
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133564242
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133564242
https://plusone.google.com/share?url=http://www.informit.com/title/9780133564242
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133564242
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133564242/Free-Sample-Chapter

Core HTML5
2D Game Programming

This page intentionally left blank

Core HTML5
2D Game Programming

David Geary

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382–3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Geary, David M. (David Mark), 1957- author.
 Core HTML5 2D game programming / David Geary.
 pages cm
 Includes index.
 ISBN 978-0-13-356424-2 (pbk. : alk. paper) — ISBN 0-13-356424-X (pbk. : alk. paper)
 1. HTML (Document markup language) 2. Computer games—Programming. 3.
Computer animation. I. Title.
 QA76.76.H94G43 2015
 006.7'4—dc23
 2014014836

Copyright © 2015 Clarity Training

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-13-356424-2
ISBN-10: 0-13-356424-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2014

Contents

xvPreface ..

xxiAcknowledgments ..

xxiiiAbout the Author ...

1Chapter 1: Introduction ..

3Snail Bait ..1.1
7Sprites: The Cast of Characters ..1.1.1

10HTML5 Game Development Best Practices ...1.2
10Pause the Game When the Window Loses Focus1.2.1
12Implement a Countdown When the Window Regains Focus .1.2.2
12Use CSS for UI Effects ...1.2.3
14Detect and React to Slowly Running Games1.2.4
14Incorporate Social Features ..1.2.5
15Put All the Game’s Images in a Single Sprite Sheet1.2.6

16
Store High Scores and Send Realtime, In-game Metrics to
the Server ..

1.2.7

16Special Features ..1.3
18Snail Bait’s HTML and CSS ..1.4
25Snail Bait’s Humble Beginning ..1.5
28The Use of JavaScript in This Book ..1.6
31Conclusion ..1.7
31Exercises ..1.8

33Chapter 2: Raw Materials and Development Environment

35Use Developer Tools ..2.1
35The Console ..2.1.1
40Chrome Canary’s Frame Rate Counter2.1.2
42Debugging ..2.1.3
44Timelines ...2.1.4
49Profiling ..2.1.5
50Obtain Assets ..2.2

v

50Graphics ..2.2.1
51Image Manipulation ...2.2.2
52Sound and Music ...2.2.3
53Animations ...2.2.4
54Use CSS Backgrounds ...2.3
56Generate Favicons ..2.4
58Shorten the Coding Cycle ...2.5
59Conclusion ..2.6
60Exercises ..2.7

61Chapter 3: Graphics and Animation ..

64Draw Graphics and Images with the HTML5 canvas Element3.1
66Draw the Background ...3.1.1
67Draw the Runner ...3.1.2
67Draw Platforms ...3.1.3
70Implement Smooth HTML5 Animations ...3.2
71The requestAnimationFrame() Method3.2.1
72A requestAnimationFrame() Polyfill ...3.2.2
75Implement a Game Loop ..3.3
77Calculate Frame Rates ...3.4
78Scroll the Background ...3.5
79Translate the Coordinate System ...3.5.1
81Scroll Snail Bait’s Background ...3.5.2
85Create Time-Based Motion ...3.6
86Reverse Scroll Direction ..3.7
86Draw Animation Frames ..3.8
87Use Parallax to Create the Illusion of Depth ..3.9
90Conclusion ..3.10
90Exercises ..3.11

93Chapter 4: Infrastructure ..

95Encapsulate Game Functions in a JavaScript Object4.1
95Snail Bait’s Constructor ..4.1.1
97Snail Bait’s Prototype ..4.1.2

100Understand JavaScript’s Persnickety this Reference4.2
103Handle Keyboard Input ..4.3
105Pause or Resume the Game When the Player Presses the p Key4.4

Contentsvi

107Freeze the Game to Ensure It Resumes Exactly Where It Left Off4.5
108Pause the Game When the Window Loses Focus4.6
110Resume a Paused Game with an Animated Countdown4.7
111Display Toasts (Brief Messages) to Players4.7.1
112Snail Bait’s Countdown ..4.7.2
115Conclusion ..4.8
116Exercises ..4.9

117Chapter 5: Loading Screens ..

120Define Snail Bait’s Chrome ...5.1
122Accessing Chrome Elements in JavaScript5.1.1
123Fade Elements In and Out with CSS Transitions5.2
125Fade Elements Into View ..5.2.1
127Fade Elements Out of View ..5.2.2
128The snailbait-toast Element’s CSS5.2.3
129Revealing and Hiding Toasts ...5.2.4

132
Fade Any Element In or Out That Has a CSS Transition Associated
with Its Opacity ..

5.3

135Implement the Loading Screen ..5.4
140Reveal the Game ..5.5
144Conclusion ..5.6
144Exercises ..5.7

147Chapter 6: Sprites ...

149Sprite Objects ..6.1
152Sprite Properties ..6.1.1
153The Sprite Constructor ..6.1.2
154Sprite Methods ...6.1.3
156Incorporate Sprites into a Game Loop ..6.2
160Implement Sprite Artists ..6.3
160Stroke and Fill Artists ...6.3.1
161Image Artists ..6.3.2
162Sprite Sheet Artists ..6.3.3
164Define Sprite Sheet Cells ..6.3.4
167Create and Initialize a Game’s Sprites ..6.4
171Define Sprites with Metadata ...6.5
174Scroll Sprites ...6.6

viiContents

176Conclusion ..6.7
177Exercises ..6.8

179Chapter 7: Sprite Behaviors ...

182Behavior Fundamentals ..7.1
184Runner Behaviors ..7.2
187The Runner’s Run Behavior ...7.3
190Flyweight Behaviors ..7.4
193Game-Independent Behaviors ...7.5
193The Cycle Behavior ..7.5.1
195Sparkling Rubies and Sapphires7.5.1.1
197Flapping Wings and Throbbing Coins7.5.1.2
199Combine Behaviors ...7.6
205Conclusion ..7.7
206Exercises ..7.8

207Chapter 8: Time, Part I: Finite Behaviors and Linear Motion

209Implement an Initial Jump Algorithm ..8.1
210Shift Responsibility for Jumping to the Runner8.2
213Implement the Jump Behavior ...8.3
214Time Animations with Stopwatches ...8.4
217Refine the Jump Behavior ...8.5
220Implement Linear Motion ..8.6
221Ascending ...8.6.1
223Descending ...8.6.2
225Pause Behaviors ...8.7
227Conclusion ..8.8
227Exercises ..8.9

229Chapter 9: Time, Part II: Nonlinear Motion ..

230Understand Time and Its Derivatives ...9.1

231
Use Animation Timers and Easing Functions to Implement
Nonlinear Jumping ..

9.2

233Implement Animation Timers ..9.3
235Implement Easing Functions ...9.4
239Fine-tune Easing Functions ..9.5
241Implement a Realistic Bounce Behavior ...9.6
245Randomize Behaviors ...9.7

Contentsviii

247
Implement Nonlinear Color Changes with Animation Timers and
Easing Functions ..

9.8

249The Pulse Behavior ..9.8.1
251Conclusion ..9.9
251Exercises ..9.10

253Chapter 10: Time, Part III: Time Systems ...

255Snail Bait’s Time System ...10.1
257Create and Start the Time System ..10.2
258Incorporate the Time System into Snail Bait ..10.3
258Use the Time System to Drive the Game’s Animation10.3.1

259
Implement a Game Method that Uses the Time System to
Modify the Flow of Time ..

10.3.2

260Factor the Time Rate into the Frame Rate Calculation10.3.3
261Pause and Resume the Game by Using the Time System10.3.4

264
Redefine the Current Time for Stopwatches and Animation
Timers ..

10.4

268Implement the Time System ..10.5
270Conclusion ..10.6
270Exercises ..10.7

273Chapter 11: Collision Detection ...

275The Collision Detection Process ...11.1
275Collision Detection Techniques ...11.2
277Snail Bait’s Collision Detection ..11.3
278Sprite Collision Rectangles ...11.3.1
279The Runner’s Collide Behavior ...11.3.2
281Select Candidates for Collision Detection ..11.4
282Detect Collisions Between the Runner and Another Sprite11.5
284Process Collisions ..11.6
286Optimize Collision Detection ...11.7
286Refine Bounding Boxes ...11.7.1
288Use Spatial Partitioning ..11.7.2
289Monitor Collision Detection Performance ...11.8
291Implement Collision Detection Edge Cases ...11.9
295Conclusion ..11.10
296Exercises ..11.11

ixContents

297Chapter 12: Gravity ...

298Equip the Runner for Falling ..12.1
300Incorporate Gravity ...12.2
302The Runner’s Fall Behavior ..12.2.1
306Calculate Initial Falling Velocities ...12.2.2
308Pause When the Runner Is Falling ..12.2.3
308Collision Detection, Redux ...12.3
310Conclusion ..12.4
311Exercises ..12.5

313Chapter 13: Sprite Animations and Special Effects

314Implement Sprite Animations ..13.1
320Create Special Effects ..13.2
321Shake the Game ...13.2.1
323Transition Between Lives ...13.2.2
329Choreograph Effects ..13.3
332Explode Bees ..13.3.1
333Detonate Buttons ...13.3.2
335Conclusion ..13.4
336Exercises ..13.5

337Chapter 14: Sound and Music ..

339Create Sound and Music Files ...14.1
340Load Music and Sound Effects ..14.2
342Specify Sound and Music Controls ...14.3
343Play Music ..14.4
344Play Music in a Loop ...14.5
347Play Sound Effects ...14.6
350Create Audio Sprites ...14.6.1
351Define Sound Objects ..14.6.2
353Implement Multichannel Sound ...14.6.3
355Create Audio Channels ...14.6.3.1

357
Coordinate with Sprite Sheet Loading to Start the
Game ..

14.6.3.2

358Play Sounds ...14.6.3.3
361Turn Sound On and Off ..14.7

Contentsx

362Conclusion ..14.8
362Exercises ..14.9

363Chapter 15: Mobile Devices ..

366Run Snail Bait on Mobile Devices ..15.1
368Detect Mobile Devices ...15.2
369Scale Games to Fit Mobile Devices ..15.3
371The viewport Meta Tag ...15.3.1

376
Programmatically Resize Games to Fit Mobile Device
Screens ..

15.3.2

381Change Instructions Underneath the Game’s Canvas15.4
383Change the Welcome Screen ..15.5
384Implement the Welcome Toast ...15.5.1
385Modify the Game’s Start Sequence15.5.1.1
386Add HTML for the Mobile Welcome Toast15.5.1.2
387Define CSS for the Mobile Toasts15.5.1.3

388
Implement Event Handlers for the Mobile Welcome
Toast’s Links ..

15.5.1.4

389Draw Mobile Instructions ..15.5.2
394Implement the Mobile Start Toast ...15.5.3
395Implement the Start Link’s Event Handler15.5.3.1
396Reveal the Mobile Start Toast ...15.5.4
396Incorporate Touch Events ...15.6
400Work Around Sound Idiosyncrasies on Mobile Devices15.7

402
Add an Icon to the Home Screen and Run Without Browser
Chrome ..

15.8

403Conclusion ..15.9
404Exercises ..15.10

405Chapter 16: Particle Systems ...

406Smoking Holes ...16.1
411Use Smoking Holes ...16.2
411Define Smoking Hole Data ...16.2.1
412Create Smoking Holes ..16.2.2
413Add Smoking Holes to Snail Bait’s sprites Array16.2.3
413Scroll Smoking Holes Every Animation Frame16.2.4
414Implement Smoking Holes ...16.3

xiContents

415Disguise Smoking Holes as Sprites ..16.3.1
417Incorporate Fire Particles ..16.3.2
418Create Fire Particles ..16.3.2.1

421
Draw and Update Fire Particles Every
Animation Frame ...

16.3.2.2

422Incorporate Smoke Bubbles ...16.3.3
424Create Smoke Bubbles ...16.3.3.1

428
Draw and Update Smoke Bubbles Every Animation
Frame ...

16.3.3.2

430Emit Smoke Bubbles ..16.3.3.3
432Dissipate Smoke Bubbles ..16.3.3.4
434Pause Smoking Holes ..16.4
435Conclusion ..16.5
436Exercises ..16.6

437Chapter 17: User Interface ..

438Keep Score ..17.1
442Add a Lives Indicator ...17.2
448Display Credits ..17.3
455Tweet Player Scores ...17.4
458Warn Players When the Game Runs Slowly ..17.5
464Monitor Frame Rate ..17.5.1
466Implement the Running Slowly Warning Event Handlers17.5.2
467Implement a Winning Animation ...17.6
472Conclusion ..17.7
472Exercises ..17.8

475Chapter 18: Developer Backdoor ...

477Snail Bait’s Developer Backdoor ..18.1
479The Developer Backdoor’s HTML and CSS ...18.2
481Reveal and Hide the Developer Backdoor ...18.3
483Update the Developer Backdoor’s Elements18.4
484Implement the Developer Backdoor’s Checkboxes18.5
487Show and Hide Collision Rectangles18.5.1
489Enable and Disable the Running Slowly Warning18.5.2
490Show and Hide Smoking Holes ..18.5.3
491Update Backdoor Checkboxes ...18.5.4

Contentsxii

492Incorporate the Developer Backdoor Sliders18.6
494Specify the HTML and CSS for the Backdoor’s Sliders18.6.1
496Access Slider Readouts in Snail Bait’s JavaScript18.6.2
497Create and Initialize the Backdoor’s Sliders18.6.3
498Wire the Running Slowly Slider to the Game18.6.4
498Wire the Time Rate Slider to the Game18.6.5
499Wire the Game to the Time Rate Slider18.6.6
500Update Sliders Before Revealing the Backdoor18.6.7
502Implement the Backdoor’s Ruler ...18.7
503Create and Access the Ruler Canvas ...18.7.1
504Fade the Ruler ..18.7.2
505Draw the Ruler ..18.7.3
507Update the Ruler ...18.7.4
507Drag the Canvas ...18.7.5
513Conclusion ..18.8
513Exercises ..18.9

515

Chapter 19: On the Server: In-game Metrics, High Scores, and

Deployment ...

517Node.js and socket.io ...19.1
518Include socket.io JavaScript in Snail Bait ..19.2
520Create a Simple Server ..19.3
520Create a Socket on the Server ...19.4
521Start the Server ...19.5
522Create a Socket on the Client and Connect to the Server19.6
523Record In-game Metrics ..19.7
526Manage High Scores ..19.8
527The High Scores User Interface ...19.8.1
530Retrieve High Scores from the Server19.8.2
533Display High Scores on the Client ..19.8.3
534Monitor Name Input ...19.8.4
536Validate and Set the High Score on the Server19.8.5
538Redisplay High Scores ..19.8.6
539Start a New Game ...19.8.7
540Deploy Snail Bait ..19.9
542Upload Files to a Server ..19.10

xiiiContents

543Conclusion ..19.11
544Exercises ..19.12

545Chapter 20: Epilogue: Bodega’s Revenge ..

547Design the User Interface ...20.1
551Create the Sprite Sheet ..20.2
552Instantiate the Game ..20.3
553Implement Sprites ...20.4
553The Turret ...20.4.1
554Create the Turret Sprite’s Artist20.4.1.1
555Draw the Turret ..20.4.1.2
556Bullets ..20.4.2
560Birds ..20.4.3
563Implement Sprite Behaviors ...20.5
564Turret Behaviors ..20.5.1
564The Turret’s Rotate Behavior20.5.1.1
566The Turret’s Barrel Fire Behavior20.5.1.2
569The Turret’s Shoot Behavior20.5.1.3
571Bullet Behaviors ...20.5.2
574Bird Behaviors ..20.5.3
575The Bird Move Behavior ..20.5.3.1
577The Bird Collide Behavior ...20.5.3.2
579The Bird Explosion Behavior20.5.3.3
580Draw the Bullet Canvas ..20.6
582Implement Touch-Based Controls for Mobile Devices20.7
585Conclusion ..20.8
585Exercises ..20.9

587Glossary ..

595Index ...

Contentsxiv

Preface

This book is for experienced JavaScript developers who want to implement
2D games with HTML5. In this book, I chronicle the development of a sophisti-
cated side-scroller platform video game, named Snail Bait, from scratch. I do not
use any third-party graphics or game frameworks, so that you can learn to imple-
ment everything from smooth animations and exploding sprites to developer
backdoors and in-game metrics, entirely on your own. If you do use a game
framework, this book provides valuable insights into how they work.

Because it’s meant for instructional purposes, Snail Bait has only a single level,
but in all other respects it’s a full-fledged, arcade-style game. Snail Bait simulta-
neously manipulates dozens of animated objects, known as sprites, on top of a
scrolling background and simultaneously plays multiple sound effects layered
over the game’s soundtrack. The sprites run, jump, fly, sparkle, bounce, pace,
explode, collide, shoot, land on platforms, and fall through the bottom of the game.

Snail Bait also implements many other features, such as a time system that can
slow the game’s overall time or speed it up; an animated loading screen; special
effects, such as shaking the game when the main character loses a life; and particle
systems that simulate smoke and fire. Snail Bait pauses the game when the game’s
window loses focus; and when the window regains focus, Snail Bait resumes with
an animated countdown to give the user time to regain the controls.

Although it doesn’t use game or graphics frameworks, Snail Bait uses Node.js
and socket.io to send in-game metrics to a server, and to store and retrieve high
scores, which the game displays with a heads-up display. Snail Bait shows a
warning when the game runs too slowly, and if you type CTRL-d as the game
runs, Snail Bait reveals a developer backdoor that gives you special powers, such
as modifying the flow of time or displaying sprite collision rectangles, among
other things.

Snail Bait detects when it runs on a mobile device and reconfigures itself by in-
stalling touch event handlers and resizing the game to fit snugly on the mobile
device’s screen.

In this book I show you how to implement all of Snail Bait’s features step by step,
so that you can implement similar features in your own games.

xv

A Brief History of This Book
In 2010, I downloaded the graphics and sound from a popular open source An-
droid game named Replica Island, and used them to implement a primitive version
of Snail Bait on Android.

At that time, I became interested in HTML5 Canvas and I started working on my
previous book, Core HTML5 Canvas. As I wrote the Canvas book, I continued to
work on Snail Bait, converting it from Android’s Java to the browser’s JavaScript
and the HTML5 canvas element. By the time that book was finished in 2012, I
had a still primitive, but close to feature-complete, version of the game.

Later in 2012, I started writing a 10-article series for IBM developerWorks on
game programming, based on Snail Bait. Over the course of the next ten months,
I continued to work on the game as I wrote the articles. (See “Online Resources”
below for a link to those articles.)

By summer 2013, Snail Bait had matured a great deal, so I put together a presen-
tation covering Snail Bait’s development and traveled to Sebastopol, California
to shoot a 15-hour O’Reilly video titled “HTML5 2D Game Development.” In
some respects that video is the film version of this book. Although the video
wasn’t released until September, it was one of the top 10 bestselling O’Reilly
videos for 2013. (The “Online Resources” below has a link to that video.)

When I returned home from Sebastopol in July 2013, I started writing this book
full time. I started with the ten articles from the IBM developerWorks series,
rewrote them as book chapters, and ultimately added ten more chapters. As I
was writing, I constantly iterated over Snail Bait’s code to make it as readable as
possible.

In December 2013, with Chapters 1–19 written, I decided to add a final chapter
on using the techniques in the book to implement a simpler video game. That
game is Bodega’s Revenge, and it’s the subject of Chapter 20.

How to Use This Book
This book’s premise is simple: It shows you how to implement a sophisticated
video game so that you can implement one of your own.

There are several ways you can use this book. First, I’ve gone to great lengths to
make it as skim-friendly as possible. The book contains lots of screenshots, code
listings, and diagrams.

Prefacexvi

I make liberal use of Notes, Tips, Cautions, and Best Practices. Encapsulating
those topics in callouts streamlines the book’s main discussion, and since each
Note, Tip, Caution, and Best Practice has a title (excluding callouts with a single
line), you can decide at a glance whether those ancillary topics are pertinent to
your situation. In general, the book’s main discussion shows you how things
work, whereas the callouts delve into why things work as they do. If you’re in a
hurry, you can quickly get to the bottom of how things work by sticking to the
main discussion, skimming the callouts to make sure you’re not missing anything
important.

Chapters 1–19 of the book chronicle the development of Snail Bait, starting with
a version of the game that simply displays graphics and ending with a full-featured
HTML5 video game. Chapter 20 is the Epilogue, which uses much of what the
book covered in the previous 19 chapters to implement a second video game.

If you plan to read the book, as opposed to using it solely as reference, you will
most likely want to start reading at either Chapter 1 or Chapter 20. If you start at
the beginning, Chapter 20 will be a recap and review of what you learned previ-
ously, in addition to providing new insights such as using polar coordinates and
rotating coordinate systems.

If you start reading at Chapter 20, perhaps even just skimming the chapter, you
can get an idea for what lies behind in the previous 19 chapters. If you start at
Chapter 20, don’t expect to understand a lot of what you read in that chapter the
first time around.

I assume that many readers will want to use this book as a reference, so I’ve in-
cluded references to section headings at the start of each chapter, in addition to
a short discussion at the beginning of each chapter about what the chapter
entails. That will help you locate topics. I’ve also included many step-by-step in-
structions on how to implement features so that you can follow those steps to
implement similar features of your own.

The Book’s Exercises
Passively reading a book won’t turn anyone into a game programmer. You’ve
got to get down in the trenches and sling some code to really learn how to imple-
ment games. To that end, each chapter in this book concludes with a set of
exercises.

To perform the exercises, download the final version of Snail Bait and modify
that code. In some cases, the exercises will instruct you to modify code for a

xviiPreface

chapter-specific version of the game. See the next section for more information
about chapter-specific versions of Snail Bait.

Source Code and Chapter-specific Versions of Snail Bait
This book comes with the source to two video games. See “Online Resources”
below for URLs to the games and their source code.

You will undoubtedly find it beneficial to refer to Snail Bait’s source code as you
read this book. You will find it more beneficial, however, to refer to the version
of the game that corresponds to the chapter you are reading. For example, in the
first chapter we implement a nascent version of Snail Bait that simply draws the
background and the game’s main character. That version of the game bears little
resemblance to the final version, so referring to the final version of the game is
of little use at that point. Instead, you can access the version of Snail Bait corre-
sponding to the end of Chapter 1 at corehtml5games.com/book/code/ch01.
URLs for each of the book’s chapters follow the format corehtml5games.com/book/
code/ch??, where ?? represents two digits corresponding to chapter numbers
from 01 to 20, excluding Chapter 2.

As mentioned above, exercises at the end of each chapter correspond to the final
version of Snail Bait, unless otherwise stated.

Prerequisites
No one would think of taking a creative writing class in a language they couldn’t
speak or write. Likewise, you must know JavaScript to implement sophisticated
games with HTML5. JavaScript is a nonnegotiable prerequisite for this book.

Nearly all the code listings in this book are JavaScript, but you still need to know
your way around HTML and CSS. You should also be familiar with computer
graphics and have a good grasp of basic mathematics.

Your Game
Finally, let’s talk about why we’re here. I assume you’re reading this book because
you want to implement a game of your own.

The chapters of this book discuss individual aspects of game programming, such
as implementing sprites or detecting collisions. Although they pertain to Snail
Bait, you will be able to easily translate those aspects to your own game.

Prefacexviii

The order of the chapters, however, is also significant because it shows you how
to implement a game from start to finish. In the beginning of the book, we gather
raw materials, set up our development environment, and then start development
by drawing the game’s basic graphics. Subsequent chapters add animation, sprites,
sprite behaviors, and so on. If you’re starting a game from scratch, you may want
to follow that same outline, so you can alternate between reading about features
and implementing them on your own.

Before you get started coding in earnest, you should take the time to set up your
development environment and become as familiar as you can with the browser’s
developer tools. You should also make sure you shorten your development cycle
as discussed at the end of Chapter 2. The time you initially spend preparing will
make you more productive later on.

Finally, thank you for buying this book. I can’t wait to see the games you create!

David Geary
Fort Collins, Colorado
2014

Online Resources
Core HTML5 2D Game Programming’s companion website: corehtml5games.com

Play Snail Bait: corehtml5games.com/snailbait

Play Bodega’s Revenge: corehtml5games.com/bodegas-revenge

Download Snail Bait: corehtml5games.com/book/downloads/snailbait

Download Bodega’s Revenge: corehtml5games.com/book/downloads/
bodegas-revenge

David’s “HTML5 2D Game Development” video from O’Reilly: shop.oreilly.
com/product/0636920030737.do.

David’s “HTML5 2D Game Development” series on IBM developerWorks:
www.ibm.com/developerworks/java/library/j-html5-game1/index.html

A video of David speaking about HTML5 game programming at the Atlanta
HTML5 Users Group in 2013: youtube.com/watch?v=S256vAqGY6c

Core HTML5 Canvas at http://amzn.to/1jfuf0C. Take a deep dive into Canvas
with David’s book.

xixPreface

http://www.ibm.com/developerworks/java/library/j-html5-game1/index.html
http://amzn.to/1jfuf0C

This page intentionally left blank

Acknowledgments

I am fortunate to have a great editor—the only editor I’ve had in nearly twenty
years of writing books—who is always receptive to my ideas for my next book
and who guides my books from conception to completion. This book was no
different. Greg Doench helped shepherd this book through the process from an
idea to a finished book.

I’m also fortunate to have a wonderful copyeditor, Mary Lou Nohr. She has
copyedited every one of my previous books, and she graciously agreed to smooth
out my rough edges once again.

This is the second book that I’ve done with Alina Kirsanova, who’s a wizardess
at taking my PDFs and making them look super. Once again, Julie Nahil oversaw
the production of the book and kept everything on track as we headed to the
printer.

For every book I write, I select reviewers who I think will make the book much
better than I ever could have alone. For this book, I had four excellent reviewers:
Jim O’Hara, Timothy Harrington, Simon Sarris, and Willam Malone. Gintas
Sanders also gave me permission to use his coins in Snail Bait and gave me some
great critiques of the game.

When I shot the “HTML5 2D Game Development” video for O’Reilly, I taught a
class in front of a live audience. One of the audience members asked great ques-
tions and came up with several insights. Jim O’Hara was one of my most consci-
entious reviewers and, as he did in class, provided lots of great questions and
insights.

My editor, Greg Doench, put me in touch with Tim Harrington, who is a Senior
Academic Applications Analyst at Devry University with a background in game
development. Like Jim, Tim came up with lots of insights that made me rethink
how I presented material.

I wanted to find a graphics expert for this book who knew a lot about game pro-
gramming, and I found one. Simon Sarris, who, much to my delight, is not only
both of those things, but is also an excellent writer. He made this book better in
several different ways.

xxi

Finally, I was fortunate to have William Malone review this book. William is a
professional game developer who’s implemented games for Sesame Street (see
Cookie Kart Racing at http://bit.ly/1nlSY3N). William made a tremendous dif-
ference in this book by pointing out many subtleties that would’ve escaped me,
especially concerning mobile devices.

Acknowledgmentsxxii

http://bit.ly/1nlSY3N

About the Author

David is the author of Core HTML5 Canvas and coauthor of Core JavaServer
Faces. David has written several other bestselling books on client- and
server-side Java, including one of the bestselling Java books of all time,
Graphic Java.

xxiii

This page intentionally left blank

1CHAPTER

Introduction

Topics in This Chapter

• 1.1 Snail Bait — p. 3

• 1.2 HTML5 Game Development Best Practices — p. 10

• 1.3 Special Features — p. 16

• 1.4 Snail Bait’s HTML and CSS — p. 18

• 1.5 Snail Bait’s Humble Beginning — p. 25

• 1.6 The Use of JavaScript in This Book — p. 28

• 1.7 Conclusion — p. 31

• 1.8 Exercises — p. 31

The great thing about software development is that you can make nearly anything

you can imagine come to life on screen. Unencumbered by physical constraints

that hamper engineers in other disciplines, software developers have long used

graphics APIs and UI toolkits to implement creative and compelling applications.

Arguably, the most creative genre of software development is game programming;

few endeavors are more rewarding from a creative standpoint than making the

vision you have for a game become a reality.

The great thing about game programming is that it’s never been more accessible.

With the advent of open source graphics, sound, and music, you no longer need

to be an artist and a musician to implement games. And the development envi-

ronments built into modern browsers are not only free, they contain all the

tools you need to create the most sophisticated games. You need only supply

1

programming prowess, a good understanding of basic math (mostly trigonometry),
and a little physics.

In this book we implement two full-fledged HTML5 video games so that you
can learn how to create one of your own. Here are some of the things you will
learn to do:

• Use the browser’s development tools to implement sophisticated games
• Create smooth, flicker-free animations
• Scroll backgrounds and use parallax to create a 3D effect
• Implement graphical objects, known as sprites, that you can draw and

manipulate in a canvas
• Detect collisions between sprites
• Animate sprites to make them explode
• Implement a time system that controls the rate at which time flows through

your game
• Use nonlinear motion to create realistic jumping
• Simulate gravity
• Pause and freeze your game
• Warn players when your game runs slowly
• Display scoreboards, controls, and high scores
• Create a developer’s backdoor with special features
• Implement particle systems to simulate natural phenomenon, such as smoke

and fire
• Store high scores and in-game metrics on a server with Node.js and socket.io
• Configure games to run on mobile devices

NOTE: HTML5 technologies used in Snail Bait

This book discusses the implementation of an HTML5 video game, named Snail
Bait, using the following HTML5 APIs, the most predominant of which is the
Canvas 2D API:

• Canvas 2D API

• Timing Control for Script-based Animations

• Audio

• CSS3 Transitions

Chapter 1 Introduction2

In this book we develop Snail Bait entirely from scratch, without any third-party
game frameworks, so you can learn how to implement all the common aspects
of a video game from the ground up. That knowledge will be invaluable whether
you implement a game by using a framework or not.

The book’s epilogue discusses the implementation of a second video game—
Bodega’s Revenge—that shows how to combine the concepts discussed in the
book to implement a simpler video game.

NOTE: Play Snail Bait and Bodega’s Revenge online

To get the most out of this book, you should play Snail Bait and Bodega’s
Revenge so you’re familiar with the games. You can play Snail Bait online
at corehtml5games.com/snailbait, and you can find Bodega’s Revenge at
corehtml5games.com/bodegas-revenge.

NOTE: Particle systems

A particle system uses many small particles that combine to simulate natural
phenomena that do not have well-defined boundaries and edges. Snail Bait
implements a particle system to simulate smoke, as you can see in Figure 1.1.
We discuss particle systems in detail in Chapter 16.

1.1 Snail Bait
Snail Bait is a classic platform game. The game’s main character, known as the
runner, runs along and jumps between floating platforms that move horizontally.
The runner’s ultimate goal is to land on a gold button that paces back and forth
on top of a pulsating platform at the end of the game. That button is guarded by
two bees and a bomb-shooting snail. The runner, pulsating platform, gold button,
bees, bomb, and snail are all shown in Figure 1.1.

The player controls the game with the keyboard:

• d or ← turns the runner to the left and scrolls the background from left to
right.

• k or → turns the runner to the right and scrolls the background from right
to left.

• j makes the runner jump.
• p pauses the game.

31.1 Snail Bait

Figure 1.1 Snail Bait

When the game begins, the player has three lives. Icons representing the number
of remaining lives are displayed above and to the left of the game’s canvas, as
you can see in Figure 1.1. In the runner’s quest to make it to the end of the level,
she must avoid bad guys—bees and bats—while trying to capture valuable items
such as coins, rubies, and sapphires. If the runner collides with bad guys,
she blows up, the player loses a life, and the runner goes back to the beginning
of the level. When she collides with valuable items, the valuable item disappears,
the score increases, and the game plays a pleasant sound effect.

The snail periodically shoots snail bombs (the gray ball shown near the center of
Figure 1.1). The bombs, like bees and bats, blow up the runner when they hit her.

The game ends in one of two ways: the player loses all three lives, or the player
lands on the gold button. If the player lands on the gold button, the player wins
the game and Snail Bait shows the animation depicted in Figure 1.2.

Snail Bait maintains high scores on a server. If the player beats the existing high
score, Snail Bait lets the player enter their name with a heads-up display (HUD),
as shown in Figure 1.3.

Chapter 1 Introduction4

Figure 1.2 Snail Bait’s winning animation

Figure 1.3 Snail Bait’s high scores

51.1 Snail Bait

If the player doesn’t win the game or beat the existing high score, Snail Bait
displays game credits, as shown in Figure 1.4.

Figure 1.4 Snail Bait’s credits

With the exception of the runner, everything in Snail Bait scrolls continuously in
the horizontal direction. That scrolling further categorizes Snail Bait as a side-
scroller platform game. However, that’s not the only motion in the game, which
leads us to sprites and their behaviors.

NOTE: Platform video games

Donkey Kong, Mario Bros., Sonic the Hedgehog, and Braid are all well-known,
best-selling games where players navigate 2D platforms, a genre known as
platformers. At one time, platformers represented up to one-third of all video
game sales.Today, their market share is drastically lower, but there are still many
successful platform games.

Chapter 1 Introduction6

CAUTION: Snail Bait performance

Hardware acceleration for Canvas makes a huge difference in performance and
has been implemented by most browsers since the middle of 2012. Should you
run Snail Bait in a browser that does not have hardware-accelerated Canvas,
performance will be terrible and the game probably won’t work correctly. When
you play the game, make sure your browser has hardware-accelerated Canvas.
Here is a list of browser versions that have hardware-accelerated Canvas:

• Chrome 13

• Firefox 4

• Internet Explorer 9

• Opera 11

• Safari 5

WASD?

By convention, computer games often use the w, a, s, and d keys to control play.
That convention evolved primarily because it lets right-handed players use the mouse
and keyboard simultaneously. It also leaves the right hand free to press the spacebar
or modifier keys such as CTRL or ALT. Snail Bait doesn’t use WASD because it
doesn’t receive input from the mouse or modifier keys. But you can easily modify
the game’s code to use any combination of keys.

1.1.1 Sprites: The Cast of Characters
With the exception of the background, everything in Snail Bait is a sprite. A sprite
is a visual representation of an object in a game that you draw on the game’s
canvas. Sprites are not a part of the HTML5 Canvas API, but they are simple to
implement. Following are the game’s sprites:

• Platforms (inanimate objects)
• Runner (main character)
• Buttons (good)
• Coins (good)

71.1 Snail Bait

• Rubies and sapphires (good)
• Bees and bats (bad)
• Snail (bad)
• Snail bombs (bad)

Besides scrolling horizontally, nearly all the game’s sprites move independently
of one another. For example, rubies and sapphires bounce up and down at varying
rates of speed, and the buttons and the snail pace back and forth along the length
of the platform on which they reside.

That independent motion is one of many sprite behaviors. Sprites can have other
behaviors that have nothing to do with motion; for example, besides bouncing
up and down, the rubies and sapphires sparkle.

Each sprite has an array of behaviors. A behavior is just a JavaScript object with
an execute() method. Every animation frame, the game iterates over all its visible
sprites and, for each sprite, iterates over the sprite’s behaviors, invoking each
behavior’s execute() method and passing the method a reference to the sprite
in question. In that method, behaviors manipulate their associated sprite according
to game conditions. For example, when you press j to make the runner jump, the
runner’s jump behavior subsequently moves the runner through the jump
sequence, one animation frame at a time.

Table 1.1 lists the game’s sprites and their respective behaviors.

Table 1.1 Snail Bait sprites

BehaviorsSprites

Pulsate (only one platform)Platforms

Run; jump; fall; collide with other sprites; explodeRunner

Explode; flap their wingsBees and bats

Pace; collapse; make bad guys explodeButtons

Sparkle; bounce up and downCoins, rubies, and sapphires

Pace; shoot bombsSnail

Move from right to left; collide with runnerSnail bombs

Behaviors are simple JavaScript objects, as illustrated by Example 1.1, which
shows how Snail Bait instantiates the runner sprite.

Chapter 1 Introduction8

Example 1.1 Creating sprites

runBehavior = { // Just a JavaScript object with an execute method

 execute: function (sprite, // Sprite associated with the behavior
 now, // The current game time
 fps, // The current frame rate
 context, // The context for the game's canvas
 lastAnimationFrameTime) { // Time of last frame

// Update the sprite's attributes, based on the current time
// (now), frame rate (fps), and the time at which Snail Bait
// drew the last animation frame (lastAnimationFrameTime),
// to make it look like the runner is running.

// The canvas context is provided as a convenience for things
// like hit detection, but it should not be used for drawing
// because that's the responsibility of the sprite's artist.

// Method implementation omitted. See Section 7.3 on p. 187
// for a discussion of this behavior.

}

};

var runner = new Sprite('runner', // name
 runnerArtist, // artist

[runBehavior, ...]); // behaviors

Snail Bait defines a runBehavior object, which it passes—in an array with other
behaviors—to the runner sprite’s constructor, along with the sprite’s type (runner)
and its artist (runnerArtist). For every animation frame in which the runner is
visible, the game invokes the runBehavior object’s execute() method. That
execute() method makes it appear as though the runner is running by advancing
through the set of images that depict the runner in various run poses.

NOTE: Replica Island

The idea for sprite behaviors, which are an example of the Strategy design
pattern, comes from Replica Island, a popular open source (Apache 2 license)
Android platform game. Additionally, most of Snail Bait’s graphics are from
Replica Island. You can find out more about Replica Island at replicaisland.net,
and you can read about the Strategy design pattern at http://en.wikipedia.org/
wiki/Strategy_design_pattern.

91.1 Snail Bait

http://en.wikipedia.org/wiki/Strategy_design_pattern
http://en.wikipedia.org/wiki/Strategy_design_pattern

NOTE: Sprite artists

Besides encapsulating behaviors in separate objects—which makes it easy to
add and remove behaviors at runtime—sprites also delegate how they are drawn
to another JavaScript object, known as a sprite artist. That makes it possible to
plug in a different artist at runtime.

NOTE: Freely available resources

Most game developers need help with graphics, sound effects, and music.
Fortunately, an abundance of assets are freely available under various licensing
arrangements. Snail Bait uses the following:

• Graphics and sound effects from Replica Island

• Soundtrack from soundclick.com

• Coins from LoversHorizon at deviantART

See Chapter 2 for more information on obtaining game resources and setting
up a development environment.

1.2 HTML5 Game Development Best Practices
We discuss game development best practices throughout this book, starting here
with seven that are specific to HTML5.

1. Pause the game when the window loses focus.
2. Implement a countdown when the window regains focus.
3. Use CSS for user interface (UI) effects.
4. Detect and react to slowly running games.
5. Incorporate social features.
6. Put all the game’s images in a single sprite sheet.
7. Store high scores and realtime in-game metrics on a server.

We examine the preceding best practices in detail later in the book; for now, a
quick look at each of them introduces more of Snail Bait’s features.

1.2.1 Pause the Game When the Window Loses Focus
If an HTML5 game is running in a browser and you change focus to another tab
or browser window, most browsers severely clamp the frame rate at which the

Chapter 1 Introduction10

game’s animation runs so as to save resources such as CPU and battery power;
after all, why waste resources on a window or tab that’s not visible?

Frame-rate clamping wreaks havoc with most collision detection algorithms be-
cause those algorithms check for collisions every time the game draws an anima-
tion frame; if it takes too long between animation frames, sprites can move past
one another without detection. To avoid collision detection meltdowns resulting
from frame-rate clamping, you must automatically pause the game when the window
loses focus.

When Snail Bait pauses the game, it displays a toast to let the player know the
game is paused, as shown in Figure 1.5.

Figure 1.5 Snail Bait paused

NOTE: Pausing is more than stopping the game

When a paused game resumes, everything must be in exactly the same state
as it was when the game was paused; for example, in Figure 1.5, when play
resumes, the runner must continue her jump from exactly where she was when
the game was paused.

In addition to pausing and unpausing the game, therefore, you must also freeze
and thaw the game to ensure a smooth transition when the game resumes. We
discuss pausing and freezing the game in more detail in Chapter 4.

111.2 HTML5 Game Development Best Practices

NOTE:Toasts

A toast—as in raising a glass to one’s health—is information that a game displays
to a player for a short time. A toast can be simple text, as in Figure 1.5, or it can
represent a more traditional dialog box, as in Figure 1.8 on p. 14.

1.2.2 Implement a Countdown When the Window Regains Focus
When your window regains focus, you should give the player a few seconds to
prepare for the game to restart. Snail Bait uses a three-second countdown when
the window regains focus, as shown in Figure 1.6.

Figure 1.6 Snail Bait’s countdown after the window regains focus

1.2.3 Use CSS for UI Effects
Figure 1.7 shows a screenshot taken a short time after the game loads.

Note especially two things about Figure 1.7. First, a toast containing simple
instructions is visible. That toast fades in when the game loads, and after five
seconds, it fades out.

Second, when the game starts, the checkboxes (for sound and music) and instruc-
tions (telling which keystrokes perform which functions) below the game’s canvas

Chapter 1 Introduction12

Figure 1.7 Snail Bait’s toasts

are fully opaque, whereas the lives indicators and scoreboard at the top of the
game are partially transparent, as shown in Figure 1.7. As the game’s instructions
toast fades, that transparency reverses; the lives indicator and scoreboard become
fully opaque, while the checkboxes and instructions become nearly transparent,
as they are in Figure 1.6.

Snail Bait dims elements and fades toasts with CSS3 transitions.

NOTE: Focus on what’s currently important

When Snail Bait starts, the instructions below the game’s canvas are fully
opaque, whereas the lives indicator and score above the game’s canvas are
partially transparent. Shortly thereafter, they switch opacities; the elements above
the canvas become fully opaque and the elements below become partially
transparent.

Snail Bait goes to all that trouble to focus attention on what’s currently important.
Initially, players should pay attention to the instructions below the game’s canvas;
once the game is underway, players will be more focused on their score and how
many lives are remaining.

131.2 HTML5 Game Development Best Practices

1.2.4 Detect and React to Slowly Running Games
Unlike console games, which run in a tightly controlled environment, HTML5
games run in a highly variable, unpredictable, and chaotic one. Players can do
things directly that significantly affect system performance, for example, running
YouTube videos in another browser tab or window. Other performance killers,
such as system backup software running in the background unbeknown to game
players, can easily make an HTML5 game run so slowly that it becomes
unplayable. And there’s always the possibility that your players will use a browser
that can’t keep up.

As an HTML5 game developer, you must monitor frame rate and react when it
dips below an unplayable threshold. When Snail Bait detects that an average of
the last 10 frame rates falls below 40 frames per second (fps), it displays the
running slowly toast shown in Figure 1.8.

Figure 1.8 Snail Bait’s running slowly toast

1.2.5 Incorporate Social Features
Many modern games incorporate social aspects, such as posting scores on Twitter
or Facebook. When a Snail Bait player clicks on the Tweet my score link that ap-
pears at the end of the game (see Figure 1.4 on p. 6), Snail Bait creates a tweet
announcing the score in a separate browser tab, as shown in Figure 1.9.

Chapter 1 Introduction14

Figure 1.9 Snail Bait’s Twitter integration

1.2.6 Put All the Game’s Images in a Single Sprite Sheet
You can do several things to make your HTML5 game (or any HTML5 application)
load more quickly, but the single most effective thing is to decrease the number
of HTTP requests you make to the server. One way to do that is to put all your
game’s images in a single image, known as a sprite sheet. Figure 1.10 shows Snail
Bait’s sprite sheet.

Figure 1.10 Snail Bait’s sprite sheet (the gray background is transparent)

151.2 HTML5 Game Development Best Practices

When Snail Bait draws the game’s sprites, it copies rectangles from the sprite
sheet into the canvas.

NOTE: Sprite sheets on mobile devices

Some mobile devices place limits on the size of image files, so if your sprite
sheet is too large, you may have to split it into multiple files.Your game will load
more slowly as a result, but that’s better than not loading at all.

1.2.7 Store High Scores and Send Realtime, In-game Metrics to the Server
Most games interact with a server for a variety of reasons. Snail Bait stores high
scores on a server in addition to sending game metrics during gameplay. Snail
Bait does not use any third-party graphics frameworks; however, it does use two
JavaScript frameworks—Node.js and socket.io—to communicate between the
player’s computer and a server. See Chapter 19 for more details.

1.3 Special Features
Snail Bait has three noteworthy features that add polish to the game and make
playtesting more productive:

• Developer backdoor
• Time system
• Particle systems

Snail Bait reveals the developer backdoor, shown in Figure 1.11, when you press
CTRL-d. With the backdoor visible, you can control the rate at which time flows
through the game, making it easy to run the game in slow motion to see how
game events such as collision detection take place. Conversely, you can run
the game faster than normal to determine the best pace for the game.

You can turn collision rectangles on for a better look at exactly how collisions
occur; if the smoking holes obscure your view, you can turn the smoke off by
deselecting the Smoke checkbox. You can also fine-tune the threshold at which
Snail Bait displays the game’s running slowly warning, shown in Figure 1.8, or
you can turn it off entirely, which lets you playtest slow frame rates without Snail
Bait intervening at all.

When you playtest a particular section of the game, you can avoid playing through
the preceding sections every time you test: In addition to the controls at the top
of the game’s canvas, the developer backdoor displays a ruler at the bottom of
the canvas that shows how far the background has scrolled horizontally in pixels.

Chapter 1 Introduction16

Figure 1.11 Snail Bait’s developer backdoor

You use those values to restart the game at a particular horizontal location,
thereby avoiding the preceding sections of the game. For convenience, when the
developer backdoor is visible you can also simply drag the game, including
the background and all the sprites, horizontally to reposition the runner.

The developer backdoor lets you control the rate at which time flows through the
game by virtue of Snail Bait’s time system. Everything that happens in Snail Bait
depends on the current game time, which is the elapsed time since the game
started; for example, when the runner begins a jump, the game records the current
game time, and thereafter moves the runner through the jump sequence frame
by frame, depending on how much time has elapsed since the runner began
the jump.

By representing the current game time as the real time, which is Snail Bait’s default
mode, the game runs at its intended rate. However, Snail Bait’s time system can
misrepresent the current game time as something other than the real time; for
example, the time system can consistently report that the current game time is
half of the actual time, causing the game to run at half speed.

Besides letting you control the rate at which time flows through the game, Snail
Bait’s time system is also the source of special effects. When the runner collides
with a bad guy and explodes, Snail Bait slows time to a crawl while transitioning

171.3 Special Features

to the next life. Once the transition is complete, Snail Bait returns time to normal,
indicating that it’s time to resume play.

Finally, Snail Bait uses two particle systems to create the illusion of smoke and
fire in the background. In Chapter 16, we take a close look at those particle systems
so you can create similar effects of your own.

Now that you have a high-level understanding of the game, let’s take a look at
some code.

NOTE: Snail Bait’s code statistics (lines of code)

• JavaScript: 5,230

• CSS: 690

• HTML: 350

NOTE: A closer look at Snail Bait’s code

• snailbait.js: 3,740

• Supporting JavaScript code: 1,500

• Initializing data for sprites: 500

• Creating sprites: 400

• Sprite behavior implementations: 730

• Event handling: 300

• User interface: 225

• Sound: 130

1.4 Snail Bait’s HTML and CSS
Snail Bait is implemented with HTML, CSS, and JavaScript, the majority of which
is JavaScript. In fact, the rest of this book is primarily concerned with JavaScript,
with only occasional forays into HTML and CSS.

Figure 1.12 shows the HTML elements, outlined in white, and their corresponding
CSS for the top half of the game proper.

Everything in Snail Bait takes place in the arena, which is an HTML DIV element.
The arena’s margin attribute is 0, auto, which means the browser centers the
arena and everything inside it horizontally, as shown in Figure 1.13.

Chapter 1 Introduction18

Figure 1.12 Snail Bait’s CSS for the top half of the game

Figure 1.13 Snail Bait stays centered horizontally in the window

191.4 Snail Bait’s HTML and CSS

When Snail Bait loads resources, it displays the animation shown in Figure 1.14.
During that animation, none of the game’s elements are visible, which is why all
the elements in Figure 1.12 have their display attribute set to none (with the
exception of snailbait-arena, which has no visible characteristics of its own).

Figure 1.14 Snail Bait at startup

After the game loads resources, it fades in the game’s elements by setting their
display attribute to block and subsequently setting their opacity to 1.0 (fully
opaque). Elements that have a transition associated with their opacity property,
like snailbait-lives, snailbait-score, and snailbait-game-canvas, transition
into view over a specified period of time.

The snailbait-lives element has an absolute position; otherwise, with its default
position of static, it will expand to fit the width of its enclosing DIV, forcing the
score beneath it.

The game canvas, which is an HTML5 canvas element, is where all the game’s
action takes place; it’s the only element in Figure 1.12 that’s not a DIV.

Figure 1.15 shows the HTML elements in the lower half of the game.

Like the lives and score elements in the upper half of the game, the browser does
not display the elements at the bottom during the game’s loading animation, so
those elements are initially invisible and have an opacity transition of five seconds,

Chapter 1 Introduction20

Figure 1.15 Snail Bait’s CSS for the bottom of the game

which Snail Bait uses to fade them and all their contained elements in along with
the score and lives elements at the beginning of the game.

211.4 Snail Bait’s HTML and CSS

The snailbait-sound-and-music element, like the snailbait-lives element, has
an absolute position to prevent its width from expanding. The snailbait-keys
and snailbait-explanation DIVs have display attributes of inline so they ap-
pear horizontally inline with the other elements in their enclosing DIV, instead
of being stacked vertically.

Example 1.2 lists Snail Bait’s HTML proper, omitting a considerable amount of
HTML for things like the running slowly warning and developer backdoor.

Example 1.2 index.html (excerpt)

<!DOCTYPE html>

<!--
 Basic HTML elements for Snail Bait. Elements for things such
 as sounds, credits, toasts, developer backdoor, etc. are
 omitted for brevity.
 -->

<html>
<!-- Head...-->

<head>
<title>Snail Bait</title>

 ...

<link rel='stylesheet' href='snailbait.css'>
</head>

<!-- Body...-->

<body>
<!-- Arena...-->

<div id='snailbait-arena'>
 ...

<!-- Lives indicator..-->

<div id='snailbait-lives'>
<img id='snailbait-life-icon-left'

src='images/runner-small.png'/>

<img id='snailbait-life-icon-middle'
src='images/runner-small.png'/>

<img id='snailbait-life-icon-right'
src='images/runner-small.png'/>

</div>

Chapter 1 Introduction22

<!-- Score ...-->

<div id='snailbait-score'>0</div>
 ...

<!-- The game canvas..-->

<canvas id='snailbait-game-canvas' width='800' height='400'>
 Your browser does not support HTML5 Canvas.

</canvas>
 ...

<!-- Sound and music..-->

<div id='snailbait-sound-and-music'>
<div id='snailbait-sound-checkbox-div'

class='snailbait-checkbox-div'>

 Sound <input id='snailbait-sound-checkbox'
type='checkbox' checked/>

</div>

<div class='snailbait-checkbox-div'>
 Music <input id='snailbait-music-checkbox'

type='checkbox' checked/>
</div>

</div>

<!-- Instructions...-->

<div id='snailbait-instructions'>
<div class='snailbait-keys'>

← / d
<div class='snailbait-explanation'>move left</div>
→ / k
<div class='snailbait-explanation'>move right</div>

</div>

<div class='snailbait-keys'>
 j <div class='snailbait-explanation'>jump</div>

</div>

<div class='snailbait-keys'>
 p <div class='snailbait-explanation'>pause</div>

</div>
</div>

<div id='snailbait-mobile-instructions'>

(Continues)

231.4 Snail Bait’s HTML and CSS

Example 1.2 (Continued)

<div class='snailbait-keys'>
 Left

<div class='snailbait-explanation'>
 Run left or jump

</div>
</div>

<div class='snailbait-keys'>
 Right

<div class='snailbait-explanation'>
 Run right or jump

</div>
</div>

</div>

<!-- Copyright..-->

<div id='snailbait-copyright'> © 2012 David Geary</div>
</div>

<!-- JavaScript..-->

<!-- Other script tags for the game's other JavaScript files are
 omitted for brevity. The final version of the game puts all
 the game's JavaScript into a single file. See Chapter 19
 for more details about how Snail Bait is deployed. -->

<script src='snailbait.js'></script>
</body>

</html>

The canvas element is where all the action takes place. The canvas comes with a
2D context with a powerful API for implementing 2D games, among other things,
as you will see in Section 3.1, “Draw Graphics and Images with the HTML5 canvas
Element,” on p. 64. The text inside the canvas element is fallback text that the
browser displays only if it does not support HTML5 canvas element.

One final note about the game’s HTML and CSS: Notice that the width and height
of the canvas is set with canvas element attributes in the preceding listing. Those
attributes pertain to both the size of the canvas element and the size of the drawing
surface contained within that element.

On the other hand, using CSS to set the width and height of the canvas element
sets only the size of the element. The drawing surface remains at its default width
and height of 300 × 150 pixels, respectively. That means you will have a mismatch
between the canvas element size and the size of its drawing surface when you

Chapter 1 Introduction24

set the element’s size to something other than the default 300 × 150 pixels, and
in that case the browser scales the drawing surface to fit the element. Most of the time
that effect is unwanted, so it’s a good idea to set the size of the canvas element
with its width and height attributes, and not with CSS.

At this point, you’ve already seen the end of the Snail Bait story. Now let’s go
back to the beginning.

Draw into a small canvas and let CSS scale it?

Some games purposely draw into a small canvas and use CSS to scale the canvas
to a playable size. That way, the canvas is not manipulating as many pixels, and so
increases performance. You will take a performance hit for scaling the canvas, of
course, but scaling with CSS is typically hardware accelerated, so the cost of the
scaling can be minimal. Today, however, nearly all the latest versions of modern
browsers come equipped with hardware-accelerated Canvas, so it’s just as fast to
draw into a full-sized canvas in the first place.

NOTE: Namespacing HTML elements and CSS classes

To avoid naming collisions with other HTML elements, Snail Bait starts each
HTML element and CSS classname with snailbait-.

1.5 Snail Bait’s Humble Beginning
Figure 1.16 shows Snail Bait’s initial set of files. Throughout this book we add
many more files, but for now all we need is an HTML file to define the structure
of the game’s HTML elements, a CSS file to define the visual properties for
those elements, a JavaScript file for the game’s logic, and two images, one for the
background and another for the runner.

Figure 1.16 Snail Bait’s initial files

251.5 Snail Bait’s Humble Beginning

Figure 1.17 shows the starting point for the game, which simply draws the back-
ground and the runner. To start, the runner is not a sprite; instead, the game
draws her directly.

Figure 1.17 Drawing the background and runner

Example 1.3 lists the starting point for the game’s HTML, which is just a distilled
version of the HTML in Example 1.2.

Example 1.3 The starting point for Snail Bait’s HTML

<!DOCTYPE html>
<html>

<head>
<title>Snail Bait</title>
<link rel='stylesheet' href='snailbait.css'/>

</head>

<body>
<div id='snailbait-arena'>

<canvas id='snailbait-game-canvas' width='800' height='400'>
 Your browser does not support HTML5 Canvas.

</canvas>
</div>

Chapter 1 Introduction26

<!-- JavaScript..-->

<script src='snailbait.js'></script>
</body>

</html>

Initially, the arena contains only the game’s canvas, which is 800 pixels wide by
400 pixels high and has a thin blue border. Example 1.4 shows the starting point
for Snail Bait’s CSS.

Example 1.4 The starting point for Snail Bait’s CSS

body {
background: cornflowerblue;

}

#snailbait-arena {
margin: 0 auto;
margin-top: 50px;
width: 800px;
height: 400px;

}

#snailbait-game-canvas {
border: 1.5px solid blue;

}

Example 1.5 shows the starting point for Snail Bait’s JavaScript.

Example 1.5 The starting point for Snail Bait’s JavaScript

var canvas = document.getElementById('snailbait-game-canvas'),
 context = canvas.getContext('2d'),

 background = new Image(),
 runnerImage = new Image();

function initializeImages() {
 background.src = 'images/background.png';
 runnerImage.src = 'images/runner.png';

 background.onload = function (e) {
startGame();

};
}

(Continues)

271.5 Snail Bait’s Humble Beginning

Example 1.5 (Continued)

function startGame() {
draw();

}

function draw() {
drawBackground();
drawRunner();

}

function drawBackground() {
 context.drawImage(background, 0, 0);
}

function drawRunner() {
 context.drawImage(runnerImage, 50, 280);
}

// Launch game...

initializeImages();

The preceding JavaScript accesses the canvas element and subsequently obtains
a reference to the canvas’s 2D context. The code then draws the background and
runner by using the three-argument variant of drawImage() to draw images at a
particular location in the canvas.

The game starts when the background image loads. For now, starting the game
entails simply drawing the background and the runner.

1.6 The Use of JavaScript in This Book
Proficiency in JavaScript is an absolute prerequisite for this book, as discussed in
the Preface. JavaScript, however, is a flexible and dynamic language, so there are
many ways to use it. The purpose of this section is to show you how this book
uses JavaScript; the intent is not to teach you anything at all about the language.
To get the most out of this book, you must already know everything that you are
about to read, or preferably skim, in this section.

This book defines several JavaScript objects that in more traditional languages
such as C++ or Java would be implemented with classes. Those objects range
from the games themselves (Snail Bait and Bodega’s Revenge) to objects they
contain, such as sprites and sprite behaviors. JavaScript objects are defined with
a constructor function and a prototype, as shown in Example 1.6, a severely
truncated listing of the SnailBait object.

Chapter 1 Introduction28

Example 1.6 Defining JavaScript objects

var SnailBait = function () {
// Constants and variables are declared here

this.LEFT = 1;
...

};

SnailBait.prototype = {
// Methods are defined here

 draw: function(now) { // The draw method takes a single parameter
...

},
...

};

JavaScript objects are instantiated in this book with JavaScript’s new operator, as
shown in Example 1.7.

Example 1.7 Creating JavaScript objects

SnailBait.prototype = {
...

 createSnailSprites: function () {
var snail,

 snailArtist = new SpriteSheetArtist(this.spritesheet,
this.snailCells);

for (var i = 0; i < this.snailData.length; ++i) {
 snail = new Sprite(’snail’,
 snailArtist,

[
this.paceBehavior,
this.snailShootBehavior,

new CycleBehavior(
300, // 300ms per image
5000) // 1.5 seconds interlude

]);

 snail.width = this.SNAIL_CELLS_WIDTH;
 snail.height = this.SNAIL_CELLS_HEIGHT;

(Continues)

291.6 The Use of JavaScript in This Book

Example 1.7 (Continued)

 snail.velocityX = snailBait.SNAIL_PACE_VELOCITY;

this.snails.push(snail);
}

},
...

};

The createSnailSprites() function, which we refer to as a method because it
resides in an object, creates a sprite sheet artist, a sprite, and an instance of
CycleBehavior. That cycle behavior resides in an array of behaviors that
createSnailSprites() passes to the Sprite constructor.

This book also defines objects using JSON (JavaScript Object Notation), as shown
in Example 1.8.

Example 1.8 Defining JavaScript objects with JSON

var SnailBait = function () {
...

// A single object with three properties

this.fallingWhistleSound = {
 position: 0.03, // seconds
 duration: 1464, // milliseconds
 volume: 0.1

};

// An array containing three objects, each of which has two properties

this.audioChannels = [
{ playing: false, audio: null, },
{ playing: false, audio: null, },
{ playing: false, audio: null, }

];
...

};

Finally, the JavaScript code in this book adheres closely to the subset of JavaScript
discussed in Douglas Crockford’s book JavaScript: The Good Parts. The code in
this book also follows the coding conventions discussed in that book.

Chapter 1 Introduction30

NOTE:The use of ellipses in this book

Most of the code listings in this book omit irrelevant sections of code. Those
irrelevant sections are identified with ellipses (…) so that you can distinguish
partial from full listings.

1.7 Conclusion
Snail Bait is an HTML5 platform game implemented with the canvas element’s
2D API. As you’ll see throughout the rest of this book, that API provides a
powerful and intuitive set of functions that let you implement nearly any 2D
game you can imagine.

In this chapter, we looked at Snail Bait from a high level to get a feel for its features
and to understand some of the best practices it implements. Although you can
get a good grasp of its gameplay from reading this chapter, you will have a
much better understanding of the game if you play it, which you can do at
corehtml5games.com.

At the end of this chapter, we looked at a starting point for Snail Bait that simply
draws the background and the runner. Before we build on that starting point and
begin coding in earnest, however, we’ll take a brief detour in the next chapter
to become familiar with the browser development environment and to see
how to access freely available graphics, sound, and music. If you’re already up
to speed on HTML5 development in general and you know how to access open
source assets online, feel free to skip ahead to Chapter 3.

1.8 Exercises

1. Use a different image for the background.
2. Draw the runner at different locations in the canvas.
3. Draw the background at different locations in the canvas.
4. In the draw() function, draw the runner first and then the background.
5. Remove the width and height attributes from the snailbait-game-canvas

element in index.html and add width and height properties—with the same
values of 800px and 400px, respectively—to the snailbait-game-canvas ele-
ment in the CSS file. When you restart the game, does it look the same as
before? Can you explain the result?

311.8 Exercises

This page intentionally left blank

A
add my score button

disabling, 534, 539
enabling, 527, 535–536
event handler for, 536

addBehaviors() method (SmokingHole), 417,
430–431

addChangeListener() method (Slider),
493

addEventListener() method (window)
during transitions, 327
for developer backdoor, 483
for jumps, 209–210
on size or orientation changes, 378
vs. onkeydown, 105

addSpriteMethods() method (SmokingHole),
416, 421

addSpriteProperties() method
(SmokingHole), 415–416

addSpritesToSpriteArray() method
(SnailBait), 168, 413

addTouchEventHandlers() method
(SnailBait), 396–397

adjustScore() method (collideBehavior),
441

adjustVerticalPosition() method
(BounceBehavior), 243–245

Adobe Illustrator, 64
advance() method (SpriteSheetArtist),

163–164
advanceCursor() method (SmokingHole),

431
advanceSpeedSamplesIndex() method

(SnailBait), 466
all.css, all.js files, 541–542
Android

adding an icon to home screen on, 402
audio sprites on, 401
HTML5 applications on, 364–367
layout viewport on, 371
mobile instructions on, 390
remote debugging for, 365

scaling games on, 370
size of image files on, 164
viewport directives on, 375–376

animate() function, 76–77, 86, 100
animate() method (SnailBait), 101, 106,

156–160
double buffering with, 63
monitoring frame rate with, 464–465
naive implementation of, 100
using time system for, 258–259

animated GIFs
creating, 54
for loading sequence, 135, 139
for winning sequence, 467–468

animation frames
drawing, 86–87
last, time of, 108, 159

animation loop. See game loop
animation timers

duration of, 235
for jumps, 231–233
implementing, 233–235
redefining current time for, 264–265

animations, 53–54, 61–90
implementing, 314–320
smooth, 63, 70–75
throttled heavily, 108–109

AnimationTimer object
getElapsedTime() method, 234–235, 265
isExpired(), isPaused(), isRunning()

methods, 234, 265
makeEaseXXXEasingFunction() methods,

232–233, 238–239, 242, 428
pause(), unpause() methods, 234, 263, 265
prototype object, 264–265
reset(), stop() methods, 234, 265
start() method, 234, 264

Apache 2.0 license, 50–51
appendFile() method (fs), 526
appendTo() method (Slider), 493–494, 498
Apple, 64, 373
arc() method (canvas context), 64

595

Index

arena, 18
calculating size of, 379–380
HTML/CSS for, 18–24
resizing, 381

arguments variable (JavaScript), 133
armSnails() method (SnailBait), 202–203
artist property (sprites), 152
artists (for sprites), 9–10

benefits of, 151
implementing, 160–167
types of, 160–164

ascend() method (jumpBehavior), 221–222
ascendTimer property (runner), 218–219,

232
aspect ratio

cropping, 376–377
maintaining, 375

assert() method (console), 38
assets. See coins, jewels
Audacity, 53

creating audio sprite sheets in, 350–351
determining:

length of music in, 346–347
position and duration in, 351–352

audio channels, 353–361
creating, 355–356
getting available, 359
HTML for, 355–356

audio element (HTML)
for audio channels, 355
loop attribute, 344
on mobile devices, 400
preload attribute, 340–341

audio sprite sheets, 52–53, 350–351
on mobile devices, 401
seeking for audio in, 339, 359–360

audio.currentTime property, 360
audioChannels array (SnailBait), 355, 359
audioSpriteCountdown property

(SnailBait), 357–358
authentication, 517

B
backdoor, 16–17, 475–513

handling events for, 483
HTML/CSS for, 480
visibility of, 480–484

background
drawing, 66, 81–85, 547–548

left and right edges of, 84
loading, 28

starting game upon, 77
scrolling, 78, 86–86, 187, 307

direction of, 86
in developer backdoor, 502–513
key event handlers for, 103–105
slowing during transitions, 454
velocity of, 189–190

setting offset of, 81, 86–90, 175–176
background property (CSS), 480
BACKGROUND_VELOCITY constant, 189
backgroundLoaded() method (SnailBait),

139
backgroundOffset property (SnailBait),

82–85
bats and bees, 4

colliding with, 285, 313–320, 442
exploding (bees only), 330–333
flapping wings, 197–199

beginPath() method (canvas context), 64,
283

behaviors (for sprites), 8, 179–205
and graphics context, 184
benefits of, 151
changing at runtime, 183
combining, 183, 199–205
game-independent, 193–199
generalizing, 195
implementing, 182–183
iterating over, 8
pausing/unpausing, 225–227, 262–263
randomizing, 245–247, 561
stateless. See flyweights
triggers for, 212, 214

behaviors property (sprites), 152
bgVelocity property (SnailBait),

189–190
birds

adjusting position of, 578
behaviors of, 575–579
creating, 560–562
randomizing properties of, 561–562

blue button, 8
creating, 335, 469
detonating, 330–331, 333–335, 469
pace behavior of, 190–193

blueButtonDetonateBehavior, 334–335
blur event handler, 105

Index596

Bodega’s Revenge, 545–585
on mobile devices, 582
playing online, 3

BodegasRevenge object, 552
createBirdCollideBehavior() method,

577–579
createBirdMoveBehavior() method,

575–577
createBirds() method, 560–562
createBulletArtist() method, 558
createBulletMoveBehavior() method,

571–574
createBullets() method, 556–558
createExplosionBehavior() method, 579
createTurret() method, 553–556
createTurretArtist() method, 554–555
createTurretBarrelFireBehavior()

method, 567–568
createTurretShootBehavior() method,

569
drawBulletCanvas() method, 581–582
eraseBulletCanvas() method, 581
getBullet() method, 570, 577
getBulletLocation() method, 572
initializeBirdProperties() method,

561–562
isBulletInsideBird() method, 578–579
isBulletOutOfPlay() method, 572
loseOneBullet() method, 575–577,

580–581
lostBulletIndex property, 558, 570,

576–577, 582
polarToCartesian() method, 573

border-radius property (CSS), 453
bottom chrome. See instructions, Music

checkbox, Sound checkbox
BounceBehavior, 241–245
adjustVerticalPosition() method,

243–245
bouncing property, 243–244
constructor for, 242
execute() method, 243
pause(), unpause() methods, 245
resetTimer() method, 243–244
startBouncing() method, 243–244

bounding areas, 275–276
bounding boxes, 277–281

refining, 286–288
See also collision rectangles

bounding volumes, 275
box-shadow property (CSS), 453
Braid game, 6, 179, 181
brighten() method (PulseBehavior),

250–251
browsers

audio/video formats in, 339–340
clamping frame rates in, 10–12
conditional breakpoints in, 42–43
errors/warnings in, 37
hardware acceleration in, 7, 50, 290
loop HTML attribute in, 344
profiling in, 49–50, 289–291
refreshing automatically, 58–59
setting sizes in, 381
specific functionality of, 72–75, 129
throttling heavily, 108–109
viewports in, 371–372
Web Audio API support in, 339

bullet canvas, 580–582
bullets

artist for, 558
creating, 556–558
drawing, 559
losing, 575–577, 580–581
moving, 557–558, 571–574
shooting, 563

buttons, 8
creating, 335, 469
detonating, 330–331, 333–335,

469–471
pace behavior of, 190–193

C
C++, timestamps in, 217
calculateArenaSize() method (SnailBait),

379–380
calculateAverageSpeed() method

(SnailBait), 466
calculateCollisionRectangle() method

(Sprite), 278–279, 487
calculateFps() function, 76–78
calculateFps() method (SnailBait),

260–261
calculateGameTime() method (TimeSystem),

255, 258, 268–270
calculateVerticalDrop() method

(fallBehavior), 303–305
cannonSound object (SnailBait), 352

597Index

Canvas
2D context, 64
arc() method, 64
beginPath() method, 64, 283
clearRect() method, 581
drawImage() method, 64–67, 162–163,

559
drawText() method, 79
fill() method, 65
fillRect() method, 64–65, 69
fillStyle attribute, 66
fillText() method, 391–393, 506
globalAlpha attribute, 66, 69, 155
isPointInPath() method, 65, 283,

578–579
lineTo(), moveTo() methods, 506
lineWidth attribute, 66
rect() method, 65, 283
restore() method, 65, 69, 155
rotate() method, 559
save() method, 65, 69, 155
stroke() method, 65
strokeRect() method, 64–65, 69
strokeStyle attribute, 66
translate() method, 65, 80–81, 559

as immediate-mode graphics system, 63
double buffering in, 63

canvas element (HTML5), 20, 24
CSS for, 19–20, 326
dragging:

accidentally, on mobile devices, 397–399
in developer backdoor, 507–513

drawing surface of, 66, 79
hardware accelerated, 7, 50, 290
implementing sliders with, 492
not focusable, 103
preventing zooming in/out for, 370–371,

376, 398–399
revealing, 143
saving/restoring context for, 389
scaling, 25

CANVAS_WIDTH_IN_METERS constant, 302
Cartesian coordinates, 572
cells

bounding boxes of, 165–167
defining, 164–167
implementing animations with, 314–320
separate arrays of, and performance,

167

CellSwitchBehavior, 314–320, 568, 579
execute() method, 315–316
revert(), switchCells() methods,

316–317
change event handler, 343, 361, 489–491
checkboxes

fading in/out, 12
implementing, 484–492
updating, 483–484, 491

checkFps() method (SnailBait), 465
checkHighScores() method (SnailBait),

530
chrome

accessing in JavaScript, 122–123
defining, 120–123
fading in/out, 119, 140, 143
focusing attention on, 445
HTML for, 121–122

Chrome browser
audio/video formats in, 339–340
conditional breakpoints in, 42–43
debugger in, 521
displaying timelines in, 46–47
free developer tools in, 35
hardware acceleration in, 7, 50, 290
live-editing JavaScript in, 42, 45–46
look-and-feel of, 35
profiling in, 49–50, 289–291

Chrome Canary, 40–42
clear() method (console), 38
clearRect() method (canvas context), 581
click event handler

for add my score button, 536–537
for new game button, 539
for Play again link, 455
for running slowly warning, 466–467
for Show how to use the controls link, 389
for Start link, 395–396
for Start the game link, 388

clients
creating sockets on, 522
emitting messages from, 524–525, 530–532,

536
heads-up display on:

creating, 534
displaying, 538
hiding, 539

including socket.io, 519
clientX, clientY properties, 511

Index598

Cocoa API, 64
coins, 4, 8

assigning values to, 440
bouncing, 241–245
colliding with, 284

and score, 438, 441
sound effects for, 347, 442

throbbing, 197–199
coinSound object (SnailBait), 352
collideBehavior, 184–186, 279–281

adding to runner, 151
adjustScore() method, 441
didCollide() method, 282–283, 291,

293–294
didRunnerCollideWithXXX() methods,

294–295
execute() method, 281
isCandidateForCollision() method,

281–282, 288
processAssetCollision() method,

284–285, 349, 441–442
processBadGuyCollision() method,

284–285, 320–321, 324–325
processCollision() method, 284, 333–334
processPlatformCollisionDuringJump()

method, 285, 348
collision detection, 273–295

and heavily throttled frame rates, 109
candidates for, 281–282
debugging, 487–489
edge cases of, 291–295, 310
inverting, 293
optimizing, 286–289
performance of, 288–291
processing, 284–286
with platforms, 308–310

collision margins, 278–279, 287
collision rectangles

calculating, 278–279
drawing, 487–489
See also bounding boxes

color, nonlinear changes of, 247–251
Commodore Amiga, 149
CommonJS, 521
connect() method (socket.io), 522
console object, 35–40
assert() method, 38
clear() method, 38
count() method, 38

debug() method, 36, 38
dir(), dirxml() methods, 38
error() method, 36–38
group(), groupXXX() methods, 38
info() method, 36, 38
log() method, 36, 39–40
logging to, 36
online API reference to, 40
profile(), profileEnd() methods, 39,

50
time(), timeEnd() methods, 39
timeline(), timelineEnd() methods, 39,

45–46
timeStamp() method, 39
warn() method, 36–37, 39

constants, 132
constructors (JavaScript), 28
coordinate system, 66

translating, 65, 79–82, 104, 158, 559, 566
corehtml5games.com, 3, 165
count() method (console), 38
countdown, after regaining focus, 12, 45,

110–115
countdown toast, 94, 110–112

fading in/out, 123–132
HTML/CSS for, 111

countdownInProgress property (SnailBait),
113–115

Cracker Jack, 71
createAudioChannels() method

(SnailBait), 354–356
createBatSprites() method (SnailBait),

168–170, 197
createBeeSprites() method (SnailBait),

168, 197–198, 332
createBirdCollideBehavior() method

(BodegasRevenge), 577–579
createBirdMoveBehavior() method

(BodegasRevenge), 575–577
createBirds() method (BodegasRevenge),

560–562
createBubbleArtist() method

(SmokingHole), 427
createBubbleSprite() method

(SmokingHole), 425–426
createBubbleSpriteTimer() method

(SmokingHole), 428, 435
createBulletArtist() method

(BodegasRevenge), 558

599Index

createBulletMoveBehavior() method
(BodegasRevenge), 571–574

createBullets() method (BodegasRevenge),
556–558

createButtonSprites() method
(SnailBait), 168, 190–193, 335, 469

createCoinSprites() method (SnailBait),
168, 198–199, 241–242, 245–247

createDissipateBubbleBehavior() method
(SmokingHole), 432

createElement() method (browser), 356
createExplosionBehavior() method

(BodegasRevenge), 579
createFireParticle() method

(SmokingHole), 419–420
createFireParticleArtist() method

(SmokingHole), 420–421
createFireParticles() method

(SmokingHole), 418–419
createPlatformSprites() method

(SnailBait), 168–171, 248
createRubySprites() method (SnailBait),

168, 196–197
createRunnerSprite() method (SnailBait),

168–171, 287, 317
createSapphireSprites() method

(SnailBait), 168
createServer() method (http), 520
createSmokeBubbles() method

(SmokingHole), 424–425
createSmokingHoles() method (SnailBait),

412
createSnailSprites() method (SnailBait),

29–30, 168, 201
createSprites() method

of BodegasRevenge, 553
of SnailBait, 168, 173, 412

createTurret() method (BodegasRevenge),
553–556

createTurretArtist() method
(BodegasRevenge), 554–555

createTurretBarrelFireBehavior()
method (BodegasRevenge), 567–568

createTurretShootBehavior() method
(BodegasRevenge), 569

Creative Commons license, 34–35
credits, 6, 448–455, 550

CSS for, 451–453, 455
fading in/out, 123–132, 453–454

HTML for, 449–450
Crockford, Douglas, 30
cross-site scripting (XSS), 536
CSS (Cascading Style Sheets)

background properties in, 54–56
color strings in, 66
minifying and obfuscating, 541–542
namespacing in, 25
pixels in, 374
using for UI elements, 12–13

CSS Device Adaption, 376
CSS3 Patterns Gallery, 54–56, 547
CSS3 transitions, 13, 123–135

for credits, 447, 453
for game canvas, 326–327
for lives indicator, 444
for running slowly warning, 462
for score indicator, 440
for toasts, 128–129

CSVs (comma-separated values), 530
current time, 75, 159, 258–259

redefining, 217, 264
currentTime property

of audio, 360
of musicElement, 345–346

cursor
changing type of, 481, 508–509
recording original, 508–509
restoring, 482

CycleBehavior, 193–199, 201

D
debug() method (console), 36, 38
debugging, 42–43

adding breakpoints for, 35, 42–43
on servers, 521
remotely, for mobile devices, 365

Decorator pattern, 235
deployment, 540–542
descend() method (jumpBehavior), 223–224
descendTimer property (runner), 218–219,

232
detectMobile() method (SnailBait), 368
detonating property

of blue button, 334–335
of gold button, 470–471

developer backdoor. See backdoor
developer tools, 35–50

cost/benefit ratio of, 166, 479

Index600

free, in major browsers, 35
developerBackdoorVisible property

(SnailBait), 481–482
device pixels, 374
didCollide() method (collideBehavior),

282–283, 291, 293–294
didRunnerCollideWithXXX() methods

(collideBehavior), 294–295
dim() method (PulseBehavior), 250–251
dimControls() method (SnailBait), 143
dir(), dirxml() methods (console), 38
direction property (BodegasRevenge),

564–566
disguiseAsSprite() method (SnailBait),

415–417
display property (CSS), 20–22, 111, 123–134
dissipateBubble() method (SmokingHole),

433–434
distanceAlongTrajectory property

(BodegasRevenge), 559
div element (HTML), 18
Do not show this warning again button,

466–467
documentElement property (document),

378
DOM tree, 125–126
Donkey Kong game, 6
double buffering, 63
dragGameCanvas() method (SnailBait), 512
dragging property (SnailBait), 511
Draw collision rectangles checkbox, 478, 489

accessing, 489
HTML/CSS for, 485–486

draw() function, 70, 76, 82, 86–87, 89
draw() method

of Slider, 493
of SmokingHole, 416–417, 421, 428
of SnailBait, 97, 100, 156, 160, 393–395,

507
of Sprite, 150, 154–155, 158, 160, 488
of SpriteSheetArtist, 163–164
of turretArtist, 555–556

drawBackground() function, 66, 82, 86–87
drawBulletCanvas() method

(BodegasRevenge), 581–582
drawCollisionRectangle() method

(Sprite), 487
drawFireParticles() method

(SmokingHole), 421–422

drawImage() method (canvas context), 28,
64–67, 162–163, 559

drawMobileDivider() method (SnailBait),
391–392

drawMobileInstructionsXXX() methods
(SnailBait), 389–394

drawPlatform() function, 68–69, 87–90
drawPlatforms() function, 67–69, 87–90
drawPlatforms() method (SnailBait), 156
drawRulerXXX() methods (SnailBait),

505–506
drawRunner() function, 67
drawRunner() method (SnailBait), 156
drawSmokeBubbles() method (SmokingHole),

429
drawSprites() method (SnailBait), 158–159
drawText() method (canvas context), 79
drop shadow, 453
duck typing, 435
duration property (sound objects), 351–352

E
easing functions, 233–240

for falling, 239
for gravity, 308
online sources for, 239

Easter eggs, 477
elapsed property (Stopwatch), 215, 266
elapsed time, 235, 243–244, 255
electricityFlowingSound object

(SnailBait), 352
emit() method (socket.io), 524–526
emitSmokeBubble() method (SmokingHole),

431
end game sequence, 448–455
endLifeTransition() method (SnailBait),

327–328
Epoch, in programming languages, 217
equipRunner() method (SnailBait),

210–211, 299
equipRunnerForFalling() method

(SnailBait), 286, 299–300
equipRunnerForJumping() method

(SnailBait), 211–212, 217–218, 231–232,
264, 299

with easing functions, 239
erase() method (Slider), 493
eraseBulletCanvas() method

(BodegasRevenge), 581

601Index

eraseRuler() method (SnailBait), 506
error() method (console), 36–38
event handlers
blur, 105
change, 343, 361, 489–491
click, 388–389, 395–396, 455, 466–467,

536–537, 539
keydown, 103–105, 209–210, 327, 482–483,

564, 567
keypress, 535
keyup, 564
mousedown, 509–511
mousemove, 509–510, 512
mouseup, 510, 512
onload, 77, 98, 102–103, 139
touchend, 397–399, 585
touchmove, 584
touchstart, 397–399, 583

execute() method, 8, 154–155, 159, 182–184,
186–187

of blueButtonDetonateBehavior, 334–335
of BounceBehavior, 243
of CellSwitchBehavior, 315–316
of collideBehavior, 281
of fallBehavior, 302–303, 348
of goldButtonDetonateBehavior, 469–470
of jumpBehavior, 212
of PulseBehavior, 250
of runBehavior, 9, 187–189
of SmokingHole, 431–432
of snailShootBehavior, 204, 349

explode() method (SnailBait), 319–320, 349
explodeBehavior, 332
exploding property

of BodegasRevenge, 579
of runner, 319–320

explosions, 313–320
during a fall, 302
of bees, 330–333
sound effects for, 347

explosionSound object (SnailBait), 352

F
Facebook, posting scores in, 14
fadeInElements() method (SnailBait),

132–135, 143
for credits, 447, 453
for developer backdoor, 481
for ruler, 504–505

for running slowly warning, 462
for top chrome, 446

fadeOutElements() method (SnailBait),
132–135

for credits, 447, 453–454
for developer backdoor, 482
for high scores display, 539
for ruler, 504–505
for running slowly warning, 462

fall() method (runner), 299–301
fallBehavior, 184–185, 302–308

adding to runner, 151
calculateVerticalDrop() method,

303–305
creating runner sprite with, 299
execute() method, 302–303, 348
fallOnPlatform() method, 305, 348
isOutOfPlay() method, 305
moveDown() method, 302–306, 308
pause(), unpause() methods, 308
processCollision() method, 470–471
setSpriteVelocity() method, 303–305
willFallBelowCurrentTrack() method,

305
falling property (runner), 300
falls, 298–300

at the end of a jump, 298, 307
exploding during, 302
pausing during, 308
sound effects for, 347
through the bottom, 326, 442

favicon.cc, 57
favicons, 56–58

generating, 57, 547–548
specifying in HTML, 58

feature detection, 369
fill() method (canvas context), 65
fillRect() method (canvas context), 64–65,

69
fillStyle attribute (canvas context), 66
fillText() method (canvas context),

391–393, 506
finishAscent() method (jumpBehavior),

221–222
finishDescent() method (jumpBehavior),

223–224, 307
fire particles, 417–422

creating, 418–421
drawing and updating, 421–422

Index602

no behaviors for, 422
randomly varied, 419

Firefox. See Mozilla Firefox
fitScreen() method (SnailBait), 378
flip books, 71
flyweights, 190–193, 320, 559
frame rate (fps), 61–62

calculating, 77–78, 258–261
current, 159

displaying, 459
monitoring, 14, 40–42, 464–466
throttled heavily, 10–12, 108–109

frame rate indicator, 120
HTML for, 121
updating, frequency of, 106

fs module (Node.js)
appendFile() method, 526
readFile() method, 531

fuzzy objects, 406

G
game components. See behaviors
game engines, 149
game loop, 75–77

incorporating sprites into, 156–159
game object (BodegasRevenge)

creating, 552
turretRotation property, 556, 566

gameOver() method (SnailBait), 328, 454,
530–531

games
behavior-based, 205
calibrating, 523
deploying, 540–542
developing new features of, 477
ending, 448–455
level generators for, 70
pausing, 105–106, 261–264
resuming, 12, 45, 105–106, 110–115,

261–264
revealing, 140–144
running slowly, 14, 458–467
scaling, 369–381
shaking, 321–323
starting, 77, 140–142, 357–358, 400–401,

539–540
on mobile devices, 376–381, 385

gameStarted property (SnailBait), 138–140,
357

gameTime property (TimeSystem), 268
Gartner, 363–364
genfavicon.com, 547
Gertie the dinosaur, 149
getBullet() method (BodegasRevenge), 570,

577
getBulletLocation() method

(BodegasRevenge), 572
getElapsedTime() method

of AnimationTimer, 234–235, 265
of Stopwatch, 216, 267

getElementById() method (document),
122–123

getFirstAvailableAudioChannel() method
(SnailBait), 354, 359–360

getViewportSize() method (SnailBait),
378–379

GIF (Graphics Interchange Format), 54
GIMP, 51–52
globalAlpha attribute (canvas context), 66,

69, 155
gold button, 8

creating, 469
detonating, 4, 469
pace behavior of, 190–193

goldButtonDetonateBehavior, execute()
method, 469–470

Google Nexus. See Android
graphics

immediate- vs. retained-mode, 63
loading, 357–358
manipulating, 51–52
obtaining, 9–10, 50–51

graphicsReady property (SnailBait),
357–358

gravity, 297–310
GRAVITY_FORCE constant, 302, 307
group(), groupXXX() methods (console),

38
gzip, 543

H
hardware acceleration, 7, 50, 290
hasMoreSmokeBubbles() method

(SmokingHole), 431
heads-up display (HUD), 481, 526–540

accessing, 529–530
creating, 534
displaying, 538

603Index

heads-up display (HUD) (cont.)
hiding, 539
HTML/CSS for, 527–529
updating, 530

height directive (viewport), 375
height property

of arena, 380–381
of sprites, 152

hideCredits() method (SnailBait), 453–454
hideDeveloperBackdoor() method

(SnailBait), 482–483, 504, 509
hideHighScores() method (SnailBait), 539
hideToast() method (SnailBait), 131,

134–135
high scores, 526–540

displaying on client, 533–534, 538–539
hiding, 539
retrieving from server, 530
storing on server, 16, 537–538
validating, 536–538

high scores display. See heads-up display
highScoreNamePending property

(SnailBait), 530, 532–533, 535
high-scores.txt, 530
hOffset property (sprites), 152–153, 158, 176,

278, 414
href property (SnailBait), 458
HTML (HyperText Markup Language)

favicons in, 58
including JavaScript in, 75–76, 541
loading audio files in, 340–341
namespacing in, 25
special symbols in, 122

HTML5
on mobile devices, 364–367
specifications for standard components,

494
unpredictability of environment for,

458–459
http module (Node.js), 520
HTTP requests

reducing, 15–16, 51–52, 162, 339
when games are running, 539

HUD. See heads-up display

I
illusion of depth. See parallax effect
image artists, 161
images. See graphics

img element (HTML), 135
info() method (console), 36, 38
in-game metrics

recording, 523–526
retrieving, 519
storing on server, 16, 518

initial toast
on mobile devices, 383
revealing, 142

initializeBirdProperties() method
(BodegasRevenge), 561–562

initializeContextForMobileInstructions()
method (SnailBait), 391

initializeDeveloperBackdoorSliders()
method (SnailBait), 497–498

initializeImages() function, 76
initializeImages() method (SnailBait),

102, 138–139
initializeSprites() method (SnailBait),

173–174, 202, 210–211, 440–441
initial-scale directive (viewport),

375–376
instructions, 120

CSS for, 21–22
fading in/out, 12–13
for mobile devices, 381–382

drawing, 389–394
HTML for, 121–122

instructionsElement property (SnailBait),
382

Internet Explorer browser
audio formats in, 339
free developer tools in, 35
hardware acceleration in, 7
profiling in, 49, 289

iOS (iPad, iPhone, iPod)
adding an icon to home screen on, 402
and preload attribute, 341
downloading audio files on, 400–401
HTML5 applications on, 364–367
layout viewport on, 371
remote debugging for, 365
viewport directives on, 375–376

isAscending() method (jumpBehavior),
221–222

isBulletInsideBird() method
(BodegasRevenge), 578–579

isBulletOutOfPlay() method
(BodegasRevenge), 572

Index604

isCandidateForCollision() method
(collideBehavior), 281–282, 288

isDescending() method (jumpBehavior),
223–224

isDoneAscending() method (jumpBehavior),
221–222

isDoneDescending() method
(jumpBehavior), 223–224

isExpired() method (AnimationTimer), 234,
265

isOutOfPlay() method (fallBehavior), 305
isPaused(), isRunning() methods

of AnimationTimer, 234, 265
of Stopwatch, 216, 267

isPointInPath() method (canvas context),
65, 283, 578–579

isSpriteInView() method (SnailBait),
157–158

J
JavaScript

constructors in, 28
functions in, 100
global variables in, 95
including in HTML, 75–76
key codes of, 104
live-editing in, 42, 45–46
methods in, 97, 100
minifying and obfuscating, 541–542
+new Date() construct, 75, 217, 261,

263–264, 267, 269
new operator in, 29, 552
objects in, 28–29
profiling, 49–50, 289–291
prototypes in, 28, 97
regular expressions in, 402
running on server, 517
timestamps in, 217
variable-length argument lists in, 133

jewels (rubies, sapphires), 4
assigning values to, 440
bouncing, 241–245
colliding with, 284

and score, 438, 441
sound effects for, 347, 442

creating, 196–197
sparkling, 195–197

JSON (JavaScript Object Notation), 30
JUMP_DURATION, JUMP_HEIGHT constants, 219

jump() method (runner), 210–214, 218, 264
jumpApex property (runner), 219
jumpBehavior, 184–185

adding to runner, 151
animation timers for, 231–233
execute() method, 212
finishDescent() method, 307
implementing, 213
invoking every animation frame, 214
pausing/unpausing, 225
triggers for, 212, 214
using game time in, 264
using stopwatches for, 214, 217–220, 231

jumping property (runner), 212, 214, 219
jumps, 208–240

ascending, 221–223
descending, 223–224
event handlers for, 209–210
falling at the end of, 298, 307
linear, 220–224
nonlinear, 229–240

K
keyboard

controlling games with, 3
instructions for, 120

handling input from, 103–105
during life transitions, 328, 454

keydown event handler, 564, 567
disregarding during transitions, 327
for developer backdoor, 482–483
for game window, 103–105
for jumps, 209–210
vs. addEventListener(), 105

keypress event handler, 535
keyup event handler, 564
Kindle Fire, HTML5 applications on, 367
knobPercent property (SnailBait), 492–493,

498–499, 501

L
lastAnimationFrameTime property

(SnailBait), 77–78, 108
lastSlowWarningTime property (SnailBait),

463
lastTimeTransducerWasSet property

(TimeSystem), 268
layout viewport, 371
left property (sprites), 152–153, 278

605Index

levels
generating, 70
restarting, 328–329

linear motion, 220–224
lineTo() method (canvas context), 506
lineWidth attribute (canvas context), 66
link element (HTML), 57
listen() method (socket.io), 520–521
Little Nemo, 149
live-editing, 42, 45–46
lives, 4

losing, 4, 325, 442, 444, 446
recording location of, 523–526

transitioning between, 17–18, 253, 323–329,
499

lives indicator, 120, 442–448
CSS for, 19–20, 444
fading in/out, 13, 444–445
HTML for, 443
updating, 446–447

lives property (SnailBait), 325, 446
lives-lost.txt, 524
loading animation, 20, 53, 549

fading in/out, 119, 123–132
generating, 548
HTML/CSS for, 136–138
implementing, 135–140
importance of, 117

loadingAnimationLoaded() method
(SnailBait), 139

log() method (console), 36, 39–40
loop attribute (HTML), 344
loseLife() method (SnailBait), 324–326,

446
loseOneBullet() method (BodegasRevenge),

575–577, 580–581
lostBulletIndex property

(BodegasRevenge), 558, 570, 576–577, 582

M
makeEaseXXXEasingFunction() methods

(AnimationTimer), 232–233, 238–239,
242, 428

margin property (CSS), 18
Mario Bros. game, 6
Math.random() method, 246–247
maximum-scale directive (viewport), 375–376
McCay, Winsor, 149
media queries, 369

memory consumption, 559
Mickey Mouse, 149
minimum-scale directive (viewport), 375
MKS Toolkit, 542
mobile devices, 363–403

adding an icon to home screen on, 402
changing orientation of, 378
detecting, 368–369
dragging canvas in, 397–399
feature detection on, 369
games without browser chrome on,

402–403
instructions for, 381–382

drawing, 389–394
HTML for, 382

preventing zooming in/out on, 370–371,
376, 398–399

resolution of, 374
scaling games on, 369–381
size of image files on, 16, 164
sound effects on, 400–402
start toast for, 394–396
welcome toast for, 386–388

mobile property (SnailBait), 368
mobileInstructionsVisible property

(SnailBait), 394–396
Module pattern, 103
motion

horizontal, 65, 78–86, 104
linear, 220–224
nonlinear, 229–251, 308
time-based, 85, 193

mouse vs. touch events, 399
mousedown event handler, 509–511
mousemove event handler, 509–510, 512
mouseup event handler, 510, 512
moveBehavior (Bodega's Revenge),

557–558
moveDown() method (fallBehavior),

302–306, 308
moveTo() method (canvas context), 506
Mozilla Firefox browser

audio formats in, 339
free developer tools in, 35
hardware acceleration in, 7
Ogg Theora support in, 340
profiling in, 49, 289

mozRequestAnimationFrame() method
(window), 72

Index606

-moz-transition property (CSS). See
transition property

MP3 format, 339
MPEG-4 format, 340
music (soundtrack), 337–362

creating files for, 339–340
editing, 53
length of, 346–347
loading, 340–341
obtaining, 10, 52
pausing, 343
playing, 343–344
turning on/off, 120

Music checkbox
CSS for, 21–22
event handler for, 343
fading in/out, 12
HTML for, 121–122
specifying, 342

musicCheckboxElement() method
(SnailBait), 343–344

musicElement.currentTime property,
345–346

musicElement() method (SnailBait),
343

musicOn property (SnailBait), 343–344

N
namespaces, 25
+new Date() construct (JavaScript), 75, 217,

261, 263–264, 267, 269
new game button, 539–540
new operator (JavaScript), 29, 552
Node Inspector, 521
Node.js, 517–521
fs module, 526, 531
http module, 520
installing, 517
package manager of, 517
Passport module, 517
preventing hangups on, 521
validator module, 536

nohup command, 521
nonlinear color changes, 247–251
nonlinear motion

for bouncing, 241–245
for gravity, 308
for jumping, 229–240

npm package manager (Node.js), 517

O
objects (JavaScript), 28–29
Ogg format, 339
Ogg Theora format, 340
Omni Graffle, 551
on() method (socket.io), 524–525
onblur property (window), 105
onload event handler, 77, 98, 102–103, 139
ontouchstart() method (window), 368
opacity property (CSS), 20, 123–138

for credits, 451
for game canvas, 326–327
for lives indicator, 444, 446
for running slowly warning, 461
for score indicator, 440, 446

opacity property (sprites), 152
OPAQUE constant, 447
Opera browser

audio formats in, 339
free developer tools in, 35
hardware acceleration in, 7
Ogg Theora support in, 340
profiling in, 49, 289

-o-transition property (CSS). See
transition property

P
paceBehavior, 190–193, 201
parallax effect, 87–90
particle systems, 405–435
paths, drawing, 64–65
pause() method, 262–263

of AnimationTimer, 234, 263, 265
of BounceBehavior, 245
of fallBehavior, 308
of jumpBehavior, 225
of PulseBehavior, 249, 263
of SmokingHole, 434–435
of Stopwatch, 215, 266

paused property
of SnailBait, 105–109
of Stopwatch, 215, 266

paused toast, 11
pauseStartTime property (SnailBait), 108
pausing, 105–106

during falls, 308
when window loses focus, 10–12,

108–110
while playing music, 344

607Index

performance
and canvas scaling, 25
and hardware acceleration, 7
and large audio files, 339–340
and sprite sheet cells, 167
monitoring, 44–49
of collision detection, 288–291
vs. simplicity, 539

pianoSound object (SnailBait), 352
picasion.com, 54, 548
PIXELS_PER_METER constant, 302, 307
pixels:meter ratio, calculating, 301–302
platformers (platform games), 3, 6

illusion of depth in, 87
platformOffset property (SnailBait), 87
platforms, 8

colliding with, 286, 298–300, 306–310
sound effects for, 347

drawing, 67–70, 160–161, 170–171
pulsating, 247–251
putting sprites on, 174
scrolling, 87–90

platformUnderneath() method (SnailBait),
306

Play again link, 450–451, 455
playAudio() method (SnailBait), 354–361
playing property

for audio, 360–361
for keyboard input, 327–328
on mobile devices, 388, 396

playSound() method (SnailBait), 347–350,
354, 358–361

playtesting
from the middle of a level, 16, 502
in slow motion, 253, 498–499

polar coordinates, 572–573
polarToCartesian() method

(BodegasRevenge), 573
pollMusic() method (SnailBait), 345–346
polyfills, 72–75
port numbers, 522
position property (CSS), 20, 22
position property (sound objects), 351–352
positionSprites() method (SnailBait),

173–174
power-ups, 254, 477
preload attribute (HTML), 340–341
preventDefault() method (SnailBait),

397–399, 511

processAssetCollision() method
(collideBehavior), 284–285, 349,
441–442

processBadGuyCollision() method
(collideBehavior), 284–285, 320–321,
324–325

processCollision() method
of collideBehavior, 284, 333–334
of fallBehavior, 470–471

processPlatformCollisionDuringJump()
method (collideBehavior), 285, 348

processXXXTap() methods (SnailBait),
398–399

profile(), profileEnd() methods
(console), 39, 50

profilers, 49–50, 289–291
prototypes (JavaScript), 28, 97
pulsate property (platforms), 248
pulsating, 247–251

duration of, 248
PulseBehavior, 249–251
brighten(), dim() methods, 250–251
execute() method, 250
pause(), unpause() methods, 249, 263
resetTimer() method, 250
startPulsing() method, 250

putSpriteOnPlatform() method
(SnailBait), 174

putSpriteOnTrack() method (SnailBait),
285

R
radial gradient, 138
random() method (Math), 246–247
ray casting, 275–276
readFile() method (fs), 531
readouts

accessing in JavaScript, 496–497
updating, 483–484

rect() method (canvas context), 65, 283
rectangles, drawing, 65
Replica Island game, 9–10, 50–52, 183, 551,

571
requestAnimationFrame() method (window),

71–75
requestNextAnimationFrame() method

(window), 73–77, 385
waiting between calls to, 106

require() method (Node.js), 520–521

Index608

reset() method
of AnimationTimer, 234, 265
of Stopwatch, 216, 267
of TimeSystem, 269

resetBubble() method (SmokingHole),
433–434

resetTimer() method (BounceBehavior),
243–244, 250

resizeElement() method (SnailBait), 381
resizeElementsToFitScreen() method

(SnailBait), 380–381
restartGame() method (SnailBait), 454
restartLevel() method (SnailBait),

328–329
restartMusic() method (SnailBait),

345–346
restore() method (canvas context), 65, 69,

155
resuming (after pause), 11, 105–106

three-second countdown for, 12, 45,
110–115

revealBottomChrome() method (SnailBait),
143

revealCanvas() method (SnailBait), 143
revealCredits() method (SnailBait), 453,

458
revealDeveloperBackdoor() method

(SnailBait), 481–484, 491, 504, 509
revealGame() method (SnailBait), 142
revealHighScores() method (SnailBait),

534
revealInitialToast() method (SnailBait),

142–143
revealMobileStartToast() method

(SnailBait), 396
revealRunningSlowlyWarning() method

(SnailBait), 463–464
revealToast() method (SnailBait),

112–115, 129–131
revealTopChromeXXX() methods

(SnailBait), 143–144, 445–446
revealWinningAnimation() method

(SnailBait), 468, 471–472
revert() method (CellSwitchBehavior),

316–317
rotate() method (canvas context), 559
rotating property (BodegasRevenge),

564–565
rotation, 555–556

rounded corners, 453
rubies. See jewels
Ruby scripts, 58–59
ruler, 502–513

drawing, 505–507
erasing, 506
HTML/CSS for, 503–504
updating, 507
visibility of, 504–505

RUN_ANIMATION_RATE constant, 189
runAnimationRate property (Sprite),

187–189, 319, 328
runBehavior, 9, 184–190

adding to runner, 151
execute() method, 9, 187–189

runner, 8
ascendTimer property, 218–219, 232
behaviors of, 184–187
colliding, 282–283

with bats and bees, 285, 313–320, 442
with snail bombs, 285, 291–295

creating, 151, 170–171, 184–185, 317
descendTimer property, 218–219, 232
drawing, 67, 161
exploding, 313, 319–320
fall() method, 299–301
falling property, 300
horizontal position of, 307
JUMP_DURATION, JUMP_HEIGHT constants,

219
jump() method, 210–214, 218, 264
jumpApex property, 219
jumping property, 212, 214, 219
keydown event listener for, 210
starting animation on, 189
stopFalling() method, 299–300
stopJumping() method, 212
verticalLaunchPosition property, 219

RUNNER_LEFT constant, 67
runnerArtist object, 9
runnerExplodeBehavior, 184–185, 318–319

adding to runner, 151
running property (Stopwatch), 215, 266
Running slowly threshold slider, 493

event handler for, 498
running slowly warning, 14, 455, 458–467,

548, 550
enabling/disabling, 489–490
event handlers for, 466–467

609Index

running slowly warning (cont.)
HTML/CSS for, 460–462
initial invisibility of, 462
modifying threshold of, 489

runningSlowlyThreshold property
(SnailBait), 463

S
Safari browser

audio/video formats in, 339–340
debugging iOS games in, 365
free developer tools in, 35
hardware acceleration in, 7
profiling in, 49, 289

Samsung Galaxy. See Android
sapphires. See jewels
save() method (canvas context), 65, 69, 155
score indicator, 120

CSS for, 19–20, 439–440
fading in/out, 13, 445
HTML for, 121, 438–439
initial invisibility of, 440
updating, 441

score property (SnailBait), 440, 532
scores, 4–5, 438–442

incrementing, 438, 441–442
posting in social networks, 14–15,

455–458
storing on server, 16, 537–538

script element (HTML), 519
security, preventing breaches of, 536
seekAudio() method (SnailBait), 354,

359–360
self reference (JavaScript), 103
Separating Axis Theorem, 277, 289
servers

connecting to, 522
creating, 520
creating sockets on, 520–521
debugging on, 521
emitting messages from, 531, 533
processing messages on, 525, 532
running, 521
updating files on, 537–538
uploading files to, 542–543
validating messages on, 537–538

setBackgroundOffset() function, 85–90
setBackgroundOffset() method

(SnailBait), 175–176

setBubbleSpriteProperties() method
(SmokingHole), 426

setInitialSmokeBubbleColor() method
(SmokingHole), 425, 427

setInterval() function, 70–71
for interface effects, 106
for playing music, 345–346

setOffsets() function, 89
setOffsets() method (SnailBait), 175
setPlatformXXX() functions, 89–90
setSpriteOffsets() method (SnailBait),

176, 414
setSpriteValues() method (SnailBait),

440–441
setSpriteVelocity() method

(fallBehavior), 303–305
setTimeout() function, 70–71, 74

for interface effects, 106, 321–328
for transitions, 125–127, 131

setTimeRate() method (SnailBait), 256,
259–260, 499–500

setTransducer() method (TimeSystem), 255,
259–260, 269–270

shake() method (SnailBait), 321–323
shim, shiv. See polyfills
shooting property (BodegasRevenge), 563,

567–569
Show how to use the controls link, 383,

388–389, 396
showCollisionRectangle property (Sprite),

488–489
showSlowWarning property (SnailBait), 463,

467, 490
showSmokingHoles property (SnailBait),

491
side-scroller games, 6
sliders, 492–501

accessing, 496
creating, 497
HTML/CSS for, 494–496
initializing, 497–498
manual redrawing, 500
separate JavaScript file for, 492–493
updating, 483–484

before revealing the backdoor, 500–501
smoke bubbles, 422–434

creating, 424–428
dissipating, 432–434
drawing and updating, 428–429

Index610

emitting, 430–431
expanding, speed of, 428

Smoke checkbox, 491
accessing, 490
HTML/CSS for, 486

smoking holes, 406–417
and performance, 49–50
creating, 412
defining, 411
disguising as sprites, 413, 415–417
JavaScript file for, 409–410
pausing, 434–435
scrolling, 413–414
showing/hiding, 490–491

SmokingHole object
addBehaviors() method, 417, 430–431
addSpriteMethods() method, 416, 421
addSpriteProperties() method, 415–416
advanceCursor() method, 431
createBubbleArtist() method, 427
createBubbleSprite() method, 425–426
createBubbleSpriteTimer() method, 428,

435
createDissipateBubbleBehavior()

method, 432
createFireParticle() method, 419–420
createFireParticleArtist() method,

420–421
createFireParticles() method, 418–419
createSmokeBubbles() method, 424–425
dissipateBubble() method, 433–434
draw() method, 416–417, 421, 428
drawFireParticles() method, 421–422
drawSmokeBubbles() method, 429
emitSmokeBubble() method, 431
execute() method, 431–432
hasMoreSmokeBubbles() method, 431
pause(), unpause() methods, 434–435
resetBubble() method, 433–434
setBubbleSpriteProperties() method,

426
setInitialSmokeBubbleColor() method,

425, 427
update() method, 416–417, 428–430
updateSmokeBubbles() method, 429

snail
arming with bombs, 202–203
creating, 201
pace behavior of, 190, 201

Snail Bait, 3–543
characters of, 4, 7–10
code statistics of, 18
elements of, 3
HTML for, 22–27, 75–76
JavaScript for, 27–28
keyboard controlling of, 3
playing online, 3
stripped-down version of, 547

snail bombs, 4
colliding with, 285, 291–295
creating, 202
moving, 204
shooting, 203–204

sound effects for, 347
snail shooting sequence, 199–205
SnailBait object

constructor of, 95–97
prototype of, 97–100
See also individual methods and properties

snailBait reference, 103
snailBombMoveBehavior, 202–204
snailShootBehavior, 203–204
execute() method, 204, 349

social features, 14–15, 455–458
socket.io, 517–526
connect() method, 522
creating sockets with, 520–521
emit() method, 524–526
including in Snail Bait, 518–520, 523
installing, 517
listen() method, 520–521
on() method, 524–525

sockets
creating, 520–521
opening on clients, 522

Sonic the Hedgehog game, 6
Sound checkbox, 361–362

CSS for, 21–22
event handler for, 362
fading in/out, 12
HTML for, 121–122
specifying, 342

sound effects, 337–362
creating files for, 339–340
editing, 53
loading, 340–341, 357–358
multichannel, 353–361
obtaining, 10, 52

611Index

sound effects (cont.)
on mobile devices, 400–402
playing, 347–350, 358–361
turning on/off, 120, 361–362

sound objects
creating, 352
properties of, 351–353

soundclick.com, 52
soundLoaded() method (SnailBait), 354,

357
soundOn property (SnailBait), 361
soundtrack. See music
spatial partitioning, 288–289
special effects, 320–329
splitCSV() method (String), 532
sprite artists. See artists
sprite behaviors. See behaviors
sprite containers, 411
Sprite object, 150, 153
calculateCollisionRectangle() method,

278–279, 487
draw() method, 154–155, 488
drawCollisionRectangle() method, 487
runAnimationRate property, 187–189
showCollisionRectangle property,

488–489
update() method, 154–155, 157, 159, 186

sprite sheet artists, 150, 162–164
sprite sheet inspector, 165–167
sprite sheets

cells of, 164–167, 314–317
for audio, 52–53
loading, 357–358
on mobile devices, 16, 164
single for all images, 15–16, 51–52
transparent background for, 551

spriteOffset property (SnailBait), 174–175
sprites, 7–10, 147–176

collision margins of, 278–279, 287
creating, 9, 150, 168–171
data-driven, 70
defining with metadata, 171–174
disguising JavaScript objects as, 415–417
drawing, 150, 158

from a sprite sheet, 162
in view, 157–158
incorporating into game loop, 156–159
properties of, 152
putting on platforms, 174

scrolling, 152–153, 174–176
setting offsets of, 176
specifying type of, 150
updating, 157, 186

based on current time, 159
sprites array (SnailBait), 156–159, 167–171,

409
adding:

runner to, 171
smoking holes to, 413

defining, 167
iterating over, 168

SpriteSheetArtist object, 163
spriteSheetLoaded() method (SnailBait),

358, 400–401
SQL injections, 536
src attribute (HTML)

of img, 135, 139
of script, 519

start game sequence, 117, 139–144
on mobile devices, 385, 400–401

Start link
event handler for, 395–396
playing coin sound for, 400

Start the game link, 388
start toast, 548–549

for mobile devices, 394–396
start() method

of AnimationTimer, 234, 264
of Stopwatch, 215, 266
of TimeSystem, 255, 269

startBouncing() method (BounceBehavior),
243–244

startDraggingGameCanvas() method
(SnailBait), 510–511

startGame() function, 76–77
startGame() method (SnailBait), 140–142,

257–258, 354, 357–358, 385
STARTING_BACKGROUND_OFFSET constant, 502
startLifeTransition() method

(SnailBait), 325–328
startMusic() method (SnailBait),

345–346
startPause property (Stopwatch), 215, 266
startPulsing() method (PulseBehavior),

250
startTime property (Stopwatch), 215, 266
startToastTransition() method

(SnailBait), 130–131, 134–135

Index612

stop() method
of AnimationTimer, 234, 265
of Stopwatch, 215, 266

stopDraggingGameCanvas() method
(SnailBait), 512

stopFalling() method (runner), 299–300
stopJumping() method (runner), 212
Stopwatch object, 214–217
elapsed, paused, running, startXXX,

totalPausedTime properties, 215, 266
getElapsedTime() method, 216, 267
isPaused(), isRunning(), reset()

methods, 216, 267
pause(), start(), stop() methods, 215,

266
unpause() method, 216, 266

stopwatches, 214–217
pausing, 225–227
redefining current time for, 217, 265–267
resuming, 217, 225–227
using for jumps, 214, 217–220, 231

Strategy design pattern, 9, 187
String.splitCSV() method, 532
stroke and fill artists, 160–161
stroke() method (canvas context), 65
strokeRect() method (canvas context),

64–65, 69
strokeStyle attribute (canvas context), 66
style change events, 126
SVG (Scalable Vector Graphics), 63
switchCells() method

(CellSwitchBehavior), 316–317

T
target property (CSS), 457
Texas Instruments 9918A video-display

processor, 149
textAlign, textBaseline attributes (canvas

context), 391
this reference (JavaScript), 97, 100–103

changing in the middle of a method, 102
thudSound object (SnailBait), 352
time, 207–270

current, 75, 159, 258–259
redefining, 217, 264

elapsed, 235, 243–244
modifying, 255

of last animation frame, 108, 159
time animations, 214–217

time rate
modifying, 17, 231, 253, 259–260

in developer backdoor, 478
setting, 256, 260, 498–500
slowing during transitions, 17, 253, 327,

499
Time rate slider, 498–500
time systems, 17, 253–270

creating, 257
implementing, 268–270
pausing/resuming games with, 261–264
starting, 257–258
using, 258–264

time(), timeEnd() methods (console), 39
time-based motion, 85, 193
timeline(), timelineEnd() methods

(console), 39, 45–46
timelines, 44–49

starting/stopping programmatically, 45
timer property (TimeSystem), 268
timeStamp() method (console), 39
TimeSystem object
calculateGameTime() method, 255, 258,

268–270
gameTime, lastTimeTransducerWasSet,

timer, transducer properties, 268
reset() method, 269
setTransducer() method, 255, 269–270
start() method, 255, 269

TOAST_TRANSITION_DURATION constant, 132,
134–135

toasts, 12, 111–112
CSS for, 128–129
fading in/out, 12, 112, 123–132
HTML/CSS for, 111

togglePaused() method (SnailBait),
105–115, 225, 261–262

for music, 344
togglePausedStateOfAllBehaviors()

method (SnailBait), 225–227, 262
top chrome. See score indicator, lives

indicator
top property (sprites), 152, 278
totalPausedTime property (Stopwatch), 215,

266
touch vs. mouse events, 399
touchend event handler, 397–399, 585
touchEnd() method (SnailBait), 398
touchmove event handler, 584

613Index

touchMove() method (SnailBait), 399
touchstart event handler, 397–399, 583
touchStart() method (SnailBait), 397, 399
track property, 304
trajectory property (BodegasRevenge), 559
transducer functions, 255–257

duration of, 270
transducer property (TimeSystem), 268
transition property (CSS), 123, 125, 128–129

versions of, 129
transitions. See CSS3 transitions
translate() method (canvas context), 65,

80–81, 559
TRANSPARENT constant, 447
triggers, 315
turnXXX() functions, 86
turnXXX() methods (SnailBait), 104,

189–190
turret, 553–556

artist for, 554–555
behaviors of, 564–570
creating, 553–556
direction property, 564–566
drawing, 555–556
rotating property, 564–566
shooting property, 563, 567–569

turretArtist.draw() method, 555
turretRotation property (game), 556, 566
Tweet my score link, 14–15, 450–451, 455–458

accessing in JavaScript, 457–458
HTML for, 457

TWEET_EPILOGUE, TWEET_PREAMBLE constants,
457–458

Twitter
posting scores in, 14–15
Web Intents, 455–458

type property (sprites), 152

U
unpause() method, 262–263

of AnimationTimer, 234, 263, 265
of BounceBehavior, 245
of fallBehavior, 308
of jumpBehavior, 225
of PulseBehavior, 249, 263
of SmokingHole, 434–435
of Stopwatch, 216, 266

Unreal Engine, 149
update() method

of SmokingHole, 416–417, 428–430
of Sprite, 154–155, 157, 159, 186

updateDeveloperBackdoorCheckboxes()
method (SnailBait), 483–484, 491

updateDeveloperBackdoorReadouts()
method (SnailBait), 483–484

updateDeveloperBackdoorSliders()
method (SnailBait), 483–484, 500–501

updateLivesElement() method (SnailBait),
446–447

updateRunningSlowlySlider() method
(SnailBait), 501

updateScoreElement() method (SnailBait),
441

updateSmokeBubbles() method
(SmokingHole), 429

updateSpeedSamples() method (SnailBait),
466

updateSprites() method (SnailBait),
157–159

updateTimeRateSlider() method
(SnailBait), 501

user interface (UI), 437–472
focusing attention on, 12–13, 445
latency of, 106

user-scalable directive (viewport), 375–376

V
validator module (Node.js), 536–538
velocity of falling objects, 301

initial, 306–307
velocityX, velocityY properties (sprites),

152
verticalLaunchPosition property (runner),

219
video formats, 340
viewport meta tag, 373–376
@viewport rule (CSS), 376
visibility property (CSS), 128
visible property (sprites), 152
visible viewport, 371

getting width and height of, 378
volume property (sound objects), 351–353
VP8 format, 340

W
Warn when running slowly checkbox,

489–491
accessing, 490

Index614

HTML/CSS for, 485–486
warn() method (console), 36–37, 39
WASD keys, 7
Web Audio API, 339
web browsers. See browsers
Web Intents, 455–458
WebGL (Web Graphics Library), 290
WebKit, 64
webkitRequestAnimationFrame() method

(window), 72
-webkit-transition property (CSS). See

transition property
webpages

background of, 54–56
scaling to fit, 371–372

welcome toast, 384–389
HTML for, 386–388

width directive (viewport), 374–376
width property

of arena, 380–381
of sprites, 152

willFallBelowCurrentTrack() method
(fallBehavior), 305

window object
addEventListener() method, 105,

209–210, 327
for developer backdoor, 483
on size or orientation changes, 378

keydown event handler, 564, 567
keyup event handler, 564
ontouchstart() method, 368

windowHasFocus property (SnailBait),
113–115

Windows, running UNIX scripts on,
542

winning animation, 4–5, 467–472
revealing, 471

X
XSS (cross-site scripting), 536

Y
YUI Compressor, 540

Z
z-index property (CSS), 111, 455

615Index

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Introduction
	1.1 Snail Bait
	1.1.1 Sprites: The Cast of Characters

	1.2 HTML5 Game Development Best Practices
	1.2.1 Pause the Game When the Window Loses Focus
	1.2.2 Implement a Countdown When the Window Regains Focus
	1.2.3 Use CSS for UI Effects
	1.2.4 Detect and React to Slowly Running Games
	1.2.5 Incorporate Social Features
	1.2.6 Put All the Game’s Images in a Single Sprite Sheet
	1.2.7 Store High Scores and Send Realtime, In-game Metrics to the Server

	1.3 Special Features
	1.4 Snail Bait’s HTML and CSS
	1.5 Snail Bait’s Humble Beginning
	1.6 The Use of JavaScript in This Book
	1.7 Conclusion
	1.8 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

