184–185
Distortion in voice compression, 696–701
Distributed access, 146
Distributed coordination function (DCF) algorithm, 146–147
Distributed denial-of-service attacks, 375
Distributed hash tables (DHTs), 353–355
Distributed IFS coordination function (DIFS), 147
Distributed MAC protocols, 118
Distributed media mini-clouds, 582, 751
Distributed multimedia, 725–726
CDNs, 741–745
IPTV, 745–750
mini-clouds, 752–753
online gaming, 751
real-time exchange protocols, 726–731
VoD, 750
Distributed NFB-based networks, 626–627
Distributed protocols, 768
Distributed routing
intradomain routing protocols, 179
sensor networks, 806
Distribution networks, 467–468
Distribution of sensor network loads, 812–814
Diversity
in CDMA frequency, 104
for flat fading, 284
DNS. See Domain Name System (DNS) and servers
DOCSIS (Data over Cable Service Interface Specification), 151–152, 552
DOCSIS provisioning of EPON (DPoE), 552–553
Domain name space, 325–327
Domain Name System (DNS) and servers, 168, 325
CDN interactions with, 743–744
domain name space in, 325–327
H.323 protocol, 654–655
hacking attacks on, 371–372
message format, 329–330
name/address mapping in, 327–329
VoIP, 651
Domains
AS, 189
highjacking attacks on, 372
Doppler frequency shift, 282
Dot-decimal notation, 23
Downlinks in LTE, 273
Downstream bandwidth, ADSL, 56
Downstream on demand, 534
DPCs (destination point codes), 645
DPoE (DOCSIS provisioning of EPON), 552–553
Droppers in DiffServ, 496
DRR (deficit round-robin) scheduler, 511
DRs (designated routers)
IGMP, 221–222
PIM, 228–229
DS (differentiated services) QoS, 495–497
DSCPs (differentiated services code points), 497
DSDV (Destination-Sequenced Distance Vector) protocol, 769–771
DSL (digital subscriber line) modems, 51, 55–57
DSR (Dynamic Source Routing) protocol, 773–774
DSSS (direct-sequence spread spectrum)
Index

CDMA, 104
 physical layer, 144
Dual-stack lite standard, 523
Duration/connection ID (D/I) field, 147
DVB (digital video broadcasting), 746
DVMRP (Distance Vector Multicast Routing Protocol), 224–225
Dynamic address allocation, 168
Dynamic Host Configuration Protocol (DHCP), 167–169
Dynamic intradomain routing protocols, 179
Dynamic IP address allocation, 167
Dynamic routes with routers, 45
Dynamic Source Routing (DSR) protocol, 773–774
E
E-mail (electronic mail), 330
 IMAP, 335
 POP, 334
 SMTP, 333–334
 structure and definitions, 330–332
 Webmail, 342
EAP (Extensible Authentication Protocol), 391
EAR (energy-aware routing), 810–811
Earliest deadline first (EDF) scheduler, 511–512
eBGP (external BGP), 194
Echo, 78
Echo cancelers, 78
Echo messages in OpenFlow, 616
EDF (earliest deadline first) scheduler, 511–512
EDFAs (erbium-doped fiber amplifiers), 554
Edge switches, 129–130, 588
Efficient scheduling in data center networks, 591
Egress LSRs, 532
Electro-optical switches, 556
Electronic mail (e-mail), 330
 IMAP, 335
 POP, 334
 SMTP, 333–334
 structure and definitions, 330–332
 Webmail, 342
Emulators, network, 632–635
Encapsulation in VPNs, 521, 524
Encoded source compression, 695
Encoders, link, 75–77
Encoding in compression, 696–701, 706–707
Encryption
 ad-hoc networks, 785
 cryptographic techniques, 377–383
SSH, 344
End-to-end encryption, 376
End-to-end protocols. See Transport and end-to-end protocols
Endpoint registration in RAS signaling, 656–657
Energy-aware routing (EAR), 810–811
Energy consumption control, 583
Energy-exhaustion attacks, 784
Engset distributions, 63
eNodeB (evolved node B) in LTE, 269
Ensured forwarding PHBs, 497
Enterprise field, 361
Entity bodies in HTTP, 339–340
Entropy in lossy compression, 710–711
Entry numbers in routing tables, 451
EPC (Evolved Packet Core), 269, 271, 650
EPONs (Ethernet passive optical networks), 552
Equal-sized packet model, 28
Erbium-doped fiber amplifiers (EDFAs), 554
Erlang-B blocking estimation, 647–649
Erlang-B blocking probability, 421–422
Erlang-B blocking probability table, 837–840
Erlang-C formula, 418
Error detection and correction, 77–78
 ARP, 39–40
 CRC, 79–85
 IPv6 packets, 197
 output port processors, 454
Error index field, 361
Error status field, 361
Ethernet LANs, 119–121
Ethernet passive optical networks (EPONs), 552
Ethernet switches, 43
Events in probability, 827–828
Evolved node B (eNodeB) in LTE, 269
Evolved Packet Core (EPC), 269, 271, 650
Exclude mode in IGMP, 222
Execute action sets, 617
Exp field, 536
Expansion switch fabrics, 467–468
Expected value, 831–832
 Expedited forwarding PHBs, 497
Experiment messages, 616
Explicit multi-unicast (Xcast) protocol, 595
Explicit routing, 537, 550
Exponential random variables, 831
Express multicast, 237
Extended highest sequence number received field, 734
Extensible Authentication Protocol (EAP), 391
Extension (X) field, 729
Extensions in IPv6, 198
Extensions in SIP, 674–678
External BGP (eBGP), 194
Extra data in TCP, 314
Extranet VPNs, 526

F

Facility call-signaling messages, 659
Fading, 281–284
Failures, network management for, 357–358
Fair-queueing (FQ) scheduler, 507–508
Fairness index, 500–501
Fast Fourier transform (FFT), 60, 100
Fast recovery, congestion control, 313
Fast retransmit method, 308–309, 313–315
FAX compression, 717–718
FCFS (first come, first served) queuing systems, 408
FDM (frequency-division multiplexing), 59–61
FDMA (frequency-division multiple access), 99
Feature messages in SIP, 669
Features in SIP, 674–678
FEC (forward equivalence class), 532, 537
FEC (forward error correction), 283–284
Feedback models, 433–434
Femtocells, 269
FFT (fast Fourier transform), 60, 100
FHSS (frequency-hopping spread spectrum), 144
Fiber-optic communications, 73
Fiber optic links (FOLs), 74, 547
FIFO (first-in, first-out) queuing systems. See Markovian FIFO queuing systems
FIFO (first-in, first-out) schedulers, 502–503
File sharing protocols, 348–352
File Transfer Protocol (FTP), 346–347
Filters
 optical networks, 554, 561
 packet, 391–396
Finished (FIN) field, 300, 304
Firewalls
 operation of, 391–396
 with VPNs, 527–528
Firmware in software-defined networking, 610
First come, first served (FCFS) queuing systems, 408
First-in, first-out (FIFO) queuing systems. See Markovian FIFO queuing systems
First-in, first-out (FIFO) schedulers, 502–503
5-layer TCP/IP protocol model, 18–20
Five-stage Clos networks, 464–465
Fixed reservation schemes, 500
Fixed-size switch elements, 570
Flag field, 736
Flags field
 DNS, 329
 IP packets, 161
Flags/code field, 263
Flat fading, 282
Flexibility in cloud computing, 579
Flood attacks, 374–375
Flood routing, 177–178
Floodlight controllers, 615
Flow-based routers, 46
Flow control, 85
 sliding-window, 88–92
 stop-and-wait, 85–88
in switching networks, 458
Flow label field, 196
Flow tables, 617–618
FOLs (fiber optic links), 74, 547
Foreign addresses in mobile IP, 260, 263
Foreign agents
 cellular networks, 248
 mobile IP, 260–261
Forward equivalence class (FEC), 532, 537
Forward error correction (FEC), 283–284
Forwarding tables, 452–453
Four-level QAM, 55
FQ (fair-queueing) scheduler, 507–508
Fraction lost field, 734
Fragment-free switches, 44
Fragment offset field, 161
Fragmentation, packet, 7, 163–164, 198–199
Frame body field, 148
Frame check sequence field, 120
Frame check sequences, 118, 454
Frame collisions with links, 92
Frame control (FC) field, 147
Frame delay analysis, 95–96
Frame flow control, 39–40
Frame process units, 39
Frame-switch mode, 117
Frames
 LAN, 116
 MAC, 147–149
 MPEG, 707–708
 packet-switched networks, 6–7
Index

Frequency borrowing, 276
Frequency-division multiple access (FDMA), 99
Frequency-division multiplexing (FDM), 59–61
Frequency hopping, 103
Frequency-hopping spread spectrum (FHSS), 144
Frequency ranges, 72–73
Frequency reuse in LTE, 273–277
Frequency shift, 282
Frequency shift keying (FSK), 52–53
FTP (File Transfer Protocol), 346–347
Full-duplex links, 73
Fully connected optical networking schemes, 594
Functions
 probability, 829–830
 random variable, 832–834

G
G-LSPs (generalized label switch paths), 550–551
Gaming, online, 751
Gatekeeper discovery in RAS signaling, 655–656
Gatekeepers (GKs) in H.323 protocol, 652
Gateways
 sockets, 293
 wireless routers with, 149
Gaussian (normal) random variables, 831
General distributions, 424–425
Generalized label switch paths (G-LSPs), 550–551
Generalized labels in GMPLS, 549–550
Generalized multiprotocol label switching (GMPLS) protocol, 548
 lightpaths, 550–551
 optical cross connects and generalized labels, 549–550
 traffic grooming, 551
Generating polynomials for CRC, 82
Generator values for CRC, 82–83
Generators, checking, 81–82
Generic routing encapsulation (GRE), 527
Geometric distributions, 413
Geometric random variables, 830
Geosynchronous orbit satellite systems, 245
GET method in HTTP, 339–340
Get PDUs, 361
GIF (graphics interchange format) file compression, 703
GKs (gatekeepers) in H.323 protocol, 652
Global number of copies in tree algorithms, 476–477
Global packet resequencers, 454
Global positioning systems (GPSs), 793, 805
Global translation title (GTT), 644–645
Glossary of acronyms, 817–822
GMPLS (generalized multiprotocol label switching) protocol, 548
 lightpaths, 550–551
 optical cross connects and generalized labels, 549–550
 traffic grooming, 551
Goodbye packets, 732
Gopher protocol, 335
GPSs (global positioning systems), 793, 805
Grant flows, 473
Graphical user interfaces (GUIs)
 cloud computing, 581
 overview, 324–325
Graphics interchange format (GIF) file compression, 703
GRE (generic routing encapsulation), 527
GTT (global translation title), 644–645
Guaranteed service classes, 486–487
Guard space, 205
Guest machines, 587
Guided missiles, 73
Guided transmission links, 73
GUIs (graphical user interfaces)
 cloud computing, 581
 overview, 324–325

H
H.323 protocols, 652
 call signaling, 659–662
 components, 652–653
 conference calling, 665–666
 control signaling, 662–665
 organization, 653–655
 RAS signaling, 655–659
 SIP to H.323 internetworking, 679–680
Hacking attacks, 371–372
Half-duplex links, 73
Handoffs
 cellular networks, 253–259
 LTE, 271–273
Handshakes, three-way, 337
Hardware firewalls, 392
Hash functions, 383–384
Hash tables, 353–355
HDSL (high-bit-rate digital subscriber line), 57
HDTV (high-definition television), 707
HEAD method in HTTP, 339
Heads in IPTV, 746
Header length (HL) field
 IP packets, 160
 TCP segments, 299
Header lines in HTTP, 339–340
Headers
 BGP, 190–192
 e-mail, 331
 IPSec, 388
 IPv4, 160–162
 IPv6, 196–197
 LAN, 116
 MAC, 118
 MPLS, 530–531, 536
 OSPF, 181–182
 packet, 449
 packet-switched networks, 6–7
 RIP, 186–187
 RTCP, 732–734
 RTP, 729–731
 SCTP, 736–737
Heartbeat acknowledgment chunks, 737
Heartbeat request chunks, 737
Heavy-tailed distributions, 757, 759
HELLO messages, 616, 782–783
Hello packets, 181–183
HFC (hybrid fiber-coaxial) networks, 57
Hidden-terminal problem, 106
High-bit-rate digital subscriber line (HDSL), 57
High-capacity routers, 46
High-definition television (HDTV), 707
Highjacking attacks, 372
HLR (home location register), 248–250, 252
Hold state in RIP, 188
Hold Time field, 190
Home address field, 263
Home agents
 cellular networks, 248
 mobile IP, 260–261
Home location register (HLR), 248–250, 252
Home networks
 ad hoc, 767
 IPTV, 746, 748
Home RF LANs, 141
Home Subscriber Server (HSS), 269
Hop limit field, 196
Host-based resource allocation, 499
Host IDs in IP addresses, 22
Host machines, 587
Hosts
 intradomain routing protocols, 179
 ISP, 8
 TCP/IP protocol model, 19–20
 WMNs, 277
Hot-potato routing, 178
Hotspots in WiFi, 150
HSS (home Subscriber Server), 269
HTML (Hypertext Markup Language), 336, 755
HTTP (Hypertext Transfer Protocol), 172, 336–341
HTTP-based streaming, 740–741
HTTPS protocol, 341, 386
Hubs, 40–41
 LANs, 121, 123
 overview, 42
 star topologies, 117
Huffman encoding, 708, 715–716, 718
Hurst parameter, 758
Hybrid clouds, 579–580
Hybrid fiber-coaxial (HFC) networks, 57
Hybrid networks, 245
Hydrogen release, 614
Hyperlinks, 335
I
 components in modulation, 54
 I (interactive) frames, 708
I-TCP (Indirect Transmission Control Protocol), 307–308
IaaS (infrastructure as a service), 582
IAMs (initial address messages), 253, 645–646
iBGP (internal BGP), 194
ICANN (Internet Corporation for Assigned Names and Numbers), 165
ICMP (Internet Control Message Protocol), 164–165
ICN (information-centric networking), 627–628
 named objects, 628
 routing and management, 628–631
 security, 631–632
ICR (Intercluster Energy-Conscious Routing), 808–811
Identification field
 DNS, 329
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP packets</td>
<td>161</td>
</tr>
<tr>
<td>mobile IP</td>
<td>263</td>
</tr>
<tr>
<td>Idle states in queuing</td>
<td>408</td>
</tr>
<tr>
<td>IEEE 802.3 standard</td>
<td>119–121</td>
</tr>
<tr>
<td>IEEE 802.11 standard</td>
<td>142–143</td>
</tr>
<tr>
<td>MAC layer</td>
<td>145–149</td>
</tr>
<tr>
<td>physical layer</td>
<td>144–145</td>
</tr>
<tr>
<td>security for</td>
<td>389–391</td>
</tr>
<tr>
<td>for WiFi technology</td>
<td>150–151</td>
</tr>
<tr>
<td>IEEE 802.15.4 standard</td>
<td>811–812</td>
</tr>
<tr>
<td>IEEE 802.16 standard</td>
<td>267–268</td>
</tr>
<tr>
<td>IETF (Internet Engineering Task Force),</td>
<td>387, 679</td>
</tr>
<tr>
<td>IFS (interframe space) technique</td>
<td>146–147</td>
</tr>
<tr>
<td>IGMP (Internet Group Management Protocol),</td>
<td>221–223, 749</td>
</tr>
<tr>
<td>IGP (Interior Gateway Protocol) labels</td>
<td>536</td>
</tr>
<tr>
<td>IID (independent and identically distributed) processes</td>
<td>408, 834</td>
</tr>
<tr>
<td>IKE (Internet Key Exchange) daemons</td>
<td>389</td>
</tr>
<tr>
<td>IMAP (Internet Mail Access Protocol)</td>
<td>335</td>
</tr>
<tr>
<td>IMSI (international mobile subscriber identity)</td>
<td>249–250</td>
</tr>
<tr>
<td>In-phase QAM components</td>
<td>55</td>
</tr>
<tr>
<td>Include mode in IGMP</td>
<td>222</td>
</tr>
<tr>
<td>Increased total link bandwidth in link aggregation</td>
<td>107</td>
</tr>
<tr>
<td>Independent and identically distributed (IID) processes</td>
<td>408, 834</td>
</tr>
<tr>
<td>Independent events</td>
<td>828</td>
</tr>
<tr>
<td>Independent random variables</td>
<td>833–834</td>
</tr>
<tr>
<td>Indirect Transmission Control Protocol (I-TCP)</td>
<td>307–308</td>
</tr>
<tr>
<td>Info field</td>
<td>351</td>
</tr>
<tr>
<td>Info messages in SIP</td>
<td>677</td>
</tr>
<tr>
<td>Information-centric networking (ICN), 627–628</td>
<td></td>
</tr>
<tr>
<td>namd objects</td>
<td>628</td>
</tr>
<tr>
<td>routing and management</td>
<td>628–631</td>
</tr>
<tr>
<td>security</td>
<td>631–632</td>
</tr>
<tr>
<td>Information-compression process</td>
<td>696</td>
</tr>
<tr>
<td>Information leakage attacks</td>
<td>372</td>
</tr>
<tr>
<td>Information-level attacks</td>
<td>372</td>
</tr>
<tr>
<td>Information-source process</td>
<td>695</td>
</tr>
<tr>
<td>Information theory for lossy compression, 709–713</td>
<td></td>
</tr>
<tr>
<td>Infrared frequency spectrum</td>
<td>73</td>
</tr>
<tr>
<td>Infrared LANs</td>
<td>140–141</td>
</tr>
<tr>
<td>Infrastructure as a service (IaaS)</td>
<td>582</td>
</tr>
<tr>
<td>Ingress LSRs</td>
<td>534–535</td>
</tr>
<tr>
<td>Initial address messages (IAMS)</td>
<td>253, 645–646</td>
</tr>
<tr>
<td>Initial sequence numbers (ISNs)</td>
<td>299</td>
</tr>
<tr>
<td>Initiation chunks</td>
<td>737</td>
</tr>
<tr>
<td>Initiation acknowledgment chunks</td>
<td>737</td>
</tr>
<tr>
<td>Input port buffers</td>
<td>450, 472–473</td>
</tr>
<tr>
<td>Input port processors (IPPs)</td>
<td>44–45, 447–448</td>
</tr>
<tr>
<td>forwarding tables and packet encapsulators</td>
<td>452–453</td>
</tr>
<tr>
<td>input buffers</td>
<td>450</td>
</tr>
<tr>
<td>multicast schedulers</td>
<td>452</td>
</tr>
<tr>
<td>OpenFlow, 617–618</td>
<td></td>
</tr>
<tr>
<td>packet parsers</td>
<td>448–449</td>
</tr>
<tr>
<td>packet partitioners</td>
<td>449–450</td>
</tr>
<tr>
<td>routing tables</td>
<td>450–452</td>
</tr>
<tr>
<td>Insertion loss</td>
<td>554, 558</td>
</tr>
<tr>
<td>Integrated Services Digital Network (ISDN), 644</td>
<td></td>
</tr>
<tr>
<td>Integrated services QoS</td>
<td></td>
</tr>
<tr>
<td>admission control in</td>
<td>494–495</td>
</tr>
<tr>
<td>overview</td>
<td>486–488</td>
</tr>
<tr>
<td>RSVP</td>
<td>495</td>
</tr>
<tr>
<td>traffic shaping in</td>
<td>488–494</td>
</tr>
<tr>
<td>Integrity</td>
<td></td>
</tr>
<tr>
<td>ad-hoc networks</td>
<td>785</td>
</tr>
<tr>
<td>security</td>
<td>370</td>
</tr>
<tr>
<td>Interactive (I) frames</td>
<td>708</td>
</tr>
<tr>
<td>Interactive voice response (IVR)</td>
<td>582, 751, 754–756</td>
</tr>
<tr>
<td>Interarrival jitter field</td>
<td>731, 734</td>
</tr>
<tr>
<td>Interchanging phone numbers</td>
<td>669–670</td>
</tr>
<tr>
<td>Intercluster Energy-Conscious Routing (ICR), 808–811</td>
<td></td>
</tr>
<tr>
<td>Intercluster routing protocols</td>
<td>805, 808–811</td>
</tr>
<tr>
<td>Interdomain routing protocols</td>
<td>188–189</td>
</tr>
<tr>
<td>AS, 189</td>
<td></td>
</tr>
<tr>
<td>BGP, 189–196</td>
<td></td>
</tr>
<tr>
<td>MBGP, 231–234</td>
<td></td>
</tr>
<tr>
<td>MSDP, 234–236</td>
<td></td>
</tr>
<tr>
<td>multicast</td>
<td>231–237</td>
</tr>
<tr>
<td>Interest signals</td>
<td>808</td>
</tr>
<tr>
<td>Interference</td>
<td>283</td>
</tr>
<tr>
<td>Interframe space (IFS) technique</td>
<td>146–147</td>
</tr>
<tr>
<td>Interior Gateway Protocol (IGP) labels</td>
<td>537</td>
</tr>
<tr>
<td>Interleaving</td>
<td>284</td>
</tr>
<tr>
<td>Internal BGP (iBGP), 194</td>
<td></td>
</tr>
<tr>
<td>International mobile subscriber identity (IMSI), 249–250</td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td>7–9</td>
</tr>
<tr>
<td>Internet addressing schemes</td>
<td>21–22</td>
</tr>
<tr>
<td>Internet checksums</td>
<td>79</td>
</tr>
<tr>
<td>Internet Control Message Protocol (ICMP), 164–165</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Join packets</td>
<td>235</td>
</tr>
<tr>
<td>Joint cumulative density function</td>
<td>833</td>
</tr>
<tr>
<td>Joint Photographic Experts Group (JPEG) compression</td>
<td>701–707</td>
</tr>
<tr>
<td>Joint probability functions</td>
<td>711, 833</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Keep-alive connections</td>
<td>338</td>
</tr>
<tr>
<td>Keep-alive packets</td>
<td>190, 196</td>
</tr>
<tr>
<td>Kendal's notations</td>
<td>408–409</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>LACP (Link Aggregation Control Protocol)</td>
<td>108–109</td>
</tr>
<tr>
<td>LANs. See Local area networks (LANs)</td>
<td></td>
</tr>
<tr>
<td>Large-scale optical switches</td>
<td>558–560</td>
</tr>
<tr>
<td>Lasers</td>
<td>73, 553</td>
</tr>
<tr>
<td>Last come, first served (LCFS) queuing systems</td>
<td>408</td>
</tr>
<tr>
<td>Last-mile networks</td>
<td>747</td>
</tr>
<tr>
<td>Last SR timestamp field</td>
<td>734</td>
</tr>
<tr>
<td>Latency. See Delay</td>
<td></td>
</tr>
<tr>
<td>Law enforcement, ad-hoc networks for</td>
<td>767</td>
</tr>
<tr>
<td>Layer 1 devices</td>
<td>41–42, 121–123</td>
</tr>
<tr>
<td>Layer 2 devices</td>
<td>42–44</td>
</tr>
<tr>
<td>LANs, 123–128</td>
<td></td>
</tr>
<tr>
<td>networking with, 128–130</td>
<td></td>
</tr>
<tr>
<td>Layer 2 Forwarding (L2F) protocol</td>
<td>526</td>
</tr>
<tr>
<td>Layer 2 Tunneling Protocol (L2TP)</td>
<td>526–527</td>
</tr>
<tr>
<td>Layer 3 devices</td>
<td>44–47, 128–130</td>
</tr>
<tr>
<td>LBs (load balancers)</td>
<td>589–591</td>
</tr>
<tr>
<td>LBSs (local base stations)</td>
<td>808</td>
</tr>
<tr>
<td>LCFS (last come, first served) queuing systems</td>
<td>408</td>
</tr>
<tr>
<td>LDP (Label Distribution Protocol)</td>
<td>520, 534–535</td>
</tr>
<tr>
<td>LEACH (Low-Energy Adaptive Clustering Hierarchy)</td>
<td>800–801</td>
</tr>
<tr>
<td>Leaky-bucket traffic shaping</td>
<td>489–493</td>
</tr>
<tr>
<td>Least-connect algorithms</td>
<td>590–591</td>
</tr>
<tr>
<td>Least-cost path</td>
<td>173–174</td>
</tr>
<tr>
<td>Least-cost-path algorithms</td>
<td></td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>176–177</td>
</tr>
<tr>
<td>Dijkstra's</td>
<td>174–176</td>
</tr>
<tr>
<td>Leave group messages</td>
<td>222</td>
</tr>
<tr>
<td>Leechers in BitTorrent</td>
<td>350</td>
</tr>
<tr>
<td>Lee's method</td>
<td>206–207</td>
</tr>
<tr>
<td>Lempel-Ziv encoding</td>
<td>716–717</td>
</tr>
<tr>
<td>Length field</td>
<td></td>
</tr>
<tr>
<td>BGP, 190</td>
<td></td>
</tr>
<tr>
<td>RTCP packets</td>
<td>733</td>
</tr>
<tr>
<td>SCTP packets</td>
<td>736</td>
</tr>
<tr>
<td>SSH packets</td>
<td>345–346</td>
</tr>
<tr>
<td>Length/Type field</td>
<td>120</td>
</tr>
<tr>
<td>Liability, data centers</td>
<td>583</td>
</tr>
<tr>
<td>Lifetime field</td>
<td>263</td>
</tr>
<tr>
<td>Light frequency spectrum</td>
<td>73</td>
</tr>
<tr>
<td>Light networks. See Optical networks</td>
<td></td>
</tr>
<tr>
<td>Lightpaths (LPs)</td>
<td></td>
</tr>
<tr>
<td>blocking over, 565–566</td>
<td></td>
</tr>
<tr>
<td>GMPLS, 550–551</td>
<td></td>
</tr>
<tr>
<td>Line cards</td>
<td>447</td>
</tr>
<tr>
<td>Line coding process</td>
<td>75</td>
</tr>
<tr>
<td>Linear topologies in SDN emulators</td>
<td>635</td>
</tr>
<tr>
<td>Lines in PSTNs</td>
<td>643</td>
</tr>
<tr>
<td>Link aggregation</td>
<td>107–109</td>
</tr>
<tr>
<td>Link Aggregation Control Protocol (LACP)</td>
<td>108–109</td>
</tr>
<tr>
<td>Link-cost tables</td>
<td>772</td>
</tr>
<tr>
<td>Link costs</td>
<td>173</td>
</tr>
<tr>
<td>Link encoders</td>
<td>40</td>
</tr>
<tr>
<td>Link-IDs</td>
<td>108–109</td>
</tr>
<tr>
<td>Link layer</td>
<td>19</td>
</tr>
<tr>
<td>Link resiliency provisioning</td>
<td>107–108</td>
</tr>
<tr>
<td>Link reversal</td>
<td>775</td>
</tr>
<tr>
<td>Link-state acknowledgment packets</td>
<td>182</td>
</tr>
<tr>
<td>Link-state multicast</td>
<td>225</td>
</tr>
<tr>
<td>Link-state request packets</td>
<td>182</td>
</tr>
<tr>
<td>Link-state routing</td>
<td>180–181</td>
</tr>
<tr>
<td>Link-state update packets</td>
<td>182</td>
</tr>
<tr>
<td>Link utilization</td>
<td>16–17</td>
</tr>
</tbody>
</table>
Index

856

Links

ARP, 40
attacks on, 373
blocking, 205–207
data. See Data links
encrypting, 376
ISP, 7
PSTNs, 643
virtual, 597
wireless. See Wireless links
Little’s theorem, 404–406
Live media streaming, 726–727
LLC (logical-link layer), 118
LLIDs (logical link identifiers), 553
Load balancing, 163
cloud computing, 581
data centers, 583, 589–591
virtual machines, 586
Load distribution, 812–814
Local area networks (LANs), 9–10, 115–116
DOCSIS, 151–152
IP addresses for, 130–133
layer 1 devices, 121–123
layer 2 devices, 123–128
networks of, 121–130
protocols, 117–121
STP, 133–136
switches, 43
topologies, 116–117
VLANs, 136–139, 600, 620
wireless, 139–141
Local base stations (LBSs), 808
Local header decoders, 455
Local Internet service providers, 8
Local multicasting protocols, 221–223, 749
Location-disclosure attacks, 784
Location management in cellular networks, 254
Location registers in cellular networks, 248–250, 252
Location servers in SIP, 668
Logical congestion, 199–200
Logical link identifiers (LLIDs), 553
Logical-link layer (LLC), 118
Logical links, 290
Logins, remote, 342–346
Long Term Evolution (LTE) technology, 268–269
call establishment, 270
downlinks and uplinks, 273
cNodeB, 269
compression ratio and code efficiency in, 713
core of, 529–533
downlinks, 258
on Eaton’s experiments, 273
overview of, 268
performance evaluation of, 268
path selection in, 534
physical layer, 269
preamble, 269
protocol stack for, 268
scheduling in, 534
software-defined radio, 268
specifications, 269
switching, 534
timeslots and frequency bands, 269
transport layer protocols, 268
uplinks, 258
wireless Internet, 143
wireless sharing, 274
MAC addresses, 259
MAC layer, 267
MAC sublayer, 267
MACs (message authentication codes), 385
Mail user agents (MUAs), 331
handoffs, 271–273
MME, 683
networking devices, 269–270
SC-FDMA, 100
Lossless compression, 694, 713–714
Huffman encoding, 715–716, 718
Lempel-Ziv encoding, 716–717
run-length encoding, 714–715
Lossy compression, 694
information theory for, 709–713
Shannon’s coding theorem in, 711–713
Low-earth orbit satellite systems, 245
Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, 800–801
Local Internet service providers, 8
Local multicasting protocols, 221–223, 749
Location-disclosure attacks, 784
Location registers in cellular networks, 248–250, 252
Location servers in SIP, 668
Logical congestion, 199–200
Logical link identifiers (LLIDs), 553
Logical-link layer (LLC), 118
Logical links, 290
Logins, remote, 342–346
Long Term Evolution (LTE) technology, 268–269
call establishment, 270
downlinks and uplinks, 273
cNodeB, 269
frequency reuse, 273–277
handoffs, 271–273
MME, 683
networking devices, 269–270
SC-FDMA, 100
Lossless compression, 694, 713–714
Huffman encoding, 715–716, 718
Lempel-Ziv encoding, 716–717
run-length encoding, 714–715
Lossy compression, 694
compression ratio and code efficiency in, 713
entropy in, 710–711
information theory for, 709–713
Shannon’s coding theorem in, 711–713
Low-earth orbit satellite systems, 245
Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, 800–801
Low-frequency spectrum, 72
LPs (lightpaths)

M

856

M/D/1 queueing systems, 427
M/G/1 queueing systems, 424–427
M/M/1 queueing systems, 409
M/M/a, 415–420
mean delay and queue length in, 413–414
number of packets in, 411–413
packet arrival and service model in, 410–413
M/M/1/b queueing systems, 414–415
M/M/a queueing systems, 415–420
M/M/1a queueing systems, 420–422
M/M/∞ queueing systems, 422–424
M-P-Q field, 456
MAC addresses, 21–22, 130–133, 153
MAC frames, 147–149
MAC layers
IEEE 802.11, 145–149
in WMNs, 280
MAC (medium access control) protocols
contention-access, 119–121
EPON frames, 552
for LANs, 118–121
in sensor networks, 792
MACs (message authentication codes), 385
Mail user agents (MUAs), 331
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mailboxes</td>
<td>331, 334</td>
</tr>
<tr>
<td>Man-in-the-middle attacks</td>
<td>372</td>
</tr>
<tr>
<td>Manageability in multicasting</td>
<td>216</td>
</tr>
<tr>
<td>Managed devices</td>
<td>358</td>
</tr>
<tr>
<td>Management frames</td>
<td>148</td>
</tr>
<tr>
<td>Management information base (MIB)</td>
<td>359–360</td>
</tr>
<tr>
<td>Management planes</td>
<td>609</td>
</tr>
<tr>
<td>Managers in network management</td>
<td>358</td>
</tr>
<tr>
<td>Manchester encoding method</td>
<td>77</td>
</tr>
<tr>
<td>MANETs. See Mobile ad-hoc networks (MANETs)</td>
<td></td>
</tr>
<tr>
<td>Mapping, name/address</td>
<td>327–329</td>
</tr>
<tr>
<td>Marginal CDF, PDF</td>
<td>833</td>
</tr>
<tr>
<td>Marker (M) field</td>
<td>730</td>
</tr>
<tr>
<td>Marker field in BGP</td>
<td>190</td>
</tr>
<tr>
<td>Markers in DiffServ</td>
<td>496</td>
</tr>
<tr>
<td>Markov chains</td>
<td>256</td>
</tr>
<tr>
<td>in birth-and-death process</td>
<td>406–407</td>
</tr>
<tr>
<td>for multipath buffered crossbars</td>
<td>473–475</td>
</tr>
<tr>
<td>in probability</td>
<td>835–836</td>
</tr>
<tr>
<td>Markovian FIFO queueing systems</td>
<td>409</td>
</tr>
<tr>
<td>M/M/1/b</td>
<td>414–415</td>
</tr>
<tr>
<td>M/M/1/a</td>
<td>420–422</td>
</tr>
<tr>
<td>M/M/∞</td>
<td>422–424</td>
</tr>
<tr>
<td>MASC (Multicast Address-Set Claim) protocol</td>
<td>236</td>
</tr>
<tr>
<td>Masking</td>
<td>24–26</td>
</tr>
<tr>
<td>Masquerading attacks</td>
<td>372</td>
</tr>
<tr>
<td>Master/slave assignment in control signaling</td>
<td>663</td>
</tr>
<tr>
<td>Matching fields in OpenFlow</td>
<td>618–619</td>
</tr>
<tr>
<td>Maximum response time field</td>
<td>223</td>
</tr>
<tr>
<td>Maximum segment size (MSS) option</td>
<td>300–301, 304, 311</td>
</tr>
<tr>
<td>Maximum transmission units (MTUs)</td>
<td>198</td>
</tr>
<tr>
<td>routing protocols</td>
<td>163–164</td>
</tr>
<tr>
<td>Maximum window size</td>
<td>309–310</td>
</tr>
<tr>
<td>MBCs (multipath buffered crossbars)</td>
<td>471–475</td>
</tr>
<tr>
<td>MBGP (multiprotocol BGP)</td>
<td>231–234</td>
</tr>
<tr>
<td>MBone (multicast backbone)</td>
<td>224</td>
</tr>
<tr>
<td>MC-endpoint conference calling</td>
<td>665</td>
</tr>
<tr>
<td>MCU conference calling</td>
<td>665</td>
</tr>
<tr>
<td>MCUs (multipoint control units)</td>
<td>652</td>
</tr>
<tr>
<td>MDS hash algorithm</td>
<td>385</td>
</tr>
<tr>
<td>Mean delay</td>
<td></td>
</tr>
<tr>
<td>M/M/1 queueing systems</td>
<td>413–414</td>
</tr>
<tr>
<td>M/M/1/a queueing systems</td>
<td>419</td>
</tr>
<tr>
<td>Mean number of packets in queueing systems</td>
<td>415</td>
</tr>
<tr>
<td>Mechanical optical switches</td>
<td>556</td>
</tr>
<tr>
<td>Media Access Control (MAC) addresses</td>
<td>21–22</td>
</tr>
<tr>
<td>Media exchange establishment control</td>
<td>663–665</td>
</tr>
<tr>
<td>Media exchange protocols</td>
<td>650</td>
</tr>
<tr>
<td>Media exchange segments</td>
<td>653</td>
</tr>
<tr>
<td>Media exchange sessions</td>
<td>647</td>
</tr>
<tr>
<td>Media Gateway Control Protocol (MGCP)</td>
<td>678</td>
</tr>
<tr>
<td>Media gateway controllers (MGCs)</td>
<td>653, 668, 678</td>
</tr>
<tr>
<td>Media gateway (MG) routers</td>
<td>650, 653, 668</td>
</tr>
<tr>
<td>Medium access control</td>
<td>245</td>
</tr>
<tr>
<td>Medium-size routers</td>
<td>46</td>
</tr>
<tr>
<td>Membership multicasting protocols</td>
<td>221–223, 749</td>
</tr>
<tr>
<td>Membership queries and reports in IGMP</td>
<td>222</td>
</tr>
<tr>
<td>Membership-search signals</td>
<td>802, 804</td>
</tr>
<tr>
<td>Memory control in switch fabrics</td>
<td>469</td>
</tr>
<tr>
<td>Memory units in sensor networks</td>
<td>794</td>
</tr>
<tr>
<td>Merging LSPs</td>
<td>533</td>
</tr>
<tr>
<td>Mesh networks</td>
<td>277</td>
</tr>
<tr>
<td>physical and MAC layers</td>
<td>279–280</td>
</tr>
<tr>
<td>Message authentication</td>
<td>383, 385</td>
</tr>
<tr>
<td>Message authentication codes (MACs)</td>
<td>385</td>
</tr>
<tr>
<td>Message digests</td>
<td>353, 383</td>
</tr>
<tr>
<td>Message-Id identifiers</td>
<td>332</td>
</tr>
<tr>
<td>Message signal units (MSUs)</td>
<td>645–646</td>
</tr>
<tr>
<td>Message transfer part (MTP)</td>
<td>644</td>
</tr>
<tr>
<td>Message transmission-list tables</td>
<td>772–773</td>
</tr>
<tr>
<td>Messages</td>
<td>339–340</td>
</tr>
<tr>
<td>HTTP, 669–671</td>
<td></td>
</tr>
<tr>
<td>SIP, 669–671</td>
<td></td>
</tr>
<tr>
<td>Meters in DiffServ</td>
<td>496</td>
</tr>
<tr>
<td>Methods in HTTP</td>
<td>339</td>
</tr>
<tr>
<td>Metric field</td>
<td>186–187</td>
</tr>
<tr>
<td>MG (media gateway) routers</td>
<td>650, 653, 668</td>
</tr>
<tr>
<td>MGCP (Media Gateway Control Protocol)</td>
<td>678</td>
</tr>
<tr>
<td>MGCs (media gateway controllers)</td>
<td>653, 668, 678</td>
</tr>
<tr>
<td>MIB (management information base)</td>
<td>359–360</td>
</tr>
<tr>
<td>Microcells</td>
<td>277</td>
</tr>
<tr>
<td>Microwave frequency spectrum</td>
<td>72</td>
</tr>
<tr>
<td>Microwave systems</td>
<td>72</td>
</tr>
<tr>
<td>Military, ad-hoc networks</td>
<td>767</td>
</tr>
<tr>
<td>MIMO (multiple-input multiple-output)</td>
<td>49, 279</td>
</tr>
<tr>
<td>systems</td>
<td></td>
</tr>
<tr>
<td>Mini-clouds</td>
<td>752–753</td>
</tr>
<tr>
<td>Minimal topologies in SDN emulators</td>
<td>634</td>
</tr>
<tr>
<td>Minimum number of hops</td>
<td>173</td>
</tr>
</tbody>
</table>
Mininet SDN emulators, 632–635
Misrouting attacks, 374
Mixer relays, 729
MLD (Multicast Listener Discovery), 221
MME (mobile management entity), 269, 271–273, 683
Mobile ad-hoc networks (MANETs), 245, 765
ABR protocol, 775–776
AODV protocol, 776–783
CGSR protocol, 771–772
DSDV protocol, 769–771
DSR protocol, 773–774
overview, 766–767
protocol overview, 769
routing in, 767–769
security of, 783–785
TORA protocol, 774–775
WRP protocol, 772–773
Mobile agents, 248
Mobile cloud computing, 751
Mobile IP, 259–260
agents, 260–261
registration in, 262–264
routing for, 263–267
Mobile IPv6, 266
Mobile management entity (MME), 269, 271–273, 683
Mobile switching centers (MSCs)
cellular networks, 247, 250–252
mobile IP, 260–261
Mobile transport protocols
TCP, 307–309
UDP, 307
Modems, 37, 50–51
cable, 57–58
DSL, 55–57
modulation schemes, 51–55
Modification attacks, 374
Modulation schemes in modems, 51–55
Modulation symbols, 54
Modulo-2 arithmetic, 81–82
Monochrome images, 702
MOSPF (multicast OSPF) protocol, 225–227
Moved Temporarily messages, 676–677
Moving images compression, 707–709
Moving Pictures Expert Group (MPEG) compression, 707–709
MP3 technology, 708–709
MPLS. See Multiprotocol label switching (MPLS)
MSCs (mobile switching centers)
cellular networks, 247, 250–252
mobile IP, 260–261
MSDP (Multicast Source Discovery Protocol), 234–236
MSS (maximum segment size) option, 300–301, 304, 311
MSUs (message signal units), 645–646
MTP (message transfer part), 644
MTUs (maximum transmission units) IPv6, 198
routing protocols, 163–164
MUAs (Mail user agents), 331
Multi-carrier modulation, 285
Multi-hop communication efficiency, 797–799
Multi-rate connections, 5
Multi-tunnel routing, 336–358
Multicast Address-Set Claim (MASC) protocol, 236
Multicast addresses, 198
Multicast backbone (MBone), 224
Multicast Listener Discovery (MLD), 221
Multicast OSPF (MOSPF) protocol, 225–227
Multicast schedulers in input port processors, 452
Multicast Source Discovery Protocol (MSDP), 234–236
Multicast routing and protocols, 215–216, 475–477
classification, 220
data center networks, 594–595
definitions and techniques, 216–217
interdomain, 231–237
intradomain, 223–231
IP addresses, 217–218
local and membership, 221–223
software-defined networking, 621
switching networks, 458
tree algorithms, 218–220
tree-based, 476–478
Multichannel multitransceiver MAC, 280
Multichannel single-transceiver MAC, 280
Multihop routing, 806–807
Multimedia networking, 641, 679
compression in. See Compression distributed. See Distributed multimedia
self-similarity and non-Markovian streaming analysis in, 756–759
SIP to H.323 internetworking, 679–680
SIP to PSTN internetworking, 681–682
Voice over IP, See Voice over IP (VoIP)
wireless cellular internetworking, 682–684
Index

Multimedia terminals, 650
Multipath buffered crossbars (MBCs), 471
Multipath effects, 104
Multipath switching networks, 458
Multiple access
 FDMA, 99
 miscellaneous methods, 104–105
 OFDM, 99–100
 random-access techniques, 105–106
 SC-FDMA, 100
 TDMA, 99
Multiple-input multiple-output (MIMO) systems, 49, 279
Multiple random variables, 833–834
Multiple stage switching networks, 458
Multiple users in data link access, 92–97
Multiplexers, 37, 58
 FDM, 59–61
 TDM, 61–65
Multipoint control units (MCUs), 652
Multiprotocol BGP (MBGP), 231–234
Multiprotocol label switching (MPLS), 519–520, 528–529
 labels, 529–532
 multi-tunnel routing, 536–538
 packet format, 536
 routing in, 534–536
 traffic engineering in, 538–539
 for VPNs, 539–540
My Autonomous System field, 190, 194

N

N-stage planar architecture, 560
NAIs (network access interfaces), 747
Name/address mapping, 327–329
Name resolution mode in ICN, 629
Named objects in ICN, 628
Narrowband RF LANs, 141
NAT (network address translation), 169–172, 590
National Internet service providers, 8
Natural nonreturn-to-zero (NRZ) line coding, 76
Neighbors in BGP, 192
Network access interfaces (NAIs), 747
Network-access servers, 526
Network address translation (NAT), 169–172, 590
Network communication protocols, 17–18
 Internet. See Internet Protocol (IP) layer
 OSI, 20
 TCP/IP, 18–20
Network emulators, 632–635
Network function virtualization (NFV), 614
 abstract model, 624–626
 distributed networks, 626–627
 overview, 623–624
 virtualized services, 627
Network IDs, 22–23
Network interface cards (NICs), 37, 446
 ARP, 131
 layer 3 devices, 44–45
 overview, 39–40
 virtual, 597–598
Network latency, 610
Network layer
 congestion control at, 199–207
 TCP/IP protocol model, 19
Network Layer addresses, 22
Network Layer Reachability Information (NLRI) field, 190, 192, 233
Network management, 356–358
 elements, 358
 MIB, 359–360
 SMI, 359
 SNMP, 360–362
Network orchestration layer process, 626
Network queues and delay analysis, 403–404
 birth-and-death process, 406–408
 Little’s theorem, 404–406
 M/M/1/b, 414–415
 M/M/a, 415–420
 M/M/1/a, 420–422
 M/M/∞, 422–424
Markovian FIFO queueing systems. See
 Markovian FIFO queueing systems networks of queues, 428–437
 non-Markovian models, 424–427
 queuing disciplines, 408–409
 self-similarity and batch-arrival models, 427–428
Network-to-network interfaces (NNIs), 548
Network/transport-layer packet filtering, 393–394
Network virtual terminals (NVTs), 343–344
Networking devices. See also individual devices
 multiplexers, 58–65
 NICs, 39–40
Networks. See also individual network types
 cloud-based multimedia, 751–756
 of queues, 428–437
 switching. See Switch fabrics topologies, 7, 116–117
Index

Next header field
 IPsec, 388
 IPv6 packets, 196
Next-header fields in packet headers, 449
Next hops in RIP packets, 186
NFV (network function virtualization), 614
 abstract model, 624–626
 distributed networks, 626–627
 overview, 623–624
 virtualized services, 627
NIC teaming, 107
NICs (network interface cards), 37, 446
 ARP, 131
 layer 3 devices, 44–45
 overview, 39–40
 virtual, 597–598
NNIs (network-to-network interfaces), 548
Nodes
 ad-hoc networks, 782–783
 cascaded, 428–431
 optical networks, 560–561
 packet-switched networks, 6
 sensor networks, 793–794
Noise, 77
Non-electro-optical switches, 556
Non-least-cost-path routing, 174
Non-Markovian models
 arrival, 427
 queuing, 424–427
 streaming analysis, 756–759
Non-persistent connections, 338
Non-Poisson models
 arrival, 427
 queuing, 424
Non-preemptive priority queues, 503–505
Non-real-time packets, 502
Nonblocking switch fabrics, 458
Nonpersistent CSMA, 94
Nonreturn-to-zero (NRZ) line coding, 76
Normal (Gaussian) random variables, 831
Normalized method, 314–315
Notification packets, 191
Notifications in cloud-based multimedia, 752
NRZ-inverted line coding, 76
NRZ (natural nonreturn-to-zero) line coding, 76
NTP timestamp field, 733
Number of additional records field, 329
Number of answers field, 329
Number of authoritative records field, 329
Number of questions field, 329
NVTs (network virtual terminals), 343–344
Nyquist theorem, 696
O
Object names in distributed hash tables, 353
Observer-gatekeeper-routed signaling, 660
OCs (optical carriers), 548
OFDM (orthogonal frequency division multiplexing), 59–61, 99–100, 144–145, 150, 285
OFDMA scheme in LTE downlinks, 273
Offer process in DHCP, 169
OLs (optical links), 547
OLSR (Optimized Link State Routing) protocol, 149–150
OLTs (optical line terminals), 551–552
Omnidirectional configuration, 140
On-demand cloud computing, 579
1-persistent CSMA, 94, 119
ONF (Open Networking Foundation), 613
Online gaming, 751
ONUs (optical network units), 551–552, 748
Opaque optical switches, 563
OPCs (original point codes), 645
Open Networking Foundation (ONF), 613
Open networks, Jackson’s theorem on, 434–437
Open packets in BGP, 190, 194, 233
Open-routed networking, 630
Open Shortest Path First (OSPF) protocol, 610
 MOSPF, 226
 operation, 180–183
Open systems interconnection (OSI) model, 20
OpenDaylight controllers, 614–615
OpenFlow protocol, 615–616
 flow tables, 617–618
 matching fields, 618–619
 switches, 616–617
Operation error chunks, 737
OPPs (output port processors), 44–45, 453–454
Optical carriers (OCs), 548
Optical cross-connects (OXC)s
 GMPLS, 549–550
 structure, 560–563
 switches, 556
Optical fiber, 74
Optical line terminals (OLTs), 551–552
Optical links (OLs), 547
Optical network units (ONUs), 551–552, 748
Optical networks, 545–546
Index

all-optical, 563–566
amplifiers, 553–554
contention resolution in, 557–558
delay elements, 553
fiber optic links, 547
filters, 554, 561
GMPLS protocol, 548–551
overview, 546–547
OXC, 560–563
passive, 551–553
SONET/SDH standards, 547–548
switches, 556–560, 569–572
tunable lasers, 553
wavelength allocation, 567–569
WDMs, 555
Optimal quantizers, 699–700
Optimality
 packet size, 15–17
 routing algorithm, 162
Optimistic unchoking, 352
Optimized Link State Routing (OSPF) protocol, 149–150
Optional Parameters field, 190
Options field
 IP packets, 162
 TCP segments, 300–301
Options messages in SIP, 677
Original point codes (OPCs), 645
Orthogonal frequency division multiplexing (OFDM), 59–61, 99–100, 144–145, 150, 285
OSI (Open systems interconnection) model, 20
OSPF (Open Shortest Path First) protocol, 610
MOSPF, 226
operation of, 180–183
Other Features messages, 676–678
Outbound notifications in cloud-based multimedia, 752
Outcomes in probability, 827
Output port buffers, 453–454, 473
Output port processors (OPPs), 44–45, 453–454
Overlay models, 548
Overlay networks, 600–601
OXC (optical cross connects)
 GMPLS, 549–550
 structure, 560–563
 switches, 556
P
P (predictive) frames, 708
P-CSCF (proxy call session control function), 269, 683
P field in contention resolution units, 456
P-persistent CSMA, 94
P2P (peer-to-peer) networks, 548, 600
 connection efficiency, 355–356
 database sharing protocols, 353–355
 file sharing protocols, 348–352
 WMNs for, 277
PaaS (platform as a service), 583
Packet-by-packet routers, 46
Packet Data Convergence Protocol (PDCP), 269
Packet data gateway (PGW), 269, 683
Packet-drop probability, 204–205
Packet encapsulators, 452–453
Packet flooding algorithm, 177–178
Packet-in messages, 617
Packet length field, 182
Packet-mistreatment attacks, 373–374
Packet-out messages, 617
Packet queues and delay analysis, 12–13
Packet-reservation multiple-access (PRMA) scheme, 106
Packet scheduling, 501–502
 deficit round robin, 511
 earliest deadline first, 511–512
 fair queueing, 507–508
 first in, first out, 502–503
 priority queueing, 503–507
 weighted fair queueing, 508–511
Packet-switched networks, 3–4
CIDR, 26–27
 connection-oriented, 13–15
 connectionless, 11–13
 equal-sized packet model, 28
 Internet, 7–9
 Internet addressing schemes, 21–22
 IP addresses, 21–27, 162
 ISPs and internetwork nodes, 9–11
 messages, packets, and frames in, 6–7
 networking protocols, 17–21
 packet size in, 15–17
 packet switching vs. circuit switching, 5–6
 packets, 21–22
 subnets, 24–26
Packet type field, 733
Packetized elementary stream (PES), 749–750
Packets, 5
 BGP, 190–192
Packets (continued)
filtering, 391–396
fragmentation and reassembly, 7, 163–164, 198–199
IGMP, 223–224
IP, 160–163
IPTV, 749–750
LANs, 116
MBGP, 232–233
MPLS, 530–531, 536
MSDP, 235
multicasting, 475–480
OSPF, 181–183
parsers, 448–449
partitioners, 449–450
reassemblers, 454
RIP, 186–187
RTCP, 732–735
RTP, 729–731
SCCTP, 736–737
size, 15–17
SSH, 345
TCP, 299–301
TORA, 775
Pad field, 120
Pad length field, 388
Padding field
IP packets, 162
IPsec headers, 388
RTCP packets, 732
RTP packets, 729
SSH Packets, 345
Padding in SHA, 385
Paging in cellular networks, 253
PAM (pulse amplitude modulation), 696
PAPR (peak-to-average power ratio), 100
Parallel connections in link blocking, 206–207
Parallel nodes, Burks’s theorem on, 431–432
Parallel-plane switching fabrics, 470–471
Parallel-to-serial multiplexing, 452
Pareto distributions, 759
Parity bits, 79
Parity check methods, 79
Parsers, packet, 448–449
Partial-gatekeeper-routed signaling, 660–661
Partitioners, packet, 449–450
Passive attacks, 783
Passive optical networks (PONs), 551–553
Path attributes field, 190–192
Path discovery, 781
Path loss
optical networks, 558
wireless links, 280–281
Path selection algorithms, 173–178
Path vector routing protocols, 192–193
Payload data field, 388
Payload length field, 196
Payload type field, 730
PBX (private branch exchange) applications, 647
PCF (point-coordination function), 147
PCM (pulse code modulation), 708–709
PCs (point codes), 645
PDCP (Packet Data Convergence Protocol), 269
PDF (probability density function), 829, 833
PDU’s (protocol data units), 360–362, 736
Peak-to-average power ratio (PAPR), 100
Peer-to-peer (P2P) networks, 548, 600
connection efficiency, 355–356
database sharing protocols, 353–355
file sharing protocols, 348–352
WMNs for, 277
Peer-to-peer topology, 141
Peers in BGP, 193
Pending interest tables (PITs), 630
Per hop behaviors (PHBs), 496–497
Performance
network management for, 357
switch fabrics, 469–475
Period data in ICR, 808–809
Permanent addresses in mobile IP, 260
Permutations in AES, 380
Persistent connections in HTTP, 338
PES (packetized elementary stream), 749–750
PGW (packet data gateway), 269, 683
Phase shift keying (PSK), 52–53
PHBs (per hop behaviors), 496–497
Phone call process in SS7 networks, 645–646
Phone numbers in SIP, 669–670
Photographs, 702
Photonic, 547
Physical congestion, 199–200
Physical layer
IEEE 802.11, 144–145
TCP/IP protocol model, 19
WMNs, 279–280
Picocells, 269
Index

Pictures, 702
PIFS (point IFS coordination function), 147
PIM (protocol-independent multicast), 227–230, 236, 595, 747
Pin attacks, 784
Ping of death, 374
PITs (pending interest tables), 630
Pixels, 702, 717–718
Platform as a service (PaaS), 583
Platforms in cloud computing, 579, 581
Plug-and-play protocols, 167
LANs, 128
UPnP, 172–173
PMF (probability mass function), 829, 833
Point codes (PCs), 645
Point-coordination function (PCF), 147
Point IFS coordination function (PIFS), 147
Point-to-point connections, 474
Point-to-Point Protocol (PPP), 521–522, 526
Point-to-Point Tunneling Protocol (PPTP), 521, 526
Pointer fields, 449
Poisoned-reverse rule, 186
Poisoning attacks, 372–373
Poisson random variables, 831
Polar NRZ line coding, 76
Policing traffic, 201–202, 488
Pollaczek-Khinchin formula, 424–427
Polling feature, 147
Polynomial CRC interpretation, 82
PONs (passive optical networks), 551–553
POP (Post Office Protocol), 334
Port forwarding, 344–346
Port numbers
 NAT, 171
 RTP, 728
 transport layer, 21, 292–293
 UDP, 296
Port trunking, 107
POST method in HTTP, 339
Post Office Protocol (POP), 334
Power ratio, 500–501
Power save-poll (PS-Poll) frames, 148
Power supplies
 ad-hoc networks, 783
 sensor networks, 794
PPM (pulse position modulation), 144, 696
PPP (Point-to-Point Protocol), 521–522, 526
PPTP (Point-to-Point Tunneling Protocol), 521, 526
PQ (priority queueing), 409
 non-preemptive, 503–505
 preemptive, 505–507
 schedulers, 503–507
Preamble field, 120
Predictive (P) frames, 708
Preemption queuing systems, 409
Preemptive priority queues, 506–507
Prefixes in CIDR, 26
Prerecorded media streaming, 726–727
Presentation layer, 20
Priority queueing (PQ), 409
 non-preemptive, 503–505
 preemptive, 505–507
 schedulers, 503–507
Privacy in CDMA, 104
Private branch exchange (PBX) applications, 647
Private clouds, 579
PRMA (packet-reservation multiple-access) scheme, 106
PRNs (provide roaming number) messages, 253
Proactive distributed routing, 806
Probability, 827–828
 blocking, 421–422, 462–463, 837–840
 expected value and variance in, 831–832
 Markov chains in, 835–836
 random variables in, 828–831
 stochastic processes, 834–835
 TDM blocking, 63–64
 TDM clipping, 65
Probability density function (PDF), 829, 833
Probability mass function (PMF), 829, 833
Processing units, 794
Progress call-signaling messages, 659
Protocol, 2
Protocol converters, 121
Protocol data units (PDUs), 360–362, 736
Protocol field, 161
Protocol immunization, 785
Protocol-independent multicast (PIM), 227–230, 236, 595, 747
Protocols
 ad-hoc networks, 769–783
 LANs, 117–121
 network management, 358
 sensor networks, 791–792
 transport layer, 294
Provide roaming number (PRNs) messages, 253
Providing routers, 539
Provisioning in link aggregation, 107–108
Proxy call session control function (P-CSCF), 269, 683
Proxy servers
SIP, 667–668
Web, 341–342, 395–396
Prune messages, 228
Pseudonoise signals, 103
PSK (phase shift keying), 52–53
Public clouds, 579
Public-key encryption, 344, 376, 380–383
Public-switched telephone networks (PSTNs), 10
 circuit-switched networks, 647–649
 overview, 642–644
 SIP to PSTN internetworking, 681–682
 SS7, 644–647
Pulse amplitude modulation (PAM), 696
Pulse code modulation (PCM), 708–709
Pulse position modulation (PPM), 144, 696
Pulse-type plots, 312
Pulse width modulation (PWM), 696
Push (PSH) field, 300, 303
PUT method in HTTP, 339
Q
Q components in modulation, 54
Q field in contention resolution units, 456
QAM (quadrature amplitude modulation), 53–55, 60
QoS. See Quality of service (QoS)
QPSK (quadrature phase shift keying), 53–55, 57–58, 60
QRV (querier’s robustness variable), 223
Quadrature amplitude modulation (QAM), 53–55, 60
Quadrature carriers, 54
Quadrature-phase components, 55
Quadrature phase shift keying (QPSK), 53–55, 57–58, 60
Quality of service (QoS), 485–486
 differentiated services, 495–497
 distributed multimedia mini-clouds, 752–753
 input buffers, 450
 integrated services, 486–495
 IPPs, 447
 network management for, 357
 overview, 486
 packet scheduling in, 501–512
 resource allocation, 497–501
 for streaming, 744–745
 WMNs, 279
Quantization in compression
 images, 705–706
 voice, 696–701
Querier’s robustness variable (QRV), 223
Query messages, 329, 349
Query packets
 ABR, 776
 TORA, 775
Questions field, 329–330
Queue sets, 473
Queues
 delay-sensitive traffic, 420–422
 multipath buffered crossbars, 472–475
 priority, 503–507
 RED, 204–205
R
Radar, 72
Radio frequency (RF) spectrum, 72
Radio systems, 72
Radio waves, 47
RADIUS protocol, 391
Rake receivers, 103
RAMA (root-addressed multicast architecture), 237
Random-access techniques
 TDMA, 99
 wireless access, 105–106
Random early detection (RED) technique, 203–205
Random padding field, 345
Random processes
 lossy compression, 709
 probability, 834–835
Random service queuing systems, 409
Random variables
 functions of, 832–834
 in probability, 828–831
Randomizing traffic, 469
RARP (Reverse Address Resolution Protocol), 132–133
RAS (registration, admission, and status) signaling, 653–659
Rate-based resource allocation, 500
Raw-image sampling, 702–705
RCMs (release complete messages), 646–647
Reactive distributed routing, 806
Reactive routing protocols, 769, 784
Index

Real-Time Control Protocol (RTCP), 653, 671, 732–735
Real-time media exchange protocols, 726–731
Real-time media transport protocols
 HTTP-based streaming, 740–741
 RTCP, 732–735
 RTSP, 735
 SCTP, 735–740
Real-time packets, 502
Real-time sessions, 728–729
Real-time Streaming Protocol (RTSP), 666, 735, 749
Real-time transport protocol (RTP), 653, 666, 671, 727–731, 749
Rearrangeably nonblocking, 559
Reassemblers in output port processors, 454
Reassembly of packets, 163–164
Receiver report (RR) packets, 732–733
Receivers, CRC generation at, 81–82
Recirculation in switching networks, 469
Reclustering, 805
Recursive mapping, 328
RED (random early detection) technique, 203–205
Redirect messages in ICMP, 165
Redirect servers in SIP, 668
Redundancy in data center networks, 589
Refer messages in SIP, 677–678
Reflection paths, 280
Regional handoffs, 255
Regional Internet service providers, 8
Register messages in PIM, 229
Register packets in MSDP, 235
Registration
 cellular networks, 249–250
 mobile IP, 259, 262–264
 SIP, 672–673
Registration, admission, and status (RAS) signaling, 653–659
Registration servers, 668
Relays in RTP, 728–729
Release Complete call-signaling messages, 659
Release complete messages (RCMs), 646–647
Release messages (RLMs), 646–647
Reliability of mobile IP, 259
Reliable data delivery, 145
Remote-access VPNs, 526
Remote controls, 73
Remote login protocols, 342–346
 SSH, 344–346
 TELNET, 343–344
Rendezvous-based networking, 630–631
Rendezvous points, 220, 228–229
Repeaters, 40–41
 LANs, 121
 overview, 42
Replication attacks, 374
Reply messages, 329
Reply packets, 776
Representative routers, 234–236
Request-expiration timers, 778, 781
Request ID field, 361
Request in progress (RIP) message, 659
Request messages
 HTTP, 339
 SIP, 669
Request process in DHCP, 169
Request to Send (RTS) frames, 148
Request-to-send/clear-to-send (RTS/CTS) scheme, 145
Requests for comments (RFCs), 823–826
Requests in mobile IP registration, 262
RERR (route-error) messages, 774, 782
Rescue operations, ad-hoc networks for, 767
Resequencers in output port processors, 454
Reservation access method for links, 92
Reservation-based protocols, 105–106
Reservations in RSVP, 495
Reset (RST) field, 300
Resource allocation, 497–498
 classification, 499–500
 fairness, 500–501
 managing, 498–499
Resource availability in RAS signaling, 658
Resource oriented traffic engineering, 539
Resource Reservation Protocol (RSVP), 495
Resources in virtualization, 585
Response messages
 HTTP, 339–340
 SIP, 669
Responses in mobile IP registration, 262
Reuse, frequency, 273–277
Reverse Address Resolution Protocol (RARP), 132–133
Reverse topologies, 635
RF (radio frequency) spectrum, 72
RFCs (requests for comments), 823–826
RIA (routing information acknowledgment) messages, 253
RIP (request in progress) message, 659
RIP (routing information protocol), 183–188, 769
Rivest, Shamir, and Adleman (RSA) algorithm, 381–382
RLMs (release messages), 646–647
Roaming in cellular networks, 252–253
Root-addressed multicast architecture (RAMA), 237
Root points, 220
Root servers, 327
Root switches in STP, 134–135
Round-robin access method, 92
Round robin algorithms, 590
Round robin queuing systems, 409
Round-trip times (RTTs), 310, 313–314, 338
Rounds in LEACH, 801
Route costs, 173, 179
Route-creation process, 775
Route discovery
ABR, 776
ad-hoc networks, 785
AODV, 778–781
DSP, 773–774
ICR, 809
source-initiated protocols, 769
Route-error (RERR) messages, 774, 782
Route maintenance, 781–782
Route reconstruction, 776
Route reply (RREP) packets, 774, 779–780
Route request (RREQ) packets, 773–774, 778–780
Route selection policy, 195–196
Route tags in RIP packets, 187
Router-based resource allocation, 499
Router ID field, 182
Router line cards, 447
Router servers, 10
Routers
architecture, 446–447
attacks on, 373
central controllers, 454–457
data center networks, 589
description, 41
input port processors for, 446–453
for ISPs, 7
MBGP, 231–232
Mbone, 224
MPLS, 539
MSDP, 234–236
multicasting packets, 475–480
output port processors for, 453–454
overview, 45–47
packet-switched networks, 10
RED, 203–205
wireless, 48–49, 149
WMNs, 277
Routing and internetworking, 7–8, 159–160
ad-hoc networks, 767–769
AODV, 778–779
congestion control. See Congestion
ICN, 628–631
interdomain routing protocols, 188–196
Internet. See Internet routing policies
intradomain routing protocols, 178–188
IP packets and basic policies, 160–163
IPv6, 196–199
mobile IP, 263–267
MPLS domains, 534–536
multi-tunnel, 536–538
packet-switched networks, 11
path selection algorithms, 173–178
sensor networks, 805–811
Routing caching timeouts, 778, 781
Routing information acknowledgment (RIA) messages, 253
Routing information protocol (RIP), 183–188, 769
Routing switch fabric, 475–476
Routing tables
AODV, 777
CGSR, 771
DSDV, 769–770
input port processors, 450–452
layer 2 devices, 125
overflow attacks on, 784
packet-switched networks, 11
poisoning attacks on, 372–373
RIP, 185–186
routers, 447
WRP, 772
RR (receiver report) packets, 732–733
RREP (route reply) packets, 774, 779–780
RREQ (route request) packets, 773–774, 778–780
RSA (Rivest, Shamir, and Adleman) algorithm, 381–382
RSVP (Resource Reservation Protocol), 495
RTCP (Real-Time Control Protocol), 653, 671, 732–735
RTP (real-time transport protocol), 653, 666, 671, 727–731, 749
RTP timestamp field, 734
Index

RTS/CTS (request-to-send/clear-to-send) scheme, 145
RTSP (Real-time Streaming Protocol), 666, 735, 749
RTTs (round-trip times), 310, 313–314, 338
Rules in packet filtering, 393
Run-length encoding, 714–715

S

S field, 536
SaaS (software as a service), 582
SAL (service abstraction layer), 614
Sample space, 709, 827
Sampling
 in compression, 695–696, 702–705
 in probability, 828
SAP (Session Announcement Protocol), 666
Satellite systems, 72, 244–245
SC-FDMA (single-carrier frequency-division multiple access), 100, 273
Scalability
 CDMA, 104
 multicasting, 216
 software-defined networking, 620–621
 VPNs, 527
 WMNs, 279
Scanned document compression, 717–718
Scattering paths, 280
SCCP (signaling connection control part), 644
Schedulers, multicast, 452
Schedules
 data center networks, 591
 packet, 501–512
Scheduling discipline, 408
SCP (Secure Copy Protocol), 346–347
SCPs (service control points), 642, 644
SCTP (Stream Control Transmission Protocol), 735–740
SDES (source descriptor) packets, 732
SDH (Synchronous Digital Hierarchy) standard, 547–548
SDMA (space-division multiple access), 104
SDN. See Software-defined networking (SDN)
SDP (Session Description Protocol), 666–667
SDSL (symmetric digital subscriber line), 56–57
Secret-key encryption, 376
Secure Copy Protocol (SCP), 346–347
Secure Hash Algorithm (SHA), 385–387
Secure Shell (SSH) Protocol, 344–346
Security, 369–370
 ad-hoc networks, 783–785
 authentication techniques, 383–385
 cryptographic techniques, 377–383
 elements, 370–371
 firewalls, 391–396
 ICN, 631–632
 IP, 387–389
 mobile IP, 259
 network management for, 358
 overview, 375–377
 public-key cryptography, 380–383
 symmetric-key cryptography, 377–380
 threats, 371–375
 VPNs, 524, 527–528
 wireless networks, 389–391
Security Association (SA) tags, 388
Security parameters index (SPI) field, 388
Seeds in BitTorrent, 350–351
Segments
 TCP, 299–301, 310–311
 transport layer, 292
 UDP, 295–297
Self-organized overlay networks, 601
Self-organizing sensor networks, 789–790
Self-routing, 571
Self-similarity
 in multimedia, 756–759
 in queuing models, 427–428
Self-similarity parameter, 758
Self-stabilization, 767, 785
Semi-optical routers, 563
Send information (SI) messages, 253
Sender report (SR) packets, 732–734
Sender’s byte count field, 734
Sender’s packet count field, 734
Sensing units, 793
Sensor networks, 789–790
 clustering in, 790–791, 799–805
 communication energy model, 794–799
 intercluster routing protocols, 808–811
 intracluster routing protocols, 806–808
 node structure for, 793–794
 power supplies, 794
 protocol stack for, 791–792
 related technologies, 811–812
 routing protocols overview, 805–807
 simulation of, 812–814
Sequence control (SC) field, 148
Sequence number field
IPsec, 388
RTP packets, 730
TCP segments, 299
Sequences and sequence numbers
AODV, 778
Shannon’s coding theorem, 711–713
TCP, 298
Sequential experiments, 828
Serial connections, 206–207
Serial-to-parallel converters, 60
Serial-to-parallel multiplexing, 452
Server modes in VTP, 138
Server racks, 578
Server-routed networking schemes, 592
Servers
authoritative, 328
DNS. See Domain Name System (DNS) and servers
web, 336, 341–342
Service abstraction layer (SAL), 614
Service chaining, 627
Service control in RAS signaling, 658–659
Service control points (SCPs), 642, 644
Service-level agreements (SLAs), 496
Service models
cloud computing, 581–583
queueing systems, 410–413
Service-set identification (SSIDs), 142
Service sharing queueing systems, 409
Service switching points (SSPs), 642–643, 647
Serving Gateway (SGW), 269, 271, 683
Serving General packet radio Support Node (SGSN), 247–248
Session Announcement Protocol (SAP), 666
Session Description Protocol (SDP), 666–667
Session Initiation Protocol (SIP)
call establishment, 673–674
components, 667–668
features and extensions, 674–678
messages, 669–671
organization, 671
overview, 666–667
registration process, 672–673
SIP to H.323 internetworking, 679–680
SIP to PSTN internetworking, 681–682
Session layer, 20
Sessions
RTCP, 733
RTP, 728–729
Set and Trap PDUs, 361
Set-top boxes, 746, 748
Setup call-signaling messages, 659, 662
7-layer OSI model, 20
SGSN (Serving General packet radio Support Node), 247–248
SGW (Serving Gateway), 269, 271, 683
SHA-1 hash codes, 351
Shadow fading, 281
Shannon’s coding theorem, 711–713
Shapers, 496
Shared data buses, 471–472
Shared-memory switch fabrics, 468–469
Shared trees, 220, 228–229
Sharing resources in virtualization, 585
SHF (super-high frequency) band ranges, 98
Short IFS (SIFS) interval, 147
Shortest paths
SSN, 571
STP, 134–135
Shutdown chunks, 738
Shutdown acknowledgment chunks, 738
Shutdown complete chunks, 738
SI (send information) messages, 253
SIFS (short IFS) interval, 147
Signal regeneration, 42
Signal sampling, 695–696
Signal System 7 (SS7) networks, 642–643
MSUs, 645–646
overview, 644–645
phone call process and signaling sessions, 645
Signal-to-noise ratio (SNR), 280–281, 283
Signal transfer points (STPs), 642–643
Signaling
SCTP, 738–740
SS7 networks, 645–646
Signal connection control part (SCCP), 644
Signaling link selection (SLS), 645
Signaling protocols in VoIP, 649–650
Signaling servers, 650
Signaling Transport (sigtran) group, 679
Signatures, digital, 387
Simple Mail Transfer Protocol (SMTP), 333–334
Simple multicast, 237
Simple Network Management Protocol (SNMP), 360–362
Simplicity of routing algorithms, 162
Single-carrier frequency-division multiple access (SC-FDMA), 100, 273
Single-key encryption protocols, 377
Single-path switching networks, 458
Single-source denial-of-service attacks, 375
Single-stage switching networks, 458
Single topologies in SDN emulators, 635
SIP. See Session Initiation Protocol (SIP)
Site-to-site VPNs, 526–527
Size, packet, 15–17
SLAs (service-level agreements), 496
Sliding-window flow control, 88–92, 305–306
Slow start congestion control method, 311–312
SLS (signaling link selection), 645
Small-size routers, 46
SMI (structure of management information), 359
SMTP (Simple Mail Transfer Protocol), 333–334
SNMP (Simple Network Management Protocol), 360–362
SNR (signal-to-noise ratio), 280–281, 283
Social networking protocols, 347
Sockets in transport layer, 293–294
Softswitch methods, 678
Software as a service (SaaS), 582
Software-defined networking (SDN), 607–608
APIs, 613
application delivery, 622–623
cloud computing, 621–623
compute and storage, 621–622
control planes, 609–615
data planes, 609–611, 615–619
information-centric networking, 627–632
multicasting, 621
network emulators, 632–635
network function virtualization, 623–627
network model, 613–619
overview, 608–609
scalability, 620–621
small-size architectures, 620–621
Software firewall programs, 392
Solar cells, 791
SONET (Synchronous Optical Networking) standard, 547–548
Sorted deadline lists, 511–512
Source-active (SA) packets, 235
Source address field
Ethernet LAN frames, 120
IP packets, 162
IPv6 packets, 196
Source-based congestion avoidance, 313–314
Source coding systems, 695
Source descriptor (SDES) packets, 732
Source encoder units, 709
Source identification in RTCP, 733
Source-initiated protocols, 769
Source port field
SCTP packets, 736
TCP segments, 299
UDP segments, 296
Source ports
transport layer, 292
UDP, 296
Source routing, 179
Space-division multiple access (SDMA), 104
Spanké-Benes switching networks, 559–560
Spanning-Tree Protocol (STP), 133–136, 610
Sparse-mode algorithm, 220
Sparse-mode PIM, 227–230, 236
Spatial frequencies, 704
SPDY protocol, 338
Speech recognition in IVR, 754
Speed-up factor in switching networks, 469
Spherical switching networks (SSNs), 569–572
Spike noise, 77
Split-horizon rule, 186
Spread-spectrum techniques
CDMA, 101, 103–104
LANs, 141
physical layer, 144
Squared-error distortion, 697
SR (sender report) packets, 732–734
SS7 (Signal System 7) networks, 642–643
MSUs, 645–646
overview, 644–645
phone call process and signaling sessions, 645
SSH (Secure Shell) protocol, 344–346
SSID (service-set identification), 142
SSNs (spherical switching networks), 569–572
SSPs (service switching points), 642–643, 647
SSRC field, 734
Stability of routing algorithms, 162
Stages in switching networks, 458
Star couplers, 556, 560
Star topology for LANs, 116–117
Start of frame field, 120
Stateful packet filtering, 394
Stateless packet filtering, 394
Static intradomain routing protocols, 179
Static protocols, 768
Static routes with routers, 45
Statistical multiplexing, 64–65
Status codes in HTTP response messages, 340
Status lines in HTTP response messages, 340
Status mode in RAS signaling, 658
Steady-state phase in LEACH, 801
Still image compression, 701–707
Stochastic processes, 834–835
Stop-and-go model, 255–259
Stop-and-wait flow control, 85–88
Store-and-forward operation, 12
STP (Spanning-Tree Protocol), 133–136, 610
STPs (signal transfer points), 642–643
Stream batches, 756
Stream Control Transmission Protocol (SCTP), 735–740
Streaming
audio, 708–709
non-Markovian, 756–759
QoS for, 744–745
Structure of management information (SMI), 359
Subcarriers in OFDM, 100
Subnet addressing, 24–26
Subnet masks, 186, 188
Subscribe and Notify messages in SIP, 677
Super-high frequency (SHF) band ranges, 98
Superframe intervals, 147
Superprinting, 26–27
Superposition, 436
Swarms in BitTorrent, 350–352
Switch fabrics
buffers, 471–475
characteristics, 457–458
clos, 460–465
complexity, 458
concentration and expansion switches, 465–468
crossbar, 459–460
multipath buffered crossbars, 471–475
performance, 469–475
router, 44–45
shared-memory, 468–469
Switch IDs in STP, 134–135
Switch modes in VTP, 138–139
Switch-routed networking schemes, 592–594
Switches
OpenFlow, 616–617
optical networks, 556–560, 569–572
virtual, 599–600
VLANS, 137–138
Switching and routing devices, 40–41
layer 1, 41–42
layer 2, 42–44, 124–125
layer 3, 44–47
wireless, 47–50
Switching nodes, 6, 8
Switching tiers structures, 129
Symmetric digital subscriber line (SDSL), 56–57
Symmetric-key cryptography, 376–377
AES, 379–380
DES, 377–379
Synchronization source (SSRC) identifier field
RTCP packets, 733
RTP packets, 730
Synchronize (SYN) field, 300
Synchronous Digital Hierarchy (SDH) standard, 547–548
Synchronous MAC protocols, 118
Synchronous Optical Networking (SONET) standard, 547–548
Synchronous TDM, 61–64
System capacity in frequency reuse, 274
T
Table-driven routing protocols, 768
Tail-drop policy, 203
TCAP (transaction capabilities application part), 645
TCAs (traffic-conditioning agreements), 496
TCP See Transmission Control Protocol (TCP)
TCP normalized method, 314–315
TDM (time-division multiplexing), 61
GMPLS, 551–552
statistical, 64–65
synchronous, 61–64
TDMA (time-division multiple access), 99
TE (traffic engineering), data center networks, 591
Telephone systems, 72. See also Cellular networks;
Voice over IP (VoIP)
Telephony over passive optical networks (TPONs), 553
Television systems, 72, 745–750
TELNET protocol, 343–344
Temporally Ordered Routing Algorithm (TORA), 774–775
Index

Temporary address field, 263
Terminal-only-routed signaling, 660
Terminals in H.323 protocol, 652
Text-to-speech units, 754
Thermo-optic switches, 556
Threats to security
ad-hoc networks, 783–784
categories, 371–375
Three-dimensional switches, 475
Three-way handshakes, 337
Throughput in TCP, 309, 314
Time-division multiple access (TDMA), 99
Time-division multiplexing (TDM), 61
GMPLS, 551–552
statistical, 64–65
synchronous, 61–64
Time-to-live (TTL) field
eBGP, 195
ICMP, 165
IP packets, 161
MPLS packets, 536
Timeouts in flow control, 87–88
Timestamp field
PDUs, 361
RTP packets, 730–731
Token arrival rate, 493
Token-bucket traffic shaping, 493–494
Tokens in token-bucket traffic shaping, 493
Top-of-rack (ToR) in data center networks, 588
Topologies
LANs, 7, 116–117
SDN emulators, 634–635
ToR (top-of-rack) in data center networks, 588
TORA (Temporally Ordered Routing Algorithm), 774–775
Torus-shaped topology, 570
TOS (type of service) field
differentiated services QoS, 496
OSPF, 181
Total length field, 161–162
Total Path Attribute Length field, 190, 192
Total system delay in queues, 506
TPONs (telephony over passive optical networks), 555
Trackers in BitTorrent, 350
Traffic channels, 248
Traffic class field, 196
Traffic classifiers, 496
Traffic conditioners, 495–496
Traffic-conditioning agreements (TCAs), 496
Traffic-congestion case, 498
Traffic engineering (TE), 528, 538–539, 591
Traffic grooming, 551
Traffic oriented traffic engineering, 539
Traffic policing, 201, 488
Traffic shaping, 488–494
leaky-bucket, 489–493
token-bucket, 493–494
Transaction capabilities application part (TCAP), 645
Translator relays, 729
Transmission control blocks, 298
Transmission Control Protocol (TCP), 298
applications of, 306
congestion control, 309–315
connection setup for, 301–303
connection termination, 304–305
data transfer phase, 303–304
MAC headers, 118
for mobility, 307–309
vs. SCTP, 738–740
segments in, 299–301
Transmissions, data link. See Data links
Transmitters, CRC generation at, 80
Transparent bridges in LANs, 128
Transparent modes in VTP, 139
Transport and end-to-end protocols, 289–290
congestion control, 309–315
mobile, 307–309
TCP, 298–306
transport layer for, 290–294
UDP, 295–298
Transport layer, 22, 290–291
Port number, 21, 292
interaction with adjacent layers, 291–294
protocols, 294
Transport mode in IPsec, 389
Tree algorithms, 218–220, 476–478
Tree-based routing, 265–266
Tree topologies in SDN emulators, 635
Trunks
PBX, 647
PSTNs, 643
Tunable dispersion compensators, 553
Tunable lasers, 553
Tunable optical filters, 561, 564
Tunneling
IPsec, 389
IPv6, 522–523
Mbone, 224
MPLS, 536–538
overview, 519–521
PPP, 521–522
SSH, 345
Turbo codes, 284
Twisted-pair links, 73
Two-key cryptography, 380
Two random variable functions, 833–834
Type data in ICR, 808–809
Type field
BGP, 191
ICMP, 164
IGMP packets, 222
mobile IP, 263
OSPF packets, 181
SCTP packets, 736
SSH Packets, 345–346
Type of service (ToS) field
differentiated services QoS, 496
OSPF, 181

UDP (User Datagram Protocol), 295
applications, 297–298
for mobility, 307
segments, 295–297
UDP checksum field, 296–297
UDP length field, 296
UE (user equipment) in LTE, 269
UHF (ultrahigh) band ranges, 98
UIDs (user information databases), 651
Ultrahigh (UHF) band ranges, 98
Ultrapure fused silica, 74
Unbuffered switching networks, 458
Unfeasible Routes Length field, 190
Unguided transmission links, 73
Unicast addresses, 198
Unicast IPTV systems, 750
Unicast routers, 233
Unidirectional congestion control, 201–202
Uniform random variables, 831
Uniform Resource Indicators (URIs), 669–670
Uniform resource locators (URLs), 172–173, 336
CDNs, 743
HTTP, 339–340
SIP, 666, 669
Union of events, 827
UNIs (user-to-network interfaces), 548
Universal Plug-and-Play (UPnP), 171–172
Update packets, 182
BGP, 190–192
MBGP, 232–233
TORA, 775
Updates
ad-hoc networks, 785
layer 2 devices, 125
RIP routing tables, 185–186
Uplinks in LTE, 273
UPnP (Universal Plug-and-Play), 172–173
Upstream bandwidth in ADSL, 56
Upstream grant processors, 457
Urgent (URG) field, 300
Urgent pointer field, 300
URIs (Uniform Resource Indicators), SIP, 669–670
URLs (uniform resource locators), 172, 336
CDNs, 743
HTTP, 339–340
SIP, 666, 669
User Datagram Protocol (UDP), 295
applications, 297–298
for mobility, 307
segments, 295–297
User equipment (UE) in LTE, 269
User information databases (UIDs), 651
User mailboxes, 331, 334
User-to-network interfaces (UNIs), 548
User tracking in cellular networks, 254
Utilization
in feedback models, 434
link, 16–17
in $M/M/1$ queueing systems, 412

V
Variables in probability, 828–831
Variance in probability, 831–832
VDSL (very high bit-rate digital subscriber line), 57
VEPAs (virtual Ethernet port aggregators), 598
Verification tag field, 737
Version field
IP packets, 22
IPv6 packets, 196
RTCP packets, 732
RTP packets, 729
Index

Version number field
OSPF packets, 181
RIP packets, 185–186
Versions in HTTP, 339–340
Very high bit-rate digital subscriber line (VDSL), 57
VFNs (virtualized network functions), 624–625, 627
Video hub offices (VHOs), 747
Video on demand (VoD), 745–750
Virtual agents, 264
Virtual-circuit networks, 13–15
Virtual Ethernet port aggregators (VEPAs), 598
Virtual local area networks (VLANs), 136–139
Virtual machines (VMs), 585–587
Virtual private clouds (VPCs), 621
Virtual private networks (VPNs), 519–520
Diffie-Hellman key-exchange protocol for, 382–383
MPLS-based, 539–540
overview, 524–526
remote-access, 526
security in, 527–528
site-to-site, 526–527
Virtual registration, 264
Virtualization, 577–578, 595–596
components, 596–597
data centers, 584–588
LANs, 600, 620
links, 597
NICs, 597–598
overlay networks, 600–601
switches, 599–600
Virtualized network functions (VFNs), 624–625, 627
Visiting location register (VLR), 248, 252
VLAN Trunking Protocol (VTP), 138–139
VLANs (virtual local area networks), 136–139, 600, 620
VLR (visiting location register), 248, 252
VMs (virtual machines), 585–587
VNICS (virtual NICs), 597–598
VoD (video on demand), 745–750
Voice application servers, 754–755
Voice compression
quantization and distortion in, 696–701
signal sampling in, 695–696
Voice Extensible Markup Language (VXML), 754
Voice interpreters, 754
Voice over IP (VoIP), 641–642
H.323 protocols. See H.323 protocols
multimedia networking, 679–684
overview, 649–652
PSTNs. See Public-switched telephone networks (PSTNs)
SIP. See Session Initiation Protocol (SIP)
softswitch methods and MGCP, 678
Voice over LTE (VoLTE), 269
VPCs (virtual private clouds), 621
VPNs. See Virtual private networks (VPNs)
vSwitches, 599–600
VTP (VLAN Trunking Protocol), 138–139
VXML (Voice Extensible Markup Language), 754

W
WANs (wide area networks), 9–10
routing and internetworking. See Internet routing policies
wireless. See Wireless networks
WAPs (wireless access points), 47–48, 98, 139–140
Wavelength-conversion, 561–562
Wavelength-conversion gain, 569
Wavelength-division multiplexing (WDM), 555
Wavelength in optical networks, 547
allocation, 567–569
conversion, 558, 560–563
Wavelength routers, 560
Wavelength routing nodes, 560–563
Wavelength routing vs. broadcasting, 564
WDM (wavelength-division multiplexing), 555
Web, 335–336
HTTP, 336–341
Web caching, 341–342
Web page, 742
Web server, 755
Web site, 742
Webmail, 342
Weighted-fair queuing (WFQ), 502, 508–511
Weighted round-robin (WRR) scheduler, 509
WEP (wired equivalent privacy) standard, 390–391
WG (wireless routers with gateway), 49
Wide area networks (WANs), 9–10
routing and internetworking. See Internet routing policies
wireless. See Wireless networks
Wide-sense nonblocking networks, 559
Wiener random processes, 834
WiFi (wireless fidelity) technology, 149–151
 in distributed media mini-clouds, 753
 network examples, 158, 278, 622–623
 in peer-to-peer (P2P) applications, 348
WiMAX (worldwide interoperability for microwave access) technology, 267–268
Window-based resource allocation, 500
Window scale option, 301
Window size field, 300, 305–306
Window size in TCP, 300, 305–306, 310
Wireless access points (WAPs), 47–48, 98, 139–140
Wireless access, 97–99
 CDMA, 100–104
 FDMA, 99
 miscellaneous methods, 104–105
 OFDM, 99–100
 random-access techniques, 105–106
 SC-FDMA, 100
 TDMA, 99
Wireless fidelity (WiFi) technology, 149–151
 in distributed media mini-clouds, 753
 network examples, 158, 278, 622–623
 in peer-to-peer (P2P) applications, 348
Wireless links, 47
 channels for, 280–285
 flat fading in, 284
 intersymbol interference in, 284–285
 overview, 74–75
Wireless mesh networks (WMNs), 245, 277–280
Wireless networks, 10, 243–244
 ad-hoc. See Mobile ad-hoc networks (MANETs)
 cellular. See Cellular networks
IEEE 802.11, 142–151
infrastructure of, 244–245
LANs, 139–141
LTE, 268–277
mobile IP. See Mobile IP
security in, 390–391
sensor. See Sensor networks
WiFi, 149–151
WMNs, 245, 277–280
Wireless routers with gateway (WG), 49
Wireless Routing Protocol (WRP), 772–773
Wireless switching and routing devices, 47
 antennas, 48–49
 routers and switches, 48–49
 WAPs and base stations, 47–48
Withdrawn Routes field, 190
WLANs (wireless LANs), 49
WMNs (wireless mesh networks), 245, 277–280
World Wide Web (WWW), 335–336
 HTTP, 336–341
 Web caching, 341–342
 Web page, 742
 Web server, 755
 Web site, 742
 Webmail, 342
Worldwide interoperability for microwave access
 (WiMAX) technology, 267–268
WRP (Wireless Routing Protocol), 772–773
WRR (weighted round-robin) scheduler, 509
WWW (World Wide Web), 335–336
 HTTP, 336–341
 Web caching, 341–342
 Webmail, 342
X–Z
Xcast (explicit multi-unicast) protocol, 595
ZigBee technology, 811–812