
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133570922
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133570922
https://plusone.google.com/share?url=http://www.informit.com/title/9780133570922
ttp://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133570922
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133570922/Free-Sample-Chapter

ANDROID™ FOR PROGRAMMERS
AN APP-DRIVEN APPROACH
SECOND EDITION, VOLUME 1
DEITEL® DEVELOPER SERIES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2014 Pearson Education, Inc.

Portions of the cover are modifications based on work created and shared by Google (http://code.google.com/
policies.html) and used according to terms described in the Creative Commons 3.0 Attribution License (http://
creativecommons.org/licenses/by/3.0/).

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission
to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13357092-2
ISBN-10: 0-13-357092-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2013

http://code.google.com/policies.html
http://code.google.com/policies.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

ANDROID™ FOR PROGRAMMERS
AN APP-DRIVEN APPROACH

SECOND EDITION, VOLUME 1
DEITEL® DEVELOPER SERIES

Paul Deitel • Harvey Deitel • Abbey Deitel
Deitel & Associates, Inc.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Trademarks
DEITEL, the double-thumbs-up bug and DIVE-INTO are registered trademarks of Deitel & Associates, Inc.

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Google, Android, Google Play, Google Maps, Google Wallet, Nexus, YouTube, AdSense and AdMob
are trademarks of Google, Inc.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

In Memory of Amar G. Bose, MIT Professor and
Founder and Chairman of the Bose Corporation:

It was a privilege being your student—and members
of the next generation of Deitels, who heard our dad
say how your classes inspired him to do his best work.

You taught us that if we go after the really hard prob-
lems, then great things can happen.
Harvey Deitel
Paul and Abbey Deitel

This page intentionally left blank

Preface xiv

Before You Begin xxiii

1 Introduction to Android 1
1.1 Introduction 2
1.2 Android—The World’s Leading Mobile Operating System 3
1.3 Android Features 3
1.4 Android Operating System 7

1.4.1 Android 2.2 (Froyo) 7
1.4.2 Android 2.3 (Gingerbread) 8
1.4.3 Android 3.0 through 3.2 (Honeycomb) 8
1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich) 8
1.4.5 Android 4.1–4.3 (Jelly Bean) 9
1.4.6 Android 4.4 (KitKat) 10

1.5 Downloading Apps from Google Play 11
1.6 Packages 12
1.7 Android Software Development Kit (SDK) 13
1.8 Object-Oriented Programming: A Quick Refresher 16

1.8.1 The Automobile as an Object 17
1.8.2 Methods and Classes 17
1.8.3 Instantiation 17
1.8.4 Reuse 17
1.8.5 Messages and Method Calls 17
1.8.6 Attributes and Instance Variables 18
1.8.7 Encapsulation 18
1.8.8 Inheritance 18
1.8.9 Object-Oriented Analysis and Design (OOAD) 18

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 19
1.9.1 Running the Doodlz App in the Nexus 4 Smartphone AVD 19
1.9.2 Running the Doodlz App in a Tablet AVD 28
1.9.3 Running the Doodlz App on an Android Device 30

1.10 Building Great Android Apps 30
1.11 Android Development Resources 32
1.12 Wrap-Up 34

Contents

viii Contents

2 Welcome App 35
Dive-Into® the Android Developer Tools: Introducing Visual GUI Design,
Layouts, Accessibility and Internationalization
2.1 Introduction 36
2.2 Technologies Overview 37

2.2.1 Android Developer Tools IDE 37
2.2.2 TextViews and ImageViews 37
2.2.3 App Resources 37
2.2.4 Accessibility 37
2.2.5 Internationalization 37

2.3 Creating an App 38
2.3.1 Launching the Android Developer Tools IDE 38
2.3.2 Creating a New Project 38
2.3.3 New Android Application Dialog 39
2.3.4 Configure Project Step 40
2.3.5 Configure Launcher Icon Step 40
2.3.6 Create Activity Step 42
2.3.7 Blank Activity Step 43

2.4 Android Developer Tools Window 44
2.4.1 Package Explorer Window 45
2.4.2 Editor Windows 45
2.4.3 Outline Window 45
2.4.4 App Resource Files 45
2.4.5 Graphical Layout Editor 46
2.4.6 The Default GUI 46

2.5 Building the App’s GUI with the Graphical Layout Editor 48
2.5.1 Adding Images to the Project 48
2.5.2 Changing the Id Property of the RelativeLayout and the TextView 49
2.5.3 Configuring the TextView 50
2.5.4 Adding ImageViews to Display the Images 54

2.6 Running the Welcome App 56
2.7 Making Your App Accessible 57
2.8 Internationalizing Your App 59
2.9 Wrap-Up 63

3 Tip Calculator App 64
Introducing GridLayout, LinearLayout, EditText, SeekBar, Event Handling,
NumberFormat and Defining App Functionality with Java
3.1 Introduction 65
3.2 Test-Driving the Tip Calculator App 66
3.3 Technologies Overview 67

3.3.1 Class Activity 67
3.3.2 Activity Lifecycle Methods 67
3.3.3 Arranging Views with LinearLayout and GridLayout 68

Contents ix

3.3.4 Creating and Customizing the GUI with the Graphical Layout
Editor and the Outline and Properties Windows 68

3.3.5 Formatting Numbers as Locale-Specific Currency and
Percentage Strings 69

3.3.6 Implementing Interface TextWatcher for Handling EditText
Text Changes 69

3.3.7 Implementing Interface OnSeekBarChangeListener for
Handling SeekBar Thumb Position Changes 69

3.3.8 AndroidManifest.xml 70

3.4 Building the App’s GUI 70
3.4.1 GridLayout Introduction 70
3.4.2 Creating the TipCalculator Project 72
3.4.3 Changing to a GridLayout 72
3.4.4 Adding the TextViews, EditText, SeekBar and LinearLayouts 73
3.4.5 Customizing the Views to Complete the Design 75

3.5 Adding Functionality to the App 79
3.6 AndroidManifest.xml 87
3.7 Wrap-Up 88

4 Twitter® Searches App 89
SharedPreferences, Collections, ImageButton, ListView, ListActivity,
ArrayAdapter, Implicit Intents and AlertDialogs
4.1 Introduction 90
4.2 Test-Driving the App 91

4.2.1 Importing the App and Running It 91
4.2.2 Adding a Favorite Search 92
4.2.3 Viewing Twitter Search Results 93
4.2.4 Editing a Search 94
4.2.5 Sharing a Search 96
4.2.6 Deleting a Search 96
4.2.7 Scrolling Through Saved Searches 97

4.3 Technologies Overview 97
4.3.1 ListView 97
4.3.2 ListActivity 98
4.3.3 Customizing a ListActivity’s Layout 98
4.3.4 ImageButton 98
4.3.5 SharedPreferences 98
4.3.6 Intents for Launching Other Activities 99
4.3.7 AlertDialog 99
4.3.8 AndroidManifest.xml 100

4.4 Building the App’s GUI 100
4.4.1 Creating the Project 100
4.4.2 activity_main.xml Overview 101
4.4.3 Adding the GridLayout and Components 102
4.4.4 Graphical Layout Editor Toolbar 107

x Contents

4.4.5 ListView Item’s Layout: list_item.xml 108
4.5 Building the MainActivity Class 109

4.5.1 package and import Statements 109
4.5.2 Extending ListActivity 111
4.5.3 Fields of Class MainActivity 111
4.5.4 Overriding Activity Method onCreate 112
4.5.5 Anonymous Inner Class That Implements the saveButton’s

OnClickListener to Save a New or Updated Search 114
4.5.6 addTaggedSearch Method 116
4.5.7 Anonymous Inner Class That Implements the ListView’s

OnItemClickListener to Display Search Results 117
4.5.8 Anonymous Inner Class That Implements the ListView’s

OnItemLongClickListener to Share, Edit or Delete a Search 119
4.5.9 shareSearch Method 121
4.5.10 deleteSearch Method 122

4.6 AndroidManifest.xml 124
4.7 Wrap-Up 124

5 Flag Quiz App 125
Fragments, Menus, Preferences, AssetManager, Tweened Animations, Handler,
Toasts, Explicit Intents, Layouts for Multiple Device Orientations
5.1 Introduction 126
5.2 Test-Driving the Flag Quiz App 128

5.2.1 Importing the App and Running It 128
5.2.2 Configuring the Quiz 128
5.2.3 Taking the Quiz 130

5.3 Technologies Overview 132
5.3.1 Menus 132
5.3.2 Fragments 132
5.3.3 Fragment Lifecycle Methods 133
5.3.4 Managing Fragments 133
5.3.5 Preferences 133
5.3.6 assets Folder 133
5.3.7 Resource Folders 134
5.3.8 Supporting Different Screen Sizes and Resolutions 134
5.3.9 Determining the Screen Size 135
5.3.10 Toasts for Displaying Messages 135
5.3.11 Using a Handler to Execute a Runnable in the Future 135
5.3.12 Applying an Animation to a View 135
5.3.13 Logging Exception Messages 136
5.3.14 Using an Explicit Intent to Launch Another Activity in the

Same App 136
5.3.15 Java Data Structures 136

5.4 Building the GUI and Resource Files 136
5.4.1 Creating the Project 136

Contents xi

5.4.2 strings.xml and Formatted String Resources 137
5.4.3 arrays.xml 138
5.4.4 colors.xml 139
5.4.5 dimens.xml 139
5.4.6 activity_settings.xml Layout 140
5.4.7 activity_main.xml Layout for Phone and Tablet Portrait

Orientation 140
5.4.8 fragment_quiz.xml Layout 140
5.4.9 activity_main.xml Layout for Tablet Landscape Orientation 143
5.4.10 preferences.xml for Specifying the App’s Settings 144
5.4.11 Creating the Flag Shake Animation 145

5.5 MainActivity Class 147
5.5.1 package Statement, import Statements and Fields 147
5.5.2 Overridden Activity Method onCreate 148
5.5.3 Overridden Activity Method onStart 150
5.5.4 Overridden Activity Method onCreateOptionsMenu 150
5.5.5 Overridden Activity Method onOptionsItemSelected 151
5.5.6 Anonymous Inner Class That Implements

OnSharedPreferenceChangeListener 152
5.6 QuizFragment Class 153

5.6.1 package Statement and import Statements 153
5.6.2 Fields 154
5.6.3 Overridden Fragment Method onCreateView 155
5.6.4 Method updateGuessRows 157
5.6.5 Method updateRegions 158
5.6.6 Method resetQuiz 158
5.6.7 Method loadNextFlag 160
5.6.8 Method getCountryName 162
5.6.9 Anonymous Inner Class That Implements OnClickListener 162
5.6.10 Method disableButtons 165

5.7 SettingsFragment Class 165
5.8 SettingsActivity Class 166
5.9 AndroidManifest.xml 166
5.10 Wrap-Up 167

6 Cannon Game App 168
Listening for Touches, Manual Frame-By-Frame Animation, Graphics, Sound,
Threading, SurfaceView and SurfaceHolder
6.1 Introduction 169
6.2 Test-Driving the Cannon Game App 171
6.3 Technologies Overview 171

6.3.1 Attaching a Custom View to a Layout 171
6.3.2 Using the Resource Folder raw 171

6.3.3 Activity and Fragment Lifecycle Methods 171
6.3.4 Overriding View Method onTouchEvent 172

xii Contents

6.3.5 Adding Sound with SoundPool and AudioManager 172
6.3.6 Frame-by-Frame Animation with Threads, SurfaceView and

SurfaceHolder 172
6.3.7 Simple Collision Detection 173
6.3.8 Drawing Graphics Using Paint and Canvas 173

6.4 Building the App’s GUI and Resource Files 173
6.4.1 Creating the Project 173
6.4.2 strings.xml 174
6.4.3 fragment_game.xml 174
6.4.4 activity_main.xml 175
6.4.5 Adding the Sounds to the App 175

6.5 Class Line Maintains a Line’s Endpoints 175
6.6 MainActivity Subclass of Activity 176
6.7 CannonGameFragment Subclass of Fragment 176
6.8 CannonView Subclass of View 178

6.8.1 package and import Statements 178
6.8.2 Instance Variables and Constants 179
6.8.3 Constructor 180
6.8.4 Overriding View Method onSizeChanged 182
6.8.5 Method newGame 183
6.8.6 Method updatePositions 184
6.8.7 Method fireCannonball 187
6.8.8 Method alignCannon 188
6.8.9 Method drawGameElements 189
6.8.10 Method showGameOverDialog 191
6.8.11 Methods stopGame and releaseResources 192
6.8.12 Implementing the SurfaceHolder.Callback Methods 193
6.8.13 Overriding View Method onTouchEvent 194
6.8.14 CannonThread: Using a Thread to Create a Game Loop 195

6.9 Wrap-Up 196

7 Doodlz App 198
Two-Dimensional Graphics, Canvas, Bitmap, Accelerometer, SensorManager,
Multitouch Events, MediaStore, Printing, Immersive Mode
7.1 Introduction 199
7.2 Technologies Overview 201

7.2.1 Using SensorManager to Listen for Accelerometer Events 201
7.2.2 Custom DialogFragments 201
7.2.3 Drawing with Canvas and Bitmap 202
7.2.4 Processing Multiple Touch Events and Storing Lines in Paths 202
7.2.5 Android 4.4 Immersive Mode 202
7.2.6 GestureDetector and SimpleOnGestureListener 202
7.2.7 Saving the Drawing to the Device’s Gallery 202
7.2.8 Android 4.4 Printing and the Android Support Library’s

PrintHelper Class 203

Contents xiii

7.3 Building the App’s GUI and Resource Files 203
7.3.1 Creating the Project 203
7.3.2 strings.xml 203
7.3.3 dimens.xml 204
7.3.4 Menu for the DoodleFragment 205
7.3.5 activity_main.xml Layout for MainActivity 206
7.3.6 fragment_doodle.xml Layout for DoodleFragment 206
7.3.7 fragment_color.xml Layout for ColorDialogFragment 207
7.3.8 fragment_line_width.xml Layout for LineWidthDialogFragment 209
7.3.9 Adding Class EraseImageDialogFragment 210

7.4 MainActivity Class 211
7.5 DoodleFragment Class 212
7.6 DoodleView Class 219
7.7 ColorDialogFragment Class 231
7.8 LineWidthDialogFragment Class 234
7.9 EraseImageDialogFragment Class 238
7.10 Wrap-Up 239

8 Address Book App 241
ListFragment, FragmentTransactions and the Fragment Back Stack,
Threading and AsyncTasks, CursorAdapter, SQLite and GUI Styles
8.1 Introduction 242
8.2 Test-Driving the Address Book App 245
8.3 Technologies Overview 245

8.3.1 Displaying Fragments with FragmentTransactions 246
8.3.2 Communicating Data Between a Fragment and a Host Activity 246
8.3.3 Method onSaveInstanceState 246
8.3.4 Defining Styles and Applying Them to GUI Components 246
8.3.5 Specifying a Background for a TextView 246
8.3.6 Extending Class ListFragment to Create a Fragment That

Contains a ListView 247
8.3.7 Manipulating a SQLite Database 247
8.3.8 Performing Database Operations Outside the GUI Thread

with AsyncTasks 247
8.4 Building the GUI and Resource Files 247

8.4.1 Creating the Project 247
8.4.2 Creating the App’s Classes 248
8.4.3 strings.xml 248
8.4.4 styles.xml 249
8.4.5 textview_border.xml 250
8.4.6 MainActivity’s Layout: activity_main.xml 251
8.4.7 DetailsFragment’s Layout: fragment_details.xml 251
8.4.8 AddEditFragment’s Layout: fragment_add_edit.xml 253
8.4.9 Defining the Fragments’ Menus 254

8.5 MainActivity Class 255

xiv Contents

8.6 ContactListFragment Class 261
8.7 AddEditFragment Class 268
8.8 DetailsFragment Class 274
8.9 DatabaseConnector Utility Class 282
8.10 Wrap-Up 287

9 Google Play and App Business Issues 289
9.1 Introduction 290
9.2 Preparing Your Apps for Publication 290

9.2.1 Testing Your App 291
9.2.2 End User License Agreement 291
9.2.3 Icons and Labels 291
9.2.4 Versioning Your App 292
9.2.5 Licensing to Control Access to Paid Apps 292
9.2.6 Obfuscating Your Code 292
9.2.7 Getting a Private Key for Digitally Signing Your App 293
9.2.8 Screenshots 293
9.2.9 Promotional App Video 294

9.3 Pricing Your App: Free or Fee 295
9.3.1 Paid Apps 296
9.3.2 Free Apps 296

9.4 Monetizing Apps with In-App Advertising 297
9.5 Monetizing Apps: Using In-App Billing to Sell Virtual Goods 298
9.6 Registering at Google Play 299
9.7 Setting Up a Google Wallet Merchant Account 300
9.8 Uploading Your Apps to Google Play 301
9.9 Launching the Play Store from Within Your App 302
9.10 Managing Your Apps in Google Play 303
9.11 Other Android App Marketplaces 303
9.12 Other Popular Mobile App Platforms 303
9.13 Marketing Your Apps 304
9.14 Wrap-Up 308

Index 310

Welcome to the dynamic world of Android smartphone and tablet app development with
the Android Software Development Kit (SDK), the Java™ programming language, the
Eclipse-based Android Development Tools IDE, and the new and rapidly evolving An-
droid Studio IDE.

Android for Programmers: An App-Driven Approach, 2/e, Volume 1 presents leading-
edge mobile computing technologies for professional software developers. At the heart of
the book is our app-driven approach—we present concepts in the context of seven complete
working Android apps rather than using code snippets. Chapters 2–8 each present one app.
We begin each of these chapters with an introduction to the app, an app test-drive
showing one or more sample executions and a technologies overview. Then we proceed
with a detailed code walkthrough of the app’s source code. All of the source code is avail-
able at www.deitel.com/books/AndroidFP2. We recommend that you have the source
code open in the IDE as you read the book.

Sales of Android devices and app downloads have been growing exponentially. The
first-generation Android phones were released in October 2008. A study by Strategy Ana-
lytics showed that by October 2013, Android had 81.3% of the global smartphone market
share, compared to 13.4% for Apple, 4.1% for Microsoft and 1% for Blackberry.1

According to an IDC report, by the end of the first quarter of 2013 Android had 56.5%
of the global tablet market share, compared to 39.6% for Apple’s iPad and 3.7% for
Microsoft Windows tablets.2

There are now over one billion Android smartphones and tablets in use,3 and more
than 1.5 million Android devices are being activated daily.4 According to IDC, Samsung
is the leading Android manufacturer, accounting for nearly 40% of Android device ship-
ments in the third quarter of 2013.

Billions of apps have been downloaded from Google Play™—Google’s marketplace
for Android apps. The opportunities for Android app developers are enormous.

Fierce competition among popular mobile platforms and carriers is leading to rapid
innovation and falling prices. Competition among the dozens of Android device manufac-
turers is driving hardware and software innovation within the Android community.

Copyright Notice and Code License
All of the Android code and Android apps in the book are copyrighted by Deitel & Associates,
Inc. The sample Android apps in the book are licensed under a Creative Commons Attribution

1. http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-
81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx.

2. http://www.idc.com/getdoc.jsp?containerId=prUS24093213.
3. http://www.android.com/kitkat.
4. http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-million.

Preface

http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx
http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx
http://www.idc.com/getdoc.jsp?containerId=prUS24093213
http://www.android.com/kitkat
http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-million
http://www.deitel.com/books/AndroidFP2

xvi Preface

3.0 Unported License (http://creativecommons.org/licenses/by/3.0), with the excep-
tion that they may not be reused in any way in educational tutorials and textbooks, whether in
print or digital format. Additionally, the authors and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or to the documentation contained in this
book. The authors and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these pro-
grams. You’re welcome to use the apps in the book as shells for your own apps, building on their
existing functionality. If you have any questions, contact us at deitel@deitel.com.

Intended Audience
We assume that you’re a Java programmer with object-oriented programming experience.
Because of the improved Android development tools, we were able to eliminate almost all
XML markup in this edition. There are still two small, easy-to-understand XML files you’ll
need to manipulate. We use only complete, working apps, so if you don’t know Java but have
object-oriented programming experience in languages like C#/.NET, Objective-C/Cocoa or
C++ (with class libraries), you should be able to master the material quickly, learning a good
amount of Java and Java-style object-oriented programming along the way.

This book is not a Java tutorial, but it presents a significant amount of Java in the con-
text of Android app development. If you’re interested in learning Java, check out our pub-
lications:

• Java for Programmers, 2/e (www.deitel.com/books/javafp2)

• Java Fundamentals: Parts I and II LiveLessons videos (www.deitel.com/books/
LiveLessons).

• Java How to Program, 10/e (www.deitel.com/books/jhtp10)

If you’re not familiar with XML, see these online tutorials:

• http://www.ibm.com/developerworks/xml/newto

• http://www.w3schools.com/xml/xml_whatis.asp

• http://www.deitel.com/articles/xml_tutorials/20060401/XMLBasics

• http://www.deitel.com/articles/xml_tutorials/20060401/

XMLStructuringData

Key Features
Here are some of this book’s key features:

App-Driven Approach. Chapters 2–8 each present one completely coded app—we discuss
what the app does, show screen shots of the app in action, test-drive it and overview the tech-
nologies and architecture we’ll use to build it. Then we build the app’s GUI and resource
files, present the complete code and do a detailed code walkthrough. We discuss the pro-
gramming concepts and demonstrate the functionality of the Android APIs used in the app.

Android SDK 4.3 and 4.4. We cover various new Android Software Development Kit
(SDK) 4.3 and 4.4 features.

Fragments. Starting with Chapter 5, we use Fragments to create and manage portions of
each app’s GUI. You can combine several fragments to create user interfaces that take ad-

http://creativecommons.org/licenses/by/3.0
http://www.deitel.com/books/javafp2
http://www.deitel.com/books/jhtp10
http://www.ibm.com/developerworks/xml/newto
http://www.w3schools.com/xml/xml_whatis.asp
http://www.deitel.com/articles/xml_tutorials/20060401/XMLBasics
http://www.deitel.com/articles/xml_tutorials/20060401/XMLStructuringData
http://www.deitel.com/articles/xml_tutorials/20060401/XMLStructuringData
http://www.deitel.com/books/LiveLessons
http://www.deitel.com/books/LiveLessons

 Features xvii

vantage of tablet screen sizes. You also can easily interchange fragments to make your GUIs
more dynamic, as you’ll do in Chapter 8.

Support for multiple screen sizes and resolutions. Throughout the app chapters we dem-
onstrate how to use Android’s mechanisms for automatically choosing resources (layouts,
images, etc.) based on a device’s size and orientation.

Eclipse-Based Android Development Tools (ADT) IDE coverage in the print book. The
free Android Development Tools (ADT) integrated development environment (IDE)—
which includes Eclipse and the ADT plugin—combined with the free Java Development
Kit (JDK) provide all the software you’ll need to create, run and debug Android apps, ex-
port them for distribution (e.g., upload them to Google Play™) and more.

Android Studio IDE. This is the preferred IDE for the future of Android app develop-
ment. Because it’s new and evolving rapidly, we put our discussions of it online at:

We’ll show how to import existing projects so you can test-drive our apps. We’ll also dem-
onstrate how to create new apps, build GUIs, modify resource files and test your apps. If
you have any questions, contact us at deitel@deitel.com.

Immersive Mode. The status bar at the top of the screen and the menu buttons at the bot-
tom can be hidden, allowing your apps to fill more of the screen. Users can access the status
bar by swiping down from the top of the screen, and the system bar (with the back button,
home button and recent apps button) by swiping up from the bottom.

Printing Framework. Android 4.4 KitKat allows you to add printing functionality to your
apps, such as locating available printers over Wi-Fi or the cloud, selecting the paper size and
specifying which pages to print.

Testing on Android Smartphones, Tablets and the Android Emulator. For the best app-de-
velopment experience, you should test your apps on actual Android smartphones and tab-
lets. You can still have a meaningful experience using just the Android emulator (see the
Before You Begin section), however it’s processor-intensive and can be slow, particularly
with games that have a lot of moving parts. In Chapter 1, we mention some Android fea-
tures that are not supported on the emulator.

Multimedia. The apps use a broad range of Android multimedia capabilities, including
graphics, images, frame-by-frame animation and audio.

Uploading Apps to Google Play. Chapter 9, Google Play and App Business Issues, walks
you through the registration process for Google Play and setting up a merchant account
so you can sell your apps. You’ll learn how to prepare apps for submission to Google Play,
find tips for pricing your apps, and resources for monetizing them with in-app advertising
and in-app sales of virtual goods. You’ll also find resources for marketing your apps.
Chapter 9 can be read after Chapter 1.

Features
Syntax Coloring. For readability, we syntax color the code, similar to Eclipse’s and An-
droid Studio’s use of syntax coloring. Our syntax-coloring conventions are as follows:

http://www.deitel.com/books/AndroidFP2

http://www.deitel.com/books/AndroidFP2

xviii Preface

Code Highlighting. We emphasize the key code segments in each program by enclosing
them in yellow rectangles.

Using Fonts for Emphasis. We use various font conventions:

• The defining occurrences of key terms appear in bold maroon for easy reference.

• On-screen IDE components appear in bold Helvetica (e.g., the File menu).

• Program source code appears in Lucida (e.g., int x = 5;).

In this book you’ll create GUIs using a combination of visual programming (point
and click, drag and drop) and writing code.

We use different fonts when we refer to GUI elements in program code versus GUI
elements displayed in the IDE:

• When we refer to a GUI component that we create in a program, we place its class
name and object name in a Lucida font—e.g., “Button saveContactButton.”

• When we refer to a GUI component that’s part of the IDE, we place the compo-
nent’s text in a bold Helvetica font and use a plain text font for the component’s
type—e.g., “the File menu” or “the Run button.”

Using the > Character. We use the > character to indicate selecting a menu item from a
menu. For example, we use the notation File > New to indicate that you should select the
New menu item from the File menu.

Source Code. All of the book’s source code is available for download from:

Documentation. All the Android and Java documentation you’ll need to develop Android
apps is available free at http://developer.android.com and http://www.oracle.com/
technetwork/java/javase/downloads/index.html. The documentation for Eclipse is
available at www.eclipse.org/documentation. The documentation for Android Studio is
available at http://developer.android.com/sdk/installing/studio.html.

Chapter Objectives. Each chapter begins with a list of learning objectives.

Figures. Hundreds of tables, source code listings and Android screen shots are included.

Software Engineering. We stress program clarity and performance, and concentrate on
building well-engineered, object-oriented software.

Index. We include an extensive index for reference. The page number of the defining oc-
currence of each key term in the book is highlighted in the index in bold maroon.

Working with Open-Source Apps
There are numerous free, open-source Android apps available online which are excellent
resources for learning Android app development. We encourage you to download open-

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
all other code appears in non-bold black

www.deitel.com/books/AndroidFP2
www.informit.com/title/0133570924

http://www.deitel.com/books/AndroidFP2
http://www.informit.com/title/0133570924
http://developer.android.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/installing/studio.html
http://www.eclipse.org/documentation

 Android for Programmers: An App-Driven Approach, Second Edition, Volume 2 xix

source apps and read their source code to understand how they work. Caution: The terms
of open-source licenses vary considerably. Some allow you to use the app’s source code
freely for any purpose, while others stipulate that the code is available for personal use
only—not for creating for-sale or publicly available apps. Be sure to read the licensing
agreements carefully. If you wish to create a commercial app based on an open-source
app, you should consider having an intellectual property attorney read the license; be
aware that these attorneys charge significant fees.

Android for Programmers: An App-Driven Approach, Second
Edition, Volume 2
Volume 2, which will be published in 2014, contains additional app-development chap-
ters that introduce property animation, Google Play game services, video, speech synthesis
and recognition, GPS, the Maps API, the compass, object serialization, web services, audio
recording and playback, Bluetooth®, HTML5 mobile apps and more. For the status of
Volume 2 and for continuing book updates, visit

Android Fundamentals, Second Edition LiveLessons Video Training
Products
Our Android Fundamentals, Second Edition LiveLessons videos show you what you need to
know to start building robust, powerful Android apps with the Android Software Develop-
ment Kit (SDK) 4.3 and 4.4, the Java™ programming language and the Eclipse™ and An-
droid Studio integrated development environments (IDEs). It will include approximately 20
hours of expert training synchronized with Android for Programmers, Second Edition (Vol-
umes 1 and 2). The videos for Volume 1 will be available spring 2014. For additional infor-
mation about Deitel LiveLessons video products, visit

or contact us at deitel@deitel.com. You can also access our LiveLessons videos if you
have a subscription to Safari Books Online (www.safaribooksonline.com).

Join the Deitel & Associates, Inc. Social Networking Communities
To receive updates on this and our other publications, new and updated apps, online
Resource Centers, instructor-led onsite training courses, partner offers and more, join the
Deitel social networking communities on Facebook® (http://www.deitel.com/
deitelfan), Twitter® (@deitel), LinkedIn® (http://bit.ly/DeitelLinkedIn)
Google+™ (http://google.com/+DeitelFan), and YouTube® (http://youtube.com/
user/DeitelTV) and subscribe to the Deitel® Buzz Online newsletter (http://www.deit-
el.com/newsletter/subscribe.html).

Contacting the Authors
We’d sincerely appreciate your comments, criticisms, corrections and suggestions for im-
provement. Please address all questions and other correspondence to:

http://www.deitel.com/books/AndroidFP2

www.deitel.com/livelessons

deitel@deitel.com

http://www.deitel.com/books/AndroidFP2
http://www.deitel.com/livelessons
http://www.safaribooksonline.com
http://www.deitel.com/deitelfan
http://www.deitel.com/deitelfan
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/newsletter/subscribe.html
http://google.com/+DeitelFan
http://bit.ly/DeitelLinkedIn
http://youtube.com/user/DeitelTV
http://youtube.com/user/DeitelTV

xx Preface

We’ll respond promptly, and post corrections and clarifications on:

and on Facebook, Twitter, Google+, LinkedIn and the Deitel® Buzz Online.

Visit www.deitel.com to:
• Download code examples

• Check out the growing list of programming Resource Centers

• Receive updates for this e-book, subscribe to the free Deitel® Buzz Online e-mail
newsletter at www.deitel.com/newsletter/subscribe.html

• Receive information on our Dive Into® Series instructor-led programming lan-
guage training courses offered at customer sites worldwide

Acknowledgments
Thanks to Barbara Deitel for long hours devoted to this project—she created all of our An-
droid Resource Centers, and patiently researched hundreds of technical details.

This book was a cooperative effort between professional and academic divisions of
Pearson. We appreciate the efforts and 18-year mentorship of our friend and professional
colleague Mark L. Taub, Editor-in-Chief of the Pearson Technology Group. Mark and his
team handle all of our professional books and LiveLessons video products. Kim Boe-
digheimer recruited distinguished members of the Android community and managed the
review team for the Android content. We selected the cover art and Chuti Prasertsith and
Sandra Schroeder designed the cover. John Fuller manages the production of all of our
Deitel Developer Series books.

We also appreciate the guidance, wisdom and energy of Tracy Johnson, Executive
Editor, Computer Science. Tracy and her team handle all of our academic textbooks.
Carole Snyder recruited the book’s academic reviewers and managed the review process.
Bob Engelhardt manages the production of our academic publications.

We’d like to thank Michael Morgano, a former colleague of ours at Deitel & Associ-
ates, Inc., now an Android developer at Imerj™, who co-authored the first editions of this
book and our book, iPhone for Programmers: An App-Driven Approach. Michael is an
extraordinarily talented software developer.

Reviewers of the Content from Android for Programmers: An App-Driven Approach
and Android How to Program Recent Editions
We wish to acknowledge the efforts of our first and second edition reviewers. They scru-
tinized the text and the code and provided countless suggestions for improving the presen-
tation: Paul Beusterien (Principal, Mobile Developer Solutions), Eric J. Bowden, COO
(Safe Driving Systems, LLC), Tony Cantrell (Georgia Northwestern Technical College),
Ian G. Clifton (Independent Contractor and Android App Developer, Daniel Galpin (An-
droid Advocate and author of Intro to Android Application Development), Jim Hathaway
(Application Developer, Kellogg Company), Douglas Jones (Senior Software Engineer,
Fullpower Technologies), Charles Lasky (Nagautuck Community College), Enrique Lo-
pez-Manas (Lead Android Architect, Sixt, and Computer Science Teacher at the Univer-

www.deitel.com/books/AndroidFP2

http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/books/AndroidFP2

 About the Authors xxi

sity of Alcalá in Madrid), Sebastian Nykopp (Chief Architect, Reaktor), Michael Pardo
(Android Developer, Mobiata), Ronan “Zero” Schwarz (CIO, OpenIntents), Arijit Sen-
gupta (Wright State University), Donald Smith (Columbia College), Jesus Ubaldo
Quevedo-Torrero (University of Wisconsin, Parkside), Dawn Wick (Southwestern Com-
munity College) and Frank Xu (Gannon University).

Well, there you have it! Android for Programmers: An App-Driven Approach, Second
Edition, Volume 1 will quickly get you developing Android apps. We hope you enjoy
reading the book as much as we enjoyed writing it!

Paul Deitel
Harvey Deitel
Abbey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. He holds the Java Certified Program-
mer and Java Certified Developer certifications, and is an Oracle Java Champion.
Through Deitel & Associates, Inc., he has delivered hundreds of programming courses
worldwide to clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity,
NASA at the Kennedy Space Center, the National Severe Storm Laboratory, White Sands
Missile Range, Rogue Wave Software, Boeing, SunGard Higher Education, Nortel Net-
works, Puma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M.
Deitel, are the world’s best-selling programming-language textbook/professional book/
video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has more than 50 years of experience in computing. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University. In the 1960s, through Advanced Computer Techniques and Computer Usage
Corporation, he worked on the teams building various IBM operating systems. In the
1970s, he built commercial software systems. He has extensive college teaching experience,
including earning tenure and serving as the Chairman of the Computer Science Depart-
ment at Boston College before founding Deitel & Associates, Inc., in 1991 with his son,
Paul Deitel. The Deitels’ publications have earned international recognition, with trans-
lations published in Simplified Chinese, Traditional Chinese, Korean, Japanese, German,
Russian, Spanish, French, Polish, Italian, Portuguese, Greek, Urdu and Turkish. Dr.
Deitel has delivered hundreds of programming courses to corporate, academic, govern-
ment and military clients.

Abbey Deitel, President of Deitel & Associates, Inc., is a graduate of Carnegie Mellon
University’s Tepper School of Management where she received a B.S. in Industrial Man-
agement. Abbey has been managing the business operations of Deitel & Associates, Inc.
for 16 years. She has contributed to numerous Deitel & Associates publications and,
together with Paul and Harvey, is the co-author of Android for Programmers: An App-
Driven Approach, 2/e, iPhone for Programmers: An App-Driven Approach, Internet & World
Wide Web How to Program, 5/e, Visual Basic 2012 How to Program, 6/e and Simply Visual
Basic 2010, 5/e.

xxii Preface

Deitel® Dive-Into® Series Corporate Training
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in Android and
iOS app development, computer programming languages, object technology and Internet
and web software technology. The company’s clients include many of the world’s largest
corporations, government agencies, branches of the military, and academic institutions.
The company offers instructor-led training courses delivered at client sites worldwide on
major programming languages and platforms, including Android app development, Ob-
jective-C and iOS app development, Java™, C++, Visual C++®, C, Visual C#®, Visual
Basic®, XML®, Python®, object technology, Internet and web programming and a grow-
ing list of additional programming and software development courses.

Through its 37-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming professional books, college text-
books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

www.deitel.com/training

www.informit.com/store/sales.aspx

http://www.deitel.com/training
http://www.deitel.com
http://www.informit.com/store/sales.aspx

In this section, you’ll set up your computer for use with this book. The Android develop-
ment tools are frequently updated. Before reading this section, check the book’s website

to see if we’ve posted an updated version.

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to show on-screen compo-
nents in a sans-serif bold Helvetica font (for example, Project menu) and to show file
names, Java code and commands in a sans-serif Lucida font (for example, the keyword
public or class Activity). When specifying commands to select in menus, we use the >
notation to indicate a menu item to select. For example, Window > Preferences indicates
that you should select the Preferences menu item from the Window menu.

Software and Hardware System Requirements
To develop Android apps you need a Windows®, Linux or Mac OS X system. To view the
latest operating-system requirements visit:

and scroll down to the SYSTEM REQUIREMENTS heading. We developed the apps in this
book using the following software:

• Java SE 7 Software Development Kit

• Android SDK/ADT Bundle based on the Eclipse IDE

• Android SDK versions 4.3 and 4.4

You’ll see how to obtain each of these in the next sections.

Installing the Java Development Kit (JDK)
Android requires the Java Development Kit (JDK) version 7 (JDK 7) or 6 (JDK 6). We used
JDK 7. To download the JDK for Windows, OS X or Linux, go to

You need only the JDK. Choose the 32-bit or 64-bit version based on your computer
hardware and operating system. Most recent computers have 64-bit hardware—check
your system’s specifications. If you have a 32-bit operating system, you must use the 32-
bit JDK. Be sure to follow the installation instructions at

http://www.deitel.com/books/AndroidFP2/

http://developer.android.com/sdk/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Before You Begin

http://www.deitel.com/books/AndroidFP2/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://developer.android.com/sdk/index.html

xxiv Before You Begin

Android Integrated Development Environment (IDE) Options
Google now provides two Android IDE options:

• Android SDK/ADT bundle—a version of the Eclipse IDE that comes preconfig-
ured with the latest Android Software Development Kit (SDK) and the latest An-
droid Development Tools (ADT) plugin. At the time of this writing, these were
Android SDK version 4.4 and ADT version 22.3.

• Android Studio—Google’s new Android IDE based on IntelliJ® IDEA and their
preferred future IDE.

The Android SDK/ADT bundle has been widely used in Android app development for
several years. Android Studio, introduced in May 2013, is an early access version and will
be evolving rapidly. For this reason, we’ll stay with the widely used Android SDK/ADT
bundle in the book, and as online supplements at

we’ll provide Android Studio versions of the Chapter 1 Test-Drive section and the Build-
ing the GUI section for each app, as appropriate.

Installing the Android SDK/ADT Bundle
To download the Android SDK/ADT bundle, go to

and click the Download the SDK ADT Bundle button. When the download completes, extract
the ZIP file’s contents to your system. The resulting folder has an eclipse subfolder con-
taining the Eclipse IDE and an sdk subfolder containing the Android SDK. As with the
JDK, you can choose a 32-bit or 64-bit version. The Android SDK/ADT bundle 32-bit ver-
sion should be used with the 32-bit JDK, and the 64-bit version with the 64-bit JDK.

Installing Android Studio
The IDE instructions in the printed book use the Android SDK/ADT bundle. You can
also optionally install and use Android Studio. To download Android Studio, go to

and click the Download Android Studio button. When the download completes, run the in-
staller and follow the on-screen instructions to complete the installation. [Note: For Android
4.4 development in Android Studio, Android now supports Java SE 7 language features, in-
cluding the diamond operator, multi-catch, Strings in switch and try-with-resources.]

Set the Java Compiler Compliance Level and Show Line Numbers
Android does not fully support Java SE 7. To ensure that the book’s examples compile cor-
rectly, configure Eclipse to produce files that are compatible with Java SE 6 by performing
the following steps:

1. Open Eclipse (or), which is located in the eclipse subfolder of the An-
droid SDK/ADT bundle’s installation folder.

2. When the Workspace Launcher window appears, click OK.

http://www.deitel.com/books/AndroidFP2

http://developer.android.com/sdk/index.html

http://developer.android.com/sdk/installing/studio.html

http://www.deitel.com/books/AndroidFP2
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing/studio.html

 Android 4.3 SDK xxv

3. Select Window > Preferences to display the Preferences window. On Mac OS X,
select ADT > Preferences….

4. Expand the Java node and select the Compiler node. Under JDK Compliance, set
the Compiler compliance level to 1.6 (to indicate that Eclipse should produce
compiled code that’s compatible with Java SE 6).

5. Expand the General > Editors node and select TextEditors, then ensure that Show
line numbers is selected and click OK.

6. Close Eclipse.

Android 4.3 SDK
This book’s examples were written using the Android 4.3 and 4.4 SDKs. At the time of
this writing, 4.4 was the version included with the Android SDK/ADT bundle and An-
droid Studio. You should also install Android 4.3 (and any other versions you might want
to support in your apps). To install other Android platform versions, perform the follow-
ing steps (skipping Steps 1 and 2 if Eclipse is already open):

1. Open Eclipse. Depending on your platform, the icon will appear as or .

2. When the Workspace Launcher window appears, click OK.

3. On Mac OS X, if you see a window indicating “Could not find SDK folder '/Users/
YourAccount/android-sdk-macosx/',” click Open Preferences then Browse… and
select the sdk folder located where you extracted the Android SDK/ADT bundle.

4. Select Window > Android SDK Manager to display the Android SDK Manager (Fig. 1).

5. The Android SDK Manager’s Name column shows all of the tools, platform versions
and extras (such as APIs for interacting with Google services, like Maps) that you

Fig. 1 | Android SDK Manager window.

xxvi Before You Begin

can install. Uncheck the Installed checkbox. Then, if any of Tools, Android 4.4
(API19), Android 4.3 (API18) and Extras appear in the Packages list, ensure that
they’re checked and click Install # packages… (# is the number of items to be in-
stalled) to display the Choose Packages to Install window. Most items in the Extras
node are optional. For this book, you’ll need the Android Support Library and
Google Play services. The Google USB Driver is necessary for Windows users who
wish to test apps on Android devices.]

6. In the Choose Packages to Install window, read the license agreements for each
item. When you’re done, click the Accept License radio button, then click the In-
stall button. The status of the installation process will be displayed in the Android
SDK Manager window.

Creating Android Virtual Devices (AVDs)
The Android emulator, included in the Android SDK, allows you to test apps on your com-
puter rather than on an actual Android device. This is useful if you’re learning Android and
don’t have access to Android devices, but can be very slow, so a real device is preferred if you
have one. There are some hardware acceleration features that can improve emulator perfor-
mance (developer.android.com/tools/devices/emulator.html#acceleration). Before
running an app in the emulator, you must create an Android Virtual Device (AVD) which
defines the characteristics of the device you want to test on, including the screen size in pixels,
the pixel density, the physical size of the screen, size of the SD card for data storage and more.
To test your apps for multiple Android devices, you can create AVDs that emulate each
unique device. For this book, we use AVDs for Google’s Android reference devices—the
Nexus 4 phone, the Nexus 7 small tablet and Nexus 10 large tablet—which run unmodified
versions of Android. To do so, perform the following steps:

1. Open Eclipse.

2. Select Window > Android Virtual Device Manager to display the Android Virtual De-
vice Manager window, then select the Device Definitions tab (Fig. 2).

Fig. 2 | Android Virtual Device Manager window.

 Creating Android Virtual Devices (AVDs) xxvii

3. Google provides preconfigured devices that you can use to create AVDs. Select
Nexus 4 by Google, then click Create AVD… to display the Create new Android Vir-
tual Device (AVD) window (Fig. 3), then configure the options as shown and click
OK to create the AVD. If you check Hardware keyboard present, you’ll be able to
use your computer’s keyboard to type data into apps that are running in the
AVD, but this may prevent the soft keyboard from displaying on the screen. If
your computer does not have a camera, you can select Emulated for the Front
Camera and Back Camera options. Each AVD you create has many other options
specified in its config.ini. You can modify this file as described at

to more precisely match the hardware configuration of your device.

4. We also configured Android 4.3 AVDs that represent Nexus 7 by Google and Nex-
us 10 by Google for testing our tablet apps. Their settings are shown in Fig. 4. In

 http://developer.android.com/tools/devices/managing-avds.html

Fig. 3 | Configuring a Nexus 4 smartphone AVD for Android 4.3.

http://developer.android.com/tools/devices/managing-avds.html

xxviii Before You Begin

addition, we configured Android 4.4 AVDs for the Nexus 4, Nexus 7 and Nexus
10 with the names: AVD_for_Nexus_4_KitKat, AVD_for_Nexus_7_KitKat, and
AVD_for_Nexus_10_KitKat,

(Optional) Setting Up an Android Device for Development
As we mentioned, testing apps on AVDs can be slow due to AVD performance. If you
have an Android device available to you, you should test the apps on that device. In addi-
tion, there are some features that you can test only on actual devices. To execute your apps
on Android devices, follow the instructions at

If you’re developing on Microsoft Windows, you’ll also need the Windows USB driver for
Android devices. In some cases on Windows, you may also need device-specific USB driv-
ers. For a list of USB driver sites for various device brands, visit:

Fig. 4 | Configuring Nexus 7 and Nexus 10 tablet AVDs.

http://developer.android.com/tools/device.html

http://developer.android.com/tools/extras/oem-usb.html

http://developer.android.com/tools/device.html
http://developer.android.com/tools/extras/oem-usb.html

 Obtaining the Book’s Code Examples xxix

Obtaining the Book’s Code Examples
The examples for Android for Programmers, 2/e, Volume 1 are available for download at

If you’re not already registered at our website, go to www.deitel.com and click the Register
link. Fill in your information. Registration is free, and we do not share your information
with anyone. Please verify that you entered your registration e-mail address correctly—
you’ll receive a confirmation e-mail with your verification code. You must click the verifi-
cation link in the e-mail before you can sign in at www.deitel.com for the first time. Config-
ure your e-mail client to allow e-mails from deitel.com to ensure that the verification e-
mail is not filtered as junk mail. We send only occasional account-management e-mails
unless you register separately for our free Deitel® Buzz Online e-mail newsletter at

Next, visit www.deitel.com and sign in using the Login link below our logo in the
upper-left corner of the page. Go to http://www.deitel.com/books/AndroidFP2/. Click
the Examples link to download a ZIP archive file containing the examples to your com-
puter. Double click the ZIP file to unzip the archive, and make note of where you extract
the file’s contents on your system.

A Note Regarding the Android Development Tools
Google frequently updates the Android development tools. This often leads to problems
compiling our apps when, in fact, the apps do not contain any errors. If you import one
of our apps into Eclipse or Android Studio and it does not compile, there is probably a
minor configuration issue. Please contact us by e-mail at deitel@deitel.com or by post-
ing a question to:

• Facebook®—facebook.com/DeitelFan

• Google+™—google.com/+DeitelFan

and we’ll help you resolve the issue.

You’ve now installed all the software and downloaded the code examples you’ll need
to study Android app development with Android for Programmers, 2/e, Volume 1 and to
begin developing your own apps. Enjoy!

http://www.deitel.com/books/AndroidFP2/

http://www.deitel.com/newsletter/subscribe.html

http://www.deitel.com/books/AndroidFP2/
http://www.deitel.com
http://www.deitel.com
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com
http://www.deitel.com/books/AndroidFP2/

This page intentionally left blank

3
Tip Calculator App

Introducing GridLayout, LinearLayout, EditText,
SeekBar, Event Handling, NumberFormat and Defining

App Functionality with Java

O b j e c t i v e s
In this chapter you’ll:

■ Design a GUI using LinearLayouts and a GridLayout.

■ Use the IDE’s Outline window to add GUI components to
LinearLayouts and a GridLayout.

■ Use TextView, EditText and SeekBar GUI
components.

■ Use Java object-oriented programming capabilities,
including classes, objects, interfaces, anonymous inner
classes and inheritance to add functionality to an Android
app.

■ Programmatically interact with GUI components to change
the text that they display.

■ Use event handling to respond to user interactions with an
EditText and a SeekBar.

■ Specify that the keypad should always be displayed when
an app is executing.

■ Specify that an app supports only portrait orientation.

3.1 Introduction 65
O

u
tl

in
e

3.1 Introduction
The Tip Calculator app (Fig. 3.1(a)) calculates and displays possible tips for a restaurant bill.
As you enter each digit of a bill amount by touching the numeric keypad, the app calculates
and displays the tip amount and total bill (bill amount + tip) for a 15% tip and a custom

3.1 Introduction
3.2 Test-Driving the Tip Calculator App
3.3 Technologies Overview

3.3.1 Class Activity
3.3.2 Activity Lifecycle Methods
3.3.3 Arranging Views with GridLayout

and LinearLayout
3.3.4 Creating and Customizing the GUI

with the Graphical Layout Editor and
the Outline and Properties Windows

3.3.5 Formatting Numbers as Locale-Specific
Currency and Percentage Strings

3.3.6 Implementing Interface
TextWatcher for Handling
EditText Text Changes

3.3.7 Implementing Interface OnSeekBar-
ChangeListener for Handling
SeekBar Thumb Position Changes

3.3.8 AndroidManifest.xml

3.4 Building the App’s GUI
3.4.1 GridLayout Introduction
3.4.2 Creating the TipCalculator Project
3.4.3 Changing to a GridLayout
3.4.4 Adding the TextViews, EditText,

SeekBar and LinearLayouts
3.4.5 Customizing the Views to Complete

the Design
3.5 Adding Functionality to the App
3.6 AndroidManifest.xml
3.7 Wrap-Up

Fig. 3.1 | Entering the bill total and calculating the tip.

Move the
SeekBar thumb
to change the
custom tip
percentage

a) Initial GUI
b) GUI after user enters the amount 34.56 and
changes the custom tip percentage to 20%

Use the keypad’s
numbers to enter
the bill amount as a
whole number of
pennies—the app
will divide what you
enter by 100.0 to
calculate the bill
amount

Use the delete
button to remove
digits from right to
left

The custom tip
percentage
selected with the
SeekBar is
displayed here

66 Chapter 3 Tip Calculator App

tip percentage (18% by default). You can specify a custom tip percentage from 0% to 30%
by moving the SeekBar thumb—this updates the custom percentage shown and displays the
custom tip and total (Fig. 3.1(b)). We chose 18% as the default custom percentage, because
many restaurants in the United States add this tip percentage for parties of six people or
more. The keypad in Fig. 3.1 may differ based on your AVD’s or device’s Android version,
or based on whether you’ve installed and selected a custom keyboard on your device.

You’ll begin by test-driving the app—you’ll use it to calculate 15% and custom tips.
Then we’ll overview the technologies you’ll use to create the app. You’ll build the app’s
GUI using the Android Developer Tools IDE’s Graphical Layout editor and the Outline
window. Finally, we’ll present the complete Java code for the app and do a detailed code
walkthrough. We provide online an Android Studio version of Sections 3.2 and 3.4 at
http://www.deitel.com/books/AndroidFP2.

3.2 Test-Driving the Tip Calculator App
Opening and Running the App
Open the Android Developer Tools IDE and import the Tip Calculator app project. Per-
form the following steps:

1. Launching the Nexus 4 AVD. For this test-drive, we’ll use the Nexus 4 smart-
phone AVD that you configured in the Before You Begin section. To launch the
Nexus 4 AVD, select Window > Android Virtual Device Manager to display the An-
droid Virtual Device Manager dialog. Select the Nexus 4 AVD and click Start…,
then click the Launch button in the Launch Options dialog that appears.

2. Opening the Import Dialog. Select File > Import… to open the Import dialog.

3. Importing the Tip Calculator app’s project. Expand the General node, select Existing
Projects into Workspace, then click Next > to proceed to the Import Projects step.
Ensure that Select root directory is selected, then click Browse…. In the Browse For
Folder dialog, locate the TipCalculator folder in the book’s examples folder, select
it and click OK. Ensure that Copy projects into workspace is not selected. Click Fin-
ish to import the project. It now appears in the Package Explorer window.

4. Launching the Tip Calculator app. Right click the TipCalculator project in the
Package Explorer window, then select Run As > Android Application to execute Tip
Calculator in the AVD.

Entering a Bill Total
Using the numeric keypad, enter 34.56. Just type 3456—the app will position the cents
to the right of the decimal point. If you make a mistake, press the delete () button to
erase one rightmost digit at a time. The TextViews under the 15% and the custom tip per-
centage (18% by default) labels show the tip amount and the total bill for these tip per-
centages. All the Tip and Total TextViews update each time you enter or delete a digit.

Selecting a Custom Tip Percentage
Use the Seekbar to specify a custom tip percentage. Drag the Seekbar’s thumb until the
custom percentage reads 20% (Fig. 3.1(b)). As you drag the thumb, the tip and total for
this custom tip percentage update continuously. By default, the Seekbar allows you to se-
lect values from 0 to 100, but we specified a maximum value of 30 for this app.

http://www.deitel.com/books/AndroidFP2

3.3 Technologies Overview 67

3.3 Technologies Overview
This section introduces the IDE features and Android technologies you’ll use to build the
Tip Calculator app. We assume that you’re already familiar with Java object-oriented pro-
gramming. You’ll:

• use various Android classes to create objects

• call methods on Android classes and objects

• define and call your own methods

• use inheritance to create a subclass of Android’s Activity class that defines the
Tip Calculator’s functionality

• use event handling, anonymous inner classes and interfaces to process the user’s
GUI interactions

3.3.1 Class Activity
Unlike many Java apps, Android apps don’t have a main method. Instead, they have four
types of executable components—activities, services, content providers and broadcast receivers.
In this chapter, we’ll discuss activities, which are defined as subclasses of Activity (package
android.app). Users interact with an Activity through views—that is, GUI components.
Before Android 3.0, a separate Activity was typically associated with each screen of an app.
As you’ll see, starting in Chapter 5, an Activity can manage multiple Fragments. On a
phone, each Fragment typically occupies the entire screen and the Activity switches be-
tween the Fragments based on user interactions. On a tablet, activities often display multi-
ple Fragments per screen to take better advantage of the larger screen size.

3.3.2 Activity Lifecycle Methods
Throughout its life, an Activity can be in one of several states—active (i.e., running), paused
or stopped. The Activity transitions between these states in response to various events:

• An active Activity is visible on the screen and “has the focus”—that is, it’s in the
foreground. This is the Activity the user is interacting with.

• A paused Activity is visible on the screen but does not have the focus—such as
when an alert dialog is displayed.

• A stopped activity is not visible on the screen and is likely to be killed by the system
when its memory is needed. An Activity is stopped when another Activity be-
comes active.

As an Activity transitions among these states, the Android runtime calls various
Activity lifecycle methods—all of which are defined in the Activity class

You’ll override the onCreate method in every activity. This method is called by the An-
droid runtime when an Activity is starting—that is, when its GUI is about to be dis-
played so that the user can interact with the Activity. Other lifecycle methods include
onStart, onPause, onRestart, onResume, onStop and onDestroy. We’ll discuss most of
these in later chapters. Each activity lifecycle method you override must call the superclass’s

http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/app/Activity.html

68 Chapter 3 Tip Calculator App

version; otherwise, an exception will occur. This is required because each lifecycle method
in superclass Activity contains code that must execute in addition to the code you define
in your overridden lifecycle methods.

3.3.3 Arranging Views with LinearLayout and GridLayout
Recall that layouts arrange views in a GUI. A LinearLayout (package android.widget)
arranges views either horizontally (the default) or vertically and can size its views propor-
tionally. We’ll use this to arrange two TextViews horizontally and ensure that each uses
half of the available horizontal space.

GridLayout (package android.widget) was introduced in Android 4.0 as a new layout
for arranging views into cells in a rectangular grid. Cells can occupy multiple rows and col-
umns, allowing for complex layouts. In many cases, GridLayout can be used to replace the
older, and sometimes less efficient TableLayout, which arranges views into rows and col-
umns where each row is typically defined as a TableRow and the number of columns is
defined by the TableRow containing the most cells. Normally, GridLayout requires API
level 14 or higher. However, the Android Support Library provides alternate versions of
GridLayout and many other GUI features so that you can use them in older Android ver-
sions. For more information on this library and how to use it in your apps, visit:

A GridLayout cannot specify within a given row that the horizontal space should be
allocated proportionally between multiple views. For this reason, several rows in this app’s
GUI will place two TextViews in a horizontal LinearLayout. This will enable you to place
two TextViews in the same GridLayout cell and divide the cell’s space evenly between
them. We’ll cover more layouts and views in later chapters—for a complete list, visit:

3.3.4 Creating and Customizing the GUI with the Graphical Layout Editor
and the Outline and Properties Windows
You’ll create TextViews, an EditText and a SeekBar using the IDE’s Graphical Layout ed-
itor (that you used in Chapter 2) and Outline window, then customize them with the
IDE’s Properties window—which is displayed at the bottom of the Outline window when
you’re editing a GUI in the Graphical Layout editor. You’ll do this without directly manip-
ulating the XML stored in the files of the project’s res folder.

An EditText—often called a text box or text field in other GUI technologies—is a sub-
class of TextView (presented in Chapter 2) that can display text and accept text input from
the user. You’ll specify an EditText for numeric input, allow users to enter only digits and
restrict the maximum number of digits that can be entered.

A SeekBar—often called a slider in other GUI technologies—represents an integer in
the range 0–100 by default and allows the user to select a number in that range by moving
the SeekBar’s thumb. You’ll customize the SeekBar so the user can choose a custom tip
percentage only from the more limited range 0 to 30.

In the Properties window, a view’s most commonly customized properties typically
appear at the top with their names displayed in bold (Fig. 3.2). All of a view’s properties

http://developer.android.com/tools/support-library/index.html

http://developer.android.com/reference/android/widget/
 package-summary.html

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/reference/android/widget/package-summary.html
http://developer.android.com/reference/android/widget/package-summary.html

3.3 Technologies Overview 69

are also organized into categories within the Properties window. For example, class Text-
View inherits many properties from class View, so the Properties window displays a Text-
View category with TextView-specific properties, followed by a View category with
properties that are inherited from class View.

3.3.5 Formatting Numbers as Locale-Specific Currency and Percentage
Strings
You’ll use class NumberFormat (package java.text) to create locale-specific currency and
percentage strings—an important part of internationalization. You could also add accessi-
bility strings and internationalize the app using the techniques you learned in
Sections 2.7–2.8, though we did not do so in this app.

3.3.6 Implementing Interface TextWatcher for Handling EditText
Text Changes
You’ll use an anonymous inner class to implement the TextWatcher interface (from package
android.text) to respond to events when the user changes the text in this app’s EditText. In
particular, you’ll use method onTextChanged to display the currency-formatted bill amount
and to calculate the tip and total as the user enters each digit.

3.3.7 Implementing Interface OnSeekBarChangeListener for
Handling SeekBar Thumb Position Changes
You’ll implement the SeekBar.OnSeekBarChangeListener interface (from package an-
droid.widget) to respond to the user moving the SeekBar’s thumb. In particular, you’ll

Fig. 3.2 | Properties window showing a TextView’s most commonly customized properties.

Most commonly
customized
TextView

properties You can click to
expand a category or

 to collapse an
expanded category

70 Chapter 3 Tip Calculator App

use method onProgressChanged to display the custom tip percentage and to calculate the
custom tip and total as the user moves the SeekBar’s thumb.

3.3.8 AndroidManifest.xml
The AndroidManifest.xml file is created by the IDE when you create a new app project.
This file contains many of the settings that you specify in the New Android Application di-
alog, such as the app’s name, package name, target and minimum SDKs, Activity
name(s), theme and more. You’ll use the IDE’s Android Manifest editor to add a new set-
ting to the manifest that forces the soft keyboard to remain on the screen. You’ll also specify
that the app supports only portrait orientation—that is, the device’s longer side is vertical.

3.4 Building the App’s GUI
In this section, we’ll show the precise steps for building the Tip Calculator’s GUI. The GUI
will not look like the one shown in Fig. 3.1 until you’ve completed the steps. As you pro-
cede through this section, the number of details presented may seem large, but they’re re-
petitive and you’ll get used to them as you use the IDE.

3.4.1 GridLayout Introduction
This app uses a GridLayout (Fig. 3.3) to arrange views into five rows and two columns.
Each cell in a GridLayout can be empty or can hold one or more views, including layouts
that contain other views. Views can span multiple rows or columns, though we did not use
that capability in this GUI. You can specify a GridLayout’s number of rows and columns
in the Properties window.

Each row’s height is determined by the tallest view in that row. Similarly, the width of
a column is defined by the widest view in that column. By default, views are added to a
row from left to right. As you’ll see, you can specify the exact row and column in which a
view is to be placed. We’ll discuss other GridLayout features as we present the GUI-
building steps. To learn more about class GridLayout, visit:

Fig. 3.3 | Tip Calculator GUI’s GridLayout labeled by its rows and columns.

http://developer.android.com/reference/android/widget/GridLayout.html

column 0 column 1

row 0

row 1

row 2

row 3

row 4

In each of these three
rows, the second column
(i.e., column 1) contains
a horizontal
LinearLayout with
two TextViews

http://developer.android.com/reference/android/widget/GridLayout.html

3.4 Building the App’s GUI 71

Id Property Values for This App’s Views
Figure 3.4 shows the views’ Id property values. For clarity, our naming convention is to
use the view’s class name in the view’s Id property and Java variable name.

In the right column of the first row, there are actually two components in the same
grid cell—the amountDisplayTextView is hiding the amountEditText that receives the
user input. As you’ll soon see, we restrict the user’s input to integer digits so that the user
cannot enter invalid input. However, we want the user to see the bill amount as a currency
value. As the user enters each digit, we divide the amount by 100.0 and display the cur-
rency-formatted result in the amountDisplayTextView. In the U.S. locale, if the user enters
3456, as each digit is entered the amountDisplayTextView will show the values $0.03,
$0.34, $3.45 and $34.56, respectively.

LinearLayout Id Property Values
Figure 3.5 shows the Ids of the three horizontal LinearLayouts in the GridLayout’s right
column.

Fig. 3.4 | Tip Calculator GUI’s components labeled with their Id property values.

Fig. 3.5 | Tip Calculator GUI’s LinearLayouts with their Id property values.

amountTextView
customPercentTextView

percent15TextView

tipTextView

totalTextView

customTipSeekBar

amountDisplayTextView (behind this is the amountEditText)

percentCustomTextView

tip15TextView

tipCustomTextView

total15TextView

totalCustomTextView

percentLinearLayout

tipLinearLayout

totalLinearLayout

72 Chapter 3 Tip Calculator App

3.4.2 Creating the TipCalculator Project
The Android Developer Tools IDE allows only one project with a given name per work-
space, so before you create the new project, delete the TipCalculator project that you test-
drove in Section 3.2. To do so, right click it and select Delete. In the dialog that appears,
ensure that Delete project contents on disk is not selected, then click OK. This removes the
project from the workspace, but leaves the project’s folder and files on disk in case you’d
like to look at our original app again later.

Creating a New Blank App Project
Next, create a new Android Application Project. Specify the following values in the New An-
droid Project dialog’s first New Android Application step, then press Next >:

• Application Name: Tip Calculator

• Project Name: TipCalculator

• Package Name: com.deitel.tipcalculator

• Minimum Required SDK: API18: Android 4.3

• Target SDK: API19: Android 4.4

• Compile With: API19: Android 4.4

• Theme: Holo Light with Dark Action Bar

• Create Activity: TipCalculator

• Build Target: Ensure that Android 4.3 is checked

In the New Android Project dialog’s second New Android Application step, leave the default
settings, then press Next >. In the Configure Launcher Icon step, click the Browse… button,
select the DeitelGreen.png app icon image (provided in the images folder with the book’s
examples) and click the Open button, then press Next >. In the Create Activity step, select
Blank Activity (keep the default activity name), then press Next >. In the Blank Activity step,
leave the default settings, then press Finish to create the project. In the Graphical Layout
editor, select Nexus 4 from the screen-type drop-down list (as in Fig. 2.12). Once again,
we’ll use this device as the basis for our design.

3.4.3 Changing to a GridLayout
The default layout in a Blank App’s GUI is a RelativeLayout. Here, you’ll change that to
a GridLayout. First, right click the TextView in the Outline window, then select Delete to
remove it from the GUI. Next, right click the RelativeLayout in the Outline window and
select Change Layout…. In the Change Layout dialog, select GridLayout and click OK. The
IDE changes the layout and sets its Id to GridLayout1. We changed this to gridLayout
using the Id field in the Properties window. By default, the GridLayout’s Orientation prop-
erty is set to horizontal, indicating that its contents will be laid out row-by-row.

Specifying Two Columns and Default Margins for the GridLayout
Recall that the GUI in Fig. 3.3 consists of two columns. To specify this, select gridLayout
in the Outline window, then change its Column Count property to 2 (in the Properties win-
dow’s GridLayout group). By default, there are no margins—spaces that separate views—

3.4 Building the App’s GUI 73

around a GridLayout’s cells. Set the GridLayout’s Use Default Margins property to true to
indicate that the GridLayout should place margins around its cells. By default, the Grid-
Layout uses the recommended gap between views (8dp), as specified at

3.4.4 Adding the TextViews, EditText, SeekBar and LinearLayouts
You’ll now build the GUI in Fig. 3.3. You’ll start with the basic layout and views in this
section. In Section 3.4.5, you’ll customize the views’ properties to complete the design. As
you add each view to the GUI, immediately set its Id property using the names in
Figs. 3.4–3.5. You can change the selected view’s Id via the Properties window or by right
clicking the view (in the Graphical Layout editor or Outline window), selecting Edit ID… and
changing the Id in the Rename Resource dialog that appears.

In the following steps, you’ll use the Outline window to add views to the GridLayout.
When working with layouts, it can be difficult to see the layout’s nested structure and to
place views in the correct locations by dragging them onto the Graphical Layout editor
window. The Outline window makes these tasks easier because it shows the GUI’s nested
structure. Perform the following steps in the exact order specified—otherwise, the views
will not appear in the correct order in each row. If this happens, you can reorder views by
dragging them in the Outline window.

Step 1: Adding Views to the First Row
The first row consists of the amountTextView in the first column and the amountEditText
behind the amountDisplayTextView in the second column. Each time you drop a view or
layout onto the gridLayout in the Outline window, the view is placed in the layout’s next
open cell, unless you specify otherwise by setting the view’s Row and Column properties.
You’ll do that in this step so that the amountEditText and amountDisplayTextView are
placed in the same cell.

All of the TextViews in this app use the medium-sized font from the app’s theme. The
Graphical Layout editor’s Palette provides preconfigured TextViews named Large, Medium
and Small (in the Form Widgets section) to represent the theme’s corresponding text sizes.
In each case, the IDE configures the TextView’s Text Appearance property accordingly.
Perform the following tasks to add the two TextViews and the EditText:

1. Drag a Medium TextView from the Palette’s Form Widgets section and drop it on
the gridLayout in the Outline window. The IDE creates a new TextView named
textView1 and nests it in the gridLayout node. The default text "Medium Text"
appears in the Graphical Layout editor. Change the TextView’s Id to amountText-
View. You’ll change its text in Step 6 (Section 3.4.5).

2. This app allows you to enter only non-negative integers, which the app divides by
100.0 to display the bill amount. The Palette’s Text Fields section provides many
preconfigured EditTexts for various forms of input (e.g., numbers, times, dates,
addresses and phone numbers). When the user interacts with an EditText, an ap-
propriate keyboard is displayed based on the EditText’s input type. When you
hover over an EditText in the Palette, a tooltip indicates the input type. From the
Palette’s Text Fields section, drag a Number EditText (displayed with the number
42 on it) and drop it on the gridLayout node in the Outline window. Change the

http://developer.android.com/design/style/metrics-grids.html

http://developer.android.com/design/style/metrics-grids.html

74 Chapter 3 Tip Calculator App

EditText’s Id to amountEditText. The EditText is placed in the second column
of the GridLayout’s first row.

3. Drag another Medium TextView onto the gridLayout node in the Outline win-
dow and change the Id to amountDisplayTextView. The new TextView is initially
placed in the first column of the GridLayout’s second row. To place it in the second
column of the GridLayout’s first row, set this TextView’s Row and Column prop-
erties (located in the Properties window’s Layout Parameters section) to the values
0 and 1, respectively.

Step 2: Adding Views to the Second Row
Next, you’ll add a TextView and SeekBar to the GridLayout. To do so:

1. Drag a Medium TextView (customPercentTextView) from the Palette’s Form
Widgets section onto the gridLayout node in the Outline window.

2. Drag a SeekBar (customTipSeekBar) from the Palette’s Form Widgets section
onto the gridLayout node in the Outline window.

Step 3: Adding Views to the Third Row
Next, you’ll add a LinearLayout containing two TextViews to the GridLayout. To do so:

1. From the Palette’s Layouts section, drag a Linear Layout (Horizontal) (percent-
LinearLayout) onto the gridLayout node in the Outline window.

2. Drag a Medium TextView (percent15TextView) onto the percentLinearLayout
node in the Outline window. This nests the new TextView in the LinearLayout.

3. Drag another Medium TextView (percentCustomTextView) onto the percent-
LinearLayout node in the Outline window.

4. The percentLinearLayout and its two nested TextViews should be placed in the
second column of the GridLayout. To do so, select the percentLinearLayout in
the Outline window, then set its Column property to 1.

Step 4: Adding Views to the Fourth Row
Next, you’ll add a TextView and a LinearLayout containing two more TextViews to the
GridLayout. To do so:

1. Drag a Medium TextView (tipTextView) onto the gridLayout node.

2. Drag a Linear Layout (Horizontal) (tipLinearLayout) onto the gridLayout node.

3. Drag two Medium TextViews (tip15TextView and tipCustomTextView) onto the
tipLinearLayout node.

Step 5: Adding Views to the Fifth Row
To create the last row of the GUI, repeat Step 4, using the Ids totalTextView, total-
LinearLayout, total15TextView and totalCustomTextView.

Reviewing the Layout So Far
The GUI and Outline window should now appear as shown in Fig. 3.6. The warning sym-
bols shown in the Graphical Layout editor and the Outline window will go away as you
complete the GUI design in Section 3.4.5.

3.4 Building the App’s GUI 75

3.4.5 Customizing the Views to Complete the Design
You’ll now complete the app’s design by customizing the views’ properties and creating
several string and dimension resources. As you learned in Section 2.5, literal string values
should be placed in the strings.xml resource file. Similarly, literal numeric values that
specify view dimensions (e.g., widths, heights and spacing) should be placed in the di-
mens.xml resource file.

Step 6: Specifying Literal Text
Specify the literal text for the amountTextView, customPercentTextView, percent-
15TextView, percentCustomTextView, tipTextView and totalTextView:

1. Select the amountTextView in the Outline window.

2. In the Properties window, click the ellipsis button next to the Text property.

3. In the Resource Chooser Dialog, click New String….

4. In the Create New Android String dialog, specify Amount in the String field and
amount in the New R.string field, then click OK.

5. In the Resource Chooser dialog, click OK to set the amountTextView’s Text prop-
erty to the string resource identified as amount.

Repeat the preceding tasks for the other TextViews using the values shown in Fig. 3.7.

Fig. 3.6 | The GUI and the IDE’s Outline window after adding all the views to the GridLayout.

View String New R.string

customPercentTextView Custom % custom_tip_percentage

percent15TextView 15% fifteen_percent

Fig. 3.7 | String resource values and resource IDs. (Part 1 of 2.)

a) GUI design so far b) Outline window showing Tip Calculator components

76 Chapter 3 Tip Calculator App

Step 7: Right Aligning the TextViews in the Left Column
In Fig. 3.3, each of the left column’s TextViews is right aligned. For the amountTextView,
customPercentTextView, tipTextView and totalTextView, set the layout Gravity prop-
erty to right—located in the Layout Parameters section in the Properties window.

Step 8: Configuring the amountTextView’s Label For Property
Generally, each EditText should have a descriptive TextView that helps the user under-
stand the EditText’s purpose (also helpful for accessibility)—otherwise, Android Lint is-
sues a warning. To fix this, you set the TextView’s Label For property to the Id of the
associated EditText. Select the amountTextView and set its Label For property (in the
Properties window’s View section) to

The + is required because the TextView is defined before the EditText in the GUI, so the
EditText does not yet exist when Android converts the layout’s XML into the GUI.

Step 9: Configuring the amountEditText
In the final app, the amountEditText is hidden behind the amountDisplayTextView and
is configured to allow only digits to be entered by the user. Select the amountEditText and
set the following properties:

1. In the Properties window’s Layout Parameters section, set the Width and Height
to wrap_content. This indicates that the EditText should be just large enough
to fit its content, including any padding.

2. Remove the layout Gravity value fill_horizontal, leaving the property’s value
blank. We’ll discuss fill_horizontal in the next step.

3. Remove the Ems property’s value, which indicates the EditText’s width, mea-
sured in uppercase M characters of the view’s font. In our GridLayout, this causes
the second column to be too narrow, so we removed this default setting.

4. In the Properties window’s TextView section, set Digits to 0123456789—this al-
lows only digits to be entered, even though the numeric keypad contains minus
(-), comma (,), period (.) and space buttons. By default, the Digits property is
not displayed in the Properties window, because it’s considered to be an advanced
property. To display it, click the Show Advanced Properties () toggle button
at the top of the Properties window.

5. We restricted the bill amount to a maximum of six digits—so the largest support-
ed bill amount is 9999.99. In the Properties window’s TextView section, set the
Max Length property to 6.

percentCustomTextView 18% eighteen_percent

tipTextView Tip tip

totalTextView Total total

@+id/amountEditText

View String New R.string

Fig. 3.7 | String resource values and resource IDs. (Part 2 of 2.)

3.4 Building the App’s GUI 77

Step 10: Configuring the amountDisplayTextView
To complete the formatting of the amountDisplayTextView, select it and set the following
properties:

1. In the Properties window’s Layout Parameters section, set the Width and Height
to wrap_content to indicate that the TextView should be large enough to fit its
content.

2. Remove the Text property’s value—we’ll programmatically display text here.

3. In the Properties window’s Layout Parameters section, set the layout Gravity to
fill_horizontal. This indicates that the TextView should occupy all remaining
horizontal space in this GridLayout row.

4. In the View section, set the Background to @android:color/holo_blue_bright.
This is one of several predefined colors (each starts with @android:color) in An-
droid’s Holo theme. As you start typing the Background property’s value, a drop-
down list of the theme’s available colors is displayed. You can also use any custom
color created from a combination of red, green and blue components called RGB
values—each is an integer in the range 0–255 that defines the amount of red, green
and blue in the color, respectively. Custom colors are defined in hexadecimal (base
16) format, so the RGB components are values in the range 00–FF. Android also
supports alpha (transparency) values in the range 0 (completely transparent) to 255
(completely opaque). To use alpha, you specify the color in the format #AARRGGBB,
where the first two hexadecimal digits represent the alpha value. If both digits of
each color component are the same, you can use the abbreviated formats #RGB or
#ARGB. For example, #9AC is treated as #99AACC and #F9AC is treated as #FF99AACC.

5. Finally, you’ll add some padding around the TextView. To do so, you’ll create a
new dimension resource named textview_padding, which you’ll use several times
in the GUI. A view’s Padding property specifies space on all sides of the views’s
content. In the Properties window’s View section, click the Padding property’s el-
lipsis button. Click New Dimension… to create a new dimension resource. Specify
textview_padding for the Name and 8dp for the Value and click OK, then select
your new dimension resource and click OK.

Step 11: Configuring the customPercentTextView
Notice that the customPercentTextView is aligned with the top of the customTipSeek-
Bar’s thumb. This looks better if it’s vertically centered. To do this, in the Properties win-
dow’s Layout Parameters section, modify the Gravity value from right to

The vertical bar (|) character is used to separate multiple Gravity values—in this case indi-
cating that the TextView should be right aligned and centered vertically within the grid cell.
Also set the customPercentTextView’s Width and Height properties to wrap_content.

Step 12: Configuring the customTipSeekBar
By default, a SeekBar’s range is 0 to 100 and its current value is indicated by its Progress
property. This app allows custom tip percentages from 0 to 30 and specifies a default of
18. Set the SeekBar’s Max property to 30 and the Progress property to 18. Also, set the
Width and Height to wrap_content.

right|center_vertical

78 Chapter 3 Tip Calculator App

Step 13: Configuring the percent15TextView and percentCustomTextView
Recall that GridLayout does not allow you to specify how a view should be sized relative
to other views in a given row. This is why we placed the percent15TextView and percent-
CustomTextView in a LinearLayout, which does allow proportional sizing. A view’s layout
Weight (in certain layouts, such as LinearLayout) specifies the view’s relative importance
with respect to other views in the layout. By default, all views have a Weight of 0.

In this layout, we set Weight to 1 for percent15TextView and percentCustomText-
View—this indicates that they have equal importance, so they should be sized equally. By
default, when we added the percentLinearLayout to the GridLayout, its layout Gravity
property was set to fill_horizontal, so the layout occupies the remaining space in the
third row. When the LinearLayout is stretched to fill the rest of the row, the TextViews
each occupy half of the LinearLayout’s width.

We also wanted each TextView to center its text. To do this, in the Properties
window’s TextView section, set the Gravity property to center. This specifies the Text-
View’s text alignment, whereas the layout Gravity property specifies how a view aligns with
respect to the layout.

Step 14: Configuring the tip15TextView, tipCustomTextView, total15TextView
and totalCustomTextView
To finalize these four TextViews, perform the following tasks on each:

1. Select the TextView.

2. Delete its Text value—we’ll set this programmatically.

3. Set the Background to @android:color/holo_orange_light.

4. Set the layout Gravity to center.

5. Set the layout Weight to 1.

6. Set the layout Width to 0dp—this allows the layout to use the Weight to determine
the view’s width.

7. Set the TextView Gravity to center.

8. Set the TextView Padding to @dimen/textview_padding (the dimension resource
you created in a previous step).

Notice that there’s no horizontal space between the TextViews in the tipLinearLayout and
totalLinearLayout. To fix this, you’ll specify an 8dp right margin for the tip15TextView
and total15TextView. In the Properties window’s Layout Parameters section, expand the
Margin section, then set the Right margin to 8dp by creating a new dimension resource named
textview_margin. Next, use this resource to set the total15TextView’s Right margin.

Step 15: Vertically Centering the tipTextView and totalTextView
To vertically center the tipTextView and totalTextView with the other views in their re-
spective rows, modify their layout Gravity properties from right to

When you do this for the totalTextView, the GridLayout centers this component verti-
cally in the remaining space from the fifth row to the bottom of the screen. To fix this problem,
drag a Space view (in the Palette’s Layout section) onto the gridLayout node in the Outline

right|center_vertical

3.5 Adding Functionality to the App 79

window. This creates a sixth row that occupies the rest of the screen. As its name implies,
a Space view occupies space in a GUI. The GUI should now appear as in Fig. 3.8.

3.5 Adding Functionality to the App
Class MainActivity (Figs. 3.9–3.16) implements the Tip Calculator app’s functionality. It
calculates the 15% and custom percentage tips and total bill amounts, and displays them in
locale-specific currency format. To view the file, open src/com.deitel/tipcalculator and
double clck MainActivity.java. You’ll need to enter most of the code in Figs. 3.9–3.16.

The package and import Statements
Figure 3.9 shows the package statement and import statements in MainActivity.java.
The package statement in line 3 was inserted when you created the project. When you
open a Java file in the IDE, the import statements are collapsed—one is displayed with a

 to its left. You can click the to see the complete list of import statements.

Lines 5–14 import the classes and interfaces the app uses:

• Class NumberFormat of package java.text (line 5) provides numeric formatting
capabilities, such as locale-specific currency and percentage formats.

Fig. 3.8 | Final GUI design.

1 // MainActivity.java
2 // Calculates bills using 15% and custom percentage tips.
3 package com.deitel.tipcalculator;
4
5 import java.text.NumberFormat; // for currency formatting
6
7 import android.app.Activity; // base class for activities
8 import android.os.Bundle; // for saving state information
9 import android.text.Editable; // for EditText event handling

10 import android.text.TextWatcher; // EditText listener
11 import android.widget.EditText; // for bill amount input
12 import android.widget.SeekBar; // for changing custom tip percentage
13 import android.widget.SeekBar.OnSeekBarChangeListener; // SeekBar listener
14 import android.widget.TextView; // for displaying text
15

Fig. 3.9 | MainActivity’s package and import statements.

80 Chapter 3 Tip Calculator App

• Class Activity of package android.app (line 7) provides the basic lifecycle meth-
ods of an app—we’ll discuss these shortly.

• Class Bundle of package android.os (line 8) represents an app’s state information.
Android gives an app the opportunity to save its state before another app appears
on the screen. This might occur, for example, when the user launches another app
or receives a phone call. The app that’s currently on the screen at a given time is in
the foreground (the user can interact with it, and the app consumes the CPU) and
all other apps are in the background (the user cannot interact with them, and
they’re typically not consuming the CPU). When another app comes into the
foreground, the app that was previously in the foreground is given the opportu-
nity to save its state as it’s sent to the background.

• Interface Editable of package android.text (line 9) allows you to modify the
content and markup of text in a GUI.

• You implement interface TextWatcher of package android.text (line 10) to re-
spond to events when the user changes the text in an EditText.

• Package android.widget (lines 11–14) contains the widgets (i.e., views) and lay-
outs that are used in Android GUIs. This app uses EditText (line 11), SeekBar
(line 12) and TextView (line 14) widgets.

• You implement interface SeekBar.OnSeekBarChangeListener of package an-
droid.widget (line 13) to respond to the user moving the SeekBar’s thumb.

As you write code with various classes and interfaces, you can use the IDE’s Source >
Organize Imports command to let the IDE insert the import statements for you. For cases
in which the same class or interface name appears in more than one package, the IDE will
let you select the appropriate import statement.

Tip Calculator App Activity and the Activity Lifecycle
Class MainActivity (Figs. 3.10–3.16) is the Tip Calculator app’s Activity subclass. When
you created the TipCalculator project, the IDE generated this class as a subclass of Ac-
tivity and provided an override of class Activity’s inherited onCreate method
(Fig. 3.11). Every Activity subclass must override this method. The default code for class
MainActivity also included an onCreateOptionsMenu method, which we removed be-
cause it’s not used in this app. We’ll discuss onCreate shortly.

Class Variables and Instance Variables
Lines 20–32 of Fig. 3.11 declare class MainActivity’s variables. The NumberFormat ob-
jects (lines 20–23) are used to format currency values and percentages, respectively. Num-
berFormat static method getCurrencyInstance returns a NumberFormat object that
formats values as currency using the device’s default locale. Similarly, static method get-
PercentInstance formats values as percentages using the device’s default locale.

16 // MainActivity class for the Tip Calculator app
17 public class MainActivity
18 {

Fig. 3.10 | Class MainActivity is a subclass of Activity.

extends Activity

3.5 Adding Functionality to the App 81

The bill amount entered by the user into amountEditText will be read and stored as
a double in billAmount (line 25). The custom tip percentage (an integer in the range 0–
30) that the user sets by moving the Seekbar thumb will be multiplied by 0.01 to create a
double for use in calculations, then stored in customPercent (line 26). For example, if you
select 25 with the SeekBar, customPercent will store 0.25, so the app will multiply the
bill amount by 0.25 to calculate the 25% tip.

Line 27 declares the TextView that displays the currency-formatted bill amount. Line
28 declares the TextView that displays the custom tip percentage based on the SeekBar
thumb’s position (see the 18% in Fig. 3.1(a)). The variables in line 29–32 will refer to the
TextViews in which the app displays the calculated tips and totals.

Overriding Method onCreate of Class Activity
The onCreate method (Fig. 3.12)—which is auto-generated with lines 38–39 when you
create the app’s project—is called by the system when an Activity is started. Method on-
Create typically initializes the Activity’s instance variables and views. This method
should be as simple as possible so that the app loads quickly. In fact, if the app takes longer
than five seconds to load, the operating system will display an ANR (Application Not Re-
sponding) dialog—giving the user the option to forcibly terminate the app. You’ll learn
how to prevent this problem in Chapter 8.

19 // currency and percent formatters
20 private static final NumberFormat currencyFormat =
21 NumberFormat.getCurrencyInstance();
22 private static final NumberFormat percentFormat =
23 NumberFormat.getPercentInstance();
24
25 private double billAmount = 0.0; // bill amount entered by the user
26 private double customPercent = 0.18; // initial custom tip percentage
27 private TextView amountDisplayTextView; // shows formatted bill amount
28 private TextView percentCustomTextView; // shows custom tip percentage
29 private TextView tip15TextView; // shows 15% tip
30 private TextView total15TextView; // shows total with 15% tip
31 private TextView tipCustomTextView; // shows custom tip amount
32 private TextView totalCustomTextView; // shows total with custom tip
33

Fig. 3.11 | MainActivity class’s instance variables.

34 // called when the activity is first created
35
36
37 {
38 super.onCreate(savedInstanceState); // call superclass's version
39
40

Fig. 3.12 | Overriding Activity method onCreate. (Part 1 of 2.)

@Override
protected void onCreate(Bundle savedInstanceState)

setContentView(R.layout.activity_main); // inflate the GUI

82 Chapter 3 Tip Calculator App

onCreate’s Bundle Parameter
During the app’s execution, the user could change the device’s configuration by rotating the
device or sliding out a hard keyboard. For a good experience, the app should continue operat-
ing smoothly through such configuration changes. When the system calls onCreate, it passes
a Bundle argument containing the Activity’s saved state, if any. Typically, you save state in
Activity methods onPause or onSaveInstanceState (demonstrated in later apps). Line 38
calls the superclass’s onCreate method, which is required when overriding onCreate.

Generated R Class Contains Resource IDs
As you build your app’s GUI and add resources (such as strings in the strings.xml file
or views in the activity_main.xml file) to your app, the IDE generates a class named R
that contains nested classes representing each type of resource in your project’s res folder.
You can find this class in your project’s gen folder, which contains generated source-code
files. The nested classes are declared static, so that you can access them in your code with
R.ClassName. Within class R’s nested classes, the IDE creates static final int constants
that enable you to refer to your app’s resources programmatically from your code (as we’ll
discuss momentarily). Some of the nested classes in class R include:

• class drawable—contains constants for any drawable items, such as images, that
you put in the various drawable folders in your app’s res folder

41 // get references to the TextViews
42 // that MainActivity interacts with programmatically
43
44
45 percentCustomTextView =
46 (TextView) findViewById(R.id.percentCustomTextView);
47 tip15TextView = (TextView) findViewById(R.id.tip15TextView);
48 total15TextView = (TextView) findViewById(R.id.total15TextView);
49 tipCustomTextView = (TextView) findViewById(R.id.tipCustomTextView);
50 totalCustomTextView =
51 (TextView) findViewById(R.id.totalCustomTextView);
52
53 // update GUI based on billAmount and customPercent
54 amountDisplayTextView.setText(
55 currencyFormat.format(billAmount));
56 updateStandard(); // update the 15% tip TextViews
57 updateCustom(); // update the custom tip TextViews
58
59 // set amountEditText's TextWatcher
60 EditText amountEditText =
61 (EditText) findViewById(R.id.amountEditText);
62 amountEditText.addTextChangedListener(amountEditTextWatcher);
63
64 // set customTipSeekBar's OnSeekBarChangeListener
65 SeekBar customTipSeekBar =
66 (SeekBar) findViewById(R.id.customTipSeekBar);
67 customTipSeekBar.setOnSeekBarChangeListener(customSeekBarListener);
68 } // end method onCreate
69

Fig. 3.12 | Overriding Activity method onCreate. (Part 2 of 2.)

amountDisplayTextView =
 (TextView) findViewById(R.id.amountDisplayTextView);

3.5 Adding Functionality to the App 83

• class id—contains constants for the views in your XML layout files

• class layout—contains constants that represent each layout file in your project
(such as, activity_main.xml)

• class string—contains constants for each String in the strings.xml file.

Inflating the GUI
The call to setContentView (line 39) receives the constant R.layout.activity_main to
indicate which XML file represents MainActivity’s GUI—in this case, the constant rep-
resents the main.xml file. Method setContentView uses this constant to load the corre-
sponding XML document, which is then parsed and converted into the app’s GUI. This
process is known as inflating the GUI.

Getting References to the Widgets
Once the layout is inflated, you can get references to the individual widgets so that you can
interact with them programmatically. To do so, you use class Activity’s findViewById
method. This method takes an int constant representing a specific view’s Id and returns a
reference to the view. The name of each view’s R.id constant is determined by the com-
ponent’s Id property that you specified when designing the GUI. For example, amount-
EditText’s constant is R.id.amountEditText.

Lines 43–51 obtain references to the TextViews that are changed by the app. Lines
43–44 obtain a reference to the amountDisplayTextView that’s updated when the user
enters the bill amount. Lines 45–46 obtain a reference to the percentCustomTextView
that’s updated when the user changes the custom tip percentage. Lines 47–51 obtain ref-
erences to the TextViews where the calculated tips and totals are displayed.

Displaying Initial Values in the TextViews
Lines 54–55 set amountDisplayTextView’s text to the initial billAmount (0.00) in a locale-
specific currency format by calling the currencyFormat object’s format method. Next, lines
56–57 call methods updateStandard (Fig. 3.13) and updateCustom (Fig. 3.14) to display
initial values in the tip and total TextViews.

Registering the Event Listeners
Lines 60–61 get a reference to the amountEditText, and line 62 calls its addTextChanged-
Listener method to register the TextChangedListener that will respond to events generated
when the user changes the text in the EditText. We define this listener (Fig. 3.16) as an anon-
ymous-inner-class object that’s assigned to the instance variable amountEditTextWatcher.

Lines 65–66 get a reference to the customTipSeekBar and line 67 calls its setOnSeek-
BarChangeListener method to register the OnSeekBarChangeListener that will respond
to events generated when the user moves the customTipSeekBar’s thumb to change the
custom tip percentage. We define this listener (Fig. 3.15) as an anonymous-inner-class
object that’s assigned to the instance variable customSeekBarListener.

Method updateStandard of Class MainActivity
Method updateStandard (Fig. 3.13) updates the 15% tip and total TextViews each time
the user changes the bill amount. The method uses the billAmount value to calculate the
tip amount and the total of the bill amount and tip. Lines 78–79 display the amounts in
currency format.

84 Chapter 3 Tip Calculator App

Method updateCustom of Class MainActivity
Method updateCustom (Fig. 3.14) updates the custom tip and total TextViews based on
the tip percentage the user selected with the customTipSeekBar. Line 86 sets the percent-
CustomTextView’s text to the customPercent value formatted as a percentage. Lines 89–
90 calculate the customTip and customTotal. Then, lines 93–94 display the amounts in
currency format.

Anonymous Inner Class That Implements Interface OnSeekBarChangeListener
Lines 98–120 of Fig. 3.15 create the anonymous-inner-class object named customSeekBar-
Listener that responds to customTipSeekBar’s events. If you’re not familiar with anony-
mous inner classes, visit the following page:

Line 67 (Fig. 3.12) registered customSeekBarListener as customTipSeekBar’s OnSeek-
BarChangeListener event-handling object. For clarity, we define all but the simplest
event-handling objects in this manner so that we do not clutter the onCreate method with
this code.

70 // updates 15% tip TextViews
71 private void updateStandard()
72 {
73 // calculate 15% tip and total
74 double fifteenPercentTip = billAmount * 0.15;
75 double fifteenPercentTotal = billAmount + fifteenPercentTip;
76
77 // display 15% tip and total formatted as currency
78 tip15TextView.setText(currencyFormat.format(fifteenPercentTip));
79 total15TextView.setText(currencyFormat.format(fifteenPercentTotal));
80 } // end method updateStandard
81

Fig. 3.13 | Method updateStandard calculates and displays the 15% tip and total.

82 // updates the custom tip and total TextViews
83 private void updateCustom()
84 {
85 // show customPercent in percentCustomTextView formatted as %
86 percentCustomTextView.setText(percentFormat.format(customPercent));
87
88 // calculate the custom tip and total
89 double customTip = billAmount * customPercent;
90 double customTotal = billAmount + customTip;
91
92 // display custom tip and total formatted as currency
93 tipCustomTextView.setText(currencyFormat.format(customTip));
94 totalCustomTextView.setText(currencyFormat.format(customTotal));
95 } // end method updateCustom
96

Fig. 3.14 | Method updateCustom calculates and displays the custom tip and total.

http://bit.ly/AnonymousInnerClasses

http://bit.ly/AnonymousInnerClasses

3.5 Adding Functionality to the App 85

Overriding Method onProgressChanged of Interface OnSeekBarChangeListener
Lines 102–119 implement interface OnSeekBarChangeListener’s methods. Method on-
ProgressChanged is called whenever the SeekBar’s thumb position changes. Line 107 cal-
culates customPercent using the method’s progress parameter—an int representing the
SeekBar’s thumb position. We divide this by 100.0 to get the custom percentage. Line 108
calls method updateCustom to recalculate and display the custom tip and total.

Overriding Methods onStartTrackingTouch and onStopTrackingTouch of Inter-
face OnSeekBarChangeListener
Java requires that you override every method in an interface that you implement. This app
does not need to know when the user starts moving the slider’s thumb (onStartTracking-
Touch) or stops moving it (onStopTrackingTouch), so we simply provide an empty body for
each (lines 111–119) to fulfill the interface contract.

Anonymous Inner Class That Implements Interface TextWatcher
Lines 123–156 of Fig. 3.16 create the anonymous-inner-class object amountEditText-
Watcher that responds to amountEditText’s events. Line 62 registered this object to listen
for amountEditText’s events that occur when the text changes.

Overriding Method onTextChanged of Interface TextWatcher
The onTextChanged method (lines 126–144) is called whenever the text in the amount-
EditText is modified. The method receives four parameters. In this example, we use only

97 // called when the user changes the position of SeekBar
98 private OnSeekBarChangeListener customSeekBarListener =
99 new OnSeekBarChangeListener()
100 {
101 // update customPercent, then call updateCustom
102
103
104
105 {
106 // sets customPercent to position of the SeekBar's thumb
107 customPercent = / 100.0;
108 updateCustom(); // update the custom tip TextViews
109 } // end method onProgressChanged
110
111 @Override
112 public void onStartTrackingTouch(SeekBar seekBar)
113 {
114 } // end method onStartTrackingTouch
115
116 @Override
117 public void onStopTrackingTouch(SeekBar seekBar)
118 {
119 } // end method onStopTrackingTouch
120 }; // end OnSeekBarChangeListener
121

Fig. 3.15 | Anonymous inner class that implements interface OnSeekBarChangeListener to
respond to the events of the customSeekBar.

@Override
public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser)

progress

86 Chapter 3 Tip Calculator App

CharSequence s, which contains a copy of amountEditText’s text. The other parameters
indicate that the count characters starting at start replaced previous text of length before.

Line 133 converts the user input from amountEditText to a double. We allow users
to enter only whole numbers in pennies, so we divide the converted value by 100.0 to get
the actual bill amount—e.g., if the user enters 2495, the bill amount is 24.95. Lines 142–
143 call updateStandard and updateCustom to recalculate and display the tips and totals.

Other Methods of the amountEditTextWatcher TextWatcher
This app does not need to know what changes are about to be made to the text (before-
TextChanged) or that the text has already been changed (afterTextChanged), so we simply
override each of these TextWatcher interface methods with an empty body (lines 146–155)
to fulfill the interface contract.

122 // event-handling object that responds to amountEditText's events
123 private TextWatcher amountEditTextWatcher = new TextWatcher()
124 {
125 // called when the user enters a number
126
127
128
129 {
130 // convert amountEditText's text to a double
131 try
132 {
133 billAmount = Double.parseDouble(s.toString()) / 100.0;
134 } // end try
135 catch (NumberFormatException e)
136 {
137 billAmount = 0.0; // default if an exception occurs
138 } // end catch
139
140 // display currency formatted bill amount
141 amountDisplayTextView.setText(currencyFormat.format(billAmount));
142 updateStandard(); // update the 15% tip TextViews
143 updateCustom(); // update the custom tip TextViews
144 } // end method onTextChanged
145
146 @Override
147 public void afterTextChanged(Editable s)
148 {
149 } // end method afterTextChanged
150
151 @Override
152 public void beforeTextChanged(CharSequence s, int start, int count,
153 int after)
154 {
155 } // end method beforeTextChanged
156 }; // end amountEditTextWatcher
157 } // end class MainActivity

Fig. 3.16 | Anonymous inner class that implements interface TextWatcher to respond to the
events of the amountEditText.

@Override
public void onTextChanged(CharSequence s, int start,
 int before, int count)

3.6 AndroidManifest.xml 87

3.6 AndroidManifest.xml
In this section, you’ll modify the AndroidManifest.xml file to specify that this app’s Ac-
tivity supports only a device’s portrait orientation and that the soft keypad should always
remain on the screen. You’ll use the IDE’s Android Manifest editor to specify these settings.
To open the Android Manifest editor, double click the app’s AndroidManifest.xml file in
the Package Explorer. At the bottom of the editor, click the Application tab (Fig. 3.17),
then select the MainActivity node in the Application Nodes section at the bottom of the
window. This displays settings for the MainActivity in the Attributes for com.deitel.tipcal-
culator.MainActivity section.

Fig. 3.17 | Android Manifest editor’s Application tab.

Application tab Select this node to specify settings
for the app’s MainActivity

88 Chapter 3 Tip Calculator App

Configuring MainActivity for Portrait Orientation
In general, most apps should support both portrait and landscape orientations. In portrait
orientation, the device’s height is greater than its width. In landscape orientation, the de-
vice’s width is greater than its height. In the Tip Calculator app, rotating the device to land-
scape orientation on a typical phone would cause the numeric keypad to obscure most of
the Tip Calculator’s GUI. For this reason, you’ll configure MainActivity to support only
portrait orientation. In the Android Manifest editor’s Attributes for com.deitel.tipcalcula-
tor.MainActivity section, scroll down to the Screen orientation option and select portrait.

Forcing the Soft Keypad to Always Display for MainActivity
In the Tip Calculator app, the soft keypad should be displayed immediately when the app
executes and should remain on the screen at all times. In the Android Manifest editor’s At-
tributes for com.deitel.tipcalculator.MainActivity section, scroll down to the Window soft in-
put mode option and select stateAlwaysVisible. Note that this will not display the soft
keyboard if a hard keyboard is present.

3.7 Wrap-Up
In this chapter, you created your first interactive Android app—the Tip Calculator. We
overviewed the app’s capabilities, then you test-drove it to calculate standard and custom
tips based on the bill amount entered. You followed detailed step-by-step instructions to
build the app’s GUI using the Android Developer Tools IDE’s Graphical Layout editor,
Outline window and Properties window. We also walked through the code of the Activity
subclass MainActivity, which defined the app’s functionality.

In the app’s GUI, you used a GridLayout to arrange the views into rows and columns.
You displayed text in TextViews and received input from an EditText and a SeekBar.

The MainActivity class required many Java object-oriented programming capabilities,
including classes, objects, methods, interfaces, anonymous inner classes and inheritance. We
explained the notion of inflating the GUI from its XML file into its screen representation.
You learned about Android’s Activity class and part of the Activity lifecycle. In particular,
you overrode the onCreate method to initialize the app when it’s launched. In the onCreate
method, you used Activity method findViewById to get references to each of the views that
the app interacts with programmatically. You defined an anonymous inner class that imple-
ments the TextWatcher interface so the app can calculate new tips and totals as the user
changes the text in the EditText. You also defined an anonymous inner class that imple-
ments the OnSeekBarChangeListener interface so the app can calculate a new custom tip
and total as the user changes the custom tip percentage by moving the SeekBar’s thumb.

Finally, you opened the AndroidManifest.xml file in the IDE’s Android Manifest
editor to specify that the MainActivity supports only portrait orientation and that the
MainActivity should always display the keypad.

Using the IDE’s Graphical Layout editor, Outline window, Properties window and
Android Manifest editor enabled you to build this app without manipulating the XML in
the project’s resource files and AndroidManifest.xml file.

In the next chapter, we introduce collections while building the Twitter® Searches
app. Many mobile apps display lists of items. You’ll do this by using a ListActivity con-
taining a ListView that’s bound to an ArrayList<String>. You’ll also store app data as
user preferences and learn how to launch the device’s web browser to display a web page.

Symbols
(Android Developer Tools

rule markers in the
Graphical Layout editor
54

Numerics
100 Destinations 6

A
accelerometer 15

listening 214
accelerometer sensor 201, 215
access Android services 110
Accessibility

Content Description
property 58, 105

Explore by Touch 37, 57
TalkBack 37, 57
TalkBack localization 62

accessibility 32, 37, 57, 103
explore-by-touch mode 9

Accessibility APIs 9
accessing Android content

providers 13
action bar 42, 126, 127
ACTION_SEND constant of class
Intent 121

ACTION_VIEW constant of
classIntent 118

Activity class 67, 80
findFragmentById

method 133, 150
getFragmentManager

method 133, 150, 164
getMenuInflater method

151
getResources method 149
getString method 118
getString method with

mulitple arguments 121

Activity class (cont.)
getSystemService

method 214
lifecycle methods 172
onCreate method 67, 171
onCreateOptionsMenu

method 132, 150
onDestroy method 171,

172
onOptionsItemSelected

method 132, 151
onPause method 171, 172
onResume method 171
onStart method 150, 171
onStop method 171
runOnUiThread method

192
sent to background 177
setContentView method

83
setRequestedOrientatio
n method 149

setVolumeControlStream
method 172, 176

Activity Not Responding
(ANR) dialog 247

Activity templates 42
activity_main.xml 48
ActivityNotFoundExceptio
n class 99

Adapter class 98, 202
AdapterView class 98, 111
AdapterView.OnItemClickL
istener interface 111, 264

AdapterView.OnItemLongCl
ickListener interface 111

add a class to a project 175
add method of class
FragmentTransaction 257

addCallback method of class
SurfaceHolder 181

adding components to a row 70

addPreferencesFromResour
ce method of class
PreferenceFragment 165

Address Book app 15
addToBackStack method of

class FragmentTransaction
258

Adjust View Bounds property
of an ImageView 142

AdMob 296, 297
ADT (Android Development

Tools Plugin) 14
ADT Plugin for Eclipse 293
advertising revenue 297
AlertDialog class 99, 110,

115, 201
AlertDialog.Builder class

99, 115
alpha (transparency) values 77
alpha animation for a View

146
alpha method of class Color

233
alternative-resource naming

conventions 59
Amazon Mobile app 297
analysis 18
Android 2.2 (Froyo) 7
Android 2.3 (Gingerbread) 8
Android 3.x

Honeycomb 8
Android 4.0 (Ice Cream

Sandwich) 8
Android APIs 5
Android app marketplaces 303

Amazon Appstore 303
AndroidPIT 303
Appitalism 303
GetJar 303
Handango 303
Moborobo 303
Mplayit 303

Index

Index 311

Android app marketplaces (cont.)
Opera Mobile Store 303
Samsung Apps 303
SlideMe 303

Android Asset Studio 291
Android Beam 9, 10
Android Cloud to Device

Messaging (C2DM) 7
Android developer

documentation
(developer.android.com)
xviii

Android developer
documentation
(developer.android.com/
sdk/installing/
studio.html xviii

Android Developer Tools
Graphical Layout editor 36,

37, 45, 46, 48
Android Developer Tools IDE

36, 37
Android Development Tools

(ADT) Plugin 14
Android device manufacturers

xv
Android emulator xxvi, 14, 37
Android for Programmers page on

InformIT xviii
Android for Programmers website

xv, xviii
Android Jelly Bean 9
Android KitKat 10
Android Lint 39, 58
Android Manifest editor 70, 87,

88
Android Market

language 301
location 302
price 302

Android Newsgroups
Android Discuss 33

Android project
res folder 45, 50
value folder 50

Android Resources editor 60
Android SDK xix, xxiii, xxvi, 2,

14
Android SDK 2.x xv, xvi
Android SDK Manager xxv

Android SDK versions and API
levels 39

Android SDK/ADT Bundle
xxiii

Android SDK/ADT bundle
xxiv, xxv, 19, 38

Android services
access 110

Android source code and
documentation
FAQs 4
governance philosophy 4
licenses 4
source code 4

Android Studio 3, 13, 14, 37
Android Support Library 68,

132, 203, 203, 230
Android versions

Android 1.5 (Cupcake) 7
Android 1.6 (Donut) 7
Android 2.0–2.1 (Eclair) 7
Android 2.2 (Froyo) 7
Android 2.3 (Gingerbread) 7
Android 3.0–3.2 7
Android 4.0 (Ice Cream

Sandwich) 7
Android 4.1–4.3 7
Android 4.4 7

Android Virtual Device (AVD)
xxvi, 14, 19, 23, 56
Setting hardware

emulation options 30
Android Virtual Device

Manager xxvi
android:duration attribute

of a translate animation
147

android:fromXDelta
attribute of a translate
animation 146

android:startOffset
attribute of a translate
animation 147

android:toXDelta attribute
of a translate animation
146

android.app package 67, 80,
98, 110, 132, 133, 247

android.content package 98,
110, 202

android.content.res
package 134, 149, 157

android.database package
247

android.database.sqlite
package 247

android.graphics package
173, 202

android.graphics.drawable
package 162

android.media package 172
android.net package 110
android.os package 80, 135,

247
android.preference package

132
android.text package 69, 80
android.util package 136,

180
android.view package 111,

132, 172, 202
android.view.animation

package 135
android.view.inputmethod

package 111
android.widget package 68,

80, 98, 111, 135, 247
Android@Home framework 9
AndroidLicenser 303
AndroidManifest.xml 70, 100
anim folder of an Android

project 46, 134
animation xvii

alpha animation 146
framework 8
manual 172
options in an XML file 135
rotate animation 146
scale animation 146
set 146
thread 172
translate animation for a

View 146
tween 146
View based 146

Animation class 135
setRepeatCount method

136, 157

312 Index

AnimationUtils class 135, 157
loadAnimation method

135, 157
animator folder of an Android

project 46, 134
anonymous inner class 67
ANR (activity not responding)

dialog 81, 113, 247, 172
anti-aliasing 220
.apk file (Android application

package file) 292
app xxiii
app bar 24
app development xxiii
app platforms

Amazon Kindle 304
Android 304
BlackBerry 304
iPhone 304
Windows Mobile 304

app review sites
Android and Me 306
Android App Review Source

306
Android Police 306
Android Tapp 306
AndroidGuys 306
AndroidLib 306
AndroidPIT 306
AndroidZoom 306
Androinica 306
AppBrain 306
Appolicious 306
Appstorm 306
Best Android Apps Review

306
Phandroid 306

app review video sites
Android Video Review 306
Appolicious 306
Crazy Mike’s Apps 306
Daily App Show 306
Life of Android 306

app-driven approach xvi, 2
Application Not Responding

(ANR) dialog 81, 113
application resource 13

application resources
(developer.android.com/
guide/topics/
resources/index.html)
50

apply method of class
SharedPreferences.Edit
or 117

ARGB 231
ARGB color scheme 25
argb method of class Color

234
ARGB_8888 constant 222
ArrayAdapter class 98, 111,

114, 247
ArrayList class 98, 110, 136
asset 301
AssetManager class 134

list method 158
assets folder of an Android

app 133
AsyncTask class 247, 265, 266,

267, 277, 278, 279, 280
execute method 265

attribute
in the UML 18
of a class 16
of an object 18

AttributeSet class 180
audio xvii, 13
audio playback xix
audio recording xix
audio stream

music 181
audio streams 172

music 172
audio volume 172
AudioManager class 172, 181
AVD (Android Virtual Device)

xxvi, 14, 19, 23

B
back button 24
back stack 246, 258, 259, 261

pop 258
push 258

background
activity sent to 177

Background property of a view
77

Bank of America app 297
beginTransaction method of

class FragmentManager 257
behavior

of a class 16
Bezier curve 227
bind data to a ListView 98
Bitmap class 173, 202, 237

bitmap encoding 222
createBitmap method 222
eraseColor method 238

Bitmap.Config.ARGB_8888
constant 222

Blank Activity template 42
blue method of class Color

233
Bluetooth Health Devices 9
brand awareness 297
branding apps

Amazon Mobile 297
Bank of America 297
Best Buy 297
CNN 297
Epicurious Recipe 297
ESPN ScoreCenter 297
NFL Mobile 297
NYTimes 297
Pocket Agent 297
Progressive Insurance 297
UPS Mobile 297
USA Today 297
Wells Fargo Mobile 297
Women’s Health Workouts

Lite 297
Bundle class 80, 82

for an Intent 122
putLong method 258

C
C2DM (Android Cloud to

Device Messaging) 7
Calendar API 9
callback methods 246
camera 5
Cannon Game app 15
Canvas class 173, 202

drawBitmap method 223
drawCircle method 190
drawLine method 191
drawPath method 223, 228

Index 313

Canvas class (cont.)
drawRect method 190
drawText method 190

carrier billing 296
case-insensitive sort 114
cell in a TableLayout 70
changeCursor method of class
CursorAdapter 267

characteristics of great apps 31
check-in 305
class 13, 17

instance variable 18
class library 5
Classes

Activity 67, 80
ActivityNotFoundExcept
ion 99

Adapter 98
AdapterView 98, 111
AlertDialog 99, 110
AlertDialog.Builder 99
Animation 135
AnimationUtils 135, 157
ArrayAdapter 98, 111,

114
ArrayList 98, 110, 136
AssetManager 134
AsyncTask 247, 265, 277
AttributeSet 180
AudioManager 172, 181
Bitmap 173, 202, 237
Bundle 80, 82
Canvas 173, 202
Collections 110, 136
Color 233
Configuration 149
ContentResolver 202
ContentValues 283
Context 110
Cursor 247
CursorAdapter 247, 264
CursorFactory 286
DialogFragment 132, 164
DialogInterface 110
Display 135, 150
Drawable 162
EditText 68, 80
Fragment 132
FragmentManager 133

Classes (cont.)
FragmentTransaction

133, 246, 257, 258
FrameLayout 174
GestureDetector.Simple
GestureListener 224

GestureDetector.Simple
OnGestureListener
202

GridLayout 68, 101
Handler 135
ImageButton 98, 104, 111
ImageView 37, 54
InputMethodManager 111
InputStream 162
Intent 99, 110
LayoutInflater 133
LinearLayout 68
ListActivity 98, 110
ListFragment 247, 248
ListPreference 133
ListView 98
Log 136, 159
MediaStore 202
MediaStore.Images.Medi
a 202

Menu 132, 150
MenuInflater 151, 267
MotionEvent 172, 194,

202, 226
MultiSelectListPrefere
nce 133

NumberFormat 69, 79
Paint 173
Path 202
Preference 133
PreferenceFragment 132,

165
PreferenceManager 133,

149
PrintHelper 230
R 82
R.drawable 82
R.id 83
R.layout 83
R.string 83
Resources 149, 157
ScrollView 251
SeekBar 66, 68, 80
Sensor 201

Classes (cont.)
SensorEvent 216
SensorManager 214
SharedPreferences 98,

110, 111
SharedPreferences.Edit

or 98, 117
SimpleCursorAdapter

264
SoundPool 172, 181
SQLiteDatabase 247
SQLiteOpenHelper 247
SurfaceHolder 173, 181
SurfaceView 173, 181
TableLayout 70
TextView 37, 50, 68, 80
Thread 172, 195
Toast 135, 153
Uri 110, 119
View 111, 173
ViewGroup 251
WindowManager 135, 150

client area 36, 98
close method of class Cursor

267
close method of class
SQLiteOpenHelpter 283

cloud computing 7
code file 301
code highlighting xviii, 2
code license xv
code walkthrough 2
collection

shuffle 162
Collections class 110, 136

shuffle method 136
sort method 114

collision detection 173, 184,
186

color 173
Color class 233

alpha method 233
argb method 234
blue method 233
green method 233
red method 233

color folder of an Android
project 46, 134

colors.xml 139

314 Index

Column Count property of a
GridLayout 72

Column property of a
LinearLayout 74

commit method of class
FragmentTransaction 257

Comparator<String> object
String.CASE_INSEN-
SITIVE_ORDER 114

compiling apps 290
component 16
Configuration class 149
Constants

MODE_PRIVATE 113
MODE_WORLD_READABLE

113
MODE_WORLD_WRITABLE

113
contain other Views 251
Content Description property

58, 105
ContentResolver class 202
ContentValues class 283
Context class 110

getSharedPreferences
method 113

startActivity method
99, 119

ContextWrapper class
getAssets method 158,

162
control 15
corners element of a shape

250
crash report 303
Create New Android String

dialog 51
createBitmap method of class
Bitmap 222

createChooser method of
class Intent 122

createFromStream method of
class Drawable 162

creating a database 282
cryptographic key 290
CT

Google Play and App
Business Issues 289

Cursor class 247, 280, 285
close method 267

Cursor class (cont.)
getColumnIndex method

280
getColumnIndexOrThrow

method 280
getString method 280
moveToFirst method 280

CursorAdapter class 247, 264
changeCursor method

267, 267
getCursor method 267

CursorFactory class 286
custom subclass of View 178
custom view 171

D
Dalvik Debug Monitor Service

(DDMS) 293
data binding 98
database

creating 282
opening 282
upgrading 282
version number 286

Daydream 10
DDMS (Dalvik Debug Monitor

Server) 293
DDMS perspective

LogCat tab 136
debugging

logging exceptions 136, 159
default preferences 149
default resources 59
Deitel Facebook page 305
Deitel Web site xxix
Deitel® Buzz Online Newsletter

xxix, 309
Deitel® Training

(www.deitel.com/
training) 309

delete method of class
SQLiteDatabase 285

density-independent pixels
dp 52

design process 18, 18
Dev Guide 290
developer documentation

Keeping Your App Responsive
33

Launch Checklist 291

developer documentation (cont.)
Performance Tips 33
Signing Your Applications 293
Tablet App Quality Checklist

291
Developer options 10
developer registration 299
device configuration 13
Device Screen Capture

window 294
DialogFragment class 132,

164
onCreateDialog method

164
show method 164

DialogInterface class 110
DialogInterface.OnClickL
istener interface 110

digital certificate 293
digitally sign your app 293
Digits property of an EditText

76
dimens.xml 103
dimension resource 103
disabilities 37, 57
Display class 135, 150
documentation

Android Design 32
App Components 32
application resources

(developer.android.c
om/guide/topics/
resources/
index.html) 50

Class Index 32
Data Backup 32
Debugging 33
Get Started with Publishing

33
Getting Started with Android

Studio 33
Google Play Developer

Distribution Agreement 33
Launch Checklist (for Google

Play) 33
Managing Projects from

Eclipse with ADT 33
Managing Your App’s Memory

33
Package Index 32

http://www.deitel.com/training
http://www.deitel.com/training

Index 315

documentation (cont.)
Security Tips 32
Tools Help 33
Using the Android Emulator

32
doInBackground method of

class AsyncTask 265, 266,
267, 278

Doodlz app 19
downloading source code xviii
dp (density-independent pixels)

52
drag event 227
draw

circles 173
lines 173
text 173

Drawable class 162
createFromStream

method 162
drawable folder of an Android

project 46
Drawable resource

shape element 250
drawBitmap method of class
Canvas 223

drawCircle method of class
Canvas 190

drawing characterstics 173
color 173
font size 173
line thickness 173

drawLine method of class
Canvas 191

drawPath method of class
Canvas 223, 228

drawRect method of class
Canvas 190

drawText method of class
Canvas 190

drive sales 297

E
e method of class Log 159
Eclipse xix

import project 66, 91, 128,
171, 245

Outline window 66, 68

Eclipse documentation
(www.eclipse.org/
documentation) xviii

Eclipse IDE 2
edit method of class
SharedPreferences 117

Editable interface 80
EditText

Digits property 76
Ems property 76
Max Length property 76

EditText class 68, 80
Hint property 103, 105
IME Options property 103,

105
input type 73
restrict maximum number of

digits 68
Ems property of an EditText

76
emulator 14, 291

gestures 15
emulator functionality 15
emulator gestures and controls

15
encapsulation 18, 18
End User License Agreement

(EULA) 290, 291
eraseColor method of class
Bitmap 238

event handler
returning false 224

event handling 67
events 5
Examples xxix
execSQL method of class
SQLiteDatabase 287

execute method of class
AsyncTask 265

explicit Intent 99, 136, 151
Explore by Touch 37, 57

F
face detection 9
Facebook 96, 305

Deitel page 305
file system access 13
final local variable for use in

an anonymous inner class 120
financial transaction 299

findFragmentById method of
class Activity 133, 150

fling touch event 202
Folders

res/raw 171, 175
folders

assets 133
res/drawable-mdpi 250

font size 173
format method of class
NumberFormat 83

format specifier
multiple in a String

resource 137
numbering in a String

resource 137
formatting strings 137
forums 33

Android Forums 33
Stack Overflow 33

fragment 8, 132
Fragment class 67, 132

getActivity method 157
getResources method 157
onActivityCreated

method 176
onAttach method 201,

233, 263, 270, 275
OnCreate method 165
onCreate method 133
onCreateOptionsMenu

method 217
OnCreateView method

133, 155
onCreateView method 176
onDestroy method 172,

177
onDetach method 201,

233, 263, 270, 275
onOptionsItemSelected

method 217
onPause lifecycle method

215
onPause method 172, 177
onResume method 265, 277
onSaveInstanceState

method 246, 277
onStart lifecycle method

214
onStop method 267

http://www.eclipse.org/documentation
http://www.eclipse.org/documentation

316 Index

Fragment class (cont.)
onViewCreated method

263
setArguments method 258
setRetainInstance

method 264
Fragment layout 140
Fragment lifecycle 201, 263,

265, 267, 270, 275, 277
fragment lifecycle 133
Fragment lifecycle methods

233
FragmentManager class 133

beginTransaction
method 257

getFragmentByTag
method 164

popBackStack method 258
FragmentTransaction class

133, 246, 257, 258
add method 257
addToBackStack method

258
commit method 257
replace method 258

FrameLayout class 174
fraudulent order 300
free app 295
Froyo (Android 2.2) 7
Fullscreen Activity template 42
fully qualify a custom View’s

class name in an XML layout
171

future proof 32

G
game loop 172, 183, 184, 195
games 31
gaming console 5
gen folder of an android project

82
gesture 5

double tap 5
double touch 5
drag 5
long press 5
pinch zoom 5
Swipe 5
touch 5

GestureDetector.OnDouble-
TapListener interface 202,
224

GestureDetector.OnGestur
eListener interface 202

GestureDetector.SimpleGe
stureListener class 202,
224

GestureDetector.SimpleGe
stureListener>default
para font> class
onSingleTap method 224

Gestures
drag 5
long press 5
pinch 5
tap 5

getActionIndex method of
class MotionEvent 226

getActionMasked method of
class MotionEvent 226

getActivity method of class
Fragment 157

getAll method of class
SharedPreferences 113

getAssets method of class
ContextWrapper 158, 162

getColumnIndex method of
class Cursor 280

getColumnIndexOrThrow
method of class Cursor 280

getConfiguration method of
class Resources 149

getCursor method of class
CursorAdapter 267

getDefaultSensor method of
class SensorManager 214

getFragmentByTag method of
class FragmentManager 164

getFragmentManager method
of class Activity 133, 150,
164

getHolder method of class
SurfaceView 181

getItemID method of class
MenuItem 218

getListView method of class
ListFragment 264

getListViewDefault Para
Font> method of class
ListActivity 114

getMenuInflater method of
class Activity 151

getPointerCount method of
class MotionEvent 227

getResources method of class
Activity 149

getResources method of class
Fragment 157

getSharedPreferences
method of class Context 113

getString method of class
Activity 118, 121

getString method of class
Cursor 280

getString method of class
Resources 157

getString method of class
SharedPreferences 118

getStringSet method of class
SharedPreferences 153

getSystemService method of
clsdd Activity 214

getSystemUiVisibilty
method of class View 224

getWritableDatase method
of class SQLiteOpenHelper
282

getX method of class
MotionEvent 227

getY method of class
MotionEvent 227

Google APIs 5
Google Cloud Messaging 7
Google Maps 6
Google Play 11, 290, 291, 296,

299, 306
countries 302
crash report 303
fees 300
high-resolution app icon 301
promotional graphic 301
promotional video 294, 301
publish 300, 301
Publish an Android App on

Google Play 301
publisher account 298
screenshots 301

Index 317

Google Play Developer Console
303

Google Play Developer Program
Policies 299

Google Play game services xix
Google Wallet 290, 296, 300

merchant account 302
Google+ 96
GPS xix
Graphical Layout editor 66
Graphical Layout editor in the

Android Developer Tools 36,
37, 45, 46, 48

graphics xvii, 13
Gravity property (layout) 76
Gravity property of a

component 53
gravity sensor 201
green method of class Color

233
GridLayout

Column Count property 72
Orientation property 72
Use Default Margins

property 73
GridLayout class 68, 101

documentation 70
guesture 15
GUI components

EditText 68
ImageButton 98, 104, 111
ImageView 37, 54
naming convention 71
programmatically create 133
ScrollView 251
SeekBar 66, 68
TextView 37, 47, 50
ViewGroup 251

GUI components are not thread
safe 135

GUI design 31
GUI thread 247
gyroscope sensor 201

H
Handler class 135

postDelayed method 135,
164

hardware support 13
hashtag 305

height of a table row 70
hide the soft keyboard 114
hint in an EditText 253
Hint property of an EditText

103, 105
Holo Dark theme 40
Holo Light theme 40
Holo Light with dark action

bars theme 40
Holo user interface 8, 9
home button 24
HTML5 mobile apps xix

I
i-Newswire 307
icon 290, 291
icon design firms

99designs 292
Aha-Soft 292
Androidicons 292
Elance 292
glyphlab 292
Iconiza 292

Id property of a layout or
component 49

IDE (integrated development
environment) 14

ImageButton class 98, 104,
111

images xvii
ImageView class 37, 54

Adjust View Bounds
property 142

Scale Type property 142
IME Options 253
IME Options property of an
EditText 103, 105

immersive mode 24, 199, 202,
223, 224

implicit Intent 99
import an existing project into

Eclipse 66, 91, 128, 171, 245
Import dialog 21, 66, 171, 245
in-app advertising 295, 297
in-app purchase 295
in-app billing 298

security best practices 298
in-app purchase 298
inflate method of class
LayoutInflater 155

inflate method of class
MenuInflater 151

inflate the GUI 182
inflating a GUI 83
information hiding 18
inheritance 18
Input Type 253
input type of an EditText 73
InputMethodManager class

111
InputStream class 162

setImageDrawable
method 162

insert method of class
SQLiteDatabase 283

insertImage method of class
MediaStore.Images.Medi
a 202

instance 17
instance variable 18
integrated development

environment (IDE) 14
intent chooser 96, 99
Intent class 99, 110

ACTION_SEND constant 121
ACTION_VIEW constant 118
Bundle 122
createChooser method

122
explicit 99, 136
implicit 99
putExtra method 122

intent extras 122
intent filter 99
intent messaging 99
interface

implementing methods in
Java 85

Interfaces
AdapterView.

OnItemClickListener
111, 264

AdapterView.OnItem-
LongClickListener
111

DialogInterface.
On-ClickListener 110

Editable 80

318 Index

Interfaces (cont.)
GestureDetector.
OnDoubleTapListener
202, 224

GestureDetector.
OnGestureListener
202

List 136
OnSeekBarChange-
Listener 84

Runnable 135
SeekBar.OnSeekBar-
ChangeListener 69, 80,
234

SensorEventListener
215

Set 136
SurfaceHolder.Callback

173, 181, 193
TextWatcher 69, 80
View.OnClickListener

111
internationalization 37, 59, 59,

69
Internet public relations

resources
ClickPress 307
i-Newswire 307
Marketwire 307
Mobility PR 307
openPR 307
PR Leap 307
Press Release Writing 307
PRLog 307
PRWeb 307

invalidate method of class
View 222

J
J2ObjC 304
Java xvi, 5
Java code xxiii
Java developer documentation

(www.oracle.com/
technetwork/java/
javase/downloads/
index.html) xviii

Java for Programmers, 2/e
(www.deitel.com/books/
JavaFP2/) xvi

Java Fundamentals: Parts I and II
(www.deitel.com/books/
LiveLessons/) xvi

Java How to Program
(www.deitel.com/books/
jhtp10/) xvi

Java SE 7 Software
Development Kit xxiii

java.io package 162
java.text package 69, 79
java.util package 136

K
key/value pairs

persistent 110
keyboard 5
keyboard types 253
keySet method of interface Map

113
key–value pairs associated with

an app 98

L
label 290
Label For property of a
TextView 76

landscape orientation 57, 88
large-screen device 8
layout 13
layout folder of an Android

project 46
LayoutInflater class 133

inflate method 155
Layouts

GridLayout 68
LinearLayout 68

layouts
activity_main.xml 48
GridLayout 101
RelativeLayout 46
TableLayout 70

license for Android 4
licensing policy 292
licensing service 292
lifecycle methods 172
lifecycle methods of an app 80
light sensor 201
line thickness 173
linear acceleration sensor 201

LinearLayout class 68
Column property 74

linking your apps 302
Linux 14
List interface 136
list method of class
AssetManager 158

ListActivity class 98, 110
custom GUI 98
getListView method 114
setListAdapter method

114
ListFragment class 247, 248,

261
built-in ListView 263
getListView method 264
setEmptyText method 264
setListAdapter method

265
ListPreference class 133
ListView

data binding 98
ListView class 98, 261

format of a list item 108
setChoiceMode method

264
load a URL into a web browser

99
load method of class
SoundPool 182

loadAnimation method of
class AnimationUtils 135,
157

localization 50, 59, 137
Localization Checklist 62
localized resources 59
lock screen widgets 10
lockCanvas method of class
SurfaceHolder 196

Log class 136, 159
e method 159

LogCat tab in the Android
DDMS perspective 136

logcat tool 136
logging exceptions 136, 159
long press 94
long-press touch event 202
long-running operations 247

http://www.deitel.com/books/LiveLessons/
http://www.deitel.com/books/LiveLessons/
http://www.deitel.com/books/jhtp10/
http://www.deitel.com/books/jhtp10/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.deitel.com/books/JavaFP2/
http://www.deitel.com/books/JavaFP2/

Index 319

M
Mac OS X 14
magnetic field sensor 201
makeText method of class
Toast 153

manifest file 290, 301
manually perform an animation

172
Map interface

keySet method 113
Marketwire 307
mashup 6
Master/Detail Flow template

42
match_parent value of the

Layout height property 103
match_parent value of the

Layout width property 103
Max Length property of an
EditText 76

Max property of a SeekBar 77
media files 171
MediaStore class 202
MediaStore.Images.Media

class 202
insertImage method 202

medium sized font 73
Menu class 132, 150, 217
menu folder of an Android

project 46, 134
menu name xxiii
MenuInflater class 151, 217,

267
inflate method 151

MenuItem class
getItemID method 218

merchant account 300
method 17
method call 17, 17
micro blogging 304, 305
mobile advertising 296
mobile advertising network 297

AdMob 297
mobile advertising networks

307
AdMob 308
Flurry 308
InMobi 308
Jumptap 308
Medialets 308

mobile advertising networks
(cont.)
mMedia 308
Nexage 308
Smaato 308
Tapjoy 308

mobile payment provider 299
Boku 299
PayPal Mobile Libraries 299
Samsung In-App Purchase

299
Zong 299

mobile payment providers 298
modal dialog 99
MODE_PRIVATE constant 113
MODE_WORLD_READABLE

constant 113
MODE_WORLD_WRITABLE

constant 113
monetizing apps 290, 297
MotionEvent class 172, 194,

202, 226
getActionIndex method

226
getActionMasked method

226
getPointerCount method

227
getX method 227
getY method 227

moveTo method of class Path
226

moveToFirst method of class
Cursor 280

MP3 player 5
multimedia xvii
multiple format specifiers 137
MultiSelectListPreferenc
e class 133

multitouch 225
multitouch screen 5
music audio stream 172, 181

N
naming convention

GUI components 71
near-field communication

(NFC) 8
nested structure of a layout 73
nested Views 251

network access 13
New Android Application

dialog 38
newsgroups 33

Android Developers 33
notifyDataSetChanged

method 117
notifyDataSetChanged

method of class
ArrayAdapter 117

NumberFormat class 69, 79
format method 83

numbering format specifiers
137

numeric input 68
numeric keypad 65

O
obfuscate 292
object 16
object (or instance) 18
object-oriented analysis and

design (OOAD) 18
object-oriented language 18
object-oriented programming

(OOP) 18
object serialization xix
Objective-C command xxiii
object-oriented analysis and

design (OOAD) 18
OEM original equipment

manufacturer 4
onActivityCreated method

of class Fragment 176
onAttach method of class
Fragment 201, 233, 263,
270, 275

onCreate method of class
Activity 67, 171

onCreate method of class
Fragment 133, 165

onCreate method of class
SQLiteOpenHelper 286

onCreateDialog method of
class DialogFragment 164

onCreateOptionsMenu
method of class Activity
132, 150

320 Index

onCreateOptionsMenu
method of class Fragment
217, 277

onCreateView method of class
Fragment 133, 155, 176

onDestroy method of class
Activity 171, 172

onDestroy method of class
Fragment 172, 177

onDetach method of class
Fragment 201, 233, 263,
270, 275

onDowngrade method of class
SQLiteOpenHelper 287

onDraw method of class View
223

OnItemClickListener
interface 264

onOptionsItemSelected
method of class Activity
132, 151

onOptionsItemSelected
method of class Fragment
217, 277

onPause method of class
Activity 171, 172

onPause method of class
Fragment 172, 177, 215

onPostExecute method 266,
267, 279, 280

onPostExecute method of
class AsyncTask 266, 267,
279, 280

onProgressUpdate method
266, 279

onProgressUpdate method of
class AsyncTask 266, 279

onResume method of class
Activity 171

onResume method of class
Fragment 265, 277

onSaveInstanceState
method of class Fragment
246, 277

on-screen component xxiii
OnSeekBarChangeListener

interface 84
onSensorChanged method

215

onSensorChanged method of
interface
SensorEventListener 215

onSingleTap method of class
GestureDetector.Simple
GestureListener 224

onSizeChanged method of
class View 182, 221

onStart method of class
Activity 150, 171

onStart method of class
Fragment 214

onStop method of class
Activity 171

onStop method of class
Fragment 267

OnTouchEvent method of class
View 225

onTouchEvent method of class
View 172, 194, 202

onUpgrade method of class
SQLiteOpenHelper 286

onViewCreated method of
class Fragment 263

OOAD (object-oriented
analysis and design) 18

OOP (object-oriented
programming) 18

Open Handset Alliance 7
open source 3
open source apps 4
Open Source Project discussion

groups 3
opening a database 282
openPR 307
operating system 7
operating system requirements

xxiii
operating systems services 13
options menu 19, 24, 126, 128,

200
Orientation property of a
GridLayout 72

orientation sensor 201
original equipment

manufacturer (OEM) 4
Outline window 73, 102
Outline window in Eclipse 66,

68

P
package 12
Package Explorer window

171, 245
Packages

android.app 13, 67, 80,
110, 132, 133

android.content 13, 98,
110, 202

android.content.res 13,
134, 149, 157

android.database 13,
247

android.database.sqlit
e 13, 247

android.graphics 13,
173, 202

android.graphics.
drawable 13, 162

android.hardware 13
android.media 13, 172
android.net 13, 110
android.os 13, 80, 135
android.preference 13,

132
android.provider 13
android.text 13, 69, 80
android.util 13, 136, 180
android.view 13, 111,

132, 172, 202
android.view.

animation 135
android.view.

inputmethod 111
android.widget 13, 68,

80, 111, 135
java.io 13, 162
java.text 13, 69, 79
java.util 13, 136

padding element of a shape
250

Padding property of a viewy 77
paid app

average price 296
Paint class 173

filled shape with a border
221

filled shape without a border
221

line 221

Index 321

Paint class (cont.)
setAntiAlias method 220
setStrokeCap method

221, 237
setStrokeWidth method

221
setStyle method 220
styles 221

parse method of class Uri 119
Path class 202

moveTo method 226
quadTo method 227
reset method 226

payment 300
payment processor 296
persistent key/value pairs 110
photo sharing 305
Photo Sphere 10
piracy 293
play method of class
SoundPool 186

Play Store app 302
pointer (for touch events) 225
pop the back stack 258
popBackStack method of class
FragmentManager 258

portrait mode 182
portrait orientation 56, 70, 88
postDelayed method of class
Handler 135, 164

PR Leap 307
Preference class 133
PreferenceFragment class

132, 165
addPreferencesFromReso
urce method 165

PreferenceManager class 133,
149
setDefaultValues

method 149, 149
Preparing for Release 290
press release writing 307
pressure sensor 201
prevent the soft keyboard from

being displayed at app startup
124

prevent the soft keyboard from
displaying when app loads
100

price 296

pricing your app 295
printBitmap method of class
PrintHelper 230

PrintHelper class 230
printBitmap method 230

PrintHelper.SCALE_MODE_
FILL 230

PrintHelper.SCALE_MODE_
FIT 230

private key 293
PRLog 307
programmatically create GUI

components 133
Progress property of a
SeekBar 77

ProGuard 292
project 38
project templates 42

Blank Activity 42
Fullscreen Activity 42
Master-Detail Application

42
project, add a class 175
Properties window 49, 50, 51,

52, 54
property animation xix, 134,

146
proximity sensor 201
public relations 306
publish a new version of an app

303
publishing data on an Android

device 13
push onto the back stack 258
putExtra method of class
Intent 122

putLong method of class
Bundle 258

putString method of class
SharedPreferences.Edit
or 117

Q
quadratic bezier curve 227
quadTo method of class Path

227
query method of class
SQLiteDatabase 284

R
R class 82
R.drawable class 82
R.id class 83
R.layout class 83
R.layout.activity_main

constant 83, 112
R.string class 83
raw folder of an Android project

46, 134
recent apps button 24
red method of class Color 233
redraw a View 223
registerListener method of

class SensorManager 214
registerOnSharedPreferen
ceChangeListener method
of class SharedPreferences
149

RelativeLayout 46
release method of class
SoundPool 192

release resources 280
remove apps from Market 303
rendering and tracking text 13
replace method of class
FragmentTransaction 258

reporting bugs 3
requirements 18
res folder of an Android project

45, 50
res/drawable-mdpi folder

250
res/raw folder of an Android

project 171, 175
reset method of class Path

226
resource 301
Resource Chooser dialog 50,

51, 52
resources 60

alternative-resource naming
conventions 59

android-developers.
blogspot.com/ 34

androiddevweekly.com/
34

322 Index

resources (cont.)
answers.oreilly.com/
topic/862-ten-tips-
for-android-
application-
development/ 34

code.google.com/p/
apps-for-android/ 34

cyrilmottier.com/ 34
default 59
developer.motorola.com

34
developer.sprint.com/
site/global/develop/
mobile_platforms/
android/android.jsp
34

graphics-geek.
blogspot.com/ 34

Localization Checklist 62
localized 59
stackoverflow.com/
tags/android/
topusers 34

style 246
www.brighthub.com/
mobile/google-
android.aspx 34

www.curious-
creature.org/
category/android/ 34

www.htcdev.com/ 34
Resources class 149, 157

getConfiguration
method 149

getString method 157
restrict maximum number of

digits in an EditText 68
returning false from an event

handler 224
reusable software components

16
Reuse 17
reuse 17
reverse engineering 292
RGB 25
RGB values 77
rotate animation for a View

146
rotation vector sensor 201

rule markers (Android
Developer Tools) 54

Runnable interface 135, 192
runOnUiThread method of

class Activity 192

S
saved state 82
scale animation for a View

146
scale mode 230
Scale Type property of an
ImageView 142

SCALE_MODE_FILL 230
SCALE_MODE_FIT 230
scale-independent pixels 139
scale-independent pixels (sp) 52
screen capture 293, 294
screenshot specifications 293
scroll touch event 202
scrollable list of items 98, 247
ScrollView class 251
search operators (Twitter) 90
SeekBar

Max property 77
Progress property 77

SeekBar class 66, 68, 80
SeekBar.OnSeekBarChangeL
istener interface 69, 80,
234

send a message to an object 17
Sensor class 201
Sensor Simulator 15
SENSOR_DELAY_NORMAL

constant of class
SensorManager 214

Sensor.TYPE_ACCELEROMETER
constant 214

SensorEvent class 216
SensorEventListener

interface 215
SensorEventListener

listener 215
SensorManager class 214

getDefaultSensor
method 214

registerListener
method 214

unregisterListener
method 215

SensorManager.SENSOR_
DELAY_NORMAL constant 214

sensors
accelerometer 201, 215
gravity 201
gyroscope 201
light 201
linear acceleration 201
magnetic field 201
orientation 201
pressure 201
proximity 201
rotation vector 201
temperature 201

set in an animation 146
Set interface 136
setAntiAlias method of class
Paint 220

setArguments method of class
Fragment 258

setBackgroundColor method
234

setBackgroundColor method
of class View 234

setChoiceMode method of
class ListView 264

setContentView method of
class Activity 83

setDefaultValues method of
class PreferenceManager
149

setEmptyText method of class
ListFragment 264

setImageBitmap method of
class View 238

setImageDrawable method of
class InputStream 162

setListAdapter method of
class ListActivity 114

setListAdapter method of
class ListFragment 265

setRepeatCount method of
class Animation 136, 157

setRequestedOrientation
method of class Activity
149

setRetainInstance method
of class Fragment 264

setStrokeCap method of class
Paint 221, 237

http://www.brighthub.com/mobile/googleandroid.aspx
http://www.brighthub.com/mobile/googleandroid.aspx
http://www.brighthub.com/mobile/googleandroid.aspx
http://www.curiouscreature.org/category/android/
http://www.curiouscreature.org/category/android/
http://www.curiouscreature.org/category/android/
http://www.htcdev.com/

Index 323

setStrokeWidth method of
class Paint 221

setStyle method of class
Paint 220

setSystemUiVisibility
method of class View 224

Setting hardware emulation
options 30

setVolumeControlStream
method of class Activity
172, 176

shape element 250
SharedPreferences class 98,

110, 111
edit method 117
getAll method 113
getString method 118
getStringSet method 153
registerOnShared-
PreferenceChange-
Listener method 149

SharedPreferences.Editor
class 98, 117
apply method 117
putString method 117

show method of class
DialogFragment 164

shuffle a collection 162
shuffle method of class
Collections 136

signing apps 290
simple collision detection 186
simple touch events 172
SimpleCursorAdapter class

264
SimpleOnGestureListener

interface 224
single-screen app 42
slider 68
SMS 96
Social API 9
social media sites 304
social networking 304, 305
soft buttons on an Android

device 24
soft keyboard

prevent display at app
startup 124

prevent from displaying
when app loads 100

soft keyboard (cont.)
remain on screen 70
types 253

soft keypad 88
sort

case insensitive 114
sort method of class
Collections 114

sound effects 172
sound files 175
sound quality 181
SoundPool class 172, 181

load method 182
play method 186
release method 192

sounds 171
source code 2
source-code listing 2
sp (scale-independent pixels) 52
speech recognition xix
speech synthesis xix
SQL (Structured Query

Language) 247
SQLite 13, 242, 247
SQLiteDatabase class 247

delete method 285
execSQL method 287
insert method 283
query method 284
update method 284

SQLiteOpenHelper class 247,
282, 286
getWritableDatabase

method 282
onCreate method 286
onDowngrade method 287
onUpgrade method 286

SQLiteOpenHelpter class
close method 283

star ratings for apps 303
startActivity method of

class Context 99, 119
startAnimation method of

class View 136
stream for playing music 181
streaming 13
String resource

containing multiple format
specifiers 137

String.CASE_INSENSITIVE_
ORDER 114

strings.xml 50, 75, 102
stroke element of a shape 250
Structured Query Language

(SQL) 247
style attribute of a GUI

component 246
Style property of a View 252,

254
style resource 252, 254
style resources 246
styles.xml 249
subclass 67
support both portrait and

landscape orientations 103
surfaceChanged method of

interface
SurfaceHolder.Callback
193

surfaceCreated method of
interface
SurfaceHolder.Callback
193

surfaceDestroyed method of
interface
SurfaceHolder.Callback
193

SurfaceHolder class 173, 181
addCallback method 181
lockCanvas method 196

SurfaceHolder.Callback
interface 173, 181, 193
surfaceChanged method

193
surfaceCreated method

193
surfaceDestroyed

method 193
SurfaceView class 173, 181

getHolder method 181
synchronized 196
syntax coloring xvii, 2
system bar 36, 98, 246
SYSTEM_UI_FLAG_FULLSCREEN

224
SYSTEM_UI_FLAG_HIDE_
NAVIGATION 224

SYSTEM_UI_FLAG_IMMERSIVE
224

324 Index

SYSTEM_UI_FLAG_LAYOUT_
FULLSCREEN 224

SYSTEM_UI_FLAG_LAYOUT_
HIDE_NAVIGATION 224

SYSTEM_UI_FLAG_LAYOUT_ST
ABLE 224

T
TableLayout class 70
tablet 8
TalkBack 37, 57, 103, 105

Localization 62
temperature sensor 201
Text Appearance property of a
TextView 73

text box 68
Text Color property of a

component 53
text field 68
Text property of a component

50
Text Size property of a

component 52
Text-to-Speech API 9
TextView class 37, 50, 68, 80

Label For property 76
Text Appearance property

73
TextView component 47
TextWatcher interface 69, 80
Theme

Holo Dark 40
Holo Light 40
Holo Light with dark action

bars theme 40
thread (for animation) 172
Thread class 195
thread safe GUI 135
Threadr class 172
Tip Calculator app 15
Toast class 135, 153

makeText method 153
Tools

logcat 136
touch event 202, 225
touch events

fling 202
long press 202
scroll 202
simple 172

track app installs 303
translate animation

android:duration
attribute 147

android:fromXDelta
attribute 146

android:startOffset
attribute 147

android:toXDelta
attribute 146

translate animation for a
View 146

transparency 77, 200
tweened animation 134, 146
tweet 305
Twitter 6, 96, 305

@deitel 305
hashtag 305
tweet 305

Twitter search 90
operators 92

TYPE_ACCELEROMETER
constant of class Sensor 214

U
unregisterListener method

of class SensorManager 215
update method of class
SQLiteDatabase 284

upgrading a database 282
Uri class 110, 119

parse method 119
URL encoded String 118
USB debugging 30
Use Default Margins property

of a GridLayout 73
utilities 31

V
values folder of an Android

project 46, 50
version code 292
version name 292
versioning your app 290
Versioning Your Applications 292
video xix, 13
video sharing 305
view 67
View animations 146

View class 111, 173, 234
custom subclass 178
getSystemUiVisibilty

method 224
invalidate method 222
onDraw method 223
onSizeChanged method

182, 221
onTouchEvent method

172, 194, 202, 225
redraw a View 223
setImageBitmap method

238
setSystemUiVisibility

method 224
size changes 182
startAnimation method

136
View.OnClickListener

interface 111
View.SYSTEM_UI_FLAG_
FULLSCREEN 224

View.SYSTEM_UI_FLAG_
HIDE_NAVIGATION 224

View.SYSTEM_UI_FLAG_
IMMERSIVE 224

View.SYSTEM_UI_FLAG_
LAYOUT_FULLSCREEN 224

View.SYSTEM_UI_FLAG_
LAYOUT_HIDE_NAVIGATION
224

View.SYSTEM_UI_FLAG_
LAYOUT_STABLE 224

ViewGroup class 251
viral marketing 304, 305
viral video 305
virtual camera operator 9
virtual goods 298
VoiceOver

enable/disable 58
volume 172

W
web services 6

Amazon eCommerce 6
eBay 6
Facebook 6
Flickr 6
Foursquare 6
Google Maps 6

Index 325

web services (cont).
Groupon 6
Instagram 6
Last.fm 6
LinkedIn 6
Microsoft Bing 6
Netflix 6
PayPal 6
Salesforce.com 6
Skype 6
Twitter 6
WeatherBug 6
Wikipedia 6
Yahoo Search 6
YouTube 6
Zillow 6

Weight property of a
component 78, 105

Weight property of a GUI
component 141

Welcome app 14, 15
Welcome tab in Eclipse 38
widget 13, 80, 111
width of a column 70
Wi-Fi Direct 9
Window soft input mode

option 88, 124
WindowManager class 135, 150
Windows 14
workspace 19
Workspace Launcher window

19
wrap_content value of the
android:layout_height
attribute 76, 77

wrap_content value of the
android:layout_width
attribute 76, 77

www.deitel.com/training
309

X
xml folder of an Android project

46, 134
XML utilities 13

Y
YouTube 294

http://www.deitel.com/training

	Contents
	Preface
	Before You Begin
	3 Tip Calculator App: Introducing GridLayout, LinearLayout, EditText, SeekBar, Event Handling, NumberFormat and Defining App Functionality with Java
	3.1 Introduction
	3.2 Test-Driving the Tip Calculator App
	3.3 Technologies Overview
	3.3.1 Class Activity
	3.3.2 Activity Lifecycle Methods
	3.3.3 Arranging Views with LinearLayout and GridLayout
	3.3.4 Creating and Customizing the GUI with the Graphical Layout Editor and the Outline and Properties Windows
	3.3.5 Formatting Numbers as Locale-Specific Currency and Percentage Strings
	3.3.6 Implementing Interface TextWatcher for Handling EditText Text Changes
	3.3.7 Implementing Interface OnSeekBarChangeListener for Handling SeekBar Thumb Position Changes
	3.3.8 AndroidManifest.xml

	3.4 Building the App’s GUI
	3.4.1 GridLayout Introduction
	3.4.2 Creating the TipCalculator Project
	3.4.3 Changing to a GridLayout
	3.4.4 Adding the TextViews, EditText, SeekBar and LinearLayouts
	3.4.5 Customizing the Views to Complete the Design

	3.5 Adding Functionality to the App
	3.6 AndroidManifest.xml
	3.7 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

