
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133492002
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133492002
https://plusone.google.com/share?url=http://www.informit.com/title/9780133492002
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133492002
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133492002/Free-Sample-Chapter


PROCESS FOR

SYSTEM ARCHITECTURE

AND REQUIREMENTS

ENGINEERING



Also Available from DORSET HOUSE PUBIJSHING Co.
Adaptive Software Development:
A Collaborative Approach to Managing Complex Systems
by James A. Highsmith III foreword by Ken Orr
ISBN: 0-932633-40-4 Copyright ©2000 392 pages, softcover

Complete Systems Analysis: The Workbook, the Textbook, the Answers
by James & Suzanne Robertson foreword by Tom DeMarco
ISBN: 0-932633-50-1 Copyright ©1998,1994 624 pages, softcover

Designing Quality Databases with IDEF1X Information Models
by Thomas A. Bruce foreword by John A. Zachman
ISBN: 0-932633-18-8 Copyright ©1992 584 pages, hardcover

Exploring Requirements: Quality Before Design
by Donald C. Gause and Gerald M. Weinberg
ISBN: 0-932633-13-7 Copyright ©1989 320 pages, hardcover

The Practical Guide to Business Process Reengineering Using IDEFO
by Clarence G. Feldmann foreword by John V. Tieso
ISBN: 0-932633-37-4 Copyright ©1998 240 pages, softcover

The Psychology of Computer Programming: Silver Anniversary Edition
by Gerald M. Weinberg ISBN: 0-932633-42-0 Copyright ©1998 360 pages, softcover

Quality Software Management, Vol. 4: Anticipating Change
by Gerald M. Weinberg
ISBN: 0-932633-32-3 Copyright ©1997 504 pages, hardcover

Surviving the Top Ten Challenges of Software Testing: A People-Oriented Approach
by William E. Perry and Randall W. Rice
ISBN: 0-932633-38-2 Copyright ©1997 216 pages, softcover

Strategies for Real-Time System Specification
by Derek J. Hatley and Imtiaz A. Pirbhai foreword by Tom DeMarco
ISBN: 0-932633-11-0 Copyright ©1988, 1987 408 pages, hardcover

Find Out More about These and Other DH Books:
Contact us to request a Book & Video Catalog and a free issue of The Dorset House
Quarterly, or to confirm price and shipping information.

DORSET HOUSE PUBLISHING Co., INC.
353 West 12th Street New York, NY 10014 USA
1-800-DH-BOOKS (1-800-342-6657) 212-620-4053 fax:212-727-1044
info@dorsethouse.com http://www.dorsethouse.com

http://www.dorsethouse.com


PROCESS FOR

SYSTEM ARCHITECTURE

AND REQUIREMENTS

ENGINEERING

Derek Hatley Peter Hruschka Imtiaz Pirbhai

Dorset House Publishing
353 West 12th Street
New York, NY 10014



Library of Congress Cataloging-in-Publication Data

Hatley, Derek J., 1934-
Process for system architecture and requirements engineering / Derek Hatley, Peter

Hruschka, Imtiaz Pirbhai.
p. cm.

ISBN 0-932633-41-2 (pbk.)
1. System design. 2. System analysis. I. Hruschka, Peter, 1951- II. Pirbhai, Imtiaz A.,

1953-111. Title.

QA76.9.S88 H3735 2000
005.1 '2»dc21

00-060997

All product and service names appearing herein are trademarks or registered
trademarks or service marks or registered service marks of their respective own-
ers and should be treated as such.

Cover Design: David W. McClintock
Cover Graphic: Detail from Figure 11.2
Cover Author Photographs: Hatley photo: O'Connor-Rice Studios; Hruschka

photo: James Robertson; Pirbhai photo: Stewart Auer.

Copyright © 2000 by Derek J. Hatley, Peter Hruschka, and Shams Pirbhai. Published
by Dorset House Publishing Co., Inc., 353 West 12th Street, New York, NY 10014.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without prior written permission of the publisher.

Distributed in the English language in Singapore, the Philippines, and Southeast Asia
by Alkem Company (S) Pte. Ltd., Singapore; in the English language in India,
Bangladesh, Sri Lanka, Nepal, and Mauritius by Prism Books Pvt., Ltd., Bangalore,
India; and in the English language in Japan by Toppan Co., Ltd., Tokyo, Japan.

Printed in the United States of America

Library of Congress Catalog Number: 00-060997

ISBN: 0-932633-41-2 1211 10987654321

Digital release by Pearson Education, Inc., June, 2013



DEDICATION

A wonderful friend and fine colleague of ours started this
book: He laid out the basic ideas and the structure, and
developed some of the materials. Then, suddenly and unex-
pectedly, and in the prime of his life, he passed away. We
miss him sorely.

We are grateful to his brother Shams for providing us
with the original materials, and honored at being given the
opportunity to complete the project. It is not the same book it
would have been had he completed it, but we hope it comes
somewhere close to his expectations.

It is unusual to dedicate a book to one of its authors, but
these are unusual and tragic circumstances. So, we humbly
dedicate Process for System Architecture and Requirements
Engineering to the memory of a true visionary in the field of
system development:

Imtiaz Pirbhai.



ACKNOWLEDGMENTS

We are deeply indebted to Kamal Hammoutene, Alan Hecht,
Mark Maier, Vince Peterson, and Tanehiro Tatsuta for their
painstaking reviews of the draft of this book and for their
excellent comments and suggestions. The book is far better
for their efforts.

We thank the editorial staff at Dorset House Publish-
ing—Nuno Andrade, Debbie Carter, David Crohn, Wendy
Eakin, Bob Hay, Mike Lumelsky, David McClintock, Matt
McDonald, and Mike Richter—for the excruciating detail
with which they examined, tore apart, and reconstructed
our English. This, too, greatly improved the final product.

Finally, we thank the many participants in our seminars
and workshops for their enthusiasm and for teaching us at
least as much as we taught them.



Contents

Figures xv

Part I Concepts 1

Chapter 1 Introduction 3
1 . 1 PURPOSE AND SCOPE 3
1.2 THE SYSTEM DEVELOPMENT PROCESS 4
1.3 UNDERLYING PRINCIPLES 4
1 .4 WHAT'S IN A NAME? 5
1.5 AUDIENCE FOR AND STRUCTURE OF THE BOOK 6
1.6 A PARTICIPATIVE CASE STUDY ON THE WEB 7
1.7 A CAVEAT 8

Chapter 2 What Is a System? 9
2.1 SYSTEM CHARACTERISTICS 9

2.1.1 Introduction to Systems 9
2.1.2 System Hierarchies 11
2.1.3 Multiple Hierarchies 1 4
2.1.4 System Networks 1 4
2.1.5 System Life Cycle and Errors 1 5
2.1.6 Order and Chaos 1 6
2.1.7 System Predictability 1 7
2.1.8 Dealing with Complexity 1 7

2.2 VIEWS OF A SYSTEM 18
2.2.1 The Processing View 1 9
2.2.2 The Processor View 20
2.2.3 The What/ How View 2 1

vii



viii CONTENTS

2.2.4 The Level of Intelligence View 22
2.2.5 The Static /Dynamic View 23

2.3 SYSTEM REQUIREMENTS 24
2.3.1 The Sources of Requirements 24

2.3.1.1 Customers 24

2.4

Chapter
3.1

3.2

3.3

3.4

2.
2.
2.
2.

2.3.1.2 Users 25
2.3.1.3 Managers 25
2.3.1.4 Industry Standards 25
2.3.1.5 The Development Process 26
2.3.1.6 Others 26

3.2 What Exactly Are Requirements, Anyway? 26
3.3 A Model of Requirements 28
3.4 Quality 36
3.5 Requirement Management and Analysis 37

2.3.5.1 Requirement Gathering 37
2.3.5.2 Requirement Integrity Analysis 38
2.3.5.3 Requirement Feasibility Analysis 38
2.3.5.4 Requirement Detailing 38
2.3.5.5 Requirement Deriving 39
2.3.5.6 Requirement Categorizing 39

SYSTEM SUMMARY 40

3

A

A Framework for Modeling Systems 41
MODEL FRAMEWORK 4 1

MODELS IN GENERAL 4 1
3.
3.

2. 1 Models Are Useful Abstractions 42
2.2 Model Representations and Reuse 43

EXPLOITING SYSTEM HIERARCHIES 45
3.
3.
3.
3.

3. 1 Why Exploit Hierarchies? 46
3.2 What Are the Benefits and Pitfalls of Layered Systems? 46
3.3 How Many Models? 47
3.4 Where Do We Stop? 48

EXPLOITING THE WHAT/ How CLASSIFICATION 49
3.4. 1 Separation of What and How 50
3.4.2 The Architecture Template 5 1
3.4.3 Using the Architecture Template 53

3.5 EXPLOITING THE INFORMATION/MATERIAL/ENERGY CLASSIFICATION 55
3.5.1 A Generic Subsystem Structure 55
3.5.2 Categories of a Deliverable System 57
3.5.3 Categories of a People System 60

3.6 LAYERED MODELS: THE TRUTH AT LAST! 60
3.6.1 Aggregation /Decomposition Relationship in Models 64
3.6.2 Abstraction/Detailing Relationship in Models 65



CONTENTS ix

3.6.3 Supertype/Subtype Relationship in Models 66
3.6.4 Controlling/Controlled Relationship in Models 67
3.6.5 Layered Models Summary 68

3.7 MODEL FRAMEWORK SUMMARY 70

Chapter 4 System Development Models 72
4. 1 OVERVIEW 72
4.2 ARCHITECTURE MODEL 74

4.2.1 Introduction 74
4.2.2 Basic Modeling Elements 76

4.2.2.1 Architecture Module 77
4.2.2.2 Terminator 78
4.2.2.3 Architecture Flow 79
4.2.2.4 Message 81
4.2.2.5 Flows and Messages 83
4.2.2.6 Inheritance Relationship 85
4.2.2.7 Architecture Interconnect 86

4.2.3 Context Diagram 87
4.2.4 Networks and Hierarchies 90
4.2.5 Architecture Communication Model 92

4.2.5.1 Architecture Flow Diagram 94
4.2.5.2 Architecture Message Diagram — Network Style 97
4.2.5.3 Architecture Message Diagram — Hierarchy Style 99
4.2.5.4 Architecture Module Specification 101
4.2.5.5 Message Specification 102

4.2.6 Architecture Interconnect Model 103
4.2.6.1 Architecture Interconnect Diagram 1 04
4.2.6.2 Architecture Interconnect Specification 1 06

4.2.7 Architecture Inheritance Model 106
4.2.7.1 Module Inheritance Diagram 107

4.2.8 Architecture Dictionary 108
4.2.9 Architecture Model Balancing 1 10

4.2.9. 1 Architecture Message Diagram Balancing 111
4.3 REQUIREMENTS MODEL 112

4.3.1 Introduction 112
4.3.2 Entity Model 115

4.3.2.1 Basic Modeling Elements 116
4.3.2.2 Attribute 116
4.3.2.3 Entity Class 116
4.3.2.4 Relationship 118
4.3.2.5 Special Relationships 121
4.3.2.6 Class Diagram 125
4.3.2.7 Entity Class Specification 126
4.3.2.8 Relationship Specification 127
4.3.2.9 Attribute Specification 129

4.3.3 Process Model 130



x CONTENTS

4.3.3. 1 Basic Modeling Elements 131
4.3.3.2 Data Flow 131
4.3.3.3 Process 133
4.3.3.4 Store 134
4.3.3.5 Terminator 135
4.3.3.6 Data Context Diagram 135
4.3.3.7 Data Flow Diagram 137
4.3.3.8 Detailing Diagrams 139
4.3.3.9 Process Specification 141

4.3.4 Control Model 143
4.3.4. 1 Control Flow 144
4.3.4.2 Control Specification 146
4.3.4.3 Sequential Machines — State Transition Diagrams and

State Charts 147
4.3.4.4 Other Representations of Sequential Machines 151
4.3.4.5 Combinational Machines — Decision Tables and

Process Activation Tables 1 53
4.3.5 The Control Flow Model: Basic Elements 155

4.3.5.1 Control Flow 155
4.3.5.2 CSPECBar 156

4.3.6 Control Context Diagram 156
4.3.7 Control Flow Diagram 157

4.3. 7. 1 Rules and Guidelines for CFDs and CSPECs 1 59
4.3.8 Separation of Data and Control 160

4.4 REQUIREMENTS DICTIONARY 162
4.4.1 Timing Requirements 164
4.4.2 Requirements Model Balancing 166
4.4.3 Architecture Template and Enhanced Requirements Model 166
4.4.4 Requirements Model Summary 169

4.5 REQUIREMENTS /ARCHITECTURE RELATIONSHIPS 170
4.5.1 Scope Differences 171
4.5.2 Superbubbles 172
4.5.3 Traceability 176
4.5.4 Architecture Model/Requirements Model Balancing 177

4.6 A NOTE ON OBJECT ORIENTATION 178

4.7 SYSTEM MODELS SUMMARY AND FURTHER READING 180

Chapter 5 The System Development Process 181
5.1 PROCESS, METHODS, AND TOOLS 181

5.2 THE NATURE OF THE DEVELOPMENT PROCESS 183
5.2.1 The Evolution of the Development Process 183
5.2.2 The Concurrent Development Process 184
5.2.3 The Meaning of Concurrent Development 187

5.3 THE PROCESS AND THE METHODS 190



CONTENTS xi

5.4

5.5

Chapter
6.1

6.2

6.3

6.4

6.5

6.6
6.7

5.3. 1 System Specification Models 191
5.3.2 Requirement Enhancement and Allocation 194
5.3.3 Requirement Deriving and Detailing 194
5.3.4 Traceability 197
ROLES OF THE SYSTEM ARCHITECT AND SYSTEM ENGINEER 200
5.4.1 Requirement Management 202
5.4.2 Feasibility Analyses, Trade-Off Studies, and Prototypes 202
5.4.3 Project Coordination 203
5.4.4 Manual Procedures and Other Operator Functions 203
5.4.5 Companion IR&D Projects 204
SYSTEM DEVELOPMENT PROCESS SUMMARY 204

6 Applying the Models to Development 205
OVERVIEW 205

UNDERSTANDING THE GENERIC DEVELOPMENT STRUCTURE 206

EXAMPLE: A PATIENT-MONITORING SYSTEM 209
6.3.1 Problem Statement: Nurses' Tasks 210
6.3.2 Modeling the Environment 210
6.3.3 Building the Context-Level Model 213
6.3.4 Technology Constraints for the Patient-Monitoring System 219
6.3.5 Creating the Enhanced Requirements Model 220
6.3.6 Building the Architecture Level 1 Model 224

6.3. 6. 1 Architecture Model Allocation 224
6.3.7 Interconnects and Further Enhancements 228
6.3.8 Completing the Architecture 229
6.3.9 Developing the Lower-Level Models 233
CONFIGURING SOFTWARE AND COMPUTER HARDWARE 236
6.4.1 Single-Hardware/Multiple-Software Configuration 239
6.4.2 Multiple-Hardware/Single-Software Configuration 241
MODELING THE NUMEROUS HARDWARE TECHNOLOGIES 244
6.5.1 Electrical 245
6.5.2 Electronic 247
6.5.3 Electromechanical 247
6.5.4 Mechanical 248
6.5.5 Hydraulic and Pneumatic 248
6.5.6 Optical 249
6.5.7 Chemical 249
6.5.8 Manufacturing 250
6.5.9 Detailed Hardware Design 250
6.5. 10 Mixed Technologies 250
COMPUTER HARDWARE LAYERS 251
SOFTWARE LAYERS 253
6.7.1 Structured Design 254



xii CONTENTS

6.7.2 CODARTS 255
6.7.3 Object Orientation 256
6.7.4 Lessons from the History of Software 258
6.7.5 Software Categories 259
6.7.6 Software Architectures 268

6.8 SUMMARIES 273
6.8.1 System Summary 273
6.8.2 Software Summary 274

Chapter 7 System Development Overview Using a Meta-Model 275
7.1 INTRODUCTION 275
7.2 A META-MODEL FOR DEVELOPMENT PROJECTS 276
7.3 AN ESSENTIAL MODEL OF THE DEVELOPMENT PROCESS 277
7.4 THE ENHANCED DEVELOPMENT MODEL 281
7.5 THE DEVELOPMENT ARCHITECTURE CONTEXT 284
7.6 DEVELOPMENT PROCESS ARCHITECTURE 288
7 . 7 DEVELOPMENT PROCESS TASK ALLOCATION 291
7.8 VARIATIONS ON THE ARCHITECTURE TEMPLATE 29 1

Part II Case Study: Groundwater Analysis System 297
Chapter 8 Initial Problem Statement 299

8. 1 OVERVIEW 299
8.2 REQUIRED CAPABILITIES 300
8.3 REQUIRED PERFORMANCE 301
8.4 REQUIRED CONSTRAINTS 301

8.4.1 Input/Output Constraints 30 1
8.4.2 Design Constraints 301

8.4.2.1 Other Design Constraints 303

Chapter 9 Modeling the Known Pieces 304
9.1 OVERVIEW 304
9.2 THE REQUIREMENTS CONTEXT 304
9.3 THE SYSTEM TIMING SPECIFICATION 305
9.4 THE ENTITY MODEL 307
9.5 THE EXISTING SAMPLING MODULE 311

Chapter 10 Building Upon the Known Pieces 316
10. 1 TOP-LEVEL ESSENTIAL MODEL 316
10.2 ENHANCING THE ESSENTIAL MODEL 331

10.2.1 User-Interface Processing 331



CONTENTS xiii

10.2.2 Input and Output Processing 331
10.2.3 Maintenance and Support Functions 334
10.2.4 The Enhanced Requirements Models 334

10.3 ARCHITECTURE CONTEXT 341
10.4 BUILDING UP FROM THE EXISTING SAMPLING MODULE 343

10.4. 1 An Intermediate Module 344
10.4.2 Central versus Distributed Processing 344
10.4.3 Sample Analyzer Requirements 345

10.5 WHAT Do WE HAVE, AND WHAT Is MISSING? 346

Chapter 11 Filling In the Blanks 348

11.1 INTRODUCTION 348
11.2 ARCHITECTURE MODULES 348
1 1.3 ALLOCATING THE ENHANCED REQUIREMENTS MODEL 349
1 1.4 ENHANCING THE ALLOCATED MODELS 357
1 1.5 ADDING THE ARCHITECTURE FLOWS AND INTERCONNECTS 362
11.6 FLOW-TO-INTERCONNECT ALLOCATIONS 362
11.7 MERGING THE TOP-DOWN AND BOTTOM-UP PIECES 364

Chapter 12 Completing the Models 375

12.1 INTRODUCTION 375
12.2 ACCURACY ALLOCATION 375
12.3 TIMING ALLOCATION — CONCURRENT ARCHITECTURE MODULES 376
12.4 ARCHITECTURE MODULE SPECIFICATIONS 378

12.4.1 Architecture Module Specification: Groundwater Analysis System 378
12.4.2 Architecture Module Specification: Sample Analyzer 380

12.5 ARCHITECTURE INTERCONNECT SPECIFICATIONS 382
12.5.1 Architecture Interconnect Specification: Local Bus 382

12.6 REQUIREMENTS AND ARCHITECTURE DICTIONARIES 383

Chapter 13 Groundwater Analysis System Summary 387

13.1 OVERVIEW 387

Appendix Changes, Improvements, and Misconceptions
Since the Methods' Introduction 389

A. 1 A LEARNING EXPERIENCE 389
A. 2 CHANGES AND IMPROVEMENTS 390

A. 2 . 1 Superbubbles 390
A.2.2 Addition of Object-Oriented Constructs 39 1
A.2.3 The Total, Multileveled Methods Structure 391
A. 2. 4 Architecture Interconnect Context Diagram 391



xiv CONTENTS

A. 2 . 5 Entity Model 392
A.2.6 Hardware/Software Interface 392
A.2.7 Functions of Time in Data and Control Processes 392
A. 2. 8 Extended Traceability 393
A. 2. 9 Derived Requirements 393
A. 2. 10 Special Cases of Architecture Flows and Interconnects 393
A. 2. 1 1 The Architecture Template as a Meta-Model 394
A. 2. 12 PSPEC Guidelines 394
A. 2. 13 Extended Guidelines on Separation of Data and Control 394
A. 2. 14 Extended Guidelines for Architecture Module and

Interconnect Specifications 395
A.2. 1 5 Data Flows from CSPECs 395
A.2. 16 Use of State Charts in CSPECs 396
A.2.17 Elimination of Sequential and One-Shot Decision

Tables and Process Activation Tables 396
A. 2. 18 Manual (Human) Subsystems 396
A. 2 . 1 9 Primitive Process Notation 396
A.2.20 Stores Shown on Multiple Levels 397
A.2.21 Descriptions of Data Flow Diagrams 397

A. 3 MISCONCEPTIONS ABOUT THE METHODS 397
A. 3. 1 The Methods Are Mostly for Real-Time and

Embedded Applications 397
A. 3. 2 The Requirements Method Is More Important

Than the Architecture Method 398
A. 3. 3 The Most Significant Feature of the Requirements

Model Is the Control Model 398
A. 3. 4 Everything Involving Control Must Use the Control Model 398
A. 3. 5 Everything Involved in Control Must Involve Control Flows 399
A.3.6 All Discrete-Valued Flows Must Be Control Flows 399
A. 3. 7 The Methods Employ a Strictly Top-Down

Decomposition Approach 399
A. 3. 8 The Methods Are Little Different from Basic Structured Analysis 399
A. 3. 9 The Methods Mostly Apply to Software 399
A.3. 10 The Methods Are Incompatible with Object-Orientation 400
A.3. 1 1 PSPECs Must Contain Sufficient Detail for Detailed Design 400
A.3. 12 The Models Should Be Executable 400

Glossary 401

Bibliography 419

Index 425



Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2. 7:
Figure 2.8:
Figure 2.9:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3. 6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3. 10:
Figure 3. 11:

Universal Hierarchy of Systems 1 3
Avionics Context and Content Hierarchy 13
A Subsystem Network 1 5
System Errors 1 5
Project Chaos and Order 1 6
System Processing 1 9
Will the Real System Please Stand Up! 21
System Classification 23
A Class Diagram of Requirements 29

The Role of a Model 42
The Bathtub Model 44
Equations Representing the Bathtub Model 44
A Data Flow Diagram Representing the Bathtub Model 45
A Context Diagram of the Model in Figure 3.4 45
Hierarchies to Reduce Complexity 46
Partitioning a System 49
The Architecture Template 51
The Template Bridging Requirements and Architecture Models 53
Classification of Activities in a Manual System 54
Classification of Activities in an Automated System 55

xv



xvi FIGURES

Figure 3. 12:

Figure 3. 13:
Figure 3. 14:

Figure 3. 15:
Figure 3. 16:
Figure 3. 1 7:
Figure 3. 18:
Figure 3. 19:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 4. 10:
Figure 4.11:
Figure 4. 12:
Figure 4. 13:
Figure 4.14:
Figure 4. 15:
Figure 4. 16:
Figure 4. 1 7:
Figure 4. 18:
Figure 4. 19:
Figure 4.20:
Figure 4.21:
Figure 4.22:
Figure 4.23:
Figure 4.24:
Figure 4.25:
Figure 4.26:
Figure 4.27:
Figure 4.28:
Figure 4.29:

Separating Material/ Energy Processing from
Information Processing 56
Generic Description of Subsystem Responsibilities 5 7
A Template for Subsystems of a Deliverable,
Human-Operated System 58
Subsystems of a Cruise Control System 59
A Template for an Organization That Builds Deliverable Systems 61
Subsystems of a Garment Factory 62
Summary of Relationships in Layered Models 69
The Modeling Framework 71

A Summary of the Development Models 73
Overview of the Architecture Model 75
Various Architecture Modules 77
Architecture Module Symbols 78
Terminator Symbols 79
Architecture Flow Symbols 79
Message Symbol 81
Flows and Messages 84
Inheritance Symbols 86
Interconnect Sy mbols 8 7
Architecture Flow Context Diagram 88
Architecture Message Context Diagram 89
Architecture Interconnect Context Diagram 90
A Class Diagram of Architecture Diagrams 91
Communication Hierarchies, Networks, Layers, and Partitions 93
Architecture Flow Diagram 94
Architecture Flow Diagram with Push and Pull Indicators 95
Child Architecture Flow Diagram 96
Architecture Message Diagram 97
Architecture Message Diagram — Hierarchy Style 1 00
Interconnect Hierarchies, Networks, Layers, and Partitions 1 04
Architecture Interconnect Diagram 1 04
Child Interconnect Diagram 1 05
Inheritance Model 107
Module Inheritance Diagram 1 08
Architecture Dictionary 1 09
Requirements Model Overview 113
Chemical Reaction Analogy 114
Entity Model Overview 115



FIGURES xvii

Figure 4.30:
Figure 4.31:
Figure 4.32:
Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:
Figure 4.37:
Figure 4.38:
Figure 4.39:
Figure 4.40:
Figure 4.41:
Figure 4.42:
Figure 4.43:
Figure 4.44:
Figure 4.45:
Figure 4.46:
Figure 4.47:
Figure 4.48:
Figure 4.49:
Figure 4.50:
Figure 4.51:
Figure 4.52:
Figure 4.53:
Figure 4.54:
Figure 4.55:
Figure 4.56:
Figure 4.57:
Figure 4.58:
Figure 4.59:
Figure 4.60:
Figure 4.61:
Figure 4.62:
Figure 4.63:
Figure 4.64:
Figure 4.65:
Figure 4.66:
Figure 4.67:
Figure 4.68:
Figure 4.69:

Entity-Class Symbols 118
A Binary Relationship 119
A Ternary Relationship and a Recursive Relationship 119
Superclass / Subclass Relationship 121
Different Kinds of Subclasses 1 22
Aggregation Relationship 1 23
Associative Entity Classes 1 25
A Class Diagram 1 26
Process Model Overview 1 30
Data Flow Symbol 1 32
Splitting a Flow 1 32
Process Symbol 133
Store Symbols 134
Data Context Diagram 1 36
Data Flow Diagram 137
Process Detailing and Description 1 40
Generic PSPEC Format 1 42
Different Styles for PSPECs 1 43
Requirements Model with Control Model Highlighted 1 45
Classification ofCSPEC Components 146
Typical Combinational CSPEC 147
Typical Sequential CSPEC 147
A Generic State Chart 1 48
Alternative Representation for State Models 1 52
Generic Form of a Decision Table 1 53
A CSPEC Combining Decision Table and Activation Table 1 54
Control Flow Symbol 1 55
A CSPEC Bar with Incoming and Outgoing Control Flows 1 56
Control Context Diagram 157
Control Flow Diagram 1 58
Data Conditions 1 59
Hints on Distinguishing Data and Control Flows 161
Hints on Distinguishing Processes and Their Control 161
Notation for Structuring Dictionary Entries 1 63
Properties of Basic Dictionary Entries 1 63
Architecture Template 167
Logical and Physical Interfaces 1 68
Requirements Model Summary 1 70
Changing Requirements Scope 1 72
Superbubbles 1 73



xviii FIGURES

Figure 4.70:
Figure 4.71:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6. 7:
Figure 6.8:
Figure 6.9:
Figure 6. 10:
Figure 6.11:
Figure 6. 12:
Figure 6. 13:
Figure 6. 14:

Figure 6.15:
Figure 6.16:
Figure 6. 17:
Figure 6. 18:

Figure 6. 19:
Figure 6.20:
Figure 6.21:
Figure 6.22:
Figure 6.23:
Figure 6.24:
Figure 6.25:

Figure 6.26:

Allocation of a Split Process 1 75
Generic Traceability Matrix 1 76

The Total System Life Cycle 1 82
Order of Precedence: Process, Methods, Tools 183
Concurrent Work Flow 1 89
System Specification Models 191
Avionics Hierarchy 1 93
Mappings Between Specification Layers 1 95
The Traceability Tree 1 99

A Roadmapfor the System Specification Model 207
Environment Model for Nurse's Patient-Monitoring Task 211
Environment Model with Superbubble for Context Definition 213
Requirements Context Diagramfor Patient-Monitoring System
Option for an Expanded Context 216
DFDO, Observe And Analyze Patients 217

214

Selected Requirements Dictionary Entries for Flows on DFDO 218
Process Specifications for Processes in DFDO 218
Enhanced DFDO Patient-Monitoring System 220
DFD5, Communicate With Nurses 221
AFCD, Patient-Monitoring System 223
A/CD Patient-Monitoring System 225
Enhanced DFDO with Allocation Superbubbles 226
DFD5, Communicate With Nurses, with Superbubbles
for Allocation 227
AFDO, Patient-Monitoring System 229
AIDO: Patient-Monitoring System 230
Traceability Matrix for the Patient-Monitoring System 231
DFDfor Requirements Allocated to the Portable
Monitoring Computers 235
Hardware /Software Configurations 237
Central Monitoring Computer AFD 238
Central Monitoring Computer AID 239
Single-Hardware/Multiple-Software Module Configuration AFD
Single-Hardware/Multiple-Software Module Configuration AID
Multiple Hardware and Software with Static Allocation 242
Multiple-Hardware /Distributed-Software with
Dynamic Allocation 243

240
241

Software Enhancements for Single-Hardware/Multiple-Software
with Dynamic Allocation 243



FIGURES xix

Figure 6.27:

Figure 6.28:
Figure 6.29:
Figure 6.30:
Figure 6.31:
Figure 6.32:
Figure 6.33:
Figure 6.34:
Figure 6.35:
Figure 6.36:
Figure 6.37:
Figure 6.38:
Figure 6.39:
Figure 6.40:
Figure 6.41:

Figure 7. 1 :

Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7. 7:
Figure 7.8:
Figure 7.9:
Figure 7.10:
Figure 7.11:
Figure 7.12:
Figure 7.13:

Figure 9.1:
Figure 9.2:
Figure 9.3:
Figure 9.4:
Figure 9.5:
Figure 9.6:
Figure 9. 7:

Traceability Matrix for Single-Hardware /Multiple-Software
with Dynamic Allocation 244
AFD and AID with Power and Ground Distribution 246
AFD and AID of an Electromechanical Device 24 7
AFD and AID of a Mechanical Subsystem 248
A Manufacturing Process 251
Typical Computer Hardware Configuration 253
Typical Structure Chart 254
Forming Architecture Modules 260
Suggested Information-Hiding Categories 262
Illustration of Abstract Interfaces 263
Early Software Architectures 269
Horseshoe Architecture 2 70
An Alternative View of a Control Hierarchy Architecture 270
A Workflow-Centered Architecture 271
Business Object-Oriented Architecture 272

The Architecture Template, Adapted for a System
Development Project 2 76
Development Process Requirements Context 277
DFDO, Develop System 279
DFDl, Specify Deliverable System 280
EDFDO: Enhanced Develop System 282
Development Process Architecture Context 286
Development Process Architecture Modules 289
Hardware /Software Template 292
System Integration Template 293
Customer Specification Template 293
System Specification Template 294
Hardware Specification Template 294
Software Specification Template 295

Context Diagram 305
System Timing Specification 306
Initial Entity Model 309
Enlarged Entity Model 310
Enhanced Requirements Model, Existing Sampling Module 312
Selected PSPECs of Enhanced Existing Sampling Module 314
Architecture Model for Existing Sampling Module 315



xx FIGURES

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

10.
10.
10.

10.
10.
10.
10.
10.
10.
10.
10.
10.

10.

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

10.
10.
10.
10.
10.
10.
10.
10.

11.
11.
11.

1:
2:
3:

4:
5:
6:
7:
8:
9:
10:
11:
12:

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:
31:

1:
2:
3:

DFDO, Analyze Groundwater 317
CSPECO, Analyze Groundwater 318
DFDl , Sample And Mix Specimen And Reagent, with
Associated PSPECs 319
DFD2, Stabilize Mixture, with Associated PSPECs 320
DFD3, Test Mixture, with Associated PSPECs 321
DFD4, Analyze Raw Results, with Associated CSPEC, PSPECs
DFD4.5, Interpret Analysis, with Associated PSPECs 323
DFD4.6, Calibrate For Pollutant, with Associated PSPECs 324
DFD5, Respond To Operator Requests, with Associated PSPEC
CSPEC5, Respond To Operator Requests 326

322

325

DFD5. 1 , Route Operator Requests, with Associated PSPECs 327
DFD5.3, Store And Select Historical Results, with
Associated PSPECs 328
PSPEC6, Read Specimen Data; and PSPEC 7, Remove
Analyzed Specimen And Data 328
DFD8, Select Specimens, Pollutants, And Reagents 329
PSPECS. 1 , Run Specimen 329
PSPECS. 2, Rerun Specimen 330
PSPEC8.3, Select Pollutant And Reagent 330
EDFDO, Enhanced Analyze Groundwater 332
PSPECs in Maintenance and Support Region of EDFDO 335
PSPEC in Input-Processing Region of EDFDO 336
PSPECs in User-Interface Region of EDFDO 336
DFDl 7, Get Operator Entries, with Associated PSPECs 337
DFD14, Display System Status And Mode, with
Associated PSPECs, CSPEC 338
DFDl 2, Print Results, with Associated PSPECs 339
DFDl 3, Transmit Results, with Associated PSPECs 339
DFDl 9, Monitor Operational Status, with Sample PSPECs 340
Enhanced CSPECO 34 1
Architecture Flow Context Diagram 342
Architecture Interconnect Context Diagram 343
Sample Analyzer Architecture Modules 345
Requirements for Optical Sensor, Waste Handler, and
Reagent Handler 346

Architecture Modules 349
Allocated EDFDO, Analyze Groundwater 350
DFDs of Split Processes, with Specific Superbubble Allocation 352



FIGURES xxi

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure

11.4:
11.5:
11.6:
11.7:
11.8:
11.9:

11.10:
11.11:
11.12:
11.13:
11.14:
11.15:
11.16:

11.17:
11.18:
11.19:
11.20:
11.21:
11.22:
11.23:

12.1:

12.2:

12.3:
12.4:

System-Level Traceabillty Matrix 353
DFD, Sample Analyzer 02 355
DFD, Workstation 01 355
CSPEC, Workstation 01 356
DFD, Operator Procedures 06 356
DFDs for Printer 04, Transceiver 05, and
Bar Code Reader 03 357
EDFD, Sample Analyzer 02 358
EDFD, Workstation 01 360
EDFD, Bar Code Reader 03 362
Sy stem-Level AFD 363
System-Level AID 363
Modified DFDl , with Allocations 364
Allocated Child Diagrams of DFDl, with Typical
Associated PSPECs 365
DFD2, Stabilize Mixture, with Allocations 366
DFD2.3, Conclude Stabilization, with Associated PSPECs 367
Sample Analyzer Traceability Matrix 368
EDFD, Sample Analyzer Processor 3 70
EDFDsfor Optical Sensor, Waste Handler, and Reagent Handler 372
Sample Analyzer AFD 3 73
Sample Analyzer AID 3 74

Groundwater Analysis System AFD, with
Dual Concurrent Sample Analyzer Modules 377
Groundwater Analysis System AID, with
Dual Concurrent Sample Analyzer Modules 378
Requirements Dictionary 383
Architecture Dictionary 385



This page intentionally left blank 



Chapter 3
A Framework for

Modeling Systems

3.1 A MODEL FRAMEWORK

In the preceding chapter, we discussed numerous facets of systems in the cate-
gories of general characteristics, views, and requirements.

We now focus on the development of such systems. In this chapter, we
explore the role of models in system development and introduce a framework to
organize the many different models created during the development process. This
framework captures what we know about systems, including the properties dis-
cussed in Chapter 2.

The framework serves as a road map for the development process, providing a
cue for what models to build and how to build them. It assists us in keeping all
the models related and linked to each other. In the first sections that follow, we
start with a discussion of models and their usefulness.

3.2 MODELS IN GENERAL

Most industries use models for purposes such as studying requirements for sys-
tems, examining feasibility and manufacturability, and determining how to build
an actual system. In the computer hardware and software industry, models are
used for some parts of the development process (usually for software require-

41



42 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

ments or design, or for hardware layout), but no techniques are widely used for
modeling the entire system. Before discussing such modeling techniques, we dis-
cuss why models are useful.

3.2.1 Models Are Useful Abstractions

As Figure 3.1 shows, a model is an abstraction highlighting some aspects of real-
world systems in order to depict those aspects more clearly. A model has an objec-
tive (the question we want it to answer) and a viewpoint (the point of view of one or
more stakeholders: users, developers, and so on). Abstract models reduce the
complexity of the real world to digestible chunks that are simpler to understand.

Figure 3.1: The Role of a Model

On the other hand, abstract models are just representations, omitting some
aspects of real-world systems, at least temporarily, but mapping what we hope to
understand into a form that we can understand. Different types of models
answer different types of questions about the system they represent, but even if
we build a hundred different models, they could not answer every possible ques-
tion about the system. That can only be done by the final system itself.

If we decide to build more than one model of a given system to investigate dif-
ferent aspects, then we should somehow organize these models according to their
relationships to each other and to the system. This is why we need a framework.



3: A FRAMEWORK FOR MODELING SYSTEMS 43

3.2.2 Model Representations and Reuse

Before we discuss the framework for modeling systems, we expand on the idea of
using models in two ways: First, models can be expressed using different nota-
tions; second, good models can be reused in different applications.

Though they appear very different from each other, Figures 3.2 through 3.5
can all represent the same scenario. Consider this description of a junior high
school:

Students enter school in seventh grade. Most of the students pro-
ceed to eighth grade, but some skip directly to ninth. Nobody grad-
uates directly from eighth grade, but some leave school before
graduating. The rest go on to ninth grade and then graduate.

In Figure 3.2, "The Bathtub Model"—adapted by permission from General Princi-
ples of Systems Design by Gerald M. Weinberg and Daniela Weinberg [Weinberg
88]—flows into and out of the various tubs can represent the flows of students
into and out of grades. Tubs 1, 2, and 3 represent 7th, 8th, and 9th grades,
respectively. S indicates the set of students entering school. PI represents the
students progressing to 8th grade. Ql depicts the small number of students
skipping 8th grade and going directly to 9th grade. P2 shows the normal progress
from 8th to 9th grade. Q2 and Q3 show students leaving school without graduat-
ing. P3 represents the students graduating from 9th grade.

The Weinbergs use the bathtub model to explain the set of differential equa-
tions given here as Figure 3.3: Those equations can abstract the same junior
high school situation in a different manner. Nl, N2, and N3 either can represent
the quantities of water in the three tubs or can indicate the number of students in
three grades. Nl' represents the rate of change of Nl over time, and so on.

Figure 3.4—a Structured Analysis data flow diagram—shows yet another rep-
resentation of the bathtub model, and of the same real-world system.

Finally, Figure 3.5 gives the context diagram for Figure 3.4, once again repre-
senting the same real-world system, but in a more abstract form.

The models in Figures 3.2 through 3.5 also can show how models can be
reused. The four models can be used to illustrate different applications, fitting
the following description of a company's training program just as well as they fit
the junior high school scenario, and just as well as they could fit many other sim-
ilar scenarios.



44 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

Everyone joining Company X starts as an unskilled worker. The
company's policy is to provide training and education for its
employees. No one is allowed to work without some minimal voca-
tional training that gets him or her into the semi-skilled labor pool.
Those who have college degrees move to the skilled category,
bypassing the semi-skilled pool. After five years in the semi-skilled
category, workers automatically progress to the skilled pool. Even-
tually, employees either leave for better opportunities or retire.

Figure 3.2: The Bathtub Model

N1' = S-(P1 +Q1)
N2'= P1 - (P2 + Q2)

N31 = (Q1 + P2) - (P3 + Q3)

Figure 3.3: Equations Representing the Bathtub Model



3: A FRAMEWORK FOR MODELING SYSTEMS 45

Figure 3.4: A Data Flow Diagram Representing the Bath-
tub Model.

Figure 3.5: A Context Diagram of the Model in Figure 3.4.

3.3 EXPLOITING SYSTEM HIERARCHIES

In Sections 2.1.2 and 2.1.3, we explained that all real-world systems consist of
subsystems, or—looking in the other direction—that every system is part of a
larger system. In other words, systems come in hierarchies. Using these hierar-
chies is the first step in constructing our modeling framework.



46 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

3.3.1 Why Exploit Hierarchies?

Why do we want to exploit the idea of system hierarchies? Because we want to
reduce complexity by not thinking about everything at once.

• At the highest level of a model, we establish the place of the system in
its environment and define the broad objectives of the system and its
relationships with that environment (for example, communication and
physical linkage).

• Using these broad objectives, we proceed into the requirements and
architecture of our system, remembering that it can be manual, auto-
mated (by various technologies), or both. Creating an architecture for
the system partitions it into subsystems that can themselves be con-
sidered self-contained systems—similar to the top-level system. By
iterating this partitioning procedure, as illustrated in Figure 3.6, we
simplify the problem by treating each subsystem, sub-subsystem, and
so on, as a system in its own right, with its external interconnections
and interactions represented in the level above.

Figure 3.6: Hierarchies to Reduce Complexity.

3.3.2 What Are the Benefits and Pitfalls of Layered Systems?

There are many benefits in hierarchically organized systems and subsystems.
Every layer of system definition supplies some of the requirements for the layer



3: A FRAMEWORK FOR MODELING SYSTEMS 47

below. At the top, a firm link is established between the system and its environ-
ment. If we can stabilize the upper-level requirements and architecture early, the
lower-level design can proceed much more effectively. We can anticipate high-risk
subsystems and use prototyping to resolve those risks. Working on a certain level
of abstraction helps us concentrate on that level and not get too detailed too fast.

One point needs to be strongly emphasized:

System specification and development are not necessarily top-down
processes.

Overlooking this heuristic can be a major pitfall. The fact that, for convenience,
many of our descriptions of the process are presented top-down does not detract
from this statement; neither does the top-down appearance of the figures. The
top layers do not have to be complete before we can work on the lower layers; in
some cases, it is appropriate to work upward from the lower layers. Think of
development as a concurrent or iterative process—there is always some work
going on in every layer.

The layered model results in a specification hierarchy and a representation of
the requirements flows between layers. The process of filling in the framework
and developing these models is discussed in Chapter 5, and illustrated in Part II.

Integration is key to developing the system: "The whole is greater than the
sum of its parts." The systems we develop require that all of their components are
integrated: software with software; hardware with hardware; software with hard-
ware; automated with manual; and especially, system with environment. So,
despite developing many separate models, we need subsystems linked to other
subsystems, and layers linked to higher and lower layers. This is the purpose
and benefit of the modeling framework.

3.3.3 How Many Models?

Many methods insist on building one large analysis model (as in Structured
Analysis or entity-relationship modeling) and, separately, one large design model
(as in Structured Design or in many object-oriented methods). We, too, use the
"divide and conquer" approach in our framework, but we ensure that the sub-
models are integrated.

How many models do we build, then? If we consider an integrated set of sub-
models as a single model, then we build a model for the overall system and a
model for each of its subsystems, sub-subsystems, and so on. Each of these



48 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

models itself can contain numerous models of its own: models for requirements,
design, architecture, information structures, interconnects, and many more.
Good methods, and tools that automate them, will support all of these multifari-
ous models and the links between them.

3.3.4 Where Do We Stop?

We have established that every system is part of a larger system. Looking in the
other direction, How far down should we decompose a subsystem into further
subsystems?

In larger systems, system developers will stop at the level where direct system
responsibility ends, or where they have no constraints to impose internally to a
subsystem. Then, specialists in those subsystems can decide whether to con-
tinue with the same process or to switch to some other approach that is specific
to their discipline. For example,

• we decompose a multidisciplinary system into parts that are, say,
mechanical or hydraulic, and pass those subsystems to the corre-
sponding specialists

• in MIS, we often decompose until we can clearly differentiate between
human activities (for example, clerks doing part of the work) and soft-
ware activities (computer programs doing the remaining work)

• in embedded, real-time systems, we might decompose until we have a
better understanding of the hardware/software split

A software subsystem can usually be decomposed into further subsystems, and
an organizational subsystem can be organized as cooperating groups of further
organizational subsystems. The techniques, methods, and tools for specialized
subsystem development are often more mature and better automated than those
used for overall system development. In this book, we do not discuss specialized
hardware, software, or organizational methods, but instead refer to other publica-
tions on these topics.

On the other hand, we do not have to decompose every system into subsystems
that comprise only one technology. Sometimes, the system levels stop where sev-
eral related technologies are used in a single subsystem. For example, in a
hydraulic subsystem with electromechanical valves, it would not make much sense
to separate these two technologies, because they exist to support each other.



3: A FRAMEWORK FOR MODELING SYSTEMS 49

Figure 3.7 shows various alternatives for decomposing subsystems: The top-
level decomposition separates a human subsystem from a purely mechanical sub-
system and leaves a multi-technology subsystem to be further decomposed. On
the next level, a software subsystem is further decomposed into two software sub-
systems. At the lowest level, we find a software subsystem, a human subsystem,
and a subsystem that uses mixed technology but is treated as one unit.

In later chapters, we discuss more criteria to determine where to stop decomposing.

Figure 3.7: Partitioning a System.

3.4 EXPLOITING THE WHAT/HOW CLASSIFICATION

The next step in constructing our modeling framework is to use the what /how
classification of systems that we discussed in Section 2.2.3. As you may have
noticed in Figure 3.6, every specification consists of two parts: system require-
ments and system architecture. Both of these parts contain models. The system
requirements model is a technology-independent model of the problem the system
is to solve: It represents the what The system architecture model is a technol-
ogy-dependent model of the solution to the problem: It represents the how.
These two models are created for the entire system and for every subsystem—
hardware, software, human, or mixed technology—down to the lowest level.



50 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

3.4.1 Separation of What and How

The separation of the what and the how is extremely important for the following
(and possibly other) reasons:

• It is often very useful to understand a problem (the what) indepen-
dently of any particular solution (the how). (Conversely, there are sit-
uations where it is useful to develop a single architecture that will sat-
isfy a whole class of problems.)

• Any given problem has many possible solutions. Selection of a partic-
ular solution (the how) is a trade-off process; we often need to make
numerous different trade-offs while keeping the problem statement
(the what) unchanged.

• The separation supports the generally recognized principle of separa-
tion of concerns, which means dealing with only one part of the sys-
tem's complexity at a time. The requirements model (the what) only
has to cope with essential problems; the architecture model (the how)
has to cope with many constraints imposed by technology, organiza-
tion, and so forth.

• Finally, seldom do we build systems totally from scratch. Most sys-
tems we build are either implementations using new technology (only
changing the how) or the integration of several previous systems into
a new system.

The separation of the what and the how gives us the power to reimplement the
what using new technology, but it also gives us the power of reusability—not just
for software or hardware, but for requirements as well. This is particularly impor-
tant, because requirements are much more stable over much longer periods of
time than technology [McMenamin 84].

In this book, we use the what /how classification for yet another important
purpose. As we construct several different models later in the book, we would
have to handle a lot of complexity at once if we addressed how to construct them
at the same time as we addressed what to construct. So, we have split the follow-
ing chapters using the what/how separation: Chapter 4 describes what models
belong in our framework; Chapters 5 through 7, and all of Part II, describe how to
develop these models.



3: A FRAMEWORK FOR MODELING SYSTEMS 51

As mentioned, Chapters 5 through 7 describe the how of constructing the
models, but in Part II, we describe the how of applying these models to some real
systems—from that perspective, Chapters 5 through 7 represent the what! This
is analogous to the layered structure of systems, in which architectural or design
decisions in one layer result in requirements in the layer below. This same princi-
ple applies to this book, which itself is a kind of system.

The purpose of Part II and of the on-line model is to exemplify what real proj-
ects must do—the what, the how, and also the when. The when refers to project
planning and scheduling, including such issues as which tasks are conducted
concurrently, and which sequentially. Throughout the 1970's and 1980's, sim-
plistic process models like the waterfall model predominated. We know now that
there are no simple solutions to project planning and scheduling. Rather, these
are decisions that must be made for each project, by project management. It is
the manager's job to observe the process, to watch and interpret the results of
individual steps, to take into account many constraints, and based on all of that,
to reconfigure dynamically the what, the how, and the when of the project.

3.4.2 The Architecture Template

Our modeling framework employs an extension of the what /how split to classify
systems, subsystems, their components, and their activities according to a
generic architecture template. Figure 3.8 shows that this architecture template
classifies a system or subsystem into five categories:

Figure 3.8: The Architecture Template.

1. The center region contains the main functions of the system: the core
functional processing. Here, we model things that the system
absolutely has to do, things that belong to the essence of the system,
independent of any technology.



52 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

2. The top region hosts those parts of a system that interact with the
users. It contains all subsystems, functions, and activities that make
up the human-machine interface. It controls access to the system,
and it accepts input from and prepares output for the human user, all
in whatever forms are established with the user.

3. The left region contains the functions and subsystems that interface
with other systems and subsystems to provide input for our system.
It has to establish interconnections, request input, check it for accept-
ability, preprocess it, and perform many other input-related activities.

4. The right region provides similar resources for the output of our sys-
tem to other systems. This includes establishing interconnection,
converting output to the form needed for transfer, sending it, and so
on.

5. The bottom region houses any functions or subsystems that provide
support to the rest of the system to keep it running. These include
self-test procedures, error logging, fault detection, and also mainte-
nance functionality. This region is fundamentally different from the
other outer regions: those regions deal with various kinds of interfaces
between the system and its environment, whereas the bottom region
deals with functions that support the system internally. The support
functions might require additional inputs and outputs, but still, they
are internal functions.

How do we use the architecture template in our modeling framework? As shown
in Figure 3.9, the template mainly helps us with mapping between requirements
(the what) and architecture (the how). This mapping can be applied on any level:
for the overall system and for every subsystem on any layer.

From the requirements viewpoint, we augment or enhance the required func-
tionality of the system (which is modeled in the core part of the template) with a
ring of functionality supporting the core processing of the system. These aug-
mented, or enhanced, requirements are packaged into architectural subsystems.

From the architecture viewpoint, the template provides an excellent starting
point for building information-hiding subsystems [Parnas 71]. The center hides
the essential functions, the top region hides the user-interface technology and
behavior, the left and right regions hide input/output specifics, such as device
characteristics and protocols, and the bottom region hides support functionality,



3: A FRAMEWORK FOR MODELING SYSTEMS 53

such as service and maintenance modules, and many more. An alternative name
for the template might be the information-hiding template.

Once we establish the functionality of the system and subsystems, we can
easily categorize and extract the core requirements for future reuse.

Figure 3.9: The Template Bridging Requirements and
Architecture Models.

3.4.3 Using the Architecture Template

In this section, we present two examples of using the architecture template to
classify the functionality of systems. To demonstrate that it can be used on any
layer of a system hierarchy and for any kind of application (automated or not), we
start with an organizational system composed of automated and manual parts.

The template in Figure 3.10 illustrates the activities that are performed by
nurses at their station in a hospital. We can divide the activities into the five cat-
egories. By doing so, if the procedures for helping visitors (in the user-interface
part of the template) are changed, the rest of the system can remain unchanged.
The same is true for changing the policy for checking stock supplies in the main-
tenance region, and for any changes involving just a single region of the template.



54 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

Figure 3.10: Classification of Activities in a Manual System.

This nurses' station is a subsystem of an overall hospital system, for which we
could also classify the activities. Depending on the purpose of the whole hospital
model, the nurses' station would be part of the system core or may be considered
part of the maintenance subsystem (to support the doctors).

The second example is of an automated system. Using the hospital applica-
tion, we show how to classify the automated activities of a patient-monitoring sys-
tem in Figure 3.11.

The architecture template is a very powerful modeling tool that we use repeat-
edly to classify system or subsystem activities. Not only can it be used to bridge
the requirements/architecture models, it can be used very early in a project,
before we even know the requirements or make decisions on the architecture, to
discover topics to be treated in more detail later. It can also be used in distribut-
ing work among project members, allowing them to work concurrently.

USER
INTERFACE

• HELP VISITORS
• GUIDE PATIENTS TO DOCTORS' OFFICES
• ANSWER PHONE CALLS
• RESPOND TO PATIENT EMERGENCY CALLS

MAIN FUNCTION

• MONITOR PATIENT HEALTH
• DISPENSE PRESCRIBED MEDICATIONS
• ADMINISTER ROUTINE TESTS
• KEEP PATIENT HEALTH RECORDS
• KEEP PATIENT BILLING RECORDS
• ASSIST DOCTOR ON ROUNDS

OUTPUT
PROCESSING

• CHECK OUT
PATIENTS

•ISSUE ALERTS TO
DOCTORS AND
STAFF

• FILE REPORTS
•ORDER SUPPLIES
• SEND PATIENT

BILLING TO
ACCOUNTING
DEPARTMENT

SUPPORT

• MONITOR DESK OPERATIONS
• CHECK NURSES' SCHEDULES
• CHECK STOCK SUPPLIES

INPUT
PROCESSING

•CHECK IN PATIENTS
• SCHEDULE PATIENT

MONITORING
• RECEIVE AND LOG

INCOMING
MEDICATION

• RECEIVE SUPPLIES



3: A FRAMEWORK FOR MODELING SYSTEMS 55

USER • GET NURSE ENTRIES
INTERFACE •VALIDATE NURSE ENTRIES

• DISPLAY ALERTS
• FORMAT AND DISPLAY PATIENT-MONITORING STATUS

INPUT
PROCESSING

• MEASURE PATIENT
VITAL SIGNS

• MEASURE PATIENT
MOTION

•VALIDATE VITAL
SIGN SENSOR
READINGS

• ISSUE EQUIPMENT
FAILURE ALERT

MAIN FUNCTION

• SET UP SCHEDULE FOR MONITORING
• FIND UNSAFE VITAL SIGN RANGE FOR

PATIENTS
• COLLECT DATA FOR PATIENT
• PERFORM ANALYSIS FOR SELECTED

PATIENT
•ISSUE PATIENT ALERT

SUPPORT
• UPDATE PATIENT SAFE RANGES
• UPDATE EQUIPMENT OPERATING

RANGES

OUTPUT
PROCESSING

• PRINT REPORT

Figure 3.11: Classification of Activities in an Automated
System.

3.5 EXPLOITING THE INFORMATION/MATERIAL/ENERGY
CLASSIFICATION

The final step in constructing our modeling framework is to classify systems
according to their information, material, and energy processing characteristics
that we discussed in Section 2.2.1.

3.5.1 A Generic Subsystem Structure

In Chapter 2, we showed that everything a system does can be classified into
material processing, energy processing, and information processing. Since mater-
ial and energy processing are quite different from information processing, we can
treat these two areas separately. If we combine this decision with the idea of cate-
gorization provided by the architecture template, we end up with the system parti-
tioning shown in Figure 3.12, which divides the processing into finer classifica-
tions. These finer classifications become subsystems of the overall system. As
Figure 3.12 shows, there are subsystems that do the two different types of pro-
cessing, but the overall, or boundary, subsystem does both. Figure 3.13 explains
more about the functions of the various subsystems.



56 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

Figure 3.12: Separating Material/Energy Processing from
Information Processing.

Note that there is no box in material/energy processing equivalent to the decider
in information processing. With today's systems, the decision-making function is
almost always an information processing function. Consequently, Figures 3.13
through 3.16 all have a blank entry in the material/energy processing side.



3: A FRAMEWORK FOR MODELING SYSTEMS 57

Boundary:
Subsystem(s) that form a barrier around a system, shielding it from its environment.

Information
Processing Subsystems

User Interface:
Subsystem(s) to allow information
exchange with external human users.

Input Decoder:
Subsystem(s) to convert the coding of
external information for internal use.

Functional Transformer:
Subsystem(s) to transform input
information into output information.

Memory:
Subsystem(s) to retain for later use
information, its relationships, and its
organization.

Decider:
Subsystem(s) to control (for example,
enable, inhibit, or trigger) functional
transformers.

Output Encoder:
Subsystem(s) to convert the coding of
internal information for external use.

Support:
Subsystem(s) to support system
monitoring, servicing, and
reconfiguration .

Material/Energy
Processing Subsystems

User Interface:
Subsystem(s) to allow material/energy
exchange with external human users.

Input Converter:
Subsystem(s) to transform
material/energy from external to internal
forms.

Material/Energy Transformer:
Subsystem(s) to transform and associate
material/energy inputs to outputs.

Material/Energy Storage:
Subsystem(s) to store material/energy for
later use.

Output Converter:
Subsystem(s) to transform
material/ energy from internal to external
forms.

Supporter:
Subsystem(s) to enable maintenance,
growth, and reconfiguration.

Figure 3.13: Generic Description of Subsystem Responsibilities.

3.5.2 Categories of a Deliverable System

For a deliverable system, product, or component, the categorization scheme intro-
duced above can be a useful starting point for brainstorming the subsystems.
Figure 3.14 makes the generic categories of Figure 3.13 specific to all deliverable
systems, and Figure 3.15 makes them specific to a cruise control system.

Note that the categories in the generic template are applicable to many sys-
tems, although there are usually some that are not applicable to a specific sys-
tem. Consider the generic categories a pattern for thinking about a system and
its subsystems.



58 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

Boundary:
The external housing, casing, or such other exterior that shelters the system from
its environment.

Information
Processing Subsystems

Material/Energy
Processing Subsystems

User Interface:
Data entry and display devices.

User Interface:
Access mechanisms allowing operator
insertion and extraction of physical
items and electrical or mechanical
energy.

Input Decoder:
Processor(s) of information inputs from
other systems, converting them, as
needed, from their received formats to
internal system formats.

Input Converter:
Mechanism(s) for the physical
manipulation of received physical items
or energy into the orientation or form
needed internally.

Functional Transformer:
Input-to-output information conversion
devices performing processes such as
algorithms, functions, math equations,
or string manipulations.

Producer:
Electrical or mechanical devices that
process received physical items or
energy, and convert them into the
desired product. For example, an
automatic mechanism that receives
component parts and assembles them
into a finished product.

Memory:
Device(s) that store, for later use,
information from the operator, from
other systems, or from the processes of
this system retained, possibly with its
relationships and organization.

Storage:
Any part(s) of the system that store
material or energy for later use, such as
a storage room, a shelf, a battery, or a
water reservoir.

Decider:
Control processors by which
information processing and resources
are scheduled, and which establish the
different states or modes of behavior of
the system.

Output Encoder:
Processor(s) of information outputs to
other systems, converting them, as
needed, from their internal system
formats to external formats.

Output Converter:
Mechanisms for the physical
manipulation of produced physical
items or energy into the orientation or
form needed externally. For example,
the automatic packaging of
manufactured products for shipment.

Support:
Processors that perform tasks such as
fault isolation, error handling, service
monitoring, system reconfiguration, and
graceful degradation.

Supporter:
Access mechanisms for physical
maintenance, growth, and
reconfiguration.

Figure 3.14: A Template for Subsystems of a Deliverable,
Human-Operated System.



3: A FRAMEWORK FOR MODELING SYSTEMS 59

Boundary:

The external housing, casing, or such other exterior that shelters the system from
its environment.

Information
Processing Subsystems

Material/Energy
Processing Subsystems

User Interface:

Data entry and display devices.
User Interface:

Access mechanisms allowing operator
insertion and extraction of physical
items and electrical or mechanical
energy.

Input Decoder:

Processor(s) of information inputs from
other systems, converting them, as
needed, from their received formats to
internal system formats.

Input Converter:

Mechanism(s) for the physical
manipulation of received physical items
or energy into the orientation or form
needed internally.

Functional Transformer:

Input-to-output information conversion
devices performing processes such as
algorithms, functions, math equations,
or string manipulations.

Producer:

Electrical or mechanical devices that
process received physical items or
energy, and convert them into the
desired product. For example, an
automatic mechanism that receives
component parts and assembles them
into a finished product.

Memory:

Device(s) that store, for later use,
information from the operator, from
other systems, or from the processes of
this system retained, possibly with its
relationships and organization.

Storage:

Any part(s) of the system that store
material or energy for later use, such as
a storage room, a shelf, a battery, or a
water reservoir.

Decider:

Control processors by which
information processing and resources
are scheduled, and which establish the
different states or modes of behavior of
the system.

Output Encoder:

Processor(s) of information outputs to
other systems, converting them, as
needed, from their internal system
formats to external formats.

Output Converter:

Mechanisms for the physical
manipulation of produced physical
items or energy into the orientation or
form needed externally. For example,
the automatic packaging of
manufactured products for shipment.

Support:

Processors that perform tasks such as
fault isolation, error handling, service
monitoring, system reconfiguration, and
graceful degradation.

Supporter:

Access mechanisms for physical
maintenance, growth, and
reconfiguration.

Figure 3.15: Subsystems of a Cruise Control System.



60 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

3.5.3 Categories of a People System

The systems we build reflect the organizations that build them. With this in
mind, we can devise a categorization of organizational systems, such as of whole
companies, departments, or groups of people cooperating to achieve a certain
goal. Figure 3.16 maps the generic categories onto an organizational structure
describing the various subsystems in such a context. Figure 3.17 shows cate-
gories specific to a garment factory. This kind of categorization helps to distin-
guish between value-adding functions and overhead functions in an organization:
It can be used as a starting point for modeling business processes and identifying
essential parts of them.

3.6 LAYERED MODELS: THE TRUTH AT LAST!

We discussed numerous characteristics and features of models in the previous
sections, but we kept the important issue of layered models for the end of this
chapter. In any discussion of systems, models of systems, or the process of build-
ing systems, the term "layer" plays an important role. Here, we explore several
unique aspects of layers, and of the different relationships between layers,
between elements in one layer, and between elements in different layers.

One purpose of this section is to dispel a couple of myths. First, there is the
myth that all layered models fall into the category of functional decomposition or,
worse yet, top-down functional decomposition. And second, that layered models
are fundamentally incompatible with object orientation.

In the first pages of Strategies for Real-Time System Specification, we intro-
duced a diagram titled, "The Total System Life Cycle," little realizing at the time
just how significant it was. It showed various layers of the system modeling
process and layers of specifications resulting from that process. We elaborate on
that diagram in Figure 5.1 of this book, but for now, we discuss some of its impli-
cations. What we have realized since creating that diagram is that there is
tremendous similarity between systems, system models, and the system develop-
ment process. Layers are an important part of these similarities, but they are also
the source of some confusion. There is not just one kind of relationship between
layers or elements of layers: We can identify several basic relationships that keep
recurring in different systems, system models, and in the development process.



3: A FRAMEWORK FOR MODELING SYSTEMS 61

Boundary:
The external housing, casing, or such other exterior that shelters the system from
its environment.

Information
Processing Subsystems

Material/Energy
Processing Subsystems

User Interface:
Data entry and display devices.

User Interface:
Access mechanisms allowing operator
insertion and extraction of physical
items and electrical or mechanical
energy.

Input Decoder:
Processor(s) of information inputs from
other systems, converting them, as
needed, from their received formats to
internal system formats.

Input Converter:
Mechanism(s) for the physical
manipulation of received physical items
or energy into the orientation or form
needed internally.

Functional Transformer:
Input-to-output information conversion
devices performing processes such as
algorithms, functions, math equations,
or string manipulations.

Producer:
Electrical or mechanical devices that
process received physical items or
energy, and convert them into the
desired product. For example, an
automatic mechanism that receives
component parts and assembles them
into a finished product.

Memory:
Device(s) that store, for later use,
information from the operator, from
other systems, or from the processes of
this system retained, possibly with its
relationships and organization.

Storage:
Any part(s) of the system that store
material or energy for later use, such as
a storage room, a shelf, a battery, or a
water reservoir.

Decider:
Control processors by which
information processing and resources
are scheduled, and which establish the
different states or modes of behavior of
the system.

Output Encoder:
Processor(s) of information outputs to
other systems, converting them, as
needed, from their internal system
formats to external formats.

Output Converter:
Mechanisms for the physical
manipulation of produced physical
items or energy into the orientation or
form needed externally. For example,
the automatic packaging of
manufactured products for shipment.

Support:
Processors that perform tasks such as
fault isolation, error handling, service
monitoring, system reconfiguration, and
graceful degradation.

Supporter:
Access mechanisms for physical
maintenance, growth, and
reconfiguration.

Figure 3.16: A Template for an Organization That Builds
Deliverable Systems.



62 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

Boundary:
The building(s) that house the garment factory and its offices.

Information
Processing Subsystems

Material/Energy
Processing Subsystems

User Interface:
People who negotiate the designs and
contracts with customers.

User Interface:
Direct factory sales outlet, returns
department.

Input Decoder:
Purchase order processing, inventorying
of received materials.

Input Converter:
People unpacking received materials,
repackaging them in a form that
supports the production process;
people from personnel department
screening new hires.

Functional Transformer:
Design department and equipment that
transforms customer requests into
actual designs to be manufactured.

Producer:
Production line personnel and
equipment that convert the received
materials into finished garments
according to the selected designs.

Memory:
Storage of the designs, accounting
records, shipping records, the employee
records, and so on.

Storage:
Supply cabinets, storage lockers, stock
room, and so on.

Decider:
Management that determines the
production schedules, the factory plans,
and the coordination of the factory floor.

Output Encoder:
People responsible for invoicing the
customers, for waste disposal
coordination, and so on.

Output Converter:
The shipping department, delivery truck
drivers, and so on.

Support:
Customer accounting, payroll
department, and so on.

Supporter:
The facilities and maintenance crews
who remove trash and keep the factory
in operating condition.

Figure 3.17: Subsystems of a Garment Factory.



3: A FRAMEWORK FOR MODELING SYSTEMS 63

Systems, models of systems, and the system development process share the
following attributes:

• They are layered.
• The layers—once they are identified—form a structure that can be

read and interpreted in any sequence: from the top layers to the lower
layers, from right to left, from bottom to top, and so on. Moreover, the
layers can be developed in any sequence: top to bottom, right to left,
bottom to top, and so on, and the interpretation and development
sequences are quite independent of each other.

• The number of elements per layer typically increases downward, giv-
ing the whole structure a pyramidal shape; but note that we some-
times have an independent structure of elements within one of the
main layers. For such a structure, the basic statement of this para-
graph is still true: The number of elements tends to increase down-
ward.

• The elements forming the layered structure can be considered a set,
either of activities or of entities. In any particular system, system
model, or development project, these elements may be carried out or
used in some prescribed sequence, concurrently, or in any combina-
tion of sequence and concurrency.

• Elements in the layers usually communicate and cooperate up, down,
and sideways within and between layers. Communication and coop-
eration can be in the form of information, material, or energy, depend-
ing on the kind of system, model, or process in question. Some earlier
models restricted the development process by asserting, for example,
that all information flows vertically through the top layer, and that
only information (not material or energy) can be communicated with
the outside world. However, our model recognizes that information,
material, and energy can all flow sideways to and from individual lay-
ers, and can all interact with the outside world.

• Every layer includes, deals with, or is associated with, some require-
ments, some architecture or design, some construction or implemen-
tation, and some integration and testing. Also, each layer usually
requires planning, quality assurance, management, and other items,
but we are not addressing these in this book.



64 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

An important conclusion for us is that layered models—for systems or as meta-
models for system development processes—do not inherently imply any particular
sequence. They represent a static structure (of a system, its development, the
development process, or models of any and all of these) that can be populated in
any convenient sequence that makes sense for the problem at hand. This point
was beautifully made by Parnas—arguably the father of information-hiding struc-
tures—in [Parnas 86].

So, the layers and the elements in layers are nondirectional, but we are inter-
ested in their relationships. There are probably many types of relationships in lay-
ered models, but four of them are of special interest in system development:
aggregation/decomposition, abstraction/detailing, supertype/subtype, and con-
trolling/controlled. Let us look at each of these in detail, discussing properties of
their relationships and examples from our methods and other well-known
approaches.

3.6.1 Aggregation/Decomposition Relationship in Models

The architecture model, resulting from the architecture method, is an example of
an aggregation/decomposition model. Such models characterize real physical ele-
ments, their sub-elements or parts, and their super-elements or assemblies. Ele-
ments in the higher layers actually consist of the elements in the lower layers, or
conversely, elements in the lower layers are decompositions of those in the higher
layers. The structure is also known as a whole/part structure [Coad 91] or a con-
tainer/content structure: A given layer provides the container for the layer below,
which is the content of the layer above. In entity-relationship modeling, entities
can be linked by composed-of or consists-of relationships. In manufacturing
terms, it is an assembly/subassembly/component structure. This type of struc-
ture is pervasive in engineering and in everyday life.

An aggregate actually involves more than just collecting sub-elements into a
set. The sub-elements must also interface with each other, requiring linkages
between them that may not be evident when they are considered separately. This
is why we discuss enhancement of abstract requirements, using the architecture
template, in our methods when the requirements are mapped into real physical
modules.

We can better imagine aggregation/decomposition structures applied at the
system levels, where physical hardware of various kinds is involved. For software,
which does not have a physical form, it is not so clear. The trick is to imagine



3: A FRAMEWORK FOR MODELING SYSTEMS 65

that software does have a physical form. A complete software program or assem-
bly can be considered as an architecture module at the highest software layer;
major subprograms it contains are modules in the next layer down; sub-subpro-
grams or subroutines (if any) form a further layer, and so on. As we discuss else-
where in this book, a transition can be made from an aggregation/decomposition
model to an object-oriented representation by defining modules to be aggregate
objects, as described, for example, in [Page-Jones 95, Section 4.2]. Once in the
object-oriented domain, other structures may apply, depending on the particular
object-oriented approach used.

To summarize the usage of this relationship: We build layers to show physical
packaging of elements into larger groups or assemblies. In each layer, we can
define physical interfaces between elements or between groups. The grouping
forms a sort of fence around its elements, potentially protecting the visibility of
the interior elements or regulating the access to them. In software development,
we use terms like information hiding, scope, and visibility control to describe the
nature of the aggregation/decomposition relationship.

3.6.2 Abstraction/Detailing Relationship in Models

When we use an abstraction/detailing relationship in models, the higher layers
are simply more abstract expressions of the lower layers, or conversely, the lower
layers are more detailed expressions of the higher layers. The most familiar
example of this relationship occurs in Structured Analysis (SA), usually repre-
sented by data flow diagrams. (Note that the control model of the real-time exten-
sions of SA does not use this relationship—see Section 3.6.4.) The process model
part of the requirements model, being founded on SA, uses the abstraction/detail-
ing relationship for processes and their child diagrams. In a sense, the whole
requirements model—if applied correctly—is abstract throughout because it con-
sists only of narrative statements (albeit in structured form) that do not necessar-
ily correspond to real physical groupings of processes, entities, or control struc-
tures.

The abstraction/detailing relationship often has been erroneously named
abstraction/decomposition. Although we, too, have been guilty of using this ter-
minology, we now disagree with it. First, abstraction and decomposition are not
opposites, and the essence of these relationship name pairs is that they should be
opposites, reflecting the upward and downward viewpoints in a layered model.
Second, decomposition is the opposite of aggregation, which is why we use it in



66 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

the aggregation/decomposition relationship described above, where something is
broken into the elements it contains. Consider this: An abstract requirement
statement does not contain the more detailed requirements statements that
describe it; however, a physical system element does contain the separable sub-
elements of which it is an aggregate. If we take the elements of a physical system
and assemble them, we get the physical system; if we assemble a set of detailed
requirements, we merely have a collection of detailed requirements—the abstract
and detailed requirements exist independently of each other, with an abstrac-
tion/detailing relationship between them.

Our categorizations of layered structures, then, have led us to an interesting
paradox. The terms to which we objected earlier—functional decomposition and
top-down functional decomposition—are frequently applied to Structured Analysis
and its data flow diagrams, yet data flow diagrams, when used correctly to repre-
sent abstract requirements, do not involve decomposition at all: They involve
detailing. When we use Structured Analysis to create essential models according
to our own guidelines and those in [McMenamin 84] and [Robertson 98], we are
not decomposing downward through the layers; we are adding detail. Going
upward, we are not packaging or aggregating; we are abstracting.

Of course, if you are misusing SA to represent the aggregation and decomposi-
tion of physical structures, then anything goes, and we cannot take responsibility
for the results (which are usually awful).

How do detailing of the required capabilities and decomposition of the physi-
cal structure relate to each other? As a system is developed, they proceed in par-
allel, with sufficient detail added to the required capabilities to satisfy the needs of
a particular physical layer. This point is illustrated further in Part II.

3.6.3 Supertype/Subtype Relationship in Models

In the supertype/subtype relationship, an element in the higher layer—the super-
type—includes all of the features that are common to its associated elements in the
lower layer—its subtypes. These features—in the simplest case—are attributes (as
they are called in information modeling) that are inherited by the elements on the
lower layer. Starting from the lower level, supertypes are formed for sets of ele-
ments that share common attributes. Thus, we might have at the top level "vehi-
cle," and at the level below "ship," "aircraft," and "land vehicle." Below "land vehi-
cle," we might have "bicycle," "motorcycle," "ATV," and "automobile." This tells us,
for example, that an automobile is a land vehicle and a land vehicle is a vehicle.



3: A FRAMEWORK FOR MODELING SYSTEMS 67

Supertype/subtype models are important in object orientation. This relation-
ship is the foundation for inheritance—one of the essential and most powerful fea-
tures of object orientation. Attributes of "vehicle," in the above example, are
inherited by all the other elements, and attributes of "land vehicle" are inherited
by all of the elements in its subtypes. Object orientation has taken this relation-
ship and extended it to more complex forms of inheritance than just attribute
inheritance: The lower layer may also inherit functions (or operations, or "meth-
ods," as they are sometimes called) and the behavior of the supertypes.

Supertype/sub type relationships are also referred to as generalization/spe-
cialization relationships, class hierarchies, inheritance structures, and "is-a" hier-
archies. With the supertype/subtype relationship, it is important that the super-
type contains all the commonalities of the subtypes. The main use of this rela-
tionship is to discover commonalities and to describe them only once, thus reduc-
ing redundancy. The structure then allows the lower layers to inherit whatever
commonalities have been discovered.

Now that we have defined the supertype/subtype relationship, we can see that
the relationship is, in fact, a subtype of the abstraction/detailing relationship. A
supertype is an abstraction of its subtypes, and the subtypes are detailed
instances of the supertype. So, all supertype/subtype relationships are also
abstraction/detailing relationships, but the converse is not true: Not all abstrac-
tion/detailing relationships are supertype/subtype relationships, because not all
abstraction/detailing relationships follow the "is-a" principle. For example, a
process on a data flow diagram and its child diagram are an abstraction/detailing
pair, but it is not true that a child diagram "is-a" parent process.

3.6.4 Controlling/Controlled Relationship in Models

This relationship distinguishes between up and down by having the upper layers
control elements of the lower layers. Other terms used for this relationship are
the control hierarchy, or the is-boss-of/is-supervised-by relationship. Sometimes,
we simply say that the higher element uses the lower elements. The higher layer
must have knowledge of the lower layer but the lower layer—that is, the one being
used—does not necessarily have to know anything about the boss. In terms of
client/server models, the client is the boss that delegates work to the server; the
server provides certain services that are performed whenever a client asks for
them.



68 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

In the requirements method, the control model controls processes in the
process model, by activating or deactivating them. In the architecture method, we
can model client/server behavior to avoid iterative cycles between architecture
modules.

Structured Design, the software design method, provides another example of a
controlling/controlled relationship. In its main graphical model, the structure
chart, a given module invokes (that is, it uses, calls, or controls the execution of)
modules in the layer below. Structured Design is one of several methods that can
be used in conjunction with the requirements and architecture methods, as
described in Strategies for Real-Time System Specification, Section 24.3, and in
Chapter 4 of this book.

3.6.5 Layered Models Summary

We hope we have succeeded in dispelling the myth that all layered models are
built top-down using decomposition, and have shown that this simplistic, one-
size-fits-all view of these models is wrong. The four types of relationships in lay-
ered models, described above, are distinctly different from each other; they all
serve distinct and important roles in system development; and they can be inte-
grated smoothly, where appropriate, with other models, including object-oriented
models. Figure 3.18 summarizes the key aspects of the four relationships in and
between layers or their elements.

Even though the four relationships are different, it is convenient to have at
least one terminology that can be used with all of them. For this purpose, the
"family tree" relationship analogy—of parent/child, grandparent/grandchild, and
ancestor/descendant—is commonly used. Although close inspection shows that
the analogy does not really fit all four of the relationships (for example, children
are not decompositions of their parents), these terms sufficiently describe
above/below relationships.

We can now enlarge on the statements of Section 2.1.3 "Multiple Hierarchies."
The four layered models we have described can be—and frequently are—used
simultaneously to represent different aspects of one system. Using the require-
ments and architecture methods, the required functional capabilities of a system
are captured by the process model—an abstraction/detailing model; the required
behavioral capabilities are captured by the control model—a controlling/con-
trolled model; information structures in the system might include supertype/sub-
type relationships, captured in an entity-relationship model; and the physical



3: A FRAMEWORK FOR MODELING SYSTEMS 69

Aliases

Downward
Usage

Upward
Usage

Where Used,
Roles

Purpose of
Usage

Aggregation/
Decomposition

Whole/part;
container/content;
composed-of;
consists-of;
assembly/
subassembly/
component

Decompose;
dismantle

Aggregate;
assemble

Architecture
model;
object
orientation
(aggregate
objects);
requirements and
architecture
dictionaries

Physical packaging;
information-hiding;
defining scope and
visibility

Abstraction/
Detailing

(Erroneously:
abstraction/
decomposition)

Add detail;
specialize

Make abstract;
generalize

Requirements
model;
Structured
Analysis; nesting
in statecharts

Coping with
complexity;
reducing
complexity

Supertype/
Subtype

Generalization/
specialization;
class hierarchy;
inheritance
structure;
"is-a" hierarchy

Inherit;
specialize

Set membership;
"is-a";
generalize;
categorize

Architecture model
when used with
object
orientation;
entity-
relationship-
attribute
modeling

Similar to
abstraction/
detailing;
in addition:
inheritance of
attributes,
functions, behavior

Controlling/
Controlled

Is-boss-of/
is-
supervised-
by;
uses
hierarchy;
client /server

Control

Controlled
by

Control
model (of
requirements
model);
Structured
Design;
system
control
structures
(occurs
within a
layer as well
as between
layers)

Separation
of concerns;
creating
noncyclic
client/server
structures;
simplifying
cooperation

Figure 3.18: Summary of Relationships in Layered Models.

structure is captured by the architecture model—an aggregation/decomposition
model. Thus, to model a single system, not only can we use layered models of the
same kind, as described in Section 2.1.3, we can also use layered models of differ-
ent kinds. This allows us to represent different views of the system separately,
but, when done as part of the requirements and architecture methods, the links
between these views are carefully maintained.



70 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

This highlights the great flexibility of layered models. They are extraordinarily
versatile, and allow us to represent just about any facet of systems and system
development separately and at any desired level of detail, but with the links to the
other facets also represented.

3.7 MODEL FRAMEWORK SUMMARY

Our modeling framework, shown in Figure 3.19—which is derived from Fig-
ure 3.7—now combines all the ideas described in this chapter. For most systems,
especially larger ones, we exploit the idea that systems come in hierarchies. We
have layers of specifications for the system, subsystems, sub-subsystem, and so
on. But note that the flows between the layers go both ways—up and down.
There is no sequence of development implied in this framework. We build groups
of models as we discover subsystems in the hierarchy, and we do so in any order
we want.

Forming subsystems is a difficult architectural or design decision, but
exploitation of the information/material/energy classifications and of the generic
subsystem categorization will guide us along the way. For software developers,
we have many more guidelines in Chapter 6.

Each group of models separates the what from the how: We build separate
requirements and architecture models. To help with the transition between what
and how models, we build enhanced requirements models based on the architec-
ture template. Thus, each group of models consists of three separate but related
types: requirements, enhanced requirements, and architecture. Note that the
arrows between the three models in the subsystems of Figure 3.19 go both ways—
again, allowing these models to be developed in any sequence.

The information-hiding categories described in Section 3.6 are helpful for
structuring all three models. They are generic enough to be applicable in many
different application areas, yet precise enough to give a head start for partitioning.
In many large applications, such subsystems have produced flexible, extendable,
and maintainable systems. The case study in Part II demonstrates this idea with
a specific example from a unique application domain.



3: A FRAMEWORK FOR MODELING SYSTEMS 71

Figure 3.19: The Modeling Framework.



This page intentionally left blank 



Index

abstract interface module 261, 263-66
abstraction/ detailing 65-66, 67, 92, 233,

272, 274, 402
ACD See architecture context diagram
Ada-based Design Approach for Real-Time

Systems (ADARTS) 255, 402
AFCD See architecture flow context dia-

gram
AFD See architecture flow diagram
aggregation 272, 402
aggregation/ decomposition 64-65, 92, 93,

96, 99, 103, 106, 123, 233, 257,
258, 402

rules and guidelines 123
A/CD See architecture interconnect context

diagram
AID See architecture interconnect diagram
aircraft example 193, 1 94
ATS See architecture interconnect specifica-

tion
AMCD See architecture message context

diagram
AMD See architecture message diagram
AMS See architecture module specification
architect 200-204, 273, 402

architecture 226, 268-73, 348, 393, 403
channel 204, 357, 393, 403
communication model 92-103, 403
context 286-87, 346
context level 206, 222
diagram 90-92, 107, 227, 403
inheritance model 106-8
interface 343
level 393,400
method 4, 7, 64, 179, 190-99, 200,

205, 244, 245, 250, 253, 257, 273,
275, 389, 391, 396, 398, 400, 404

structure 274
architecture context diagram (ACD) 75,

215, 222, 284, 288, 341-43, 391,
392, 403

architecture dictionary (AD) 75, 80, 92,
108-10, 111-12, 177, 197, 233,
362, 376, 385-86, 388, 403

rules and guidelines 110
architecture flow 79-82, 83, 84, 88, 94,

177, 206, 222, 223, 229, 239, 249,
250, 357, 362, 373, 383, 388,
393-94, 403

rules and guidelines 110

425



426 INDEX

architecture ftow context diagram (AFCD)
75, 87, 88-89, 171-72, 222, 223,
224, 284-85, 288, 241-42, 392,
403

rules and guidelines 88-89
architecture ftow diagram (AFD) 76, 91, 92,

94-96, 97, 98, 103, 108, 110, 111,
172, 174, 228, 229-30, 238ff., 247,
248, 254, 255, 258, 348, 363, 373,
376-77, 380, 381,393

rules and guidelines 95-96
architecture inheritance model 403
architecture interconnect 86-87, 240, 249,

250, 362, 393, 403
rules and guidelines 87

architecture interconnect context diagram
(AICD) 75, 87, 88-90, 171, 223,
225, 288, 341^3, 382, 392, 403

architecture interconnect diagram (AID) 76,
103, 104-6, 110, 111, 229-30,
238ff., 245-46, 247, 248, 258, 288,
290, 362, 363, 373-74, 376, 378,
381, 391-92,403

rules and guidelines 105-6
architecture interconnect specification (AIS)

76, 106, 111, 239, 250, 382, 388,
395, 403

rules and guidelines 106
Architecture Level 1 Model 220-23,

224-27, 228, 229, 233
architecture message context diagram

(AMCD) 75, 87, 89, 403
architecture message diagram (AMD) 76,

89, 91-92, 97-98, 99-100, 103,
110, 111,403

balancing 111-12
hierarchy style 99-100
network style 97-98

architecture model 64, 69, 72, 74-112,
135, 136, 141, 142, 164, 167, 169,
170, 177, 180, 190, 192, 194, 197,
200, 206, 209, 224-27, 230,
233-34, 257ff., 274, 276, 277,
288-89, 304, 311, 315, 316, 318,
334, 387-88, 391, 396, 398ff., 404

allocation of 224-27
balancing 110-12

development 233
requirements model and 170-78

architecture module 76, 77ff., 81, 83, 85,
88, 92, 94ff., 103ff., 108, 112, 138,
172, 174ff., 192, 194, 196, 198,
224ff., 230, 233, 236, 247, 250,
254, 256-57, 259-61, 264, 267-68,
271, 274, 290, 315, 345, 347ff.,
352, 357, 362, 366, 377, 382,
387-88, 390, 395, 404

concurrent 376
rules and guidelines 78

architecture module specification (AMS) 76,
92, 101-2, 106, 110, 111-12, 126,
198, 212, 230, 250, 252, 303, 375,
378-82, 388, 395, 404

rules and guidelines 101-2
architecture template 53-54, 88, 97, 99,

166-69, 171-72, 198, 220-21, 224,
228, 257, 259, 261, 275, 276,
291-95, 331, 393, 394, 404

customer specification 293
hardware/ software 292
hardware specification 295
rules and guidelines 1 68-69
software specification 295
system integration 293
system specification 295
variations on 291-95

assembly / subassembly / component 193
associative entity class 123-25

attributes and 123-25
rules and guidelines 125

attribute 116, 123-25, 162, 164, 233, 267,
308, 404

associative entity classes and 123-25
rules and guidelines 116

automated tool 8, 183, 200, 212, 397, 404
Axiom/ Sys 404, 423

balancing 1 77-78 , 404
black box 186, 226, 244, 315, 404
Boehm, Barry W. 184, 419
Booch, Grady 85, 119, 178, 180, 256,

419,421
Brooks, Frederick P., Jr. 256, 419
bubtangle 78, 404



INDEX 427

buffer 221,263
input and output 266
output-processing 22 1
support 262
user interface 22 1

capability 315, 404
Capability Maturity Model (CMM) 181, 404,

420
cardinality See multiplicity
CASE 3, 4, 164, 183, 254, 352, 389, 396,

399, 405
case study 6, 7, 8, 171, 180
CCD See control context diagram
CFD See control Jlow diagram
channel 76, 198, 288, 342, 349, 362, 381,

405
Chen, Peter 118,419
child 405

diagram 65, 96, 98, 105, 138, 158,
172, 174, 196, 221, 226, 227, 234,
364-65, 393

model 236
processes 233

child architecture Jlow diagram 234, 288
child control Jlow diagram 158
child DFD 138, 140, 142
child process specification 140
cZass diagram 28, 33, 73, 90-92, 115,

125-26, 128, 170, 281, 307-8,
397, 405

rules and guidelines 126
class model 270
Clemens, Paul C. 399, 422
client 277-78, 281, 405

requirements 278, 281, 284
system 277-78

client/ server 274
CMM See Capability Maturity Model
Coad, Peter 64, 256, 420
COBOL 269
CODARTS 255-56, 268, 405
combinational machine 153-54, 405
commercial off-the-shelf system (COTS)

252, 405
component 162, 175, 234, 247, 259,

271-72, 278, 345, 405
kinds of 278

composed-of 193
Concurrent Design Approach for Real-Time

Systems (CODARTS) 255-56, 268,
405

concurrent
engineering 184, 187-90, 291, 405
model 188-90
process 268

consists of 143-44
constraint 301-3

design 301-2
input/ output 301
other 303

content perspective 1 2
context 12, 213, 215

control vs. 160-61
diagram 87, 88, 96, 138, 285, 304-5,

406
control 406

hierarchy 271
layers 269
mode* 68, 113-14, 139, 143-56, 166,

169, 170, 206, 233, 267-68, 395,
398-99, 406

module 269
process 161, 165, 168, 169, 406

control context diagram (CCD) 156-57,
171-72, 406

rules and guidelines 157
control/ data flow diagram (C/DFD) 172,

174, 352
enhanced 172

control flow 106, 114, 129, 131, 144, 151,
155-56, 157, 158, 159-60, 161,
162, 164, 169, 399

input 153
model 155-56
output 153-54
rules and guidelines 155-56
sources for 144

control Jlow diagram (CFD) 131, 156-60,
164, 166, 168, 221, 406

data condition 1 59
rules and guidelines 1 59-1 60

controlling /controlled 64, 67-68, 93, 97,
254, 258, 268-69, 271-72, 274,
406

control specification (CSPEC) 101, 114,



428 INDEX

144, 146-47, 150, 154ff., 158,
159-60, 161, 164, 166, 169, 174ff.,
227, 233, 334, 352, 356, 388, 395,
396, 406

bar 156, 158, 159-60, 174, 175, 407
guide 175, 407

COTS 252, 405
Crosby, Philip B. 36, 420
CSPEC See control specification
customer 307-8, 342, 407

requirements 376, 387
customer specification 210, 299-303, 305,

318, 322, 326, 331, 338, 341, 375,
378, 380

for groundwater analysis system
299-303

DARTS 255
data 407

condition 160, 166, 169, 407
control and 394-95
flow 383, 399, 407
information modeling and 24
model 267, 395, 407

database management system (DBMS) 268
data context diagram (DCD) 131, 135-37,

157, 171,407
rules and guidelines 136-37

dataflow 83, 106, 129, 131-33, 137ff.,
144, 150, 155, 157ff., 164, 169,
249, 395, 399, 407

rules and guidelines 1 32-133
dataflow diagram (DFD) 65, 110, 131,

137-39, 140, 159-60, 164, 166,
168, 169, 216, 217, 218, 227, 230,
233-35, 275, 278-80, 317-25,
327-29, 334, 337-40, 352, 355-57,
362, 364-67, 390, 395, 397, 407

definition of 137
elements of 137-38
rules and guidelines 138-39

dataflow model 155
data process 165, 168
data store 131, 164, 175, 270, 278, 407

splitting a 175
DBMS 268
DCD See data context diagram
DDL 268

decision table (DT) 154, 158, 160, 268,
408

DeMarco, Tom 130, 420
Deming, W. Edwards 36, 420
derived requirement 32, 141, 364, 391,

393, 408
design 257, 301-2, 408
Design Approach for Real-Time Systems

(DARTS) 255, 301-2, 408
detailing diagrams 139-41

with child DFD 1 39^ 1
u>ithPSPEC 139-41

development process 181, 183-90, 205,
275, 277-78, 408

architecture 288-90
concurrent development process

184-87
evolution of 183-84
model 278, 291
PSARE 6, 181, 413
task allocation 29 1

DFD See dataflow diagram
dictionary See architecture dictionary,

requirements dictionary
domain 273, 288
DT See decision table
dynamic allocation 177, 242-44, 408

EDFD See enhanced dataflow diagram
Eeles, Peter 271,420
encapsulation 256-57
Engineering of Computer-Based Systems

(ECBS) 244, 409
enhanced control/data flow diagram

(EC /DFD) 172
enhanced dataflow diagram (EDFD) 222,

233, 282-83, 284, 291, 332-33,
335-36, 349-51, 357-62, 364,
370-72,380-81,409

enhancement
of models 221,277,281-84,288,290
of requirements 206, 222, 224-25,

228, 343, 348, 388, 409
of requirements model 166, 220-23,

225-26, 228, 233, 259, 275-76,
289, 311-12, 315, 334, 342, 346,
349-56, 387, 409

entity 233, 307-8, 409



INDEX 429

model 112-14, 119-29, 166-67, 169,
170, 174, 180, 304, 307-11, 392

modeling 121, 124
specification 308, 409

entity class 32, 33, 73, 116-18, 120, 121,
123-24, 126, 127, 128, 129, 162,
164, 409

rules and guidelines 118
specification 126-27

environment 210, 212, 217, 222, 331,
391,409

essential model 222, 271, 276, 284-85,
290, 291, 312, 315, 316-30,
331-40, 346, 409

enhancing the 33 1 -40
essential requirements 166, 222, 289, 311,

357, 388
event 160, 409
Existing Sampling Module 311-15
external stakeholders 285

feasibility analyses 202-3
field programmable gate arrays (FPGA) 252
flight management system 149-50
flow 76, 81, 83-85, 88, 95, 100, 106, 109,

131, 132-33, 134-35, 136, 138,
139, 153, 158, 161, 198, 212, 217,
218, 222, 227, 229, 233, 240, 247,
249, 257, 274, 288, 304, 311, 344,
357, 362, 381, 394, 395, 410

controlled 144
data 144
input 144
messages and 83-85
output 144, 304
stores and 131,212

flow diagram 106, 133, 177, 278, 410
child architecture 96

Junction 254, 410
functional primitive 1 39

Gomaa, Hassan 255, 420
groundwater analysis system 6, 249, 250,

299-388, 391, 396
Existing Sampling Module for 302,

304, 311-15, 343-16, 348, 364-66,
379, 381, 387

Groundwater Specimen for 307-8, 311
Sample Analyzer Module for 344^7,

348-49, 355, 358-59, 370-71,
376-78, 379-80, 381, 387

hardware layers 251 -52
hardware /software 236-14, 392

configuration 239, 241
interfaces 239, 392
partitioning 14

hardware technologies 244-51
chemical 249
electrical 245-16
electromechanical 247
electronic 247
hardware design 250
hydraulic 248-19
manufacturing 250
mechanical 248
mixed technologies 250-51
optical 249
pneumatic 248-^9

Harel, David 147, 396, 420
Hatley, Derek 3, 180, 420-21
Hatley/Hruschka/Pirbhai methods (H/H/P)

6, 7, 136, 299, 315, 389, 401, 410
Hatley /Pirbhai methods (H/P) 3, 5, 389,

410
H/H/P methods See Hatley/Hrusch-

ka/Pirbhai methods
hierarchy 46, 67, 410

aggregation/ decomposition 93, 99
class 67
control 269, 271
controlling /controlled 93
is-a 67
networks and 90-92
supertype/ subtype 107

hospital monitoring system 6
H/P methods See Hatley / Pirbhai methods
Hruschka, Peter 5, 422
Humphrey, Watts 183

IEEE 244
"-ilities" 303, 380
implementation 267-68, 410
INCOSE 410



430 INDEX

information hiding 256, 259, 262, 269
module 261, 410

information /material /energy 55-60, 161,
212, 257

information model 206, 233, 261, 410
inheritance 76, 77, 86, 107, 256-57, 258,

268, 274, 410
structure 274

inheritance relationship 85-86, 106, 107,
108

rules and guidelines 86
input and output

flows 82, 138
processing 331

input processing 187, 410
interconnect 87, 206, 212, 228, 230, 234,

245, 249, 250, 344, 382, 392,
393-94, 395, 410

interface 236,277,288,315,331,410
International Council on Systems Engineer-

ing (INCOSE) 410
is-a relationship 121, 122,411

Jackson, Michael 255, 421
Jackson System Development (JSD) 255
Jacobson, Ivor 178, 180, 256, 271, 419, 421

layer 185-87,270-71,280-81,411
application 269
architectural 223
control 269
Deliverable System Development 186
Implementation 185
in model 60-70,411
structure 205, 253
in systems 46-47, 185
Top System Element 1 86

Maier, Mark 18,421,422
Manhattan Island example 27-28
McConnell, Steve 16, 421
McMenamin, Stephen 66, 112, 180, 421
message 76, 79, 81-85, 97, 100, 256-57,

411
definition of 81
diagrams 98
flows and 83-85

rules and guidelines 82
message /call 98
message specification 102-3, 111, 411

definition of 102-3
meta-model 275-96,411
method 178, 181-83, 200, 209, 250, 256,

389, 390,397-400,411
See also Hatley/Hruschka/Pirbhai

method (H/H/P), Hatley / Pirbhai
method (H/P)

process, tool, and 181-83
MID 76, 106, 107-8, 110
model 205-74, 275, 278, 280, 311, 344,

346-47, 393,411
See also architecture model concurrent

model, control model, meta-model
requirements model

abstraction/ detailing 68, 192, 197
aggregation /decomposition 64, 69,

192-93, 197
client /server 67
context- level 210
environment 212, 213, 217, 222
essential 222
layered 60-70,411
requirements /architecture /design 191
supertype/ subtype 67
system specification 191-93,207

modeling elements 76-87
See also architecture flow, architecture

interconnect, architecture model,
Jlow, inheritance relationship, mes-
sage, and terminator

module 87, 100, 106, 168, 212, 225, 233,
247, 249, 254, 259, 268, 315, 344,
347, 349, 357, 393, 396, 411

See also architecture module
application 270
control 269
hardware 236
hardware /software 237
software 236, 240
specification 376

module inheritance diagram (MID) 76, 106,
107-8, 110,411

rules and guidelines 108
multiple architecture models 174-75



INDEX 431

multiple hierarchies 9
multiple inheritance 107
multiplicity 119-20, 121, 124, 128, 305,

308, 412

Naval Research Laboratory's Software Cost
Reduction Method 255

networks 90-92

object orientation (OO) 67, 94, 178-79,
256-58, 268, 271, 391, 392, 399,
412

architecture and 272
constructs of 391
methods of 178-79, 257, 271

object-oriented design (OOD) 255, 256-57,
412

output processing 221, 276, 412

Page-Jones, Meilir 86, 254, 255, 258, 421
Palmer, John 102,421
Parnas, David 52, 64, 255, 259, 299,

421-22
partitioning 49, 412
PAT See process activation table
patient-monitoring system 6, 209-36, 238,

252
architecture 229-33
Architecture Level 1 Model 220-23,

224ff., 233
context-level model 213-18
enhanced requirements model 220-23
enhancements 228
environment 2 1 0-1 3
interconnects 228
lower-level models 233
problem statement 210
technology constraints 2 1 9-20

people-made systems 9, 10, 11, 27
Pirbhai, Imtiaz 413, 420
Premerlani, William 422
primitive 164, 413
process 16, 131, 133, 137, 138, 139, 154,

174, 176, 177, 181-83, 200, 212,
221, 233, 249, 250, 271, 277, 284,
395, 398, 399, 413

See also Process for System Architec-
ture and Requirements Engineering
(PSARE)

activators 154, 395
definition of 133
method 413
methods, tools, and 181-83
model 113-14, 130-42, 150, 166, 167,

170, 180, 206, 233, 267, 270, 395,
398, 399, 413

module 250
rules and guidelines 133
for system development 16

process activation table (PAT) 146, 154,
268, 396, 413

Process for System Architecture and
Requirements Engineering (PSARE)
6, 181,413

processing view 18, 20-21
processors 230
processor view 18, 19-20
process specification (PSPEC) 139-43, 144,

150, 161, 164, 166, 169, 174, 175,
196, 212, 216, 217, 221, 233, 267,
311, 314, 318-25, 327-30, 334,
335-40, 364-65, 367, 376, 388,
393ff., 400, 413

rules and guidelines 142^43, 394
Programmable Logic Arrays (PLAs) 20
programming language 268, 269
project coordination 203
prototype 202, 413
PSARE 6, 181, 413
PSPEC See process specification
push and pull indicators 81, 82, 83-85,

94, 95, 97, 99

quality 36-37
quick-ticketing system (QTS) 7

RD See requirements dictionary
real-time (RT) 48, 398-99, 413
Rechtin, Eberhardt 18, 37, 422
relationship 118, 121, 123-25, 129, 162,

164,267,307-8,311,413
abstraction/ detailing 65-66, 92
aggregation/ decomposition 64-65, 92,

123
binary 118-19
doss 91
controlling /controlled 67-68
generalization/ specialization 67



432 INDEX

is-a 121, 122
is-boss-of/ is-supervised-by 67
multiplicity 119-20
name 119-20
n-ary 128
parent /child 198
rules and guidelines 1 20-2 1
specification 127-28, 413
subclass /superclass 92, 121
superclass /subclass 121
supertype/ subtype 66-67, 85
symbols 118-20

required
capability 210,219,387,413
constraint 387, 414

requirements 24-40, 226, 228, 230, 233,
235, 242, 257, 264, 281, 285,
288-89, 299-303, 304, 307-8,
345^6, 347, 348-49, 380, 387-88,
390, 393, 414

See also requirements model
aggregation/ decomposition of 33
capabilities and 26-27, 33, 39
categorizing 39-40, 202
class diagram 28ff., 32, 34, 36
constraints 26, 27, 33, 34, 39, 301-3
core 267
customers and 24
decomposing 202
defined 26-28
deriued 30-31, 39, 194-97, 198, 202,

393
detailing 30-31, 38-39, 194-97
enhancement and allocation 194, 202,

267
entity class 38-39
essential 167-68, 222, 266, 393
external 37-38, 185
feasibility analysis of 38, 202
functional 26, 138
gathering of 30, 37-38, 202
hiding 264, 266-67
integrity analysis of 38, 202
management of 37-40, 202
managers and 24, 25
performance 27, 32-33, 164, 196,

375, 387, 414
primitive 32-34, 194, 196
for quality 36-37

sources of 24-26
specification 299
stakeholders 24ff., 200, 266
standards as source for 24, 25
sub /superty ping relationship and 34
for timing 164-65, 375, 377
users and 24, 25, 331

requirement context diagram 172, 214,
277, 284, 290, 304-5, 341

requirement entity class 28, 38-39
requirements / architecture relations hips

See also superbubbles, traceability
balancing 177-78
scope differences 171 -72

requirements dictionary (RD) 75, 113, 129,
131, 132, 155, 162-70, 177, 218,
221, 233, 311, 376, 383-84, 388,
414

requirements-driven systems 22
requirements flow 250
requirements method 4, 7, 160-61, 179,

190-99, 200, 205, 244, 250, 257,
273, 275, 389, 391, 392, 396, 398,
400, 414

requirements model 28-36, 65, 72, 84,
112-61, 162ff., 169-70, 171, 174,
177, 180, 190, 192, 194, 197, 200,
206, 209, 218, 221, 222, 224,
233-34, 249, 250, 261, 267, 270,
275, 279, 304, 311, 315, 316, 318,
347, 366, 387, 39 Iff., 398ff.

architecture model and 170-78
balancing 141, 166
components of 169
is-a relationship 34
summary of 169-70

Robertson, James 66, 180, 422
Robertson, Suzanne 66, 180, 422
Rumbaugh, James 178, 256, 421, 422

SA See Structured Analysis
SD See Structured Design
sequential machine 147-48, 149-50,

151-53, 414
defined 147-48
other representations of 151 -53

Sheard, Sarah 200, 422
Shenhar, Aaron J. 189,422
Shlaer, S. 256, 422



INDEX 433

Society of Concurrent Engineering (SOCE) 422
software architecture 259, 272-72
software design 269-70

methods 254, 258
software development 84-85, 254-58, 393

history of 254-58
software layers 253-73
specifications 311,315,414
spiral model 184
stakeholder 289, 414
starvation of bubbles 139,414
state 415
state chart 154, 158, 160, 396, 415
state machine 152
state transition 165, 415
state transition diagram (STD) 146, 147,

148, 149, 150, 151, 268, 396, 415
state transition matrix (STM) 146, 415
state transition table (STT) 1 46, 4 1 5
state /event matrix 152, 415
state /state matrix 152,415
STG See Structured Technology Group
sto/i?N 131, 134-35, 137, 138, 157, 162,

\ 164, 168, 174, 176, 177, 212, 227,
'233, 257, 397, 415

flows and 131,387
rules and guidelines 134-35
symbol for 134-135, 397

Strategies Ifor Real-Time System Specifica-
tiorii 3, 4, 5, 6, 60, 68, 79, 84, 106,
144; 146, 147, 151, 164, 165, 181,
214, ^389, 397

StructSoft 415
structure 64, 97

aggregation /decomposition 103, 106
assembly/ scubas sembly/ component

64 \
container/ content 64
controllirfCg/ controlled 97
message /call 98
wJnole/part 64

Structured Analysis (SA) 34, 47, 65-66,
73, 92, 96, 110, 130, 131, 135,
136, 141, 209, 397, 398, 400, 415

/ Structured Design (SD) 47, 68, 86, 102,
254-55, 258, 268-69, 415

structured English 142, 394, 415
structured methods 1 78-79 ,415
Structured Technology Group (STG) 416
subtype /supertype 122, 256, 416
superbubbles 171, 172-75, 176, 213-14,

225-27, 228, 230, 233-34, 291,
349, 364, 390, 416

rules and guidelines 1 74-75
traceability and 176-77

superclass / subclass 121 -23
rules and guidelines 122-23

supertype /subtype 64, 66-67, 85, 107,
121,416

system 10-40, 205, 416
See also system development
approach 9
architect 200-204, 273, 402
architecture 49, 74, 224, 245, 281,

290, 395
artifacts 5
categories of 17-18
classification 23
complexity of 17-18
components of 10
concept of 9
engineer 200-204,214
engineering 290, 416
errors 1 5
hierarchies 11-13, 14
life cycle 15, 182
module specification 375
networks 14-15
people-made 9, 10, 11, 27
properties of 12
requirements 24-40, 49
requirements context 216
requirements driven 22
role of 200-204
specification of 20, 280, 388
stakeholders 281
views of 18-24

system development 4, 16, 181-204,
275-96, 318, 348, 389, 416

essential model of 277-81
meta-modelfor 276
nature of 183-90



434 INDEX

overview of 275-76
patient-monitoring system example

209-36
process and methods 16, 190-99
process, methods, and tools 181-83

Taylor, David A. 271, 422
terminator 76, 78-79, 87, 88-89, 109,

131, 135, 136, 137, 144, 156, 157,
204, 214, 222-23, 277, 284-85,
288, 290, 341-42, 349, 392, 417

definition of 78
examples of 277-78, 285, 288
naming rales 79
symbol/or 78

testing 187, 417
timing specification (TSPEC) 166, 177-78,

196, 222, 304, 305-7, 346, 377,
381, 392, 417

tools 181-83, 200, 423
traceability 176-77, 185, 196, 197-99,

226, 236, 393, 417
traceability matrix 101, 176-77, 194, 197,

198, 228, 230-33, 234, 242, 244,
352-54, 366, 368-69, 380, 388,
390, 393, 417

rales and guidelines 176-77
trade-off study 202, 347, 348, 376, 377,

382, 417
training 423
TSPEC See timing specification
Turbocase/Sys 418, 423

Unified Modeling Language (UML) 7, 85,
118, 121, 125, 178, 179, 180, 418

use case 180,418
user 394
user interface 89, 221, 259, 261, 264-65,

269, 271-73, 276, 290, 418
user-interface processing 33 1

views of a system 1 8-24
activity level 19, 23-24
intelligence level 19, 22-23
processing 18, 19-20
processor 18, 20-21
what/ how 18, 21-22

waterfall model 183-84, 188, 189, 190
Weinberg, Daniela 43, 422
Weinberg, Gerald M. 43, 422
what /how classification 49-54, 142

architecture model and 50
requirements model and 50
separation of 50-5 1 , 70

whole /part 64, 193
www.psare.com 7,36,391,423

Yourdon, Edward 254, 420, 423

http://www.psare.com

	Contents
	Figures
	Chapter 3 A Framework for Modeling Systems
	3.1 A MODEL FRAMEWORK
	3.2 MODELS IN GENERAL
	3.3 EXPLOITING SYSTEM HIERARCHIES
	3.4 EXPLOITING THE WHAT/HOW CLASSIFICATION
	3.5 EXPLOITING THE INFORMATION/MATERIAL/ENERGY CLASSIFICATION
	3.6 LAYERED MODELS: THE TRUTH AT LAST!
	3.7 MODEL FRAMEWORK SUMMARY

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	Y




