
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133796780
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133796780
https://plusone.google.com/share?url=http://www.informit.com/title/9780133796780
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133796780
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133796780/Free-Sample-Chapter

Oracle® PL/SQL
by Example
Fifth Edition

This page intentionally left blank

Oracle® PL/SQL
by Example
Fifth Edition

Benjamin Rosenzweig
Elena Rakhimov

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Rosenzweig, Benjamin.
  Oracle PL/SQ® by example / Benjamin Rosenzweig, Elena Rakhimov.—Fifth edition.
   pages  cm
  Includes index.
  ISBN 978-0-13-379678-0 (pbk. : alk. paper)—ISBN 0-13-379678-7 (pbk. : alk. paper)
  1.  PL/SQL (Computer program language)  2.  Oracle (Computer file)  3.  Relational databases. 
I.  Rakhimov, Elena Silvestrova.  II.  Title.
  QA76.73.P258R68 2015
  005.75'6—dc23	 2014045792

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13:	 978-0-13-379678-0
ISBN-10:	 0-13-379678-7

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, February 2015

To my parents, Rosie and Sandy Rosenzweig,
for their love and support
—Benjamin Rosenzweig

To my family, for their excitement and encouragement
—Elena Rakhimov

This page intentionally left blank

	 vii

Contents

Preface� xvii

Acknowledgments� xxi

About the Authors� xxiii

Introduction to PL/SQL New Features in Oracle 12c� xxv
Invoker’s Rights Functions Can Be Result-Cached� xxvi

More PL/SQL-Only Data Types Can Cross the PL/
SQL-to-SQL Interface Clause� xxvii

ACCESSIBLE BY Clause� xxvii

FETCH FIRST Clause� xxviii

Roles Can Be Granted to PL/SQL Packages and
Stand-Alone Subprograms� xxix

More Data Types Have the Same Maximum Size in SQL
and PL/SQL� xxx

Database Triggers on Pluggable Databases� xxx

LIBRARY Can Be Defined as a DIRECTORY Object and
with a CREDENTIAL Clause� xxx

Implicit Statement Results� xxxi

BEQUEATH CURRENT_USER Views� xxxii

viii	 Contents

INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES
Privileges� xxxii

Invisible Columns� xxxiii

Objects, Not Types, Are Editioned or Noneditioned� xxxiv

PL/SQL Functions That Run Faster in SQL� xxxiv

Predefined Inquiry Directives $$PLSQL_UNIT_OWNER
and $$PLSQL_UNIT_TYPE� xxxvi

Compilation Parameter PLSQL_DEBUG Is Deprecated� xxxvii

Chapter 1	 PL/SQL Concepts� 1
Lab 1.1: PL/SQL Architecture� 2

    PL/SQL Architecture� 2

    PL/SQL Block Structure� 5

    How PL/SQL Gets Executed� 8

Lab 1.2: PL/SQL Development Environment� 9

    Getting Started with SQL Developer� 10

    Getting Started with SQL*Plus� 11

    Executing PL/SQL Scripts� 14

Lab 1.3: PL/SQL: The Basics� 18

    DBMS_OUTPUT.PUT_LINE Statement� 18

    Substitution Variable Feature� 19

Summary� 25

Chapter 2	 PL/SQL Language Fundamentals� 27
Lab 2.1: PL/SQL Programming Fundamentals� 28

    PL/SQL Language Components� 28

    PL/SQL Variables� 29

    PL/SQL Reserved Words� 32

    Identifiers in PL/SQL� 33

    Anchored Data Types� 34

    Declare and Initialize Variables� 36

    Scope of a Block, Nested Blocks, and Labels� 39

Summary� 41

Contents	 ix

Chapter 3	 SQL in PL/SQL� 43
Lab 3.1: DML Statements in PL/SQL� 44

    Initialize Variables with SELECT INTO� 44

    Using the SELECT INTO Syntax for Variable
    Initialization� 45

    Using DML in a PL/SQL Block� 47

    Using a Sequence in a PL/SQL Block� 48

Lab 3.2: Transaction Control in PL/SQL� 49

    Using COMMIT, ROLLBACK, and SAVEPOINT� 49

    Putting Together DML and Transaction Control� 53

Summary� 55

Chapter 4	 Conditional Control: IF Statements� 57
Lab 4.1: IF Statements� 58

    IF-THEN Statements� 58

    IF-THEN-ELSE Statement� 60

Lab 4.2: ELSIF Statements� 63

Lab 4.3: Nested IF Statements� 67

Summary� 70

Chapter 5	 Conditional Control: CASE Statements� 71
Lab 5.1: CASE Statements� 71

    CASE Statements� 72

    Searched CASE Statements� 74

Lab 5.2: CASE Expressions� 80

Lab 5.3: NULLIF and COALESCE Functions� 84

    NULLIF Function� 84

    COALESCE Function� 87

Summary� 89

Chapter 6	 Iterative Control: Part I� 91
Lab 6.1: Simple Loops� 92

    EXIT Statement� 93

    EXIT WHEN Statement� 97

x	 Contents

Lab 6.2: WHILE Loops� 98

    Using WHILE Loops� 98

    Premature Termination of the WHILE Loop� 101

Lab 6.3: Numeric FOR Loops� 104

    Using the IN Option in the Loop� 105

    Using the REVERSE Option in the Loop� 107

    Premature Termination of the Numeric FOR Loop� 108

Summary� 109

Chapter 7	 Iterative Control: Part II� 111
Lab 7.1: CONTINUE Statement� 111

    Using CONTINUE Statement� 112

    CONTINUE WHEN Statement� 115

Lab 7.2: Nested Loops� 118

    Using Nested Loops� 118

    Using Loop Labels� 120

Summary� 122

Chapter 8	 Error Handling and Built-in Exceptions� 123
Lab 8.1: Handling Errors� 124

Lab 8.2: Built-in Exceptions� 126

Summary� 132

Chapter 9	 Exceptions� 133
Lab 9.1: Exception Scope� 133

Lab 9.2: User-Defined Exceptions� 137

Lab 9.3: Exception Propagation� 141

    Re-raising Exceptions� 146

Summary� 147

Chapter 10	 Exceptions: Advanced Concepts� 149
Lab 10.1: RAISE_APPLICATION_ERROR� 149

Lab 10.2: EXCEPTION_INIT Pragma� 153

Lab 10.3: SQLCODE and SQLERRM� 155

Summary� 158

Contents	 xi

Chapter 11	 Introduction to Cursors� 159
Lab 11.1: Types of Cursors� 159

    Making Use of an Implicit Cursor� 160

    Making Use of an Explicit Cursor� 161

Lab 11.2: Cursor Loop� 165

    Processing an Explicit Cursor� 165

    Making Use of a User-Defined Record� 168

    Making Use of Cursor Attributes� 170

Lab 11.3: Cursor FOR LOOPs� 175

    Making Use of Cursor FOR LOOPs� 175

Lab 11.4: Nested Cursors� 177

    Processing Nested Cursors� 177

Summary� 181

Chapter 12	 Advanced Cursors� 183
Lab 12.1: Parameterized Cursors� 183

    Cursors with Parameters� 184

Lab 12.2: Complex Nested Cursors� 185

Lab 12.3: FOR UPDATE and WHERE CURRENT Cursors� 187

    FOR UPDATE Cursor� 187

    FOR UPDATE OF in a Cursor� 189

    WHERE CURRENT OF in a Cursor� 189

Summary� 190

Chapter 13	 Triggers� 191
Lab 13.1: What Triggers Are� 191

    Database Trigger� 192

    BEFORE Triggers� 195

    AFTER Triggers� 201

    Autonomous Transaction� 203

Lab 13.2: Types of Triggers� 205

    Row and Statement Triggers� 205

    INSTEAD OF Triggers� 206

Summary� 211

xii	 Contents

Chapter 14	 Mutating Tables and Compound Triggers� 213
Lab 14.1: Mutating Tables� 213

    What Is a Mutating Table?� 214

    Resolving Mutating Table Issues� 215

Lab 14.2: Compound Triggers� 217

    What Is a Compound Trigger?� 218

    Resolving Mutating Table Issues with Compound
    Triggers� 220

Summary� 223

Chapter 15	 Collections� 225
Lab 15.1: PL/SQL Tables� 226

    Associative Arrays� 226

    Nested Tables� 229

    Collection Methods� 232

Lab 15.2: Varrays� 235

Lab 15.3: Multilevel Collections� 240

Summary� 242

Chapter 16	 Records� 243
Lab 16.1: Record Types� 243

    Table-Based and Cursor-Based Records� 244

    User-Defined Records� 246

    Record Compatibility� 248

Lab 16.2: Nested Records� 250

Lab 16.3: Collections of Records� 253

Summary� 257

Chapter 17	 Native Dynamic SQL� 259
Lab 17.1: EXECUTE IMMEDIATE Statements� 260

    Using the EXECUTE IMMEDIATE Statement� 261

    How to Avoid Common ORA Errors When
    Using EXECUTE IMMEDIATE� 262

Lab 17.2: OPEN-FOR, FETCH, and CLOSE Statements� 271

    Opening Cursor� 272

Contents	 xiii

    Fetching from a Cursor� 272

    Closing a Cursor� 273

Summary� 280

Chapter 18	 Bulk SQL� 281
Lab 18.1: FORALL Statements� 282

    Using FORALL Statements� 282

    SAVE EXCEPTIONS Option� 285

    INDICES OF Option� 288

    VALUES OF Option� 289

Lab 18.2: The BULK COLLECT Clause� 291

Lab 18.3: Binding Collections in SQL Statements� 299

    Binding Collections with EXECUTE IMMEDIATE
    Statements� 299

    Binding Collections with OPEN-FOR, FETCH, and
    CLOSE Statements� 306

Summary� 309

Chapter 19	 Procedures� 311
Benefits of Modular Code� 312

    Block Structure� 312

    Anonymous Blocks� 312

Lab 19.1: Creating Procedures� 312

    Putting Procedure Creation Syntax into
    Practice� 313

    Querying the Data Dictionary for Information
    on Procedures� 314

Lab 19.2: Passing Parameters IN and OUT of Procedures� 315

    Using IN and OUT Parameters with Procedures� 316

Summary� 319

Chapter 20	 Functions� 321
Lab 20.1: Creating Functions� 321

    Creating Stored Functions� 322

    Making Use of Functions� 325

xiv	 Contents

Lab 20.2: Using Functions in SQL Statements� 327

    Invoking Functions in SQL Statements� 327

    Writing Complex Functions� 328

Lab 20.3: Optimizing Function Execution in SQL� 329

    Defining a Function Using the WITH Clause� 329

    Creating a Function with the UDF Pragma� 330

Summary� 331

Chapter 21	 Packages� 333
Lab 21.1: Creating Packages� 334

    Creating Package Specifications� 335

    Creating Package Bodies� 337

    Calling Stored Packages� 339

    Creating Private Objects� 341

Lab 21.2: Cursor Variables� 344

Lab 21.3: Extending the Package� 353

    Extending the Package with Additional Procedures� 353

Lab 21.4: Package Instantiation and Initialization� 366

    Creating Package Variables During Initialization� 367

Lab 21.5: SERIALLY_REUSABLE Packages� 368

    Using the SERIALLY_REUSABLE Pragma� 368

Summary� 371

Chapter 22	 Stored Code� 373
Lab 22.1: Gathering Information about Stored Code� 373

    Getting Stored Code Information from
    the Data Dictionary� 374

    Overloading Modules� 378

Summary� 382

Chapter 23	 Object Types in Oracle� 385
Lab 23.1: Object Types� 386

    Creating Object Types� 386

    Using Object Types with Collections� 391

Contents	 xv

Lab 23.2: Object Type Methods� 394

    Constructor Methods� 395

    Member Methods� 398

    Static Methods� 398

    Comparing Objects� 399

Summary� 404

Chapter 24	 Oracle-Supplied Packages� 405
Lab 24.1: Extending Functionality with Oracle-Supplied

Packages� 406

    Accessing Files within PL/SQL with UTL_FILE� 406

    Scheduling Jobs with DBMS_JOB� 410

    Generating an Explain Plan with DBMS_XPLAN� 414

    Generating Implicit Statement Results with DBMS_SQL� 417

Lab 24.2: Error Reporting with Oracle-Supplied Packages� 419

    Using the DBMS_UTILITY Package for Error Reporting� 419

    Using the UTL_CALL_STACK Package for Error
    Reporting� 424

Summary� 429

Chapter 25	 Optimizing PL/SQL� 431
Lab 25.1: PL/SQL Tuning Tools� 432

    PL/SQL Profiler API� 432

    Trace API� 433

    PL/SQL Hierarchical Profiler� 436

Lab 25.2: PL/SQL Optimization Levels� 438

Lab 25.3: Subprogram Inlining� 444

Summary� 453

Appendix A	 PL/SQL Formatting Guide� 455
Case� 455

White Space� 455

Naming Conventions� 456

Comments� 457

Other Suggestions� 457

xvi	 Contents

Appendix B	 Student Database Schema� 461
    Table and Column Descriptions� 461

Index� 469

	 xvii

Preface

Oracle® PL/SQL by Example, Fifth Edition, presents the Oracle PL/SQL program-
ming language in a unique and highly effective format. It challenges you to learn
Oracle PL/SQL by using it rather than by simply reading about it.

Just as a grammar workbook would teach you about nouns and verbs by first
showing you examples and then asking you to write sentences, Oracle® PL/SQL by
Example teaches you about cursors, loops, procedures, triggers, and so on by first
showing you examples and then asking you to create these objects yourself.

Who This Book Is For

This book is intended for anyone who needs a quick but detailed introduction to pro-
gramming with Oracle’s PL/SQL language. The ideal readers are those with some
relational database experience, with some Oracle experience, specifically with SQL,
SQL*Plus, and SQL Developer, but with little or no experience with PL/SQL or with
most other programming languages.

The content of this book is based primarily on the material that was taught in an
Introduction to PL/SQL class at Columbia University’s Computer Technology and
Applications (CTA) program in New York City. The student body was rather diverse,
in that there were some students who had years of experience with information
technology (IT) and programming, but no experience with Oracle PL/SQL, and then
there were those with absolutely no experience in IT or programming. The content of
the book, like the class, is balanced to meet the needs of both extremes. The

xviii	 Preface

additional exercises available through the companion website can be used as labs
and homework assignments to accompany the lectures in such a PL/SQL course.

How This Book Is Organized

The intent of this workbook is to teach you about Oracle PL/SQL by explaining a
programming concept or a particular PL/SQL feature and then illustrate it further
by means of examples. Oftentimes, as the topic is discussed more in depth, these
examples would be changed to illustrate newly covered material. In addition, most
of the chapters of this book have Additional Exercises sections available through the
companion website. These exercises allow you to test the depth of your understand-
ing of the new material.

The basic structure of each chapter is as follows:

Objectives

Introduction

Lab

Lab . . .

Summary

The Objectives section lists topics covered in the chapter. Basically a single objec-
tive corresponds to a single Lab.

The Introduction offers a short overview of the concepts and features covered in
the chapter.

Each Lab covers a single objective listed in the Objectives section of the chapter.
In some instances the objective is divided even further into the smaller individual
topics in the Lab. Then each such topic is explained and illustrated with the help of
examples and corresponding outputs. Note that as much as possible, each example
is provided in its entirety so that a complete code sample is readily available.

At the end of each chapter you will find a Summary section, which provides a brief
conclusion of the material discussed in the chapter. In addition, the By the Way
portion will state whether a particular chapter has an Additional Exercises section
available on the companion website.

About the Companion Website

The companion Website is located at informit.com/title/0133796787. Here you will
find three very important things:

■■ Files required to create and install the STUDENT schema.

■■ Files that contain example scripts used in the book chapters.

Preface	 xix

■■ Additional Exercises chapters, which have two parts:

•	 A Questions and Answers part where you are asked about the material
presented in a particular chapter along with suggested answers to these
questions. Oftentimes, you are asked to modify a script based on some
requirements and explain the difference in the output caused by these
modifications. Note that this part is also organized into Labs similar to its
corresponding chapter in the book.

•	 A Try it Yourself part where you are asked to create scripts based on the
requirements provided. This part is different from the Questions and
Answers part in that there are no scripts supplied with the questions.
Instead, you will need to create scripts in their entirety.

By the Way
You need to visit the companion website, download the student schema, and install
it in your database prior to using this book if you would like the ability to execute the
scripts provided in the chapters and on the site.

What You Will Need

There are software programs as well as knowledge requirements necessary to
complete the Labs in this book. Note that some features covered throughout the
book are applicable to Oracle 12c only. However, you will be able to run a great
majority of the examples and complete Additional Exercises and Try it Yourself sec-
tions by using the following products:

■■ Oracle 11g or higher

■■ SQL Developer or SQL*Plus 11g or higher

■■ Access to the Internet

You can use either Oracle Personal Edition or Oracle Enterprise Edition to exe-
cute the examples in this book. If you use Oracle Enterprise Edition, it can be run-
ning on a remote server or locally on your own machine. It is recommended that you
use Oracle 11g or Oracle 12c in order to perform all or a majority of the examples in
this book. When a feature will only work in the latest version of Oracle database, the
book will state so explicitly. Additionally, you should have access to and be familiar
with SQL Developer or SQL*Plus.

You have a number of options for how to edit and run scripts in SQL Developer
or from SQL*Plus. There are also many third-party programs to edit and debug
PL/SQL code. Both, SQL Developer and SQL*Plus are used throughout this book,
since these are two Oracle-provided tools and come as part of the Oracle
installation.

xx	 Preface

By the Way
Chapter 1 has a Lab titled PL/SQL Development Environment that describes how to
get started with SQL Developer and SQL*Plus. However, a great majority of the
examples used in the book were executed in SQL Developer.

About the Sample Schema

The STUDENT schema contains tables and other objects meant to keep information
about a registration and enrollment system for a fictitious university. There are ten
tables in the system that store data about students, courses, instructors, and so on.
In addition to storing contact information (addresses and telephone numbers) for
students and instructors, and descriptive information about courses (costs and pre-
requisites), the schema also keeps track of the sections for particular courses, and
the sections in which students have enrolled.

The SECTION table is one of the most important tables in the schema because it
stores data about the individual sections that have been created for each course.
Each section record also stores information about where and when the section will
meet and which instructor will teach the section. The SECTION table is related to
the COURSE and INSTRUCTOR tables.

The ENROLLMENT table is equally important because it keeps track of which
students have enrolled in which sections. Each enrollment record also stores infor-
mation about the student’s grade and enrollment date. The enrollment table is
related to the STUDENT and SECTION tables.

The STUDENT schema also has a number of other tables that manage grading
for each student in each section.

The detailed structure of the STUDENT schema is described in Appendix B, Stu-
dent Database Schema.

	 xxi

Acknowledgments

Ben Rosenzweig: I would like to thank my coauthor Elena Rakhimov for being a
wonderful and knowledgeable colleague to work with. I would also like to thank
Douglas Scherer for giving me the opportunity to work on this book as well as for
providing constant support and assistance through the entire writing process. I am
indebted to the team at Prentice Hall, which includes Greg Doench, Michelle Hous-
ley, and especially Songlin Qiu for her detailed edits. Finally, I would like to thank
the many friends and family, especially Edward Clarin and Edward Knopping, for
helping me through the long process of putting the whole book together, which
included many late nights and weekends.

Elena Rakhimov: My contribution to this book reflects the help and advice of
many people. I am particularly indebted to my coauthor Ben Rosenzweig for making
this project a rewarding and enjoyable experience. Many thanks to Greg Doench,
Michelle Housley, and especially Songlin Qiu for her meticulous editing skills, and
many others at Prentice Hall who diligently worked to bring this book to market.
Thanks to Michael Rinomhota for his invaluable expertise in setting up the Oracle
environment and Dan Hotka for his valuable comments and suggestions. Most
importantly, to my family, whose excitement, enthusiasm, inspiration, and support
encouraged me to work hard to the very end, and were exceeded only by their love.

This page intentionally left blank

	 xxiii

About the Authors

Benjamin Rosenzweig is a Senior Project Manager at Misys Financial Software,
where he has worked since 2002. Prior to that he was a principal consultant for more
than three years at Oracle Corporation in the Custom Development Department.
His computer experience ranges from creating an electronic Tibetan–English
Dictionary in Kathmandu, Nepal, to supporting presentation centers at Goldman
Sachs and managing a trading system at TIAA-CREF. Benjamin has been an
instructor at the Columbia University Computer Technology and Application
program in New York City since 1998. In 2002 he was awarded the “Outstanding
Teaching Award” from the Chair and Director of the CTA program. He holds a B.A.
from Reed College and a certificate in database development and design from
Columbia University. His previous books with Prentice Hall are Oracle Forms Devel-
oper: The Complete Video Course (2000), and Oracle Web Application Programming
for PL/SQL Developers (2003).

Elena Rakhimov has over 20 years of experience in database architecture and
development in a wide spectrum of enterprise and business environments ranging
from non-profit organizations to Wall Street to her current position with a prominent
software company where she heads up the database team. Her determination to stay
“hands-on” notwithstanding, Elena managed to excel in the academic arena having
taught relational database programming at Columbia University’s highly esteemed
Computer Technology and Applications program. She was educated in database
analysis and design at Columbia University and in applied mathematics at Baku
State University in Azerbaijan. She currently resides in Vancouver, Canada.

This page intentionally left blank

	 xxv

Introduction to PL/SQL
New Features in Oracle 12c

Oracle 12c has introduced a number of new features and improvements for PL/SQL.
This introduction briefly describes features not covered in this book and points you
to specific chapters for features that are within the scope of this book. The list of fea-
tures described here is also available in the “Changes in This Release for Oracle
Database PL/SQL Language Reference” section of the PL/SQL Language Reference
manual offered as part of Oracle’s online help.

The new PL/SQL features and enhancements are as follows:

■■ Invoker’s rights functions can be result-cached

■■ More PL/SQL-only data types can cross the PL/SQL-to-SQL interface clause

■■ ACCESSIBLE BY clause

■■ FETCH FIRST clause

■■ Roles can be granted to PL/SQL packages and stand-alone subprograms

■■ More data types have the same maximum size in SQL and PL/SQL

■■ Database triggers on pluggable databases

■■ LIBRARY can be defined as DIRECTORY object and with CREDENTIAL clause

■■ Implicit statement results

■■ BEQUEATH CURRENT_USER views

■■ INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES privileges

■■ Invisible columns

■■ Objects, not types, are editioned or noneditioned

xxvi	 Introduction to PL/SQL New Features in Oracle 12c

■■ PL/SQL functions that run faster in SQL

■■ Predefined inquiry directives $$PLSQL_UNIT_OWNER and $$PLSQL_UNIT_
TYPE

■■ Compilation parameter PLSQL_DEBUG is deprecated

Invoker’s Rights Functions Can Be Result-Cached

When a stored subprogram is created in Oracle products, it may be created as either
a definer rights (DR) unit or an invoker rights (IR) unit. A DR unit would execute
with the permissions of its owner, whereas an IR unit would execute with the per-
missions of a user who invoked that particular unit. By default, a stored subprogram
is created as a DR unit unless explicitly specified otherwise. Whether a particular
unit is considered a DR or IR unit is controlled by the AUTHID property, which may
be set to either DEFINER (default) or CURRENT_USER.

Prior to Oracle 12c, functions created with the invoker rights clause (AUTHID
CURRENT_USER) could not be result-cached. To create a function as an IR unit, the
AUTHID clause must be added to the function specification.

A result-cached function is a function whose parameter values and result are
stored in the cache. As a consequence, when such a function is invoked with the
same parameter values, its result is retrieved from the cache instead of being com-
puted again. To enable a function for result-caching, the RESULT_CACHE clause must
be added to the function specification. This is demonstrated by the following exam-
ple (the invoker rights clause and result-caching are highlighted in bold).

For Example   Result-Caching Functions Created with Invoker’s Rights

CREATE OR REPLACE FUNCTION get_student_rec (p_student_id IN NUMBER)
RETURN STUDENT%ROWTYPE
AUTHID CURRENT_USER
RESULT_CACHE RELIES_ON (student)
IS
  v_student_rec STUDENT%ROWTYPE;
BEGIN
  SELECT *
   INTO v_student_rec
   FROM student
   WHERE student_id = p_student_id;

  RETURN v_student_rec;
EXCEPTION
  WHEN no_data_found
  THEN
   RETURN NULL;
END get_student_rec;
/

-- Execute newly created function
DECLARE
  v_student_rec STUDENT%ROWTYPE;

Introduction to PL/SQL New Features in Oracle 12c	 xxvii

BEGIN
  v_student_rec := get_student_rec (p_student_id => 230);
END;

Note that if the student record for student ID 230 is in the result cache already,
then the function will return the student record from the result cache. In the oppo-
site case, the student record will be selected from the STUDENT table and added
to the cache for future use. Because the result cache of the function relies on the
STUDENT table, any changes applied and committed on the STUDENT table will
invalidate all cached results for the get_student_rec function.

More PL/SQL-Only Data Types Can Cross the PL/SQL-to-SQL
Interface Clause

In this release, Oracle has extended support of PL/SQL-only data types to dynamic
SQL and client programs (OCI or JDBC). For example, you can bind collections vari-
ables when using the EXECUTE IMMEDIATE statement or the OPEN FOR, FETCH, and
CLOSE statements. This topic is covered in greater detail in Lab 18.3, Binding
Collections in SQL Statements, in Chapter 18.

ACCESSIBLE BY Clause

An optional ACCESSIBLE BY clause enables you to specify a list of PL/SQL units that
may access the PL/SQL unit being created or modified. The ACCESSIBLE BY clause
is typically added to the module header—for example, to the function or procedure
header. Each unit listed in the ACCESSIBLE BY clause is called an accessor, and the
clause itself is also called a white list. This is demonstrated in the following example
(the ACCESSIBLE BY clause is shown in bold).

For Example   Procedure Created with the ACCESSIBLE BY Clause

CREATE OR REPLACE PROCEDURE test_proc1
ACCESSIBLE BY (TEST_PROC2)
AS
BEGIN
  DBMS_OUTPUT.PUT_LINE ('TEST_PROC1');
END test_proc1;
/

CREATE OR REPLACE PROCEDURE test_proc2
AS
BEGIN
  DBMS_OUTPUT.PUT_LINE ('TEST_PROC2');
  test_proc1;
END test_proc2;
/

xxviii	 Introduction to PL/SQL New Features in Oracle 12c

-- Execute TEST_PROC2
BEGIN
  test_proc2;
END;
/

TEST_PROC2
TEST_PROC1

-- Execute TEST_PROC1 directly
BEGIN
  test_proc1;
END;
/

ORA-06550: line 2, column 4:
PLS-00904: insufficient privilege to access object TEST_PROC1
ORA-06550: line 2, column 4:
PL/SQL: Statement ignored

In this example, there are two procedures, test_proc1 and test_proc2, and
test_proc1 is created with the ACCESSIBLE BY clause. As a consequence, test_
proc1 may be accessed by test_proc2 only. This is demonstrated by two
anonymous PL/SQL blocks. The first block executes test_proc2 successfully. The
second block attempts to execute test_proc1 directly and, as a result, causes an
error.

Note that both procedures were created within a single schema (STUDENT), and
that both PL/SQL blocks were executed in the single session by the schema owner
(STUDENT).

FETCH FIRST Clause

The FETCH FIRST clause is a new optional feature that is typically used with the
“Top-N” queries as illustrated by the following example. The ENROLLMENT table used
in this example contains student registration data. Each student is identified by a
unique student ID and may be registered for multiple courses. The FETCH FIRST
clause is shown in bold.

For Example   Using FETCH FIRST Clause with “Top-N” Query

-- Sample student IDs from the ENROLLMENT table
SELECT student_id
 FROM enrollment;

STUDENT_ID

	 102
	 102
	 103
	 104
	 105

Introduction to PL/SQL New Features in Oracle 12c	 xxix

	 106
	 106
	 107
	 108
	 109
	 109
	 110
	 110
	 …

-- "Top-N" query returns student IDs for the 5 students that registered for the most
-- courses
SELECT student_id, COUNT(*) courses
 FROM enrollment
GROUP BY student_id
ORDER BY courses desc
FETCH FIRST 5 ROWS ONLY;

STUDENT_ID	 COURSES
----------	 -------
	 214	 4
	 124	 4
	 232	 3
	 215	 3
	 184	 3

Note that FETCH FIRST clause may also be used in conjunction with the BULK 
COLLECT INTO clause as demonstrated here. The FETCH FIRST clause is shown in bold.

For Example   Using FETCH FIRST Clause with BULK COLLECT INTO Clause

DECLARE
  TYPE student_name_tab IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;

  student_names student_name_tab;
BEGIN
  -- Fetching first 20 student names only
  SELECT first_name||' '||last_name
   BULK COLLECT INTO student_names
   FROM student
   FETCH FIRST 20 ROWS ONLY;

  DBMS_OUTPUT.PUT_LINE ('There are '||student_names.COUNT||' students');
END;
/
There are 20 students

Roles Can Be Granted to PL/SQL Packages and Stand-Alone
Subprograms

Starting with Oracle 12c, you are able to grant roles to PL/SQL packages and stand-
alone subprograms. Note that granting a role to a PL/SQL package or stand-alone
subprogram does not alter its compilation. Instead, it affects how privileges required
by the SQL statements that are issued by the PL/SQL unit at run time are checked.

xxx	 Introduction to PL/SQL New Features in Oracle 12c

Consider the following example where the READ role is granted to the function
get_student_name.

For Example   Granting READ Role to the get_student_name Function

GRANT READ TO FUNCTION get_student_name;

More Data Types Have the Same Maximum Size in SQL
and PL/SQL

Prior to Oracle 12c, some data types had different maximum sizes in SQL and in PL/
SQL. For example, in SQL the maximum size of NVARCHAR2 was 4000 bytes,
whereas in PL/SQL it was 32,767 bytes. Starting with Oracle 12c, the maximum
sizes of the VARCHAR2, NVARCHAR2, and RAW data types have been extended to
32,767 for both SQL and PL/SQL. To see these maximum sizes in SQL, the initializa-
tion parameter MAX_STRING_SIZE must be set to EXTENDED.

Database Triggers on Pluggable Databases

The pluggable database (PDB) is one of the components of Oracle’s multitenant
architecture. Typically it is a portable collection of schemas and other database
objects. Starting with Oracle 12c, you are able to create event triggers on PDBs.
Detailed information on triggers is provided in Chapters 13 and 14. Note that PDBs
are outside the scope of this book, but detailed information on them may be found in
Oracle’s online Administration Guide.

LIBRARY Can Be Defined as a DIRECTORY Object and with a
CREDENTIAL Clause

A LIBRARY is a schema object associated with a shared library of an operating sys-
tem. It is created with the help of the CREATE OR REPLACE LIBRARY statement.
A DIRECTORY is also an object that maps an alias to an actual directory on the
server file system. The DIRECTORY object is covered very briefly in Chapter 25 as
part of the install processes for the PL/SQL Profiler API and PL/SQL Hierarchical
Profiler. In the Oracle 12c release, a LIBRARY object may be defined as a DIRECTORY
object with an optional CREDENTIAL clause as shown here.

Introduction to PL/SQL New Features in Oracle 12c	 xxxi

For Example   Creating LIBRARY as DIRECTORY Object

CREATE OR REPLACE LIBRARY my_lib AS 'plsql_code' IN my_dir;

In this example, the LIBRARY object my_lib is created as a DIRECTORY object.
The 'plsql_code' is the name of the dynamic link library (DDL) in the DIRECTORY
object my_dir. Note that for this library to be created successfully, the DIRECTORY
object my_dir must be created beforehand. More information on LIBRARY and
DIRECTORY objects can be found in Oracle’s online Database PL/SQL Language
Reference.

Implicit Statement Results

Prior to Oracle release 12c, result sets of SQL queries were returned explicitly from
the stored PL/SQL subprograms via REF CURSOR out parameters. As a result, the
invoker program had to bind to the REF CURSOR parameters and fetch the result sets
explicitly as well.

Starting with this release, the REF CURSOR out parameters can be replaced by two
procedures of the DBMS_SQL package, RETURN_RESULT and GET_NEXT RESULT.
These procedures enable stored PL/SQL subprograms to return result sets of SQL
queries implicitly, as illustrated in the following example (the reference to the
RETURN_RESULT procedure is highlighted in bold):

For Example   Using DBMS_SQL.RETURN_RESULT Procedure

CREATE OR REPLACE PROCEDURE test_return_result
AS
  v_cur  SYS_REFCURSOR;
BEGIN
  OPEN v_cur
  FOR
   SELECT first_name, last_name
    FROM instructor
    FETCH FIRST ROW ONLY;

  DBMS_SQL.RETURN_RESULT (v_cur);
END test_return_result;
/

BEGIN
  test_return_result;
END;
/

xxxii	 Introduction to PL/SQL New Features in Oracle 12c

In this example, the test_return_result procedure returns the instructor’s
first and last names to the client application implicitly. Note that the cursor SELECT
statement employs a FETCH FIRST ROW ONLY clause, which was introduced in Ora-
cle 12c as well. To get the result set from the procedure test_return_result suc-
cessfully, the client application must likewise be upgraded to Oracle 12c. Otherwise,
the following error message is returned:

ORA-29481: Implicit results cannot be returned to client.
ORA-06512: at "SYS.DBMS_SQL", line 2785
ORA-06512: at "SYS.DBMS_SQL", line 2779
ORA-06512: at "STUDENT.TEST_RETURN_RESULT", line 10
ORA-06512: at line 2

BEQUEATH CURRENT_USER Views

Prior to Oracle 12c, a view could be created only as a definer rights unit. Starting
with release 12c, a view may be created as an invoker’s rights unit as well (this is
similar to the AUTHID property of a stored subprogram). For views, however, this
behavior is achieved by specifying a BEQUEATH DEFINER (default) or BEQUEATH
CURRENT_USER clause at the time of its creation as illustrated by the following
example (the BEQUEATH CURRENT_USER clause is shown in bold):

For Example   Creating View with BEQUEATH CURRENT_USER Clause

CREATE OR REPLACE VIEW my_view
BEQUEATH CURRENT_USER
AS
  SELECT table_name, status, partitioned
   FROM user_tables;

In this example, my_view is created as an IR unit. Note that adding this property
to the view does not affect its primary usage. Rather, similarly to the AUTHID prop-
erty, it determines which set of permissions will be applied at the time when the
data is selected from this view.

INHERIT PRIVILEGES and INHERIT
ANY PRIVILEGES Privileges

Starting with Oracle 12c, an invoker’s rights unit will execute with the invoker’s
permissions only if the owner of the unit has INHERIT PRIVILEGES or INHERIT
ANY PRIVILEGES privileges. For example, before Oracle 12c, suppose user1 created
a function F1 as an invoker’s rights unit and granted execute privilege on it to user2,
who happened to have more privileges than user1. Then when user2 ran function

Introduction to PL/SQL New Features in Oracle 12c	 xxxiii

F1, the function would run with the permissions of user2, potentially performing
operations for which user1 might not have had permissions. This is no longer the
case with Oracle 12c. As stated previously, such behavior must be explicitly specified
via INHERIT PRIVILEGES or INHERIT ANY PRIVILEGES privileges.

Invisible Columns

Starting with Oracle 12c, it is possible to define and manipulate invisible columns.
In PL/SQL, records defined as %ROWTYPE are aware of such columns, as illustrated
by the following example (references to the invisible columns are shown in bold):

For Example   %ROWTYPE Records and Invisible Columns

-- Make NUMERIC_GRADE column invisible
ALTER TABLE grade MODIFY (numeric_grade INVISIBLE);
/
table GRADE altered

DECLARE
  v_grade_rec grade%ROWTYPE;
BEGIN
  SELECT *
   INTO v_grade_rec
   FROM grade
   FETCH FIRST ROW ONLY;

  DBMS_OUTPUT.PUT_LINE ('student ID: '||v_grade_rec.student_id);
  DBMS_OUTPUT.PUT_LINE ('section ID: '||v_grade_rec.section_id);
  -- Referencing invisible column causes an error
  DBMS_OUTPUT.PUT_LINE ('grade:       '||v_grade_rec.numeric_grade);
END;
/
ORA-06550: line 12, column 54:
PLS-00302: component 'NUMERIC_GRADE' must be declared
ORA-06550: line 12, column 4:
PL/SQL: Statement ignored

-- Make NUMERIC_GRADE column visible
ALTER TABLE grade MODIFY (numeric_grade VISIBLE);
/
table GRADE altered

DECLARE
  v_grade_rec grade%ROWTYPE;
BEGIN
  SELECT *
   INTO v_grade_rec
   FROM grade
   FETCH FIRST ROW ONLY;

  DBMS_OUTPUT.PUT_LINE ('student ID: '||v_grade_rec.student_id);
  DBMS_OUTPUT.PUT_LINE ('section ID: '||v_grade_rec.section_id);
  -- This time the script executes successfully
  DBMS_OUTPUT.PUT_LINE ('grade:        '||v_grade_rec.numeric_grade);
END;
/

xxxiv	 Introduction to PL/SQL New Features in Oracle 12c

student ID: 123
section ID: 87
grade:	 99

As you can gather from this example, the first run of the anonymous PL/SQL block
did not complete due to the reference to the invisible column. Once the NUMERIC_
GRADE column has been set to visible again, the script is able to complete successfully.

Objects, Not Types, Are Editioned or Noneditioned

An edition is a component of the edition-based redefinition feature that allows you
to make a copy of an object—for example, a PL/SQL package—and make changes to
it without affecting or invalidating other objects that may be dependent on it. With
introduction of this feature, objects created in the database may be defined as edi-
tioned or noneditioned. For an object to be editioned, its object type must be edition-
able and it must have the EDITIONABLE property. Similarly, for an object to be
noneditioned, its object type must be noneditioned or it must have the NONEDI-
TIONABLE property.

Starting with Oracle 12c, you are able to specify whether a schema object is edi-
tionable or noneditionable in the CREATE OR REPLACE and ALTER statements. In
this new release, a user (schema) that has been enabled for editions is able to own a
noneditioned object even if its type is editionable in the database but noneditionable
in the schema itself or if this object has NONEDITIONABLE property.

PL/SQL Functions That Run Faster in SQL

Starting with Oracle 12c, you can create user-defined functions that may run faster
when they are invoked in the SQL statements. This may be accomplished as follows:

■■ User-defined function declared in the WITH clause of a SELECT statement

■■ User-defined function created with the UDF pragma

Consider the following example, where the format_name function is created in
the WITH clause of the SELECT statement. This newly created function returns the
formatted student name.

For Example   Creating a User-Defined Function in the WITH Clause

WITH
  FUNCTION format_name (p_salutation IN VARCHAR2
	 ,p_first_name IN VARCHAR2
	 ,p_last_name IN VARCHAR2)

Introduction to PL/SQL New Features in Oracle 12c	 xxxv

  RETURN VARCHAR2
  IS
  BEGIN
   IF p_salutation IS NULL
   THEN
    RETURN p_first_name||' '||p_last_name;
   ELSE
    RETURN p_salutation||' '||p_first_name||' '||p_last_name;
   END IF;
  END;
SELECT format_name (salutation, first_name, last_name) student_name
 FROM student
 FETCH FIRST 10 ROWS ONLY;

STUDENT_NAME

Mr. George Kocka
Ms. Janet Jung
Ms. Kathleen Mulroy
Mr. Joel Brendler
Mr. Michael Carcia
Mr. Gerry Tripp
Mr. Rommel Frost
Mr. Roger Snow
Ms. Z.A. Scrittorale
Mr. Joseph Yourish

Next, consider another example where the format_name function is created with
the UDF pragma.

For Example   Creating a User-Defined Function in the UDF Pragma

CREATE OR REPLACE FUNCTION format_name (p_salutation IN VARCHAR2
 	 ,p_first_name IN VARCHAR2
 	 ,p_last_name IN VARCHAR2)
RETURN VARCHAR2
AS
  PRAGMA UDF;
BEGIN
  IF p_salutation IS NULL
  THEN
   RETURN p_first_name||' '||p_last_name;
  ELSE
   RETURN p_salutation||' '||p_first_name||' '||p_last_name;
  END IF;
END;
/
SELECT format_name (salutation, first_name, last_name) student_name
 FROM student
 FETCH FIRST 10 ROWS ONLY;

STUDENT_NAME

Mr. George Kocka
Ms. Janet Jung
Ms. Kathleen Mulroy
Mr. Joel Brendler
Mr. Michael Carcia
Mr. Gerry Tripp
Mr. Rommel Frost
Mr. Roger Snow
Ms. Z.A. Scrittorale
Mr. Joseph Yourish

xxxvi	 Introduction to PL/SQL New Features in Oracle 12c

Predefined Inquiry Directives $$PLSQL_UNIT_OWNER and
$$PLSQL_UNIT_TYPE

In PL/SQL, there are a number of predefined inquiry directives, as described in the
following table ($$PLSQL_UNIT_OWNER and $$PLSQL_UNIT_TYPE are highlighted
in bold):

Name Description

$$PLSQL_LINE The number of the code line where it appears in the PL/SQL
subroutine.

$$PLSQL_UNIT The name of the PL/SQL subroutine. For the anonymous PL/
SQL blocks, it is set to NULL.

$$PLSQL_UNIT_OWNER A new directive added in release 12c. This is the name of the
owner (schema) of the PL/SQL subroutine. For anonymous
PL/SQL blocks, it is set to NULL.

$$PLSQL_UNIT_TYPE A new directive added in release 12c. This is the type of the
PL/SQL subroutine—for example, FUNCTION, PROCEDURE,
or PACKAGE BODY.

$$plsql_compilation_
parameter

A set of PL/SQL compilation parameters, some of which are
PLSQL_CODE_TYPE, which specifies the compilation mode
for PL/SQL subroutines, and others of which are PLSQL_
OPTIMIZE_LEVEL (covered in Chapter 25).

The following example demonstrates how directives may be used.

For Example   Using Predefined Inquiry Directives

CREATE OR REPLACE PROCEDURE test_directives
AS
BEGIN
  DBMS_OUTPUT.PUT_LINE ('Procedure test_directives');
  DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT_OWNER:  '||$$PLSQL_UNIT_OWNER);
  DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT_TYPE:  '||$$PLSQL_UNIT_TYPE);
  DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT:	 '||$$PLSQL_UNIT);
  DBMS_OUTPUT.PUT_LINE ('$$PLSQL_LINE:	 '||$$PLSQL_LINE);
END;
/

BEGIN
  -- Execute TEST_DERECTIVES procedure
  test_directives;
  DBMS_OUTPUT.PUT_LINE ('Anonymous PL/SQL block');
  DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT_OWNER:  '||$$PLSQL_UNIT_OWNER);
  DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT_TYPE:  '||$$PLSQL_UNIT_TYPE);

Introduction to PL/SQL New Features in Oracle 12c	 xxxvii

  DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT:	 '||$$PLSQL_UNIT);
  DBMS_OUTPUT.PUT_LINE ('$$PLSQL_LINE:	 '||$$PLSQL_LINE);
END;
/

Procedure test_directives
$$PLSQL_UNIT_OWNER: STUDENT
$$PLSQL_UNIT_TYPE:   PROCEDURE
$$PLSQL_UNIT:      TEST_DIRECTIVES
$$PLSQL_LINE:     8
Anonymous PL/SQL block
$$PLSQL_UNIT_OWNER:
$$PLSQL_UNIT_TYPE:   ANONYMOUS BLOCK
$$PLSQL_UNIT:
$$PLSQL_LINE:     8

Compilation Parameter PLSQL_DEBUG Is Deprecated

Starting with Oracle release 12c, the PLSQL_DEBUG parameter is deprecated.
To compile PL/SQL subroutines for debugging, the PLSQL_OPTIMIZE_LEVEL
parameter should be set to 1. Chapter 25 covers the PLSQL_OPTIMIZE_LEVEL
parameter and various optimization levels supported by the PL/SQL performance
optimizer in greater detail.

This page intentionally left blank

	 43

In this chapter, you will learn about

■■ DML Statements in PL/SQL� Page 44

■■ Transaction Control in PL/SQL� Page 49

3
SQL in PL/SQL

This chapter is a collection of some fundamental elements of using SQL statements
in PL/SQL blocks. In the previous chapter, you initialized variables with the “:=”
syntax; in this chapter, we will introduce the method of using a SQL select state-
ment to update the value of a variable. These variables can then be used in DML
statements (insert, delete, or update). Additionally, we will demonstrate how you can
use a sequence in your DML statements within a PL/SQL block much as you would
in a stand-alone SQL statement.

A transaction in Oracle is a series of SQL statements that have been grouped
together into a logical unit by the programmer. A programmer chooses to do this to
maintain data integrity. Each application (SQL*Plus, SQL Developer, and various
third-party PL/SQL tools) maintains a single database session for each instance of a
user login. The changes to the database that have been executed by a single applica-
tion session are not actually “saved” into the database until a commit occurs. Work
within a transaction up to and just prior to the commit can be rolled back; once a
commit has been issued, however, work within that transaction cannot be rolled
back. Note that those SQL statements should be either committed or rejected as a
group.

44	 Chapter 3  ■  SQL in PL/SQL

To exert transaction control, a SAVEPOINT statement can be used to break down
large PL/SQL statements into individual units that are easier to manage. In this
chapter, we will cover the basic elements of transaction control so you will know how
to manage your PL/SQL code through use of the COMMIT, ROLLBACK, and (princi-
pally) SAVEPOINT statement.

Lab 3.1: DML Statements in PL/SQL

After this lab, you will be able to

■■ Initialize Variables with SELECT INTO

■■ Use the SELECT INTO Syntax for Variable Initialization

■■ Use DML in a PL/SQL Block

■■ Make Use of a Sequence in a PL/SQL Block

Initialize Variables with SELECT INTO

In PL/SQL, there are two main methods of giving values to variables in a PL/SQL
block. The first one, which you learned in Chapter 1, is initialization with the “:=”
syntax. In this lab we will learn how to initialize a variable with a select statement
by making use of the SELECT INTO syntax.

A variable that has been declared in the declaration section of the PL/SQL
block can later be given a value with a select statement. The correct syntax is as
follows:

SELECT item_name
INTO	 variable_name
FROM	 table_name;

Note that any single row function can be performed on the item to give the varia-
ble a calculated value.

For Example   ch03_1a.sql

SET SERVEROUTPUT ON
DECLARE
  v_average_cost VARCHAR2(10);

Lab 3.1: DML Statements in PL/SQL	 45

BEGIN
  SELECT TO_CHAR(AVG(cost), '$9,999.99')
   INTO v_average_cost
   FROM course;
  DBMS_OUTPUT.PUT_LINE('The average cost of a '||
   'course in the CTA program is '||
   v_average_cost);
END;

In this example, a variable is given the value of the average cost of a course in the
course table. First, the variable must be declared in the declaration section of the
PL/SQL block. In this example, the variable is given the data type of VARCHAR2(10)
because of the functions used on the data. The select statement that would produce
this outcome in SQL*Plus would be

SELECT TO_CHAR(AVG(cost), '$9,999.99')
FROM	 course;

The TO_CHAR function is used to format the cost; in doing this, the number data
type is converted to a character data type. Once the variable has a value, it can be
displayed to the screen using the PUT_LINE procedure of the DBMS_OUTPUT pack-
age. The output of this PL/SQL block would be:

The average cost of a course in the CTA program
is $1,198.33
PL/SQL procedure successfully completed.

In the declaration section of the PL/SQL block, the variable v_average_cost is
declared as a varchar2. In the executable section of the block, this variable is
given the value of the average cost from the course table by means of the SELECT
INTO syntax. The SQL function TO_CHAR is issued to format the number. The
DBMS_OUTPUT package is then used to show the result to the screen.

Using the SELECT INTO Syntax for Variable Initialization

The previous PL/SQL block may be rearranged so the DBMS_OUTPUT section is
placed before the SELECT INTO statement.

For Example   ch03_1a.sql

SET SERVEROUTPUT ON
DECLARE
  v_average_cost VARCHAR2(10);

46	 Chapter 3  ■  SQL in PL/SQL

BEGIN
  DBMS_OUTPUT.PUT_LINE('The average cost of a '||
   'course in the CTA program is '||
   v_average_cost);
  SELECT TO_CHAR(AVG(cost), '$9,999.99')
   INTO v_average_cost
   FROM course;
END;

You will then see the following result:

The average cost of a course in the CTA program is
PL/SQL procedure successfully completed.

The variable v_average_cost will be set to NULL when it is first declared.
Because the DBMS_OUTPUT section precedes the point at which the variable is given
a value, the output for the variable will be NULL. After the SELECT INTO statement,
the variable will be given the same value as in the original block, but it will not be
displayed because there is not another DBMS_OUTPUT line in the PL/SQL block.

Data Definition Language (DDL) statements are not valid in a simple PL/SQL
block (more advanced techniques such as procedures in the DBMS_SQL package will
enable you to make use of DDL), yet data manipulation (using Data Manipulation
Language [DML]) is easily achieved either by using variables or by simply putting a
DML statement into a PL/SQL block. Here is an example of a PL/SQL block that
updates an existing entry in the zipcode table.

For Example   ch03_2a.sql

SET SERVEROUTPUT ON
DECLARE
  v_city zipcode.city%TYPE;
BEGIN
  SELECT 'COLUMBUS'
   INTO v_city
   FROM dual;
  UPDATE zipcode
    SET city = v_city
   WHERE ZIP = 43224;
END;

It is also possible to insert data into a database table in a PL/SQL block, as shown
in the following example.

For Example   ch03_3a.sql

DECLARE
  v_zip zipcode.zip%TYPE;
  v_user zipcode.created_by%TYPE;
  v_date zipcode.created_date%TYPE;

Lab 3.1: DML Statements in PL/SQL	 47

BEGIN
  SELECT 43438, USER, SYSDATE
   INTO v_zip, v_user, v_date
   FROM dual;
  INSERT INTO zipcode
   (ZIP, CREATED_BY ,CREATED_DATE, MODIFIED_BY,
    MODIFIED_DATE
  )
	 VALUES(v_zip, v_user, v_date, v_user, v_date);
END;

By the Way
SELECT statements in PL/SQL that return no rows or too many rows will cause an
error to occur that can be trapped by using an exception. You will learn more about
handling exceptions in Chapters 8, 9, and 10.

Using DML in a PL/SQL Block

This section demonstrates how DML is used in PL/SQL. The following PL/SQL block
inserts a new student into the student table.

For Example   ch03_4a.sql

BEGIN
  SELECT MAX(student_id)
   INTO v_max_id
   FROM student;
  INSERT into student
   (student_id, last_name, zip,
    created_by, created_date,
    modified_by, modified_date,
    registration_date
   )
   VALUES (v_max_id + 1, 'Rosenzweig',
           11238, 'BROSENZ ', '01-JAN-2014',
         'BROSENZ', '10-JAN-2014', '15-FEB-2014'
        );
END;

To generate a unique ID, the maximum student_id is selected into a variable
and then incremented by 1. In this example, there is a foreign key on the zip item in
the student table, which means that the ZIP code you choose to enter must be in the
zipcode table.

Using an Oracle Sequence

An Oracle sequence is an Oracle database object that can be used to generate unique
numbers. You can use sequences to generate primary key values automatically.

48	 Chapter 3  ■  SQL in PL/SQL

Accessing and Incrementing Sequence Values

Once a sequence is created, you can access its values in SQL statements with these
pseudocolumns:

■■ CURRVAL: Returns the current value of the sequence.

■■ NEXTVAL: Increments the sequence and returns the new value.

The following example creates the sequence eseq.

For Example

CREATE SEQUENCE eseq
  INCREMENT BY 10

The first reference to ESEQ.NEXTVAL returns 1. The second returns 11. Each
subsequent reference will return a value 10 greater than the one previous.

(Even though you will be guaranteed unique numbers, you are not guaranteed
contiguous numbers. In some systems this may be a problem—for example, when
generating invoice numbers.)

Drawing Numbers from a Sequence

A sequence value can be inserted directly into a table without first selecting it. (In
very old versions of Oracle prior to Oracle 7.3, it was necessary to use the SELECT
INTO syntax and put the new sequence number into a variable; you could then
insert the variable.)

For this example, a table called test01 will be used. The table test01 is first cre-
ated, followed by the sequence test_seq. Then the sequence is used to populate the
table.

For Example   ch03_5a.sql

CREATE TABLE test01 (col1 number);
CREATE SEQUENCE test_seq
  INCREMENT BY 5;
BEGIN
  INSERT INTO test01
   VALUES (test_seq.NEXTVAL);
END;
/
Select * FROM test01;

Using a Sequence in a PL/SQL Block

In this example, a PL/SQL block is used to insert a new student in the student
table. The PL/SQL code makes use of two variables, USER and SYSDATE, that are

Lab 3.2: Transaction Control in PL/SQL	 49

used in the select statement. The existing student_id_seq sequence is used to
generate a unique ID for the new student.

For Example   ch03_6a.sql

DECLARE
  v_user student.created_by%TYPE;
  v_date student.created_date%TYPE;
BEGIN
  SELECT USER, sysdate
   INTO v_user, v_date
   FROM dual;
 INSERT INTO student
   (student_id, last_name, zip,
   created_by, created_date, modified_by,
   modified_date, registration_date
  )
   VALUES (student_id_seq.nextval, 'Smith',
         11238, v_user, v_date, v_user, v_date,
        v_date
      );
END;

In the declaration section of the PL/SQL block, two variables are declared. They
are both set to be data types within the student table using the %TYPE method of
declaration. This ensures the data types match the columns of the tables into which
they will be inserted. The two variables v_user and v_date are given values from
the system by means of SELECT INTO statements. The value of the student_id is
generated by using the next value of the student_id_seq sequence.

Lab 3.2: Transaction Control in PL/SQL

After this lab, you will be able to

■■ Use the COMMIT, ROLLBACK, and SAVEPOINT Statements

■■ Put Together DML and Transaction Control

Using COMMIT, ROLLBACK, and SAVEPOINT

Transactions are a means to break programming code into manageable units.
Grouping transactions into smaller elements is a standard practice that ensures an
application will save only correct data. Initially, any application will have to connect
to the database to access the data. When a user is issuing DML statements in an
application, however, these changes are not visible to other users until a COMMIT or
ROLLBACK has been issued. The Oracle platform guarantees a read-consistent view
of the data. Until that point, all data that have been inserted or updated will be held

50	 Chapter 3  ■  SQL in PL/SQL

in memory and will be available only to the current user. The rows that have been
changed will be locked by the current user and will not be available for updating to
other users until the locks have been released. A COMMIT or ROLLBACK statement
will release these locks. Transactions can be controlled more readily by marking
points of the transaction with the SAVEPOINT command.

■■ COMMIT: Makes events within a transaction permanent.

■■ ROLLBACK: Erases events within a transaction.

Additionally, you can use a SAVEPOINT to control transactions. Transactions are
defined in the PL/SQL block from one SAVEPOINT to another. The use of the
SAVEPOINT command allows you to break your SQL statements into units so that in
a given PL/SQL block, some units can be committed (saved to the database), others
can be rolled back (undone), and so forth.

By the Way
The Oracle platform makes a distinction between a transaction and a PL/SQL block.
The start and end of a PL/SQL block do not necessarily mean the start and end of a
transaction.

To demonstrate the need for transaction control, we will examine a two-step data
manipulation process. Suppose that the fees for all courses in the CTA database
that have a prerequisite course need to be increased by 10 percent; at the same
time, all courses that do not have a prerequisite need to be decreased by 10 percent.
This is a two-step process. If the first step is successful but the second step is
not, then the data concerning course cost would be inconsistent in the database.
Because this adjustment is based on a change in percentage, there would be
no way to track which part of this course adjustment was successful and which part
was not.

In the following example, one PL/SQL block performs two updates on the cost
item in the course table. In the first step (this code is commented for the purpose of
emphasizing each update), the cost is updated with a cost that is 10 percent less
whenever the course does not have a prerequisite. In the second step, the cost is
increased by 10 percent whenever the course has a prerequisite.

For Example   ch03_7a.sql

BEGIN
-- STEP 1
     UPDATE course
    SET cost = cost - (cost * 0.10)
    WHERE prerequisite IS NULL;

Lab 3.2: Transaction Control in PL/SQL	 51

-- STEP 2
     UPDATE course
    SET cost = cost + (cost * 0.10)
   WHERE prerequisite IS NOT NULL;
END;

Let’s assume that the first update statement succeeds, but the second update
statement fails because the network went down. The data in the course table is now
inconsistent because courses with no prerequisite have had their cost reduced but
courses with prerequisites have not been adjusted. To prevent this sort of situation,
statements must be combined into a transaction. Thus either both statements will
succeed or both statements will fail.

A transaction usually combines SQL statements that represent a logical unit of
work. The transaction begins with the first SQL statement issued after the previous
transaction, or with the first SQL statement issued after connecting to the database.
The transaction ends with the COMMIT or ROLLBACK statement.

COMMIT

When a COMMIT statement is issued to the database, the transaction has ended, and
the following results are true:

■■ All work done by the transaction becomes permanent.

■■ Other users can see changes in data made by the transaction.

■■ Any locks acquired by the transaction are released.

A COMMIT statement has the following syntax:

COMMIT [WORK];

The word WORK is optional and is used to improve readability. Until a transaction is
committed, only the user executing that transaction can see changes in the data
made by his or her session.

Suppose User A issues the following command on a student table that exists in
another schema but has a public synonym of student:

For Example   ch03_8a.sql

BEGIN
INSERT INTO student
  (student_id, last_name, zip, registration_date,
    created_by, created_date, modified_by,
    modified_date
  )

52	 Chapter 3  ■  SQL in PL/SQL

  VALUES (student_id_seq.nextval, 'Tashi', 10015,
        '01-JAN-99', 'STUDENTA', '01-JAN-99',
        'STUDENTA', '01-JAN-99'
      );
END;

Then User B enters the following command to query the table known by its public
synonym student, while logged on to his session.

SELECT *
FROM student
WHERE last_name = 'Tashi';

Then User A issues the following command:

COMMIT;

Now if User B enters the same query again, he will not see the same results.
In this example, there are two sessions: User A and User B. User A inserts a

record into the student table. User B queries the student table, but does not get
the record that was inserted by User A. User B cannot see the information because
User A has not committed the work. When User A commits the transaction, User B,
upon resubmitting the query, sees the records inserted by User A.

ROLLBACK

When a ROLLBACK statement is issued to the database, the transaction has ended,
and the following results are true:

■■ All work done by the transaction is undone, as if it hadn’t been issued.

■■ Any locks acquired by the transaction are released.

A ROLLBACK statement has the following syntax:

ROLLBACK [WORK];

The WORK keyword is optional and provides for increased readability.

SAVEPOINT

The ROLLBACK statement undoes all work done by the user in a specific transaction.
With the SAVEPOINT command, however, only part of the transaction can be undone.
A SAVEPOINT command has the following syntax:

SAVEPOINT name;

Lab 3.2: Transaction Control in PL/SQL	 53

The word name is the SAVEPOINT statement’s name. Once a SAVEPOINT is
defined, the program can roll back to that SAVEPOINT. A ROLLBACK statement, then,
has the following syntax:

ROLLBACK [WORK] to SAVEPOINT name;

When a ROLLBACK to SAVEPOINT statement is issued to the database, the follow-
ing results are true:

■■ Any work done since the SAVEPOINT is undone. The SAVEPOINT remains
active, however, until a full COMMIT or ROLLBACK is issued. It can be rolled back
again, if desired.

■■ Any locks and resources acquired by the SQL statements since the SAVEPOINT
will be released.

■■ The transaction is not finished, because SQL statements are still pending.

Putting Together DML and Transaction Control

This section combines all the elements of transaction control that have been covered
in this chapter. The following piece of code is an example of a PL/SQL block with
three SAVEPOINTs.

For Example   ch03_9a.sql

BEGIN
  INSERT INTO student
   (student_id, Last_name, zip, registration_date,
     created_by, created_date, modified_by,
     modified_date
   )
   VALUES (student_id_seq.nextval, 'Tashi', 10015,
         '01-JAN-99', 'STUDENTA', '01-JAN-99',
         'STUDENTA','01-JAN-99'
      );
  SAVEPOINT A;
  INSERT INTO student
   (student_id, Last_name, zip, registration_date,
     created_by, created_date, modified_by,
     modified_date
  )
   VALUES (student_id_seq.nextval, 'Sonam', 10015,
         '01-JAN-99', 'STUDENTB','01-JAN-99',
         'STUDENTB', '01-JAN-99'
      );
  SAVEPOINT B;
  INSERT INTO student
   (student_id, Last_name, zip, registration_date,
    created_by, created_date, modified_by,
    modified_date
  )

54	 Chapter 3  ■  SQL in PL/SQL

   VALUES (student_id_seq.nextval, 'Norbu', 10015,
         '01-JAN-99', 'STUDENTB', '01-JAN-99',
         'STUDENTB', '01-JAN-99'
             );
  SAVEPOINT C;
  ROLLBACK TO B;
END;

If you were to run the following SELECT statement immediately after running the
preceding example, you would not be able to see any data because the ROLLBACK to
(SAVEPOINT) B has undone the last insert statement where the student Norbu was
inserted.

SELECT *
FROM student
WHERE last_name = 'Norbu';

The result would be “no rows selected.”
Three students were inserted in this PL/SQL block: first Tashi in SAVEPOINT A,

then Sonam in SAVEPOINT B, and finally Norbu in SAVEPOINT C. When the com-
mand to roll back to B was issued, the insert of Norbu was undone.

If the following command was entered after the script ch03_9a.sql, then the
insert in SAVEPOINT B would be undone—that is, the insert of Sonam:

ROLLBACK to SAVEPOINT A;

Tashi was the only student that was successfully entered into the database. The
ROLLBACK to SAVEPOINT A undid the insert statements for Norbu and Sonam.

By the Way
SAVEPOINT is often used before a complicated section of the transaction. If this part
of the transaction fails, it can be rolled back, allowing the earlier part to continue.

Did You Know?
It is important to note the distinction between transactions and PL/SQL blocks.
When a block starts, it does not mean that the transaction starts. Likewise, the start
of the transaction need not coincide with the start of a block.

Here is an example of a single PL/SQL block with multiple transactions.

Summary	 55

For Example   ch03_10a.sql

DECLARE
   v_Counter NUMBER;
  BEGIN
   v_counter := 0;
   FOR i IN 1..100
   LOOP
    v_counter := v_counter + 1;
    IF v_counter = 10
    THEN
     COMMIT;
     v_counter := 0;
    END IF;
   END LOOP;
  END;

In this example, as soon as the value of v_counter becomes equal to 10, the work is
committed. Thus there will be a total of 10 transactions contained in this one PL/
SQL block.

Summary

In this chapter, you learned how to make use of variables and the various ways to
populate variables. Use of DML (Data Manipulation Language) within a PL/SQL
block was illustrated in examples with insert statements. These examples also made
use of sequences to generate unique numbers.

The last section of the chapter covered transactional control in PL/SQL by
explaining what it means to commit data as well as how SAVEPOINTs are used. The
final examples demonstrated how committed data could be reversed by using
ROLLBACKs in conjunction with SAVEPOINTs.

By the Way
The companion website provides additional exercises and suggested answers for
this chapter, with discussion related to how those answers resulted. The main
purpose of these exercises is to help you test the depth of your understanding by
utilizing all of the skills that you have acquired throughout this chapter.

This page intentionally left blank

	 469

() (parentheses)
controlling order of

operations, 38
grouping for readability,

69, 252
& (ampersand)

in substitution variable
names, 20, 22, 25

in variable names, 31
: (colon), in bind arguments,

260
-- (dashes), single-line

comments, 29, 40
/ (slash), block terminator,

16, 264
:= (colon, equal sign),

assignment operator,
37

‘ ‘ (single quotes), enclosing
substitution variables,
25

/*...*/ (slash asterisk...),
multiline comments,
29, 40

&& (double ampersand), in
substitution variable
names, 20, 24, 25

; (semicolon)
block terminator, 16–17
SQL and PL/SQL

statement terminator,
264–265

variable terminator,
36–37

A

ACCESSIBLE BY clause,
xxvii–xxviii

Accessors
new for Oracle 12c, xxvii–

xxviii
specifying, xxvii–xxviii
white lists, xxvii–xxviii

Actual parameters, 317–318
AFTER triggers, 201–204
ALL_DEPENDENCIES

view, 376–377
ALL_OBJECTS view, 374

ALL_USER_OBJECTS view,
314–315

ALL_USER_SOURCE view,
314–315

ALTER SYSTEM
command, 411

ALTER TRIGGER
command, 194

Ampersand (&)
in substitution variable

names, 20, 22, 25
in variable names, 31

ANALYZE routine, 437
Anchored data types, 34
Anonymous blocks. See also

Modular code; Named
blocks.

definition, 5
description, 312
executing, 8

Application exception,
profiling, 436–437

Application processing tier, 3
Architecture. See also Blocks.

Index

470	 Index

Architecture (continued)
application processing

tier, 3
client-server, 5
data management tier, 3
Oracle server, 2–4
overview, 2–5
presentation tier, 3
three-tier, 3

Arithmetic operators, 38
Arrays. See Associative

arrays; Varrays.
Associative arrays

declaring, 227
EXTEND method, 233
LIMIT method, 238
vs. nested tables and

varrays, 239–240
NO_DATA_FOUND

exception, 228–229
of objects, populating with

data, 392
populating, 227
referencing individual

elements, 227–228
syntax, 226
TRIM method, 233
upper bounds, specifying,

238–239
Attributes (data), object

types, 386
Autonomous transactions,

triggers, 203–204
AUTONOMOUS_

TRANSACTION
pragma, 204

B

BACKTRACE_DEPTH
function, 424,
426–427

BACKTRACE_LINE
function, 424, 426–427

BACKTRACE_UNIT
function, 424, 426–427

Batch processing. See Bulk
SQL.

BEFORE triggers, 195–201
BEGIN keyword, 7
BEQUEATH CURRENT_

USER clause, xxxii
BEQUEATH DEFINER

clause, xxxii
Bind arguments

in CREATE TABLE
statements, 263–264

definition, 260
passing run-time values

to, 272
Binding, definition, 9
Binding collections with

CLOSE statements,
306–309

EXECUTE IMMEDIATE
statements, 299–305

FETCH statements,
306–309

OPEN-FOR statements,
306–309

Blank lines, inserting in
output, 242

Blocks
; (semicolon), block

terminator, 16
anonymous, 5, 8
binding, 9
compilation errors, 7–8
creating subroutines, 5
declaration section, 6
definition, 5
displaying variable

values. See DBMS_
OUTPUT.PUT_LINE
statements.

error types, 7–8
exception-handling

section, 7–8
executable section, 6–7
executing, 8–9
named, 5, 8–9

nested, 5, 39–41
runtime errors, 7–8
sections, 6–8
semantic checking, 9
sequences in, 48–49
syntax checking, 8–9
terminating, 16, 264–265
vs. transactions, 50, 54–55
VALID vs. INVALID, 9

Books and publications
Database Object-

Relational Developer’s
Guide, 385

Oracle Forms Developer:
The Complete Video
Course, xxiii

Oracle PL/SQL by
Example, Fifth Edition,
xvii

Oracle SQL by Example,
414

Oracle Web Application
Programming for PL/
SQL Developers, xxiii

Boolean expressions, in
WHILE loops, 101

BROKEN procedure, 410
Built-in exceptions, 126–132
BULK COLLECT clause,

291–299
BULK COLLECT INTO

clause, xxix
BULK EXECUTE

IMMEDIATE
statements, 260

BULK FETCH statements,
260

Bulk SQL
BULK COLLECT clause,

291–299
DELETE statements, in

batches. See FORALL
statements.

fetching results,
291–299

Index	 471

INSERT statements, in
batches. See FORALL
statements.

limiting result sets,
292–293

NO_DATA_FOUND
exception, 292

UPDATE statements, in
batches. See FORALL
statements.

Bulk SQL, FORALL
statements

description, 282–285
error messages,

displaying, 287–288
exception handling,

285–288
implicit loop counter, 283
INDICES OF option, 283,

288
looping, 283, 288–290
SAVE EXCEPTIONS

option, 285–288
SQL%BULK_

EXCEPTIONS
attribute, 286–287

VALUES OF option,
289–290

C

Calling packages,
339–341

CASE abbreviations. See
COALESCE function;
NULLIF function.

CASE expressions, 80–84
Case sensitivity

formatting guide, 455
passwords, 10
PL/SQL, 29
variables, 29

CASE statements
Boolean results. See

Searched CASE
statements.

vs. CASE expressions,
81–84

description, 72–74
searched CASE

statements, 74–80
CHANGE procedure, 410,

412
CHAR data type, 35
Character types, 28
CLEAR_PLSQL_TRACE

routine, 434–436
Client-server architecture, 5
CLOSE statements

binding collections with,
306–309

closing cursors, 271–280
Closing

cursor variables, 349
cursors, 167–168, 170
dynamic SQL cursors,

271–280
explicit cursors, 162,

167–168, 172–173
files, 407

COALESCE function, 87–89.
See also NULLIF
function.

Code generation, 9
COLLECT INTO

statements, 260
Collection methods, 232–235
Collections. See also Tables.

counting elements,
232–235

defined on user-defined
records, 255–256

definition, 225
deleting elements,

233–235
extending, 231
multilevel, 240–242
in nested records,

252–253
NULL vs. empty, 232
of object types, 391–394

records, 253–256
testing for elements,

232–235
upper bounds, specifying,

238–239
variable-size arrays. See

Varrays.
Collections, binding with

CLOSE statements,
306–309

EXECUTE IMMEDIATE
statements, 299–305

FETCH statements,
306–309

OPEN-FOR statements,
306–309

Colon, equal sign (:=),
assignment
operator, 37

Colon (:), in bind arguments,
260

Columns
aliases, 175
invisible, xxxiii–xxxiv
in a table, describing,

377–378
Comments

formatting, 29, 456–459
single-line vs. multiline,

29
COMMIT statements

description, 49–52
placing, 188, 314
in triggers, 195

Companion Website, URL
for, xviii

Comparing objects
map methods, 400–401
order methods, 401–404
overview, 399–400

Comparison operators, 38
Compatibility, record types,

249–250
Compilation errors, 7–8,

124–126

472	 Index

Complex functions, creating,
328–329

Complex nested cursors,
185–187

Compound triggers
definition, 218
firing order, 219
resolving mutating table

issues, 220–223
restrictions, 219
structure, 218

Conditional control. See
CASE statements;
ELSIF statements; IF
statements.

Connecting to a database
SQL Developer, 10–11
SQL*Plus, 13

Connection name, SQL
Developer, 10

Constructor methods,
395–397

Contiguous numbers,
generating, 48

CONTINUE statements,
111–115

CONTINUE WHEN
statements, 115–118

COUNT method, 232–235
Counting collection

elements, 232–235
CREATE reserved word,

192–193
CREATE TABLE

statements, 263–264
CREATE TYPE statements,

229–230
Creating

cursor variables, 345–346,
349–350

error messages, 149–153
event triggers on PDBs,

xxx
nested tables, 229–230
object types, 386–390

procedures, 312–315
triggers, 192–195,

197–201
Creating functions

complex functions,
328–329

stored functions, 322–325
using a WITH clause,

329–330
using the UDF pragma,

330–331
Creating packages

information hiding, 335
package body, 335–336,

337–339
package specification, 335
package variables,

367–368
private elements,

341–344
Creating user-defined

functions with a
WITH clause, xxxiv
UDF pragma, xxxiv–xxxv

CREDENTIAL clause,
xxx–xxxi

Currency conversion
example, 334

CURRVAL pseudocolumn,
48

Cursor attributes, 170–174.
See also specific
attributes.

Cursor FOR loops, 175–177
Cursor loops

closing a cursor, 167–168,
170

explicit cursors, 165–168
fetching rows in a cursor,

166–167
opening a cursor, 165–166

Cursor variables
closing, 349
creating, 345–346,

349–350

vs. cursors, 346
definition, 345
explicit, 345
in packages, 347–348,

350–352
processing, 346–347
query results, printing

automatically, 348
rules for using, 353
sharing result sets,

348–352
strong (restrictive),

345–346
weak (nonrestrictive),

345–346
Cursor-based records

compatibility, 249–250
creating, 163–165
defining a collection on,

253–255
definition, 163
description, 244–246

Cursors. See also Dynamic
SQL cursors.

column aliases, 175
vs. cursor variables, 346
definition, 159
explicit, 160
expressions in a select

list, 175
fetch status, getting,

170–174
implicit, 160–161
locking rows for update,

187–189
most recently opened, 160
number of records

fetched, getting,
170–174

number of rows updated,
getting, 161

open, detecting, 170–174
parameterized, 183–185
scope, 175
select list, 175

Index	 473

SQL, 160
tips for using, 175
types of, 159–165
FOR UPDATE clause,

187–189
FOR UPDATE OF clause,

189
updating tables in a

database, 187–190
WHERE CURRENT OF

clause, 189–190
Cursors, explicit

associating with SELECT
statements, 162

closing, 162, 167–168,
172–173

cursor-based records,
163–165

declaring, 162–163,
172–173

definition, 160
fetching rows in a cursor,

162, 166–167,
170–174

naming conventions,
162–163

opening, 162, 165–166,
172–173

processing, 165–168
record types, 163–165
records, 163–165
table-based records, 163
user-defined records,

168–170
Cursors, nested

complex, 185–187
looping through data,

177–181, 185–187
processing, 177–181

D

Dashes (--), single-line
comments, 29, 40

Data (attributes), object
types, 386

Data dictionary, examining
stored code

ALL_DEPENDENCIES
view, 376–377

ALL_OBJECTS view, 374
DBA_DEPENDENCIES

view, 376–377
DBA_OBJECTS view, 374
debugging, 376
dependencies, displaying,

376–377
DESC command,

377–378
describing columns in a

table, 377–378
displaying errors,

375–376
identifying procedures,

packages, and
functions, 377–378

modules with duplicate
names. See
Overloading.

overloading modules,
378–382

retrieving specified line
numbers, 374–375

SHO ERR command, 376
USER_DEPENDENCIES

view, 376–377
USER_ERRORS view,

375–376
USER_OBJECTS view,

374
Data dictionary queries

ALL_USER_OBJECTS
view, 314–315

ALL_USER_SOURCE
view, 314–315

DBA_USER_OBJECTS
view, 314–315

DBA_USER_SOURCE
view, 314–315

displaying source code,
314–315

object information,
314–315

procedure information,
314–315

USER_OBJECTS view,
314–315

USER_SOURCE view,
314–315

Data management tier, 3
Data Manipulation

Language (DML)
definition, 46
and transaction control,

53–55
Data types

based on database objects.
See Anchored data
types.

common, summary of,
35–36. See also specific
types.

displaying maximum size,
xxx

extended maximum size,
xxx

for file handles, 407
new for Oracle 12c, xxx
passing to procedures, 318

Database Object-Relational
Developer’s Guide, 385

Database triggers. See
Triggers.

Databases
edition-based redefinition,

193
erasing changes. See

ROLLBACK
statements.

saving changes. See
COMMIT statements.

setting a save point. See
SAVEPOINT
statements.

STUDENT schema,
461–468

474	 Index

Databases (continued)
used in this book, 461–468

DATE data type, 36
DBA_DEPENDENCIES

view, 376–377
DBA_OBJECTS view, 374
DBA_USER_OBJECTS

view, 314–315
DBA_USER_SOURCE view,

314–315
DBMS_HPROF package,

436–437
DBMSHPTAB.sql script, 437
DBMS_JOB package,

410–412
DBMS_OUTPUT.PUT_

LINE statements,
18–19, 21

DBMS_PROFILER package,
432–433

DBMS_SQL package,
417–418

DBMS_TRACE package,
433–436

DBMS_UTILITY package,
419–424

DBMS_XPLAN package,
414–417

Debugging
new for Oracle 12c, xxxvii
stored code, 376

Declaration section, 6
DECLARE keyword, 6
Declaring

associative arrays, 227
explicit cursors, 162–163,

172–173
variables, 36–39
varrays, 236–238
exceptions, 137–141

Definer rights (DR)
subprogram,
xxvi–xxvii

DELETE method

deleting collection
elements, 233–235

deleting varray
elements, 239

DELETE statements. See
also DML (Data
Manipulation
Language).

batch processing. See
FORALL statements.

with BULK COLLECT
clause, 295

Deleting
collection elements,

233–235
statements, 295
varray elements, 239

Delimiters, 29
Dependencies, displaying,

376–377
DESC command, 377–378
Development environment.

See PL/SQL Scripts;
SQL Developer;
SQL*Plus.

DIRECTORY objects,
defining LIBRARY
objects as, xxx–xxxi

DISABLE option, 194
Disabling substitution

variable verification,
23

Disconnecting from a
database

SQL Developer, 11–12
SQL*Plus, 13

Displaying
code dependencies,

376–377
code errors, 375–376
data type maximum size,

xxx
data type size, xxx
error messages, 287–288

errors, 375–376
invalid procedures, 315
passwords, 13
procedures, 314–315
source code, 314–315
stored code dependencies,

376–377
variable values. See

DBMS_OUTPUT.
PUT_LINE
statements.

DML (Data Manipulation
Language)

definition, 46
and transaction control,

53–55
DML statements. See also

DELETE statements;
INSERT statements;
UPDATE statements.

in blocks, 47–49
as triggering events,

47–49
Double ampersand (&&), in

substitution variable
names, 20, 24, 25

DR (definer rights)
subprogram, xxvi–
xxvii

Duplicate names. See
Overloading.

DUP_VALUE_ON_INDEX
exception, 129

Dynamic SELECT
statements, 259

Dynamic SQL, optimizing,
260

Dynamic SQL cursors. See
also Cursors.

closing, 271–280
fetching from, 271–280
opening, 271–280
passing run-time values

to bind arguments, 272

Index	 475

Dynamic SQL statements
CLOSE, 271–280
example, 260
FETCH, 271–280
multirow queries,

271–280
OPEN-FOR, 271–280
passing NULLS to,

265–266
single-row queries,

261–271
terminating, 264

Dynamic SQL statements,
EXECUTE
IMMEDIATE

avoiding ORA errors,
262–271

binding collections,
299–305

description, 260–261
RETURNING INTO

clause, 261–262
USING clause,

261–262
DYNAMIC_DEPTH

function, 424–426

E

EDITIONABLE property,
xxxiv, 193

Edition-based redefinition,
193

ELSIF statements, 63–67.
See also IF statements.

Empty vs. NULL, 232
ENABLE option, 194
Encapsulation, 386
Erasing database changes.

See ROLLBACK
statements.

Error handling. See also
Error messages.

compilation errors, 7–8,
124–126

runtime errors, 7–8,
124–126, 141–147. See
also Exception
propagation;
Exceptions.

Error isolation, SQL*Plus,
314

Error messages. See also
Error handling.

creating, 149–153
displaying, 287–288
getting, 155–158, 424,

428–429
names, associating with

numbers, 153–155
references to line

numbers and
keywords, 126

Error numbers, getting,
155–158, 424, 428–429

Error reporting
DBMS_UTILITY

package, 419–424
UTL_CALL_STACK

package, 424–429
Error types, 7–8
ERROR_DEPTH function,

424, 428–429
error_message parameter,

150
ERROR_MSG function, 424,

428–429
ERROR_NUMBER function,

424, 428–429
error_number parameter,

150
Errors, displaying, 375–376
Event triggers, creating on

PDBs, xxx
Exception handling. See also

User-defined
exceptions.

built-in, 126–132
EXCEPTION keyword, 8

EXCEPTION_INIT
pragma, 153–155

file location not
valid, 408

filename not valid, 408
FORALL statements,

285–288
INTERNAL_ERROR, 408
invalid file handle, 408
invalid mode, 408
invalid operation, 408
INVALID_

FILEHANDLE, 408
INVALID_MODE, 408
INVALID_OPERATION,

408
INVALID_PATH, 408
predefined, 128–129. See

also OTHERS
exception; specific
exceptions.

raising implicitly, 127
read error, 408
READ_ERROR, 408
re-raising, 146–148
scope, 133–137
unspecified PL/SQL

error, 408
UTL_FILE, 408
write error, 408
WRITE_ERROR, 408

EXCEPTION keyword, 8
Exception propagation,

141–147
Exception-handling section,

7–8
EXCEPTION_INIT pragma,

153–155
Exceptions, raising

explicitly, 144–145
implicitly, 127
re-raising, 147
user-defined, 138

Executable section, 6–7

476	 Index

EXECUTE IMMEDIATE
statements

avoiding ORA errors,
262–271

binding collections with,
299–305

description, 260–261
RETURNING INTO

clause, 261–262
USING clause, 261–262

Executing blocks
overview, 8–9
SQL Developer, 14–16

Executing queries
SQL Developer, 14
SQL*Plus, 15

Execution times
baseline, computing,

432–433
for SQL and PL/SQL,

separating, 436–437
EXISTS method, 232–235
EXIT statements, 93–97
EXIT WHEN statements,

97–98
Explain plan, generating,

414–417
Explicit cursor variables, 345
Expressions

() (parentheses),
controlling order of
operations, 38

CASE expressions, 80–84
comparing. See

COALESCE function;
NULLIF function.

in a cursor select lists, 175
operands, 38
operators, 38–39. See also

specific operators.
EXTEND method, 231,

232–235
Extending collections,

232–235

Extending packages
with additional

procedures, 353–366
final_grade function,

355–366
manage_grades package

specification, 354–356
median_grade function,

362–365

F

FCLOSE function, 407
FCLOSE_ALL procedure,

407
FETCH command, 166–167
FETCH FIRST clause,

xxviii–xxix
FETCH statements, 271–

280, 306–309
Fetch status, getting,

170–174
Fetching records

from dynamic SQL
cursors, 271–280

results in bulk SQL,
291–299

rows in a cursor, 166–167
FFLUSH procedure, 407
File handle invalid,

exception, 408
File location not valid

exception, 408
Filename not valid,

exception, 408
Files, accessing within PL/

SQL, 406–410
FILE_TYPE data type, 407
Firing order, compound

triggers, 219
Firing triggers, 192, 194
FIRST method, 233–235
Flushing the data buffer, 407
FLUSH_PROFILER

routine, 433

FOLLOWS option, 194
FOPEN function, 407
FOR loops. See Numeric

FOR loops.
FOR reserved word, 104
FOR UPDATE clause,

187–189
FOR UPDATE OF clause,

189
FORALL statements

description, 282–285
error messages,

displaying, 287–288
exception handling,

285–288
implicit loop counter, 283
improving performance,

260
INDICES OF option, 283,

288
looping, 283, 288–290
SAVE EXCEPTIONS

option, 285–288
SQL%BULK_

EXCEPTIONS
attribute, 286–287

VALUES OF option,
289–290

Formal parameters, 317–318
FORMAT_CALL_STACK

function, 419–421
FORMAT_ERROR_

BACKTRACE
function, 419, 421–422

FORMAT_ERROR_STACK
function, 419, 422–424

Formatting guide
case sensitivity, 455
comments, 456–459
naming conventions,

456–457
white space, 455–456

Formatting guide, for
readability by humans

Index	 477

dynamic SQL statements,
275

EXCEPTION_INIT
pragma, 155

formatting IF statements,
66–67

formatting SELECT
statements, 275

grouping with
parentheses, 69, 252

inserting blank lines, 242
inserting blank spaces,

275
labels on nested blocks,

39–40
labels on nested loops, 120
WORK keyword, 51–52

%FOUND attribute, 170–
174

Functions. See also Modular
code.

collections of. See
Packages.

final_grade function,
355–366

identifying, 377–378
invoking in SQL

statements, 327–328
IR (invoker rights),

xxvi–xxvii
median_grade function,

362–365
optimizing execution,

329–331
vs. procedures, 322
syntax, 322–327
user-defined. See User-

defined functions.
uses for, 325–327

Functions, creating
complex functions,

328–329
stored functions,

322–325

using a WITH clause,
329–330

using the UDF pragma,
330–331

G

GET_LINE procedure, 407
GET_NEXT_RESULT

procedure, xxx1–xxxii
GET_PLSQL_TRACE_

LEVEL routine,
434–436

Getting records. See Fetching
records.

Grouping transactions, 49

H

Help, Oracle online, 193
Hierarchical Profiler,

436–437

I

Identifiers, 29, 33–34. See
also Variables.

IF statements. See also
ELSIF statements.

description, 58
formatting for readability,

66–67
inner, 67
logical operators, 68–70
nested, 67–70
outer, 67

IF-THEN statements
description, 58–60
inner IF, 67

IF-THEN-ELSE statements
description, 60–63
outer IF, 60–63

Implicit cursors, 160–161
Implicit statement results,

xxxi–xxxii
Implicit statement results,

generating, 417–418

IN option, 105–107
IN OUT parameter, 316–317
IN parameter, 315–319
Index-by tables. See

Associative arrays.
INDICES OF option, 283,

288
Infinite loops

definition, 93
simple, 95
WHILE, 100

Information hiding, 335
INHERIT ANY

PRIVILEGES clause,
xxxii–xxxiii

INHERIT PRIVILEGES
clause, xxxii–xxxiii

Initializing
nested tables, 230–232
object attributes, 389–390
packages, 367–368

Initializing variables
with an assignment

operator, 36–39
with CASE expressions,

83–84
to a null value, 32
with SELECT INTO

statements, 44–47,
83–84

Inner IF statements, 67
INSERT statements. See

also DML (Data
Manipulation
Language).

batch processing. See
FORALL statements.

with BULK COLLECT
clause, 295

Instantiating packages, 366
INSTEAD OF triggers,

206–211
INTERNAL_ERROR

exception, 408

478	 Index

Interpreted mode code
generation, 9

INTERVAL parameter, 411
INTERVAL procedure, 410
Invalid

file handle exception, 408
mode exception, 408
operation exception, 408
procedures, 315

INVALID blocks vs. VALID, 9
INVALID_FILEHANDLE

exception, 408
INVALID_MODE exception,

408
INVALID_OPERATION

exception, 408
INVALID_PATH exception,

408
Invisible columns,

xxxiii–xxxiv
IR (invoker rights) unit

creating views, xxxii
new for Oracle 12c,

xxvi–xxvii,
xxxii–xxxiii

permissions, xxxii–xxxiii
%ISOPEN attribute,

170–174
IS_OPEN function, 407
Iterative control. See

CONTINUE
statements; Loops.

J

JOB parameter, 411
Job queue

changing items in the
queue, 410

changing job intervals,
410

DBMS_JOB package,
410–412

disabling jobs, 410, 412
examining, 412

flagging jobs as broken,
412

forcing a job to run, 410,
412

job numbers, assigning,
411

removing jobs from, 410,
412

scheduling the next run
date, 410

submitting jobs, 410,
411–412

K

keep_errors parameter, 150

L

Labels on
nested blocks, 39–40
nested loops, 120

Language components
anchored data types, 34
character types, 28
comments, 29
delimiters, 29
identifiers, 29, 33–34. See

also Variables.
lexical units, 28–29
literals, 29
reserved words, 29, 32–33
variables, 29–32, 36–39.

See also Identifiers;
Substitution variables.

LAST method, 233–235
Lexical units, 28–29
LIBRARY objects, defining

as DIRECTORY
objects, xxx–xxxi

LIMIT method, 238, 292–293
Limiting result sets, bulk

SQL, 292–293
Line terminators, inserting,

408
Literals

definition, 29
in expressions, 38

LOB data type, 36
Locking rows for update,

187–189
Logical operators, 39, 68–70
LOGIN_DENIED exception,

128
LONG data type, 36
LONG RAW data type, 36
Loop labels, 120–122
LOOP reserved word, 92
Looping

FORALL statements, 283,
288–290

INDICES OF option, 283,
288

VALUES OF option,
289–290

Loops, nested, 118–120.
See also Nested
cursors.

Loops, numeric FOR
description, 104–105
IN option, 105–107
premature termination,

108–109
REVERSE option,

107–108
Loops, simple

description, 92–93
EXIT statements, 93–97
EXIT WHEN statements,

97–98
infinite, 93, 95
inner loops, 119
RETURN statements, 96
terminating, 93–98

Loops, WHILE
Boolean expressions as

test conditions, 101
description, 98–101
infinite, 100
outer loops, 119

Index	 479

premature termination,
101–103

M

Map methods, 400–401
MAX_STRING_SIZE

parameter
displaying data type size,

xxx
Member methods, 398
Methods (functions and

procedures), 386
Modes

code generation, 9
invalid, exception, 408
procedure parameters,

317–318
Modular code

anonymous blocks, 312
benefits of, 312
block structure, 312
definition, 311
types of, 312. See also

specific types.
Multilevel collections,

240–242
Multirow queries,

271–280
Mutating table errors, 214
Mutating tables

definition, 214
resolving issues, 215–223

N

Named blocks, 5, 8–9. See
also Anonymous
blocks.

Named notation, procedure
parameters, 318–319

Naming conventions
explicit cursors, 162–163
formatting guide,

456–457
variables, 29–30

Native code, 9
Native dynamic SQL. See

Dynamic SQL.
Native mode code

generation, 9
Nested

blocks, 5, 39–41
collections in object types,

393
cursors, 177–181
IF statements, 67–70
loops, 118–120
records, 250–253
varrays, 240–242

Nested cursors
complex, 185–187
looping through data,

177–181, 185–187
processing, 177–181

Nested tables
vs. associative arrays

and varrays,
239–240

creating, 229–230
initializing, 230–232
LIMIT method, 238
populating with the

BULK COLLECT
clause, 292

upper bounds, specifying,
238–239

New features, summary of,
xxv–xxvi. See also
specific features.

:NEW pseudorecords,
196–199

NEW_LINE function, 408
NEXT DATE procedure, 410
NEXT method, 233–235
NEXT_DATE parameter,

411
NEXTVAL pseudocolumn, 48
NO_DATA_FOUND

exception, 128

associative arrays,
228–229

bulk SQL, 292
NONEDITIONABLE

property, xxxiv, 193
Nonrestrictive (weak) cursor

variables, 345–346
NO_PARSE parameter, 411
Not null, constraining

variables to, 32
%NOTFOUND attribute,

170–174
Null condition, IF-THEN-

ELSE statements,
61–63

Null values
assigning to expressions

in NULLIF functions,
86–87

variables, 32
NULL vs. empty, 232
NULLIF function, 84–87. See

also COALESCE
function.

NULLS, passing to dynamic
SQL statements,
265–266

NUMBER data type, 35
Numeric FOR loops

in cursors, 175–177
description, 104–105
IN option, 105–107
premature termination,

108–109
REVERSE option,

107–108
NVACHAR2 data type, xxx

O

Object attributes,
initializing, 389–390

Object instances. See
Objects.

Object specification, 388

480	 Index

Object type methods
comparing objects,

399–404
constructor, 395–397
definition, 395
functions and procedures,

386
member, 398
parameter, 395
SELF parameter, 395,

397, 398, 401
static, 398–399

Object types
attributes (data), 386
with collections, 391–394
components of, 386
creating, 386–390
encapsulation, 386
methods (functions and

procedures), 386
nesting collections in, 393

Objects
associative arrays,

populating with data,
392

comparing, 399–404
getting information

about, 314–315
initial value, 389
schema, editionable vs.

noneditionable, xxxiv
:OLD pseudorecords,

196–199
Open cursors, testing for,

170–174
Open files

testing for, 407
writing to, 408

OPEN-FOR statements
binding collections with,

306–309
opening cursors, 271–280

Opening
dynamic SQL cursors,

271–280

explicit cursors, 162,
165–166, 172–173

files, 407
Operands

definition, 38
in expressions, 38

Operation invalid, exception,
408

Operators
definition, 38
in expressions, 38
precedence, 39

Optimization levels
examples of, 439–444
performance optimizer,

438
PLSQL_OPTIMIZE_

LEVEL parameter, 438
summary of, 438

Optimizing
dynamic SQL, 260
function execution,

329–331
Optimizing PL/SQL, tuning

tools
ANALYZE routine, 437
CLEAR_PLSQL_TRACE

routine, 434–436
computing execution time

baseline, 432–433
DBMS_HPROF package,

436–437
DBMSHPTAB.sql script,

437
DBMS_PROFILER

package, 432–433
DBMS_TRACE package,

433–436
FLUSH_PROFILER

routine, 433
GET_PLSQL_TRACE_

LEVEL routine,
434–436

Hierarchical Profiler,
436–437

PAUSE_PROFILER
routine, 433

Profiler API, 432–433
profiling execution of

applications,
436–437

PROFLOAD.sql script,
432–433

PROFTAB.sql script,
432–433

RESUME_PROFILER
routine, 433

separating execution
times for SQL and PL/
SQL, 436–437

SET_PLSQL_TRACE
routine, 434–436

START_PROFILER
routine, 432–433

START_PROFILING
routine, 437

STOP_PROFILER
routine, 432–433

STOP_PROFILING
routine, 437

Trace API, 433–436
TRACE_ALL_CALLS

constant, 434–436
TRACE_ALL_

EXCEPTIONS
constant, 434–436

TRACE_ALL_SQL
constant, 434–436

TRACE_ENABLED_
CALLS constant,
434–436

TRACE_ENABLED_
EXCEPTION constant,
434–436

TRACE_ENABLED_SQL
constant, 434–436

TRACE_PAUSE constant,
434–436

TRACE_RESUME
constant, 434–436

Index	 481

TRACE_STOP constant,
434–436

TRACETAB.sql script,
433–436

tracing order of execution,
433–436

ORA errors, avoiding,
262–271

Oracle Forms Developer: The
Complete Video Course,
xxiii

Oracle online help, 193
Oracle PL/SQL by Example,

Fifth Edition, xvii
Oracle sequences. See

Sequences.
Oracle server, 2–4
Oracle SQL by Example, 414
Oracle SQL Developer. See

SQL Developer.
Oracle Web Application

Programming for PL/
SQL Developers, xxiii

Oracle-supplied packages
accessing files within PL/

SQL, 406–410
DBMS_JOB, 410–412
DBMS_SQL, 417–418
DBMS_XPLAN,

414–417
explain plan, generating,

414–417
implicit statement

results, generating,
417–418

scheduling jobs, 410–413
text file capabilities,

406–410
UTL_FILE, 406–410

Oracle-supplied packages,
error reporting

DBMS_UTILITY
package, 419–424

UTL_CALL_STACK
package, 424–429

Order methods, 401–404
Order of execution, tracing,

433–436
OTHERS exception, 131,

155–156. See also
SQLCODE function;
SQLERRM function.

OUT parameter, 315–319
Outer IF statements, 67
Overloading

construction methods, 397
modules, 378–382

P

Packages. See also Modular
code.

benefits of, 334
currency conversion

example, 334
definition, 333
granting roles to, xxix–

xxx
identifying, 377–378
initialization, 367–368
instantiation, 366
manage_grades package

specification, 354–356
referencing packaged

elements, 336–337.
See also Cursor
variables.

serialization, 368–371
stored, calling, 339–341
supplied by Oracle. See

Oracle-supplied
packages.

Packages, creating
information hiding, 335
package body, 335–336,

337–339
package specification, 335
package variables,

367–368
private elements,

341–344

Packages, extending
with additional

procedures, 353–366
final_grade function,

355–366
manage_grades package

specification, 354–356
median_grade function,

362–365
Parameterized cursors,

183–185
Parameters, passing to

procedures
actual parameters,

317–318
data types, 318
default values, 318–319
formal parameters,

317–318
modes, 317–318
named notation, 318–319
OUT parameter, 315–319
IN OUT parameter,

316–317
IN parameter, 315–319
positional notation,

318–319
Parentheses ()

controlling order of
operations, 38

grouping for readability,
69, 252

Parse trees, 8
Passing

data types to procedures,
318

NULLS to dynamic SQL
statements, 265–266

run-time values to bind
arguments, 272

Passing parameters to
procedures

actual parameters,
317–318

data types, 318

482	 Index

Passing parameters to
procedures (continued)

default values, 318–319
formal parameters,

317–318
modes, 317–318
named notation, 318–319
OUT parameter, 315–319
IN OUT parameter,

316–317
IN parameter, 315–319
positional notation,

318–319
Passwords

SQL Developer, case
sensitivity, 10

SQL*Plus, displaying, 13
PAUSE_PROFILER

routine, 433
P-code, 9
PDBs (pluggable databases),

xxx
Performance. See

Optimizing.
Performance optimizer, 438.

See also Optimizing
PL/SQL.

PL/SQL Scripts, 14–16
PL/SQL statements, 44. See

also SQL statements;
specific statements.

PLSQL_CODE_TYPE
parameter, 9

PLSQL_DEBUG parameter,
xxxvii

$$PLSQL_LINE directive,
xxxvi–xxxvii

PL/SQL-only data types,
xxvi–xxvii

PLSQL_OPTIMIZE_LEVEL
parameter, 438

$$PLSQL_UNIT directive,
xxxvi–xxxvii

$$PLSQL_UNIT_OWNER
directive, xxxvi–xxxvii

$$PLSQL_UNIT_TYPE
directive, xxxvi–xxxvii

Populating associative
arrays, 227

Positional notation,
procedure parameters,
318–319

PRAGMA INLINE
statement, 445

Pragmas, definition, 153
PRECEDES option, 194
Predefined exceptions,

128–129
Predefined inquiry

directives, new
for Oracle 12c,
xxxvi–xxxvii

Presentation tier, 3
Primary key values,

generating. See
Sequences.

Printing query results
automatically, 348

PRIOR method, 233–235
Privileges for creating views,

207
Procedures. See also

Modular code.
collections of. See

Packages.
creating, 312–315
vs. functions, 322
getting information

about, 314–315
identifying, 377–378
invalid, recompiling, 315

Procedures, displaying
data dictionary queries,

314–315
invalid, recompiling, 315
invalid vs. valid, 315
red X, 315
with SQL Developer, 315

Procedures, passing
parameters

actual parameters,
317–318

data types, 318
default values, 318–319
formal parameters,

317–318
modes, 317–318
named notation, 318–319
OUT parameter, 315–319
IN OUT parameter,

316–317
IN parameter, 315–319
positional notation,

318–319
Profiler API, 432–433
PROFLOAD.sql script,

432–433
PROFTAB.sql script,

432–433
PROGRAM_ERROR

exception, 128
PUT procedure, 408
PUTF procedure, 408
PUT_LINE procedure, 408

Q

Queries. See SQL queries.
Query results

printing automatically,
348

sharing. See Cursor
variables.

R

RAISE statements
in conjunction with IF

statements, 140
raising exceptions

explicitly, 144–145
raising user-defined

exceptions, 138
re-raising exceptions, 147

RAISE_APPLICATION_
ERROR procedure,
149–153

Index	 483

Raising exceptions
explicitly, 144–145
implicitly, 127
re-raising exceptions, 147
user-defined, 138

RAW data type, xxx, 36
Read error, exception, 408
Readability (by humans)

dynamic SQL
statements, 275

EXCEPTION_INIT
pragma, 155

formatting IF statements,
66–67

formatting SELECT
statements, 275

grouping with
parentheses, 69, 252

inserting blank lines, 242
inserting blank

spaces, 275
labels on nested blocks,

39–40
labels on nested loops, 120
WORK keyword, 51–52

READ_ERROR exception,
408

Reading
records from a database.

See Fetching records.
text from an open file, 407

Record types
compatibility, 249–250
cursor based, 244–246,

249–250, 253–255
explicit cursors, 163–165
table based, 244–246,

249–250
user defined, 246–250,

255–256
Records

collections of, 253–256
compatibility, 248–250
cursor-based, 163–165
enclosing, 250

explicit cursors, 163–165
nested, 250–253
reading. See Fetching

records.
table-based, 163–165
testing values of, 244
user-defined, 168–170

Red X on displayed
procedures, 315

REF CURSOR data type,
345–346. See also
Cursor variables.

REMOVE procedure, 410,
412

REPLACE reserved word,
192–193

Re-raising exceptions,
146–148

Reserved words, 29, 32–33
Restricted mode, turning on/

off, 411
Restrictive (strong) cursor

variables, 345–346
Result sets, sharing. See

Cursor variables.
Result-caching, IR (invoker

rights) functions,
xxvi–xxvii

RESUME_PROFILER
routine, 433

RETURN statements, 96
RETURNING clause, with

BULK COLLECT
clause, 295

RETURNING INTO clause,
261–262

RETURN_RESULT
procedure,
xxx1–xxxii

REVERSE option, 107–108
Roles, granting to PL/SQL

packages and
standalone
subprograms,
xxix–xxx

ROLLBACK statements,
49–51, 52, 195

%ROWCOUNT attribute,
170–174

Row-level triggers, 194,
205–206

Rows, locking for update,
187–189

%ROWTYPE attribute,
163–165, 244–246

RUN procedure, 410, 412
Runtime errors. See also

Error handling;
Exceptions.

vs. compilation errors,
124–126

in a declaration section,
142–143. See also
Exception propagation.

definition, 7–8
error handling, 141–147
in an exception-handling

section, 143–144. See
also Exception
propagation.

S

SAVE EXCEPTIONS option,
285–288

SAVEPOINT statements
breaking down large PL/

SQL statements, 44
setting a save point,

49–51, 52–53
in triggers, 195

Saving database changes.
See COMMIT
statements.

Scheduling jobs, 410–413
Scope

cursors, 175
exceptions, 133–137
labels, 39–41
nested blocks, 39–41
variables, 39

484	 Index

Searched CASE statements
vs. CASE statements,

76–80
description, 74–80

Sections of blocks, 6–8
SELECT INTO statements,

44–47
Select list, cursors, 175
SELECT statements

dynamic, 259. See also
Dynamic SQL.

formatting for readability,
275

returning no rows, 47
returning too many rows,

47
static, 259

SELF parameter, 395, 397,
398, 401

Semantic checking, 9
Semicolon (;)

block terminator, 16–17
dynamic SQL statement

terminator, 264–265
variable terminator,

36–37
Sequences

accessing, 48
in blocks, 48–49
of contiguous numbers, 48
definition, 47
drawing numbers from,

48
incrementing, 48
uses for, 47

Serialized packages,
368–371

SERIALLY_REUSABLE
pragma, 368–371

SET_PLSQL_TRACE
routine, 434–436

Setting a save point. See
SAVEPOINT
statements.

SHO ERR command, 376

SID, default, 10
Simple loops

description, 92–93
EXIT statements, 93–97
EXIT WHEN statements,

97–98
infinite, 95
inner loops, 119
RETURN statements, 96
terminating, 93–98

Single quotes (‘ ‘), enclosing
substitution variables,
25

Single-row queries, 261–271
Slash (/), block terminator,

16, 264
Slash asterisk... (/*...*/),

multiline comments,
29, 40

Source code, displaying,
314–315

SQL cursors, 160
SQL Developer

connecting to a database,
10–11

connection name, 10
default SID, 10
definition, 9
disabling substitution

variable verification,
23

disconnecting from a
database, 11–12

displaying procedures,
315

executing a block, 14–16
executing a query, 14
getting started with,

10–11
launching, 10
password, 10
substitution variables,

19–25
user input at runtime. See

Substitution variables.

user name, 10
SQL queries

implicit statement
results, xxxi–xxxii

multirow, 271–280
new for Oracle 12c,

xxxi–xxxii
single-row, 261–271

SQL statements. See also PL/
SQL statements.

; (semicolon), statement
terminator, 15

vs. PL/SQL, 14
SQL%BULK_EXCEPTIONS

attribute, 286–287
SQLCODE function,

155–158. See also
OTHERS exception;
SQLERRM
function.

SQLERRM function,
155–158. See also
OTHERS exception;
SQLCODE function.

SQL*Plus
/ (slash), block terminator,

16
; (semicolon), block

terminator, 16–17
accessing, 11, 13
connecting to a database,

13
definition, 9
disabling substitution

variable verification,
23

disconnecting from a
database, 13

error isolation, 314
executing a query, 15
getting started with,

11–13
password, 13
substitution variables,

19–25

Index	 485

sqlplus command, 13
START_PROFILER routine,

432–433
START_PROFILING

routine, 437
Statement-level triggers,

194, 205–206
Statements. See PL/SQL

statements.
Static methods, 398–399
Static SELECT statements,

259
STOP_PROFILER routine,

432–433
STOP_PROFILING

routine, 437
Stored code, examining

ALL_DEPENDENCIES
view, 376–377

ALL_OBJECTS view, 374
with the data dictionary,

374–378
DBA_DEPENDENCIES

view, 376–377
DBA_OBJECTS

view, 374
debugging, 376
dependencies, displaying,

376–377
DESC command,

377–378
describing columns in a

table, 377–378
displaying errors,

375–376
identifying procedures,

packages, and
functions, 377–378

overloading modules,
378–382

retrieving specified line
numbers, 374–375

SHO ERR command, 376
USER_DEPENDENCIES

view, 376–377

USER_ERRORS view,
375–376

USER_OBJECTS view,
374

Stored functions, creating,
322–325

Stored packages, calling,
339–341

Stored queries. See Views.
String operators, 39
Strong (restrictive) cursor

variables, 345–346
STUDENT database

schema, 461–468
SUBMIT procedure, 410
Submitting jobs, 410,

411–412. See also Job
queue.

Subprogram inlining,
445–453

Subprograms, granting roles
to, xxix–xxx

Substitution variables. See
also Variables.

‘ ‘ (single quotes),
enclosing in, 25

& (ampersand), name
prefix, 20, 22, 25

&& (double ampersand),
name prefix, 20, 24, 25

disabling, 25
disabling verification, 23
name prefix character,

changing, 25
overview, 19–25

Syntax checking, 8–9
Syntax errors. See

Compilation errors.

T

Table-based records
compatibility, 249–250
creating, 163–165
definition, 163
description, 244–246

Tables
mutating, 213–223
PL/SQL, 226. See also

Associative arrays;
Nested tables.

Tables, nested
vs. associative arrays

and varrays,
239–240

creating, 229–230
initializing, 230–232
LIMIT method, 238
upper bounds, specifying,

238–239
Text file capabilities,

406–410
Three-tier architecture, 3
TOO_MANY_ROWS

exception, 128
Trace API, 433–436
TRACE_ALL_CALLS

constant, 434–436
TRACE_ALL_

EXCEPTIONS
constant, 434–436

TRACE_ALL_SQL constant,
434–436

TRACE_ENABLED_CALLS
constant, 434–436

TRACE_ENABLED_
EXCEPTION constant,
434–436

TRACE_ENABLED_
SQL constant,
434–436

TRACE_PAUSE constant,
434–436

TRACE_RESUME constant,
434–436

TRACE_STOP constant,
434–436

TRACETAB.sql script,
433–436

Tracing order of execution,
433–436

486	 Index

Transaction control
and DML, 53–55
erasing changes. See

ROLLBACK
statements.

saving changes. See
COMMIT statements.

setting a save point. See
SAVEPOINT
statements.

Transactional control
statements, from
triggers, 195

Transactions
vs. blocks, 50, 54–55
breaking down large

statements, 44
definition, 43
grouping, 49

Triggering events, 192
Triggers. See also Modular

code.
AFTER, 201–204
autonomous transactions,

203–204
BEFORE, 195–201
compound, 217–223
creating, 192–195,

197–201
defined on views,

206–211
definition, 192
in dropped tables, 195
enabling/disabling, 194
event, xxx
firing, 192
firing order, specifying,

194
INSTEAD OF clause,

206–211
issuing transactional

control statements, 195
mutating table errors,

214–223

:NEW pseudorecords,
196–199

:OLD pseudorecords,
196–199

restrictions, 195
row-level, 194, 205–206
statement-level, 194,

205–206
types of, 205–211
uses for, 195

TRIM method, 233–235
Tuning PL/SQL. See

Optimizing PL/SQL,
tuning tools.

TYPE statements, 247–248

U

UDF pragma
creating functions,

330–331
creating user-defined

functions, xxxiv–xxxv
Undoing database changes.

See ROLLBACK
statements.

Unique numbers, generating,
47–49

UPDATE statements. See
also DML (Data
Manipulation
Language).

batch processing. See
FORALL statements.

with BULK COLLECT
clause, 295

Updating tables in a
database, 187–190. See
also UPDATE
statements.

User name, SQL
Developer, 10

User-defined exceptions
declaring, 137
description, 137–141

raising explicitly, 138–139
unhandled, 145

User-defined functions
creating with a UDF

pragma, xxxiv–xxxv
creating with a WITH

clause, xxxiv
running under SQL,

xxxiv–xxxv
User-defined records

compatibility, 249–250
defining a collection on,

255–256
description, 168–170,

246–249
USER_DEPENDENCIES

view, 376–377
USER_ERRORS view,

375–376
USER_OBJECTS view,

314–315, 374
USER_SOURCE view,

314–315
USING clause, 261–262
UTL_CALL_STACK

package, 424–429
UTL_FILE package, 406–

410

V

VALID blocks vs. INVALID,
9

VALUE_ERROR exception,
129

VALUES OF option,
289–290

VARCHAR2 data type,
xxx, 35

Variables. See also
Identifiers;
Substitution variables.

; (semicolon), variable
terminator, 36–37

case sensitivity, 29

Index	 487

constraining to not
null, 32

declaring, 36–39
displaying values. See

DBMS_OUTPUT.
PUT_LINE
statements.

in expressions, 38
with identical names,

121–122
naming conventions,

29–30
null values, 32
overview, 29–32
scope, 39
visibility, 40

Variables, initializing
with an assignment

operator, 36–39
with CASE expressions,

83–84
to a null value, 32
with SELECT INTO

statements, 44–47,
83–84

Varrays
declaring, 236–238
definition, 235–236

nested, 240–242
vs. nested tables and

associative arrays,
239–240

upper bounds, setting,
238–239

View queries, 208. See also
SELECT statements.

Views, creating
BEQUEATH CURRENT_

USER clause, xxxii
BEQUEATH DEFINER

clause, xxxii
as an IR (invoker rights)

unit, xxxii
new for Oracle 12c,

xxxii
privileges for, 207

Views, triggers defined on,
206–211

Visibility of variables, 40

W

Weak (nonrestrictive) cursor
variables, 345–346

Website, companion to this
book. See Companion
Website.

WHAT parameter, 411
WHERE CURRENT OF

clause, 189–190
WHILE loops

Boolean expressions as
test conditions, 101

description, 98–101
infinite, 100
outer loops, 119
premature termination,

101–103
WHILE reserved word, 99
White space, formatting

guide, 455–456
WITH clause

creating functions,
329–330

creating user-defined
functions, xxxiv

WORK keyword, for
readability, 51–52

Write error, exception, 408
WRITE_ERROR exception,

408

Z

ZERO_DIVIDE exception,
128

	Contents
	Preface
	Acknowledgments
	About the Authors
	Introduction to PL/SQL New Features in Oracle 12c
	Invoker’s Rights Functions Can Be Result-Cached
	More PL/SQL-Only Data Types Can Cross the PL/ SQL-to-SQL Interface Clause
	ACCESSIBLE BY Clause
	FETCH FIRST Clause
	Roles Can Be Granted to PL/SQL Packages and Stand-Alone Subprograms
	More Data Types Have the Same Maximum Size in SQL and PL/SQL
	Database Triggers on Pluggable Databases
	LIBRARY Can Be Defined as a DIRECTORY Object and with a CREDENTIAL Clause
	Implicit Statement Results
	BEQUEATH CURRENT_USER Views
	INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES Privileges
	Invisible Columns
	Objects, Not Types, Are Editioned or Noneditioned
	PL/SQL Functions That Run Faster in SQL
	Predefined Inquiry Directives $$PLSQL_UNIT_OWNER and $$PLSQL_UNIT_TYPE
	Compilation Parameter PLSQL_DEBUG Is Deprecated

	Chapter 3 SQL in PL/SQL
	Lab 3.1: DML Statements in PL/SQL
	Initialize Variables with SELECT INTO
	Using the SELECT INTO Syntax for Variable Initialization
	Using DML in a PL/SQL Block
	Using a Sequence in a PL/SQL Block

	Lab 3.2: Transaction Control in PL/SQL
	Using COMMIT, ROLLBACK, and SAVEPOINT
	Putting Together DML and Transaction Control

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

