Agile
Software

Development

with

Distributed Teams

Staying Agile in a Global World

by Jutta Eckstein

)H

FREE SAMPLE CHAPTER
¥ 9 8 @ W

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133491982
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133491982
https://plusone.google.com/share?url=http://www.informit.com/title/9780133491982
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133491982
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133491982/Free-Sample-Chapter

Agile
Software Development
«un Distributed Teams

PON
DH Also Available from Dorset House Publishing

Adrenaline Junkies and Template Zombies: Understanding Patterns
of Project Behavior

by Tom DeMarco, Peter Hruschka, Tim Lister, Steve McMenamin,

Suzanne Robertson, and James Robertson

ISBN: 978-0-932633-67-5 Copyright © 2008 248 pages, softcover

Agile Software Development in the Large: Diving Into the Deep
by Jutta Eckstein
ISBN: 978-0-932633-57-6 Copyright © 2004 248 pages, softcover

iTeam: Putting the “I” Back into Team
by William E. Perry

ISBN: 978-0-932633-68-2 Copyright © 2009 152 pages, softcover

Peopleware: Productive Projects and Teams, 2nd ed.
by Tom DeMarco and Timothy Lister
ISBN: 978-0-932633-43-9 Copyright ©1999 264 pages, softcover

Perfect Software: And Other lllusions About Testing
by Gerald M. Weinberg
ISBN: 978-0-932633-69-9 Copyright © 2008 200 pages, softcover

Project Retrospectives: A Handbook for Team Reviews
by Norman L. Kerth
ISBN: 978-0-932633-44-6 Copyright © 2001 288 pages, softcover

Waltzing With Bears: Managing Risk on Software Projects
by Tom DeMarco and Tim Lister
ISBN: 978-0-932633-60-6 Copyright © 2003 208 pages, softcover

Working Up! From Asphalt Plant to Corner Office—Tools and Techniques
for the Project Manager’s Trade

by Dwayne Phillips

ISBN: 978-0-932633-66-8 Copyright © 2010 216 pages, softcover

For More Information
v’ Contact us for prices, shipping options, availability, and more.

v Visit Dorsethouse.com for savings, reviews, downloads, and more.

DORSET HOUSE PUBLISHING
An Independent Publisher of Books on
Systems and Software Development and Management. Since 1984.
3143 Broadway, Suite 2B New York, NY 10027 USA
1-800-DH-BOOKS 1-800-342-6657
212-620-4053 fax: 212-727-1044
info@dorsethouse.com www.dorsethouse.com

http://www.dorsethouse.com

Agile
Software Development
o PDistributed Teams

Staying Agile in a Global World

Jutta Eckstein
PO
DH

DORSET HOUSE PUBLISHING
3143 BROADWAY, SUITE 2B
NEwW YORK, NEW YORK 10027

Library of Congress Cataloging-in-Publication Data

Eckstein, Jutta.

Agile software development with distributed teams : staying agile in a
global world / Jutta Eckstein.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-932633-71-2 (alk. paper)

1. Agile software development. I. Title.

QA76.76.D47E2823 2010

005.1--dc22

2010009762

Quantity discounts are available from the publisher. Call (800) 342-6657 or (212)
620-4053 or e-mail info@dorsethouse.com. Contact same for examination copy
requirements and permissions. To photocopy passages for academic use, obtain
permission from the Copyright Clearance Center: (978) 750-8400 or www.copy
right.com.

Trademark credits: All trade and product names are either trademarks, registered
trademarks, or service marks of their respective companies, and are the property of
their respective holders and should be treated as such.

Cover design: Claire Veligdan, Dorset House Publishing
Front cover and chapter illustrations: Katja Gloggengiesser, www.grellgelb.de
Chapter-opening quotations translated from German by Jutta Eckstein.

Copyright © 2010 by Jutta Eckstein. Published by Dorset House Publishing, 3143
Broadway, Suite 2B, New York, NY 10027.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechan-
ical, photocopying, recording, or otherwise, without prior written permission of the

publisher.

Distributed in the UK and EEC by Computer Bookshops Ltd., based in Birm-
ingham, England (computerbookshops.com); in the English language in Singapore,
the Philippines, and Southeast Asia by Alkem Company (S) Pte. Ltd., Singapore; and
in the English language in India, Bangladesh, Sri Lanka, Nepal, and Mauritius by
Prism Books Pvt., Ltd., Bangalore, India.

Printed in the United States of America

Library of Congress Catalog Number: 2010009762

ISBN: 978-0-932633-71-2

12 11 10 9 8 7 6 5 4 3 2 1

Digital release by Pearson Education, Inc., June, 2013

http://www.copyright.com
http://www.grellgelb.de
http://www.copyright.com

Acknowledgments

Books are in the air.
The author provides only a bridge between material and
transcript.

—Marguerite Duras

One significant problem with conducting such a project as writing
a book is remembering all the people who have supported me.
This is, in my opinion, a problem that is unsolvable because almost
everyone with whom I communicated during—and even before
starting—this project has contributed by sharing experiences or
providing feedback.

Unfortunately, it is impossible for me to remember everyone
I've met within the past ten years. Therefore, I begin my acknowl-
edgments by apologizing in advance to those I fail to mention ex-
plicitly. They are the people on teams all over the world with
whom I have had the opportunity to work while learning not only
about agile software development, but also about similarities and
differences between cultures, interactions, and, not least of all,
food. These contributors are as well the countless people who have
helped me reflect on my experiences, enabling me to transform and
codify what I learned into something tangible and explicit. I am
grateful for time spent with these reflection partners, whom I've
met at workshops, talks, tutorials, and panels at many different
conferences—ACCU in the United Kingdom, Agile in North
America, JAOO in Denmark, Retrospective Gathering in North
America and Europe, and XP in Europe, to name just a few.

To those whose names gratitude has made indelible in my
memory, I also give thanks: David Hussman, Naresh Jain, Nicolai

ACKNOWLEDGMENTS

Josuttis, Daniel Karlstrém, Michael Kircher, Debra Lavell, Ainsley
Nies, Joseph Pelrine, and Linda Rising. I am ever indebted to each
of you for writing an expert box for this book, thus sharing your
invaluable experience and providing an additional perspective on
the subject at hand.

Thanks as well to my reviewers for generously sharing their
considerable knowledge and for guiding my attempts to get it right
in a book: Jamie Allsop, Joseph Bergin, Magnus Christerson, Lise
Hvatum, Carsten Jakobsen, Michael Kircher, Yi Lv, Ken Pugh, Bas
Vodde—you are the best.

To Wendy Eakin, Claire Veligdan, and all the folks at Dorset
House Publishing, thank you for again proving that the editorial
standard still flies high. For professionalism in turning my work
into a readable book, Danke schon.

Last—but definitely not least—I give thanks and more to my
family, who never seem to grow bored listening to my stories of
travel and work, forever helping me see differences and similari-
ties among people around the world. Foremost, I give thanks to
my partner, Nicolai Josuttis, who not only provides great support
for my professional life but, even more importantly, enriches my
personal life in most wonderful ways; to my cousin Katja Gloggen-
giesser, whose delightful illustrations make this book more vivid;
and finally, to my sister, Eva Eckstein, whose brilliant recommen-
dation again encouraged me to write about global projects while
hidden away on Hiddensee, the same little island in the Baltic
Sea where I wrote Agile Software Development in the Large. 1 thank
you, all!

vi

Contents

Preface................. ceerereneaeanaees ceerereneaeanaees ceersreaeaenneneaeas xiii
1 Getting Started........eeeeercneeccccceeennene 3
FOCUS et 4
Intended AUAIENECE ..oooviiiiiiiie e 4
Perspectiveooooiiiiiiiiii e 5
Roadmap to the BoOK.......cocooiiiiiiiiiiiiiii e 6
2 Assessing Agility and Distributed Projects............ccccvuenecee. 9
Understanding Distributed Developmentcovviiriiiiiieniiiniciieenecccesieeens 9
Working With Several Development Sites........oeoovieriiireiriieeniieenienieeneeenee 10
Distributed and Dispersed Teamscccueevueeriieniienieiiienicenee e 10
Large Projects.......cioiiiiiiiii it 11
Coordinating COMmPANIES.eeruieriteieerieente ettt sttt eeee e ninees 12
DIFEIENE SIEES. ..ottt e 13
Customers and DISTANCecocoeoiiiiiiiiiiiiei e 14
Centrally Coordinated or Globally Integrated.........cccceveieniiiniiiiinicnnnen. 15
Overcoming the DIStancecoouieriiiniiiiiiiiniiiceceseeee e 16
Understanding ALY «....c..oeiviiiiiiiniiiiieitt et 16
Core Value Pair Statementsoocooiiiiiiiiiiiiieii e 17
SYStemic APProachh .eoovieiiiiiiiiiii it 19
Risk RedUCHON ..ot 19
The Productivity Myth.......coocuiiiiiiiiiniiiiiceiiencecceese e 20
More Than PractiCes.........ccoovieviiiiiiiiiiiiiiiieic e 21
Neither Chaotic nor Undisciplinedccoooiiniiiiiiniiiniiiniiniceiceeeee 21
Agile Principles Influencing Globally Distributed Projects.............ccccoceeiienne 22
SUIMIMATY et 24
3 Building Teams..........ueereenerirrereeitnteneeitsteeessssesensnens
Feature Teams. ..ot
Single- and Multi-Site Teams..........cocceeennneen.
Dispersed Teamsccceeveiieiniiieeniieeeiieeeeenn
Forging a Team..........cccoociiiiiiiiie

Teams Happen, by David Hussman

vil

CONTENTS

Vviil

RIOLES et 36
Feature-Team Constellationcooouiiiiiiiiiniice e 36
Architect and Chief Architectoouieriiiiiiiiieiie e 38

Experiences as a Software Architect on Global Agile Projects,

by Michael Kircher.......oiiiiiiiiiiiieiie et 40
COACH Lt 43
Product Owner and Product Manager............cccccociiiiiiiiiiiiniiinicece. 44
Project Managerooooiiiiiiiiiii 48
Collocate Key Roles with Teamsoooviiiiiiiiiiiiiiiiiieeiceeee e 49

Ensuring Conceptual INtegrityccoviiiiiiiiiiiiiiiiiiiee e 49
Starting Team Provides Modelcccooiiiiiiiii e 50
Technical Service Team........ooouiiiiiiiiiiie e 50

SUMMATY L e et e e e e 51

Establishing Communication and Trustccccccveeucenncnce. 53

Trust and Muttal REeSPEct....c.eiiviiriiiiiiiiiiiiieiceeicec et 54
Trust Thresholdc.c.ooiiiiiiii e 55
Changing Meeting LOCations.cc.eevuieriienieiiiienieenieeeie e 56
VOCADULATY ..ottt 57

COMMUNICATION ...ttt ettt et e st e e et e et ee e eeebaeeeeans 58
In-Person Team MEEtINgGScoccuviiiiiiiiiiiiieiiiieeriiee e 58
Face-to-Face Project Meetingsccccevviiiiriiiiiniiieiiiiieeiiieeeieee e 59
People ROTATION ...eouviiiiiiiiciiit et e 60
CommUuNICatION COSES.....eeeruriiieriiieeeiiirte et eeiieeeeieee et e e e et eesieee e 61
Communication FIOWccociiiiiiiiiiiiiiii e 62

Cultural DIFErenCes ..c..eeeviiiiieiiii ettt 63
Similarities Versus DIfferencesccoocuveviiiniiiiiiiiiiniiiicicenc e 64
CUlUTE FIt .eiiiiiiiiiiiiiie s 65

Crossing Big Boundaries, by Ainsley INies.......c.ccoviiviiiiniiiiniciiienneens 67
Reealistic PIAnning.......c.c.oooiiiiiiniiiiienic et 68
Taking Responsibilityc.coocuiiriiiiiiniiiiiciieniceceee e 68
Problem REPOTTIIE ...ccuviiiiiriiieiiiiiieeie ettt 69
Homnest Feedbackcooiiiiiiiiiiiiiiiiic e 70
INOISE et et et et e 71
HUIMOT .. 72
Communication Mediac.ceoouiiriiiiiiiiiiic e 72

SUITMMATY ot 74

Keeping Sites in Touch cerereneneanane —(

Communication Facilitatoroooeiiiiiriiiiieiii e 77
Communication Facilitator As Ombudsmanccocceviienienieinieniceen. 77
Technical and Social PrOWESSeeiviiiiiiiiiiiiesieeiie e 78
Management By Flying Around.........cccccoiiiiiiiniiiiiiiiccee e 78

AMDASSAAOT -1ttt 79
Site Representationcooiuuiiiiiiiiiiiiiiice e 80
Characteristics and COMPELENCY..cu.viiriiiiiaiieeiieieeenieeeiee e e 80
Travel Scheduleoooiiiiiii e 81

CONTENTS

COnECrete TasKS. ...oeieiiee it 82
SOCIAl CONMECTIONS -..vteiiiieeiiiiee ettt e e e e e e e e 83
Joint Celebrationcoieiiiiiriiiiiieee e 83
Picture POWeTooiiiiiiiiiiiic e 83
Everyday Lifeoooeoiiiiie e 84
TEAVEL TIPS . 84
TOOLS et 85
Direct CONNECIONSuiiiiiiiiieiiiiiie et 86
Synchroneity Versus ASynchroneitycccceeveeieiniiieiniieeiieeeeee e 86
AUdIo ANAVIACO ...eiiiiiiiiiiiiec e 87
Instant MesSagingcccuiiiiiuiiiiiiiie i 88
Eomail oo e 89
VIrtual SPacecouiiiiiiii i 90
Common Repositoryccoiiiiiiiiiiiiii i 91
Wiki and Other Collaboration Platformscococeeviiiiiiiiieiiieie e 91
SUMMATY L e e 92

Ensuring Development and Delivery

TEETALIONS ...t e 95
Tteration Lengthcociiiiiiiiiiiiiiii e 95
Done-DOomnecocuoiiiiiiiiiii e 96
Project Heartbeatc.uevouiiiiiiiiiiiieiic ettt 97
DelVery DElayoocvieiiiiiiiiiieriieitet e 97

REELEASES ..ttt e ettt e 99
Reelease TEEration ...c...eeoueieuieririeniiieieeete ettt ettt 99
RELEASE SIEE ..ttt ettt 100

Integration and Buildc.ooiiiiiiiiiiiiiiii 101
L0Cal SUCCESS FITST ..euvieiiiiiiiiiiieiic ettt 101
Integration EFOITooouiiiiiiiiiiiieiiieicce e 101
Production Shut-DOWIncoocuiiiiiiiiiiiiiiiiiicec e 103
Integration and Build Optimizationc.ceoeeruieniieiienieenieeiee e 104

INEFASTEUCTULE .ttt ettt e st 105
Build and Integration Process and ToOIScccceerviieniiiiiiniiiinieiieeneeee, 105
Configuration ManageIment.coovieuierutenieriutenntenieeereeneeeieesneenineenne 107

Follow the Sun, by Joseph Pelrinecccccevviiniiiniiniiiniiiicncee. 109
POWET .. 111
SECUTIEY ..t 111
INEEWOTK SEIISE ..enviiiiiiiiiii et 112
TOOIS e e s 113

SUIMIMATY L et 113

Ensuring Business Value........115

Steering Through Valuable Features.........cooieiiiiiiiiiiiniieniiiieeceeee e 115
R eal-CustOmer AWATCNIEss ...ccc.veeurerrieriieeieeeieenieeateeateesieeeteesneeenineaneens 116

Connecting to a Distant Customer, by Daniel Karlstrom 117
Iteration Preparation...........cccccoiiiiiiiiiiiiiiiic e 119
Understanding ReqUITCIMENTScoocuvieiiiiiiriiieiriieeeniieeeieee e esieee e 122

1X

Treating Requested Documentation As Requirementsccccoceeeeene 123

TEAM VELOCIEY ...ttt et 123
UnKnown VEIOCIEY ...c...uiiiiiiiiiiiiie e 124
Estimation UNIt... ..ot 125
Planning Poker ... 126
Estimation Parity ... 128
VeloCity DISParitycoouiiiuiiiiiiiii i 130

Planning an Iterationc.oociiiiiiiiiiiiii e 131
Feature-Planning INtegrity..........cocoeoiiiiiiiiiiiiie et 131
Planning-Meeting Essentialscccccooiiiiiiiniiiiiiiiienc e 132
Planning-Meeting Schedule............ccocoooiiiiiiiiii e 132
Tangible Planning Toolsccooiiiiiiiii e 133

Iteration Trackingccooooiiiiiiiiiii e 134
Planning and Tracking TOOIS..........ccoeiiiiiiiiiiniiieec e 135
Keeping Goals in FOCUSccuiviiiiiiiiiiiiii it 136

Dealing With CRangecccviiuiiiiiiiiiiieit e 138
Iteration Length Marks Response Timeccocooviiiiiiiiiiniiiiiiiiecs 138
Change-Request Schedulingcoccoiiiiiiiiiiiiic e 139
Team-Structure Change............ocoiiiiiiiiiiiii e 139

Overall Project PLanoooiiiiiiiiii e 140
Reelease PIanningcooiiiiiiiiiiiiiit e 140
FOTreCaStIngcooiiiiiiiiiiiiii e 141
Reelease Versus MILEStONEcoouiiiiiiiiiiiiiiiiiiie e 142

SUMMATY Lo e 143

Eliciting Feedback and Conducting Retrospectives......... 145

Customer Feedback..........ooooooiiiiii 146
Identifying the CUStOMmMETcc.eiiitiiiiiiiiiiie et 146
Distant CUStOIMIETooiiiiiiiiiiiiii i 147
Customer Presentationsccccooiuiiiiiiiiiiiniii e 147

ReVIEW MEEHINGSeeeiiiiiiiiiiiiiiit ettt e 148
[teration REVIEWSociiiiiiiiiiiiiii i 148
Individual and Dispersed Versus Joint and In-Person Review Meetings......149
Reelease REVIEWSoouiiiiiiiiiii e 151

RELIOSPECTIVES ..ttt 151
Individual-Feature-Team R etrospectivescocueereeerieeneeenienieenieeenieenane 154
Project-Wide RetroSpectiVes.c.eeruieriieriieriiinieeite et 154
JoInt-Site REtrOSPECtiVESccouuiiiiiiiiiiiiieeeiiiee e 156
Reetrospective Protocoleoviiiiiiiiiiiiiiiiiiiiieieetcce e 156
Virtual REtrOSPECTIVES.eeveiritiiiiiiiee ittt ettt 157

Distributed Retrospectives, by Linda Risingccoceeeieriiieniiinneenne 158

R Etrospective ALLCIIACESveerurieiiiriierite ettt ettt esiee et 160
Common Retrospective MiStakescocuieriiriiiiniiinieniienie e 160
Facilitation Techniques........cooviiiiiiniiiiiiiiiicc et 161
Facilitating an Effective Virtual Retrospective, by Debra Lavell........... 162

IMLEETICS . 166

Progress MEasureImentcouuiiiriiieeniiieeiiie e et e e e 166

9

10

CONTENTS

Estimate-Quality Measurement.........c.eeeirueeerniieeiiee e e e 169
Increasing the Test Base........ccocooiiiiiiiiiiiiiii e 170
SUMMATY Lo e e e 170
Honing Practices......inininiiniiseninisninniininenississesnesensene 172
Development PractiCesoouiiuiiriiiiiiiieiniienieeiee st 172
Pair Programmingcocceiiiiiiiiiiii e 173
UNIE-TESING ..ot e 175
REFACTOTIIIZ ettt et et 175
Refactoring on Large Projects, by Nicolai M. Josuttis..........c.ccceueenee. 177
Collective OWNEISHIP....ccoviiiiiiiiiniieiiectere e 180
Common Coding Guideline........ccocueeeuiiiiiiiniiiiiiiniiiiciceie e 181
Feature Communication via Tests...........ecovviiieniiiiiniiieniiie e 182
Distributed Agile and Acceptance Testing, by Naresh Jain................... 183
Out-0f-the-Box PractiCescocuieriiiiiiiriiiiniiiiie st 187
Process PractiCes..........ooiuiiiiiiiiiiiiiii e 188
Daily Synchronization (Daily Scrum)........cccoeceieviiiiieniiiniciiienieeeeeene 189
Project-Wide Synchronization (Scrum of Scrums)c.cccooeevcieenieiinienncns 190
Dispersed SYnchronization.........co.eeecuierieeriieriieenieeiee et 191
Development Cultire.oouiiiuiiiiieiiiiieeneeeee et 196
Project-Wide PractiCescoovuiiriiiiiieriiieniieiicenieeee st 197
EVOLVING PraCtiCes ...cooueiiiiiniiiiiiiiieiee ettt 198
Difterent PractiCesoovierieiriiiniiiiieiit ettt 199
Process Standards Based on CMMI and ISOcccoociiiiiiiiiiiiiniiiicne 200
Equal RIGIES ..ooviiiiiiiiiiiiece e 202
SUIMIMATY Lo e 203
Introducing Agility into New and Existing
Distributed Projects...........ccccueuuue. ceereesneseneaeneseaaseasanes 205
Start Locally, Grow Globallycooiiiiiiiiiiiiiiiieecee e 206
Collocation and ROtationcc.coieuiiiiiiiiiiieic e 207
Fundamental TEerationscccoieiuiiiiniiiiiieie e 208
Early-On Tteration.......oouiiiieiiiiiie et 210
Time-Boxed Project Start.........c.ccovoiiiiiiiiiiiiiiiicec e 211
Growing Teams and GTrOWING SILEScc.ueieruiieiriiieiniieeeiieeeieee e erieeeenneees 211
KACK=OMT ottt 211
Project-Culture Transmittal.........cceooieriiiniiniienie e 213
Cultural TraINING - eeevveeeeeiiieriee ettt 214
Integrating INew People.......ooiiiiiiiiiiiiiiieic e 215
Introducing Agile to an EXisting Projecto.oueeveiioiieniioniiiiiienieeieeee e 216
Gradual Versus Project-Wide Change.........coocevvieniiiiiiiiienieeiieseeeee 216
Team-Structure Change........oooueiriiiiieiiieie et 217
More and/or Better Coaches...........cccoooiiiiiiiiiiiiiiiiicccc e 218
Estimation and VelOCItyeeiiiiriiiiieiiieiieeicee e 218
Lone FIGhter «oo.uoiiiiiiii e 219
SUMMATY Lo 220

X1

CONTENTS

WA £ 723 0 174 0) s RO 223
GlOSSATY..cucririiritiiitiiniiriiieisseesessesensessesesessassesees 225
RefereNnces....ccuivivvuiieriinrurnsersinsnissensisssnssesssesssnsssssssssassssssns 232
INAEX cevirirrirriririreininisninisisentesesssessessessssesssssssssessssssssssseas 241

X1l

Preface

We are all called to be pontifeces—bridge builders.
Various rivers already have a crossing,
At many others we stand at diverse waters
And look for pontoons,
For a footbridge, for communication.
No sea separates creation and technology,
But, often, speechlessness.
—August Everding

Several years back when I was preparing the manuscript for Agile
Software Development in the Large, I encountered only a few people
scaling agile methods up to use on large projects, teams, and orga-
nizations. Since then, many people have discovered that agility
works for projects of all sizes, that agile methods are not only
applicable on small teams.

There is, I have learned, a big difference between the mostly
large projects I worked with five years ago and the ones I work
with now. To my mind, the most significant difference is that al-
most all large projects today comprise work and teams spread over
multiple locations and time zones. These days, even small projects
are not necessarily collocated.

For me, the biggest change between then and now is that I have
to travel a lot when serving distributed projects as their change
agent, project coach, or consultant. I find this exhilarating—and
yes, at the same time, exhausting—because travel furnishes me with
many amazing opportunities to learn about different processes and
cultures. One lesson learned is that my experiences in scaling agile
processes up can be transferred to distributed projects, because

xiil

PREFACE

distributed and large projects share some of the same challenges,
but there are a lot of other challenges that are more difficult to
overcome and that require special attention if you don’t want to
lose overall agility when spread over the globe.

Consequently, I've made the focal point of this book the many
distributed software development projects that successfully follow
an agile approach. My objective is to illuminate best practices for
applying agility when project members spread over the globe. I
hope you will find the material in this book both helpful and enjoy-
able to read, possibly even taking the book on one of your trips to
one of your distributed teams. Whatever the circumstances, I am
curious to learn about your experiences and invite you to visit the
book’s Website at http:/ /distributed-teams.com. And if you are so
moved, please provide comments at feedback@distributed-teams.com.

November 2009 —]J.E.
Braunschweig, Germany

X1v

http://distributed-teams.com

Agile
Software Development
«un Distributed Teams

This page intentionally left blank

| @

Building Teams

It is impossible to create joint plans with people
who strive for different goals.
—Confucius

The basic idea behind agile development is to provide to the
customer, at any point in time, the highest possible business value
in terms of working software. Even collocated teams find it chal-
lenging to stay focused on this goal, and it is increasingly difficult
the more distributed a project is, especially if the global project is
very large, with many people working at different sites.

Building a team with a flexible structure is one key to reaching
this goal. However, a large, distributed project structured as one
single team is likely to be neither manageable nor flexible. For a
manageable and flexible project, divide staff into sub-teams opti-
mally with no more than ten members each.

Typically, distributed projects select a team structure they hope
will reduce the channels of communication required between
different sites. One approach has been to adopt a traditional linear
or waterfall structure, which directs that sub-teams form based on
classical project life-cycle phases, activities, or roles such as
analysis, design, programming, test, and so on. Following this
structured approach, analysts may be located at one site, designers
at another, programmers at a third, and so forth.

According to studies reported by Shao and Smith-David,!
adopting a waterfall approach for distributed software develop-
ment usually means that each phase is conducted by a specialized

IShao and Smith-David, op. cit., p. 93.

26

3 « BUILDING TEAMS

team at one location (phase “headquarters,” so to speak), with
phase-associated front-end activities (such as preliminary require-
ments analysis or conceptual architecture design) and phase-
related back-end activities (system test, system deployment, or
user-training, for example) collocated at the headquarters, whereas
mid-life-cycle phase activities (coding, most typically) are trans-
ferred offshore to a different location. Forming sub-teams according
to activities or phases hinders the collaboration within the whole
project. Moreover, distributing the activities across different sites
complicates cross-teamwork for the project.

Another approach to dividing distributed projects into sub-
teams makes technological know-how its guiding principle. Using
architectural layers of the software to define team boundaries,
people who concentrate, say, on user interfaces form a sub-team at
one site, database specialists work together at another site, and
middleware experts function at a third location. Popular on its own,
this approach is often combined with the preceding structuring-
along-activities approach.

A possible combination of both structuring approaches would
be to locate, say, a team of analysts in England, user-interface
specialists in India, and acceptance-test developers in Germany.
Given such a structure, it is not surprising how often component
interfaces, for example, suffer from compatibility issues, or func-
tionality is developed that does not reflect the customer’s require-
ments. Moreover, finger-pointing between sites becomes common-
place because it’s completely unclear whose responsibility it is to
develop specific functionality. Communication and technological
problems such as these can be the result of how teams and sub-
teams are structured, making it difficult for anyone to deliver busi-
ness value during a project’s lifetime, and nigh impossible at the
end of the project. Without the valuable customer feedback that
delivery of business value triggers, project management and staff
cannot learn from the customer in order to successfully adapt the
system to the customer’s needs.

Feature Teams
One proven way to maximize the likelihood of delivering business

value to the customer is to organize teams according to customer-

27

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

requested business functionality. As declared in the Agile Mani-
festo, “The best architectures, requirements, and designs emerge
from self-organizing teams.”? That is, instead of building teams
according to know-how or system life-cycle phases and activities,
organize teams according to their experience in delivering the
features the customer wants. With expertise in the required domain
and delivery of business value in mind, such teams can be chartered
to organize both themselves and their work.

Called feature teams, or domain teams, such teams comprise
people who possess or are in the process of acquiring all knowl-
edge and skills necessary to deliver a complete feature that
provides business value to the customer. Consequently, a feature
team may be staffed by analysts, testers, user interface specialists,
database experts, and so on, who work together to deliver the
required functionality.

Although chosen for their expertise, feature-team members do
not work solely in their field, but are encouraged to take instruction
from feature-team colleagues to learn different roles. Consequently,
each feature team “is a generalist in its domain. ... But although the
team consists of these different experts, those experts will not work
solely in their field of specialty. Instead, the team members must
take different roles.”3 This way, specialized knowledge can be
spread to all members of the team, thereby reducing the risk that the
project’s success will depend on continued involvement of specific
experts. Knowledge-sharing enables feature-team members to
contribute to each other’s work and fosters a shared vision, allowing
them to work toward a common objective.

Single- and Multi-Site Teams

Organizing a feature team across different sites may seem daunting
but can be accomplished in the following, relatively straightfor-
ward, ways:

= Assemble a collocated feature team at one site. This
strategy simplifies communication within the team and
facilitates synchronization of the shared vision that is

25ee the Agile Manifesto online: http:/ /agilemanifesto.org.
3For more on feature-team roles, see Eckstein, op. cit., pp. 57-58.

28

http://agilemanifesto.org

3 « BUILDING TEAMS

Feature team . . .

necessary in order to achieve the goal of delivering the
feature at the end of an iteration. A primary require-
ment for a collocated feature team is that all required
knowledge (or the skills for acquiring this knowledge)
is available at the one site. If it is not, either ask people
who possess whatever knowledge is missing to impart
that knowledge to the collocated feature-team members,
or move those people temporarily to the site in order to
keep all feature-team members physically together.
Note, however, that even with collocated teams, every
effort must be made to ensure conceptual integrity (that
is, to establish the same look and feel throughout the
whole application), among other things.

A dispersed feature team is one that is established across
different sites, and is optimal when roles that are
needed for the team are not available at a single site and
educating people so that they may adopt the roles is not
feasible. One drawback can be that internal team
synchronization may require a high degree of organiza-
tional effort. That notwithstanding, Jamie Allsop

29

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

reports from his globally dispersed team that “some of
our greatest benefits from using an agile methodology
were centered around the better utilization of our
communication bandwidth. Included in this would also
be the rhythmic synchronization at the daily, iteration,
and release time points.”* By working on the same set
of features while at the same time focusing on deliv-
ering business functionality at the end of an iteration,
members of a dispersed feature team share and are
motivated by a common goal. Individuals grow to
work together as a team. For this to work well, individ-
uals on dispersed feature teams need to share common
ideals (a topic we’ll look more closely at in the next
section).

Both types of feature-team structures possess inherent advantages
and disadvantages. An advantage of dispersed feature teams is
that communication across teams is made easier by the physical
proximity of members collocated at the same site, which helps
ensure conceptual integrity among myriad feature teams. In all
honesty, I was originally surprised to learn that dispersed teams
are not always at a disadvantage. For example, setting up a
dispersed feature team is advantageous if you are working in a
large, distributed setting with many teams. Then, dispersed team
members can maintain communication with other collocated project
members, even though they belong to other (dispersed or not)
feature teams. I recently heard about a project distributed over two
locations (The Netherlands and India) that intentionally creates
only dispersed teams. The project’s positive experience is based on
the reality that project culture unifies and permeates all teams
equally. An additional advantage of dispersed feature teams is that
the structure “reduces the us-them thinking between the different
development sites.””

Carefully balance the advantages and disadvantages of collo-
cated and dispersed teams and use a structure that best fits your
setting.

4Thanks to Jamie Allsop for sharing this experience.
5My thanks to Bas Vodde for this insight (personal communication).

30

3 « BUILDING TEAMS

Dispersed Teamns

Teams accomplish together what individuals cannot accomplish on
their own. In order for a feature team to accomplish a task, team
members first need to be aware of the fact that they are a team, and
not several individuals working in common. Together, team
members need to do the following;:

= Share a team identity:® Every team member should iden-
tify with and feel part of the team.

= Share a common vision: Team members need to work
toward the same goal.

= Acknowledge joint responsibility: Every team member has
to commit to sharing responsibility for the work the
team promises to deliver.

= Adhere to collaborative rules and guidelines: Team members
need to have and understand a common protocol that
determines how they will work together.

= Appreciate a joint set of values: Team members need to
agree to what they as a team value (and what they don’t
value) and use these values to guide their work.

The catch is that no one can instill these characteristics in team
members by mere command. Rather, they have to be created, estab-
lished, and experienced by the team. To achieve this in a timely
manner, team members should work together, collocated, for a rela-
tively brief period of time. Collocation provides an artificial environ-
ment for members of a dispersed team, yet it still facilitates the process
of evolving common rules, guidelines, and an agreed-upon set of
values.

Unfortunately, starting with a dispersed team in its natural
(dispersed) environment will prolong the time it takes team members
to gain mutual respect and trust, but the process will focus individ-
uals” attention on the most important challenges they face in their
natural environment, thereby creating proximity despite many forms
of distance.

SFor insight into group identity, see M.L. Manns and L. Rising, Fearless Change:
Patterns for Introducing New Ideas (Reading, Mass.: Addison-Wesley, 2004).

31

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

Forging a Team

If you are working with a dispersed team, you will have a better
chance of establishing a good working relationship among the
team members if you enable them to work together, preferably at
the beginning of the project. Ambler suggests that in order to help
a team jell, members should work together for at least one month;
two months would be better.’ Depending on a team’s dispersion,
adopt one of the following strategies:

= If the distance between the sites isn’t too great (for
example, 500 miles or less), team members can travel to
one of the feature team'’s sites weekly, possibly spending
several days each week at that site. On one of my recent
projects, guest workers stayed at a feature team’s site
three days a week, a schedule that was feasible because
this dispersed sub-team was spread between Austria,
the Czech Republic, and Hungary, countries that are
only a few hours’ train ride or brief flight apart.

= If the distance between sites is great, implement a
strategy whereby team members work at a host loca-
tion less frequently but for longer periods of time. This
is also known as the concept of expatriates. Imagine a
feature team composed of five Chinese and two Amer-
ican developers. A way to help the team jell would be
to have the two Americans work for, say, two months in
China at the start of the project.

The important thing to remember is that face-to-face meetings are
the most effective way to create solidarity and intimacy among
team members. McKinney and Whiteside, who conducted a survey
of more than two-hundred individuals working in virtual teams,
quote one manager regarding dispersed team relationships:8

7s. Ambler, “Bridging the Distance,” Dr. Dobb’s Portal, http:/ /www.ddj.com/
dept/architect/184414899, August, 2002.

SV.R. McKinney and M.M. Whiteside, “Maintaining Distributed Relation-
ships,” Communications of the ACM, Vol. 49, No. 3 (March 2006), pp. 82-86.

32

http://www.ddj.com/dept/architect/184414899
http://www.ddj.com/dept/architect/184414899

3 « BUILDING TEAMS

“.. . electronic partnerships work extremely well as long as
there has been a relationship built in advance.”

Building a traditional working relationship between team members
before initiating dispersed work increases peer awareness, which in
turn motivates individual team members to collaborate actively.?
Magnus Christerson emphasizes the point, noting, “what and how
[teams] work is more important than how long they work. Time is
not the critical factor—the critical factor is trust and how long it
takes to build. Trust depends not only on people, but also on
cultures and values.” 10

Teams Happen

by David Hussman!!

Several years ago, I coached a team “across the pond.”
As a coach who works in many domains and industries,
in many companies and countries, I find it can be hard to
know what, or who, will be at the next gig. So when
asked to coach a “team,” I never know what to expect.

As is the case for many of my gigs, this team was an
offshore group, in Ukraine, providing software develop-
ment services to a U.S.-based management group. The
projects were bid on and organized in the U.S., and the
requirements were passed on to the developers in Crimea.

When I arrived at the airport, no one was there to
meet me. Without knowing much of the language, I was a
bit concerned. Then, out of nowhere, a group of friendly
faces rolled out of a packed vehicle. This was clearly the
team. Iimmediately felt a team vibe.

Once I was settled in my hotel, we headed to their
work space for our first day together. Upon entering the
door to their space, I could again sense the team spirit. It
was not that the space was flowing with feng shue or

9For information about team-member collaboration, see B.J. Koh, et al.,
“Encouraging Participation in Virtual Communities,” Communications of the
ACM, Vol. 50, No. 2 (February 2007), pp. 69-73.

100, Christerson, personal communication.

1D, Hussman (USA), software anthropologist and agile coach, www.devjam.com.

33

http://www.devjam.com

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

beautiful wall art. Instead, there was a palatable presence
of work happening and people working together.

They showed me around and told me about the space.
It turned out that more than one of the team members,
and a family helper or two, had built the room and hung
the wallboard. They had even built a long U-shaped table
where most of the developers sat together each day.

As we worked together, it was clear they were truly a
team. They were struggling with problems common for
offshore teams. One of many problems was the lack of face-
to-face connections with the customers, the kind of connec-
tions that help produce better software products in less time.

As an offshore team and part of a newly formed
company, the Ukrainians knew they needed to produce.
They had been working hard to find various ways to make
better connections with the customers and other users,
sometimes with success, but, many times, their efforts
returned little.

Around about lunchtime, we all headed to the
kitchen. Someone’s mother had brought us food and we
all sat down to eat a wonderful lunch; the same meal was
shared by all. The conversation ranged from coding to life
and family. When we finished eating, each developer
washed his plate and utensils and put them away. I
thought to myself, This might work well as a team-building
exercise for the many large corporate groups who lack any real
sense of team, but that is another story.

As the gig proceeded, I was continually impressed by
the way they worked together. Many of the agile values
and practices were easy to introduce because of the
existing team vibe. The lunchtime experience was only
one example of how they kept their team whole. Humor
was another, and the need to produce was another.

I did not bring anything that made them a team. They
were a team long before my plane landed. What I offered
was a set of practices that helped them make better connec-
tions within the team and across the pond. Some of the
practices we used to help make customer connects were
short development cycles, automated acceptance tests, and

34

3 « BUILDING TEAMS

user stories with personas (short descriptions of people
who might use the product and what they value in the
product). I am not sure which of the practices were most
helpful, but I think the personas truly helped the devel-
opers start seeing across the ocean and into the lives and
values of their intended audience.

Once we had the personas, we created a collection of
user stories with acceptance tests. The tests were another
simple and strong way to connect remote developers to
product value and improve the iterative output. Instead of
hoping that they were producing the right thing, they now
had a tool for communicating what would be deemed
“done” in a concrete and automated way.

I am not saying that a few personas and automated
tests do span the entire Atlantic Ocean, but they do help
improve the bandwidth of communication. In this case,
they provided a tactic to make connections where there
once were none.

I would like to think I did a good job coaching this
team. (I was told I did.) AsI flew home, I made some notes
about the gig. I was surprised how often I typed the word
“team.” As my sports metaphors are slim, “team” is not a
word I often use. I tend to lean more toward “community,”
as I think it better captures the essence that exists when
people bond around creating great products. But the word
choice does not matter. This Ukrainian community devel-
oped that special combination of people, trust, respect, and
skills that helped them work with and for each other at the
same time. Agile practices did not make them a team, but
such practices did foster experimentation and learning to
find ways to improve.

Remote teams should assume that, to succeed, they
need to embrace iterative development and agility as
simple tools that foster collaboration and community.
Instead of saying, “How can we practice agile methods,”
a better question is, “How can agile methods help us
succeed?” Agile methods are tools that remote teams or
distributed communities use to make the connections
needed to deliver the right product to their customers.

35

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

Roles

To be fully functional throughout a project’s life cycle, a feature team
typically requires that a variety of roles be performed. For each role
described below, the person or people responsible for performing it
will be most effective if they are able to travel to the different teams,
as needed. Direct, face-to-face communication allows role-players to
gain a comprehensive understanding of project progress and ensures
that key information is not only communicated well, but is also
understood by all other members of the team.

There are several basic premises that pertain to feature-team
roles, as follows: Most roles need not be fulfilled by one person for
the duration of the project; most role-players can assume several
roles as time and rationale permit; one role rarely equates exactly
to one person’s responsibility. Determining and mapping roles and
people’s responsibilities depends on such factors as the qualified
people at hand, their knowledge of the risk implied by the system
being built (for instance, their familiarity with specific technologies
and the business domain), and the size and distribution of a team.

Feature-Team Constellation

The baseline of operational feature teams is that they either already
comprehend or are capable of acquiring required knowledge to
complete a unit of business functionality. In addition to each indi-
vidual’s domain and technical know-how, a team must be able to
deliver functionality. Thus, feature teams typically need to include
all or most of the following roles:

= Architect: ensures the conceptual integrity of the system
(a topic we’ll look more closely at in the next section)

» Database administrator: creates and /or maintains databases

= Designer: conceives and directs a coherent design of
required features

= Documenter: provides necessary documentation for
developed features

= Domain expert: helps teammates to understand the domain

= Infrastructure specialist: ensures that the development
environment is working and supportive

= Integration expert: possesses the know-how to integrate,
build, deliver, and deploy a feature within the whole

36

3 « BUILDING TEAMS

system, and ensures a working configuration manage-
ment

= Programmer: codes the required functionality as well as
accompanying unit tests

» Tester: works closely with the domain expert to define
acceptance criteria for business functionality and tests
for acceptance

= User interface designer: knows how the user interface
should appear and feel, and then creates it accordingly

In many of my projects, the whole feature team shares the responsi-
bility for each role. This means that any feature-team member will
take on any role when needed. We seldom have people dedicated
to fulfilling only one of these roles. To refer to all of these required
roles, we typically use the general term “developer.” The number
of people on a feature team varies, but I recommend that there be
seldom fewer than three members and never more than ten. A
good rule to follow for team size is the Miller rule of seven, plus or
minus two. Sangwan, et al., further recommend that “no team
should be larger than ten staff members, and no single development
site should have more than 100 engineers (or ten teams of 10).”12
Sometimes, if a feature requires a special technology or connec-
tivity, a project will require temporary assistance from specialists
gathered from outside of the feature team. When this happens, I
recommend that the experts become members of the feature team
within a given time frame (for example, one iteration). This may
require that the experts travel to the site where the feature resides.
Such experts don’t stay with a specific feature team for the whole
project but instead work as needed to support a specific feature team.
Establish a similar relationship between a mentor/trainer and a
feature team requiring support or specific knowledge: Mentors
work with a team for as long as necessary to transfer the knowl-
edge. This may mean a mentor travels to a remote feature team or
to several sites to train members of a dispersed team. Efficiency
and effectiveness depend upon working together in-person with
mentors. Avoid the monopolization of knowledge—that is, a situa-
tion in which a few elites are regarded as irreplaceable experts.

12R, Sangwan, et al., Global Software Development Handbook (New York: Auer-
bach, 2007), p. 97.

37

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

Monopolization presents a big risk in that, just like everyone else,
experts take vacation, become sick, change jobs, and so on, leaving
behind a project in limbo.

If possible, I recommend that team members stay together
within a feature team over the whole lifetime of the project. The
biggest benefit is that a team can build its identity and, once it estab-
lishes communication paths, knowledge and conversation typically
flow more easily during the rest of the collaboration. Dispersed as
well as collocated feature teams can reap these benefits.

Aprchitect and Chief Architect

The architect’s main task is to ensure conceptual integrity, indepen-
dent of the number of feature teams or sites involved. Brooks
defines conceptual integrity as follows:!3

“Every part must reflect the same philosophies and the
same balancing of desiderata. Every part must even use
the same techniques in syntax and analogous notions in
semantics. Ease of use, then, dictates unity of design,
conceptual integrity.”

Only conceptual integrity enables simplicity—and simplicity in
turn enables maintainability. In my experience, “on a typical agile
project with a small team, you will often end up without an archi-
tectural lead because the whole team is of equal value and takes
the same responsibility for the whole project. Although this could
or should be a goal for a large team, too, it would never work,
because development would diverge, uncoordinated.”14

This is one reason why the architect’s role is so important. In a
project with only one collocated team, the whole team can take
responsibility for conceptual integrity. In some projects (still not
too big), it might be enough that an experienced developer addi-
tionally takes the role of the architect. Depending on the tech-
nology used, the content of the project, and project size, the
demand regarding the architect’s role varies:

I3EP. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering, 20th
anniv. ed. (Reading, Mass.: Addison-Wesley, 1995), p. 44.

14Ecl<stein, op. cit., p. 127.

38

3 « BUILDING TEAMS

= One project architect: The one architect oversees/advises
all technical decisions and also acts as the major contact
for the (lead) product owner in order to learn about
technical dependencies between features.

= One architect per feature team: If the project is rather
complex and unknown, one architect per feature team is
needed. However, once the team has gained necessary
knowledge and experience, it may only need one or a
few architects for the whole project. The position of
architect on a feature team is rarely full-time, but rather
may be an additional role adopted by a developer.

= One-to-n architects to support all teams: If you have fewer
architects than feature teams, each architect should
work with a single feature team for a limited period of
time (for example, for one iteration) before moving on
to support another feature team.

No matter if you have an architect for every feature team or a group
of architects supporting many feature teams, it is important that all
architects communicate, and one chief—or lead—architect pulls the
strings and ensures they work toward the same project vision.
Otherwise, it is very likely that every team or every site, or both,
will make its own architectural decisions that will probably differ
from one to another. The main responsibility of the chief architect is
to ensure that the big picture (from a technical viewpoint) is under-
stood by everybody on the team. The architectural lead should also
train the team members by helping them, for example, to see the big
picture and to take responsibility. So, the lead architect will not
only be the one memorizing the key ideas but, more importantly,
the one who spreads these ideas so that more and more people will
have the same understanding of the system.15

Spreading these ideas and helping the other team members to
see the big picture does not refer to concepts only, but rather to the
actual system. Thus, the chief architect does not just create, say,
documents; he or she may also code. No matter whether a project
has a single architect, several architects, or even one architect per
feature team, architects must always work with the feature teams
and understand that they provide a service for the feature teams.

I51bid., pp. 128-29.

39

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

Another important lesson to learn is that the worst architec-
tures are often the result of democratic decisions. I don’t mean that
the chief architect should dictate architectural decisions; rather, he
or she ensures that all opinions are heard and, if required, evalu-
ated before a final decision is made. It is a chief architect’s respon-
sibility to ensure that all architects accept and respect that final
decision. Final agreement on a decision is key to success. In order
to accomplish this, I recommend you follow the process of
nemawashi, noted in The Toyota Way:10

“Make decisions slowly by consensus, thoroughly consid-
ering all options; implement rapidly.”

The basis for this process is that every party gets a fair hearing and
is allowed to provide input, and is therefore involved in the deci-
sion-making. Ultimately, this ensures that all participants can
agree with the decision and prioritize their own objectives below
the project’s objectives.

Experiences as a Software Architect
on Global Agile Projects
by Michael Kircher!’

In my roles as architect—in this concrete case, as lead
architect of a mid-size development project (about 50
developers)—I have been able to gather experiences
regarding the scalability of the role of software architect
in an agile project.

The project concerned the development of two
subsystems: an embedded device to be integrated in vehi-
cles, and an enterprise-scale information system, laid out
as a three-tier system combined with batch processing. In
this setting, we had multiple challenges. First, three
development locations in Europe were involved. Second,

16 jiker, op. cit., p. 241.

7M. Kircher (Germany), Director, syngo Platform Development, Siemens
Healthcare (formerly, Principal Engineer, Siemens Corporate Technology).

40

3 « BUILDING TEAMS

the developed software was expected to be reused as a
platform for similar solutions, with similar requirements,
after the first project was completed. Third, the require-
ments were not fixed: The customer—represented by a
product owner—was elaborating the key use cases as
development continued. For me, these challenges meant
that I needed a way to constantly evolve the architecture
on multiple sites while ensuring minimal complexity in
order to secure later reuse. In my experience, this is a
very typical problem description for a software architect
in a global and agile software development project.

Rt st

A brief note on what software architecture is concerned
with: Architecture, in my understanding, concerns every-
thing that is expensive to change afterward, so it concerns
not only the global structure of the software but also the
employed technologies, decisions for internationalization
support, and the like. With this interpretation of architec-
ture, it is easy to see that architecture matters in agile
projects. The key difference in an agile project is that the
specific architecture evolves during the project instead of
remaining as planned in advance through to the project’s
very end. Maybe a good analogy is to compare between
static and up-front-designed architecture and dynamic,
constantly maturing architecture. This is not to say that
everything changes in the latter case; far from it. Elemen-
tary design decisions, such as layering, partitioning prin-
ciples, and programming idioms, stay the same, most
likely including the initial architectural style, such as
Broker, Common Repository, and Pipes and Filters.

A 333333 34 4 4

Due to the multiple subsystems and development sites
involved on this project, it was obvious that a single archi-
tect was not sufficient. We established an architect for
every major subsystem and site—which correlated as we
tried to avoid splits across sites within a subsystem—
coached and guided by me, the lead architect. This orches-

41

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

tration of architect roles allowed the handling of situations
that required hard and final decisions. The general
strategy is to have one lead architect and subordinate
software architects, partitioned according to boundaries
of subsystems, problem domains—such as technical archi-
tecture (infrastructure) and business (domain) logic—and
especially sites.

Concerning the focus and priorities of a software
architect, I have a very dedicated opinion: A software
architect must ensure, in decreasing order of priority: 1)
consistency among design decisions and the resulting
architecture, 2) communication among developers and
with stakeholders, 3) guidance regarding best-practice in
daily design decisions of the team, and, 4) making design
decisions. This last point might seem contrary to what
many believe, because many expect the architect to make
all design decisions by herself or himself. In my experi-
ence, that is actually the worst you could do because of
many reasons, the topmost being that developers are not
committed to dictated decisions and that the number of
required decisions will flood the architect, hence hampering
project progress as the architect becomes a bottleneck.
The role of the architect can only scale and architects can
only maintain control over design decisions if they remove
themselves from actual design work and, instead, install
themselves as a control, reviewing relevant decisions
before implementation. Thus, architects should guide
teams to employ wise design practice.

Coming back to agility: The concept of software archi-
tects coaching and distributing responsibility aligns quite
naturally with the principles of agility, with empowered
teams that are aligned to accomplish common goals.

42

3 « BUILDING TEAMS

Coach

Every feature team needs a coach, a spokesperson (in Scrum, called
the “Scrum Master”) to ensure that the team is able to do its work.
This doesn’t mean that team members cannot take responsibility
for resolving matters if there is something in their way (they can),
but rather that, in order to move the project forward, there is
someone who cares for their issues and who will take problems to
the right people. The coach serves also as a firewall or gatekeeper
for the team, so that team members won’t always be interrupted if
someone from outside has a question or request.!8

Gatekeeper . . .

18For more on firewalls and gatekeepers, see J.O. Coplien and N.B. Harrison,
Organizational Patterns of Agile Software Development (Englewood Cliffs, N.J.:
Prentice-Hall, 2004).

43

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

Additionally, the coach ensures the location and scheduling of
team meetings. This doesn’t necessarily mean that the coach
personally reserves a conference room—the responsibility should
be shared among all team members—but merely makes certain
that this type of task is done. A coach also helps team members
stay organized and current. For example, he or she may remind
team members to verify that a particular agreement is valid, and
that if outdated or invalid, it be either eliminated or replaced.

A large distributed project will have several coaches, typically
one for each feature team. I find it most effective when a coach is
actually a member of the team (avoid, for example, selecting team
members’ managers) and is collocated with the team. A coach
should have an additional role such as developer (the most
common case), or tester. However, depending on whether or not
team members work smoothly together, the coach may have to
defer, say, a development task if too busy fulfilling the job of coach.
If the team is dispersed, the coach must maintain adequate contact
with all team members (by phone and e-mail, and by traveling to
their work sites).

Product Owner and Product Manager

Feature-team members need to know which feature needs to be
implemented next and whom to ask if they have problems under-
standing the requirements for the feature. In order to satisfy the
customer, the Agile Manifesto stresses, “Business people and
developers must work together daily throughout the project.”1°
Not every feature team, nor every customer, can afford to move
in together—nor is such a drastic effort necessary. Basically, a
feature team needs somebody who represents the customer in a
role that often is simply referred to as “the customer” (in XP, called
the “on-site-customer”). However, although this role could be filled
by an actual customer, it is more often appropriate that the person
just represent the customers” perspective (but isn’t a customer
himself of herself). Having someone represent the customers’
perspective is especially helpful if the system will have to serve
customers who have differing opinions regarding the future func-

195ee the Agile Manifesto online: http:/ /agilemanifesto.org/principles.html.

44

http://agilemanifesto.org/principles.html

3 « BUILDING TEAMS

tionality of the system. To differentiate between the real customer
and the role-player representing the customer’s perspective, some
use the label “product manager,” or “proxy customer,” but I like
the Scrum term “product owner” for this role.

The product owner clarifies and assigns priority to the different
requirements of all the various customers. In order to do so, the
product owner needs thorough knowledge of the customer’s busi-
ness domain, and moreover, an effective communication channel to
the different customers. As Magnus Christerson emphasizes:
“Product owners/managers need to spend quality time with real
customers continuously. I used to have the guideline that 25
percent of the time of a product manager should be spent on direct
customer activities.”20

Product owners on my projects generally come from different
areas or departments within the company sponsoring the project.
People with a background, say, in marketing, customer support,
product management, sales, or business analysis are good candi-
dates. My general rule of thumb is: The person selected must be
someone with insight into the customers” domain. Thus, if building
a product for developers, a developer is a good candidate to place
in the role of the product owner. Who is best qualified depends
very much on the system to be built. If several different types of
customer need to be served, the product owner’s task can be espe-
cially demanding. Balancing and assigning priority to the different
needs of diverse customers and drawing conclusions from them
are major responsibilities of the product owner.

If the system being built is highly complex or the team is not
particularly well versed in the customer’s business domain, one
product owner might only be able to support one feature team. In
some of my projects, one product owner was able to support up to
three teams; in other projects, we needed one product owner per
feature team. Generally, the role of product owner is very de-
manding! Thus, it is essential to ensure that he or she does not get
burned out, caught between the feature team requesting support
regarding business knowledge and the real customer whose needs
must be met. One way to maintain sanity is to establish a support
structure along the following lines:

20, Christerson, personal communication.

45

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

= Product-owner team: On a large project, it often is not
sufficient to just have one product owner because the
required tasks are too extensive for one person, but
instead to have a team of product owners, each of whom
may be able to support one to three feature teams.

» Lead product owner: A team of product owners will need
at its head a lead product owner to serve as arbiter and
final decision-maker in the event of disagreement. The
lead product owner’s major responsibility is to make
priority decisions based on input from customers as
well as from the team of product owners. In the same
way that the chief architect pulls the strings regarding
technical decisions, the lead product owner retains final
judgment for business decisions. Depending on the
complexity of the system and the project, the lead
product owner may have no task other than coordi-
nating the team of product owners and keeping in
touch with customers. In most cases, however, a lead
product owner also can fulfill the role of a regular
product owner, steering one feature team and serving
as lead product owner in parallel.

Although responsibility for the motherlode of customer contact
belongs to the lead product owner, the other members of the
product-owner team need to work with customers in addition to
supporting their feature teams. Ideally, product owners are collo-
cated with the feature team or teams they support, and travel to
customer sites to get and give feedback and to clarify possible
misunderstandings.

The more “business complexity” there is on the project, the
closer the product owner should be to the team. Product owners
who support one or more dispersed feature teams, of course, will
need to travel frequently to the sites involved. At times when the
product owner cannot be collocated with his or her feature team,
communication can be effectively maintained with off-site contacts
and teams by using all kinds of communication media to connect
and enrich the feature team’s and product owner’s conversation.
Although not always feasible, product owners should strive to
limit the time when they are not collocated with their feature team.

46

3 « BUILDING TEAMS

The role of the product owner is the same whether working
with an onshore or offshore team. I want to emphasize this point
because I every so often hear people state that offshore teams will
not have a collocated product owner, gaining access to their product
owner only at the project’s base location. After all, agility is about
focusing on business value and, therefore, it is relatively unimpor-
tant where feature teams are located. Every feature team will
benefit most from direct support from the business side and thus
will always function best if it has the support of a collocated
product owner. Matt Simons, project manager for ThoughtWorks,
advises: “Assuming that your offshore team is unable to locate a
business customer willing to play the role of the onsite customer,
you’ll have to establish some type of proxy customer.”21

If there is no direct contact between the product owner and his
or her feature team, you need a different product owner—the idea
of a product owner is actually to reduce the miscommunication
between development and the customer. Otherwise, you're just
introducing another middleman between the team and the
customer, and nurturing miscommunication all the more.

3 {“\7\,(/? J

(

W et

e ————— -

Direct connection . . .

2IM. Simons, “Internationally Agile,” Informit.com, http:/ /www.informit.com/
articles/article.asp?p=25929, March 2002.

47

http://www.informit.com/articles/article.asp?p=25929
http://www.informit.com/articles/article.asp?p=25929

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

Project Manager

Several agile methodologies claim that agile projects have evolved
and no longer require the role of the project manager. Most tradi-
tional agile teams and certainly large and distributed teams,
however, stumble without assigning responsibility for project-crit-
ical factors such as the following;:

= Politics: In my experience, the project manager’s most
important task is to deal with organizational politics.
Typically, a project needs support both from inside and
outside the company. Establishing and preserving that
support is very often a full-time job.

» Personnel issues: The project manager should be the
knowledgeable and helpful face of human resources for
the team, having insight into team pressures and
personal problems, giving leeway, say, on personal days
and holidays while supporting the team as a whole.
Often, the project manager is the one who can solve
tough problems that the team coach cannot solve by
virtue of being too close to the team or not close
enough to company politics.

» Budgetary control: The project manager typically is
responsible for controlling the budget and providing
relevant information to the product owners or the lead
product owner. In smaller and less complex projects,
this responsibility is and should be in the hands of the
(lead) product owner.

» Hiring: Project managers usually are also responsible
for organizing the search for skilled people based on a
project team’s input.

The project manager ensures that all project members can do their
job so that the project can progress, and, depending on the actual
size of the team, several people may be needed to support the
project manager fulfilling these tasks.

For a distributed project development team spread across
several sites, where the project manager actually is located is
comparatively unimportant. He or she will have to travel to all

48

3 « BUILDING TEAMS

project team locations. However, avoid locating all development in
one place and all project management in another. Project manage-
ment that is not skillfully integrated with the development effort
simply amounts to no project management at all: Developers will
lack context with which to complete project goals. As Yourdon
observes, “the main thing is that the project manager and the rest of
the team are from the same organization, part of the same culture,
and presumably acquainted with one another already.”%2

Collocate Key Roles with Teams

All the responsibilities discussed above—whether formally assigned
to an architect, coach, product owner, or project manager—are inte-
gral to agile development. I want to reiterate that these key roles
function most efficiently and effectively when collocated with their
respective team or teams. In fact, each is part of the team.

Every so often, I am surprised by the tendency in some organiza-
tions to assign the key roles to project members located at project
headquarters. This practice is not really helpful. In order to support
their feature teams adequately, the key roles have to be (physically)
close to their teams.

Having noted that, there is one exception: When a feature team
is dispersed and, consequently, there is no single site where it is
located, then there is no specific site where key roles should be
located. It then becomes extremely important that people fulfilling
these key roles are willing and able to travel (most probably, a lot)
to all sites involved, and that they have particularly good commu-
nication skills in a dispersed setting.

Ensuring Conceptual Integrity

Correlating the efforts of feature teams will ensure focus on the
highest business value. Without an architect, feature teams may
grow near-sighted and focus on features rather than on cross-
features, like conceptual integrity. Avoid ending up with a system
consisting of a hodgepodge of looks and feels, diverse database
access, and the like. Conceptual integrity is the basis for a main-

22E, Yourdon, Outsource: Competing in the Global Productivity Race (Englewood
Cliffs, N.J.: Prentice-Hall, 2005), p. 56.

49

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

tainable system. Only this allows a simple vision to evolve that
facilitates the general understanding of the system as well as future
upkeep and changes. Conceptual integrity is also required by the
Agile Manifesto declaration of architectural philosophy:

“Simplicity—the art of maximizing the amount of work not
done—is essential.”23

For every system, and even more so for large systems, simplicity
comes from conceptual integrity. Architects are responsible for
conceptual integrity. Depending on the size of the project, as well
as on the complexity of it, it could be enough to just have one
architect or it might be necessary to have a team of architects in
place to ensure conceptual integrity.

Starting Team Provides Model

If you have started a project with just one team and this team
implements two to three key use cases together with a referential
implementation of the architecture, the use cases might already be
sufficient to establish conceptual integrity. Referential implementa-
tion will act as a role model for all further development, serving as
an example on which to expand the system and as a basis for
learning more about the business domain and the technology.24
Moreover, if you have carefully built this starting team (selecting
people from all sites involved), then all sites will learn from it, and
knowledge about cross-functional issues will spread across sites.

Technical Service Team

If the complexity and the size of the project make it impossible for
the group of architects to maintain conceptual integrity, think
about establishing a separate team to provide this support. For
example, if the system you are building consists of a complex user
interface, you might need to establish a separate team, called a tech-
nical service team, that is tasked with creating the infrastructure or a

235ce the Agile Manifesto online: http://agilemanifesto.org/principles.html.
24For more on the topic of referential implementation, see Eckstein, op. cit., p. 114.

50

http://agilemanifesto.org/principles.html

3 « BUILDING TEAMS

framework for it. This strategy allows feature teams to more easily
build user interfaces. Another reason to form a technical service
team is to build different products based on the same architecture.
Thus, the technical service team will provide the foundation so that
the feature teams can build their features on top of it using the
same concepts.

Key to success for a technical service team is that the work it
delivers is a real service for the feature teams. This means that the
technical service team understands that the feature teams are the
“customers” stating the requirements. It is not the technical service
team that comes up with ideas independent of their customers’
needs (although I have seen the latter far too often). No, it is that
technical service teams should always regard themselves as pure
service providers for the feature teams. 25

Feature teams in turn then have to act as customers and must
additionally provide a “product owner” for the technical service
team. This product owner prioritizes and steers technical-service-
team development. The major difference for feature teams is that
the customers of a technical service team are also developers, so
that the “features” a technical service team provides are technical
and not business features. Even the technical features are driven
by business features, because the feature teams will still direct their
efforts toward developing business functionality.

If the technical service team provides the architecture for
different products, the same holds true. That is, the teams that
develop these products are the customers for the technical service
team, and they state the requirements.

Summary

The most important part of building a team is to ensure that the
team is able to deliver a discrete project goal, a whole feature.
Charge a whole team responsible for a whole business feature to
keep clear where ownership lies if, for instance, toward the end of
an iteration, not all tasks are completed. Then, it is the team
members’ job to work together and finish that feature. Still, in

251bid., p. 53.

51

AGILE SOFTWARE DEVELOPMENT WITH DISTRIBUTED TEAMS

order to deliver a coherent system, conceptual integrity has to be
ensured as well. This is the task of the architect(s) and, depending
on the project, possibly also of the technical service team.

You might need to balance physical proximity with the need
for specific skills and roles within a team by setting up a dispersed
feature team. It is very important for dispersed teams to have a
common goal: to focus on the features they’re responsible for
developing, as well allowing time for members to create a team
identity so they work effectively together.

Contrary to dispersed feature teams, collocated feature teams
need to concentrate more effort on cross-team communication
between different sites to focus on the big-picture, common goal of
the project. Often, projects end up with some teams collocated and
others dispersed. Plan ahead for different configurations.

Three central roles ensure focus on the big picture:

» (lead) product owner, who provides the business perspective

= (chief) architect, who ensures the technical vision of the
product

= project manager, who supports the organizational side

In a study of several distributed projects, Biehl summarizes lessons
learned from managers who had been responsible for unsuccessful
distributed development projects: “they had neglected three critical
factors: not using cross-functional teams; not engaging in cross-
functional communication; and not bringing end users on board
early enough during the project.”20

The architecture has to be a service for feature teams and there-
fore take the latter’s requirements into account. This is the case
regardless of whether the intent is to ensure conceptual integrity
with one architect, with a team of architects, or with one or several
technical service teams. Every person involved has to thoroughly
support this approach.

26M. Biehl, “Success Factors for Implementing Global Information Systems,”
Communications of the ACM, Vol. 50, No. 1 (January 2007), p. 57.

52

Index

Abbott, P, 65,232
Acceptance criteria, 37, 121, 184-86.
See also Requirements; Tests.
Acceptance test, 27, 34-35, 37, 137, 145,
182-87,203, 210
Action plan, 153, 157, 160-61, 163, 166,
170, 217
Adams, S., 16-17
Agile Manifesto, 3, 17, 22-24, 28, 44, 50,
54, 55n., 58, 68, 76, 94, 105n., 115,
121, 138, 152, 166, 172, 173n., 187,
200, 201n., 202, 238
Value Pair Statements, 17-19, 24
Agile methodologies, 5, 17, 30, 35, 48,
201. See also Extreme Program-
ming; Scrum.
Agile practices, 5n., 7, 21, 35, 61n.,
63n., 126, 172ff., 203, 216, 233, 235.
See also Acceptance testing; Agile
processes; Development; Pair
programming; Refactoring; Re-
sponsibility; Synchronization;
Tests; Unit test.
Agile processes, 5, 17-18, 21n., 68, 123,
138, 153, 187-89, 202, 205-6, 209-
10, 216
adapting, 5,17, 19, 21-22, 112, 153,
162-64
applicability of, 5, 206
changing, 205, 206, 216-17, 219
fundamentals, 68, 138, 153, 189,
200-202
introducing, 8, 34, 123, 129, 163,
168, 202, 2051f., 216
scaling, xiii-xiv, 30, 107-8, 120,
128-30, 202, 205

241

skepticism about, 16-21, 67, 95,
138, 143, 183, 205
Agile software development, v, 4-8,
16ff., 22-25, 26, 41, 43n., 49, 53, 71,
80n., 94n., 98n., 115, 169n., 183
cycle, 7, 19-20, 34, 95-96, 149, 163,
233, 236, 237, 238. See also
Iteration.
distance and, 3-4, 6, 10, 14-16, 22-
24, 31-32, 57-59, 64-75, 173,
196, 204
planning, 15, 19, 21, 23, 95-96,
143-44, 152. See also Itera-
tion, planning.
productivity and, 20, 38, 48, 61-62
Agile value system, 4, 19, 21, 24, 119,
152,172,187, 200-202
Agility, xiii-xiv, 3-5, 6, 8, 9ff., 16-22, 35,
42,47, 53,70, 75, 99, 142, 143, 145,
152, 173, 187, 200-201, 205ff., 217,
220,223
Albert, G., 5n., 238
Allen, T., 64, 65n., 235
Allsop, J., vi, 29, 30n., 108n., 193n., 204
Ambassador, 7, 77, 79-82, 91, 93, 225.
See also Feature team, roles.
Ambler, S., 32,77,195, 232
Architect. See Feature team, roles.
Architectural requirements, 27, 41
Architecture, 27-28, 38-42, 50, 51, 52,
209, 213
largeness and, 38-40, 42
simple, 38, 41, 50
Armour, P, 66, 210, 232
Artifact, 21, 67, 85, 91-92, 140, 143, 180,
181, 225

INDEX

Beck, K., 68n., 235

Beedle, M., 169n., 238

Bekkering, E., 87, 232

Bergin, J., vi, 212n.

Biehl, M., 52, 143, 232

Blame, 27, 110, 153, 158-59, 204, 205,
213

Bottleneck, 42, 102, 180

Braithwaite, K., 182, 232

Brooks, F., 38, 235

Budget, 11, 48, 67, 105, 118, 146, 203

Build, 7, 22, 24, 36, 57, 101f., 206
continuous, 105-6, 107
daily, 106, 107, 172, 226, 234
failed, 101, 109, 113-14

Business value, 6, 7, 20, 26-28, 47, 49,
94, 95, 115ff., 120, 121, 123-24, 130,
131, 136, 140-41, 143, 146, 176, 211,
220, 229

Capability Maturity Model, 8, 200-202
Carmel, E., 15, 53, 54n., 59n., 65, 76, 78,
79, 80, 200n., 204, 232, 236
Central coordination, 15-16, 57, 80, 108
Change, 31n., 94, 138-40, 153, 205n.,
223-24,237. See also Feature team,
foster parent; Kick-off; Require-
ments, changing.
accepting, 6, 102, 138-40, 216-21
agent, xiii, 5
embracing, 7, 18, 41, 138, 142-43,
187-88,211-13
introducing, 160-61, 163-66, 205ff.
resistance to, 18, 69, 213, 216, 219
team size and, 91-92, 205-7, 215-
18, 221
Chief architect. See Feature team,
roles.
Christerson, M., vi, 33, 45
Churchill, W., 206
CMM]I, 8, 200-202, 235
Coach. See Feature team, roles.
Cockburn, A., 17n., 236
Code, 37, 91, 113-14, 173-81. See also
Quality, code; Refactoring; Ver-
sioning.
base, 105, 106, 107-10, 111, 113-14,
172,173
change, 102, 105, 106-9, 111, 177-81
Cohn, M., 120, 126n., 127, 133n., 236

242

Collocation, xiii, 4-5, 14, 19, 22-24, 26-
31, 44, 46-47, 49, 52, 62, 63, 69, 83,
105, 119-20, 129, 142, 172, 186, 188,
194, 203, 207-8, 221
communication and, 11, 28-30, 38,

91, 156, 191
Command-and-control, 24, 69, 93, 216
Communication, 6, 18, 27, 38, 53ff., 58-
63, 76ff., 207, 233, 237. See also
Ambassador; Customers; Noise;
Retrospective; Trust, threshold.
agility and, 53, 145, 182-83, 199,
200, 205ff.

asynchronous, 85, 86-87, 88-89,
225

bandwidth, 30, 35, 173, 183, 185,
194

coordination of, 11, 15, 22, 28, 39,
42,52, 63, 80, 82, 95-96, 138,
154-59, 191, 205ff.

cost of, 61-62, 117-18, 121, 208

cultural differences and, v, 6, 10,
22,54, 56-58, 61, 63-67, 71-72,
74-75, 83-84, 97, 122, 162-66,
169n.

distance and, 3, 6, 14-16, 24, 58-59,
64-67, 76-79, 80, 81, 83-84, 92-
93, 117, 158, 173-75, 193-98,
204, 211-13

encouraging, 53, 62, 69-75, 82, 84-
93,99, 102,157, 212-13

face-to-face, 3, 22, 32, 34, 36, 53,
54, 55-59, 67, 71, 73, 74, 76,
78, 89,133, 151, 159, 174, 226

facilitator, 7, 77-78, 198

flow, 38, 62-63, 79, 82, 85, 89, 110,
225

humor and, 34, 72, 87

improving, 3, 35, 45, 55, 58, 63-65,
67, 81-82, 87-90, 149, 152-54,
182-83, 191-96, 214

media, 3, 46, 69, 72-74, 75, 76, 83-
84, 85-93, 118, 131, 133, 147,
158, 163-66, 173-74, 192-93

synchronous, 73, 85, 86-89, 231

team size and, 11, 38, 53, 69-75,
77, 85,156

tools, 35, 85-93, 135

vocabulary, 57-58, 64, 72, 81, 86-87,
88,119, 122,157,192-93, 214

Complexity point, 126-27, 129, 130,
132, 139, 167-69, 219, 225. See also
Estimation unit; Feature point.

Conceptual integrity, 6, 29, 30, 36, 38-
40, 42,49-52,79, 207, 225

Configuration management, 18, 37, 91,
107-9, 112, 208, 233

Contract, 12-13, 14n., 18, 229

Coplien, J., 43n., 236

Corbett, M.E,, 5n., 236

Corsaro, A., 111n., 233

Cost, 9, 16, 56, 62, 84,101, 111, 118, 121,
140, 165,175, 176, 203, 208, 218

Culture. See Communication, cultural
differences and; Development,
culture.

Cunningham, W, 58n., 182n., 237

Customer, 94-96, 115-19, 146-48
collaboration with, 9-10, 18, 22-23,

44-47, 51, 99, 116-19, 146-48,
160, 170-71, 184-87, 201
communication with, 7, 14-15, 44-
47,116-19, 141, 147, 160, 185
on-site, 44, 47, 81, 147, 228
project size and, 46, 146-47
representative, 5, 81, 116, 118, 146.
See also Feature team, roles.
satisfaction, 18, 20, 22, 44, 115-17,
122-23, 145-48, 182, 201n.

Damian, D., 93, 232

Davies, R., 15n., 203n., 236

Deadline, 19, 70-71, 79, 140, 167, 213,
218

Decision, 20, 39, 40, 42, 46, 88, 121, 128,
146, 204, 216

Deliverable, 19, 20, 99, 101, 113, 124,
140, 147-48, 151, 166. See also
Feature, done-done; System,
working; Working software.

Delivery. See Feature, delivery of;
Release, delivery.

Dependencies, 39, 53, 120-21, 131, 141,
144,229

Derby, E., 161n., 236

Design, 23, 26-28, 36-37, 41-42, 53, 91-
92,98,122,173

Developer. See Feature team, roles.

Development, 3, 7, 14-15, 19-25, 38, 40-
42, 50, 55, 63, 80, 94ff., 102-3, 115-
16, 145-47, 153, 172ff., 223-24. See

INDEX

also Agile software development;
Feature, develoment; Feature-
driven development; Lean devel-
opment; Test-driven development.
culture, 7, 63, 131, 153n., 173, 196-
204, 206-7, 218. See also
Project, culture.
iterative, 19, 35, 53, 94-99, 138,
160, 237
linear, 21, 26, 122-23, 182
process, 7, 15, 17, 18, 75, 109, 117,
145, 152-55, 184, 200, 203
team, 11, 20, 48-49, 57, 58, 67-68,
91, 95, 119, 148, 162-66, 185-
87,189
Development cycle. See Agile soft-
ware development, cycle; Itera-
tion; Release.
Dilbert, 16
Dispersed team, 10-12, 24-25, 29-33, 37,
44, 49, 52, 56-59, 63, 83-93, 102-3,
128, 130, 132-34, 149-51, 154-55,
162-67, 173-75, 183-87, 191-96,
203-4, 226
travel and, 32, 49, 59-60. See also
Expatriate; Meetings.
Distributed team, xiii-xiv, 3-6, 9-16, 22-
25, 26ff., 32n., 54n., 57-58, 62, 63n.,
76-77,78, 80, 83-84, 91, 95-96, 101,
109n., 118, 142, 149-51, 172, 183-
85, 188, 198-99, 203-4, 205ff.,
209n., 224, 226, 233ff.
agile methodologies and, 4, 23, 94
workload and, 23, 102-3
Documentation, 18, 21, 36, 91, 96, 98,
100, 110, 123, 152, 201-2, 219
Drag factor, 142
DSDM, 189, 208-9, 227, 238

Ebert, C., 200n., 205, 236

Eckstein, J., 28n., 38n., 39n., 50n., 51n.,
69n., 72n., 77n., 102n., 162n.,
177n.,181n.,213n., 236

Embedded application, 4, 40, 97, 100,
146

Error, 108, 111, 175, 181, 183, 187

Estimation, 68, 102, 120n., 124-30, 132-
33, 136, 141-43, 167-69, 170, 176,
186, 209-10, 218-19, 229, 230, 236
baseline, 123-24, 126, 128-30, 143,

218-19

243

INDEX

Estimation unit, 125-30, 169, 218-19,
227. See also Complexity point;
Feature point.

Estublier, J., 108, 233

Expatriate, 32, 63, 227

Extreme programming (XP), 17, 21, 44,
68n., 109, 111n., 118, 173n., 182n.,
183, 184, 187-90, 226, 232, 233,
235, 237,238, 239

Failure, 5, 9, 18, 19, 58, 101-2, 109, 113-
14, 152, 154, 158, 172, 175, 208, 210-
11, 216. See also Build, failed;
Project, failed.
Feature, 7, 28, 30, 36, 37, 51, 91-92, 96-
99, 178-80, 210, 227. See also Inte-
gration; Iteration, planning; Plan-
ning Poker; Requirements.
delivery of, 28, 36, 96-101, 115-16,
123, 130, 136-37, 138. See also
Velocity.

development, 91-92, 96-98, 115-23,
126-29, 140, 185

done-done, 96-100, 113, 123, 135,
136, 209, 226-27

operational, 20, 96-97, 139, 141,
227,228

requests, 87, 94, 179, 182, 217

Feature-driven development, 57, 139,
189, 239

Feature pack, 19-20, 99, 140-41, 142

Feature point, 126-30, 167-68, 227

Feature team, 6, 27ff., 51-52, 59-60, 82,
95, 115-16, 120, 128-29, 131, 134,
138, 153-54, 213, 215, 217, 227
collocation, 28-29, 38, 44, 49, 52,

134, 135, 151, 155, 167
experts, 10, 27-28, 36-38, 62, 177-
80, 183-87
roles, 6, 7, 26, 28-29, 36-49, 52, 77,
82,103,131, 213
architect, 36, 38-42, 46, 49-50,
52, 77,78, 120, 121, 127,
131, 134, 141, 180, 215,
225,229
coach, xiii, 33-35, 41-44, 48,
49, 131, 132, 134, 137,
141, 149, 156, 190, 197,
202-3, 215, 218, 221, 236
database administrator, 14,
27-28, 36, 127

244

developer, 5, 34-35, 37, 38-39,
42, 44-45, 49, 51, 68, 99,
103, 106, 126-28, 146-47,
175, 178-80, 226
documenter, 36, 226
domain expert, 36, 37, 99,
115,122,182
foster parent, 213, 221
product owner, 39, 41, 44-49,
51, 52, 60, 78, 116, 119,
120-22, 126-27, 131-32,
134, 138, 139, 140-41,
146, 147, 149, 151, 156,
160, 170, 176, 183, 186,
203, 209, 215, 216, 220,
228,229
programmer, 14, 26, 37, 65-
66, 127, 173-75, 179-80,
226
project manager, 5, 48-49, 52,
134, 152, 160, 183, 208
representative, 56-57, 80-82,
100, 129, 147, 151-57,
160, 190-91, 198-99
selection of, 36, 44-45, 77
tester, 14, 28, 37, 44, 99, 115,
127, 182-87
user interface designer, 27,
28,37, 50-51
size, 36-39, 44, 46, 60, 107
travel, 36, 37, 44, 46, 48-49, 60-61,
132,150, 155
Feedback, 7, 15, 20, 46, 62n., 67, 70-71,
77, 81, 85, 87, 89, 95-99, 113, 116,
122, 141, 145ff., 170, 183-87, 214,
216. See also Communication;
Retrospective; Synchronization.
continuous, 70, 95-96, 119, 145,
147
early, 20, 85, 140-41
Firewall, 43, 104, 111
Foundations, 128n., 208, 227
Fowler, M., 61, 68n., 80n., 82, 96n., 106,
109, 213, 233, 235
Friedman, T.L., 5n., 236
Functionality, 14-15, 19, 23, 27-28, 30,
36-37, 51, 94-95, 115-19, 139, 142,
147, 177-80, 182, 184, 186-87, 209,
227

Gabriel, R.P, 159n., 236

Gatekeeper, 43

Global software development stages,
15, 80, 108

Grimsted, D., 66, 210

Handy, C., 24n., 74n., 233

Hardware, 97-98, 100, 164

Harrison, N.B., 43n., 236

Herbsleb, D., 62, 233

Hierarchy, 69, 74, 77, 217
Highsmith, J., 94n., 140, 152, 233, 236
Hofstede, G., and G.J., 66, 126, 237
Hussman, D., v, 33, 63n., 80, 124, 233
Hvatum, L., vi, 21, 63, 72n., 196, 233

Implementation, 22, 42, 50, 103, 117,
122, 126-27, 129, 143, 182, 199,
201, 202, 204
referential, 50-51

Infrastructure, 4, 42, 63, 88, 92-93, 104-
14, 173, 180, 191, 194, 206, 208,
210, 213. See also Communica-
tion; Feature team, roles, domain
expert.
security and, 91-92, 104-5, 111-12,

114,135
Integration, 7, 18, 22, 24, 36-37, 96, 98-
99, 101-5, 109-10, 113-14, 135, 138,
145, 172, 175, 199, 200, 206, 210,
220, 226. See also Build; Feature
team, roles; Iteration.
continuous, 101, 107, 109, 185, 226
Iteration, 7, 19-20, 22, 24, 35, 59, 81, 95-
99, 148, 208-11, 220-21, 228. See
also Release; Review; Synchro-
nization.
fundamental, 208-10, 227
length, 95-97, 113, 138-40, 155,
176-77,220-21

planning, 59, 68, 83, 95, 100, 102,
116, 119£f., 130-38, 140-44,
148-49, 151, 155, 160-61, 176-
77,186, 208-11, 227, 229

retrospective, 19, 68, 152-53, 162,
170

review, 59, 147, 148-49, 150, 167,
170, 209, 210

Jain, N., v, 183
Jain, P, 111, 233

INDEX

Jakobsen, C., vi, 13, 21, 101, 102n., 201,
235

Jepsen, O., 60, 61n., 233

Johnson, K., 201n., 235

Josuttis, N., v-vi, 177

Joyce, T., 182, 232

Karlstrom, D., vi, 117

Karolak, D.W., 73, 74, 237

Karten, N., 205n., 237

Kerth, N., 62n., 152n., 153, 159, 237
Kick-off, 59, 211-13, 216-17, 218, 221
Kircher, M., vi, 40, 111, 173, 233
Kobayashi-Hillary, M., 211, 234
Koh, BJ., 33n., 58, 92, 93, 234
Konana, P, 200, 234

Krishna, S., 74, 214, 234

Lacity, M.C,, 5n., 237

Larman, C., 98, 237

Larsen, D., 161n., 236

Lavell, D., vi, 162

Leadership, 6, 69, 92, 93, 143, 216

Lean development, 13, 63, 201, 237

Lean Jidoka, 21

Learning, xiii, 18, 22, 27, 28, 35, 50, 63,
112, 117-18, 152-53, 158-59, 163,
199, 206, 211, 230. See also Retro-
spective.
environment, 34-35, 198, 213

Leuf, B., 58n., 237

Levine, D.L., 111n., 173, 233

Liker, J.K., 13n., 40n., 63n., 237

Lombardi, M., 202n., 234

Lv, Yi, vi

Maintenance, 38, 49-50, 139, 173, 177-
81,185,196

Management, 13n., 15, 21, 54, 69, 74n.,
93, 98n., 152n., 170n., 209, 233,
234, 237
support, 105, 216

Management By Flying Around, 78-79,
80, 92

Manns, M.L., 31n., 237

Marchesi, M., 111n., 173n., 235, 237,
238

Maurer, E,, 134n.

McConnell, S., 106n., 234

McKinney, V.R., 32, 234

245

INDEX

McMichael, B., 202, 234
Meetings, 44, 83n., 93, 118, 164-65, 198.
See also Iteration, planning; Retro-
spective; Review; Scrum of Scrums;
Synchronization.
face-to-face, 32, 54, 55-57, 59-61,
63,133,154, 157,174, 196
in-person, 58-59, 61, 63, 70, 74-75,
132, 140, 148-51, 155, 194,
207-8, 228
location, 56-61, 74-75, 132, 149-51,
154
representative, 56, 60, 100-101,
150
size and, 60, 149, 153-54
virtual, 70, 84, 90-92, 100-101, 133,
148, 150-51, 154-55, 157, 158-
59, 198
Mentor, 37, 167, 197-99, 203, 215
Metrics, 7, 23, 140, 166-71
Mikula, H., 175
Miller rule, 37
Mistake, 101, 160-61, 187, 197, 210. See
also Error; Problem.
Mockus, A., 62,233
Motivation, 22, 30, 33, 55, 105, 170
Mugridge, R., 182n., 237
Myers, W., 170n., 238

Nessier, R., 109, 234
Nies, A., vi, 67n., 157n., 160, 195n.
Noise, 71-72, 88, 124

Offshoring, 3, 4, 5-6, 13-14, 27, 33-35,
47, 53, 61n., 66n., 76, 80n., 183,
200, 202, 205, 228, 232ff., 238

Ombudsman, 77-78. See also Com-
munication, facilitator.

Organizational structure. See Central
coordination; Hierarchy; Team.

Outsourcing, 3, 4, 5n., 12-14, 49n., 74n.,
76n., 183, 200n., 202, 205, 229,
234ff.

Overtime, 23, 68, 102, 204

Pair programming, 21, 71, 90, 109, 173-
75, 187-88, 199, 203, 216

Patterns, 31n., 43n., 159, 178, 197, 204,
213, 219, 236, 237

Pelrine, J., vi, 109, 142n., 234

246

Plan-Do-Inspect-Adapt loop, 19, 97,
130, 210, 216
Planning, 94, 118, 120-21, 123ff., 149,
208, 211-12, 216-17, 221, 236. See
also Action plan; Agile software
development; Estimation; Itera-
tion; Release; Velocity.
component-based, 131, 138
look-ahead, 120-21, 141, 144
realistic, 68-75, 160, 169, 171, 218,
230
tool, 133-36, 152. See also Tools;
Wiki.
Planning Poker, 126-29, 143, 229, 239
Politics, 3, 48, 64,79, 191
Poppendieck, M., and T., 13n., 237
Postmortem. See Retrospective.
Practices. See Agile practices.
Problem, 24n., 34, 42, 48, 60, 77-79, 97-
99, 102, 103, 104-5, 107, 111-13,
117, 122, 160-61, 175-80, 184, 190,
197, 205-6, 210, 213, 231. See also
Smell.
reporting, 69-71, 79, 135, 189-91,
196
solving, 43-44, 48, 54, 70, 72, 77,
78-79, 82, 93, 95, 101, 103,
137,184-87, 206, 223-24
Processes. See Agile processes.
Process improvement, 7, 19, 21, 35,
107, 145-46, 149, 153-54, 160, 162-
66,217
Production environment, 96, 98-99,
103, 187, 209. See also Work envi-
ronment.
Product manager. See Feature team,
roles, product owner.
Product owner. See Feature team,
roles.
Project
culture, 30, 49, 65-67, 83, 198, 211,
213-15, 218, 221, 237
failed, 5, 9, 18, 58, 152, 158, 172,
208
goals, 4, 11-12, 19-23, 30-31, 34-35,
42,49, 51, 52, 54, 83, 92, 97,
101, 104, 115, 136-37, 144,
146, 148,172, 188, 201, 211
large, xiii, 3-4, 5n., 11-12, 16, 17n.,
25, 26, 44, 46, 53, 77, 104, 112,
115, 120, 122, 138, 153, 173,

176, 177-81, 188, 191, 211,
219, 229
organization, 12, 52, 128n., 138,
204,217
plan, 124, 140-43, 149
sites, 8, 22, 29, 32, 37, 49, 56-57,
63-64, 74, 76ff., 93, 95-97, 100-
101, 147, 156, 182, 195, 202-3,
215. See also Collocation; Fea-
ture team; Meetings; Travel.
representative, 56-57, 60-64,
80-82, 100-101, 150. See
also Ambassador; Fea-
ture team, roles.
size, xiii-xiv, 4, 11-12, 26, 38, 44,
46, 50, 69, 98, 102-3, 149, 151,
153-54, 160, 180-81, 202
status, 20, 69-70, 78, 80, 95-96, 101,
124, 134, 143, 146, 166, 183,
185, 190, 191, 204, 226
success, 3, 9-10, 13, 15, 18, 28, 40,
52, 53-54, 58, 67, 81, 83, 92,
100, 108, 120, 139, 146, 158,
170, 197, 203, 223-24, 232
support, 7, 17, 47, 48, 52, 55, 105,
145, 152,170, 188, 216
Project heartbeat, 97, 100, 104, 113, 130,
131, 148, 152-53, 227
Project manager. See Feature team,
roles.
Pugh, K., vi, 54, 61, 72, 234
Putnam, L.H., 170n., 238

Quality, 7, 21n., 104, 117, 147, 169-70,
200
code, 109, 177-81, 188, 199, 213
system, 23, 142, 145, 166, 172-73,
175

Refactoring, 23, 109, 175-80, 203, 230

Reflections, 24, 68, 152-53, 157, 162,
163,217,230

Release, 7, 19-20, 24, 59, 94, 99-101,
141-44, 148, 151, 209, 230
delivery, 22, 94-95, 115, 119, 141,

142-43,169, 201

external, 141, 154, 227, 228
internal, 141, 154, 227, 228
planning, 59n., 99-100, 139, 140-42

INDEX

Release iteration, 95, 99-100, 113, 147-
48

Release plan, 141, 142, 143, 209

Requirements, 14-15, 23, 28, 33-35, 41-
42, 44-45, 51-52, 85, 93, 94-95, 104,
115, 122-23, 127, 137, 178, 182-85,
201, 203, 227, 229, 230, 232. See
also Acceptance criteria; Specifica-
tion.
changing, 18, 22, 94, 116-19, 122,

138, 142-43

Responsibility, 7, 15, 21n., 24, 27, 31,
36ff., 56, 68-69, 75, 77, 79, 82, 83,
102-3, 105, 128, 136, 138, 141, 151,
155, 156, 177-81, 190, 196-98, 213,
216

Retrospective, 7, 19, 24, 62, 65, 145ff.,
151-66, 170, 197, 198, 206, 210,
217,218, 2271f., 236, 237
facilitation, 156-57, 158-59, 161-66
joint-site, 156, 160, 228
individual-feature-team, 153-56,

160, 228

project-wide, 154-56, 160, 229
virtual, 154, 157-59, 162-66

Review, 7, 62n., 83, 95, 137, 147, 148-51,
153-54,173, 184, 188, 197, 237

Rising, L., vi, 31n., 158, 237

Risk management, 12, 19-20, 28, 36, 38,
53n., 92, 95-96, 130-31, 139, 143,
145, 146-47, 171, 176, 199, 204,
209, 221, 234

Sahay, S., 74, 214, 234

Sakthivel, S., 53, 234

Sandberg, J.-E., 5, 107, 120, 235

Sangwan, R., 37, 112, 238

Satellite, 195-96, 230. See also Syn-
chronization.

Schedule, 61, 111, 113, 124, 130, 142

Schwaber, K., 94, 169n., 238

Scope, 10, 11, 68, 118, 140, 151

Scott, J., 62,238

Scrum, 17, 20n., 43, 45, 94, 109, 116,
136, 142, 169n., 201-2, 209, 226,
227,230, 231, 234, 235, 238, 239
Daily, 110, 189-90, 226

Scrum of Scrums, 82, 92, 190-91, 194,
230

Sedley, L., 203n., 236

Shao, B.B.M., 13n., 14n., 26, 235

247

INDEX

Shim, J.P,, 87, 232
Simons, M., 47, 235
Sites. See Agile software development,
distance and; Communication,
distance and; Project.
Skar, L.A., 5,107, 120, 235
Smart Meeting, 196, 231
Smell, 24, 95, 100, 149, 231
Smith-David, J., 13n., 14n., 26
Smits, H., 209, 212, 235
Smoke test, 102, 106, 234
Social connection, 7, 35, 56, 58-59, 62,
77,78, 80-81, 83-84, 90, 92-93, 111,
194, 196, 204
everyday life, 84, 90, 93
joint celebration, 83, 92, 93, 225
pictures and, 83, 87-88, 93
Specification, 115, 118, 122, 182, 203
Sprint, 20n., 95, 209, 227. See also Scrum.
Staff, 10, 23, 26, 27, 28, 37, 57, 60-61,
214. See also Dispersed team;
Distributed team; Feature team;
Team members; Team.
Stakeholder, 42, 93n., 99, 117-19, 123,
141, 146-47, 170, 227, 232. See also
Customer.
Standards. See Agile processes;
Quality; Requirements.
Starting team, 50, 128, 205, 206-8, 211,
213-14, 218, 221
Sub-team, 26-27, 32, 67, 82n., 138, 163,
180, 220, 229, 231
Succi, G., 111n., 173n., 237, 238
Sutherland, J., 201n., 235
Synchronization, 28-30, 69, 76, 82n., 97,
100, 108, 113, 188, 190-96, 203-4,
229. See also Communication;
Scrum of Scrums.
daily, 57, 69-70, 82, 87-88, 90-91,
92, 134, 135, 149, 161, 189-96,
203-4, 226, 229
System, 7, 15, 23, 36-37, 39-42, 44-45,
49-50, 70, 96, 97, 99-101, 145-48,
170-71, 184
working, 20, 24, 100, 101, 102n.,
105, 106, 113, 141, 147-48, 178

Taylorism, 21
Team, v, xiii, 4, 6-8, 18, 22-23, 26ff., 143,
145-46. See also Dispersed team;

248

Distributed team; Feature team;

Starting team.

growing, 8, 130, 140, 142, 205,
206-8, 211-15, 221

identity, 11, 31, 33-35, 38, 52, 76,
81,92, 139, 148, 162, 212-14

jelling, 30, 31, 32, 54, 159, 192-93,
202, 204, 212. See also Devel-
opment, culture; Mentor;
Project, culture.

ownership, 51, 105, 109, 129, 143,
179, 180-81, 207. See also
Responsibility.

roles. See Feature team, roles.

self-organizing, 15, 24, 28, 68, 197

structure, 26-31, 50, 62, 120, 138-
40, 191, 213, 217. See also
Central coordination; Hier-
archy.

virtual, 32, 33n., 73-74, 79, 92-93,
102-3, 217, 234, 237

Team member, 4, 6-7, 12, 14, 21n., 22,
24, 28ff., 54, 223-24. See also
Feature team.
collaboration, 4, 10, 13, 18, 22, 25,
27-28, 31, 33-34, 35, 38, 44,
51-52, 53ff., 85-86, 90-93, 122,
163-67, 170, 174, 179, 181,
185, 192, 197, 200, 218, 225.
See also Communication;
Synchronization.
recruiting, 7,9, 12, 218
rotation, 59-61, 74-75, 81, 100-101,
177, 180, 207-8. See also
Ambassador; Collocation;
Meetings; Travel.
skill, 23, 28, 29, 35, 48, 52, 70, 78,
81, 105, 159, 167, 188, 198,
202, 214, 217. See also
Training.
Technical service team, 50-51, 52, 213.
See also Conceptual integrity.
Technology, 9, 23, 37, 50, 65n., 74, 88,
117, 131, 164-66, 173, 206, 209, 213,
215, 235

Test-driven development, 21, 109, 184,
198, 199

Testing, 23, 96, 98-99, 127, 145, 170,
178. See also Verification.

Tests, 20, 70, 91, 98, 106-7, 110, 141,
170, 178, 182-83, 186, 199, 237. See

also Acceptance criteria; Accep-
tance test; Smoke test; Unit test.
Thondavadi, N., 5n., 238
Time-boxing, 139, 142, 157, 206, 208-11,
228,230
Tjia, P, 76, 79, 236
Tools, 7, 17-18, 24, 62, 74, 77, 85-93,
103-9, 113, 133, 134, 135-36, 146,
152, 164-65, 181, 182n., 185, 200,
217. See also Communication;
Planning; Videoconference.
Training, 23, 28-29, 37, 39, 70, 78, 82,
103, 197-98, 202-3, 206-7, 211-12,
214-15,217
Transparency, 18, 20, 27, 135, 143, 176,
185, 192, 206
Travel, xiii, 7, 56-57, 59, 61, 77-79, 80-
81, 84, 111, 132, 140, 150, 203, 208.
See also Communication, facili-
tator; Dispersed team; Feature
team; Meetings.
candidate, 81
Trust, 6, 12-13, 21-22, 24-25, 33, 35,
53ff., 74, 76-77, 105, 183, 216, 232,
233
communication, 6, 53, 54, 58, 63-
64, 66-67,70-71, 77, 86-90, 92-
93,184
establishing, 6, 12-13, 32, 53ff., 58,
67,77, 83-84, 93, 116, 147,
194, 208, 211-13
maintaining, 33, 53-60, 71, 76, 78,
84, 87, 90, 93, 109, 117, 143,
174,194, 198-99, 202, 204, 234
mutual respect and, 6, 12, 21, 31,
35, 54-58, 60, 63-64, 75, 76-78,
83-84, 93, 100, 109, 193-94,
204, 207, 231
threshold, 55-56, 59, 74-75, 77, 83,
196, 225, 231
Tuckman, B., 54n., 235

Unit test, 37, 70, 106-7, 170, 175, 216

Use case, 41, 50, 227

User, 34, 52, 53, 58n., 68, 146-47, 170

User interface, 27, 37, 49, 50-51, 147-48,
178,185

User story, 35, 126, 184-87, 209, 227

INDEX

Velocity, 7, 130-31, 132, 141, 149, 166-
68, 218-19. See also Complexity
point; Estimation; Feature point.
disparity, 130-31, 167, 218-19
ideal time and, 124-25, 126, 169,
220, 228

real time and, 124-25, 126, 132,
169, 230

team, 68, 70, 96, 102, 111, 123-32,
140-43, 218-19

Verification, 115, 136-37, 175, 181

Versioning, 65, 91, 106-9, 181

Videoconference, 87-88, 92, 118, 134,
150-51, 174n., 193, 194, 195, 232

Virtual team. See Team, virtual.

Vodde, B., vi, 30n., 64, 90, 111, 112n.,
133, 134n.

VOIP, 118, 173, 174n., 186

Walsham, G., 74, 214, 234

Webcam, 83, 84, 128, 133, 150, 173

Weinberg, G.M., 170n., 238

Wells, D., 111n., 237

White board, 62,92, 134, 164

Whiteside, M.M., 32, 234

Wiki, 58, 67, 81, 83, 84, 86, 90, 91-92, 93,
110, 133, 135, 156, 160, 165, 186,
192, 195, 197, 225, 237

Willcocks, L.P, 5n., 237

Williams, L., 111n., 237

Work environment, 4, 12, 20, 31, 36, 55,
61,67,69,71,105, 111-13, 143, 172,
200, 206, 209, 223. See also Infra-
structure; Noise.

Working software, 18, 22, 23, 26, 94,
122,166, 201n. See also Release.

XP. See Extreme programming.

Yesterday’s Weather, 68, 124-25, 239
Yourdon, E., 49, 238

249

	Contents
	Preface
	3 Building Teams
	Feature Teams
	Single- and Multi-Site Teams
	Dispersed Teams
	Forging a Team

	Roles
	Feature-Team Constellation
	Architect and Chief Architect
	Coach
	Product Owner and Product Manager
	Project Manager
	Collocate Key Roles with Teams

	Ensuring Conceptual Integrity
	Starting Team Provides Model
	Technical Service Team

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

