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Chapter 3
A Framework for

Modeling Systems

3.1 A MODEL FRAMEWORK

In the preceding chapter, we discussed numerous facets of systems in the cate-
gories of general characteristics, views, and requirements.

We now focus on the development of such systems. In this chapter, we
explore the role of models in system development and introduce a framework to
organize the many different models created during the development process. This
framework captures what we know about systems, including the properties dis-
cussed in Chapter 2.

The framework serves as a road map for the development process, providing a
cue for what models to build and how to build them. It assists us in keeping all
the models related and linked to each other. In the first sections that follow, we
start with a discussion of models and their usefulness.

3.2 MODELS IN GENERAL

Most industries use models for purposes such as studying requirements for sys-
tems, examining feasibility and manufacturability, and determining how to build
an actual system. In the computer hardware and software industry, models are
used for some parts of the development process (usually for software require-
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42 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

ments or design, or for hardware layout), but no techniques are widely used for
modeling the entire system. Before discussing such modeling techniques, we dis-
cuss why models are useful.

3.2.1 Models Are Useful Abstractions

As Figure 3.1 shows, a model is an abstraction highlighting some aspects of real-
world systems in order to depict those aspects more clearly. A model has an objec-
tive (the question we want it to answer) and a viewpoint (the point of view of one or
more stakeholders: users, developers, and so on). Abstract models reduce the
complexity of the real world to digestible chunks that are simpler to understand.

Figure 3.1: The Role of a Model

On the other hand, abstract models are just representations, omitting some
aspects of real-world systems, at least temporarily, but mapping what we hope to
understand into a form that we can understand. Different types of models
answer different types of questions about the system they represent, but even if
we build a hundred different models, they could not answer every possible ques-
tion about the system. That can only be done by the final system itself.

If we decide to build more than one model of a given system to investigate dif-
ferent aspects, then we should somehow organize these models according to their
relationships to each other and to the system. This is why we need a framework.
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3.2.2 Model Representations and Reuse

Before we discuss the framework for modeling systems, we expand on the idea of
using models in two ways: First, models can be expressed using different nota-
tions; second, good models can be reused in different applications.

Though they appear very different from each other, Figures 3.2 through 3.5
can all represent the same scenario. Consider this description of a junior high
school:

Students enter school in seventh grade. Most of the students pro-
ceed to eighth grade, but some skip directly to ninth. Nobody grad-
uates directly from eighth grade, but some leave school before
graduating. The rest go on to ninth grade and then graduate.

In Figure 3.2, "The Bathtub Model"—adapted by permission from General Princi-
ples of Systems Design by Gerald M. Weinberg and Daniela Weinberg [Weinberg
88]—flows into and out of the various tubs can represent the flows of students
into and out of grades. Tubs 1, 2, and 3 represent 7th, 8th, and 9th grades,
respectively. S indicates the set of students entering school. PI represents the
students progressing to 8th grade. Ql depicts the small number of students
skipping 8th grade and going directly to 9th grade. P2 shows the normal progress
from 8th to 9th grade. Q2 and Q3 show students leaving school without graduat-
ing. P3 represents the students graduating from 9th grade.

The Weinbergs use the bathtub model to explain the set of differential equa-
tions given here as Figure 3.3: Those equations can abstract the same junior
high school situation in a different manner. Nl, N2, and N3 either can represent
the quantities of water in the three tubs or can indicate the number of students in
three grades. Nl' represents the rate of change of Nl over time, and so on.

Figure 3.4—a Structured Analysis data flow diagram—shows yet another rep-
resentation of the bathtub model, and of the same real-world system.

Finally, Figure 3.5 gives the context diagram for Figure 3.4, once again repre-
senting the same real-world system, but in a more abstract form.

The models in Figures 3.2 through 3.5 also can show how models can be
reused. The four models can be used to illustrate different applications, fitting
the following description of a company's training program just as well as they fit
the junior high school scenario, and just as well as they could fit many other sim-
ilar scenarios.
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Everyone joining Company X starts as an unskilled worker. The
company's policy is to provide training and education for its
employees. No one is allowed to work without some minimal voca-
tional training that gets him or her into the semi-skilled labor pool.
Those who have college degrees move to the skilled category,
bypassing the semi-skilled pool. After five years in the semi-skilled
category, workers automatically progress to the skilled pool. Even-
tually, employees either leave for better opportunities or retire.

Figure 3.2: The Bathtub Model

N1' = S-(P1 +Q1)
N2'= P1 - (P2 + Q2)

N31 = (Q1 + P2) - (P3 + Q3)

Figure 3.3: Equations Representing the Bathtub Model
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Figure 3.4: A Data Flow Diagram Representing the Bath-
tub Model.

Figure 3.5: A Context Diagram of the Model in Figure 3.4.

3.3 EXPLOITING SYSTEM HIERARCHIES

In Sections 2.1.2 and 2.1.3, we explained that all real-world systems consist of
subsystems, or—looking in the other direction—that every system is part of a
larger system. In other words, systems come in hierarchies. Using these hierar-
chies is the first step in constructing our modeling framework.
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3.3.1 Why Exploit Hierarchies?

Why do we want to exploit the idea of system hierarchies? Because we want to
reduce complexity by not thinking about everything at once.

• At the highest level of a model, we establish the place of the system in
its environment and define the broad objectives of the system and its
relationships with that environment (for example, communication and
physical linkage).

• Using these broad objectives, we proceed into the requirements and
architecture of our system, remembering that it can be manual, auto-
mated (by various technologies), or both. Creating an architecture for
the system partitions it into subsystems that can themselves be con-
sidered self-contained systems—similar to the top-level system. By
iterating this partitioning procedure, as illustrated in Figure 3.6, we
simplify the problem by treating each subsystem, sub-subsystem, and
so on, as a system in its own right, with its external interconnections
and interactions represented in the level above.

Figure 3.6: Hierarchies to Reduce Complexity.

3.3.2 What Are the Benefits and Pitfalls of Layered Systems?

There are many benefits in hierarchically organized systems and subsystems.
Every layer of system definition supplies some of the requirements for the layer
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below. At the top, a firm link is established between the system and its environ-
ment. If we can stabilize the upper-level requirements and architecture early, the
lower-level design can proceed much more effectively. We can anticipate high-risk
subsystems and use prototyping to resolve those risks. Working on a certain level
of abstraction helps us concentrate on that level and not get too detailed too fast.

One point needs to be strongly emphasized:

System specification and development are not necessarily top-down
processes.

Overlooking this heuristic can be a major pitfall. The fact that, for convenience,
many of our descriptions of the process are presented top-down does not detract
from this statement; neither does the top-down appearance of the figures. The
top layers do not have to be complete before we can work on the lower layers; in
some cases, it is appropriate to work upward from the lower layers. Think of
development as a concurrent or iterative process—there is always some work
going on in every layer.

The layered model results in a specification hierarchy and a representation of
the requirements flows between layers. The process of filling in the framework
and developing these models is discussed in Chapter 5, and illustrated in Part II.

Integration is key to developing the system: "The whole is greater than the
sum of its parts." The systems we develop require that all of their components are
integrated: software with software; hardware with hardware; software with hard-
ware; automated with manual; and especially, system with environment. So,
despite developing many separate models, we need subsystems linked to other
subsystems, and layers linked to higher and lower layers. This is the purpose
and benefit of the modeling framework.

3.3.3 How Many Models?

Many methods insist on building one large analysis model (as in Structured
Analysis or entity-relationship modeling) and, separately, one large design model
(as in Structured Design or in many object-oriented methods). We, too, use the
"divide and conquer" approach in our framework, but we ensure that the sub-
models are integrated.

How many models do we build, then? If we consider an integrated set of sub-
models as a single model, then we build a model for the overall system and a
model for each of its subsystems, sub-subsystems, and so on. Each of these
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models itself can contain numerous models of its own: models for requirements,
design, architecture, information structures, interconnects, and many more.
Good methods, and tools that automate them, will support all of these multifari-
ous models and the links between them.

3.3.4 Where Do We Stop?

We have established that every system is part of a larger system. Looking in the
other direction, How far down should we decompose a subsystem into further
subsystems?

In larger systems, system developers will stop at the level where direct system
responsibility ends, or where they have no constraints to impose internally to a
subsystem. Then, specialists in those subsystems can decide whether to con-
tinue with the same process or to switch to some other approach that is specific
to their discipline. For example,

• we decompose a multidisciplinary system into parts that are, say,
mechanical or hydraulic, and pass those subsystems to the corre-
sponding specialists

• in MIS, we often decompose until we can clearly differentiate between
human activities (for example, clerks doing part of the work) and soft-
ware activities (computer programs doing the remaining work)

• in embedded, real-time systems, we might decompose until we have a
better understanding of the hardware/software split

A software subsystem can usually be decomposed into further subsystems, and
an organizational subsystem can be organized as cooperating groups of further
organizational subsystems. The techniques, methods, and tools for specialized
subsystem development are often more mature and better automated than those
used for overall system development. In this book, we do not discuss specialized
hardware, software, or organizational methods, but instead refer to other publica-
tions on these topics.

On the other hand, we do not have to decompose every system into subsystems
that comprise only one technology. Sometimes, the system levels stop where sev-
eral related technologies are used in a single subsystem. For example, in a
hydraulic subsystem with electromechanical valves, it would not make much sense
to separate these two technologies, because they exist to support each other.
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Figure 3.7 shows various alternatives for decomposing subsystems: The top-
level decomposition separates a human subsystem from a purely mechanical sub-
system and leaves a multi-technology subsystem to be further decomposed. On
the next level, a software subsystem is further decomposed into two software sub-
systems. At the lowest level, we find a software subsystem, a human subsystem,
and a subsystem that uses mixed technology but is treated as one unit.

In later chapters, we discuss more criteria to determine where to stop decomposing.

Figure 3.7: Partitioning a System.

3.4 EXPLOITING THE WHAT/HOW CLASSIFICATION

The next step in constructing our modeling framework is to use the what /how
classification of systems that we discussed in Section 2.2.3. As you may have
noticed in Figure 3.6, every specification consists of two parts: system require-
ments and system architecture. Both of these parts contain models. The system
requirements model is a technology-independent model of the problem the system
is to solve: It represents the what The system architecture model is a technol-
ogy-dependent model of the solution to the problem: It represents the how.
These two models are created for the entire system and for every subsystem—
hardware, software, human, or mixed technology—down to the lowest level.
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3.4.1 Separation of What and How

The separation of the what and the how is extremely important for the following
(and possibly other) reasons:

• It is often very useful to understand a problem (the what) indepen-
dently of any particular solution (the how). (Conversely, there are sit-
uations where it is useful to develop a single architecture that will sat-
isfy a whole class of problems.)

• Any given problem has many possible solutions. Selection of a partic-
ular solution (the how) is a trade-off process; we often need to make
numerous different trade-offs while keeping the problem statement
(the what) unchanged.

• The separation supports the generally recognized principle of separa-
tion of concerns, which means dealing with only one part of the sys-
tem's complexity at a time. The requirements model (the what) only
has to cope with essential problems; the architecture model (the how)
has to cope with many constraints imposed by technology, organiza-
tion, and so forth.

• Finally, seldom do we build systems totally from scratch. Most sys-
tems we build are either implementations using new technology (only
changing the how) or the integration of several previous systems into
a new system.

The separation of the what and the how gives us the power to reimplement the
what using new technology, but it also gives us the power of reusability—not just
for software or hardware, but for requirements as well. This is particularly impor-
tant, because requirements are much more stable over much longer periods of
time than technology [McMenamin 84].

In this book, we use the what /how classification for yet another important
purpose. As we construct several different models later in the book, we would
have to handle a lot of complexity at once if we addressed how to construct them
at the same time as we addressed what to construct. So, we have split the follow-
ing chapters using the what/how separation: Chapter 4 describes what models
belong in our framework; Chapters 5 through 7, and all of Part II, describe how to
develop these models.
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As mentioned, Chapters 5 through 7 describe the how of constructing the
models, but in Part II, we describe the how of applying these models to some real
systems—from that perspective, Chapters 5 through 7 represent the what! This
is analogous to the layered structure of systems, in which architectural or design
decisions in one layer result in requirements in the layer below. This same princi-
ple applies to this book, which itself is a kind of system.

The purpose of Part II and of the on-line model is to exemplify what real proj-
ects must do—the what, the how, and also the when. The when refers to project
planning and scheduling, including such issues as which tasks are conducted
concurrently, and which sequentially. Throughout the 1970's and 1980's, sim-
plistic process models like the waterfall model predominated. We know now that
there are no simple solutions to project planning and scheduling. Rather, these
are decisions that must be made for each project, by project management. It is
the manager's job to observe the process, to watch and interpret the results of
individual steps, to take into account many constraints, and based on all of that,
to reconfigure dynamically the what, the how, and the when of the project.

3.4.2 The Architecture Template

Our modeling framework employs an extension of the what /how split to classify
systems, subsystems, their components, and their activities according to a
generic architecture template. Figure 3.8 shows that this architecture template
classifies a system or subsystem into five categories:

Figure 3.8: The Architecture Template.

1. The center region contains the main functions of the system: the core
functional processing. Here, we model things that the system
absolutely has to do, things that belong to the essence of the system,
independent of any technology.
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2. The top region hosts those parts of a system that interact with the
users. It contains all subsystems, functions, and activities that make
up the human-machine interface. It controls access to the system,
and it accepts input from and prepares output for the human user, all
in whatever forms are established with the user.

3. The left region contains the functions and subsystems that interface
with other systems and subsystems to provide input for our system.
It has to establish interconnections, request input, check it for accept-
ability, preprocess it, and perform many other input-related activities.

4. The right region provides similar resources for the output of our sys-
tem to other systems. This includes establishing interconnection,
converting output to the form needed for transfer, sending it, and so
on.

5. The bottom region houses any functions or subsystems that provide
support to the rest of the system to keep it running. These include
self-test procedures, error logging, fault detection, and also mainte-
nance functionality. This region is fundamentally different from the
other outer regions: those regions deal with various kinds of interfaces
between the system and its environment, whereas the bottom region
deals with functions that support the system internally. The support
functions might require additional inputs and outputs, but still, they
are internal functions.

How do we use the architecture template in our modeling framework? As shown
in Figure 3.9, the template mainly helps us with mapping between requirements
(the what) and architecture (the how). This mapping can be applied on any level:
for the overall system and for every subsystem on any layer.

From the requirements viewpoint, we augment or enhance the required func-
tionality of the system (which is modeled in the core part of the template) with a
ring of functionality supporting the core processing of the system. These aug-
mented, or enhanced, requirements are packaged into architectural subsystems.

From the architecture viewpoint, the template provides an excellent starting
point for building information-hiding subsystems [Parnas 71]. The center hides
the essential functions, the top region hides the user-interface technology and
behavior, the left and right regions hide input/output specifics, such as device
characteristics and protocols, and the bottom region hides support functionality,
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such as service and maintenance modules, and many more. An alternative name
for the template might be the information-hiding template.

Once we establish the functionality of the system and subsystems, we can
easily categorize and extract the core requirements for future reuse.

Figure 3.9: The Template Bridging Requirements and
Architecture Models.

3.4.3 Using the Architecture Template

In this section, we present two examples of using the architecture template to
classify the functionality of systems. To demonstrate that it can be used on any
layer of a system hierarchy and for any kind of application (automated or not), we
start with an organizational system composed of automated and manual parts.

The template in Figure 3.10 illustrates the activities that are performed by
nurses at their station in a hospital. We can divide the activities into the five cat-
egories. By doing so, if the procedures for helping visitors (in the user-interface
part of the template) are changed, the rest of the system can remain unchanged.
The same is true for changing the policy for checking stock supplies in the main-
tenance region, and for any changes involving just a single region of the template.



54 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

Figure 3.10: Classification of Activities in a Manual System.

This nurses' station is a subsystem of an overall hospital system, for which we
could also classify the activities. Depending on the purpose of the whole hospital
model, the nurses' station would be part of the system core or may be considered
part of the maintenance subsystem (to support the doctors).

The second example is of an automated system. Using the hospital applica-
tion, we show how to classify the automated activities of a patient-monitoring sys-
tem in Figure 3.11.

The architecture template is a very powerful modeling tool that we use repeat-
edly to classify system or subsystem activities. Not only can it be used to bridge
the requirements/architecture models, it can be used very early in a project,
before we even know the requirements or make decisions on the architecture, to
discover topics to be treated in more detail later. It can also be used in distribut-
ing work among project members, allowing them to work concurrently.

USER
INTERFACE

• HELP VISITORS
• GUIDE PATIENTS TO DOCTORS' OFFICES
• ANSWER PHONE CALLS
• RESPOND TO PATIENT EMERGENCY CALLS

MAIN FUNCTION

• MONITOR PATIENT HEALTH
• DISPENSE PRESCRIBED MEDICATIONS
• ADMINISTER ROUTINE TESTS
• KEEP PATIENT HEALTH RECORDS
• KEEP PATIENT BILLING RECORDS
• ASSIST DOCTOR ON ROUNDS

OUTPUT
PROCESSING

• CHECK OUT
PATIENTS

•ISSUE ALERTS TO
DOCTORS AND
STAFF

• FILE REPORTS
•ORDER SUPPLIES
• SEND PATIENT

BILLING TO
ACCOUNTING
DEPARTMENT

SUPPORT

• MONITOR DESK OPERATIONS
• CHECK NURSES' SCHEDULES
• CHECK STOCK SUPPLIES

INPUT
PROCESSING

•CHECK IN PATIENTS
• SCHEDULE PATIENT

MONITORING
• RECEIVE AND LOG

INCOMING
MEDICATION

• RECEIVE SUPPLIES
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USER • GET NURSE ENTRIES
INTERFACE •VALIDATE NURSE ENTRIES

• DISPLAY ALERTS
• FORMAT AND DISPLAY PATIENT-MONITORING STATUS

INPUT
PROCESSING

• MEASURE PATIENT
VITAL SIGNS

• MEASURE PATIENT
MOTION

•VALIDATE VITAL
SIGN SENSOR
READINGS

• ISSUE EQUIPMENT
FAILURE ALERT

MAIN FUNCTION

• SET UP SCHEDULE FOR MONITORING
• FIND UNSAFE VITAL SIGN RANGE FOR

PATIENTS
• COLLECT DATA FOR PATIENT
• PERFORM ANALYSIS FOR SELECTED

PATIENT
•ISSUE PATIENT ALERT

SUPPORT
• UPDATE PATIENT SAFE RANGES
• UPDATE EQUIPMENT OPERATING

RANGES

OUTPUT
PROCESSING

• PRINT REPORT

Figure 3.11: Classification of Activities in an Automated
System.

3.5 EXPLOITING THE INFORMATION/MATERIAL/ENERGY
CLASSIFICATION

The final step in constructing our modeling framework is to classify systems
according to their information, material, and energy processing characteristics
that we discussed in Section 2.2.1.

3.5.1 A Generic Subsystem Structure

In Chapter 2, we showed that everything a system does can be classified into
material processing, energy processing, and information processing. Since mater-
ial and energy processing are quite different from information processing, we can
treat these two areas separately. If we combine this decision with the idea of cate-
gorization provided by the architecture template, we end up with the system parti-
tioning shown in Figure 3.12, which divides the processing into finer classifica-
tions. These finer classifications become subsystems of the overall system. As
Figure 3.12 shows, there are subsystems that do the two different types of pro-
cessing, but the overall, or boundary, subsystem does both. Figure 3.13 explains
more about the functions of the various subsystems.
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Figure 3.12: Separating Material/Energy Processing from
Information Processing.

Note that there is no box in material/energy processing equivalent to the decider
in information processing. With today's systems, the decision-making function is
almost always an information processing function. Consequently, Figures 3.13
through 3.16 all have a blank entry in the material/energy processing side.
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Boundary:
Subsystem(s) that form a barrier around a system, shielding it from its environment.

Information
Processing Subsystems

User Interface:
Subsystem(s) to allow information
exchange with external human users.

Input Decoder:
Subsystem(s) to convert the coding of
external information for internal use.

Functional Transformer:
Subsystem(s) to transform input
information into output information.

Memory:
Subsystem(s) to retain for later use
information, its relationships, and its
organization.

Decider:
Subsystem(s) to control (for example,
enable, inhibit, or trigger) functional
transformers.

Output Encoder:
Subsystem(s) to convert the coding of
internal information for external use.

Support:
Subsystem(s) to support system
monitoring, servicing, and
reconfiguration .

Material/Energy
Processing Subsystems

User Interface:
Subsystem(s) to allow material/energy
exchange with external human users.

Input Converter:
Subsystem(s) to transform
material/energy from external to internal
forms.

Material/Energy Transformer:
Subsystem(s) to transform and associate
material/energy inputs to outputs.

Material/Energy Storage:
Subsystem(s) to store material/energy for
later use.

Output Converter:
Subsystem(s) to transform
material/ energy from internal to external
forms.

Supporter:
Subsystem(s) to enable maintenance,
growth, and reconfiguration.

Figure 3.13: Generic Description of Subsystem Responsibilities.

3.5.2 Categories of a Deliverable System

For a deliverable system, product, or component, the categorization scheme intro-
duced above can be a useful starting point for brainstorming the subsystems.
Figure 3.14 makes the generic categories of Figure 3.13 specific to all deliverable
systems, and Figure 3.15 makes them specific to a cruise control system.

Note that the categories in the generic template are applicable to many sys-
tems, although there are usually some that are not applicable to a specific sys-
tem. Consider the generic categories a pattern for thinking about a system and
its subsystems.
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Boundary:
The external housing, casing, or such other exterior that shelters the system from
its environment.

Information
Processing Subsystems

Material/Energy
Processing Subsystems

User Interface:
Data entry and display devices.

User Interface:
Access mechanisms allowing operator
insertion and extraction of physical
items and electrical or mechanical
energy.

Input Decoder:
Processor(s) of information inputs from
other systems, converting them, as
needed, from their received formats to
internal system formats.

Input Converter:
Mechanism(s) for the physical
manipulation of received physical items
or energy into the orientation or form
needed internally.

Functional Transformer:
Input-to-output information conversion
devices performing processes such as
algorithms, functions, math equations,
or string manipulations.

Producer:
Electrical or mechanical devices that
process received physical items or
energy, and convert them into the
desired product. For example, an
automatic mechanism that receives
component parts and assembles them
into a finished product.

Memory:
Device(s) that store, for later use,
information from the operator, from
other systems, or from the processes of
this system retained, possibly with its
relationships and organization.

Storage:
Any part(s) of the system that store
material or energy for later use, such as
a storage room, a shelf, a battery, or a
water reservoir.

Decider:
Control processors by which
information processing and resources
are scheduled, and which establish the
different states or modes of behavior of
the system.

Output Encoder:
Processor(s) of information outputs to
other systems, converting them, as
needed, from their internal system
formats to external formats.

Output Converter:
Mechanisms for the physical
manipulation of produced physical
items or energy into the orientation or
form needed externally. For example,
the automatic packaging of
manufactured products for shipment.

Support:
Processors that perform tasks such as
fault isolation, error handling, service
monitoring, system reconfiguration, and
graceful degradation.

Supporter:
Access mechanisms for physical
maintenance, growth, and
reconfiguration.

Figure 3.14: A Template for Subsystems of a Deliverable,
Human-Operated System.
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Boundary:

The external housing, casing, or such other exterior that shelters the system from
its environment.

Information
Processing Subsystems

Material/Energy
Processing Subsystems

User Interface:

Data entry and display devices.
User Interface:

Access mechanisms allowing operator
insertion and extraction of physical
items and electrical or mechanical
energy.

Input Decoder:

Processor(s) of information inputs from
other systems, converting them, as
needed, from their received formats to
internal system formats.

Input Converter:

Mechanism(s) for the physical
manipulation of received physical items
or energy into the orientation or form
needed internally.

Functional Transformer:

Input-to-output information conversion
devices performing processes such as
algorithms, functions, math equations,
or string manipulations.

Producer:

Electrical or mechanical devices that
process received physical items or
energy, and convert them into the
desired product. For example, an
automatic mechanism that receives
component parts and assembles them
into a finished product.

Memory:

Device(s) that store, for later use,
information from the operator, from
other systems, or from the processes of
this system retained, possibly with its
relationships and organization.

Storage:

Any part(s) of the system that store
material or energy for later use, such as
a storage room, a shelf, a battery, or a
water reservoir.

Decider:

Control processors by which
information processing and resources
are scheduled, and which establish the
different states or modes of behavior of
the system.

Output Encoder:

Processor(s) of information outputs to
other systems, converting them, as
needed, from their internal system
formats to external formats.

Output Converter:

Mechanisms for the physical
manipulation of produced physical
items or energy into the orientation or
form needed externally. For example,
the automatic packaging of
manufactured products for shipment.

Support:

Processors that perform tasks such as
fault isolation, error handling, service
monitoring, system reconfiguration, and
graceful degradation.

Supporter:

Access mechanisms for physical
maintenance, growth, and
reconfiguration.

Figure 3.15: Subsystems of a Cruise Control System.
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3.5.3 Categories of a People System

The systems we build reflect the organizations that build them. With this in
mind, we can devise a categorization of organizational systems, such as of whole
companies, departments, or groups of people cooperating to achieve a certain
goal. Figure 3.16 maps the generic categories onto an organizational structure
describing the various subsystems in such a context. Figure 3.17 shows cate-
gories specific to a garment factory. This kind of categorization helps to distin-
guish between value-adding functions and overhead functions in an organization:
It can be used as a starting point for modeling business processes and identifying
essential parts of them.

3.6 LAYERED MODELS: THE TRUTH AT LAST!

We discussed numerous characteristics and features of models in the previous
sections, but we kept the important issue of layered models for the end of this
chapter. In any discussion of systems, models of systems, or the process of build-
ing systems, the term "layer" plays an important role. Here, we explore several
unique aspects of layers, and of the different relationships between layers,
between elements in one layer, and between elements in different layers.

One purpose of this section is to dispel a couple of myths. First, there is the
myth that all layered models fall into the category of functional decomposition or,
worse yet, top-down functional decomposition. And second, that layered models
are fundamentally incompatible with object orientation.

In the first pages of Strategies for Real-Time System Specification, we intro-
duced a diagram titled, "The Total System Life Cycle," little realizing at the time
just how significant it was. It showed various layers of the system modeling
process and layers of specifications resulting from that process. We elaborate on
that diagram in Figure 5.1 of this book, but for now, we discuss some of its impli-
cations. What we have realized since creating that diagram is that there is
tremendous similarity between systems, system models, and the system develop-
ment process. Layers are an important part of these similarities, but they are also
the source of some confusion. There is not just one kind of relationship between
layers or elements of layers: We can identify several basic relationships that keep
recurring in different systems, system models, and in the development process.
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Boundary:
The external housing, casing, or such other exterior that shelters the system from
its environment.

Information
Processing Subsystems

Material/Energy
Processing Subsystems

User Interface:
Data entry and display devices.

User Interface:
Access mechanisms allowing operator
insertion and extraction of physical
items and electrical or mechanical
energy.

Input Decoder:
Processor(s) of information inputs from
other systems, converting them, as
needed, from their received formats to
internal system formats.

Input Converter:
Mechanism(s) for the physical
manipulation of received physical items
or energy into the orientation or form
needed internally.

Functional Transformer:
Input-to-output information conversion
devices performing processes such as
algorithms, functions, math equations,
or string manipulations.

Producer:
Electrical or mechanical devices that
process received physical items or
energy, and convert them into the
desired product. For example, an
automatic mechanism that receives
component parts and assembles them
into a finished product.

Memory:
Device(s) that store, for later use,
information from the operator, from
other systems, or from the processes of
this system retained, possibly with its
relationships and organization.

Storage:
Any part(s) of the system that store
material or energy for later use, such as
a storage room, a shelf, a battery, or a
water reservoir.

Decider:
Control processors by which
information processing and resources
are scheduled, and which establish the
different states or modes of behavior of
the system.

Output Encoder:
Processor(s) of information outputs to
other systems, converting them, as
needed, from their internal system
formats to external formats.

Output Converter:
Mechanisms for the physical
manipulation of produced physical
items or energy into the orientation or
form needed externally. For example,
the automatic packaging of
manufactured products for shipment.

Support:
Processors that perform tasks such as
fault isolation, error handling, service
monitoring, system reconfiguration, and
graceful degradation.

Supporter:
Access mechanisms for physical
maintenance, growth, and
reconfiguration.

Figure 3.16: A Template for an Organization That Builds
Deliverable Systems.
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Boundary:
The building(s) that house the garment factory and its offices.

Information
Processing Subsystems

Material/Energy
Processing Subsystems

User Interface:
People who negotiate the designs and
contracts with customers.

User Interface:
Direct factory sales outlet, returns
department.

Input Decoder:
Purchase order processing, inventorying
of received materials.

Input Converter:
People unpacking received materials,
repackaging them in a form that
supports the production process;
people from personnel department
screening new hires.

Functional Transformer:
Design department and equipment that
transforms customer requests into
actual designs to be manufactured.

Producer:
Production line personnel and
equipment that convert the received
materials into finished garments
according to the selected designs.

Memory:
Storage of the designs, accounting
records, shipping records, the employee
records, and so on.

Storage:
Supply cabinets, storage lockers, stock
room, and so on.

Decider:
Management that determines the
production schedules, the factory plans,
and the coordination of the factory floor.

Output Encoder:
People responsible for invoicing the
customers, for waste disposal
coordination, and so on.

Output Converter:
The shipping department, delivery truck
drivers, and so on.

Support:
Customer accounting, payroll
department, and so on.

Supporter:
The facilities and maintenance crews
who remove trash and keep the factory
in operating condition.

Figure 3.17: Subsystems of a Garment Factory.
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Systems, models of systems, and the system development process share the
following attributes:

• They are layered.
• The layers—once they are identified—form a structure that can be

read and interpreted in any sequence: from the top layers to the lower
layers, from right to left, from bottom to top, and so on. Moreover, the
layers can be developed in any sequence: top to bottom, right to left,
bottom to top, and so on, and the interpretation and development
sequences are quite independent of each other.

• The number of elements per layer typically increases downward, giv-
ing the whole structure a pyramidal shape; but note that we some-
times have an independent structure of elements within one of the
main layers. For such a structure, the basic statement of this para-
graph is still true: The number of elements tends to increase down-
ward.

• The elements forming the layered structure can be considered a set,
either of activities or of entities. In any particular system, system
model, or development project, these elements may be carried out or
used in some prescribed sequence, concurrently, or in any combina-
tion of sequence and concurrency.

• Elements in the layers usually communicate and cooperate up, down,
and sideways within and between layers. Communication and coop-
eration can be in the form of information, material, or energy, depend-
ing on the kind of system, model, or process in question. Some earlier
models restricted the development process by asserting, for example,
that all information flows vertically through the top layer, and that
only information (not material or energy) can be communicated with
the outside world. However, our model recognizes that information,
material, and energy can all flow sideways to and from individual lay-
ers, and can all interact with the outside world.

• Every layer includes, deals with, or is associated with, some require-
ments, some architecture or design, some construction or implemen-
tation, and some integration and testing. Also, each layer usually
requires planning, quality assurance, management, and other items,
but we are not addressing these in this book.



64 PROCESS FOR SYSTEM ARCHITECTURE AND REQUIREMENTS ENGINEERING

An important conclusion for us is that layered models—for systems or as meta-
models for system development processes—do not inherently imply any particular
sequence. They represent a static structure (of a system, its development, the
development process, or models of any and all of these) that can be populated in
any convenient sequence that makes sense for the problem at hand. This point
was beautifully made by Parnas—arguably the father of information-hiding struc-
tures—in [Parnas 86].

So, the layers and the elements in layers are nondirectional, but we are inter-
ested in their relationships. There are probably many types of relationships in lay-
ered models, but four of them are of special interest in system development:
aggregation/decomposition, abstraction/detailing, supertype/subtype, and con-
trolling/controlled. Let us look at each of these in detail, discussing properties of
their relationships and examples from our methods and other well-known
approaches.

3.6.1 Aggregation/Decomposition Relationship in Models

The architecture model, resulting from the architecture method, is an example of
an aggregation/decomposition model. Such models characterize real physical ele-
ments, their sub-elements or parts, and their super-elements or assemblies. Ele-
ments in the higher layers actually consist of the elements in the lower layers, or
conversely, elements in the lower layers are decompositions of those in the higher
layers. The structure is also known as a whole/part structure [Coad 91] or a con-
tainer/content structure: A given layer provides the container for the layer below,
which is the content of the layer above. In entity-relationship modeling, entities
can be linked by composed-of or consists-of relationships. In manufacturing
terms, it is an assembly/subassembly/component structure. This type of struc-
ture is pervasive in engineering and in everyday life.

An aggregate actually involves more than just collecting sub-elements into a
set. The sub-elements must also interface with each other, requiring linkages
between them that may not be evident when they are considered separately. This
is why we discuss enhancement of abstract requirements, using the architecture
template, in our methods when the requirements are mapped into real physical
modules.

We can better imagine aggregation/decomposition structures applied at the
system levels, where physical hardware of various kinds is involved. For software,
which does not have a physical form, it is not so clear. The trick is to imagine



3: A FRAMEWORK FOR MODELING SYSTEMS 65

that software does have a physical form. A complete software program or assem-
bly can be considered as an architecture module at the highest software layer;
major subprograms it contains are modules in the next layer down; sub-subpro-
grams or subroutines (if any) form a further layer, and so on. As we discuss else-
where in this book, a transition can be made from an aggregation/decomposition
model to an object-oriented representation by defining modules to be aggregate
objects, as described, for example, in [Page-Jones 95, Section 4.2]. Once in the
object-oriented domain, other structures may apply, depending on the particular
object-oriented approach used.

To summarize the usage of this relationship: We build layers to show physical
packaging of elements into larger groups or assemblies. In each layer, we can
define physical interfaces between elements or between groups. The grouping
forms a sort of fence around its elements, potentially protecting the visibility of
the interior elements or regulating the access to them. In software development,
we use terms like information hiding, scope, and visibility control to describe the
nature of the aggregation/decomposition relationship.

3.6.2 Abstraction/Detailing Relationship in Models

When we use an abstraction/detailing relationship in models, the higher layers
are simply more abstract expressions of the lower layers, or conversely, the lower
layers are more detailed expressions of the higher layers. The most familiar
example of this relationship occurs in Structured Analysis (SA), usually repre-
sented by data flow diagrams. (Note that the control model of the real-time exten-
sions of SA does not use this relationship—see Section 3.6.4.) The process model
part of the requirements model, being founded on SA, uses the abstraction/detail-
ing relationship for processes and their child diagrams. In a sense, the whole
requirements model—if applied correctly—is abstract throughout because it con-
sists only of narrative statements (albeit in structured form) that do not necessar-
ily correspond to real physical groupings of processes, entities, or control struc-
tures.

The abstraction/detailing relationship often has been erroneously named
abstraction/decomposition. Although we, too, have been guilty of using this ter-
minology, we now disagree with it. First, abstraction and decomposition are not
opposites, and the essence of these relationship name pairs is that they should be
opposites, reflecting the upward and downward viewpoints in a layered model.
Second, decomposition is the opposite of aggregation, which is why we use it in
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the aggregation/decomposition relationship described above, where something is
broken into the elements it contains. Consider this: An abstract requirement
statement does not contain the more detailed requirements statements that
describe it; however, a physical system element does contain the separable sub-
elements of which it is an aggregate. If we take the elements of a physical system
and assemble them, we get the physical system; if we assemble a set of detailed
requirements, we merely have a collection of detailed requirements—the abstract
and detailed requirements exist independently of each other, with an abstrac-
tion/detailing relationship between them.

Our categorizations of layered structures, then, have led us to an interesting
paradox. The terms to which we objected earlier—functional decomposition and
top-down functional decomposition—are frequently applied to Structured Analysis
and its data flow diagrams, yet data flow diagrams, when used correctly to repre-
sent abstract requirements, do not involve decomposition at all: They involve
detailing. When we use Structured Analysis to create essential models according
to our own guidelines and those in [McMenamin 84] and [Robertson 98], we are
not decomposing downward through the layers; we are adding detail. Going
upward, we are not packaging or aggregating; we are abstracting.

Of course, if you are misusing SA to represent the aggregation and decomposi-
tion of physical structures, then anything goes, and we cannot take responsibility
for the results (which are usually awful).

How do detailing of the required capabilities and decomposition of the physi-
cal structure relate to each other? As a system is developed, they proceed in par-
allel, with sufficient detail added to the required capabilities to satisfy the needs of
a particular physical layer. This point is illustrated further in Part II.

3.6.3 Supertype/Subtype Relationship in Models

In the supertype/subtype relationship, an element in the higher layer—the super-
type—includes all of the features that are common to its associated elements in the
lower layer—its subtypes. These features—in the simplest case—are attributes (as
they are called in information modeling) that are inherited by the elements on the
lower layer. Starting from the lower level, supertypes are formed for sets of ele-
ments that share common attributes. Thus, we might have at the top level "vehi-
cle," and at the level below "ship," "aircraft," and "land vehicle." Below "land vehi-
cle," we might have "bicycle," "motorcycle," "ATV," and "automobile." This tells us,
for example, that an automobile is a land vehicle and a land vehicle is a vehicle.
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Supertype/subtype models are important in object orientation. This relation-
ship is the foundation for inheritance—one of the essential and most powerful fea-
tures of object orientation. Attributes of "vehicle," in the above example, are
inherited by all the other elements, and attributes of "land vehicle" are inherited
by all of the elements in its subtypes. Object orientation has taken this relation-
ship and extended it to more complex forms of inheritance than just attribute
inheritance: The lower layer may also inherit functions (or operations, or "meth-
ods," as they are sometimes called) and the behavior of the supertypes.

Supertype/sub type relationships are also referred to as generalization/spe-
cialization relationships, class hierarchies, inheritance structures, and "is-a" hier-
archies. With the supertype/subtype relationship, it is important that the super-
type contains all the commonalities of the subtypes. The main use of this rela-
tionship is to discover commonalities and to describe them only once, thus reduc-
ing redundancy. The structure then allows the lower layers to inherit whatever
commonalities have been discovered.

Now that we have defined the supertype/subtype relationship, we can see that
the relationship is, in fact, a subtype of the abstraction/detailing relationship. A
supertype is an abstraction of its subtypes, and the subtypes are detailed
instances of the supertype. So, all supertype/subtype relationships are also
abstraction/detailing relationships, but the converse is not true: Not all abstrac-
tion/detailing relationships are supertype/subtype relationships, because not all
abstraction/detailing relationships follow the "is-a" principle. For example, a
process on a data flow diagram and its child diagram are an abstraction/detailing
pair, but it is not true that a child diagram "is-a" parent process.

3.6.4 Controlling/Controlled Relationship in Models

This relationship distinguishes between up and down by having the upper layers
control elements of the lower layers. Other terms used for this relationship are
the control hierarchy, or the is-boss-of/is-supervised-by relationship. Sometimes,
we simply say that the higher element uses the lower elements. The higher layer
must have knowledge of the lower layer but the lower layer—that is, the one being
used—does not necessarily have to know anything about the boss. In terms of
client/server models, the client is the boss that delegates work to the server; the
server provides certain services that are performed whenever a client asks for
them.
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In the requirements method, the control model controls processes in the
process model, by activating or deactivating them. In the architecture method, we
can model client/server behavior to avoid iterative cycles between architecture
modules.

Structured Design, the software design method, provides another example of a
controlling/controlled relationship. In its main graphical model, the structure
chart, a given module invokes (that is, it uses, calls, or controls the execution of)
modules in the layer below. Structured Design is one of several methods that can
be used in conjunction with the requirements and architecture methods, as
described in Strategies for Real-Time System Specification, Section 24.3, and in
Chapter 4 of this book.

3.6.5 Layered Models Summary

We hope we have succeeded in dispelling the myth that all layered models are
built top-down using decomposition, and have shown that this simplistic, one-
size-fits-all view of these models is wrong. The four types of relationships in lay-
ered models, described above, are distinctly different from each other; they all
serve distinct and important roles in system development; and they can be inte-
grated smoothly, where appropriate, with other models, including object-oriented
models. Figure 3.18 summarizes the key aspects of the four relationships in and
between layers or their elements.

Even though the four relationships are different, it is convenient to have at
least one terminology that can be used with all of them. For this purpose, the
"family tree" relationship analogy—of parent/child, grandparent/grandchild, and
ancestor/descendant—is commonly used. Although close inspection shows that
the analogy does not really fit all four of the relationships (for example, children
are not decompositions of their parents), these terms sufficiently describe
above/below relationships.

We can now enlarge on the statements of Section 2.1.3 "Multiple Hierarchies."
The four layered models we have described can be—and frequently are—used
simultaneously to represent different aspects of one system. Using the require-
ments and architecture methods, the required functional capabilities of a system
are captured by the process model—an abstraction/detailing model; the required
behavioral capabilities are captured by the control model—a controlling/con-
trolled model; information structures in the system might include supertype/sub-
type relationships, captured in an entity-relationship model; and the physical
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Aliases

Downward
Usage

Upward
Usage

Where Used,
Roles

Purpose of
Usage

Aggregation/
Decomposition

Whole/part;
container/content;
composed-of;
consists-of;
assembly/
subassembly/
component

Decompose;
dismantle

Aggregate;
assemble

Architecture
model;
object
orientation
(aggregate
objects);
requirements and
architecture
dictionaries

Physical packaging;
information-hiding;
defining scope and
visibility

Abstraction/
Detailing

(Erroneously:
abstraction/
decomposition)

Add detail;
specialize

Make abstract;
generalize

Requirements
model;
Structured
Analysis; nesting
in statecharts

Coping with
complexity;
reducing
complexity

Supertype/
Subtype

Generalization/
specialization;
class hierarchy;
inheritance
structure;
"is-a" hierarchy

Inherit;
specialize

Set membership;
"is-a";
generalize;
categorize

Architecture model
when used with
object
orientation;
entity-
relationship-
attribute
modeling

Similar to
abstraction/
detailing;
in addition:
inheritance of
attributes,
functions, behavior

Controlling/
Controlled

Is-boss-of/
is-
supervised-
by;
uses
hierarchy;
client /server

Control

Controlled
by

Control
model (of
requirements
model);
Structured
Design;
system
control
structures
(occurs
within a
layer as well
as between
layers)

Separation
of concerns;
creating
noncyclic
client/server
structures;
simplifying
cooperation

Figure 3.18: Summary of Relationships in Layered Models.

structure is captured by the architecture model—an aggregation/decomposition
model. Thus, to model a single system, not only can we use layered models of the
same kind, as described in Section 2.1.3, we can also use layered models of differ-
ent kinds. This allows us to represent different views of the system separately,
but, when done as part of the requirements and architecture methods, the links
between these views are carefully maintained.
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This highlights the great flexibility of layered models. They are extraordinarily
versatile, and allow us to represent just about any facet of systems and system
development separately and at any desired level of detail, but with the links to the
other facets also represented.

3.7 MODEL FRAMEWORK SUMMARY

Our modeling framework, shown in Figure 3.19—which is derived from Fig-
ure 3.7—now combines all the ideas described in this chapter. For most systems,
especially larger ones, we exploit the idea that systems come in hierarchies. We
have layers of specifications for the system, subsystems, sub-subsystem, and so
on. But note that the flows between the layers go both ways—up and down.
There is no sequence of development implied in this framework. We build groups
of models as we discover subsystems in the hierarchy, and we do so in any order
we want.

Forming subsystems is a difficult architectural or design decision, but
exploitation of the information/material/energy classifications and of the generic
subsystem categorization will guide us along the way. For software developers,
we have many more guidelines in Chapter 6.

Each group of models separates the what from the how: We build separate
requirements and architecture models. To help with the transition between what
and how models, we build enhanced requirements models based on the architec-
ture template. Thus, each group of models consists of three separate but related
types: requirements, enhanced requirements, and architecture. Note that the
arrows between the three models in the subsystems of Figure 3.19 go both ways—
again, allowing these models to be developed in any sequence.

The information-hiding categories described in Section 3.6 are helpful for
structuring all three models. They are generic enough to be applicable in many
different application areas, yet precise enough to give a head start for partitioning.
In many large applications, such subsystems have produced flexible, extendable,
and maintainable systems. The case study in Part II demonstrates this idea with
a specific example from a unique application domain.
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Figure 3.19: The Modeling Framework.
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