A Comprehensive Guide to Project Management Schedule and Cost Control

Methods and Models for Managing the Project Lifecycle

Randal Wilson, MBA, PMP
Visiting Professor of Project Management, Keller Graduate School of Management, Devry University
A Comprehensive Guide to Project Management Schedule and Cost Control
This page intentionally left blank
A Comprehensive Guide to Project Management Schedule and Cost Control

Methods and Models for Managing the Project Lifecycle

Randal Wilson
I would like to dedicate this book to my wife, Dusty, and sons, Nolan, Garrett, and Carlin, for their continued support and patience on this project.
This page intentionally left blank
Contents

Dedication ... v
About the Author x
Introduction .. 1
 Schedule and Cost of Projects 1
 Project Balance 2
 What Is Control? 3
 Organizational Influences 4
 Solutions to Schedule and Cost Control 9

Part 1 Project Development 11

Chapter 1 Basic Project Structure 13
 Introduction 13
 Projects, Programs, and Portfolios 14
 Project Management Versus Program and Portfolio Management 17
 Project Life Cycle 23
 Review Questions 25

Chapter 2 Initiating Process 27
 Introduction 27
 Project Origination 28
 Project Stakeholders 31
 Project Selection 34
 Project Charter 52
 Review Questions 55

Chapter 3 Planning Process 57
 Introduction 57
 Develop Project Management Plan 58
 Collect Requirements 63
 Define Scope 66
 Work Breakdown Structure (WBS) 70
 Review Questions 75

Part 2 Project Schedule Analysis 77

Chapter 4 Activity Definition 79
 Introduction 79
 Activity Analysis 80
 Responsibility Assignment 88
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Activity Sequencing</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Information for Sequencing</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Defining Dependencies</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Precedence Diagramming Method (PDM)</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Review Questions</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Applications Exercise</td>
<td>116</td>
</tr>
<tr>
<td>6</td>
<td>Resource Estimating</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Types of Resources</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Resource Constraints</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Resource Requirements</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Resource-Estimating Methods</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Review Questions</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Applications Exercise</td>
<td>137</td>
</tr>
<tr>
<td>7</td>
<td>Activity Duration Estimating</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Duration Estimating Methods</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Duration Estimating with Constraints</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Scheduling Conclusions</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Review Questions</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Applications Exercise</td>
<td>156</td>
</tr>
<tr>
<td>8</td>
<td>Schedule Development</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Schedule Requirements</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Schedule Structuring Techniques</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Schedule Analysis</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Schedule Documentation</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Review Questions</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Applications Exercise</td>
<td>182</td>
</tr>
<tr>
<td>Part 3</td>
<td>Project Cost Analysis</td>
<td>183</td>
</tr>
<tr>
<td>9</td>
<td>Cost Estimating</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Collecting Cost Data</td>
<td>186</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Constraints 191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimating Tools and Techniques 192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review Questions 198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications Exercise for Chapters 9 and 10 198</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Budget Development 201</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction 201</td>
<td></td>
</tr>
<tr>
<td>Functions of a Budget 202</td>
<td></td>
</tr>
<tr>
<td>Budget Development Methods 205</td>
<td></td>
</tr>
<tr>
<td>Budget Constraints 208</td>
<td></td>
</tr>
<tr>
<td>Cost of Quality 210</td>
<td></td>
</tr>
<tr>
<td>Review Questions 212</td>
<td></td>
</tr>
<tr>
<td>Applications Exercise 213</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 4</th>
<th>Project Monitoring and Control 215</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Schedule and Cost Monitoring 217</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction 217</td>
<td></td>
</tr>
<tr>
<td>Integrated Monitoring 218</td>
<td></td>
</tr>
<tr>
<td>Monitoring and Analysis Tools 221</td>
<td></td>
</tr>
<tr>
<td>Troubleshooting Tools 233</td>
<td></td>
</tr>
<tr>
<td>Monitoring Results 235</td>
<td></td>
</tr>
<tr>
<td>Review Questions 239</td>
<td></td>
</tr>
<tr>
<td>Applications Exercise 239</td>
<td></td>
</tr>
<tr>
<td>Case Study Exercise for Chapter 11 240</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Schedule and Cost Control 241</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction 241</td>
<td></td>
</tr>
<tr>
<td>Change Control 242</td>
<td></td>
</tr>
<tr>
<td>Control Tools and Techniques 247</td>
<td></td>
</tr>
<tr>
<td>Control Results 260</td>
<td></td>
</tr>
<tr>
<td>Review Questions 263</td>
<td></td>
</tr>
<tr>
<td>Applications Exercise 263</td>
<td></td>
</tr>
</tbody>
</table>

| Bibliography 265 |
| Index 267 |
Randal Wilson, MBA, PMP, serves as Visiting Professor of Project Management, Keller Graduate School of Management, at the Elk Grove, California, DeVry University campus. His teaching style is one of addressing project management concepts using academic course guidelines and text and includes in-depth discussions in lectures using practical application from industry experience.

Mr. Wilson is currently Operations and Project Manager at Parker Hose and Fittings. He is responsible for five locations across northern California and Nevada, as well as project management of redesigns and renovation of existing facilities and construction of new facilities.

Mr. Wilson was formally in the telecommunications industry as Senior New Product Introduction Engineer at REMEC, Inc., Senior New Product Introduction Engineer with Spectrian Corp., and Associate Design Engineer with American Microwave Technology. He also served as Senior Manufacturing Engineer at Hewlett-Packard.

He is a certified Project Management Professional (PMP) of the Project Management Institute. He acquired an MBA with a concentration in General Operations Management from Keller Graduate School of Management of DeVry University in Fremont, California, and a bachelor of science in Technical Management with a concentration in Project Management from DeVry University in Fremont, California.
Schedule and Cost of Projects

Most organizations are formed for a purpose that results in producing goods or services. The success of the organization’s endeavor is in the management of resources and how the founders of the organization have structured the operation to achieve its strategic objective. Because most organizations require resources to facilitate the ability to accomplish daily tasks in the operation, on some occasions special activities are required to accomplish certain things the operation needs that are not part of the daily tasks, but require resources from within the organization. These types of special tasks are called *projects*, and if they are structured and managed well, they will provide opportunities for the organization to make improvements that are necessary in the ongoing improvement of the operation.

Depending on the type and size of the organization, projects may be sporadic and used only in special development situations, whereas other organizations may use projects integrated into its business structure as a main part of its daily operation. Regardless of how projects are utilized in the organization, they require resources that may include human resources, equipment and materials, facilities, and financial resources. When special projects require these types of resources, it is important to note that most of these resources are utilized in normal daily operation tasks; if they are used on a special project, they have to be allocated such that they do not impact daily operations and create conflicts. Most resources used within an organization have a cost component associated with how they are used; how a resource is expensed for a special project also is a consideration.

Organizations can generally benefit from special projects, but the structure, organization, and utilization of resources become a very important element not only in the success of the project, but in minimizing the impact to the organization and daily
operations. Before a special project can be authorized, management within the organization needs to know how much the project will cost, how much of the organization’s resources will be required, what are the expected deliverables or benefit to the organization, and how long the project will take to complete. Because it is usually easier to identify how a project deliverable will benefit the organization, it can be difficult to ascertain how much the project will cost, how long it will take, and how many and what types of resources will be required to complete the project objective. At this point, project management tools and techniques can be utilized to define cost and schedule requirements.

Project Balance

When an organization embarks on a special project, generally, the first task is to define what the project objective will be as it relates to expected deliverables. This task is usually accomplished fairly quickly by initial stakeholders; they include operations managers and other staff interested in the benefit the project deliverables will bring to the operation. Problems generally begin to arise when the project has been approved and the process of defining how to create the project deliverable, what costs will be associated, what resources will be required, and how to schedule these resources for a special project in addition to their normal daily tasks must be considered. Projects have to be structured and managed, maintaining a balance between utilizing the organization’s resources for daily operations and for required tasks to complete work activities on a project.

Resources can be human resources and any other resources, including financial requirements, that will be needed on a project; however, they have to be defined, showing how they can be utilized in the balance of daily operations tasks and special project tasks. This can create a challenge for operations managers because they have an obligation to daily work activities but want to see special projects completed and struggle with ways to balance human resources and other resources within their department to complete both of these tasks. Part of this dilemma stems from the department manager being loyal to his obligation in the daily operations and will typically err to ensuring operations are not impacted, thus creating constraints for utilizing resources on special projects. The other part of this dilemma might be the department manager’s inexperience with scheduling resources for both departmental tasks and project tasks. Project managers who are separated from operational departments do not share the same loyalty and, in fact, are probably more loyal to completing project
tasks and will negotiate with departmental managers in scheduling resources for project tasks. Project managers can also solicit the use of resources from outside the organization to complete project activities if internal resources are simply not available.

The second component that presents a challenge with special projects in an organization is defining all the costs associated with project activities and developing an overall budget for a special project. Typically, the error in costing projects is looking at project activities at a high level and trying to associate a more “generalized” cost to complete the entire activity, not taking into account all the specifics within each activity. Although this approach can be used in cost estimating a project, it is typically the reason that projects go over budget and that project activity costs are difficult to control. If project activity costs have been established based on the overall activity, as the activity plays out and specific tasks have resource, material, and equipment requirements that have not been accounted for, these requirements can add costs. Because these resources are needed, these costs present challenges in trying to control costs for the overall activity. Project managers typically have more time and techniques to break down activities to understand all the associated costs to derive a more accurate work activity cost and project budget.

Organizations that do not have project management capabilities will ultimately struggle with the implementation of projects in defining project costs, scheduling resources, and controlling project work activities. The key element, in addition to properly costing and scheduling a project, is in the control of costs and scheduling of activities and resources to ensure a project completes an objective at the estimated cost and within the allotted schedule.

What Is Control?

Projects can be developed and managed within an organization under the direction of the department manager for the sole purpose of completing a unique objective for that department. Projects also can be developed in an environment where several resources throughout the organization can be used to complete project activities. Either a department “functional” manager or a project manager can manage projects. These projects experience similar project life-cycle phases. One aspect of projects is consistent no matter what type of organizational structure or how big the project is: Projects have costs and schedules and need oversight and adjustments made to keep project activities within budget and on schedule. This is called project control.
Reporting Versus Managing

Overseeing project activities puts managers in a position of responsibility to ensure that project activities are completed. How managers view their responsibility plays a large role in whether the project is controlled or simply monitored. Managers will find themselves in one of two managerial roles with regards to projects: (1) monitoring and reporting activities; or (2) assigning, monitoring, and controlling activities. When managers simply report the status of project activities, this is not a control function. It is simply an observation of what is happening and reporting of status. Control in project management is defined as having a means of measurement and initiating adjustments in the course of an activity to address unwanted changes to cost, schedule, quality, or risk elements that have influenced the activity.

The Manager’s Role in Control

Project managers are educated and/or trained in the need to provide control within the activities of a project. This requires the project managers’ active participation in not only monitoring activities against a baseline of estimated cost and schedule, but also initiating adjustments that bring activities back in line with budget and schedule if problems arise. Either functional or project managers can achieve control over a project as long as they understand what control is designed to do for activities within a project. Control of the project is one of the most important roles project managers can have with oversight of project activities. One might say that anyone can observe project activities and report on status, but real management of a project has an element of control such that actively adjusting activities results in improvements to cost or schedule. Inasmuch as project managers utilize tools and techniques not only to monitor but also to control project activities, other forces and influences within the organization can present challenges to the success of a project. Project managers and/or functional managers must be aware of influences unique to the organization that can impose restrictions, constraints, and even conflicts for special projects operating within an organization.

Organizational Influences

Projects can play an important role in the success of an organization, but the development and management of these structures alone will not result in isolated entities within the organization. However, these roles are still subject to other internal and
external influences that can make or break the goal of completing objectives. Projects simply give the organization focus and the ability to control activities required to complete special objectives within the organization. Because the organization typically has established departments to complete certain activities for daily operations, some of these areas produce things for profit, called profit centers; other areas within the operation complete tasks to support the profit centers, such as administration, accounting, and human resources. Because special projects can utilize resources throughout the organization primarily from within the profit centers, projects are connected to other areas within the organization not associated with profit centers to facilitate completion of strategic objectives. Although these areas are needed, they can present either positive or negative influences on the success of completing projects; therefore, project managers should take them into consideration. Three primary areas within the organization can have a significant influence on how projects are structured, scheduled, budgeted, and controlled, and they have to do with the organization’s leadership, culture, and structure.

Organizational Leadership

There is a consistent rule within most organizations that everything starts from the top and rolls down. This rule also is true in the area of managing projects. Whether it is perception or actual fact, the impact this rule will have on an organization starts with the general maturity of the organization and senior staff as well as specific management styles of those overseeing projects. If the executive staff does not understand the importance and benefits of projects, they will not always be supportive of what managers are trying to accomplish and the approach they are taking in using projects to manage activities within the organization. This can come across in several forms, behaviors, attitudes, and actions such as

- Poor selection of key managers in critical roles
- Approval or nonapproval of certain projects and activities
- Unnecessary timelines or budget constraints creating undue stress on projects and activities
- Misunderstanding or ignorance of critical activity update information
- Personality conflicts with project managers
- Hidden agendas that drive inconsistent or confusing decisions

It is important that executive management understand their role in leading by example. They also must understand the impact their leadership can have on the
organization if it is not performed at the highest level of integrity, professionalism, and cooperation among themselves and with those reporting to them. It is also important that they understand their actions are seen not only by those reporting to them but by many in the organization; and their leadership can be a large part of the culture established within the organization.

Organizational Culture

When having discussions about the culture of organizations, people can go in several directions to assess, label, and/or stereotype organizations for a perceived culture. When we talk about culture, the general idea is not only the DNA makeup of how the organization structures itself, but also its management style and personality. It is interesting that an organization, in many ways, has a reputation or is known in the industry by its personality and how it conducts business. Some of this personality and management style are a direct result of those who started the organization or are currently senior officers within the organization, whereas other traits of organizational personality might be a result of how the organization conducts its business based on market demands and customer relations. Because these areas are typically seen as high level and generally broad-based perceptions or interpretations of business operations, the same DNA is found at the department and project levels.

It is important that project managers understand the DNA or personality of the organization in the form of a management style so that they can be consistent with the way the organization conducts business internally and externally. This helps project managers be consistent in their management style with the general culture of the organization and can make it easier to gain the approval of senior management. DNA is a complex strand of several elements, and the organization is similar because it is made up of several areas that ultimately define its personality and culture. Some of these areas include

- Type of business and market position
- Senior management experience, personality, and management style
- Hierarchical command structure
- Maturity in customer and supplier relationships
- High-level investment strategies and risk tolerance
- Senior management’s perception of lower-level workforces
- Organizational approach to customer service
- General working conditions and environment within the organization
Understanding what makes up the DNA and personality of an organization can help project managers not only understand their place in the organization, but also understand the importance of a successful management style that is in sync with the culture of the organization. This also allows for managers to be more consistent with other peer management styles. The project managers can also benefit in better understanding the mindset and possible perceptions of the workforce, which can help in the project managers’ management style and approach with their staff. One element of the organization’s DNA is in the type of organization and how it is structured functionally based on the type of business it conducts. The type of management structure used can play a large role in defining how the organization conducts business, its relationships with customers, and the general role project managers will ultimately have.

Organizational Structures

Organizational structure is the foundation of how business is conducted both internally and externally. It plays a large role in how daily operations are carried out and how projects are integrated within daily operations. Some organizations utilize projects at a very low level, accomplishing small tasks, whereas other organizations utilize projects, and their main course of business in the organization is structured with emphasis on these large projects. Depending on how organizations utilize projects within daily operations, organizations are structured using one of three basic structures. These structures are called functional, projectized, and matrix.

Functional organizations employ the classic structure used to establish managerial hierarchy with the organization divided into traditional functional departments. These departments can include accounting, human resources, purchasing, engineering, manufacturing, quality control, inventory, and warehousing, as well as shipping and receiving. The general idea with this structure is each department has a specific objective with a clear chain of command wherein each department has a manager overseeing the work activities of that department. The manager of each department reports to a higher-level manager who may be overseeing several departments, and the chain of command continues all the way up to the highest level of management in the structure. Although organizations have found this structure to be successful in the general operation of business, it has inherent strengths and weaknesses with regard to efficiency, accountability, and resource management, as well as the management of projects and the role of the project manager.
The main strength of functional organizations is each department performing its activities as a unit and requiring little or no direct involvement with other departments to achieve its objectives. Each department’s strength builds on the collective knowledge and experience of its members and processes it has developed to maximize the efficiency of work activities in completing its normal objectives. Likewise, projects developed within an individual department are most efficient using only its department members and overseen by the department manager.

The weakness of this structure is apparent when the organization selects a functional manager to oversee projects and that person may or may not have the experience of a project manager in structuring projects with regard to cost, schedule, resource management, and control. The project can suffer as a result. If a project manager is used in conjunction with this type of project, the project manager carries little or no authority and acts more like an activity expeditor.

Projectized organizations use a completely different type of business structure than that of functional organizations where staff members are grouped into workforces that may include representatives from several traditional departments and are tasked with a unique project objective. This organization only has project groups and very few, if any, functional departments. This type of structure also places a high level of importance on project objectives; therefore, projectized organizations hire project managers to structure and oversee projects. The project manager carries a much higher level of authority with oversight of all resources, budget, and scheduling, and responsibility for completion of the project objective.

Most projectized organizations were originally structured in this form as a result of their business strategic objectives. These objectives are based on groups of activities that result in unique output deliverables. Another big advantage of projectized organizations is the flexibility available in the business strategy. Because this structure emphasizes large projects as its main output, these organizations can respond quickly to changes in market demand, allowing them to be successful in both stable and unstable market environments.

Project management within a projectized organization requires management of activities utilizing different types of resources that can be permanently assigned to the project, borrowed from several departments within the organization, and possibly contracted from resources external to the organization. Unlike a specific project designed to accomplish a goal within a single department, projects are now the goal of the entire organization and may require only a few actual departments such as administration and engineering. Because the organization
is structured for projects, human resources are assigned tasks based on the requirements of their skill for specific activities on the project. After they complete their activities, they are reassigned to another project to provide their skills for activity requirements on that project. Human resources in this type of organization spend all their employment moving from project to project.

Matrix organizations are a blend of functional and projectized structures using the benefits of each in completing the organization’s objectives. Matrix organizations typically have a combination of routinely produced deliverables as well as unique and specialized projects. This allows for traditional departments led by functional managers to manage output deliverables of their individual departments; the organization also is able to use these same resources in special projects. The functional manager still holds authority over her department, but the project manager can hold an equal level of authority in overseeing resources from several departments in managing a project.

Matrix organizations have the advantage of structure and stability found in functional organizations through established departments. They also use key resources within these departments on projects that allow the organizations the flexibility to produce deliverables in response to changing market conditions. This capability gives senior management a unique opportunity to assess market conditions and in parallel create a stable and predictable product delivery environment and a quick response project environment that are both successful in the marketplace.

Solutions to Schedule and Cost Control

Projects ultimately are the utilization of organizational resources identified for specific tasks that have been organized in a sequence of work activities that will accomplish the project objective. Although most organizations have management staff who are very good at utilizing resources for specific tasks within the operation, the trick in *project management* is not only to specifically identify all required resources, correctly sequence work activities, and accurately estimate costs of all specific work activity requirements, but also to design and initiate schedule, cost, and quality controls. As functional managers can probably accomplish some of these project-related tasks, their responsibility is not in directing daily work activities of the department. As we have seen, if a project is unique to a particular department, functional managers can actually be the best people to carry out that specific project as the scope management will be isolated to their department. If projects require resources from
multiple departments or projects occupy a primary structure within the organization, project managers typically have the knowledge and experience to accurately develop and implement projects.

If project managers want to ensure that a project is developed properly, they must be knowledgeable of tools and techniques that will assist in correctly and accurately gathering and evaluating project information to develop a comprehensive project management plan. The success of projects is typically the result of having well-documented project work activity requirements, accurate scheduling of resources and work activities, and accurate cost estimation of all specific activity requirements to develop the project budget. One of the primary success factors in project management is the attention to detail in work activity requirements and scheduling.

The goal of successfully developing and controlling a project would be understanding how to get the most detail of work activities to accurately assess cost and resource requirements and what types of controls can be implemented to ensure work activities stay on schedule and within budget. In most cases, the more accurate the project manager and project staff are in estimating schedule duration and cost for work activities, the better chance the project will have staying on schedule and within budget. Because there typically is a margin of error in schedule and cost estimating and the reality of the impact of organizational processes and risk or uncertainty, the project manager also needs to utilize some control to adjust for these abnormalities in the project life cycle.

The success of the project ultimately depends on how well the project manager is armed with tools and techniques for project development. This book is a comprehensive compilation of common project management tools and techniques used in project development, specifically with regard to scheduling, cost estimating, and project control. These tools are simple and can be used easily in the development, implementation, and control of a project. It should be the goal of all those tasked with the development and oversight of a project to be armed with tools that will assist in projects being documented and controlled effectively and accurately to ensure project objectives are completed on schedule and on budget.
Index

Numbers
50/50 rule, 170

A
AC (actual cost), 230
accuracy of cost estimation data, 189
activity analysis, 80-88
 activity information checklist, 80-82
 activity organization, 83-84
 information gathering, 82-83
 in precedence diagramming method (PDM), 113-114
 in work breakdown structure (WBS), 85-88
activity contingency estimating, 145
activity decomposition decision tree, 71-72
activity definition, 79-80
 activity analysis, 80-88
 activity information checklist, 80-82
 activity organization, 83-84
 information gathering, 82-83
 in work breakdown structure (WBS), 85-88
responsibility assignment, 88-91
 direct/indirect involvement, 88-89
 matrices, 90-91
work authorization, 91-95
 defining, 93-95
 by organizational structure, 92-93
activity dependency matrix, 106, 166-167
activity disposition structure, 163
activity duration estimating, 139-140
 categories of, 151-152
 constraints, 146-151
 importance of, 152-153
 methods for, 141-146
milestones, 153-154
program management, 154-155
activity hierarchy structure, 164
activity information checklist, 80-82
activity level (organizing work activities), 84
activity sequencing, 97-98
 defining dependencies, 102-104
 information gathering, 98-101
 diagramming methods, 99-100
 terminology, 100-101
 type of information required, 99
precedence diagramming method (PDM), 104-116
 activity analysis, 113-114
 activity dependency relationships, 105-106
 activity-on-node (AON) diagramming technique, 106-107
 critical path determination, 110-113
 float/slack calculation, 114-116
 nodes in, 107-108
 path types, 108-110
activity-on-arrow (AOA) diagramming technique, 100
activity-on-node (AON) diagramming technique, 100, 106-107
actual cost (AC), 230
ADM (arrow diagramming method), 100
administrative costs, 190
alternatives analysis (resource estimating), 131
analogous budgeting, 207-208
analogous cost estimating, 193-194
analogous estimating (activity duration), 141
analysis
 activity analysis, 80-88
 activity information checklist, 80-82
 activity organization, 83-84
INDEX

information gathering, 82-83
in precedence diagramming method (PDM), 113-114
in work breakdown structure (WBS), 85-88
activity duration estimating
reserve analysis, 145
scenario analysis, 150-151
alternatives analysis (resource estimating), 131
change validation analysis, 131
cost estimation, reserve analysis, 197-198
earned value analysis (EVA), 229-232
fault tree analysis (FTA), 234
information analysis tools for monitoring projects, 223-232
make-or-buy analysis, 212
milestones, 224-225
project S-curve analysis, 223-224
root cause analysis, 233
schedule analysis, 171-180
resource leveling, 174-175
resource loading, 172-174
scenario analysis, 178
schedule reduction analysis, 175-178
schedule variance analysis, 179-180
trend analysis, 225-227
variance analysis (schedules), 179-180
AOA (activity-on-arrow) diagramming technique, 100
AON (activity-on-node) diagramming technique, 100, 106-107
arrow diagramming method (ADM), 100
artifacts, project charter as, 54-55
authority, 91-95
defining, 93-95
by organizational structure, 92-93
availability of resources
as constraint, 125
project selection process, 36

B

BAC (budget at completion), 202-203, 230
backward pass
defined, 100
in precedence diagramming method (PDM), 114
balancing
costs, 3
resources, 2-3
baselines, creating, 227

beta distribution method (three-point estimating), 143-144, 194-196
bottom-up budgeting, 206-207
bottom-up constraints, 147-148
bottom-up cost estimating, 196-197
bubble diagrams (project selection process), 48
budget at completion (BAC), 202-203, 230
budget contingency planning, 210
budget development, 201
constraints, 208-210
cost of quality, 210-212
methods for, 205-208
purpose of, 202-204
buffers in critical chain method (CCM), 169-171, 249-250
burst activities
defined, 100
in precedence diagramming method (PDM), 109

C
capability
in project selection models, 47
as resource constraint, 124-125
capital equipment resources, 120
CCM (critical chain method), 169-171, 249-250
change control process, 69-70, 242-247
activity duration estimating, 148
authorization for, 94
managing, 261
in schedule development, 162
change validation analysis, 238
charter for project, 52-55, 64
check charts, 222-223
closure phase, 23
collecting data. See information gathering
communication
in change control process, 245
of schedule, 181-182
communications management plan, 61
conceptual phase, 23
initiating process, 27-28
origination of project, 28-31
project charter, 52-55
selecting projects, 34-51
stakeholders, 31-34
constraints, 99
activity duration estimating, 146-151
budget development, 208-210
for cost estimation, 191-192
resource-constrained projects, 133
on resources, 122-125
three constraints (TOC), 167-169
time-constrained projects, 132
contingency control, 248
contingency estimating
activity duration estimating, 145
cost estimating, 197-198
contingency plans
authorization for, 94
budget development, 210
contract negotiation authorization for, 94
contracted resources, 121
contracts in cost control, 256-257
control
change control process, 242-247
contingency control, 248
cost control, 253-257
developed, 3
manager's role, 4
monitoring versus, 241-242
quality control, 257-260
reporting versus managing, 4
results, 260-263
schedule control, 249-253
control charts, 225-227
corrective action requirements, 237
cost aggregation budgeting, 206-207
cost control, organizational structure and, 13.
See also control
cost in project selection models, 47
cost management plan, 60

budget development, 201
constraints, 208-210
cost of quality, 210-212
methods for, 205-208
purpose of, 202-204
estimating costs, 185
constraints, 191-192
information gathering, 186-190
methods for, 192-198
cost of quality, 210-212
cost performance index (CPI), 230
cost variance (CV), 230, 238
costs
balancing, 3
monitoring. See monitoring projects
CPI (cost performance index), 230
CPM (critical path method), 99-100, 166
critical chain method (CCM), 169-171, 249-250
critical path
developed, 100
determining, 110-113
critical path method (CPM), 99-100, 166
culture of organization, influence on projects, 6-7
customer specifications
activity duration estimating, 148
cost estimation, 192
requirements collection, 64
in schedule development, 162
schedule development, 160
customer-based programs, 42-43
CV (cost variance), 230, 238

D
data collection. See information gathering
decimal breakdown methodology, 74-75
deliverables, 63
Delphi method (resource estimating), 130
dependencies
in activity sequencing, 102-104
determining relationships, 105-106
design reviews, 259-260
determinate estimating (resource estimation), 130-131
diagramming methods for activity sequencing, 99-100, 104-116
direct costs, 190
direct project resources, 121
discretionary dependencies, 104
documentation of schedule, 180-182
dropped baton, 169
duration estimating. See activity duration estimating

E
EAC (estimate at completion), 231
early finish date (EF), 100
early start date (ES), 100
earned value analysis (EVA), 229-232
earned value (EV), 230
ease of use in project selection models, 47
estimate at completion (EAC), 231
estimate to completion (ETC), 231, 238
estimating
activity duration, 139-140
categories of, 151-152
constraints, 146-151
importance of, 152-153
methods for, 141-146
milestones, 153-154
program management, 154-155
costs, 185
 constraints, 191-192
 information gathering, 186-190
 methods for, 192-198
resources, 117-119
 constraints, 122-125
 methods for, 128-136
 requirements, 126-128
 types of resources, 119-122
ETC (estimate to completion), 231, 238
EV (earned value), 230
EVA (earned value analysis), 229-232
evaluating human resources, 117-119
 constraints, 122-125
 methods for, 128-136
 requirements, 126-128
 types of resources, 119-122
events, 100
execution phase, 23
 controlling, 241-242
 change control process, 242-247
 contingency control, 248
 cost control, 253-257
 quality control, 257-260
 results, 260-263
 schedule control, 249-253
monitoring, 217-218
 information analysis tools, 223-232
 information gathering tools, 221-223
 integrated monitoring, 218-221
 results monitoring, 235-238
 sources of information, 221
 troubleshooting tools, 233-234
expectations of stakeholders, 33-34
expected costs, 203
external dependencies, 104
external factors in schedule development, 160
external projects, initiating process, 30-31
external requirements, 63
external resources, 121

F
facilities resources, 120
fast tracking, 177-178, 252-253
fault tree analysis (FTA), 234
50/50 rule, 170
financial models (project selection process), 49-51

financial resources. See also cost management plan
 defined, 120
 project selection process, 36-37
finish-to-finish (FF) relationship, 105
finish-to-start (FS) relationship, 105
fixed-price contracts, 256
fixed-price incentive fee contracts, 257
flexibility in project selection models, 47

float/slack
 calculating, 114-116
 defined, 100
forecasting
 adjustment requirements, 237-238
 updates, 261-262
forward pass
 defined, 101
 in precedence diagramming method (PDM), 113
FTA (fault tree analysis), 234
functional organizations
 defined, 7-8
 project selection process, 37-38
 work authorization, 92
funding limit reconciliation, 209

H
historical data
 budget development, 207-208
 requirements collection, 65
in-house technology (project selection process), 35
human resources
 defined, 119
 evaluating, 117-119
 constraints, 122-125
 methods for, 128-136
 requirements, 126-128
 types of resources, 119-122
 management plan, 61
 project selection process, 35
 responsibility assignment, 88-91
 direct/indirect involvement, 88-89
 matrices, 90-91
 work authorization, 91-95
 defining, 93-95
 by organizational structure, 92-93
I
identified risks, 99
implementation in change control process, 244-245
independent projects, selection process, 46
indirect costs, 190
indirect labor costs, 190
indirect materials cost, 190
indirect project resources, 121
information analysis tools for monitoring projects, 223-232
information gathering
for activity duration estimating, 151
for activity sequencing, 98-101
diagramming methods, 99-100
terminology, 100-101
type of information required, 99
for cost control, 254-255
for cost estimation, 186-190
accuracy and reliability, 189
cost requirements, 186-187
direct versus indirect costs, 189-190
sources, 187-189
for monitoring projects, 221-223
for schedule control, 249
for schedule development, 158-160
for work activities, 82-83
information technology resources, 120
initiating process, 27-28
origination of project, 28-31
project charter, 52-55
selecting projects, 34-51
independent projects, 46
models and methodologies, 47-51
organizational constraints, 34-38
in organizational strategy, 40-42
for portfolios and programs, 42-46
project management constraints, 38-40
stakeholders, 31-34
inspections
quality inspections, 258-259
regulatory inspections, 259
integrated change control, 246-247
integrated monitoring, 218-221
intended functionality (measure of quality), 257
internal projects, initiating process, 29-30
internal requirements, 63

L
labels. See nodes
late finish date (LF), 101
late start date (LS), 101
leadership, influence on projects, 5-6
life cycle of projects, 23-25. See also closure phase; conceptual phase; execution phase; planning phase

M
make-or-buy analysis, 212
managers
project selection process, 35-36
role in project control, 4
managing
change control process, 261
reporting versus, 4
mandatory dependencies, 104
materials and workmanship standards (measure of quality), 258
materials resources, 120
matrix organizations
defined, 9
project selection process, 37-38
work authorization, 93
measurement in change control process, 245-246
meetings, status, 221-222
merge activities
defined, 101
in precedence diagramming method (PDM), 109
methodologies (project selection process), 47-51
qualitative models, 48
quantitative models, 49-51
Microsoft Excel
for schedule documentation, 181
in work breakdown structure (WBS), 86
Microsoft Project
baseline creation, 227
for schedule documentation, 181
Tracking Gantt charts, 228
in work breakdown structure (WBS), 86-87
milestones
analysis, 224-225
reporting status, 204
in schedule development, 153-154
models (project selection process), 47-51
 qualitative models, 48
 quantitative models, 49-51
monitoring projects, 217-218
 controlling projects versus, 241-242
 information analysis tools, 223-232
 information gathering tools, 221-223
 integrated monitoring, 218-221
 results monitoring, 235-238
 sources of information, 221
 troubleshooting tools, 233-234
multiple critical paths, 112-113
multitasking, 170

N
net present value (NPV), calculating, 50-51
network diagrams. See also diagramming methods
 in activity duration estimating, 152
 defined, 101
 in schedule development, 165-167
new risk assessment, 236-237
nodes
 defined, 101
 in precedence diagramming method (PDM), 107-108
NPV (net present value), calculating, 50-51

O
organizational constraints
 cost estimation, 191
 project selection process, 34-38
 resource estimating, 123
 schedule development, 160
organizational division-based programs, 44-45
organizational influences on projects, 4-9
 culture, 6-7
 leadership, 5-6
 structure, 7-9
 cost control and, 13
 explained, 14
 profit centers versus support functions, 14-15
 project selection process, 37-38
 work authorization by, 92-93
organizational needs, projects/programs/portfolios and, 18
organizational process updates, 262-263
organizational resource management, 127-128
organizational strategy (project selection process), 40-42
organizing work activities, 83-84
origination of projects, 28-31
outsource contracting in cost of quality, 211-212
overhead expenses, 190

P
parallel activities
 defined, 101
 in precedence diagramming method (PDM), 109
parametric cost estimating, 194
parametric estimating (activity duration), 141-142
Parkinson's Law, 169
paths
 defined, 101
 in precedence diagramming method (PDM), 108-110
payback period (project selection process), 50
PDM (precedence diagramming method), 100, 104-116
 activity analysis, 113-114
 activity dependency relationships, 105-106
 activity-on-node (AON) diagramming technique, 106-107
 critical path determination, 110-113
 float/slack calculation, 114-116
 nodes in, 107-108
 path types, 108-110
 in schedule development, 166-167
performance reports, 235-236
PERT (program evaluation and review technique), 99-100
phases of projects, 23-25. See also closure phase; conceptual phase; execution phase; planning phase
planned value (PV), 229
planning phase, 23, 57-58
 cost management plan, 60. See also cost management plan
 project management plan, 58-62
 requirements collection, 63-66
 defining requirements, 63-64
 management plan, 66
 resources, 64-65
 schedule management plan, 60. See also schedule management plan
scope definition, 66-70
 change control process, 69-70
 project scope, 67
 project scope, 67
 project scope statement, 68
 responsibility for, 67-68
work breakdown structure (WBS), 70-75
portfolio management
defined, 18
importance of, 21-22
project selection process, 39-40
resource estimating, 128-129
responsibilities of, 21
portfolios
 organizational needs and, 18
 project selection process, 42-46
 projects and programs versus, 15-17
precedence diagramming method (PDM), 100, 104-116
 activity analysis, 113-114
 activity dependency relationships, 105-106
 activity-on-node (AON) diagramming technique, 106-107
 critical path determination, 110-113
 float/slack calculation, 114-116
 nodes in, 107-108
 path types, 108-110
 in schedule development, 166-167
predecessor constraints (activity duration estimating), 149-150
predecessor requirements, 74
predecessors
 creating relationships, 102-104
 defined, 101, 105
process, project charter as, 54-55
procurement management plan, 61
procurements
 in cost control, 255-256
 in cost of quality, 211
product scope, 67
product-based programs, 43-44
profit centers, support functions versus, 14-15
program evaluation and review technique (PERT), 99-100
program management
 activity duration estimating, 154-155
 defined, 18
 importance of, 21-22
 project selection process, 39-40
 resource estimating, 129
 responsibilities of, 19-21
programs
 organizational needs and, 18
 project selection process, 42-46
 projects and portfolios versus, 15-17
project budget baseline, 203
project charter, 52-55
 requirements collection, 64
 schedule development, 159
project constraints
 cost estimation, 191
 resource estimating, 123-124
project contingency estimating, 145
project deliverables, 101
project level (organizing work activities), 84
project management
 activity duration estimating, 154-155
 defined, 18
 importance of, 21-22, 57-58
 plans, 58-62
 defined, 58
 structure, 59-62
 updates, 262
 usage, 62
 project selection process, constraints in, 38-40
 resource estimating, 129
 responsibilities of, 18-19
project milestones
 analysis, 224-225
 reporting status, 204
 in schedule development, 153-154
project monitoring information systems, 218-221
project plans, 59
project resource requirements, 126-127
project scope, 67, 161. See also scope
project scope statement, 68, 159
project S-curve analysis, 223-224
projectized organizations
 defined, 8-9
 project selection process, 37-38
 work authorization, 92
projects
 control
 defined, 3
 manager's role, 4
 reporting versus managing, 4
 costs, balancing, 3
 defined, 1-2
 execution phase
 controlling, 241-242. See also control
 monitoring, 217-218. See also monitoring
 projects
initiating process, 27-28
 origination of project, 28-31
project charter, 52-55
selecting projects, 34-51
stakeholders, 31-34
life-cycle phases, 23-25
organizational influences, 4-9
culture, 6-7
leadership, 5-6
structure, 7-9
organizational needs and, 18
planning phase, 57-58
cost management plan, 60. See also cost management plan
project management plan, 58-62
requirements collection, 63-66
schedule management plan, 60. See also schedule management plan
scope definition, 66-70
work breakdown structure (WBS), 70-75
programs and portfolios versus, 15-17
requirements, 63
resources, balancing, 2-3
structuring, 13-14
proposals
 in change control process, 243-244
 requesting, 30-31
published data estimating (resource estimation), 131
PV (planned value), 229

Q
qualitative project selection, 41-42, 48
quality
 controlling, 257-260
cost of, 210-212
quality inspections, 258-259
quality management plan, 60
quantitative project selection, 42, 49-51
quotes, requesting, 31

R
RACI (responsibility, accountability, consultative, and informative) matrix, 90-91
RAM (responsibility assignment matrix), 90-91
realism in project selection models, 47
reduction in schedule duration, 175-178
regulatory inspections, 259
reliability of cost estimation data, 189
reporting
 managing versus, 4
 project control, 260-261
 project status, 204
 work performance, 235-236
request for proposal (RFP), 30-31
request for quote (RFQ), 31
requirements
 collecting, 63-66
 corrective action requirements, 237
cost estimation, 186-187
defined, 63-64
forecasting adjustment requirements, 237-238
management plan, 66
predecessor/successor, 74
resources
 determining, 126-128
 information gathering, 64-65
 resource requirements plan, 135-136
 in schedule development, 161
reserve analysis
 activity duration estimating, 145
cost estimation, 197-198
resource assessment, 90
resource requirements plan, 135-136
resource-constrained projects, 133
resources
 balancing, 2-3
 bottlenecks, 170
constraints, 124-125
estimating, 117-119
 constraints, 122-125
 methods for, 128-136
 requirements, 126-128
 types of resources, 119-122
leveling, 134, 174-175, 250-251
loading, 133-134, 172-174
outsourcing, 211-212
project selection process, 36
requirements, 64-65, 161
responsibilities
 assigning, 88-91
 direct/indirect involvement, 88-89
 responsibility assignment matrices, 90-91
authority for, 91-95
 defining, 93-95
 by organizational structure, 92-93
of portfolio management, 21
of program management, 19-21
of project management, 18-19

274 INDEX
responsibility, accountability, consultative, and informative (RACI) matrix, 90-91
responsibility assignment matrix (RAM), 90-91
results
- of controlling projects, 260-263
- of monitoring projects, 235-238
return on investment (ROI), calculating, 51
RFP (request for proposal), 30-31
RFQ (request for quote), 31
risk contingency, authorization for, 94
risk management plan, 61
risks
- identifying, 99
- new risk assessment, 236-237
ROI (return on investment), calculating, 51
ROME (rough order of magnitude estimating), 193
root cause analysis, 233
rough order of magnitude estimating (ROME), 193

S
scenario analysis
- activity duration estimating, 150-151
- schedule development, 178
schedule analysis, 171-180
- resource leveling, 174-175
- resource loading, 172-174
- scenario analysis, 178
- schedule reduction analysis, 175-178
- schedule variance analysis, 179-180
schedule crashing, 176-177, 252
schedule development, 157-158
- information gathering, 158-160
 - customer requirements, 162
 - project scope, 161
 - resource requirements, 161
- schedule analysis, 171-180
 - resource leveling, 174-175
 - resource loading, 172-174
 - scenario analysis, 178
 - schedule reduction analysis, 175-178
 - schedule variance analysis, 179-180
- schedule documentation, 180-182
- structuring schedules, 162-171
 - activity disposition structure, 163
 - activity hierarchy structure, 164
 - critical chain method (CCM), 169-171
 - network diagrams, 165-167
 - theory of constraints (TOC), 167-169
schedule management plan, 60
 - activity definition, 79-80
 - activity analysis, 80-88
 - responsibility assignment, 88-91
 - work authorization, 91-95
 - activity duration estimating, 139-140
 - categories of, 151-152
 - constraints, 146-151
 - importance of, 152-153
 - methods for, 141-146
 - milestones, 153-154
 - program management, 154-155
activity sequencing, 97-98
 - defining dependencies, 102-104
 - information gathering, 98-101
 - precedence diagramming method (PDM), 104-116
 - resource estimating, 117-119
 - constraints, 122-125
 - methods for, 128-136
 - requirements, 126-128
 - types of resources, 119-122
schedule development, 157-158
 - customer requirements, 162
 - information gathering, 158-160
 - project scope, 161
 - resource requirements, 161
schedule analysis, 171-180
 - product scope, 67
 - project scope, 67
 - responsibility for, 67-68
 - project scope statement, 68
 - in schedule development, 161
scope creep, 69, 148, 187
scope management plan, 60
scoring model (project selection process), 48
selecting projects, 34-51
 - independent projects, 46
 - models and methodologies, 47-51
organizational constraints, 34-38
in organizational strategy, 40-42
for portfolios and programs, 42-46
project management constraints, 38-40
self-protection, 169
sequencing activities, 97-98
 defining dependencies, 102-104
 information gathering, 98-101
 diagramming methods, 99-100
 terminology, 100-101
 type of information required, 99
precedence diagramming method (PDM), 104-116
 activity analysis, 113-114
 activity dependency relationships, 105-106
 activity-on-node (AON) diagramming technique, 106-107
 critical path determination, 110-113
 float/slack calculation, 114-116
 nodes in, 107-108
 path types, 108-110
serial activities
 defined, 101
 in precedence diagramming method (PDM), 108
SMEs (subject matter experts)
 activity duration estimating, 146
 cost estimation, 193
 monitoring projects, 222
 requirements collection, 65
software tools for schedule documentation, 181
SOW (statement of work), 64
spending, authorization for, 93
SPI (schedule performance index), 230
stakeholder management plan, 62, 65
stakeholder register, 65
stakeholders, 31-34
 expectations, 33-34
 managing, 31-33
 project charter, 52
 requirements, 63
start-to-finish (SF) relationship, 105
start-to-start (SS) relationship, 105
statement of work (SOW), 64
status meetings, 221-222
structure of organization
 cost control and, 13
 explained, 14
 influence on projects, 7-9
profit centers versus support functions, 14-15
project selection process, 37-38
work authorization by, 92-93
structuring
 project charters, 52-53
 project management plans, 59-62
 projects, 13-14
 schedules, 162-171
 activity disposition structure, 163
 activity hierarchy structure, 164
 critical chain method (CCM), 169-171
 network diagrams, 165-167
 theory of constraints (TOC), 167-169
student syndrome, 170
subject matter experts (SMEs)
 activity duration estimating, 146
 cost estimation, 193
 monitoring projects, 222
 requirements collection, 65
successor constraints (activity duration estimating), 149-150
successor requirements, 74
successors
 creating relationships, 102-104
 defined, 101, 105
support functions, profit centers versus, 14-15
SV (schedule variance), 230, 238

T

 task-on-arrow (TOA) diagramming technique, 100
 terminology for activity sequencing, 100-101
 theory of constraints (TOC), 167-169
three-point estimating
 activity duration estimating, 142-145
 cost estimating, 194-196
 time and materials contracts, 257
 time value of money (project selection process), 49-50
time-constrained projects, 132
time-phased budgeting, 207
TOA (task-on-arrow) diagramming technique, 100
TOC (theory of constraints), 167-169
top-down budgeting, 205-206
top-down constraints, 147-148
top-down cost estimating, 196-197
Tracking Gantt charts, 228
trend analysis, 225-227
triangular distribution method (three-point estimating), 143, 194-196

triple constraint
- activity duration estimating, 146-147
- budget development, 203-204
- controlling projects, 247
- in project constraints, 124
- quality costs, 210-212

troubleshooting tools for monitoring projects, 233-234

U
(updates
- forecasting, 261-262
- organizational process, 262-263
- project management plan, 262

V
(variance analysis (schedules), 179-180
(variance at completion (VAC), 231

W
(WBS (work breakdown structure), 70-75
- activity definition in, 85-88
- schedule development, 160

work activities
- activity definition, 79-80
 - activity analysis, 80-88
 - responsibility assignment, 88-91
 - work authorization, 91-95
- activity duration estimating, 139-140
 - categories of, 151-152
 - constraints, 146-151
 - importance of, 152-153
 - methods for, 141-146
 - milestones, 153-154
 - program management, 154-155
- activity sequencing, 97-98
 - defining dependencies, 102-104
 - information gathering, 98-101
 - precedence diagramming method (PDM), 104-116
 - in schedule development, 160
 - variance, 179-180

work authorization, 91-95
- defining, 93-95
- by organizational structure, 92-93

work breakdown structure (WBS), 70-75
- activity definition in, 85-88
- schedule development, 160
- work package activities, defined, 101
- work performance reports, 235-236