Business Analytics
Principles, Concepts, and Applications
This page intentionally left blank
This book is dedicated to Miles Starkey.
He is what brings purpose to our lives
and gives us a future.
This page intentionally left blank
Contents-at-a-Glance

Preface ... xvi

PART I: What Are Business Analytics .. 1
 Chapter 1: What Are Business Analytics? 3

PART II: Why Are Business Analytics Important 15
 Chapter 2: Why Are Business Analytics Important? 17
 Chapter 3: What Resource Considerations Are Important to Support Business Analytics? 29

PART III: How Can Business Analytics Be Applied 43
 Chapter 4: How Do We Align Resources to Support Business Analytics within an Organization? 45
 Chapter 5: What Are Descriptive Analytics? 63
 Chapter 6: What Are Predictive Analytics? 93
 Chapter 7: What Are Prescriptive Analytics? 119
 Chapter 8: A Final Case Study Illustration 139

PART IV: Appendixes .. 165
 A: Statistical Tools ... 167
 B: Linear Programming .. 201
 C: Duality and Sensitivity Analysis in Linear Programming 241
D: Integer Programming 263
E: Forecasting ... 271
F: Simulation ... 295
G: Decision Theory 303
 Index .. 335
Table of Contents

Preface ... xvi

PART I: What Are Business Analytics ... 1

Chapter 1: What Are Business Analytics? 3
 1.1 Terminology ... 3
 1.2 Business Analytics Process 7
 1.3 Relationship of BA Process and Organization
 Decision-Making Process 10
 1.4 Organization of This Book 12
 Summary .. 13
 Discussion Questions ... 13
 References ... 14

PART II: Why Are Business Analytics Important 15

Chapter 2: Why Are Business Analytics Important? 17
 2.1 Introduction .. 17
 2.2 Why BA Is Important: Providing Answers to Questions 18
 2.3 Why BA Is Important: Strategy for Competitive Advantage 20
 2.4 Other Reasons Why BA Is Important
 2.4.1 Applied Reasons Why BA Is Important 23
 2.4.2 The Importance of BA with New Sources of Data 24
 Summary .. 26
 Discussion Questions ... 26
 References ... 26

Chapter 3: What Resource Considerations Are Important to
 Support Business Analytics? 29
 3.1 Introduction .. 29
 3.2 Business Analytics Personnel 30
 3.3 Business Analytics Data 33
 3.3.1 Categorizing Data 33
 3.3.2 Data Issues ... 35
 3.4 Business Analytics Technology 36
 Summary .. 41
 Discussion Questions ... 41
 References ... 42
PART III: How Can Business Analytics Be Applied

Chapter 4: How Do We Align Resources to Support Business Analytics within an Organization?

- **4.1 Organization Structures Aligning Business Analytics**
 - 4.1.1 Organization Structures
 - 4.1.2 Teams
- **4.2 Management Issues**
 - 4.2.1 Establishing an Information Policy
 - 4.2.2 Outsourcing Business Analytics
 - 4.2.3 Ensuring Data Quality
 - 4.2.4 Measuring Business Analytics Contribution
 - 4.2.5 Managing Change

Summary

Discussion Questions

References

Chapter 5: What Are Descriptive Analytics?

- **5.1 Introduction**
- **5.2 Visualizing and Exploring Data**
- **5.3 Descriptive Statistics**
- **5.4 Sampling and Estimation**
 - 5.4.1 Sampling Methods
 - 5.4.2 Sampling Estimation
- **5.5 Introduction to Probability Distributions**
- **5.6 Marketing/Planning Case Study Example: Descriptive Analytics Step in the BA Process**
 - 5.6.1 Case Study Background
 - 5.6.2 Descriptive Analytics Analysis

Summary

Discussion Questions

Problems

Chapter 6: What Are Predictive Analytics?

- **6.1 Introduction**
- **6.2 Predictive Modeling**
 - 6.2.1 Logic-Driven Models
 - 6.2.2 Data-Driven Models
- **6.3 Data Mining**
PART IV: Appendixes 165

A: Statistical Tools 167
 A.1 Introduction 167
 A.2 Counting 167
 A.3 Probability Concepts 171
 A.4 Probability Distributions 177
 A.5 Statistical Testing 193

B: Linear Programming 201
 B.1 Introduction 201
 B.2 Types of Linear Programming Problems/Models 201
 B.3 Linear Programming Problem/Model Elements 202
 B.4 Linear Programming Problem/Model Formulation
 Procedure 207
 B.5 Computer-Based Solutions for Linear Programming
 Using the Simplex Method 217
 B.6 Linear Programming Complications 227
 B.7 Necessary Assumptions for Linear Programming Models 232
 B.8 Linear Programming Practice Problems 233

C: Duality and Sensitivity Analysis in Linear
 Programming 241
 C.1 Introduction 241
 C.2 What Is Duality? 241
 C.3 Duality and Sensitivity Analysis Problems 243
 C.4 Determining the Economic Value of a
 Resource with Duality 258
 C.5 Duality Practice Problems 259

D: Integer Programming 263
 D.1 Introduction 263
 D.2 Solving IP Problems/Models 264
 D.3 Solving Zero-One Programming Problems/Models 268
 D.4 Integer Programming Practice Problems 270
E: Forecasting ... 271
 E.1 Introduction ... 271
 E.2 Types of Variation in Time Series Data 272
 E.3 Simple Regression Model 276
 E.4 Multiple Regression Models 281
 E.5 Simple Exponential Smoothing 284
 E.6 Smoothing Averages ... 286
 E.7 Fitting Models to Data ... 288
 E.8 How to Select Models and Parameters for Models 291
 E.9 Forecasting Practice Problems 292

F: Simulation ... 295
 F.1 Introduction ... 295
 F.2 Types of Simulation ... 295
 F.3 Simulation Practice Problems 302

G: Decision Theory ... 303
 G.1 Introduction .. 303
 G.2 Decision Theory Model Elements 304
 G.3 Types of Decision Environments 304
 G.4 Decision Theory Formulation 305
 G.5 Decision-Making Under Certainty 306
 G.6 Decision-Making Under Risk 307
 G.7 Decision-Making under Uncertainty 311
 G.8 Expected Value of Perfect Information 315
 G.9 Sequential Decisions and Decision Trees 317
 G.10 The Value of Imperfect Information: Bayes’s Theorem ... 321
 G.11 Decision Theory Practice Problems 328

Index ... 335
About the Authors

Marc J. Schniederjans is the C. Wheaton Battey Distinguished Professor of Business in the College of Business Administration at the University of Nebraska-Lincoln and has served on the faculty of three other universities. Professor Schniederjans is a Fellow of the Decision Sciences Institute (DSI) and in 2014–2015 will serve as DSI’s President. His prior experience includes owning and operating his own truck leasing business. He is currently a member of the Institute of Supply Management (ISM), the Production and Operations Management Society (POMS), and Decision Sciences Institute (DSI). Professor Schniederjans has taught extensively in operations management and management science. He has won numerous teaching awards and is an honorary member of the Golden Key honor society and the Alpha Kappa Psi business honor society. He has published more than a hundred journal articles and has authored or coauthored twenty books in the field of management. The title of his most recent book is Reinventing the Supply Chain Life Cycle, and his research has encompassed a wide range of operations management and decision science topics. He has also presented more than one hundred research papers at academic meetings. Professor Schniederjans is serving on five journal editorial review boards, including Computers & Operations Research, International Journal of Information & Decision Sciences, International Journal of Information Systems in the Service Sector, Journal of Operations Management, Production and Operations Management. He is also serving as an area editor for the journal Operations Management Research and as an associate editor for the International Journal of Strategic Decision Sciences and International Journal of the Society Systems Science and Management Review: An International Journal (Korea). Professor Schniederjans has also served as a consultant and trainer to various business and government agencies.
Dara G. Schniederjans is an assistant professor of Supply Chain Management at the University of Rhode Island, College of Business Administration. She has published articles in journals such as Decision Support Systems, Journal of the Operational Research Society, and Business Process Management Journal. She has also coauthored two text books and coedited a readings book. She has contributed chapters to readings utilizing quantitative and statistical methods. Dara has served as a guest coeditor for a special issue on Business Ethics in Social Sciences in the International Journal of Society Systems Science. She has also served as a website coordinator for Decisions Sciences Institute. She currently teaches courses in Supplier Relationship Management and Operations Management.

Christopher M. Starkey is an economics student at the University of Connecticut-Storrs. He has presented papers at the Academy of Management and Production and Operations Management Society meetings. He currently teaches courses in Principles of Microeconomics and has taught Principles of Macroeconomics. His current research interests include macroeconomic and monetary policy, as well as other decision-making methodologies.
Like the face on the cover of this book, we are bombarded by information every day. We do our best to sort out and use the information to help us get by, but sometimes we are overwhelmed by the abundance of data. This can lead us to draw wrong conclusions and make bad decisions. When you are a global firm collecting millions of transactions and customer behavior data from all over the world, the size of the data alone can make the task of finding useful information about customers almost impossible. For that firm and even smaller businesses, the solution is to apply business analytics (BA). BA helps sort out large data files (called “big data”), find patterns of behavior useful in predicting the future, and allocate resources to optimize decision-making. BA involves a step-wise process that aids firms in managing big data in a systematic procedure to glean useful information, which can solve problems and pinpoint opportunities for enhanced business performance.

This book has been written to provide a basic education in BA that can serve both academic and practitioner markets. In addition to bringing BA up-to-date with literature and research, this book explains the BA process in simple terms and supporting methodologies useful in its application. Collectively, the statistical and quantitative tools presented in this book do not need substantial prerequisites other than basic high school algebra. To support both markets, a substantial number of solved problems are presented along with some case study applications to train readers in the use of common BA tools and software. Practitioners will find the treatment of BA methodologies useful review topics. Academic users will find chapter objectives and discussion questions helpful for serving their needs while also having an opportunity to obtain an Instructor’s Guide with chapter-end problem solutions and exam questions.

The purpose of this book is to explain what BA is, why it is important to know, and how to do it. To achieve this purpose, the book presents conceptual content, software familiarity, and some analytic tools.

Conceptual Content

The conceptual material is presented in the first eight chapters of the book. (See Section 1.4 in Chapter 1 for an explanation of the book’s organization.) The conceptual content covers much more than what BA is about. The book explains why BA is important in terms of proving answers to questions, how it can be used to achieve
competitive advantage, and how to align an organization to make best use of it. The book explains the managerial aspects of creating a BA presence in an organization and the skills BA personnel are expected to possess. The book also describes data management issues such as data collection, outsourcing, data quality, and change management as they relate to BA.

Having created a managerial foundation explaining “what” and “why” BA is important, the remaining chapters focus on “how” to do it. Embodied in a three-step process, BA is explained to have descriptive, predictive, and prescriptive analytic steps. For each of these steps, this book presents a series of strategies and best practice guides to aid in the BA process.

Software

Much of what BA is about involves the use of software. Unfortunately, no single software covers all aspects of BA. Many institutions prefer one type of software over others. To provide flexibility, this book’s use of software provides some options and can be used by readers who are not even interested in running computer software. In this book, SPSS®, Excel®, and Lingo® software are utilized to model and solve problems. The software treatment is mainly the output of these software systems, although some input and instructions on their use is provided. For those not interested in running software applications, the exposure to the printouts provides insight into their informational value. This book recognizes that academic curriculums prefer to uniquely train students in the use of software and does not duplicate basic software usage. As a prerequisite to using this book, it is recommended that those interested in running software applications for BA become familiar with and are instructed on the use of whatever software is desired.

Analytic Tools

The analytic tool materials are chiefly contained in this book’s appendixes. BA is a statistical, management information systems (MIS) and quantitative methods tools-oriented subject. While the conceptual content in the book overviews how to undertake the BA process, the implementation of how to actually do BA requires quantitative tools. Because some practitioners and academic programs are less interested in the technical aspects of BA, the bulk of the quantitative material is presented
in the appendixes. These appendixes provide an explanation and illustration of a substantial body of BA tools to support a variety of analyses. Some of the statistical tools that are explained and illustrated in this book include statistical counting (permutations, combinations, repetitions), probability concepts (approaches to probability, rules of addition, rules of multiplication, Bayes' Theorem), probability distributions (binomial, Poisson, normal, exponential), confidence intervals, sampling methods, simple and multiple regression, charting, and hypothesis testing. Although management information systems are beyond the scope of this book, the software applications previously mentioned are utilized to illustrate search, clustering, and typical data mining applications of MIS technology. In addition, quantitative methods tools explained and illustrated in this book include linear programming, duality and sensitivity analysis, integer programming, zero-one programming, forecasting modeling, nonlinear optimization, simulation analysis, breakeven analysis, and decision theory (certainty, risk, uncertainty, expected value opportunity loss analysis, expected value of perfect information, expected value of imperfect information).

We want to acknowledge the help of individuals who provided needed support for the creation of this book. First, we really appreciate the support of our editor, Jeanne Glasser Levine, and the outstanding staff at Financial Times Press/Pearson. They made creating this book a pleasure and worked with us to improve the final product. Decades of writing books with other publishers permitted us to recognize how a top-tier publisher like ours makes a difference. We thank Alan McHugh, who developed the image on our book cover. His constant willingness to explore and be innovative with ideas made a significant contribution to our book. We also want to acknowledge the great editing help we received from Jill Schniederjans. Her skill has reduced the wordiness and enhanced the content (making parts less boring to read). Finally, we would like to acknowledge the help of Miles Starkey, whose presence and charm have lifted our spirits and kept us on track to meet completion deadlines.

While many people have assisted in preparing this book, its accuracy and completeness are our responsibility. For all errors that this book may contain, we apologize in advance.

Marc J. Schniederjans
Dara G. Schniederjans
Christopher M. Starkey
What Are Business Analytics?

Chapter objectives:

• Define business analytics.
• Explain the relationship of analytics and business intelligence to the subject of business analytics.
• Describe the three steps of the business analytics process.
• Describe four data classification measurement scales.
• Explain the relationship of the business analytics process with the organization decision-making process.

1.1 Terminology

Business analytics begins with a *data set* (a simple collection of data or a data file) or commonly with a *database* (a collection of data files that contain information on people, locations, and so on). As databases grow, they need to be stored somewhere. Technologies such as *computer clouds* (hardware and software used for data remote storage, retrieval, and computational functions) and *data warehousing* (a collection of databases used for reporting and data analysis) store data. Database storage areas have become so large that a new term was devised to describe them. *Big data* describes the collection of data sets that are so large and complex that software systems are hardly able to process them (Isson and Harriott, 2013, pp. 57–61). Isson and Harriott (2013, p. 61) define *little data* as anything that is not big data. Little data describes the smaller data segments or files that help individual businesses keep track of customers. As a means of sorting through data to find useful information, the application of analytics has found new purpose.
Three terms in business literature are often related to one another: analytics, business analytics, and business intelligence. *Analytics* can be defined as a process that involves the use of statistical techniques (measures of central tendency, graphs, and so on), information system software (data mining, sorting routines), and operations research methodologies (linear programming) to explore, visualize, discover and communicate patterns or trends in data. Simply, analytics convert data into useful information. Analytics is an older term commonly applied to all disciplines, not just business. A typical example of the use of analytics is the weather measurements collected and converted into statistics, which in turn predict weather patterns.

There are many types of analytics, and there is a need to organize these types to understand their uses. We will adopt the three categories (*descriptive*, *predictive*, and *prescriptive*) that the *Institute of Operations Research and Management Sciences* (INFORMS) organization (www.informs.org) suggests for grouping the types of analytics (see Table 1.1). These types of analytics can be viewed independently. For example, some firms may only use descriptive analytics to provide information on decisions they face. Others may use a combination of analytic types to glean insightful information needed to plan and make decisions.

<table>
<thead>
<tr>
<th>Type of Analytics</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive</td>
<td>The application of simple statistical techniques that describes what is contained in a data set or database. Example: An age bar chart is used to depict retail shoppers for a department store that wants to target advertising to customers by age.</td>
</tr>
<tr>
<td>Predictive</td>
<td>An application of advanced statistical, information software, or operations research methods to identify predictive variables and build predictive models to identify trends and relationships not readily observed in a descriptive analysis. Example: Multiple regression is used to show the relationship (or lack of relationship) between age, weight, and exercise on diet food sales. Knowing that relationships exist helps explain why one set of independent variables influences dependent variables such as business performance.</td>
</tr>
<tr>
<td>Prescriptive</td>
<td>An application of decision science, management science, and operations research methodologies (applied mathematical techniques) to make best use of allocable resources. Example: A department store has a limited advertising budget to target customers. Linear programming models can be used to optimally allocate the budget to various advertising media.</td>
</tr>
</tbody>
</table>

The purposes and methodologies used for each of the three types of analytics differ, as can be seen in Table 1.2. It is these differences that distinguish *analytics* from *business analytics*. Whereas analytics is focused on generating insightful information
from data sources, business analytics goes the extra step to leverage analytics to create an improvement in measurable business performance. Whereas the process of analytics can involve any one of the three types of analytics, the major components of business analytics include all three used in combination to generate new, unique, and valuable information that can aid business organization decision-making. In addition, the three types of analytics are applied sequentially (descriptive, then predictive, then prescriptive). Therefore, business analytics (BA) can be defined as a process beginning with business-related data collection and consisting of sequential application of descriptive, predictive, and prescriptive major analytic components, the outcome of which supports and demonstrates business decision-making and organizational performance. Stubbs (2011, p. 11) believes that BA goes beyond plain analytics, requiring a clear relevancy to business, a resulting insight that will be implementable, and performance and value measurement to ensure a successful business result.

Table 1.2 Analytic Purposes and Tools

<table>
<thead>
<tr>
<th>Type of Analytics</th>
<th>Purpose</th>
<th>Examples of Methodologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive</td>
<td>To identify possible trends in large data sets or databases. The purpose is to get a rough picture of what generally the data looks like and what criteria might have potential for identifying trends or future business behavior.</td>
<td>Descriptive statistics, including measures of central tendency (mean, median, mode), measures of dispersion (standard deviation), charts, graphs, sorting methods, frequency distributions, probability distributions, and sampling methods.</td>
</tr>
<tr>
<td>Predictive</td>
<td>To build predictive models designed to identify and predict future trends.</td>
<td>Statistical methods like multiple regression and ANOVA. Information system methods like data mining and sorting. Operations research methods like forecasting models.</td>
</tr>
<tr>
<td>Prescriptive</td>
<td>To allocate resources optimally to take advantage of predicted trends or future opportunities.</td>
<td>Operations research methodologies like linear programming and decision theory.</td>
</tr>
</tbody>
</table>

Business intelligence (BI) can be defined as a set of processes and technologies that convert data into meaningful and useful information for business purposes. While some believe that BI is a broad subject that encompasses analytics, business analytics, and information systems (Bartlett, 2013, p.4), others believe it is mainly focused on collecting, storing, and exploring large database organizations for information useful to decision-making and planning (Negash, 2004). One function that is generally accepted as a major component of BI involves storing an organization’s data in computer cloud storage or in data warehouses. Data warehousing is not an analytics or business analytics function, although the data can be used for analysis. In application,
BI is focused on querying and reporting, but it can include reported information from a BA analysis. BI seeks to answer questions such as what is happening now and where, and also what business actions are needed based on prior experience. BA, on the other hand, can answer questions like why something is happening, what new trends may exist, what will happen next, and what is the best course for the future.

In summary, BA includes the same procedures as in plain analytics but has the additional requirement that the outcome of the analytic analysis must make a measurable impact on business performance. BA includes reporting results like BI but seeks to explain why the results occur based on the analysis rather than just reporting and storing the results, as is the case with BI. Analytics, BA, and BI will be mentioned throughout this book. A review of characteristics to help differentiate these terms is presented in Table 1.3.

Table 1.3 Characteristics of Analytics, Business Analytics, and Business Intelligence

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Analytics</th>
<th>Business Analytics (BA)</th>
<th>Business Intelligence (BI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business performance planning role</td>
<td>What is happening, and what will be happening?</td>
<td>What is happening now, what will be happening, and what is the best strategy to deal with it?</td>
<td>What is happening now, and what have we done in the past to deal with it?</td>
</tr>
<tr>
<td>Use of descriptive analytics as a major component of analysis</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Use of predictive analytics as a major component of analysis</td>
<td>Yes</td>
<td>Yes</td>
<td>No (only historically)</td>
</tr>
<tr>
<td>Use of prescriptive analytics as a major component of analysis</td>
<td>Yes</td>
<td>Yes</td>
<td>No (only historically)</td>
</tr>
<tr>
<td>Use of all three in combination</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Business focus</td>
<td>Maybe</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Focus of storing and maintaining data</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Required focus of improving business value and performance</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
1.2 Business Analytics Process

The complete business analytic process involves the three major component steps applied sequentially to a source of data (see Figure 1.1). The outcome of the business analytic process must relate to business and seek to improve business performance in some way.

Figure 1.1 Business analytic process

The logic of the BA process in Figure 1.1 is initially based on a question: What valuable or problem-solving information is locked up in the sources of data that an organization has available? At each of the three steps that make up the BA process, additional questions need to be answered, as shown in Figure 1.1. Answering all these questions requires mining the information out of the data via the three steps of analysis that comprise the BA process. The analogy of digging in a mine is appropriate for the BA process because finding new, unique, and valuable information that can lead to a successful strategy is just as good as finding gold in a mine. SAS, a major analytic
corporation (www.sas.com), actually has a step in its BA process, *Query Drilldown*, which refers to the mining effort of questioning and finding answers to pull up useful information in the BA analysis. Many firms routinely undertake BA to solve specific problems, while other firms undertake BA to explore and discover new knowledge to guide organizational planning and decision-making to improve business performance.

The size of some data sources can be unmanageable, overly complex, and generally confusing. Sorting out data and trying to make sense of its informational value requires the application of descriptive analytics as a first step in the BA process. One might begin simply by sorting the data into groups using the four possible classifications presented in Table 1.4. Also, incorporating some of the data into spreadsheets like Excel and preparing cross tabulations and contingency tables are means of restricting the data into a more manageable data structure. Simple measures of central tendency and dispersion might be computed to try to capture possible opportunities for business improvement. Other descriptive analytic summarization methods, including charting, plotting, and graphing, can help decision makers visualize the data to better understand content opportunities.

Table 1.4 Types of Data Measurement Classification Scales

<table>
<thead>
<tr>
<th>Type of Data Measurement Scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical Data</td>
<td>Data that is grouped by one or more characteristics. Categorical data usually involves cardinal numbers counted or expressed as percentages. Example 1: Product markets that can be characterized by categories of “high-end” products or “low-income” products, based on dollar sales. It is common to use this term to apply to data sets that contain items identified by categories as well as observations summarized in cross-tabulations or contingency tables.</td>
</tr>
<tr>
<td>Ordinal Data</td>
<td>Data that is ranked or ordered to show relational preference. Example 1: Football team rankings not based on points scored but on wins. Example 2: Ranking of business firms based on product quality.</td>
</tr>
<tr>
<td>Interval Data</td>
<td>Data that is arranged along a scale where each value is equally distant from others. It is ordinal data. Example 1: A temperature gauge. Example 2: A survey instrument using a Likert scale (that is, 1, 2, 3, 4, 5, 6, 7), where 1 to 2 is perceived as equidistant to the interval from 2 to 3, and so on. Note: In ordinal data, the ranking of firms might vary greatly from first place to second, but in interval data, they would have to be relationally proportional.</td>
</tr>
<tr>
<td>Ratio Data</td>
<td>Data expressed as a ratio on a continuous scale. Example 1: The ratio of firms with green manufacturing programs is twice that of firms without such a program.</td>
</tr>
</tbody>
</table>
From Step 1 in the Descriptive Analytic analysis (see Figure 1.1), some patterns or variables of business behavior should be identified representing targets of business opportunities and possible (but not yet defined) future trend behavior. Additional effort (more mining) might be required, such as the generation of detailed statistical reports narrowly focused on the data related to targets of business opportunities to explain what is taking place in the data (what happened in the past). This is like a statistical search for predictive variables in data that may lead to patterns of behavior a firm might take advantage of if the patterns of behavior occur in the future. For example, a firm might find in its general sales information that during economic downtimes, certain products are sold to customers of a particular income level if certain advertising is undertaken. The sales, customers, and advertising variables may be in the form of any of the measurable scales for data in Table 1.4, but they have to meet the three conditions of BA previously mentioned: clear relevancy to business, an implementable resulting insight, and performance and value measurement capabilities.

To determine whether observed trends and behavior found in the relationships of the descriptive analysis of Step 1 actually exist or hold true and can be used to forecast or predict the future, more advanced analysis is undertaken in Step 2, Predictive Analytic analysis, of the BA process. There are many methods that can be used in this step of the BA process. A commonly used methodology is multiple regression. (See Appendix A, “Statistical Tools,” and Appendix E, “Forecasting,” for a discussion on multiple regression and ANOVA testing.) This methodology is ideal for establishing whether a statistical relationship exists between the predictive variables found in the descriptive analysis. The relationship might be to show that a dependent variable is predictively associated with business value or performance of some kind. For example, a firm might want to determine which of several promotion efforts (independent variables measured and represented in the model by dollars in TV ads, radio ads, personal selling, and/or magazine ads) is most efficient in generating customer sale dollars (the dependent variable and a measure of business performance). Care would have to be taken to ensure the multiple regression model was used in a valid and reliable way, which is why ANOVA and other statistical confirmatory analyses are used to support the model development. Exploring a database using advanced statistical procedures to verify and confirm the best predictive variables is an important part of this step in the BA process. This answers the questions of what is currently happening and why it happened between the variables in the model.

A single or multiple regression model can often forecast a trend line into the future. When regression is not practical, other forecasting methods (exponential smoothing, smoothing averages) can be applied as predictive analytics to develop needed forecasts of business trends. (See Appendix E.) The identification of future
trends is the main output of Step 2 and the predictive analytics used to find them. This helps answer the question of what will happen.

If a firm knows where the future lies by forecasting trends as they would in Step 2 of the BA process, it can then take advantage of any possible opportunities predicted in that future state. In Step 3, *Prescriptive Analytics analysis*, operations research methodologies can be used to optimally allocate a firm’s limited resources to take best advantage of the opportunities it found in the predicted future trends. Limits on human, technology, and financial resources prevent any firm from going after all opportunities they may have available at any one time. Using prescriptive analytics allows the firm to allocate limited resources to optimally achieve objectives as fully as possible. For example, *linear programming* (a constrained optimization methodology) has been used to maximize the profit in the design of supply chains (Paksoy et al., 2013). (Note: Linear programming and other optimization methods are presented in Appendixes B, “Linear Programming,” C, “Duality and Sensitivity Analysis in Linear Programming,” and D, “Integer Programming.”) This third step in the BA process answers the question of how best to allocate and manage decision-making in the future.

In summary, the three major components of descriptive, predictive, and prescriptive analytics arranged as steps in the BA process can help a firm find opportunities in data, predict trends that forecast future opportunities, and aid in selecting a course of action that optimizes the firm’s allocation of resources to maximize value and performance. The BA process, along with various methodologies, will be detailed in Chapters 5 through 10.

1.3 Relationship of BA Process and Organization Decision-Making Process

The BA process can solve problems and identify opportunities to improve business performance. In the process, organizations may also determine strategies to guide operations and help achieve competitive advantages. Typically, solving problems and identifying strategic opportunities to follow are organization decision-making tasks. The latter, identifying opportunities, can be viewed as a problem of strategy choice requiring a solution. It should come as no surprise that the BA process described in Section 1.2 closely parallels classic organization decision-making processes. As depicted in Figure 1.2, the business analytic process has an inherent relationship to the steps in typical organization decision-making processes.
The organization decision-making process (ODMP) developed by Elbing (1970) and presented in Figure 1.2 is focused on decision making to solve problems but could also be applied to finding opportunities in data and deciding what is the best course of action to take advantage of them. The five-step ODMP begins with the perception of disequilibrium, or the awareness that a problem exists that needs a decision. Similarly, in the BA process, the first step is to recognize that databases may contain information that could both solve problems and find opportunities to improve business performance. Then in Step 2 of the ODMP, an exploration of the problem to determine its size, impact, and other factors is undertaken to diagnose what the problem is. Likewise, the BA descriptive analytic analysis explores factors that might prove useful in solving problems and offering opportunities. The ODMP problem statement step is similarly structured to the BA predictive analysis to find strategies, paths, or trends that clearly define a problem or opportunity for an organization to solve problems. Finally, the ODMP’s last steps of strategy selection and implementation involve the same kinds of tasks that the BA process requires in the final prescriptive step (make an
optimal selection of resource allocations that can be implemented for the betterment of the organization).

The decision-making foundation that has served ODMP for many decades parallels the BA process. The same logic serves both processes and supports organization decision-making skills and capacities.

1.4 Organization of This Book

This book is designed to answer three questions about BA:

- What is it?
- Why is it important?
- How do you do it?

To answer these three questions, the book is divided into three parts. In Part I, “What Are Business Analytics?”, Chapter 1 answers the “what” question. In Part II, the “why” question is answered in Chapter 2, “Why Are Business Analytics Important?” and Chapter 3, “What Resource Considerations Are Important to Support Business Analytics?”

Knowing the importance of explaining how BA is undertaken, the rest of the book’s chapters and appendixes are devoted to answering that question. Chapter 4, “How Do We Align Resources to Support Business Analytics within an Organization?”, explains how an organization needs to support BA. Chapter 5, “What Are Descriptive Analytics?”, Chapter 6, “What Are Predictive Analytics?”, and Chapter 7, “What Are Prescriptive Analytics?”, detail and illustrate the three respective steps in the BA process. To further illustrate how to conduct a BA analysis, Chapter 8, “A Final Case Study Illustration,” provides an example of BA. Supporting the analytic discussions is a series of analytically oriented appendixes that follow Chapter 8.

Part III includes quantitative analyses utilizing computer software. In an effort to provide some diversity of software usage, SPSS, Excel, and LINGO software output are presented. SPSS and LINGO can be used together to duplicate the analysis in this book, or only Excel with the necessary add-ins can be used. Because of the changing nature of software and differing educational backgrounds, this book does not provide extensive software explanation.

In addition to the basic content that makes up the body of the chapters, there are pedagogy enhancements that can aid learning. All chapters begin with chapter objectives and end with a summary, discussion questions, and, where needed, references.
In addition, Chapters 5 through 8 have sample problems with solutions, as well as additional assignment problems.

Some of the more detailed explanations of methodologies are presented in the appendixes. Their positioning in the appendixes is designed to enhance content flow and permit more experienced readers a flexible way to select only the technical content they might want to use. An extensive index allows quick access to terminology.

Summary

This chapter has introduced important terminology and defined business analytics in terms of a unique process useful in securing information on which decisions can be made and business opportunities seized. Data classification measurement scales were also briefly introduced to aid in understanding the types of measures that can be employed in BA. The relationship of the BA process and the organization decision-making process was explained in terms of how they complement each other. This chapter ended with a brief overview of this book’s organization and how it is structured to aid learning.

Knowing what business analytics are about is important, but equally important is knowing why they are important. Chapter 2 begins to answer the question.

Discussion Questions

1. What is the difference between analytics and business analytics?
2. What is the difference between business analytics and business intelligence?
3. Why are the steps in the business analytics process sequential?
4. How is the business analytics process similar to the organization decision-making process?
5. Why does interval data have to be relationally proportional?
References

This page intentionally left blank
addition, rules of, 173-174
additive time series model, 274
additivity in LP (Linear Programming) models, 232
administrators, 31
aligning business analytics, 45-46
 management issues, 54
 change management, 58-59
 ensuring data quality, 55-57
 establishing information policy, 54
 measuring business analytics contribution, 58
 outsourcing business analytics, 55
organization structures, 46-50
 centralized BA organization structure, 49-50
 functional organization structure, 48
 hierarchical relationships, 46
 matrix organization structure, 48
 project structure, 47-48
 reasons for BA initiative and organization failure, 51-50
teams, 50-53
 collaboration, 50-53
 participant roles, 52
 reasons for team failures, 53
alternatives (DT), 304
Analysis ToolPak, 39
analytics. See also DT (decision theory)
 alignment. See business analytics alignment
 analytic purposes and tools, 5
business analytics personnel, 30-33
 administrators, 31
 BAP (Business Analytics Professional) exam, 30-31
 designers, 31
 developers, 31
 skills and competency requirements, 32-33
 solution experts, 31
 technical specialists, 31
business analytics process
 data measurement scales, 8
 explained, 7-10
 relationship with organization decision-making process (ODMP), 10-12
 characteristics of, 6
 decision analysis. See DT (decision theory)
 definition of, 3-4
descriptive analytics
 analytic purposes and tools, 5
 confidence intervals, 76-77
 definition of, 4
 descriptive statistics, 67-72
 marketing/planning case study example, 80-90
 overview, 63-64
 probability distributions, 78-80
 sampling estimation, 76-77
 sampling methods, 73-75
 statistical charts, 64-67
 supply chain shipping problem case study, 141-145
predictive analytics
 analytic purposes and tools, 5
data mining, 97-102
data-driven models, 96-97
definition of, 4
logic-driven models, 94-96
marketing/planning case study
 example, 102-114
methodologies, 119-120
overview, 93-94
prescriptive modeling, 120-122
supply chain shipping problem case study, 147-157
prescriptive analytics
 analytic purposes and tools, 5
definition of, 4
integer programming. See IP (integer programming)
regression analysis, 97
 Durbin-Watson Autocorrelation Test, 284
 multiple regression models, 281-284
 simple regression model, 276-281
sensitivity analysis
 economic value of resources,
 determining, 258-259
 overview, 242-243
 primal maximization problems, 243-251
 primal minimization problems, 251-258
analytics analysts, 51
analytics modelers, 51
analytics process designers, 51
ANOVA testing, 9, 195
applications of business analytics to
 enhance decision-making, 23-24
applied LP (Linear Programming) model, 202
area charts, 65
artificial variables, 219
assessing probability
 Frequency Theory, 171-172
 Principle of Insufficient Reason, 172
 rules of addition, 173-174
 rules of multiplication, 174-177
associations, 39, 99
averages, smoothing, 286-288

B
BA team heads, 51
backward decision method, 317-320
BAP (Business Analytics Professional)
 exam, 30-31
bar charts, 65
Bayes’s theorem, 321-328
belief of physical proximity, 51
BI (business intelligence), 5-6
billing and reminder systems, 34
binomial probability distribution, 179-181
binomial tests, 199
blending formulations, 230
branch-and-bound method, 264-267
business analytics alignment, 45-46
 management issues, 54
 change management, 58-59
 ensuring data quality, 55-57
 establishing information policy, 54
 measuring business analytics
 contribution, 58
 outsourcing business analytics, 55
organization structures, 46-50
 centralized BA organization structure, 49-50
 functional organization structure, 48
 hierarchical relationships, 46
 matrix organization structure, 48
 project structure, 47-48
 reasons for BA initiative and organization failure, 51-50
teams, 50-53
 collaboration, 50-53
 participant roles, 52
 reasons for team failures, 53
business analytics personnel, 30-33
 administrators, 31
 BAP (Business Analytics Professional)
 exam, 30-31
 designers, 31
 developers, 31
skills and competency requirements, 32-33
solution experts, 31
technical specialists, 31
business analytics process
data measurement scales, 8
explained, 7-10
relationship with organization
decision-making process (ODMP), 10-12
Business Analytics Professional (BAP) exam, 30-31
business domain experts, 52
business intelligence (BI), 5-6
business performance tracking, 24
butcher problem example (LP), 208-210

C
CAP (Certified Analytic Professional), 30
case studies
explained, 121
marketing/planning case study example. See marketing/planning case study example
supply chain shipping problem case study
descriptive analytics analysis, 141-145
predictive analytics analysis, 147-157
prescriptive analysis, 158-163
problem background and data, 139-140
categorical data, 8
categorizing data, 33-35
cause-and-effect diagrams, 95
centralized BA organization structure, 49-50
certainty
decision-making under certainty, 306
maximax criterion, 306
maximin criterion, 307
explained, 304
in LP (Linear Programming) models, 232
Certified Analytic Professional (CAP), 30
championing change, 59
change management, 58-59
best practices, 59-60
targets, 59
charts
marketing/planning case study example
case study background, 81
descriptive analytics analysis, 82-90
statistical charts, 65-67
CHISQ.TEST, 199
Chi-Square tests, 199
Claritas, 35
Clarke Special Parts problem example, 214-215
classification, 39, 99
clearly stated goals, 59
cluster random sampling, 73
clustering
data mining, 39, 99
hierarchical clustering, 100
K-mean clustering, 100-102
coding, checking for, 57
coefficient of kurtosis, 68
coefficient of skewness, 68
Cognizure BAP (Business Analytics Professional) exam, 30-31
collaboration
lack of, 50
in teams, 50-53
column charts, 65
combinations, 169
communication
good communication, 59
lack of, 53
competency requirements for business analytics personnel, 32-33
competition data sources, 35
competitive advantage
achieving with business analytics, 20-21
innovation, 21
operations efficiency, 21
price leadership, 21
product differentiation, 21
service effectiveness, 21
sustainability, 21
completeness, checking for, 57
computer simulation methods, 301
conditional probabilities, 176
confidence coefficient, 79
confidence intervals, 76-77
constrained optimization models, 128-129
constraints
formulating, 130-131
LP (Linear Programming), 204-206
continuous probability distributions, 185-192
exponential probability distribution, 190-192
normal probability distribution, 186-189
correlation analysis, 97
counting, 167
combinations, 169
permutations, 167-168
repetitions, 170
credit union example of business analysis, 19
CRM (customer relationship management) systems, 34
culture as target of change management, 59
current data, checking for, 57
collection, 57
Curve Estimation (SPSS), 288-289
curve fitting explained, 123-129
SPSS Curve Estimation, 288-289
supply chain shipping problem case study, 147-154
customer demographics, 35
customer internal data, 34
customer profitability, increasing, 23
customer relationship management (CRM) systems, 34
customer satisfaction, 35
customer service problem example (LP), 213-214
cyclical variation, 275

D
data inspection items, 57
data management technology, 37
data managers, 52
data marts, 38
data measurement scales, 8
data mining, 38-40, 97-98
methodologies, 99-102
discriminant analysis, 100
hierarchical clustering, 100
K-mean clustering, 100-102
logistic regression, 100
neural networks, 100
types of information, 99
simple illustration of, 98-99
data privacy, 36
data quality
ensuring, 55-57
overview, 35-36
data sets, 3
data sources
categorizing data, 33-35
data privacy, 35-36
data quality, 35-36
external sources, 34-35
internal sources, 34
new sources of data, applying business analytics to, 23-25
data visualization
marketing/planning case study example
case study background, 81
descriptive analytics analysis, 82-90
statistical charts, 64-67
data warehouses, 38
database management systems (DBMS), 37-36
databases, 3
database encyclopedia content, 36
DBMS (database management systems), 37-36
data-driven models, 96-97
DBMS (database management systems), 37-36
decision environments. See also DT (decision theory)
certainty
decision-making under certainty, 306-307
explained, 304
risk
decision-making under risk, 307-311
explained, 304
uncertainty
decision-making under uncertainty, 311-315
explained, 305
decision theory. See DT (decision theory)
decision trees, 317-320
decision variables, defining, 130
delegation of responsibility, 51
descriptive analytics
analytic purposes and tools, 5
confidence intervals, 76-77
definition of, 4
descriptive statistics, 67-72
marketing/planning case study example, 80
case study background, 81
descriptive analytics analysis, 82-90
overview, 63-64
probability distributions, 78-80
sampling estimation, 76-77
sampling methods, 73-75
statistical charts, 65-67
supply chain shipping problem case study, 141-145
actual monthly customer demand in motors, 143
Chicago customer demand
(graph), 143
estimated shipping costs per motor, 141
Excel summary statistics of actual monthly customer demand in motors, 144
Houston customer demand
(graph), 143
Kansas City customer demand
(graph), 145
Little Rock customer demand
(graph), 145
Oklahoma City customer demand
(graph), 145
Omaha customer demand
(graph), 145
problem background and data, 140
SPSS summary statistics of actual monthly customer demand in motors, 144
designers, 31
deterministic simulation, 295-296
developers, 31
diagrams
cause-and-effect diagrams, 95
influence diagrams, 95-96
diet problem example (LP), 210-212
differential calculus, 134
digital analytics, 23-25
discrete probability distributions, 178-184
binomial probability distribution, 179-181
geometric probability distribution, 184
hypergeometric probability distribution, 184
Poisson probability distribution, 182-184
discriminant analysis, 100
divisibility in LP (Linear Programming) models, 232
downloading LINGO, 220
DT (decision theory)
Bayes’s theorem, 321-328
decision-making under certainty, 306
maximax criterion, 306
maximin criterion, 307
decision-making under risk, 307
EV (expected value) criterion, 308-309
expected opportunity loss criterion, 309-311
origin of probabilities, 308
decision-making under uncertainty, 311
Hurwicz criterion, 312-313
Laplace criterion, 311-312
maximax criterion, 312
maximin criterion, 312
minimax criterion, 313-315
enhancing decision-making with business analytics, 23-24
EVPI (expected value of perfect information), 315
INDEX

model elements, 304
model formulation, 305-306
overview, 122, 303
practice problems, 328-333
sequential decisions and decision trees, 317-320
types of decision environments, 304-305
duality
duality practice problems, 259-261
economic value of resources, determining, 258-259
informational value of, 242
overview, 241
primal maximization problems, 243-251
primal minimization problems, 251-258
Dun & Bradstreet, 35
duplication, checking for, 57
Durbin-Watson Autocorrelation Test, 284

E
economic data sources, 35
economic value of resources, determining, 258-259
ensuring data quality, 55-57
enterprise resource planning (ERP) systems, 34
Equifax, 35
ERP (enterprise resource planning) systems, 34
errors
confidence intervals, 76-77
error metrics, 291-292
establishing information policy, 54
estimating sampling, 76-77
EV (expected value) criterion, 308-309
EVPI (expected value of perfect information), 315
Excel
computer-based solution with simplex method, 224-227
LP (Linear Programming) solutions
infeasible solutions, 229
practice problems, 233-238
unbounded solutions, 227-228
marketing/planning case study example
case study background, 81, 103
descriptive analytics analysis, 82-90
predictive analytics analysis, 104-114
solution for LP marketing/planning model, 132-133
primal maximization problems, 243-251
primal minimization problems, 251-258
simple regression model, 277-280
supply chain shipping problem case study, 144
t-test statistics, 197
ZOP (zero-one programming) problems/models, solving, 268-269
executive sponsorship, lack of, 51
expected opportunity loss criterion, 309-311
expected value (EV) criterion, 308-309
expected value of perfect information (EVPI), 315
experiments, 177
exponential probability distribution, 190-192
exponential smoothing
example of, 285
simple model, 284-285
smoothing averages, 286-288
external data sources, 34-35

F
factorials, 168
failures
failure to deliver, 53
failure to provide value, 53
reasons for BA initiative and organization failure, 50-51
reasons for team failures, 53
farming problem example (LP), 212-213
Federal Division problem example (LP), 215-217
finiteness in LP (Linear Programming) models, 232
fitting models to data, 288-289
forecasting
additive time series model, 274
data mining, 39, 99
exponential smoothing
 example of, 285
 simple model, 284-285
fitting models to data, 288-289
forecasting accuracy statistics, 291-292
 MAD (mean absolute deviation), 291-292
 MAPE (mean absolute percentage error), 292
 MSE (mean square error), 291-292
forecasting methods, 275-276
marketing/planning case study
 example, 112
multiple regression models, 281
 application, 282-283
 limitations in forecasting time series data, 283-284
multiplicative time series model, 274
overview, 97, 271
practice problems, 292-293
simple regression model
 computer-based solution, 277-280
 model for trend, 276
 statistical assumptions and rules, 280-281
smoothing averages, 286-288
supply chain shipping problem case study
 developing forecasting models, 147-154
 resulting warehouse customer demand forecasts, 157
 validating forecasting models, 155-157
time series data, variation in
 cyclical variation, 275
 random variation, 275
 seasonal variation, 274
 trend variation, 274
variation in time series data, 272-274
formulating DT (decision theory) models, 305-306
F-ratio statistic, 110
Frequency Theory, 171-172
F-Test Two-Sample for Variances tool, 195
functional organization structure, 48
functions, objective, 203-204

G
generalized LP (Linear Programming) model, 202
geometric probability distribution, 184
given requirements, stating, 131, 206
goals, 59
Google Insights for Search, 39
Google Trends, 39

H
hardware, 37
hierarchical clustering, 100
hierarchical relationships, 46
histograms, 66
human resources
 decisions, 23
 human resources data, 34
 lack of, 51
Hurwicz criterion, 312-313
hypergeometric probability distribution, 184
hypothesis testing, 193-199

I
IBM’s SPSS software, 40
IMF (International Monetary Fund), 35
implementation specialists, 52
importance of business analytics
 applications to enhance decision-making, 23-24
 new sources of data, 23-25
 overview, 17-18
 providing answers to questions, 18-20
 strategy for competitive advantage, 20-21
inability to delegate responsibility, 51
inability to prove success, 53
inconsistent values, checking for, 57
increasing customer profitability, 24
infeasible solutions, 229
influence diagrams, 95-96
information policy, establishing, 54
information technology (IT)
 computer hardware, 36
computer software, 36
- data management technology, 37
- data marts, 38
- data mining, 38-40
- data warehouses, 38
- database encyclopedia content, 36
- DBMS (database management systems), 37-36
- infrastructure, 37
- networking and telecommunications technology, 37

INFORMS, 30
- innovation, achieving with business analytics, 21
- Insufficient Reason, Principle of, 172
- integer programming. See IP (integer programming)
- integrated processes, lack of, 51
- internal data sources, 34
- International Monetary Fund (IMF), 35
- interval data, 8
- IP (integer programming), 121, 263
 - explained, 263-264
 - IP problems/models, solving, 264
 - maximization IP problem, 265-266
 - minimization IP problem, 266-267
 - practice problems, 270
- ZOP (zero-one programming)
 - explained, 264
 - problems/models, solving, 268-269

IT (information technology)
- computer hardware, 37
- computer software, 37
- data management technology, 37
- data marts, 38
- data mining, 38-40
- data warehouses, 38
- database encyclopedia content, 36
- DBMS (database management systems), 37-36
- infrastructure, 37
- networking and telecommunications technology, 37

J-K
- judgment sampling, 74
- justification, lack of, 53
- K-mean clustering, 101-102
- Kolmogorov-Smirnov (One-Way) tests, 199
- Kurtosis, 69

L
- Laplace criterion, 311-312
- leadership, lack of, 50
- limited context perception, 50
- Lindo Systems LINGO. See LINGO
- line charts
 - explained, 66
 - marketing/planning case study example
 - case study background, 81
 - descriptive analytics analysis, 82-90
- Linear Programming. See LP (Linear Programming)
- linearity in LP (Linear Programming) models, 232
- LINGO, 40
 - downloading, 220
 - IP problems/models, solving
 - maximization IP problem, 265-266
 - minimization IP problem, 266-267
 - LP (Linear Programming) solutions
 - computer-based solution with simplex method, 220-224
 - infeasible solutions, 229
 - marketing/planning case study example, 132-133
 - practice problems, 233-238
 - unbounded solutions, 227-228
- overview, 40
- primal maximization problems, 243-251
- primal minimization problems, 251-258
- supply chain shipping problem case study, 159-161
- trial versions, 220
- ZOP (zero-one programming) problems/models, solving, 268-269
little data, 3
logic-driven models, 94-96
logistic regression, 100
loss values, expected opportunity loss criterion, 309-311
LP (Linear Programming)
 applied LP model, 121, 202
 blending formulations, 230
 computer-based solutions with simplex method, 217-218
 Excel solution, 224-227
 LINGO solution, 220-224
 simplex variables, 218-220
 constraints, 204-206
 duality
 duality practice problems, 259-261
 economic value of resources, determining, 258-259
 informational value of, 242
 overview, 241
 primal maximization problems, 243-251
 primal minimization problems, 251-258
 sensitivity analysis, 242-243
 generalized LP model, 202
 infeasible solutions, 229
 maximization models, 201-202
 minimization models, 201-202
 multidimensional decision variable formulations, 231
 necessary assumptions, 232
 nonnegativity and given requirements, 206
 objective function, 203-204
 overview, 201-202
 practice problems, 233-238
 problem/model formulation
 butcher problem example, 208-210
 Clarke Special Parts problem example, 214-215
 customer service problem example, 213-214
 diet problem example, 210-212
 farming problem example, 212-213
 Federal Division problem example, 215-217
 stepwise procedure, 207-208
 unbounded solutions, 227-228
M
MAD (mean absolute deviation), 155-157, 162, 291-292
management issues, 54
 change management, 58-59
 best practices, 59
 targets, 59
 ensuring data quality, 55-57
 establishing information policy, 54
 measuring business analytics contribution, 58
 outsourcing business analytics, 55
 advantages of, 55
 disadvantages of, 56
MAPE (mean absolute percentage error), 292
marginal probability, 321
marketing/planning case study example, 80-90
 case study background, 81, 103, 129
 descriptive analytics analysis, 82-90
 predictive analytics analysis, 104-114
 Excel best variable combination regression model and statistics, 113
 Excel POS regression model, 108
 Excel radio regression model, 109
 Excel TV regression model, 109
 forecasting model, 112
 F-ratio statistic, 110
 R-Square statistics, 110-111
 SPSS best variable combination regression model and statistics, 106
 SPSS Pearson correlation coefficients, 104
 SPSS POS regression model, 106
 SPSS radio regression model, 107
 SPSS TV regression model, 108
prescriptive analysis, 102-103, 129-134
 final comments, 133-134
 formulation of LP marketing/planning model, 130-131
 solution for LP marketing/planning model, 132-133
matrix organization structure, 48-49
maximax criterion, 306, 312
maximin criterion, 307, 312
maximization IP problem, solving, 265-266
maximization models
 LP (Linear Programming), 201-202
 primal maximization problems, 243-251
maximum/minimum, 68
mean, 68
mean absolute deviation (MAD), 155-157, 162, 291-292
mean absolute percentage error (MAPE), 292
mean square error (MSE), 291-292
measured performance, 59
measuring business analytics
 contribution, 58
median, 68
merchandize strategy optimization, 23
methods, sampling, 73-75
Microsoft Excel, 39
minimax criterion, 313-315
minimization IP problem, solving, 266-267
minimization models
 LP (Linear Programming), 201-202
 primal minimization problems, 251-258
minimum/maximum, 68
mobile analytics, 25
mode, 68
modeling
 constrained optimization models, 128-129
 DT (decision theory)
 decision environments, 304-305
 model elements, 304
 model formulation, 305-306
 overview, 303
exponential smoothing
 example of, 285
 simple model, 284-285
forecasting models
 developing, 147-154
 exponential smoothing, 284-285
 fitting models to data, 288-289
 forecasting accuracy statistics, 291-292
 forecasting methods, 275-276
 multiple regression models, 281-284
 practice problems, 292-293
 sample warehouse customer demand forecasts, 157
 simple regression model, 276-281
 smoothing averages, 286-288
 statistical assumptions and rules, 280-281
 validating, 155-157
LP (Linear Programming)
 applied LP model, 202
 blending formulations, 230
 computer-based solutions with simplex method, 217-227
 constraints, 204-206
 generalized LP model, 202
 infeasible solutions, 229
 maximization models, 201-202
 minimization models, 201-202
 multidimensional decision variable formulations, 231
 necessary assumptions, 232
 nonnegativity and given requirements, 206
 objective function, 203-204
 problem/model formulation, 207-217
 unbounded solutions, 227-228
predictive modeling
 data-driven models, 96-97
 logic-driven models, 94-96
prescriptive modeling, 120-122
 case studies, 122
 decision analysis, 122
 integer programming. See integer programming
 linear programming. See LP (Linear Programming)
 nonlinear optimization, 121, 122-129
 other methodologies, 122
simulation, 122, 295
 deterministic simulation, 295-296
practice problems, 301
probabilistic simulation, 296-301
variation in time series data
 additive time series model, 274
cyclical variation, 275
 multiplicative time series model, 274
random variation, 275
seasonal variation, 274
trend variation, 274
monitoring analysts, 52
Monte Carlo simulation method
 application, 298-301
 procedure, 296-298
MSE (mean square error), 291-292
multidimensional decision variable
 formulations, 231
multiple regression models, 9, 281
 application, 282-283
 limitations in forecasting time series data, 283-284
multiplication, rules of, 174-177
multiplicative time series model, 274

N
N function, 67
need for business analytics
 applications to enhance decision-making, 23-24
 new sources of data, 23-25
 overview, 17-18
 providing answers to questions, 18-20
 strategy for competitive advantage, 20-21
networking and telecommunications technology, 37
neural networks, 100
new sources of data, applying business analytics to, 23-25
Nielsen data, 35
nonlinear optimization, 121, 122-129
 calculus methods, 129
 curve fitting, 123-129, 288-289
 quadratic programming, 128-129
nonnegativity, 131, 206
nonparametric hypothesis testing, 200-199
normal probability distribution, 186-189

O
objective function, 203-204
ODMP (organization decision-making process), 10-12
operations efficiency, achieving with business analytics, 21
optimization, nonlinear, 121, 122-129
 calculus methods, 129
 curve fitting, 123-129, 288-289
 quadratic programming, 128-129
ordinal data, 8
organization decision-making process (ODMP), 10-12
organization structures, 45-50
 centralized BA organization structure, 49-50
 functional organization structure, 48
 hierarchical relationships, 46
 matrix organization structure, 48
 project structure, 47-48
 reasons for BA initiative and organization failure, 51-50
 as target of change management, 59
organizational planning, 20
origin of probabilities, 308
outcomes, 177
outliers, checking for, 57
outsourcing business analytics, 55
 advantages of, 55
 disadvantages of, 55-56

P
parametric hypothesis testing, 195-197
payoffs (DT), 304
period sampling, 74
permutations, 167-168
personnel, 30-33
 administrators, 31
 BAP (Business Analytics Professional) exam, 30-31
designers, 31
developers, 31
skills and competency requirements, 32-33
solution experts, 31
as target of change management, 59
technical specialists, 31
physical proximity, belief of, 50
planning, organizational, 20
Poisson probability distribution, 182-184
policy, information policy, 54
practice problems
 DT (decision theory), 328-333
 forecasting, 292-293
 IP (integer programming), 270
 LP (Linear Programming), 233-238
 simulation, 301
predictive analytics
 analytic purposes and tools, 5
 data mining, 97-98
 methodologies, 99-102
 simple illustration of, 98-99
 data-driven models, 96-97
 definition of, 4
 logic-driven models, 94-96
 marketing/planning case study example
 case study background, 129
 prescriptive analysis, 129-134
 methodologies, 119-120
 prescriptive modeling, 120-122
 case studies, 122
 decision analysis, 122
 integer programming. See integer programming
 linear programming. See LP (Linear Programming)
 nonlinear optimization, 121, 122-129
 other methodologies, 122
 simulation, 122
 supply chain shipping problem case study, 158-163
 demonstrating business performance improvement, 162-163
 determining optimal shipping schedule, 159-161
 problem background and data, 140
 selecting and developing optimization shipping model, 158-159
 summary of BA procedure for manufacturer, 161-162
prescriptive modeling, 120-122
 case studies, 122
 decision analysis, 122
 integer programming, 122
 IP (integer programming)
 explained, 263-264
 IP problems/models, solving, 264-267
 practice problems, 270
 ZOP (zero-one programming)
 problems/models, solving, 264, 268-269
 linear programming. See LP (Linear Programming)
 nonlinear optimization, 121, 122-129
 calculus methods, 129
 curve fitting, 123-129, 288-289
 quadratic programming, 128-129
 other methodologies, 122
 simulation, 122
price leadership, achieving with business analytics, 21
INDEX

primal maximization problems, 243-251
primal minimization problems, 251-258
Principle of Insufficient Reason, 172
privacy (data), 35-36
probabilistic simulation
 Monte Carlo simulation method
 application, 298-301
 procedure, 296-298
overview, 296
probability. See also DT (decision theory)
 Bayes’s theorem, 321-328
 marginal probability, 321
 Monte Carlo simulation method,
 application, 298-301
 origin of probabilities, 308
 probabilistic simulation, 296
 Monte Carlo simulation method
 procedure, 296-298
overview, 296
probability concepts, 171
 Frequency Theory, 171-172
 Principle of Insufficient Reason, 172
 rules of addition, 173-174
 rules of multiplication, 174-177
probability distributions, 177-178
 binomial probability distribution, 179-181
 exponential probability distribution, 190-192
 geometric probability distribution, 184
 hypergeometric probability distribution, 184
 normal probability distribution, 186-189
 Poisson probability distribution, 182-184
random variables, 177
probability distributions, 78-80, 97,
 177-178
 continuous probability distributions,
 185-192
 exponential probability distribution, 190-
 normal probability distribution, 186-189
discrete probability distributions, 178-184
 binomial probability distribution, 179-181
 geometric probability distribution, 184
 hypergeometric probability distribution, 184
 Poisson probability distribution, 182-184
process of business analytics
 data measurement scales, 8
 explained, 7-10
 integrated processes, lack of, 51
 relationship with organization decision-making process (ODMP), 10-12
product data, 34
product differentiation, achieving with business analytics, 21
production data, 34
profit, calculating, 96
project structure, 47-48
providing answers to questions, 18-20
Q
 quadratic programming, 127-129
quality of data
 ensuring, 56-57
overview, 35-36
Query Drilldown, 8
questionnaires, 34
questions business analytics seeks to answer, 18
quota sampling, 74
R
random variables, 177
random variation, 275
range, 68
ratio data, 8
reducing risk, 24
regression analysis, 97
 Durbin-Watson Autocorrelation Test, 284
multiple regression models, 281
application, 282-283
limitations in forecasting time series data, 283-284
simple regression model
computer-based solution, 277-280
model for trend, 276-281
statistical assumptions and rules, 280-281
relevance, checking for, 57
repetitions, 170
responsibility, inability to delegate, 51
risk
decision-making under risk, 307
EV (expected value) criterion, 308-309
expected opportunity loss criterion, 309-311
origin of probabilities, 308
explained, 304
risk reduction, 23
roles (team), 52
R-Square statistics, 110-111
rules of addition, 173-174
rules of multiplication, 174-177
run testing, 199

S
sampling
sample variance, 69
sampling estimation, 76-77, 97
sampling methods, 73-75
SAS Analytics Pro, 7, 40
scatter charts, 66
seasonal variation, 274
sensitivity analysis
economic value of resources, determining, 258-259
overview, 242-243
primal maximization problems, 243-251
primal minimization problems, 251-258
sequences
data mining, 39, 99
sequential decisions and decision trees, 317-320
sequential decisions, 317-320
senior management support, 59
service effectiveness, achieving with business analytics, 21
simple random sampling, 73
simple regression model
computer-based solution, 277-280
model for trend, 276-281
statistical assumptions and rules, 280-281
simplex method, 217-218
Excel, 224-227
LINGO, 220-224
simplex variables, 218-220
artificial variables, 219
slack variables, 218-219
surplus variables, 219
simplex variables, 218-220
artificial variables, 219
slack variables, 218-219
surplus variables, 219
simulation, 97, 122, 295
computer simulation methods, 301
deterministic simulation, 295-296
practice problems, 301
probabilistic simulation, 296
Monte Carlo simulation method, 296-298
Monte Carlo simulation method application, 298-301
skewedness, 69
skill requirements for business analytics personnel, 32-33
slack variables, 218-219
smoothing averages, 286-288
social media analytics, 23-25
software, 37. See also specific software solution experts, 31
Solver, 39
SPSS software, 40
Curve Estimation, 288-289
Curve Fitting, 123-129, 148-153
K-Mean cluster software, 101-102
marketing/planning case study example case study background, 81, 103
descriptive analytics analysis, 82-90 predictive analytics analysis, 104-114
simple regression model, 277-280
supply chain shipping problem case study, 138
t-test statistics, 197
standard deviation, 68
standard error, 69
standard normal probability distribution, 78
states of nature (DT), 304
statistical charts, 65-67
statistical testing, 193-199
statistical tools, 167
counting, 167
combinations, 169
permutations, 167-168
repetitions, 170
descriptive statistics, 67-72
probability
rules of addition, 173-174
rules of multiplication, 174-177
probability concepts, 171
conditional probabilities, 176
Frequency Theory, 171-172
Principle of Insufficient Reason, 172
probability distributions, 177-178
binomial probability distribution, 179-181
exponential probability distribution, 190-192
geometric probability distribution, 184
hypergeometric probability distribution, 184
normal probability distribution, 186-189
Poisson probability distribution, 182-184
random variables, 177
statistical charts, 64-67
statistical testing, 193-199
strategy for competitive advantage, 20-21
stratified random sampling, 73
structured data analytics, 25
success, proving, 53
sum, 67
supply chain shipping problem case study
descriptive analytics analysis, 141-145
actual monthly customer demand in motors, 143
Chicago customer demand (graph), 143
estimated shipping costs per motor, 141
Excel summary statistics of actual monthly customer demand in motors, 144
Houston customer demand (graph), 143
Kansas City customer demand (graph), 145
Little Rock customer demand (graph), 145
Oklahoma City customer demand (graph), 145
Omaha customer demand (graph), 145
SPSS summary statistics of actual monthly customer demand in motors, 144
predictive analytics analysis, 147-157
developing forecasting models, 147-154
resulting warehouse customer demand forecasts, 157
validating forecasting models, 155-157
prescriptive analysis, 158-163
demonstrating business performance improvement, 162-163
determining optimal shipping schedule, 159-161
selecting and developing optimization shipping model, 158-159
summary of BA procedure for manufacturer, 161-162
problem background and data, 139-140
support, lack of, 50
surplus variables, 219
sustainability, achieving with business analytics, 21
systematic random sampling, 73
targets of change management, 59
tasks as target of change management, 59
teams, 51-53
 collaboration, 51-53
 participant roles, 52
 reasons for team failures, 53
technical specialists, 31
technology as target of change management, 59
testing
 Durbin-Watson Autocorrelation Test, 284
 statistical testing, 193-199
text analytics, 23-25
time series data
 exponential smoothing
 example of, 285
 simple model, 284-285
 smoothing averages, 286-288
 multiple regression models, 283-284
 simple regression model
 additive model, 274
 cyclical variation, 275
 multiplicative model, 274
 overview, 272-274
 random variation, 275
 seasonal variation, 274
 trend variation, 274
trend
 simple regression model, 276-281
 trend variation, 274
trials, 177
t-test: Paired Two Sample Means, 195

unbounded solutions, 227-228
uncertainty
 decision-making under uncertainty, 311
 Hurwicz criterion, 312-313
 laplace criterion, 311-312
validating forecasting models, 155-157
value
 EV (expected value) criterion, 308-309
 EVPI (expected value of perfect information), 315
 expected opportunity loss criterion, 309-311
 failure to provide value, 53
 inconsistent values, checking for, 57
variables
 slack variables, 218-219
 surplus variables, 219
variance, 68, 219
variation in time series data, 272-274
visualizing data
 marketing/planning case study example
 case study background, 81
 descriptive analytics analysis, 82-90
 statistical charts, 65-67
warehouses (data), 38
web logs, 34
web mining, 39
Wilcoxon Signed-Rank tests, 199
zero-one programming (ZOP) model
 explained, 264
 problems/models, solving, 268-269
Z values, 78-79