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 Preface  

 The smartphone is the ultimate personal computer. Mobile devices are always with us and 
have become an essential part of personal productivity and lifestyle needs. We use them for 
messaging, social media, Google searches, games, picture taking, and, of course, phone calls.  

 The Android operating system powers most of the world’s smartphones, bringing an extensive 
app catalog to these devices. According to Google, more than 1 billion active devices are 
currently running Android.  

 Perhaps you have reached the point at which using mobile apps on your smartphone isn’t 
enough—it is time to create one. You might just want to tinker and program a simple app, or 
maybe you have thought of a new concept that doesn’t exist yet. Whatever the case, MIT App 
Inventor is an excellent place to start.  

 App Inventor is an easy-to-use tool for building both simple and complex Android applications. 
The apps can easily be ported to your phone, shared with others, or even sent to the Google 
Play Store for distribution to all Android devices worldwide.  

 For those looking to learn a programming language, MIT App Inventor can serve as an 
excellent bridge to acquiring more complex coding skills. Instead of presenting new users with 
frustrating messages and unfamiliar commands, App Inventor has a visually friendly interface 
that uses the methods of dragging, dropping, and connecting puzzle pieces to program 
applications (see  Figure   P.1   ).  

 

 Figure P.1   The MIT App Inventor Blocks Editor. The visual programming is designed to help 
beginners learn the ropes of building mobile applications.        
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Even though App Inventor does not require using code, it builds on the same kinds of 
principles that successful programmers need to write good applications. Whether you go no 
further with programming or you use App Inventor to launch a new career, using App Inventor 
can be a highly engaging and challenging experience. Additionally, the open and flexible 
nature of Android makes it the perfect place to start.   

   What Is MIT App Inventor?  

 MIT App Inventor is a web-based tool for building Android apps (see  Figure   P.2   ). This is often 
referred to as visual programming, which means the user is able to perform programming tasks 
without entering any computer code.  

 

 Figure P.2   The MIT App Inventor home page. This is where the app-creation journey begins.         

 App Inventor is actively managed and developed by MIT’s Mobile Learning Lab (the project 
was originally built by Google). App Inventor is growing in popularity among educators as a 
way to introduce those with no programming experience to the principles of computer science 
and app development. It also serves as a great first step for those dabbling with programming 
or looking to increase their knowledge of how smartphone apps work.  
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 The work takes place in two key sections of App Inventor: the Designer and the Blocks Editor. 
In the Designer, you decide what actions the app will perform and how it will look (see 
 Figure   P.3   ).  

 

 Figure P.3   In the App Inventor Designer, you design the app and add its key functionality.         

 The programming takes place in the Blocks Editor. There you tell the app what it should do 
and give specific instructions for making that happen.  

 The specific capabilities are programmed through connecting puzzle pieces. Over time, you will 
learn what each block does and find multiple ways for them to interact with one another. The 
pieces that do not interact will not connect with each other—another helpful way for beginners 
to get a sense of introductory programming principles.  

 MIT released App Inventor 2 in December 2013, creating a more powerful and easier-to-use 
tool. The most significant improvement is that all the work takes place within the browser (the 
previous version required a software download for some of the capabilities).  

 This improvement most impacts the onscreen emulator, which places a virtual Android device 
screen on your computer. Using this emulator provides a perspective on how the app will look 
and function when put to use. This is especially useful for those without an Android device or 
anyone in an education setting who wants to monitor student progress by viewing app builds 
on computer screens.  

 App Inventor also offers a method for using the app in real time while performing work on it: 
the AI Companion app (see  Figure   P.4   ). With this free download from Google Play, you can see 
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your app change and develop while working on it. The Companion app also works wirelessly, 
so you don’t need to physically connect your phone to a computer while working in App 
Inventor.  

 

 Figure P.4   An App Inventor app as viewed through the AI2 Companion. This lets you see both 
how the app is performing and how it looks while it is still being developed.          

  Why Android?  

 Android is not only the most popular operating system—it also is the most extendable. It is 
found on a wide variety of flagship devices from major handset makers, such as Samsung, HTC, 
LG, and Motorola. App Inventor is built to take advantage of the customization and flexibility 
that Android offers.  

 App Inventor is also a tool that is designed with those who have little to no programming 
experience in mind. Other platforms have a fairly high barrier of entry, but with App Inventor, 
you can more easily learn the essential skills for building an app with the world’s most popular 
mobile platform.  



xviii Preface

 Although many apps you create are likely to be used for practice or to share with others (see 
 Figure   P.5   ), MIT App Inventor is capable of creating apps that can be uploaded for distribution 
in the Google Play Store. With only a one-time fee of $25, anyone can put his or her skill set to 
work and become a registered Android developer.  Chapter   12   , “Distributing an App,” discusses 
this process and walks through how to accomplish it.  

 

 Figure P.5   An App Inventor app in the AI2 Companion.          

  What This Book Covers  

 So what exactly does this book discuss? The following sections provide a preview of the key 
highlights from the upcoming 12 chapters.  
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  Chapter 1: An Introduction to Programming  

 Before getting started with MIT App Inventor, it is important to get some background in key 
computer science principles. This chapter addresses the key parts of a mobile operating system 
and how computer programmers should think about creating applications.   

  Chapter 2: Building with MIT App Inventor  

 This chapter provides the first detailed walkthrough of the key pieces of App Inventor. The 
Blocks Editor and Designer get fuller attention here, and you get to build your first app: 
Sherlock Is Watching.   

  Chapter 3: App Inventor Toolkit  

 App Inventor has some powerful yet easy-to-use tools for designing and building Android apps. 
In this chapter, the focus is on the different components available in the Designer. This serves 
as a good resource on the different capabilities of the Designer and will be a chapter worth 
referencing often.   

  Chapter 4: Variables  

 Variables are one of the key pieces of App Inventor; almost any app that you build will use 
them in some way.  Chapter   4    covers the essentials of variables and provides some strategies for 
their effective use, particularly in the context of building the sample app for the chapter.   

  Chapter 5: Procedures  

 With some basic app building under your belt, it is time to take the next step and use 
procedures. Procedures make your life easier when it comes to building larger, more 
complicated apps because they enable you to group pieces of code together and recall it later.   

  Chapter 6: Working with Lists  

 As with variables, lists are a core piece of most apps that you will build with App Inventor. Lists 
store large pieces of data or information. The chapter culminates with a quiz app that provides 
some good practice in using lists.   
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  Chapter 7: Games and Animations  

 Work and productivity alone are no fun. This chapter teaches the basics of the gaming and 
animation capabilities of App Inventor. It concludes with a simple game that could be a 
springboard for you to use App Inventor for other basic or more complex games.   

  Chapter 8: Multiple Screens and Debugging Techniques  

 Apps typically have multiple screens, giving users greater clarity and more streamlined access 
to the content of an app. This chapter focuses on strategies for using multiple screens and 
explores how to build them into applications. It also covers some debugging techniques for 
App Inventor.   

  Chapter 9: Using Media  

 Most of the smartphone apps that people use are media rich. Here you get some exposure to 
and practice in building media capabilities into your own apps, and you learn what is possible 
in App Inventor.   

  Chapter 10: Sensors  

 Many apps are location aware, letting users find specific information or customize their 
interaction based on location. This chapter shows you how to build some of these tools into 
your own apps and illustrates how they can improve a user’s experience.   

  Chapter 11: Databases  

 Databases might not sound exciting, but they are a core feature of any good app that relies 
on storing information. This chapter looks at how to use databases effectively in different 
scenarios.   

  Chapter 12: Distributing an App  

 Keeping an app that you have built all to yourself is no fun. It is time to share it with others. 
This can be as simple as sending the file to friends and family or placing it in the Google Play 
Store for worldwide distribution. Whichever path you choose, this chapter assists you in getting 
to your destination.    
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  Next Steps  

 Using App Inventor is an excellent way to build an Android app (see  Figure   P.6   ). As with many 
other skills in computer science, building a mobile application is an exercise in both creativity 
and logical thinking. You need to solve rational, complex problems while simultaneously 
building out a creative vision. Although you can learn App Inventor’s basics rather quickly, you 
can build more powerful and complex applications with additional time and practice.  

 

 Figure P.6   You can create a variety of application types with App Inventor.         

  Chapter   1    begins with some essential computer science principles. Understanding how an 
operating system functions and what developers are actually doing when building software will 
give you a solid foundation in effective programming. With this established, you will be ready 
to build a variety of sample Android apps as you follow along in the book and then extend this 
skill set to your own Android apps.      
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  2 
 Building with 

MIT App Inventor  

U  nderstanding the functionality of an app is only one part of programming. The programmer 
also has to focus on specific features and how to implement them.  

 Before the serious work of building apps begins, a brief overview of how applications perform 
is useful. Let’s get beyond the pretty screen and graphics that you interact with and start to 
look at what is really happening and how to make an app perform the way you envision. After 
doing this, you will be able to understand how apps can request information, pull in data from 
the Internet, and interact with other applications.   

     The MIT App Inventor Site  

 MIT App Inventor lives on the Web, just like other online productivity tools such as Gmail 
and Google Drive. You do not need to download any software or save work to your hard drive 
before you use App Inventor (see  Figure   2.1   ).   

 The choice of web browser is very important; the App Inventor team recommends using Google 
Chrome or Firefox. Choosing a different browser, such as Internet Explorer, could result in 
errors or other complications when working with App Inventor.  

 Exploring the App Inventor site is a good way to get a feel for what is available. To begin, 
launch your browser and go to appinventor.mit.edu (see  Figure   2.2   ). The home page includes 
the portal to the App Inventor tool, along with many online tutorials and other helpful 
materials.  
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  Signing In  

 To begin a session with App Inventor, click the Create button at the top of the home page (see 
 Figure   2.2   ).  

 

 Figure 2.2   The App Inventor home page—click Create to get started.         

 Figure 2.1   The Designer interface in MIT App Inventor.        
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 Next, App Inventor asks permission to connect to your Google account. This can be a personal 
Google account (one that ends with an @gmail.com address) or a Google apps account 
managed by a university, business, or other type of organization (see  Figure   2.3   ).  

 

 Figure 2.3   Add your Google account to connect to App Inventor.         

 After signing in with your Google account, you must authorize App Inventor to access your 
Google account so that it can verify your login information. If you select Remember This 
Approval for the Next 30 Days, then you will not need to repeat this step when you return to 
work on apps (see  Figure   2.4   ). At the end of the 30 days, you simply need to reauthorize access.  

 

 Figure 2.4   Authorize your Google account.         
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 The next screen is the file system where App Inventor projects are stored. As you create more 
projects over time, you can find them there, just as a folder on your computer holds a list of all 
your documents saved to that location.  

 Next, click New Project and then type   CatWatch into the box (spaces are not allowed). This 
takes you to the Designer screen.   

  Designer  

 App building begins in the Designer. Here you create the user interface, or the “look and feel” 
of the app. You also add the components needed to receive input from the user, as well as the 
components needed to display output or information to the user. The Designer also is where 
you specify which nonvisible components the app will use, such as the dialer, GPS, or SMS. 
Notice that because we are in Designer, the Designer button in  Figure   2.5    is slightly grayed out 
in the top-right corner of the screen. This button, along with the one next to it,  labeled Blocks, 
indicates which editor you are using.  

 The left side of the screen features the Palette (see  Figure   2.5)   , which, as the name implies, is 
the space for all the creation tools (the next chapter details the full suite).  

 

 Figure 2.5   The App Inventor Designer screen.          

  Blocks Editor  

 The Blocks Editor is where you will be programming an app’s behavior (see  Figure   2.6   ). Here 
you will add the commands that do the work of the app. As just noted, you access it from the 
Blocks button at the top right.  
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 Figure 2.6   More specific programming takes place in the Blocks Editor.         

 MIT App Inventor uses the metaphor of drawers containing puzzle pieces for programming. 
Each item in the Blocks palette under Built-in is considered a drawer. The drawers contain the 
puzzle-looking pieces. The programming is accomplished by connecting the puzzle-looking 
pieces. Despite its seeming simplicity, App Inventor has many powerful capabilities that enable 
the user to build complex applications.  

 To better understand what programming an app entails, it is useful to understand what is going 
on inside an application.   

  The AI2 Companion App  

 App Inventor has a useful tool for continuously seeing your app in real time on an Android 
device during each step of the development process.  

 You can find the MIT AI2 Companion app (see  Figure   2.7   ) in the Google Play Store by perform-
ing a search for “MIT AI2 Companion.”   

 When you are building your app, the computer and Android device must be connected to the 
same wireless network (the desktop machine might have a wired connection). To connect your 
app to your device in App Inventor on your computer, click AI Companion on the Connect tab 
(see  Figure   2.8   ).  
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 Figure 2.8   Connecting to the Companion app.         

 You can then type in a six-digit code or scan the QR code with your device (see  Figure   2.9   ), 
using the App Inventor app. Doing so brings up a live view of your app. As you add elements 
to it with the MIT App Inventor software, those changes are reflected in real time on your 
device.  

 Figure 2.7   The AI2 Companion Android app.        
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 Figure 2.9   Connecting to the Companion app.          

  The Android Emulator  

 As another option, App Inventor has an Android emulator that puts a simulated Android screen 
on the computer desktop. This enables you to view the app’s progression if you do not have an 
Android device. It also is useful for anyone using App Inventor in a classroom environment.  

 An installer package is available for Windows or Mac. Choose the proper platform from the 
App Inventor site and download it to your computer (see  Figure   2.10   ).  

 To view your app, choose Emulator from the same menu in  Figure   2.8   .    

  USB Connection to Android Device  

 Another option is to connect your device to the computer with a USB cable. This method 
provides the benefit of seeing the app on your Android device just as if you were using the 
MIT App Inventor Emulator application. This option also does not require a wireless network 
connection (see  Figure   2.11   ).   

 First, you need to install the App Inventor setup software to your Mac or Windows PC. Many 
Android devices also require the installation of driver software (available at the device manufac-
turer’s website). Your device might require other changes to the device’s settings. Android has a 
web page that describes the potential changes and implications at  http://appinventor.mit.edu/
explore/ai2/setup-device-wifi.html .  

 After you have properly configured your device, select Connect and choose USB from the 
menu. After a few moments, the app should appear live on your device.    

http://appinventor.mit.edu/explore/ai2/setup-device-wifi.html
http://appinventor.mit.edu/explore/ai2/setup-device-wifi.html
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 Figure 2.10   The emulator download package. The emulator can be downloaded to a Mac or a 
Windows PC.        

 Figure 2.11   The Android emulator.        
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  Getting Inside an App  

 Apps have an internal design, the programming that works with the user interface. Effective 
programming entails knowing how to use the internal components to effectively implement 
what is visible to the user.  

 A good way to think about the internal pieces of an app is to focus on components and 
actions. The components are the various tools you find in App Inventor to create tasks. Think 
about the Design Editor and all the onscreen tools: buttons, images, drawings, and so on. In 
the Design Editor, you pull into your app all the pieces that make up the user interface, or what 
the users of your app will see on the device’s screen.  

  Event Handlers  

 All of your blocks, the pieces that make your app perform tasks, will be connected with an 
event handler. Events are created whenever something in the real world happens to the app, 
such as when the user clicks a button, the phone’s location changes, or the phone receives a 
text message. Blocks exist for just about everything you want to do in an app; taking a picture, 
checking the GPS location, displaying text, changing the color of a component, finding out 
what the user entered into a text box, and so on. You can add (or remove) these blocks from  an 
event handler, allowing the programming to determine the precise set of actions to take when 
the user presses a button.  

 When any event happens, App Inventor runs whatever blocks are inside the  event handler  
block for that event. For example,  Figure   2.12    shows a button labeled Speak; the block  when 
Speak.Click do  is the event handler for when that button is clicked.   

 Imagine that we wanted to write an app to speak written text. We would need a button to 
start the process. To do this, we would have to drag the  action  block into the event handler. 
Whenever the button is clicked, that block will be called, and the device will move to what-
ever blocks have been placed inside the event handler. The event handler will grow and shrink 
as needed to accommodate whatever blocks are placed inside it (in  Figure   2.13   , this involves 
speaking some text). The way it is right now, however, the app has a button and a text-to-
speech  component, but it won’t do anything because the event handler is empty. After we drag 
in some action blocks, it will do those actions whenever the button is clicked. Note that the 
component used to initiate the action (such as a button) is usually different than the compo-
nent that does the requested action (such as taking a picture or sending a text message).    
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  Doing One Thing at a Time  

 Modern smartphone applications perform a large number of tasks simultaneously—or at least 
appear to do so. All computers, including smartphones, are so good at switching between differ-
ent tasks so quickly that it appears they are doing two unrelated things simultaneously.  

 Many computers have multiple cores, or processing units. These computers really can do more 
than one thing because each core can work on a separate task. But those cores are also switch-
ing very quickly between many tasks that the system and user are trying to do. You might have 
two, or four, or even more separate cores in your computer or phone, but between the operat-
ing system and the apps, the processor has hundreds of small tasks to work on.  

 Most of the things you will do in App Inventor are single task, meaning that only one task 
is actually running at a time. However, they can happen quickly and get out of the way for 
other things to run. In the code blocks,  only one event handler can run at a time . So when an 
event happens and the event handler begins executing the blocks you put in it, all other event 
handlers must wait until this one is done.  

when Speak.Click do action block

 Figure 2.12   An event handler in the Blocks Editor.        

 Figure 2.13   An event handler.        
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 Events that take place while a handler is already running are put in a queue and will run when 
it is their turn. Most event handlers run much faster than events are generated, so this is often 
not an issue. The most common actions, such as updating the text in a label or looking at the 
state of a check box, occur nearly instantly. However, other actions, such as working through 
a large collection of data, might take a long time, and the app will appear frozen until the 
process finishes.  

 While an event handler is running, the display isn’t updated. Again, this isn’t an issue most of 
the time, but if you have an event handler that is taking long enough for a user to notice, the 
display will appear frozen until the event handler is complete.  

 You might notice that some features in App Inventor take time, such as playing sounds or 
music. Other features have to wait for something on the Internet to respond, which can cause 
an unpredictable amount of delay time. But the display doesn’t freeze when you play music, 
and the app continues to work while waiting for a web page to load. Android provides the 
means to allow some tasks, such as playing music, to run in the background without disrupting 
the normal actions your app performs. Android provides other means of dealing with actions 
that could take a long time,  or that might never finish, such as loading a web page or waiting 
for the user to take a picture, without affecting the normal functioning of your app. The 
actions for music and sound are made possible by the Android system. Your app simply hands 
off the sound file to the phone’s operating system and tells the phone to handle it. The music 
plays while the app continues to work.  

 Later in the text, we provide more details on how App Inventor switches tasks. You can use 
that knowledge to make better apps.    

  Exercise: Sherlock Is Watching  

 Next we create an app that uses some of the basic functionality described in this section. As 
with the other apps you will build in this book, there is flexibility in the specifics. Feel free to 
experiment after following the steps to get a feel for how all the pieces work and the type of 
customizations possible. Learning to build apps is a process that involves both following the 
step-by-step directions and branching out on your own.  

    1.   Navigate back to your projects by clicking My Projects at the top of the page (see 
 Figure   2.14   ).  

    2.   If you created a CatWatch app earlier, select it from your list of projects; otherwise, create 
a new project called CatWatch.   

   3.   Click User Interface in the Palette. The Palette then expands to reveal several choices, 
such as Button, Checkbox, and Clock. Click and hold the Button choice, and then drag 
it onto the Android home screen in the Viewer (see  Figure   2.15   ). A button appears in the 
Viewer, indicating that an element has been added to the screen. The button’s name also 
is added to the Components tree.  
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 Figure 2.15   Adding a button to the Viewer.          

   4.   The button shows with the following default text: Text for Button1. Let’s change the 
name of the button. Click the label in either the Viewer or the Components tree and 
then click the Rename button. In the box that launches, give it another name, such as 
Meow.   

 Figure 2.14   The My Projects button is for creating new projects and accessing existing ones.        
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   5.   Notice that changing the name of the button does not change the button’s text. To 
change the displayed text, click the button and then find the box labeled Text inside 
the Properties pane. Then highlight the text and type Meow. The text will change in the 
Viewer.    

  Adding an Image  

 Images are an effective way to add some visual polish to an app. Next, we insert an image into 
the app.  

    1.   If you have not done so already, download the CatIsWatching image from the book’s 
InformIT page.   

   2.   Find the box labeled Media, which is just below the Components box. Click the Upload 
File button (see  Figure   2.16   ) and then upload the CatIsWatching file. This adds the image 
to the app, making it available to any component that uses the image. Note that the 
filename appears in the media box.  

 

 Figure 2.16   Uploading an image.          

   3.   Click User Interface in the Palette. Then click and hold the image and drag it onto the 
Android home screen in the Viewer. A blue bar shows where you can place the image. 
By moving the mouse, you can place the image above or below the Button. When 
the blue bar is below the Button, drop the image. Next click the Image1 button in the 
Components box. The Properties pane updates to display the properties associated with 
the image.   
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   4.   Click the box labeled Picture. All available images in your app are listed; select the 
CatIsWatching image. Click OK to see the image appear in the Viewer (see  Figure   2.17   ).  

 

 Figure 2.17   Uploading an image.          

   5.   The image of Sherlock the cat needs to be tweaked to properly fill the screen. Click in the 
width box and then click the box that reads Pixels. Type  320  pixels.   

   6.   The procedure is the same for the height: Click the height box and then type  400  pixels.   

   7.   This app requires one more element. From User Interface, click and drag the Label 
component. Again, watching the blue insertion bar, drop the Label between the button 
and the Image components. Next, select Label1 in the Components box. Click the button 
underneath the BackgroundColor label, which is currently set to None. Then choose 
Green.   

   8.   It is time to write some text inside the box. Go to the Text box and type  Sherlock is 
watching . Choose TextAlignment and change this selection to Center. Notice that 
this does not change the position of the label—it changes only the text inside it (see 
 Figure   2.18   ).    

   9.   Click Blocks in the upper-right corner. You should see Meow, Label1, and Image1 
underneath Screen1. This is where you would drag these components into the Blocks 
Editor for further programming.    

 This first app is relatively simple, but it should make you feel more familiar with the core pieces 
of App Inventor. Later apps will make more extensive use of the interface elements and how 
they can be programmed. We will also explore how to put this app on your own device and 
interact with it.    
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  What Can You Build?  

 This first exercise demonstrates a little of what is possible with App Inventor. Throughout this 
book, you will learn how to maximize the power of App Inventor to build a variety of apps.  

 The skills you gain will also empower you to begin your own experimentation and build apps 
beyond the walk-throughs provided in this text.  

 The following sections preview some of the other apps and exercises we will be exploring 
throughout the book. With careful attention to detail and some creativity, you will be able to 
build these apps and have the foundations for creating your own set of applications.  

  Speak, Android!  

 Give your Android device a voice. This simple app (see  Figure   2.19   ) teaches you how to enable 
an image to respond to touch and speak on command. You can also use it to explore other 
ways to work with images.  

    Pollock  

 Named after Jackson Pollock, the American artist who helped popularize abstract art, this app 
turns an Android device into a canvas for color (see  Figure   2.20   ). You will learn how to turn 
buttons into paint and use the Canvas component.  

 Figure 2.18   The completed image and label.        
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 Figure 2.20   The Pollock app.           Figure 2.19   The Speak, Android app.        

  Fore  

 MIT App Inventor has some surprisingly powerful tools for creating games. Various motion-
enabled commands enable you to create some powerful games. The game you will be building 
will show how you can use the canvas and various sprites to create a game field and objects 
that can be manipulated while playing (see  Figure   2.21   ).    

  Android Quiz  

 Games can be fun to create, but imagine being able to use an app for your own productivity. 
Android Quiz (see  Figure   2.22   ) demonstrates that you can create an actual assessment app.     

  Uploading to Google Play  

 Later chapters discuss several ways to share your app with others. However, the ultimate step is 
uploading your app to Google Play for distribution to other Android users.    
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 Figure 2.21   The Fore golf game.        

     Summary  

 MIT App Inventor is a powerful tool that beginning coders or anyone dabbling with mobile 
technology can use to build Android apps. In this chapter, we looked at the kind of apps that 
are possible with this cloud-based tool.  

 Computer science is applied reasoning using both art and science. It requires the ability to 
communicate ideas through a combination of language and powerful technology. Hopefully 
this first app has demonstrated that App Inventor is an excellent starting point for anyone 
looking to create with computer technology, whether professionally or recreationally.  

 In the next chapter, we build an app that includes both an image and sound, and we look at 
how to see the app on your own device.   

 Figure 2.22   Android Quiz.        



34 Chapter 2 Building with MIT App Inventor 

  Exercises  

    1.    Add another button to the Viewer. Change the text, trying different configurations to see 
how they fit in the Viewer.    

   2.    Upload a different image. Download one from the Web or upload an image on your 
computer. Try different configurations for size in relation to the rest of the app. Decide 
on the optimal size for images in the context of the rest of the content.    

   3.    Change the text and color scheme in the label. Try labels in different locations of the 
app. Pay attention to how the Designer works in terms of the placement of components 
and how you can customize the components.         
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capabilities,   8 - 9   

   strengths of Android Google services,   9 - 10   

   switching  

  between launchers,   6  

  screens,   128 - 129    

  T 
   testing,   131   

   Text to Speech,   40   

   TextBox, User Interface element, Palette 

(Designer),   38   

   Texting,   42   

   tilt, detecting,   159 - 160   

   time, updating (Google Play Developer 

Console),   205   

   TinyDB,   43 ,  130 ,  156 ,  174 -   176  

  retrieving data,   175   

   TinyWebDB,   43 ,  176 - 177 ,  184  

  security and privacy,   177   

   Twitter,   42   

   types of  

  lists, one-dimensional lists,   92 - 93  

  procedures,   76 - 78    

   sensors,   149 - 150  

  Accelerometer Sensor,   158 - 160  

  accelerometers,   158  

  detecting tilt,   159 - 160  

  exercises, Pushpin app,   161 - 172  

  Location Sensor,   165  

  location-aware apps, GPS (Global 
Positioning System),   151 - 152  

  Orientation Sensor,   160 - 161  

  Palette (Designer),   41   

   Sensors palette, Designer,   151   

   Set ApiKey,   178   

   Set Query,   178   

   setters,   57 - 58   

   Sharing,   42   

   sharing data between screens,   129 - 130   

   Sherlock Is Watching,   27 - 29  

  adding images,   29 - 31   

   signing in, MIT App Inventor website,   18 - 20   

   single tasks, doing one thing at a 

time,   26 - 27   

   skin,   6   

   sliders, User Interface element, Palette 

(Designer),   38   

   smooth animation,   118   

   social components,   42   

   Sound,   140 - 141   

   sound,   40   

   Sound Recorder,   40   

   Speak, Android!,   31 - 32 ,  47 - 53  

  connecting your device,   48 - 50  

  seeing your app on connected 
devices,   50 - 53   

   special variables,   58 - 60   

   Speech Recognizer,   40   

   speed, ImageSprite,   115   



216 UI (user interfaces)

  W-X 
   Web, Palette (Designer),   44   

   web APIs,   182   

   Web component,   144 ,  180 - 182  

  web APIs,   182   

   web database service, setting up,   176   

   website, MIT App Inventor,   17 - 18  

  Blocks Editor,   20 - 21  

  Designer,   20  

  signing in,   18 - 20   

   WebViewer, User Interface element, Palette 

(Designer),   38   

   When GotResult (result),   179   

   widgets,   8   

   WriteMore,   182 - 186   

   writing, queries, FusionTables,   179    

  Y-Z 
   Yandex Translate,   40     

  U 
   UI (user interfaces),   5 - 7   

   updating time, Google Play Developer 

Console,   205   

   Up/Down Counter app,   67 - 68   

   uploading  

  APK files, Google Play Developer 
Console,   204  

  apps to Google Play,   33   

   USB connection to Android devices,   24   

   User Interface element, Palette (Designer), 

  37 - 38   

   user interfaces (UI),   5 - 7    

  V 
   variables,   55 - 56  

  built-in variables.    See  built-in variables 

  global variables,   64 -   67 ,  156  

  Up/Down Counter app,   67 - 68  

  lists, defining variables that depend on 
runtime elements,   104 - 105  

  local variables,   65 ,  68 - 69  

  Random Guess app,   69 - 71  

  special variables,   58 - 60  

  storing things in,   72   

   version codes, App distribution exercise, 

  200 - 201   

   version names,   200 - 201   

   video,   145 - 146   

   Video Player,   40   

   Viewer (Designer),   45   

   visual programming language,   12 - 13    
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