
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133491296
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133491296
https://plusone.google.com/share?url=http://www.informit.com/title/9780133491296
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133491296
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133491296/Free-Sample-Chapter

Just

Enough

Requirements
Management

DH Also Available from Dorset House Publishing

Agile Software Development in the Large:
Diving Into the Deep
by Jutta Eckstein
ISBN: 0-932633-57-9 Copyright © 2004 248 pages, softcover

The Deadline: A Novel About Project Management
by Tom DeMarco
ISBN: 0-932633-39-0 Copyright © 1997 320 pages, softcover

Five Core Metrics: The Intelligence Behind Successful Software Management
by Lawrence H. Putnam and Ware Myers
ISBN: 0-932633-55-2 Copyright © 2003 328 pages, softcover

Hiring the Best Knowledge Workers, Techies & Nerds:
The Secrets & Science of Hiring Technical People
by Johanna Rothman foreword by Gerald M. Weinberg
ISBN: 0-932633-59-5 Copyright © 2004 352 pages, softcover

Peopleware: Productive Projects and Teams, 2nd ed.
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-43-9 Copyright © 1999 264 pages, softcover

Project Retrospectives: A Handbook for Team Reviews
by Norman L. Kerth foreword by Gerald M. Weinberg
ISBN: 0-932633-44-7 Copyright © 2001 288 pages, softcover

Software Endgames:
Eliminating Defects, Controlling Change, and the Countdown to On-Time Delivery
by Robert Galen
ISBN: 0-932633-62-5 Copyright © 2005 328 pages, softcover

Waltzing with Bears: Managing Risk on Software Projects
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-60-9 Copyright © 2003 208 pages, softcover

For More Information

• Contact us for prices, shipping options, availability, and mor

• Sign up for DHQ: The Dorset House Quarterly in print or PDF.

• Send e-mail to subscribe to e-DHQ, our e-mail newsletter.

• Visit Dorsethouse.com for excerpts, reviews, downloads, and mor

DORSET HOUSE PUBLISHING
An Independent Publisher of Books on

Si/stems and Software Development and Management. Since 1984.
353 West 12th Street New York, NY 10014 USA

1-800-DH-BOOKS 1-800-342-6657
212-620-4053 fax: 212-727-1044

info@dorsethouse.com www.dorsethouse.com

http://www.dorsethouse.com

Just

Enough
Requirements
Management

Where Software
Development
Meets Marketing

ALAN M. DAVIS

DH
DORSET HOUSE PUBLISHING

353 WEST 12TH STREET
NEW YORK, NEW YORK 10014

Library of Congress Cataloging-in-Publication Data

Davis, Alan Mark.
Just enough requirements management: where software development meets

marketing / Alan M. Davis.
p. cm.

Includes bibliographical references and index.
ISBN 0-932633-64-1

1. Computer software industry. 2. Computer software—Development. 3.
Computer software—Marketing. I. Title.

HD9696.63.A2D38 2005
O05'.068'5-dc22

2004028999

Trademark credits: All trade and product names are either trademarks, registered
trademarks, or service marks of their respective companies, and are the property of
their respective holders and should be treated as such.

Cover Design: Nuno Andrade

Copyright © 2005 by Alan M. Davis. Published by Dorset House Publishing, 353
West 12th Street, New York, NY 10014.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechan-
ical, photocopying, recording, or otherwise, without prior written permission of the
publisher.

Distributed in the English language in Singapore, the Philippines, and Southeast
Asia by Alkem Company (S) Pte. Ltd., Singapore; in the English language in India,
Bangladesh, Sri Lanka, Nepal, and Mauritius by Prism Books Pvt., Ltd., Bangalore,
India; and in the English language in Japan by Toppan Co., Ltd.,Tokyo, Japan.

Printed in the United States of America

Library of Congress Catalog Number: 2004028999

ISBN: 978-0-932633-64-4 12 11 10 9 8 7 6 5

Digital release by Pearson Education, Inc., June, 2013

Acknowledgments

I would like to thank Wendy Eakin of Dorset House, who quickly
shared my vision to produce a "good enough requirements" book.
Also deserving of thanks are the approximately 6,000 students to
whom I have had the opportunity to teach requirements manage-
ment over the years. Although I was officially the teacher, I feel I
have learned so much from all of them and their experiences. My
personal evolution as a requirements manager has progressed for
the most part as the result of interacting with them.

I would also like to thank all of the colleagues I have worked
with over the past 34 years, in both academe and industry. They
too have been instrumental in shaping my thoughts and opinions.

I thank two universities for their contributions to this work: the
University of Colorado at Colorado Springs, for granting me a
sabbatical so I could devote time to writing, and the University of
the Western Cape, South Africa, for providing me with a stimu-
lating environment during my sabbatical.

But, above all, I want to thank my family for being with me
always: my beloved wife of 27 years, Ginny; my wonderful chil-
dren, Marsha and Michael; and my parents, Barney and Hannah.

v

J

E

R

M

This page intentionally left blank

Contents

Preface xi

ONE: Introduction 3
Requirements 3
Requirements Management 6
Just Enough 8
The Context of Requirements 10
The Relationship Between Schedule and Requirements 18

How Much Time to Spend on Requirements? 18
Who Should Define the Schedule? 20
Schedule Should Drive Requirements 20
How Much Time Between Releases? 21

The Components of Requirements Management 23
The Importance of Requirements Management 36

TWO: Requirements Elicitation 40
Definitions and Terminology 40
Why Do Elicitation? 45
Elicitation Techniques 45

Interviewing 47
Facilitated Group Meetings 48

VII

J

E

R

M

vin • CONTENTS

Computer-Supported Cooperative Work 52
Observation 53
Questionnaires 54
Prototyping 55
Scenarios, Use Cases, Stories, and Storyboarding 56
Modeling Notations 58

The Result of Elicitation 59
The Secrets of Just Enough Elicitation 61

THREE: Requirements Triage 63
Definitions and Terminology 63
Why Do Triage? 67
Basic Triage Techniques 68

Prioritizing Candidate Requirements by Importance and Cost 69
Estimating Effort for Candidate Requirements 74
Disagreements Concerning Relative Priority of Requirements 75
Disagreements Concerning Effort to Satisfy a Requirement 77
Establishing Requirements Relationships 78
Performing Triage on Multiple Releases 83
Making the Triage Decision 84
Delivery Date: Talking Apples and Apples 97

Advanced Triage Techniques 97
Considering Risks Inherent in Addressing Specific Requirements ...98
Considering Market and Market Size 101
Considering the Market Window 102
Considering Market Penetration 104
Considering Price 105
Considering Costs 108
Considering Revenues 110
Considering the Effect of Investment 110
Putting It All Together 114

The Result of Triage 115
The Secrets of Just Enough Triage 116

FOUR: Requirements Specification 119
Definitions and Terminology 119
Classic Requirements Documentation Styles 122
The Content of a Requirements Document 125
The Role of a Requirements Document 127
Qualities of a Requirements Document 128

CONTENTS • ix

Specification Techniques 136
Feature Intensity 136
State-Based Problems 140
Decision-Based Problems 142
Nonbehavioral Requirements 146
User Interface 153
Hardware Interface 155
Requirements for Reports 156

The Result of Specification 156
The Secrets of Just Enough Specification 161

FIVE: Requirements Change 163
Where Do Changes Come From? 164
How to Keep Track of Requested Changes 165
Choices for Handling the Changes 165
The CCB Meeting 170
The Secrets of Just Enough Change 171

SIX: Summary 172
Requirements Elicitation 173
Requirements Triage 174
Requirements Specification 175
Requirements Change Management 176

APPENDIX A: Quick Recipes 177
Brainstorm 178
Decide What Is or Isn't a Requirement 183
Decide What to Build 185
Produce a Requirements Document 188
Assess the Quality of a Requirements Document 190
Baseline the Requirements 192
Ensure That Everybody Knows the Requirements 192
Handle New Requirements After Baselining 194
Handle Multiple Customers 196

APPENDIX B: A Set of Documented Requirements 200

References and Additional Readings 209

Index 227

About the Author 239

This page intentionally left blank

Preface

When I first started studying requirements specifications and
teaching classes on them in the late 1970's, I recognized that
writing good requirements is very difficult. I worked hard to
remove and help others to remove every trace of ambiguity from
each and every requirement. I was convinced back then that a
polished, word-processed requirements document was the only
right way to record requirements. As I gained more and more
experience, though, I started to realize that ambiguity can never be
entirely removed from a requirements document that is written in
natural language. So, I started to explore alternate ways of docu-
menting requirements.

By the mid 1980's, my solution to the problem of ambiguity in
requirements was to use more and more formalism. Formalism
allows requirements writers to remove some of the ambiguity by
replacing natural language with notations that possess unam-
biguous semantics. By 1990,1 had written Software Requirements, a
book that explored many of these rich notations.

By the mid 1990's, I was experiencing more and more push-
back from customers. Computer-science-savvy customers
embraced the notations. Of course, the software engineers loved
the formalisms, such as finite state machines, decision tables, Petri

XI

J

E

R

M

xii • PREFACE

nets, statecharts, and so on. However, a very large majority of the
customers I was meeting were not computer-science-savvy and
had no interest in becoming so. What they wanted was very simple:
to have their real-world problems solved.

Around the turn of the millennium, I realized why we commu-
nicate on a day-to-day basis in natural language: It works. One
secret to writing good requirements, then, is to write them
primarily in the language of the customers. For example, consider
these customers:

• a hospital administrator looking for a new patient records
system

• a military officer interested in procuring a new weapon
control system

• a marketing person looking for a new way to build a
Website quickly

• an employee in an operating division of any company

What language is spoken and understood by these customers?
Answer: natural language.

However, the days of large, word-processed requirements
documents are over. These days, there are too many things that a
manager needs to do quickly—more quickly than a word-
processed document can provide. For example, a manager needs
to know the following:

• How many requirements are there in Release 2.0?
• How many high-priority requirements have been delayed

until Release 3.0?
• What percentage of the requirements for Release 2.0 are

low-priority?
• Which requirements in Release 2.0 are high-priority, are

being built for Customer X, and are the responsibility of
Sally?

It was the need for quick answers to questions like these that
helped me conclude that the only way to record requirements
when pressed for time is to list the discrete requirements, anno-
tating each with multiple attributes.

Having a list of requirements solves many problems, but it
misses a major purpose of creating requirements in the first place.

PREFACE • xin

We create requirements to address needs, or markets. Without a
thorough understanding of those needs, we are wasting our time.
What good are "perfect" requirements—ones that are nicely
worded and neatly laid out in a table—if they fail to address the
customers' needs?

This book is all about how to discover, prune, and document
requirements when you are subjected to tight schedule constraints.
If you are in an environment with unlimited resources and unlim-
ited time, then you need not read this book.

March 2005 A.M.D.
Colorado Springs, Colorado

This page intentionally left blank

Jlist

Enough

Requirements
Management

This page intentionally left blank

THREE

Requirements

Triage

As you discovered in the previous chapter, poorly executed
requirements elicitation can hamper development. In this chapter,
you will learn more about the second major area of requirements
management: requirements triage.

DEFINITIONS AND TERMINOLOGY

After eliciting and creating a list of requirements, you will likely
want to establish (or learn about) the desired schedule and the
available budget. No matter how ample either of these appears to
be, one of them, if not both, will be insufficient to address all the
requirements. To solve this problem, you will need to find some
way to balance the desired requirements, your available budget,
and the desired schedule. Requirements triage is the art of selecting
the right requirements to include in the next release of your
product [DAV03]. Although many people with many diverse titles
are assigned the task of performing elicitation, very few ever
acknowledge this responsibility.

In most organizations, triage is not performed explicitly.
Instead, it is performed by some combination of intimidation,

63

J

E

R

M

64 • JUST ENOUGH REQUIREMENTS MANAGEMENT

inertia, osmosis, and incompetence. Here are some typical
scenarios:

• The "You're Not a Team Player" Approach: Development and
marketing cannot agree on a set of requirements and a
schedule. Specifically, marketing "demands" that all the
requirements must be included by a particular date "or the
product might as well not be built." Development knows
that the date is totally unreasonable, given the set of
requirements, and fights back. Notice that both parties are
trying to represent the best interests of the company. Frus-
trated, marketing approaches executive management,
explains how important it is to have all the requirements
satisfied by the date, and then informs the boss of develop-
ment's "obstructionist attitude." Development is then seen
as "not a team player," and executive management
demands that it conform. The manager of development
agrees to the date even though he knows it is impossible to
meet. The project is not delivered on schedule. Notice that
the development organization is able to be late and still say,
"I told you so."

• The "You Don't Understand Technology" Approach: Develop-
ment and marketing cannot agree on a set of requirements
and a schedule. Specifically, marketing "demands" that all
the requirements must be included by a particular date "or
the product might as well not be built." Development
knows that the date is totally unreasonable, given the set of
requirements, and fights back. Frustrated, development
approaches executive management, explains how impor-
tant it is for the company to be successful, and then informs
the boss of marketing's "death wish." Marketing is seen as
trying to set up the company to fail by insisting that it try
to accomplish the impossible. The manager of marketing
agrees to either reduce requirements or delay the product
release, even though she knows that the product will no
longer be competitive. When marketing fails to meet
revenue goals, it has the perfect scapegoat: development.

• The "Over-Estimate" Approach: Development knows from
past experience that it is going to be forced to accept a
ridiculously tight schedule. Therefore, developers over-

THREE • REQUIREMENTS TRIAGE • 63

estimate the effort needed to address each requirement.
They hope that by doing so, they will have enough slack
built into the schedule for them to actually succeed. This
scenario may result in a successful product delivery.
Unfortunately, the games being played make it impossible
to ever repeat the process in a predictable manner. None of
the players learn anything about why it worked or how to
improve it. Executive management may walk away from
the project feeling that it was successful, but for all the
wrong reasons.

• The "Over-Demand" Approach: Marketing knows from past
experience that development is going to deliver late regard-
less of what is needed. Therefore, it gives development an
earlier deadline for product delivery, hoping that when the
product is delivered, although late relative to the deadline,
it will still be early enough to meet the real market window.
This scenario may result in a successful product delivery.
Unfortunately, the deceit involved makes it impossible to
ever repeat the process in a predictable manner. No one
involved learns anything about why it worked or how to
improve it. But the worst part of this scenario is that devel-
opment gets an undeserved "bad rap."

Synonyms for requirements triage include release planning
[CAR02], requirements prioritization [WIE03], optimal attainment
of requirements [FEA02], requirements negotiation [IN01], require-
ments selection [KAR96, RUH03], and requirements allocation.1 I
prefer the term "triage" because the analogy to triage in medicine is
so fitting. As I described in [DAVOS], after a medical disaster,
medical personnel "systematically categorize victims into three
groups: those who will die whether treated or not, those who will
resume normal lives whether treated or not, and those for whom
medical treatment may make a significant difference. Each group
requires a different strategy. The first group receives palliative care,
the second group waits for treatment, and the third requires some
ranking in light of available resources. As new victims appear,
personnel must repeat the categorization."* Notice how similar this
is to the software world. Some requirements are no-brainers—we

1 "Requirements allocation" more commonly connotes the assignment of
requirements to specific software components or sub-systems rather than to
specific releases.

* Alan Davis, "The Art of Requirements Triage/' IEEE Computer, Vol. 36, No. 3
(March 2003), p. 42. © 2003 IEEE. Used by permission.

66 • JUST ENOUGH REQUIREMENTS MANAGEMENT

absolutely must address them or the product won't do its job.
Other requirements are a different kind of no-brainer—just dreams
that should remain unfulfilled until the appropriate resources are
available. The third set requires ranking in light of available
resources. As new requirements emerge or resources change, new
rankings must be performed.

Triage is the most interdisciplinary of the three areas of require-
ments management. Successful triage requires close interplay
between those responsible for understanding customer needs and
the timing of those needs,2 those responsible for expending
resources to satisfy requirements,3 those responsible for the alloca-
tion of money to the project,4 and those responsible for overall
project success.5 Successful triage requires knowledge of the
following:

• The needs of the customers: What problems does the
customer have, and what is the relationship of various
product requirements to the solution of those problems?

• The relative importance of requirements to the customers:
Which requirements have the most (and least) value to the
customer? If you simply ask this question directly, in most
cases the answer will be, "They are all critical/7 Later in
this chapter, I discuss better ways to determine relative
importance.

• Timing: What is the market window? By when does the
customer need each requirement addressed? If you simply
ask this question directly, in most cases the answer will be,
"I need them all today/'6 Later in this chapter, I discuss
better ways to determine relative timing.

2In an organization planning to sell the product being specified to a commercial
market, these individuals are typically called marketing personnel In an organi-
zation planning to build a product for internal use, they are typically called
analysts. In an organization planning to build a custom product for an indi-
vidual customer, they are typically the customers themselves.

^When building software for internal business use, these individuals are typically
called the IT department. Otherwise, they are called the R&D organization, the software
development organization, or software engineering.

^These are the individuals responsible for funding the software development
organization, and will vary based on whether the funding is allocated via corpo-
rate line management, by the customer directly, or by a project organization.

^Typically called a product manager, project manager, or program manager.
6Or worse, "yesterday/7

THREE • REQUIREMENTS TRIAGE • 67

• Relationships among requirements: Which requirements make
sense only when other requirements are already present?
For example, it makes little sense to include a requirement
to bill for a particular service if the service itself is not being
provided by another requirement. Are some requirements
easier to implement after other requirements have already
been implemented? Which ones? Which requirements are
no longer needed when other requirements are met?
Which requirements are incompatible with which other
requirements?

• Sensible subsetting [PAR76]: Which sets of requirements
make business sense only when all members are present?

• Cost to satisfy each requirement: How many resources
(measured in terms of currency, effort, or elapsed time) will
need to be expended in order to satisfy each requirement?

Triage should be performed for every planned release of a product,
as indicated by the left-most oval in Figure 3-1. It is during this
time that most requirements are assigned critical attributes and
major decisions are made concerning which requirements will be
addressed in the next release. As shown by the center and right-
most ovals in Figure 3-1, triage activities are repeated each time
new requirements arise or new resources become available.

Figure 3-1: Triage in the Requirements Process.

WHY Do TRIAGE?

In an attempt to do just enough requirements management, you
may be tempted to dispense with triage. After all, most organiza-
tions don't do it, anyway. And it is difficult to do. Furthermore, in

68 • JUST ENOUGH REQUIREMENTS MANAGEMEN

most companies, development, finance, and marketing rarely get
along with each other. So why bother? The answer lies in the fact
that most systems built today do not meet customer expectations.
Perhaps the lack of triage is the very reason for this. Not doing
triage guarantees that your organization is taking huge risks: the
risk of satisfying the wrong requirements, the risk of promising to
meet a schedule only to miss it significantly, the risk of agreeing to
satisfy requirements for a given budget only to exceed it signifi-
cantly, and so on.

Performing triage is the most effective way to achieve just
enough requirements management. It is triage that enables the rest
of system development to proceed on schedule while still
providing a quality product. Not performing triage is not an
option. If you do not do it explicitly, it will occur implicitly. And if
performed implicitly, you are leaving the success of your project to
pure chance.

BASIC TRIAGE TECHNIQUES

This section of the book differentiates between basic and advanced
triage. Basic triage is the art of achieving a balance between
requirements, development cost, development schedule, and risk.
It is the minimal amount of triage that should be performed when
trying to accomplish software development in a just enough
manner. Basic triage can be thought of as performing a balancing
act upon a three-person seesaw, as shown in Figure 3-2. If the
requirements are too "heavy" for the seesaw, then the schedule and
cost arms rise, indicating excessive risk of failing to meet schedule
and cost. If the desired schedule or cost is too "light" for the
seesaw, then the requirements arm falls, indicating excessive risk of
failing to meet all the requirements.

Figure 3-2: Basic Triage Represented as a Three-Person Seesaw.

THREE • REQUIREMENTS TRIAGE • 69

Performance of basic triage necessitates that you know something
about the requirements being considered for inclusion. At a
minimum, this knowledge should include the relative importance
of the requirements (from the customer perspective) and the cost of
satisfying each requirement. There are many other attributes, but
these are the two that you cannot afford to omit.

Prioritizing Candidate Requirements by Importance and Cost

Numerous techniques exist to determine the relative importance of
requirements. Ironically, one technique that does not work is to
simply ask individual customers to prioritize the requirements. If
you do this, most customers will tell you that all the requirements
are of equal importance and they are all critical. Instead, gather
stakeholders together in a room, show them the list of candidate
requirements, and ask them to apply the hundred-dollar test, the
yes-no vote, or the five-way priority scheme.

To apply the hundred-dollar test [LEFOO], explain to the stake-
holders that they each have one hundred (imaginary) dollars that
they must distribute among the candidate requirements—in this
case, let's say we have 100—in such a way that if requirement i is x
times more important than requirement j, then they should give it
x times more money. Also, explain to them that it would be point-
less to give $1.00 to each requirement because when we sum all the
votes, their vote would have no effect on the outcome, so this is
equivalent to not voting at all. If the group is small enough, simply
point to each candidate requirement, conduct a short discussion to
make sure that everybody understands the requirement suffi-
ciently, and then go around the room asking each stakeholder for
his or her points. Add as you go, and write the sum of the votes
next to the requirement. Repeat this for every candidate require-
ment. Sort the requirements from most to least points, and—
voila!—you have your prioritization.

If the group is too large to count the votes in real time, you may
do the counting one of two ways. First, if the candidate require-
ments are already in an electronic medium, have all the stake-
holders record their votes using a computer. If the candidate
requirements are written down (on cards, as a result of brain-
storming, for example), simply give the stakeholders a marker and
ask them to record their votes on the cards. The biggest advantage

70 • JUST ENOUGH REQUIREMENTS MANAGEMENT

of the hundred-dollar test is that stakeholders can vote how they
really believe, so if they believe one requirement is ten times more
important than another, they can give it ten times more votes.

The biggest disadvantage is that the hundred-dollar test can
easily be "gamed/7 Let me tell you about a situation that occurred
a few years ago, an excellent example of gaming: We had gathered
seven or eight stakeholders together in a room to discuss the next
release's features. We started with a two-hour discussion of all the
requirements. During this time, one stakeholder expressed his
view that only four of the requirements were of high importance to
him. It also became evident that everybody else in the room
shared his assessment of three of the four, but only he cared about
the fourth one. When it came to a vote, he realized he would be
wasting his vote on the first three, since the other stakeholders
would vote for them. So, he put all one hundred dollars on the
fourth requirement. After tallying the votes, we discovered that
the fourth requirement received the highest number of total votes,
even though only one stakeholder cared about it.

Collusion is another game that stakeholders sometimes play
This also happened to me a few years ago: I had gathered together
six stakeholders for a hundred-dollar test. I had warned them up-
front of the futility of giving every requirement the same number
of points. I pointed to the first requirement and added up the
votes: $6.00. I pointed to the second requirement and added up the
points: $6.00 again. After this happened eight more times, I real-
ized that they must have colluded before entering the room. I
could imagine them saying, "Davis is going to try to get us to agree
that some of the requirements are less important than others! We
all know that they are all of equal importance, so let's not let him
get away with it." When this became evident to me, I suggested a
short recess. During the recess, I cornered one of the developers
and asked him to join us for the rest of the voting. Upon recon-
vening, I announced, "I have asked Quinn to join us for the
remainder of the voting. As you all know, I strongly believe that
developers' opinions on the importance of requirements are not as
important as customers' opinions. For that reason, I am giving
Quinn just $1.00 to distribute in one-cent increments among the
one hundred candidate requirements. Nobody should feel intimi-
dated by Quinn's presence. After all, no matter how he chooses to
vote, any one of you can easily out-vote him with just one of your

THREE • REQUIREMENTS TRIAGE • 71

hundred dollars/' And so we continued the voting process. The
first requirement Quinn voted on earned $6.10, the next earned
$6.01, and so on. Within a few minutes, it became clear to the
stakeholders that if they continued with their collusion game,
Quinn would be making all the prioritization decisions. Finally,
one of the original stakeholders asked if we could start over again.
During this second run, the stakeholders voted more accurately.
Some would say I tricked the stakeholders into voting in a differen-
tiated manner, but Quinn's presence would not have had any effect
on their votes if their votes actually reflected how they felt about
the relative priorities of the requirements.

To address the inherent weaknesses of the hundred-dollar test,
some organizations use a much simpler voting system: the yes-no
vote. In this system, simply point to each requirement and ask
stakeholders to indicate their interest-level in the requirement by
raising their hands. There is no reason to establish limits on the
hand-raises. If stakeholders choose to raise their hands to all or
none of the requirements, they should feel free to do so. No matter
how many people are in the room, it is pretty easy to tally the
number of raised hands. Record these numbers next to the require-
ments and sort them from highest to lowest to find the relative
prioritization of your candidate requirements. The yes-no vote is
very easy to administer, but has two major problems:

• What does it mean for a stakeholder to not raise a hand for
a requirement? Does it mean that he or she does not care if
the requirement is satisfied in this release? Or does it mean
that he or she believes that including the requirement in the
current release would actually detract from its usefulness?

• How should a stakeholder vote if he or she really believes
that one requirement is twice as important as another
requirement, but that both should be included in the next
release?

To overcome the weaknesses of the yes-no vote while maintaining
simplicity, try using the five-way priority scheme, which is the
system I use most. Conduct the voting the same way that the yes-
no vote demands, but give the stakeholders five options. They can
vote +1 if they are for the requirement's inclusion in the next
release, 0 if they don't care, and -1 if they are against its inclusion.

72 • JUST ENOUGH REQUIREMENTS MANAGEMENT

They can also vote +2 if they feel the requirement is extraordinarily
important, and -2 if they feel its inclusion is extraordinarily
destructive to the release. To make the tallying process easy, ask
the stakeholders to vote with their fingers, as shown in Figure 3-3.
When I am facilitating a triage session with ten or fewer stake-
holders, I usually record all their votes rather than just the sum, as
shown in Figure 3-4. My reason for doing this is simple: Let us say
that two requirements each score 0 points, but one is the result of
every stakeholder voting 0 and the other is the result of five stake-
holders voting +2 and five stakeholders voting -2. In the former
case, the requirement should be excluded from the baseline. But
the votes for the latter requirement indicate that we may need to
consider two versions of the product.

Figure 3-3: Five-Way Priority Scheme.

The above prioritization schemes work as stated when the stake-
holders are all equally important. If some stakeholders are more
important than others, you may want to modify the data collection
method somewhat. First of all, if the politics of the situation are
such that all parties understand which stakeholders are most
important, then simply weight those individuals' votes accord-
ingly. For example, if everybody knows that stakeholder x is twice
as important as anybody else, just count his or her votes twice. If
the politics dictate that the relative importance of stakeholders

THREE • REQUIREMENTS TRIAGE • 73

remain clandestine, then it is best to collect all the votes electroni-
cally (or secretly) and do the tallying remotely.

Figure 3-4: A List of Prioritized Candidate Requirements?

'Sometimes, prioritization is only applied down to a certain level of refine-
ment; in this case, it's to the second level only. That is why I have omitted
requirements 2.3.1 and 2.3.2 from this figure.

During the triage discussion, one stakeholder decided that he needed a
more complex system: one that controlled four roads (as opposed to two)
converging on the one-lane bridge. I have therefore added new requirements
3 and 4. Note that the votes indicate quite a bit of controversy surrounding
these new requirements.

Another stakeholder, during the triage session, realized that we had inad-
vertently omitted an important requirement—interfacing to sensors that detect
arriving traffic. This is why requirement 5 was added. Look at the votes for
this one. Here, one stakeholder voted "-1" because she felt it was "obvious/'

Reqt Requirement Text
Ho.

1

1.1

1.2

1.3

1.4

2

2.1

2.2

2.3

3

4

5

6

7

The system shall be programmable by the operator.

The system shall be programmable by the
operator to set the default for the green direction
to be "East" or "West."

The system shall be programmable by the
operator to set the maximum duration for the light
to remain green in the non-default direction.

The system shall be programmable by the
operator to set the minimum duration for the light
to remain green in the default direction.

The system shall be programmable by the
operator to set the duration of the amber light
prior to it changing to red.

The system shall provide safe access to a one-lane
east-west bridge via green/amber/red traffic lights.

Two sets of traffic lights shall be controlled by
the system.

When either set of lights is "green," the other set
of lights shall be set to "red."

When the system determines that it is time to
switch the direction of traffic, it shall do so in a
safe manner.

The system shall control eastbound traffic coming
from northwest and southwest converging roads.
The system shall control westbound traffic coming
from northeast and southeast converging roads.
The system shall interface to vehicle sensors capable
of determining if there is a vehicle waiting at either of
the two entrances.

The system shall interface to vehicle counters capable
of counting vehicles as they pass through each of the
two entrances.

The system shall sense the weight of vehicles on the
road and not allow either light to turn to green while a
vehicle remains on the bridge.

A

+2

+2

+2

+2

+2

+2

+1

+2

+2

+2

+2

+2

+2

-2

B

+2

+2

+2

+2

+2

+2

+1

+2

+2

+2

+2

+2

+1

0

Priority by Stakeholder

C D E F G H I

0

0

0

0

0

+2

0

+2

+2

+2

+2

+2

+1

-1

-1

0

0

0

-2

+2

+2

+2

+2

-2

-2

+1

+2

+2

+2

+1

+2

+2

+2

+2

+2

+2

+2

-2

-2

+1

+2

-1

+1

+1

+2

+2

+1

+2

0

+2

+2

-2

-2

-1

+2

+1

+2

+2

+2

+2

+2

+2

+2

+2

+2

+2

+2

+1

+2

+2

+2

0

+2

+2

0

+2

+1

+2

+2

+2

+2

+1

+2

+2

0

0

0

0

0

+2

0

+2

+2

+2

+2

+1

0

-1

J

0

0

0

0

0

+2

+2

+2

+2

+2

+2

0

+1

+1

74 • JUST ENOUGH REQUIREMENTS MANAGEMENT

If you are looking for a technique that incorporates multiple stake-
holders, each with differing levels of importance, and a way of
propagating such data to the decision process, take a look at
quality function deployment (QFD) [MIZ94]. In QFD, a table is
created with each stakeholder name and its relative importance
atop each column, and each individual requirement labeling the
rows. In each column, record that stakeholder's votes for the
requirements. After completing the data entry, do a weighted sum
of the rows,8 and record that sum in a new column to the right.
This becomes your relative priority of requirements.

Estimating Effort for Candidate Requirements

There are many books that can assist organizations in determining
the quantity of resources required to build software to solve a
problem (for example, see [BOEOO, JON98]). When distilled,
though, all of them will tell you basically the same thing:

• Estimate the size of the problem that needs to be solved or
the solution that needs to be built.9

• Tweak the size based on some attributes of the problem to
be solved, the people working on the project, or the type of
solution.

• Use historic data to see how many resources were required
in the past to tackle such an endeavor.

The effort estimation should be done on a per-requirement basis. In
other words, you should estimate the effort required to satisfy each
requirement. The units of effort can be anything you like: feature
points, function points, lines of code, person-years, person-months,
person-weeks, person-hours, dollars, and so on. Figure 3-5 shows
the example of Figure 3-4 with the individual stakeholder priorities
summed and with the estimate efforts, in person-hours.

"If the table entry at the intersection of row (requirement) / and column (stake-
holder) ; is termed v^r and the relative importance of stakeholder ; is TJ, then

the relative priority pj_ of each requirement i is the weighted sum, that is,

9 Although arguments exist for just about any method of measuring the size of
the endeavor, I will not cover them—the methods or the arguments—here.

THREE • REQUIREMENTS TRIAGE • 75

Reqt.
No.

1

1.1

1.2

1.3

1.4

2

2.1

2.2

2.3

3

4

5

6

7

Requirement Text

The system shall be programmable by the operator.

The system shall be programmable by the operator to set
the default for the green direction to be "East" or "West."

The system shall be programmable by the operator to set
the maximum duration for the light to remain green in the
non-default direction.

The system shall be programmable by the operator to set
the minimum duration for the light to remain green in the
default direction.

The system shall be programmable by the operator to set
the duration of the amber light prior to it changing to red.

The system shall provide safe access to a one-lane east-west
bridge via green/amber/red traffic lights.

Two sets of traffic lights shall be controlled by the system.

When either set of lights is "green," the other set of lights
shall be set to "red."

When the system determines that it is time to switch the
direction of traffic, it shall do so in a safe manner.

The system shall control eastbound traffic coming from
northwest and southwest converging roads.

The system shall control westbound traffic coming from
northeast and southeast converging roads.

The system shall interface to vehicle sensors capable of
determining if there is a vehicle waiting at either of the two
entrances.

The system shall interface to vehicle counters capable of
counting vehicles as they pass through each of the two
entrances.

The system shall sense the weight of vehicles on the road and
not allow either light to turn to green while a vehicle remains on
the bridge.

Priority

10

8

12

12

7

20

11

20

20

8

8

12

15

3

Person-
Hours

120

20

20

20

15

200

incl

incl

incl

150

150

40

120

200

Figure 3-5: A List of Candidate Requirements until Effort Estimates10.

Disagreements Concerning Relative Priority of Requirements

Let's say that two members of the marketing team have seriously
differing opinions about the relative priority of the following
requirement:

A. The system shall provide service x to the customers.

luAs indicated by "incl" in the Person-Hours column, it is sometimes impos-
sible to divide the effort of a requirement into its sub-requirements. If this is
so, don't worry about it; just record that you have made that decision.

76 • JUST ENOUGH REQUIREMENTS MANAGEMENT

There could be a variety of reasons for this disagreement. One
possibility is that the two marketing people represent two
disparate groups of customers with different needs, based on the
jobs that they do. In that case, the best route is to record multiple
attributes for each requirement, one for each of the priorities, for
each of the groups, as shown in Figure 3-4. Averaging or
combining the priorities is unlikely to be of much value. For
example, if a requirement is essential to meet the needs of one class
of customer but unimportant to another, nothing worthwhile
results from recording an average priority of "important/7 The fact
is that if the requirement is met, the first group of customers will
have its needs met. And if the requirement is not met, that group's
needs will not be met. The satisfaction of the second group of
customers is completely unrelated to this requirement.

Another possible basis of the disagreement is that the two
marketing people have different interpretations of the candidate
requirement. In this case, the correct route is to refine the require-
ment. By refining it, you will improve your understanding of the
requirement and discover the basis of the disagreement. So, in the
above example, we could refine the requirement into, say, three
sub-requirements:

Al. The system shall provide service xl to the customers.

A2. The system shall provide service x2 to the customers.

A3. The system shall provide service x3 to the customers.

This is what was done to create some of the hierarchies of require-
ments shown in Figure 3-4.

Once this is done, it often becomes clear that the person who
rated requirement A highly did so because service x3 is of critical
importance (and perhaps xl and x2 were actually of little value).
And the person who gave a low rating to requirement A did so
because he or she thought that x referred only to x2, rather than xl,
x2, and x3. With the refined requirements, however, the parties
realize that they actually agreed with the priorities—requirement
Al is low-priority, requirement A2 is low-priority, and requirement
A3 is high-priority. But, equally important is the side effect this
refinement has of reducing the ambiguity of requirement A.

THREE • REQUIREMENTS TRIAGE • 77

Disagreements Concerning Effort to Satisfy a Requirement

Let's say that two members of the development organization have
seriously differing opinions about the effort required to address the
aforementioned requirement A.

There could be a variety of reasons for the disagreement. One
possibility is that the two developers have different assumptions
concerning the development resources that are to be applied. For
example, Sally may be assuming that she will be assigned to the
development effort, and she knows she is highly skilled in this type
of work. Knowing this, she has provided a relatively low estimate
of effort. Meanwhile, John may be assuming that he will be
assigned the development effort, but really does not like doing this
type of work. Feeling this way, he has provided a relatively high
estimate of effort. These are but two of the many games devel-
opers play when making estimates.11 If such is the case, the best
route is to find out from Sally and John "where their heads are at."
That is, try to ascertain what games they are playing, so you can
make the right decisions. Then select either Sally's or John's esti-
mate, and be sure to record the assumptions that you are making.
Whatever you do, do not average the two estimates.

An equally likely reason for the disagreement is that the two
developers have different interpretations of the candidate require-
ment. In this case, you should take the same action as in the case of
a disagreement among marketing personnel—refine the require-
ment:

Al. The system shall provide service xl to the customers.

A2. The system shall provide service x2 to the customers.

A3. The system shall provide service x3 to the customers.

Once this is done (as we did above, to clarify relative priority), it
often becomes clear that the person who estimated that it would
require a lot of effort to satisfy requirement A did so because
service x3 is very difficult to provide (and perhaps xl and x2 are
easy to provide). And the person who estimated that it would
require little effort to satisfy requirement A did so because he or
she thought that x meant x2 only, rather than xl, x2, and x3. After

11 For a more complete description of these games, read [DAV04].

78 • JUST ENOUGH REQUIREMENTS MANAGEMENT

refinement, however, the parties realize that they actually agree
with the estimates. Equally important is that the ambiguity of
requirement A has been reduced.

Establishing Requirements Relationships

The preceding subsections assumed that requirements are indepen-
dent. In reality, this is rarely the case. The following sections
describe just some of the relationships that may exist between
requirements.

Necessity Dependency

In this relationship, it makes sense to satisfy requirement A only if
we are also satisfying requirement B. For example, consider this
dependency:

Requirement A: The stop button shall be red.

Requirement B: The system shall provide a stop button.

Sometimes, such a dependency is bidirectional, as in this case:

Requirement A: The system shall provide the Fiends and Famine
capability for our customers.

Requirement B: The system shall bill customers $3 per minute
when they use the Fiends and Famine feature.

If such dependencies exist between requirements, you should
record the relationships, as shown in Figure 3-6 and Figure 3-7.
The record of this relationship will be used during requirements
triage. As we try to select an optimal subset of the requirements to
implement, we will want to avoid subsets that include a require-
ment without including all requirements on which it depends. Par
Carlshamre et al. [CAR01] differentiate between two types of neces-
sity dependence: AND (which indicates bidirectional necessity
dependence between two requirements) and REQUIRES (which
indicates a unidirectional necessity relationship between one
requirement and another).

THREE • REQUIREMENTS TRIAGE • 79

ID

A
B

Requirement Text

The stop button shall be red.
The system shall provide a stop button.

Necessity
Dependency

Figure 3-6: Unidirectional Necessity Dependency.

ID

A

B

Requirement Text

The system shall provide the Fiends and Famine
capability for our customers.

The system shall bill customers $3 per minute when
they use the Fiends and Famine feature.

Necessity
Dependency

Figure 3-7: Bidirectional Necessity Dependency.

Effort Dependency

In this relationship, requirement A will be easier to satisfy if we are
also satisfying requirement B. For example, such a dependency
may exist between the following:

Requirement A: The system shall provide reports of accounts
receivable older than 60 days.

Requirement B: The system shall provide a general-purpose
report-generation utility.

If such a dependency exists between requirements, you should
record that relationship, as shown in Figure 3-8. Unlike necessity
dependency, effort dependency is not used to select compatible
requirements. Instead, it is used to determine the actual imple-
mentation cost for selected subsets. So, in the case of Figure 3-8,
the cost of satisfying requirement A is four person-months and the
cost of satisfying requirement B is five person-months, but the cost
of satisfying both requirements A and B is seven person-months,
because satisfying requirement B reduces the effort required to
satisfy requirement A by two person-months.

ID

A

B

Requirement Text

The system shall provide reports of accounts
receivable older than 60 days.

The system shall provide a general-purpose report-
generation utility.

Effort
Estimate

4

5

Effort
Dependency

Figure 3-8: Effort Dependency.

-2

80 • JUST ENOUGH REQUIREMENTS MANAGEMENT

Par Carlshamre et al. [CAR01] separate this relationship into two
subtly different characteristics: TEMPORAL dependencies, to
capture the fact that one requirement should be implemented
before another, and ICOST dependencies, to capture the incre-
mental cost reduction gained by implementing one requirement
before another.

Subset Dependency

If requirement A is satisfied, then requirement B will be satisfied.
That is, requirement B is part of requirement A.

If such a dependency exists between requirements, you should
record that relationship. Notice from the list of requirements
shown in Figure 3-9 that we have refined the parent requirement
into three child requirements. In this case, the three children do
not represent the entirety of the parent's functionality. The intent is
for them to exemplify or capture the spirit of the parent. Notice in
this case that developers must satisfy the full essence of the parent
requirement—in doing so, they'll satisfy the three children require-
ments, but that is not sufficient. Note also that during the actual
triage process, when selecting an optimal subset of the require-
ments to satisfy, you may select all, some, or none of the children.
And if you select all the children, then you may also select the
parent if you wish. However, if you select the parent, you must
select all its children. You will notice that there is no need to define
effort dependencies between parent and children requirements. If
we select A for satisfaction, we will automatically select B, C, and
D, and the total effort will be 27 person-months. If we select only a
subset of B, C, and D, then the effort will be only the sum of the
efforts of the selected requirements.

ID

A

B

C

D

Requirement Text

The system shall enable the user to specify the order
of the displayed list in a wide variety of ways.

The system shall enable the user to specify that the
list be displayed in alphabetic order.

The system shall enable the user to specify that the
list be displayed in chronological age order.

The system shall enable the user to specify that the
list be displayed in employment seniority order.

Effort
Estimate

5

7

2

13

Subset
Dependency

Figure 3-9: Subset Dependency.

THREE • REQUIREMENTS TRIAGE • 81

An alternate way to represent subset dependency is by numbering
the requirements accordingly, so that if a parent is numbered 3,
then its children are numbered 3.1, 3.2, 3.3, and so on. This is
precisely what is being represented in Figure 3-4. That figure has
also indented the requirements texts for children so they can be
even more easily identified. In such cases, there is no need to use a
separate column to show the dependency. Juha Kuusela and Juha
Savolainen [KUUOO] call this an AND dependency because child
requirements 3.1 and 3.2 and 3.3 represent the parent requirement 3.

Cover Dependency

This is a special case of subset dependency in which the union of
the children's functionality is the parent's functionality. If require-
ments B, C, and D are satisfied, then requirement A will be satis-
fied; and if requirement A is satisfied, then requirements B, C, and
D will be satisfied. That is, requirements B, C, and D represent a
refinement of requirement A.

If such a dependency exists between requirements, you should
record that relationship. You will notice from the list of require-
ments shown in Figure 3-10 that we have refined the parent
requirement A into three child requirements—B, C, and D—and we
do wish to imply that the sum of the three children completely
captures the parent. Note that during the actual triage process,
when selecting an optimal subset of the requirements to satisfy,
you may select all, some, or none of the children. And if you select
all the children, then you have indeed selected the parent by infer-
ence. If you select the parent, you have selected all children
requirements by inference. Notice that once again there is no need
to include effort dependency.

ID

A

B

C

D

Requirement Text

The system shall enable the user to specify the order
of the displayed list in three ways.

The system shall enable the user to specify that the
list be displayed in alphabetic order.

The system shall enable the user to specify that the
list be displayed in chronological age order.

The system shall enable the user to specify that the
list be displayed in employment seniority order.

Effort
Estimate

5

7

2

13

Cover
Dependency

Figure 3-10: Cover Dependency.

82 • JUST ENOUGH REQUIREMENTS MANAGEMENT

Value Dependency

If satisfying one requirement lowers (or raises) the need for another
requirement, then a value dependency exists between them
[CAR01].

If such a dependency exists between requirements, you should
record that relationship as you would other types of dependencies.
When a value dependency exists, triage will become a bit more
complex: The relative priority of requirement B will change as a
result of including requirement A in the next release. If the depen-
dency has not been recorded, the triage participants are likely to
include requirement B even though it is no longer that important.

Par Carlshamre et al. [CAR01] also describe a requirements
relationship they call an OR dependency. When two requirements
possess an OR relationship, then one of the requirements should be
satisfied, but not both. I believe that this is just a special case of a
bidirectional value dependency. In particular, if requirement A is
selected for inclusion, the priority of requirement B becomes nega-
tive, and if requirement B is selected for inclusion, then the priority
of requirement A becomes negative.

Documenting the Dependencies

In all of the above cases, I have shown the relationships as arrows
in the figures. There are a variety of ways of maintaining these
relationships on an actual project:

• Manual: If you want requirement 1 to refer to requirement
2, simply type "requirement 2" in the appropriate attribute
field of requirement 1. This requires almost no effort at all
to do initially, but maintenance is extremely painful
[ANT01, DOM98, RAM98]. Every time a requirement
changes, you must manually check to see if other require-
ments are impacted.

• Hyperlink: Much better than manual maintenance, this
requires you to enter a hyperlink [HAY96] called "require-
ment 2" in the appropriate attribute field of requirement 1.
The biggest advantage of this is you can quickly move from
one requirement to all the related requirements. This
makes maintenance somewhat easier.

THREE • REQUIREMENTS TRIAGE • 83

• Requirements Tools: Ideally, when you change requirement
1, you want to immediately see a list of all requirements
related to it on a first- and second-order basis (what relates
to requirement 1 and what relates to what relates to
requirement 1, respectively), and so on. The easiest way to
do this is to use a requirements management tool,12 which
makes maintenance a lot easier. But with the benefit comes
the extra overhead of having to learn how to use (and
having to pay for) the tool.

Performing Triage on Multiple Releases

The essence of the triage decision is to decide whether or not each
candidate requirement will be included in the next release, given
the available time and resources. As described earlier, this is
always the result of a cooperative process among multiple stake-
holders. I highly recommend that you always plan at least two
releases at a time. If you plan just one release—say, Release 3.0—
every requirement necessitates a binary (yes or no) decision. There
is no compromise position. If you plan two releases at a time, a
compromise position is available. So, let's say one stakeholder
insists a requirement be included in Release 3.0 and another stake-
holder insists that it be excluded from Release 3.0. It might be
possible to formulate a middle-of-the-road position by agreeing
that it will be satisfied in the following release, Release 4.0. To
make this even more palatable, you might consider numbering the
following Release 3.1, or even 3.01 (rather than 4.0), to make it
sound even more imminent and thus even more of an acceptable
compromise (see Figure 3-11).

Figure 3-11: A Compromise Release.

www.incose.org for a list of available requirements management tools.12See

http://www.incose.org

84 • JUST ENOUGH REQUIREMENTS MANAGEMENT

Making the Triage Decision

Now that you have a relative ranking of requirements as created by
your stakeholders, you need to determine which ones to include,
based on the available resources. Because of the complex relation-
ships that exist among and between requirements, the decision is
not as simple as just selecting the most desirable requirements for
inclusion. Also, you can't just include all the requirements, as you
have a limited amount of resources. Three general approaches
exist for doing triage: optimistic, pessimistic, and realistic.13 In the
optimistic approach, you place the available budget and desired
schedule on their respective arms of the seesaw shown earlier, in
Figure 3-2, and then you place all the candidate requirements on
the third arm. Remove requirements one at a time from the
requirements arm until it balances. This is by far the most common
way of performing triage, but not necessarily the most efficient. In
the pessimistic approach, you place the available budget and
desired schedule on their respective seesaw arms, and then you
place requirements onto the requirements arm one at a time until it
balances. In the realistic approach, you place the available budget
and desired schedule on their respective seesaw arms, and a
reasonable amount of candidate requirements on the requirements
arm. Then you refine your requirements selection by adding and
removing requirements.

Think of this process as manipulating a radio dial, one associ-
ated with each requirement.14 The values for the positions of the
dials include one position for each release being considered, one
for "done" (already satisfied), and one for "TBD" (to be deter-
mined). Figure 3-12 shows what such a radio button would loo
like for considering Releases 2.0, 2.1, 2.2, and 3.0, while Figure 3-1
shows what the list of requirements from Figure 3-5 look like after
they have been allocated to different releases. (Of course, if your
tool doesn't support radio dials, you can replace them in Figure 3-
13 with the appropriate version/release number.)

-^Martin Feather and Tim Menzies [FEA02] use a tool to iterate through
random choices toward an optimal solution.

l^When the radio dial for a requirement is turned to a planned release, it is
added to that release. When the radio dial is used for a requirement with a
necessity, subset, or cover dependency on other requirements, those other
requirements are also added. When the radio dial for a requirement is one of a
set of requirements for which another requirement has a cover dependency,
and all other members of the set are already included in the release, then the
parent requirement is also added.

THREE • REQUIREMENTS TRIAGE • 85

Figure 3-12: Requirement Selection Dial.

Reqt
No.

1

1.1

1.2

1.3

1.4

2

2.1

2.2

2.3

3

3.1

Requirement Text Priority

The system shall be programmable by the 10
operator.

The system shall be programmable by the 8
operator to set the default for the green
direction to be "East" or "West."

The system shall be programmable by the 12
operator to set the maximum duration for
the light to remain green in the non-
default direction.

The system shall be programmable by the 12
operator to set the minimum duration for
the light to remain green in the default
direction.

The system shall be programmable by the 7
operator to set the duration of the amber
light prior to it changing to red.

The system shall provide safe access to a one- 20
lane east-west bridge via green/amber/red
traffic lights.

Two sets of traffic lights shall be 11
controlled by the system.

When either set of lights is "green," the 20
other set of lights shall be set to "red."

When the system determines that it is 20
time to switch the direction of traffic, it
shall do so in a safe manner.

The system shall control eastbound traffic 8
coming from northwest and southwest
converging roads.

During the period while the eastbound 8
traffic light is authorized to be green, the
system shall provide equal time for the
traffic coming from the southwest and the
northwest.

Person-
Hours

120

20

20

20

15

200

incl

incl

incl

150

incl

Figure 3-13: Candidate Requirements Showing Which
Will Be Satisfied in Next Release.

Release

86 • JUST ENOUGH REQUIREMENTS MANAGEMENT

Figure 3-13, continued: Candidate Requirements Showing Which
Will Be Satisfied in Next Release.15

The only way I know to determine that the seesaw is in balance is
to compare the desired schedule and available budget against the
original schedule (not actual) and original budget (not actual cost)
of previously completed projects that required approximately the
same amount of work.

Most effort estimation techniques (examples include COCOMO
[BOEOO], KnowledgePLAN® [JON98], and SLIM [PUT78]) generate
estimates based on the actual schedules and budgets of previously
completed projects. The problem with this is that most organiza-
tions create their systems within a unique, unchanging culture.
Thus, the rate at which requirements change (usually called
"requirements creep") is similar on every project; the amount of
inaccuracy of development effort estimations is similar on every

1 ̂ During the triage process, one stakeholder expressed confusion about th
meaning of requirements 3 and 4. A discussion ensued, and the agreed-upon
clarifications were added as requirements 3.1 and 4.1, respectively.

Another stakeholder, during the triage discussion, thought of a new dream
requirement. It was added as requirement 8. The team voted quickly on its
priority, and all agreed to postpone the decision of which release it should be
included in, so its release was given the value "TBD" (to be determined).

Reqt
No.

4

4.1

5

6

7

8

Requirement Text Priority Person*
Mourn

The system shall control westbound traffic 8 150
coming from northeast and southeast
converging roads.

During the period while the westbound 8 incl
traffic light is authorized to be green, the
system shall provide equal time for the
traffic coming from the southeast and the
northeast.

The system shall interface to vehicle sensors 12 40
capable of determining if there is a vehicle
waiting at either of the two entrances.

The system shall interface to vehicle counters 15 120
capable of counting vehicles as they pass
through each of the two entrances.

The system shall sense the weight of vehicles 3 200
on the road and not allow either light to turn to
green while a vehicle remains on the bridge.

If a vehicle is disabled on the bridge, the 1 Unknown
system shall automatically notify a tow truck.

Release

THREE • REQUIREMENTS TRIAGE • 87

project;16 and the politics that force under- or over-estimation are
similarly unchanged [DAV04].

Although most cost and schedule estimation textbooks and
methods show the distribution of similar, previously completed
projects in a probabilistic distribution, such as in Figure 3-14,1 have
found that a cumulative probability curve, as shown in Figure 3-15,
is more useful when performing triage.

Figure 3-15: Cumulative Probability Historic Project Distribution (Adaptedfrom [DAV04]).

1"At one company I worked for, we discovered that the effort estimates given
by the development team were consistently 25 percent lower than the actuals.
So we decided on the next project to escalate all the development team's esti-
mates by 25 percent as soon as we received them. Lo and behold, the actuals
were still 25 percent too low. It seems that this corporate culture always
induced the work to expand to fill 25 percent of whatever was originally esti-
mated. This phenomenon may be true at all companies. The solution is to
recognize that the up-front estimates will be 25 percent low—not to "fix" them!

Figure 3-14: Typical Historic Project Distribution (Adaptedfrom [DAV04]).

JUST ENOUGH REQUIREMENTS MANAGEMENT

In Figure 3-14, the y-axis shows the "likelihood of the project
completing exactly as estimated/' but in Figure 3-15, it expresses
the "likelihood of the project completing at or better than the esti-
mate/7 which is precisely what you want to know—the probability
of success. Since the graph is a function of the weight or size of the
currently selected candidate requirements, it suffices to superim-
pose a vertical bar on the graph (representing the desired budget,
as shown in Figure 3-16, or the desired delivery date, as shown in
Figure 3-17) to assess the current degree of balance in the seesaw.
It is not difficult to create graphs like these for your own organiza-
tion; see the Sidebar on the following page.

Figure 3-16: Historic Project Distribution (Cost) with Current Budget
(Adaptedfrom [DAV04]).

Figure 3-17: Historic Project Distribution (Schedule) until Current
Desired Delivery ~Datc (Adapted from [DAV04]).

88

THREE • REQUIREMENTS TRIAGE • 89

SIDEBAR

To create a graph like Figure 3-17 for your own organization,
simply examine a series of past projects and collect just two
pieces of information about each: the original estimate of size
(in any standard units—in this case, I've used person-months),
and the actual elapsed time spent on the project. Let's say that
data for twenty projects look like this:

Project
Number

1

2
3
4
5
6
7
8
9
10

Range of Original
Estimate of Size
(person-months)

10-19
10-19
1-9

40-49
30-39
80-89
20-29
20-29

1-9
40-49

Actual
Project

Duration
(months)

2
2
2
6
3
8
4
5
3
6

Project
Number

11
12
13
14
15
16
17
18
19
20

Range of Original
Estimate of Size
(person-months)

30-39
60-69
40-49
20-29

1-9
40-49

110-119
10-19
30-39
20-29

Actual
Project

Duration
(months)

4
9
7
6
1
6
8
5
5
4

Now, let's say that you have a new product and you are consid-
ering the inclusion of requirements estimated to be 27 person-
months in the next baseline. You can see from the above table
that in the past, when you have tackled projects in the range of
20 to 29 person-months, you have never succeeded in
completing them in less than four months; you completed them
in four months 50 percent of the time; you managed to
complete them in five or fewer months 75 percent of the time;
and you succeeded in completing them in six or fewer months
100 percent of the time. So, your graph looks like this (just
smooth out the lines and you're all set):

Is this extremely accurate? No, but it is good enough for
making the triage decision.

90 • JUST ENOUGH REQUIREMENTS MANAGEMENT

Whether or not the seesaw is balanced has a lot to do with the
degree of risk the organization can tolerate. For example, the
graph shown in Figure 3-16 might be acceptable to an organization
that thrives on risk, but the same graph might be totally unaccept-
able to a development organization that was recently burned
severely and is looking to take a more conservative approach to
product development until it regains its credibility.

Triage can be performed in a relatively orderly manner, as
shown in Figure 3-18. Start with your optimistic, pessimistic, or
realistic subset of candidate requirements and follow these guide-
lines:

1. Select the higher-priority requirements before the lower-
priority ones.

2. If you include a requirement that has a necessity depen-
dency upon another requirement, include that requirement
as well.

3. Stay cognizant of which groups of requirements make
sense as a commercially viable and useful product.

4. Initially, exclude any requirement that raises considerable
controversy (the subsequent iterative refinement process
will resolve this).

Figure 3-18: A Basic Requirements Triage Process.

THREE • REQUIREMENTS TRIAGE • 91

Next, add up the "effort estimations" for all the selected require-
ments,17 and then plot graphs (like those in Figure 3-16 and Figure
3-17) showing how previously completed projects have fared when
attempting the same amount of requirements. Then, atop these
two graphs, draw vertical bars representing your desired budget
and schedule.

Next, examine the cost-risk graph. If the graph looks like
Figure 3-16, your project has a 30-percent likelihood of completing
these requirements with the desired budget. Is this an acceptable
level of risk for your project? Most organizations will accept a like-
lihood of 80 percent or more as tolerable. Anything below that
number, however, and you must decide on your level of risk adver-
sity and, more importantly, the effect that exceeding the budget
will have on the organization:

• Will additional funds be available?
• Will the project be cancelled?
• What will happen to the careers of the project members?
• What financial impact will this have on the company?
• If we are talking about human resources (which is likely for

software development projects), will you be permitted to
do additional hiring?

If the total picture is positive (or at least acceptable), then proceed
to the next step. Otherwise, you have only two alternatives:
Remove requirements or find additional resources. It is that simple.

When removing requirements, be sure to remain cognizant of
the four considerations you used when selecting the initial set of
candidate requirements (as described above). When adding
resources, you need to know how many you need. To figure this
out, just look at the graph in Figure 3-16; look at the horizontal
distance between the current position of the vertical bar (the
current budget) and the desired position of the vertical bar (the
budget at which the risk is acceptable). To raise the likelihood of
success in Figure 3-16 from the current 30 percent to a more accept-
able 70 percent, just shift the vertical bar to the right until it inter-
sects the graph at the horizontal 70-percent line. If you do that,
you will have the graph shown in Figure 3-19, and you will need
ten more person-months in the budget.

1'Adding the estimations is not as simple as plain addition. You must
consider the effects of any selected requirements with subset dependency and
effort dependencies, discussed earlier.

92 • JUST ENOUGH REQUIREMENTS MANAGEMENT

Figure 3-19: Imbalance of Figure 3-16 Fixed.

Next, examine the schedule-risk graph. If the graph looks like that
in Figure 3-17, your project has an 83-percent likelihood of
completing these requirements by the desired delivery date. Just
as we asked of the cost-risk graph earlier, ask, Is this an acceptable
level of risk for your project? Again, if the likelihood is 80 percent
or more, most organizations will accept it. Below that number, you
must decide on your level of risk adversity and, even more impor-
tantly, the effect that delivering the project late will have on the
organization:

• Will the product still be useful?
• What are the financial implications (revenues if the product

is to be sold, excessive expenses if the product is designed
to reduce costs, and so on)?

• Will the project be cancelled?
• What will happen to the careers of the project members?

As before, with cost risk, if the total picture for schedule risk is
positive (or at least acceptable), then you are done with triage. If
the total picture is negative, you have only two alternatives:
Remove requirements or extend the delivery date. It is that simple.

When removing requirements, be sure to remain cognizant of
the four considerations described above. When extending the date,
you will need to know how far to extend it. To decide this, just

THREE • REQUIREMENTS TRIAGE • 93

look at the graph in Figure 3-17. Look at the horizontal distance
between the current position of the vertical bar (the current desired
delivery date) and the desired position of the vertical bar (that date
where the risk is acceptable). You can see that in order to raise the
likelihood of success from the current 83 percent to, say, 97 percent,
you will need to extend the delivery date by around one month, as
shown in Figure 3-20.

Figure 3-20: Imbalance of Figure 3-17 Fixed.

In practice, triage is rarely practiced as a sequential series of adap-
tations that slowly converge toward an optimal solution. Instead,
progress toward an optimal solution is made in spurts.

In October 2000, I was consulting for a large manufacturer of
mass storage devices. The product manager had called me in to
resolve a problem the company was experiencing: Mark, the
marketing manager (not his real name), was demanding that the
next release of the product, Version 3.0, be delivered to the
customers in nine months. Meanwhile, Dev, the software develop-
ment manager (also not his real name), was insisting that such a
date was impossible to achieve. They had reached an impasse
when I was called in. I asked each party to describe his position.
Here is what I heard:

Mark: "Look, the window of opportunity starts in nine
months. We know that the competition is planning to release
similar products ten to twelve months from now. Since their prod-
ucts and our 3.0 release are so similar, the only way we are going to
be successful is if we are the first to market/'

94 • JUST ENOUGH REQUIREMENTS MANAGEMENT

Dev: "I understand what you are saying. But I also know
what is realistic. Just wishing for something is not going to make it
happen. Read my lips: My team cannot produce all the features
you want in Release 3.0 in nine months. It simply cannot be done/'

Mark decided to try appealing to Dev's corporate allegiance:
"Don't you realize that you'll be letting down the entire company if
you don't build it when it's needed?"

I saw where this was headed, and it was not good.
Dev counterattacked: "Look, Mark, remember a year ago

when we were planning the 2.4 release? You demanded that I
deliver it in just five months. I told you then that we had two
choices: Build it in five months without an architecture that could
support any additional features, or build it 'right' and deliver it in
eight months, in which case the architecture would be able to
handle additional requirements. You chose the first option. So, it is
your fault that we are in this mess now! The current architecture
simply cannot support the 3.0 features. I need a full year in order
to revamp the architecture and then add the new features."

Ouch! The debate continued for about an hour and they made
little progress toward a mutually agreeable solution. During that
time, I presented the schedule-probability graph (as shown in
Figure 3-21) to the team. It was clear that Dev was not lying; the
graph reported a meager 37-percent chance of success.

Figure 3-21: Case Study—Schedule-Probability Graph.

THREE • REQUIREMENTS TRIAGE • 95

We took a short break, during which I took Dev aside and asked
him to imagine that he owned a majority of the company's stock,
and that the project's success or failure in the marketplace was key
to his personal financial success. Clearly, promising to deliver
something in nine months when it would actually take twelve is
not productive. Nor is delivering it in a year to a stale market. I
asked Dev what he would do with the project. He answered,
"Interesting situation—here's what I would do. I'd increase my
headcount so I could afford to staff two parallel development
teams. One team would work on incorporating as many of the 3.0
features as possible into the old architecture. We could release it
seven-to-eight months from now. We could call it Release 2.5. The
other team would start revamping the architecture and be ready to
deliver the full 3.0 capability in a year."

I told Dev I liked his suggestion and wanted him to present it
to the assembled team after the break. He said, "Okay, but there's
no way Mark is going to find it acceptable."

After we reconvened, Dev made his suggestion. Mark's
response? "Wow! Would you really do that for me?" We had
finally reached a tentative agreement in principle. We worked a
few more hours to see if it was realistic. First, we checked to see if
the twelve-month schedule was really reasonable for the 3.0
release. All we did was move the vertical line shown in Figure 3-21
to the right by three months, which resulted in Figure 3-22.

Figure 3-22: Case Study—Schedule-Probability Graph for
Proposed 3.0 Release.

96 • JUST ENOUGH REQUIREMENTS MANAGEMENT

As you can see, the likelihood of success moved from 37 percent to
67 percent. But the real test came next. Was Release 2.5 possible?
We allowed the development team to select the subset of require-
ments it was able to include with the old architecture. Figure 3-23
was the result. Once again, the graph indicated an acceptable level
of risk, an 82-percent chance of success.

Figure 3-23: Case Study—Schedule-Probability Graph for
Proposed 2.5 Release.

After this, Mark was reluctant to sign up for the proposed strategy;
the requirements that Dev had suggested did not make a very
impressive product. Then Mark had a great idea: The proposed
Release 2.5 was not as good as the products the competitors were
to release in the ten-to-twelve-month time frame, but it was better
than anything else currently on the market. Mark's plan was to
offer Release 2.5 to customers at a very low price—not even
enough to recover the company's R&D and manufacturing costs.
This early introduction at such a low price could seriously dampen
the market demand for the competing products coming out a few
months later. And then when 3.0 came out, the competitors' prod-
ucts would not have already captured the market.

So, as you can see, this project did not add or remove single
requirements or tweak the schedule repeatedly until it converged

THREE • REQUIREMENTS TRIAGE • 97

upon a viable solution. Instead, it was the result of out-of-the-box
thinking to envision two releases, followed by equally innovative
thinking concerning how the product could be marketed and
priced relative to the competition. This is often the case.

Delivery Date: Talking Apples and Apples

When parties agree to a delivery date, make sure they are talking
about the same thing. For example, development organizations
often think of "delivery" as the date they are no longer responsible
for the product. In some companies, this could mean releasing the
product to the independent testing team within the company. But
in most companies, marketing thinks of delivery date as the date
that the company can ship the product to the first buyer. Here is a
list of some of the events that various people think of as "delivery":

• release to test
• release to quality assurance
• release to manufacturing
• release to (tactical) marketing
• release to sales
• release to beta customer
• release to revenue customer

Depending on the complexity of the product, these dates could be
many months apart. It really does not matter which delivery date
the parties are talking and negotiating about, as long as they are all
talking about the same date.

ADVANCED TRIAGE TECHNIQUES

The triage process described in the previous section balances
delivery date and development budget against desired require-
ments. However, in a real business environment, other factors
need to be considered. This section describes how to perform
triage when considering the many other factors that can influence
the packaging of requirements into releases. These factors include

• risks inherent in addressing specific requirements
• market size
• market window

98 • JUST ENOUGH REQUIREMENTS MANAGEMENT

• market penetration
• price
• costs
• revenue
• return on investment

Advanced triage can be thought of as balancing a multi-person
seesaw. Obviously, manipulating any of the variables could have
dramatic effects on the other variables. For example, adding a few
extremely unique requirements might allow us to sell the product
at a much higher price and accept a smaller market penetration,
and still achieve desired revenue and profitability goals. We will
now discuss each of the above factors and describe how it affects
the requirements triage process.

Considering Risks Inherent in Addressing Specific Requirements

Even though the size estimates for two requirements may be iden-
tical—say, ten person-weeks—one requirement may have some
inherent risks that the other does not. For example, we may
already have the right skills on board for one, but the other may
require us to hire some people. Or, in one case, satisfaction of one
requirement may depend heavily on a subcontractor delivering a
subcomponent on time, but the other does not.

To capture such differences, annotate individual requirements
with the inherent risk associated with their successful satisfaction.
This can be captured most easily as a percentage representing the
likelihood that the situation will go awry. A requirement having an
associated risk of 25 percent means that there is a 25-percent
chance that we will fail to satisfy the requirement, even after
expending the specified number of resources, as illustrated in
Figure 3-24.

Although not shown in Figure 3-24, a comment describing the
source of risk is a good addition. Requirements triage demands
that not only must the probabilities of completion on schedule and
within budget (as shown previously in Figure 3-19 and Figure 3-20)
be acceptable, but also that the requirements being considered for
inclusion must exhibit acceptable levels of inherent risk.

THREE • REQUIREMENTS TRIAGE • 99

Figure 3-24: A List of Candidate Requirements
Annotated by Inherent Risk.

The easiest way to visualize the inherent risk associated with a
proposed release is to examine a histogram showing the distribu-
tion of the requirements currently being considered for inclusion,
as shown in Figure 3-25.

In this case, 59 percent of the requirements being considered for
inclusion (10 out of 17) have a 19 percent or lower risk; 18 percent (3
out of 17) have a 60 percent or greater risk, and the rest lie in
between. The shape of an acceptable risk histogram varies widely

Reqt.
No.

Requirement Text Risk

1

1.1

1.2

1.3

1.4

2

2.1

2.2

2.3

3

3.1

4

4.1

5

6

7

8

The system shall be programmable by the operator.

The system shall be programmable by the operator to set the default for the
green direction to be "East" or "West."

The system shall be programmable by the operator to set the maximum duration
for the light to remain green in the non-default direction.

The system shall be programmable by the operator to set the minimum duration
for the light to remain green in the default direction.

The system shall be programmable by the operator to set the duration of the
amber light prior to it changing to red.

The system shall provide safe access to a one-lane east-west bridge via
green/amber/red traffic lights.

Two sets of traffic lights shall be controlled by the system.

When either set of lights is "green," the other set of lights shall be set to "red."

When the system determines that it is time to switch the direction of traffic, it
shall do so in a safe manner.

The system shall control eastbound traffic coming from northwest and southwest
converging roads.

During the period while the eastbound traffic light is authorized to be green, the
system shall provide equal time for the traffic coming from the southwest and
the northwest.

The system shall control westbound traffic coming from northeast and southeast
converging roads.

During the period while the westbound traffic light is authorized to be green, the
system shall provide equal time for the traffic coming from the southeast and the
northeast.

The system shall interface to vehicle sensors capable of determining if there is a
vehicle waiting at either of the two entrances.

The system shall interface to vehicle counters capable of counting vehicles as they
pass through each of the two entrances.

The system shall sense the weight of vehicles on the road and not allow either light to
turn to green while a vehicle remains on the bridge.

If a vehicle is disabled on the bridge, the system shall automatically contact a tow
truck.

10%

10%

10%

10%

10%

30%

10%

10%

30%

40%

15%

40%

15%

10%

60%

75%

80%

100 • JUST ENOUGH REQUIREMENTS MANAGEMENT

from project to project and company to company for two reasons:
First, some companies or projects thrive on risk, while others are
risk-averse; second, members of different projects are likely to cali-
brate risks associated with requirements in different ways.

Figure 3-25: Requirements Risk Histogram.

While you're performing triage, if you find that the risk histogram
indicates unacceptably high levels of risk, consider one or more of
the following actions:

• Move some of the riskier requirements out of the baseline
and defer them to a later release.

• Consider removing a high-risk requirement while adding
one or more lower-risk requirements.

• Examine the requirements that represent unacceptable levels
of risk. I have seen many cases in which the development
group labeled a requirement high-risk because of some
aspect of that requirement that the customer didn't even care
about. To uncover this situation, refine high-risk require-
ments into sets of simpler requirements (as described in
Chapter 1). Now, reanalyze the relative priorities and risks of
the children requirements. You may discover that you can
include high-priority, low-risk children requirements and
exclude other lower-priority, high-risk children requirements.

THREE • REQUIREMENTS TRIAGE • 101

Discuss the high-risk requirement within your group. Focus on
what makes it high risk. Explore alternative solutions to satisfying
a requirement.

Considering Market and Market Size

A market is a group of people with an unresolved need and suffi-
cient resources to apply to the satisfaction of that need. For a
company that sells its software externally, the market is the set of
all potential customers. For an internal IT organization whose
mission is to address the information-processing needs of its
revenue-producing sibling organizations, the market is the set of
individuals within the company who will eventually use the IT
system in order to improve its ability to produce revenue, reduce
overhead, increase profits, and so on.

An organization that is trying to define its market has a great
deal of flexibility. For example, let us say we manufacture cherry
soda. We could define the market as all humans on earth. Our
justification would be that every human, in theory, could buy our
soda. If we defined our market thusly, we would discover that the
market size is huge, but that we could only succeed in selling to a
minuscule fraction of our market. On the other hand, if we defined
our market as only those people who have ever purchased a cherry
soda, we would have a relatively small market size but would
experience a much better record of selling to that market.

If there were a "right" approach, it would be to narrow your
market definition to the subset of the population that you and your
competitors are seriously trying to capture. Thus, as a cherry soda
manufacturer, we should probably define our market as the people
who purchase any type of sweet, carbonated beverage.

Your market may change as you add or remove features. For
example, if you manufacture laser printers and you need to decide
to include color printing in your next product (or not to), your
market (and its size) will change.

Do not try to define the changes to the market size as a func-
tion of the addition or removal of individual requirements. It is
more productive to understand and record major market changes
as they relate to the addition or removal of large subsets of require-
ments. A simple example will suffice: Let's say you are in the
United States and are building your first software product. You are

102 • JUST ENOUGH REQUIREMENTS MANAGEMENT

wrestling with a long set of potential features (requirements).
Twenty of them relate to various aspects of the internationalization
of the product, and ten of these relate in particular to the software's
ability to handle multi-byte characters. By omitting all twenty
features, the market is limited to just the United States; by
including the ten requirements that do not relate to multi-byte
characters, the market is expanded to include roughly half of the
world; and by including all twenty of the internationalization
requirements, the market expands to include most of the world.

As you perform requirements triage, you need to remain
cognizant of how adding or deleting requirements affects your
market size. Otherwise, you may delete some requirements in
order to make the market window, only to discover that you now
have no market. As a general rule, the more features you add to
the product, the larger the market, as shown in Figure 3-26. Of
course, there are many exceptions to this usual pattern. For
example, in some markets, the simplest and most basic product
may have the largest market. Furthermore, as software products
become more and more overloaded with functionality, they often
become cumbersome and fewer people want to buy them.

Figure 3-26: Usual Relationship Between Requirements Inclusion and
Market Size.

Considering the Market Window

The market window is the period of time during which customers
will buy a product. Extending this concept to an organization that
builds a software system for internal use, the market window is the

THREE • REQUIREMENTS TRIAGE • 103

period of time during which the company can best utilize the soft-
ware system. For the current discussion, we will assume that the
earlier in the market window you introduce a product, the more
successful the product sales will be.

However, the reader should be aware that this is not always the
case. In a landmark study at Iowa State [IOW57], researchers
found that as a market window progresses, different types of
buyers become active (see Figure 3-27). Buyers in the early phases
(innovators and early adopters) are more likely to be impulse
buyers and to buy something just because it is new. On the other
hand, buyers in the later phases (early majority and late majority)
are more likely to make careful buying decisions. And those in
even later phases (laggards) will not buy until the product is well
proven and extremely mature. In addition, Donald Reinertsen
[REI97] points out that in some types of markets, it may be better to
be late than early because you spend less money educating the
market about the product. For systems designed for internal use,
though, this is rarely, if ever, the case.

Figure 3-27: Market Window (Adapted from [IOW57])*

Marketing departments are acutely aware of market windows, and
often work hard to target a product's delivery to the right place in
that window. However, as features are added to a product, the
following may occur:

• The delivery date is generally delayed, so the product
enters the window at a later stage.

*The Diffusion Process, Agriculture Extension Service, Iowa State University,
Special Report No. 18 (Ames, Iowa: 1957). Used by permission.

104 • JUST ENOUGH REQUIREMENTS MANAGEMENT

• The inclusion of those features may change the market
window (in other words, the market window for one set of
features is different than for another), shifting it either
forward or backward. For example, adding a specific
feature may make sense only to innovators or early
adopters, so adding that feature but delaying its introduc-
tion to the market makes no business sense. Or, adding a
specific feature may make sense only to early and late
majorities, so delaying delivery to add that feature may
make business sense.

As features are removed from a product, the following may occur:

• The delivery date is generally contracted, and the product
enters the window at an earlier stage. Even though the
product may be feature-poor, it may be attractive to inno-
vators and early adopters because it is so early (assuming it
does have the right kinds of features for these buyers).

• The removal of features may change the market window
(again, the market window for one set of features is
different than for another), shifting it either forward or
backward.

Considering Market Penetration

It is one thing to hit a market window at the desired time, but it is
another to successfully capture that market. Market penetration is
the percentage of the market that you have sold to. The amount of
market penetration your product achieves depends on the features
selected for inclusion, your pricing, the softness of the market, the
features of your competitors' products, and your competitors7

pricing. For internal IT projects, market penetration is the
percentage of relevant company transactions that the company
executes using the new system.

Market penetration will be a function of time. Figure 3-28
shows a simplified model of how you could specify the percentage
of the market that you expect to successfully sell your product to,
given a specific set of features.

THREE • REQUIREMENTS TRIAGE • 105

Figure 3-28: Market Penetration Graph.

Considering Price

Price is the amount a customer is charged for one or more copies of
the product. Pricing strategies often include multiple tiers, quan-
tity discounts, different pricing for different kinds of customers,
partner-agreement-based pricing, and so on. There is no real
equivalent of price for internal IT organizations, unless you want
to consider it the effort expended by the internal customers.

Often, the marketing organization conceives of a particular
feature mix in the next product release based on a long list of
assumptions, many of which are not documented. In fact, many
may be tacit and may have never even been expressed. One such
assumption may be the price of the product. When marketing
makes a statement such as, "The customer absolutely needs to have
requirement x satisfied/' it is actually saying, "The customer
absolutely needs to have requirement x satisfied if we are going to
charge this price/7 A company desiring to produce the best
possible achievable product needs to consider the trade-off
between feature mix, price, and timing. Furthermore, the "perfect"
product—one that has all the right features and is released on
budget and within schedule—is an utter failure if it cannot be sold
at the desired price.

106 • JUST ENOUGH REQUIREMENTS MANAGEMENT

When selecting the price for software products, many factors
need to be considered:

• How many units will you sell at a given price? As a
general rule, the higher the price, the smaller the volume,
as shown in Figure 3-29.

Figure 3-29: Price and Units Sold.

The higher the price, the higher your revenues per unit will
be. As a general rule, a curve like that shown in Figure 3-30
is applicable. That is, if you charge zero dollars for your
product, you will have no revenues, but as you increase
your price, revenues increase. This continues until your
price becomes too high, at which point sales decrease
significantly enough that your total revenues decrease.

Figure 3-30: Price Modeling View.

THREE • REQUIREMENTS TRIAGE • 107

• Unlike the pricing of manufactured products, the pricing of
software is not related to the cost of raw materials or manu-
facturing. In software, these are both close to zero.

• To some degree, users may perceive the quality of a higher-
priced product to be greater than a similar but lower-priced
product.

• The higher the price, the higher your margins (profit per
unit sold) will be.

• You may want to maximize market penetration and not
revenue, in which case you might offer your products
earlier and at a lower price than the optimal point shown at
the peak of the curve in Figure 3-30.

Here are some questions to ask yourself regarding pricing:

• For each market segment, what is the expected average
price that customers will pay per unit? Or, for each market
segment, what is the expected average order size (in
currency and number of units)?

• What special discounts will apply? For volume orders?
For special customers? For promotions?

• Will you offer elasticity from advertised prices? For example,
I know two companies in a particular marketplace. One
advertises a price twice as high as the other, but they both
experience the same gross revenues per unit sold. The
reason is that one company allows its sales force to offer
"special" discounts to every customer. Both have a unique
strategy, and both work. The company that offers
discounts makes every customer feel special by offering
them those steep discounts, while the other gets its foot in
more doors by advertising a lower price.

• How will you discount the product for resellers?
• Will you sell the software at a relatively low price, and offer

customization services, which will become your major
source of revenue? Or will you sell the software at a higher
price, and allow third parties to do the customization?

• Will you offer the software to customers on a per-use basis
rather than a per-site or per-copy basis? The most common
way to do this is to offer it as an application service
provider (ASP): Users pay for access to the software over
the Web.

108 • JUST ENOUGH REQUIREMENTS MANAGEMENT

For software products destined for internal use, rather than external
sale, there is no real price, per se, as I mentioned above. Instead,
"benefit" should be analyzed as part of triage. Software for
internal use is typically developed to assist other parts of the
company in performing some business function. Typical motiva-
tions are to reduce the cost of doing business, reduce errors, or
collect additional revenue. The questions to ask when analyzing
the benefit of the software are as follows:

• What will the average cost savings per transaction be?
• What percentage of errors is expected to be eliminated?
• What is the average cost to the company of each error?
• What additional revenues are expected as a result of intro-

ducing the product?

In summary, during the triage process, price must be considered.
Adding extra features may enable you to increase the price and
compensate for a slightly later delivery. Removing some features
may enable you to deliver early enough that you can afford to
charge less and perhaps capture the market before the competition.

Considering Costs

Labor costs incurred by a company in creating a new software
system are usually nontrivial. According to generally accepted
accounting principles (GAAP), costs are usually expensed in the
year they are incurred and thus have a direct and immediate
impact on both cash and profitability.18

When considering the construction of a new software system,
the impact on the company's cash and profitability must of course
be considered, but it is also useful to examine the effect of costs on
whether it makes sense to build the product at all. For example,
when a company spends x dollars developing a product, it takes
some time to recover those costs through sales (for companies that
sell the products) or through use (for companies that deploy the
product internally).

Recovery is usually measured in units sold (or elapsed time or
transactions processed). Let's assume that recovery is measured in
terms of y units sold. Each time a unit is sold, we are, in effect,

•^In some cases, these costs may be capitalized, in which case they have an
immediate negative effect on the company's cash flow but no immediate effect
on profit. The costs are then depreciated over the software's useful life.

THREE • REQUIREMENTS TRIAGE • 109

recapturing x/y of the original outlay of cash. And after selling y
units, we have recovered all the original x dollars (ignoring, of
course, the time value of money—see the net present value discus-
sion later in this chapter).

As more and more features are added to a product,

a. Development costs increase.
b. Because of the increased costs, we will need to sell more

units to recover the costs.
c. Because we need to sell more units, the time required for

recovery will increase.
d. Product delivery may be delayed.
e. Due to the delay, once again, the time required for recovery

will increase.

On the other hand,

f. Adding features may increase the rate at which units are
sold.

g. This would lead to a decrease in the time required for
recovery.

When features are removed from a product,19

a. Development costs generally decrease.
b. Because of the decreased costs, we will need to sell fewer

units to recover the costs.
c. Because we don't need to sell as many units, the time

required for recovery will decrease.
d. Product delivery may be accelerated.
e. Due to earlier delivery, the time required for recovery will

decrease.

On the other hand,

f. Removing features may decrease the rate at which units are
sold.

g. Due to the slower rate of sale, the time required for
recovery would increase.

-^Although items a and d seem logical, once development begins, the removal
of a feature could actually increase costs and delay delivery because of the
extra effort to undo something that has already been done!

110 • JUST ENOUGH REQUIREMENTS MANAGEMENT

As you can see, c and e are opposing forces to g in both cases.
Finding an optimal set of features is nontrivial.

Although most companies will not compute all these items
precisely, it is important to understand the general effect of adding
features to a product or removing them. The bottom line is that
adding features to a proposed product will definitely increase
development cost, but it may increase or decrease the time for
recovery. On the other hand, removing features from a proposed
product will generally decrease development cost, but it may
increase or decrease the time for recovery. Finally, in software
development, there are very few recurring costs (such as the cost of
manufacturing or of goods sold, as in the case of material goods).

Considering Revenues

The revenue associated with a product is the sum of all the gross
receipts related to the sale of the product. Given the earlier defini-
tions of market size, market penetration, and price, we could also
define revenue (at least conceptually) as

revenue ~ market size x market penetration x price.

That is, as market size, market penetration, and price increase, so
does revenue. However, as pointed out in previous sections, the
three variables on the right side of the above equation are not inde-
pendent. Changing the market so that market size increases will
lower penetration, and changing the price can have dramatic
effects on market penetration.

Given the following, we should be able to predict expected
revenue as a function of time: a fixed market segment (as discussed
earlier, in the subsection entitled "Considering Market and Market
Size"), a set of features (as shown in Figure 3-13), and our expected
market penetration (as shown in Figure 3-28).

Considering the Effect of Investment

Each of the above factors should be considered carefully when
deciding to include or exclude a requirement from a software
product. However, the ultimate indicator of whether a feature
should be included or excluded is how it contributes to return on

THREE • REQUIREMENTS TRIAGE • 111

investment (ROI). In general, return on investment is defined as a
measure of how effectively the company is using its capital to
generate profits. There are many ways to calculate a return on
investment:

• Accounting definition: The official definition of ROI is the
annual income (profit) divided by the sum of shareholder's
equity and long-term debt.

• Annualized percentage rate (APR): If you invest, say, $100
this year, and in five years it has increased in value to $128,
you have received an overall rate of return of 28 percent.
But to be able to compare two different potential invest-
ments, you want to look at the annualized rate of return. In
this case, the annualized rate of return is 5 percent ($100 x
1.055). That is, if you invest $100, and every year thereafter
you earn 5 percent on your money, at the end of five years,
you will have $128. Now, let's say you have the choice
between the following two potential ways to invest $100:

• $100 today will become $128 in 5 years.
• $100 today will become $115 in 1 year.

If you want to know which is the better option, just
compare their APRs. In the first case, the APR is 5 percent.
In the second case, the APR is 15 percent. The second is a
better investment even though it has a smaller total gain.

• Internal rate of return (IRR): IRR is quite similar to APR, but
is expressed as a multiple, rather than a percentage. So, a
5-percent APR is expressed as a 1.05 IRR, a 15-percent APR
is expressed as a 1.15 IRR. If you invest $100 today and it
becomes $1,600 in four years, that represents an IRR of 2; in
other words, you have effectively doubled your money
every year for four years. Spreadsheets take away the diffi-
culty of computing IRR by providing built-in formulae for
this.

• Break-even: At the break-even point, your cumulative
revenues and your cumulative costs are equal. In a typical
software development effort, you incur significant up-front
costs of product development, as well as the ongoing costs of
maintenance and upgrades to the software (see Figure 3-31
for a graph of these cumulative costs).

112 • JUST ENOUGH REQUIREMENTS MANAGEMENT

Figure 3-31: Cumulative Costs.

Meanwhile, if you are selling the software externally, you
are receiving revenue from your customers for both initial
purchases and annual maintenance contracts. Or, if you are
using the software internally, you are reaping some
reward—some combination of increased revenues,
decreased costs, or increased efficiency (see Figure 3-32).

Figure 3-32: Cumulative Benefits (Revenues or Savings).

THREE • REQUIREMENTS TRIAGE • 113

Considering that revenues and other benefits generally do
not start until well after the software development stage, it
should be no surprise that the curve of Figure 3-31 shows
non-zero amounts (by the third quarter of 2003) earlier than
they are shown in Figure 3-32 (by the third quarter of 2004).
The break-even point is found by overlaying the two
graphs, as shown in Figure 3-33.

Figure 3-33: Break-Even Graph.

The shaded areas between the two graphs represent where
the benefits exceed the expenses. However, be aware that
on real software projects, there is a point of diminishing
returns, when the cumulative expenses (being fed by esca-
lating maintenance costs) once again exceed the cumulative
benefits, as shown in Figure 3-34. You will note in this
figure how the area turns from "in the red" (unshaded)
initially, to being shaded, and then the lines cross again and
the area is unshaded ("in the red") once again.
Net present value (NPV): Net present value is used to compare
the return on investment of a candidate product (with
selected features) with other potential investments or alterna-
tive feature sets. It is the net financial result of a multi-year
investment expressed using the current dollar valuation.

114 • JUST ENOUGH REQUIREMENTS MANAGEMENT

Let's look at a few parts of this definition. "Net" means
that we are looking at the final effect of all outflows (the
investments made in R&D for building the software
product, as well as the ongoing maintenance) and all
inflows (all types of revenues resulting from sales of the
product and maintenance contracts). "Financial result"
indicates that NPV will be expressed in monetary units.
"Current dollar valuation" indicates that NPV considers
the time-value of money (for example, $1.00 today is worth
more than $1.00 will be worth next year). The formula for
computing NPV factors in the interest you would have
earned (called the discount rate) if you did not make the
investment currently under consideration. Like IRR, every
spreadsheet today provides a built-in formula for NPV; just
plug in the discount rate, inflows, and outflows for each
year, and the spreadsheet will compute it for you. If the
NPV for your new product is higher than some other alter-
native you are considering, then you might consider
building it. If NPV is less, it is probably not wise to make
the investment.

Figure 3-34: A More Realistic Break-Even Graph.

Putting It All Together

The balancing act that is triage is nontrivial, but quite doable.
Figure 3-35 shows how each of the factors influence each other, all

THREE • REQUIREMENTS TRIAGE - 1 1 5

driven by the decision to add or subtract features from the next
release. This figure highlights the conflicting facts. For example,

• As you add features, costs increase, which delays break-even.
• As you add features, the price may increase, resulting in

higher revenues, which accelerates break-even.

Or consider these facts:

• As you add features, delivery is delayed, decreasing
volume and delaying break-even.

• As you add features, market size may increase, increasing
volume and accelerating break-even.

Figure 3-35: Complexity of Advanced Triage Factors.

THE RESULT OF TRIAGE

Triage is completed when the organization has determined which
subset of requirements will be satisfied in the next release of the
product. If we're conducting basic triage, then we know every-
thing shown in Figure 3-36. If we're conducting advanced triage,
we know everything shown in Figure 3-37. In both of these
figures, the first item in each column is usually documented in a
preliminary version of the requirements document, to be expanded
in the subsequent requirements specification phase. All other

116 • JUST ENOUGH REQUIREMENTS MANAGEMENT

items are likely to be documented in a business case document
[REI03], preliminary project plan [IEE98a], or preliminary
marketing plan [BER01].

For Products to Be Sold

which requirements we will
strive to satisfy

when the product will be
delivered, and with what
likelihood

how much development is
expected to cost, and with
what likelihood

For Products for Internal Use

which requirements we will
strive to satisfy

when the product will be
delivered, and with what
likelihood

how much development is
expected to cost, and with
what likelihood

Figure 3-36: What We Know at the End of Triage (Basic).

THE SECRETS OF JUST ENOUGH TRIAGE

If you pay too little attention to triage, you run the risk of trying to
build a system that cannot be built within your time and resource
constraints. If you spend too much time on triage, priorities will
change before you even start doing requirements specification,
resulting in a never-ending delay to project initiation. The secrets
of accomplishing just enough requirements triage are as follows:

• Learn to accept that there is no such thing as a perfect solu-
tion to the triage dilemma. Compromise is necessary.

• Always annotate your candidate requirements with a rela-
tive priority and an estimated cost.

• Record interdependencies between requirements.
• Plan more than one release at a time [DAVOS].
• Plan to replan before each new release [DAVOS].
• If the voices (usually from marketing) crying "Add more

functionality I" are allowed to overcome the voices of
moderation, late delivery is guaranteed.

• If the voices (usually from development) crying "We can't
implement that much functionality!" are allowed to overcome
the voices of moderation, a weak product is guaranteed.

• Never lose sight of your goal: to select a subset of the full
set of desired requirements so that the product can be
delivered on time and within budget.

THREE • REQUIREMENTS TRIAGE - 1 1 7

For Products to Be Sold For Products for Internal Use

• which requirements we will
strive to satisfy

• when the product will be
delivered, and with what
likelihood

• how much development is
expected to cost, and with
what likelihood

• who the customers are

• how much the customer is
expected to pay for the
product

• how much it will cost to
market and sell

• how many units are expected
to be sold within the next x
years

• when the product is expected
to be replaced (the product's
expected life span)

• when the company will
recover its costs (the break-
even)

• what the internal rate of
return is

which requirements we will
strive to satisfy

when the product will be
delivered, and with what
likelihood

how much development is
expected to cost, and with
what likelihood

who the internal customers are

how much savings or
additional revenues the
company will incur

how much it will cost to
implement

how many transactions are
expected to be performed by
time period over the next x
years

when the product is expected
to be replaced (the product's
expected life span)

when the company will
recover its costs (the break-
even)

what the internal rate of
return is

Figure 3-37: What We Know at the End of Triage (Advanced).^

Triage participants must see themselves as a team trying to
solve a business problem, not as separate camps trying to
get their own way.
Development should avoid making absolute statements
such as, " We cannot build the system by the delivery date if
you add that requirement/7 Instead, make statements such
as, "By adding that requirement, our likelihood of deliv-
ering on time reduces from 73 percent to 27 percent/7 This
helps create an environment of teamwork since nobody on
the team wants to deliver the product late.

2^1 use the term "implement" in the right-hand column, in the information
systems sense, which means, "making it happen in the organization" and
includes such costs as training, deployment, purchasing equipment, changing
business processes, and so on. I am not using it in the computer-science sense,
meaning "code the software."

118 • JUST ENOUGH REQUIREMENTS MANAGEMENT

• Marketing (and customers) should avoid making absolute
statements, such as, "We cannot sell (or use) the system if
that requirement is excluded/7 Instead, make statements
such as, "By removing that requirement, our expected
revenues will be reduced from $20M to SUM/' This helps
create an environment of teamwork since nobody on the
team wants to hurt the company's revenue.

• Agreeing to a set of requirements that are impossible to
satisfy in the given time guarantees failure. Why would
anybody send a company down such a path?

• Avoiding explicit triage altogether means that triage issues
will be addressed through intimidation and politics, which
will doom the project to failure.

• Stakeholders have the right to change their mind. A
requirement that is not important today may become crit-
ical tomorrow, and vice versa. Be flexible.

Index

$100 test. See Hundred-dollar test.
Abreo, L. Rene, 225
Accounts receivable example,

30,79
Achievable (attribute of require-

ments), 131, 135, 190
defined, 131

Adaptability, 147, 150, 152, 184
Advanced triage, 68, 97-115. See

also Requirements triage.
cost considerations, 108-10
factors to consider, 97-98
inherent risks of require-

ments, 98-101
market penetration consider-

ations, 104-5
market size considerations,

101-2
market window considera-

tions, 102-4
price considerations, 105-8
putting it all together, 114-15
revenue considerations, 110

ROI considerations, 110-14
techniques, 97-115

Advocate for a requirement,
131, 132

Agile methods, 8, 43, 57
Akao, Yoji, 222
Alexander, Ian, 209
Algorithms, 185
Allocation of requirements, 12, 65
Ambiguous (attribute of

requirements), xi, 26, 39, 60,
76, 78, 119, 120, 121, 129,
133-34, 135, 141, 150, 151,
161, 190, 191
defined, 133
reducing via refinement, 76

Ambler, Scott, 209
Ambriola, Vincenzo, 209
Analysis. See Elicitation.
Analysts, 4, 15, 16, 24, 28, 40, 41,

42, 46, 54, 66n., 164, 165, 210,
214, 217, 218
defined, 40

227

J

E

R

M

228 • INDEX

Andrews, Dorine C, 209
Andriole, Stephen J., 209
Annotated (attribute of require-

ments), 7, 28, 31, 99, 121, 129,
131-32, 135, 136, 138, 140, 156,
165, 185, 191
attribute of a requirement,

131-32
defined, 131

Annualized percentage rate
(APR), 111

Anonymity during brain-
storming, 52, 53

Anton, Annie, 82, 137, 210
Application service provider

(ASP), 107
APR. See Annualized percentage

rate (APR).
Architecture, 33, 36, 94, 95, 96,

150,171. See also Design.
Armour, Frank, 57, 210
ASP. See Application service

provider (ASP).
Attainment of requirements. See

Triage.
Austin, Rob, 210
Average order size, 107

Baselining requirements, 33, 34,
35, 72, 89, 100, 177, 192-96
changes after, 163-71, 194-96

Basic triage. See Triage.
Beck, Kent, 43, 210
Beecham, Sarah, 36, 218
Belady, Laszlo, 58, 210
Bensoussan, Babette, 216
Berdon, J.D., 51n.
Berry, Daniel M, 210
Berry, Tim, 116, 211
Beyer, Hugh, 211
Bickerton, Matthew, 211
Boehm, Barry, 18, 36, 74, 86, 211
Boeing, 9
Bonus requirements, 162, 176
Booch, Grady, 211
Brainstorming, 6, 48-52, 57, 69,

178-83, 185, 209
anomalies, 182

appropriate room, 179
criticism, 50, 181
defined, 178
distributed, 52
end, 51
lulls, 182
mission, 180
piggyback, 50
posing the issue, 49-50
priming discussion, 181
protocols, 180
recipe, 178
reconnoiter, 51
right people, 178-79
role of markers and note

pads, 49
scheduling, 179
supplies, 179-80
use cases within, 57-58

Bray, Ian, 211
Break-even, 111-13, 114, 115

defined, 111
Brereton, Pearl, 211
Brooks, Fred, 170, 211
Browne, Glenn, 212
Bug reports, 27
Bulleted lists, 123, 128
Burglar alarm example, 43
Business analyst, 24
Buyer, 11, 97, 103, 104

Canceling a project, 8, 91, 92, 170
Candidate requirements, 6,

25-36, 43, 59, 60, 69-76, 88, 90,
91, 116, 174, 176, 180, 185, 197
disagreements over, 75-76,

77-78
estimating effort for, 74-75
prioritizing, 69-74

Capability Maturity Model
(CMM), 8, 223

Capacity requirements, 148, 149
Caring, 46
Carlshamre, Par, 65, 78, 80, 82,

212, 221
Carlson, Eric, 224
Carroll, Jack, 56, 212
Casey, Mary Ann, 221

INDEX • 229

CCB. See Change control board
(CCB).

Change control board (CCB), 34,
35, 36, 165, 170-71, 194, 195,
219

Changes to requirements, 36, 46,
86-87, 125, 131-32, 150, 158, 159,
160, 163-71, 173, 176, 194-96
adding a new point release,

168-69
adding resources, 170
canceling a project, 170
choices, 165-70
database for, 165
delaying delivery, 167
delaying to a future unspeci-

fied release, 169
delaying to next release, 168
deleting other requirements

to accommodate, 169
keeping track of, 165
maintaining schedule, 166
maximum rate, 158
reasons for, 163
rejecting, 169
sources of, 164-65
tracking, 165

Chatzoglou, Prodromos, 212
Chen, K., 212
Chen, Peter, 212
Cherry soda manufacturing

example, 101
Churn. See Changes to require-

ments.
CMM. See Capability Maturity

Model (CMM).
Coad, P., 212
Cockburn, Alistair, 8, 57, 212, 218
COCOMO, 86
Cohen, Lou, 51, 213
Collaborative session. See Facili-

tated group meeting.
Collusion, 70-71
Competition, 27, 28, 97, 108
Complete (attribute of require-

ments), 120, 134, 143, 157, 161,
191
defined, 134

Computer-supported coopera-
tive work (CSCW), 47, 51,
52-53

Concept of operations, 216
Concise (attribute of require-

ments), 135
Configuration management (CM),

35, 170
defined, 35

Consistent (attribute of require-
ments), 130-31, 190
defined, 130-31

Context diagram, 58
Context-free questions. See

Open-ended questions.
Context of requirements, 10-18
Contracting officer (CO), 41
Contracting officer's technical

representative (COTR), 41
Cooper, Robert G., 213
Corporate culture, 9, 87n.
Correct (attribute of require-

ments), 129-30, 135, 190
defined, 129-30

Cost, 36
of doing business, 108
of goods sold, 110
of manufacturing, 110
overruns, 19
role in triage, 108-10
savings, 108

Costello, Rita, 213
Couger, J. Daniel, 41, 213
Coughlan, Jane, 213
Cover dependency, 81, 84n., 131
Creep, 34, 58, 86
Criticism during brainstorming,

50, 181, 182
CSCW. See Computer-supported

cooperative work (CSCW).
Cumulative expenses, 110-14
Cumulative revenues, 110-14
Custom embedded system devel-

opment, 12-13
Customers. See also Stakeholders.

defined, 41
disparate, 30
expectations of, 68

230 • INDEX

multiple, 41, 196-99
needs of, 6, 7, 25, 45, 66, 76, 157
requirements and, 6, 66, 157,

164-65
unhappy, 3, 169

Custom software development,
10-12, 18

Cysneiros, Luiz, 213

Dale, R., 224
Daly, Ed, 36
Damian, Daniela, 213
Dart, Philip, 218
Data flow diagram, 58, 59, 217,

222
Davis, Alan M, 4, 8, 18, 41, 46,

55, 58, 63, 65, 70, 87, 88, 127,
128, 129, 134, 144n., 158n.,
159n., 163, 213, 214, 218, 222

Decision table, xi, 139, 142-46
Decision tree, 142^46
Degradation requirements, 147,

149
defined, 149

Delivery date, 20, 23, 97, 103, 104,
117, 160, 168, 169, 170, 174

Delugach, Harry, 214
DeMarco, Tom, 58, 214
Demographic studies, 13
Dennis, Alan, 215
Dependencies between require-

ments. See Relationships
between requirements.

Design
before completing require-

ments, 33
to cost, 21
requirements independent of,

135
traced to requirements, 135

Desired requirement, 5, 183
Detail, 6, 184

correct level of, 6, 184
Development department

role on CCB, 170
role in elicitation, 42-43
role in estimating cost, 74-75,

77-78

Devin, Lee, 210
Discount rate, 114
Discounts, 105, 107
Disney Studios, 136
Disney, Walt, 56
Distributed support systems (DSS).

See Computer-supported coop-
erative work (CSCW).

Domges, Ralph, 82, 215
Dorfman, Merlin, 19n., 121, 215,

216, 225
Dot-corn, 8
DSS. See Computer-supported

cooperative work (CSCW).
Duncan, Richard, 215

Early adopters, 103, 104
Early majority, 103
Easterbrook, Steve, 215
Effort dependency, 79-80, 81
Effort estimation, 74, 77-78
El Emam, Kaled, 215
Electronic meeting systems, 52
Elevator door example, 59, 132,

143_45r 148, 149
Elicitation, 6, 23-25, 38, 40-62,

173
avoiding, 45, 62
defined, 40-44
errors, 38
just enough, 61-62
reasons for performing, 45
result of, 59-61
techniques, 45-59
using models in, 58-59
using notations in, 58-59

Endres, Albert, 36, 37, 216
Environmental requirements, 126
Errors

cost to repair, 36
knowledge, 38
specification, 39
triage, 38-39

Essential systems analysis, 58
Estimated cost, 74, 77-78
Examples

accounts receivable, 30, 79
airline reservations, 137, 138

INDEX • 231

Boeing 777, 9
burglar alarm, 43
cherry soda manufacturing,

101
cover dependency, 81
decision tables, 143-44
decision trees, 145
degradation, 149
effort dependency, 79
elevator, 59, 132, 143-45, 147,

148, 149
finite state machines, 140-42
heating, ventilation, and air-

conditioning (HVAC), 44
hotel, 4
lawn mower, 49, 50, 51, 60
London stock traders, 48
manufacturing laser printers,

101
mass storage device, 93-97
missile, 56, 147, 148, 149
necessity dependency, 78-79
one-lane bridge, 59-61, 72-73,

74-75, 84-86, 98-99,
123-24, 137-39, 141-42,
147_48, 156, 200-208

remote mouse, 5
robot, 6, 43
scenarios, 56-57, 137, 138, 207
subset dependency, 80-81
traffic signal, 59-61, 72-73,

74-75, 84-86, 98-99,
123-24, 137-39, 141-42,
147-48, 156, 200-208

user interface map, 155
Expenses. See Cumulative expenses.
Externally observable, 3-5, 145,

152, 183
Extreme programming, 43, 210,

215, 222

Facilitated group meeting, 47,
48-52
validating with question-

naires, 54-55
Pagan, Michael, 36
Fairley, Richard, 216
Farry, K., 219

Feather, Martin, 65, 84n., 216
Feature points, 74
Features. See also Requirements.

abstract requirements, 26
adding, 103, 104, 109
removing, 104, 109

Ferdinandi, Patricia L., 216
Finance department, 31, 32, 158,

160, 171
Finite state machine, xi, 59,

140-42, 206
Finkelstein, Anthony, 132, 217
Firesmith, Donald G., 216
Five-way priority scheme, 69,

71-72
Flavin, Matt, 216
Fleisher, Craig, 41, 216
Flynn, Doral J., 216
Focus group. See Facilitated

group meeting.
Formal specification, 123, 128-29
Forsberg, Kevin, 19, 216
Fowler, Floyd J., 54, 216
Function points, 74
Fuzzy problems, 19

Gane, Chris, 214, 216
Cause, Donald C, 43, 44, 47, 216,

217
GDSS. See Computer-supported

cooperative work (CSCW).
Gervasi, Vincenzo, 130, 209, 226
Glass, Robert L., 217
Glinz, Martin, 217
Glossary, 46, 62, 162, 173, 176
Goguen, Joseph, 48, 54, 217
Gotel, Oily, 132, 217
Gottesdiener, Ellen, 46, 49, 217
Graham, Ian, 217
Grammar, 191

requirements and, 191
Group decision support systems

(GDSS). See Computer-supported
cooperative work (CSCW).

Group session. See Facilitated group
meeting.

Guiney, Eamonn, 57, 221

232 • INDEX

Hadden, Rita, 217
Hall, Judith, 53, 220
Hall, Tracy, 36, 37, 218
Hardware interface require-

ments, 155-56
Hardware requirements docu-

ment, 13, 151
Hare, Matt, 221
Harel, David, 58, 141, 218, 219
Haywood, Elizabeth, 82, 218
Heating, ventilation, and air-

conditioning (HVAC)
example, 44

Heimdahl, Matts, 218
Hickey, Ann, 47, 218
Hierarchy of requirements, 4,

60-61, 76, 157
Highsmith, James A., 8, 218
Hitchhiking, 51
Holtzblatt, Karen, 211
Hooks, Ivy, 219
Hotel example, 4
Huber, G., 52, 219
Hull, M. Elizabeth, 219
Human interface requirements.

See User interface require-
ments.

Hundred-dollar test, 69, 70, 71,
183

In, Ho, 65, 219
Inception. See Elicitation.
Inconsistent (attribute of require-

ments), 130-31, 190
checking for, 190

INCOSE, 83n.
Independent software vendors

(ISVs), 13-14
Innovators, 103, 104
Internal IT organizations, 15-16

analysts, 15-16
customers, 41
market, 42, 101, 102-3, 104
price, 105
triage result, 116, 117

Internal rate of return (IRR),
110-13

Internationalization, 102

Interviewing, 47-48, 52, 59
IRR. See Internal rate of return

(IRR).
ISV. See Independent software

vendors (ISVs).
IT. See Internal IT organizations.

Jackson, Michael, 219
Jacobson, Ivar, 57, 136, 219
JAD. See Joint application devel-

opment (JAD).
Jahanian, Farnam, 219
Jirotka, Marina, 54, 217
Joint application development

(JAD), 51. See also Facilitated
group meeting.

Jones, Capers, 74, 86, 131, 219
Just enough

change secrets, 171
defined, 8-10
elicitation secrets, 62
specification secrets, 161-62
triage secrets, 116-18

Kamsties, Eric, 220
Karakostas, Vassilios, 221
Karlsson, Joachim, 65, 220
Karsai, G., 220
Kendall, Julie, 41, 220
Kendall, Kenneth, 41, 220
Kilov, Haim, 220
Knapp, Mark, 53, 220
Knowledge errors, 38
Kotonya, Gerald, 136n., 220
Kovitz, Benjamin L., 220
Kowal, James A., 58, 220
Krueger, Richard, 51, 221
Kulak, Daryl, 57, 221
Kuusela, Juha, 81, 221

Laggards, 103
Lam, Wing, 163, 221
Late majority, 103
Lauesen, Soren, 221
Lawn mower example, 49, 50, 51, 60
Leffingwell, Dean, 51, 69, 221
Left-brained, 24
Legacy systems, 124-25
Lehman, Manny, 58, 164, 210, 221

INDEX • 233

Level of detail, 5-6, 184, 215
Leveson, Nancy, 218
Life cycles, 18, 21-23
Life span, 148
Linde, C, 217
Lines of code, 74
Listening, 40, 41, 44, 46, 47
Liu, Dar-Biau, 213
London stock trader example, 48
Loser user, 42, 43
Loucopoulos, Pericles, 221
Lulls, 51, 182
Lutz, Robyn R., 163, 221

Macaulay, Linda A., 212, 221
Maciaszek, Leszek A., 221
Macredie, Robert, 213
Madhavji, Nazim, 215
Maiden, Neal, 221
Maintainability requirements,

147, 150-51, 184
Maintenance, 124, 150n.
Margins and price, 107
Market, 13, 14, 20, 28, 42, 66, 97,

101-5, 164
defined, 101
penetration, 98, 104-5, 107,

110
price and, 110, 185
research, 13, 14
segment, 107, 110
size, 97, 101-2, 110, 115
target, 13, 101-5, 193
window, 20, 65, 97, 102-4, 185

Market requirements document
(MRD), 14. See also Require-
ments document.

Marketing department, 13-15,
28-35, 64, 66n., 93-97, 103,
116, 118, 127, 160, 161, 164,
174, 175, 193
plan, 116
role on CCB, 170-71
role in elicitation, 24, 42, 178
role in prioritizing require-

ments, 64-65, 69-74, 75-76
schedule definition, 20

Martin, Charles R, 221

Maslow, Abraham H., 4, 38, 221
Mass marketed embedded system

builders, 14
Mass storage device, 93-97
McLeod, Raymond, 41, 222
McMenamin, Steve, 58, 222
Mello, Melinda, 51n.
Menzies, Tim, 84n., 216
Miller, Granville, 210
Miller, Tom, 222
Missile example, 56, 147, 148, 149
Mission needs assessment. See

Elicitation.
Mitsubishi Electric, 190
Mizuno, Shigeru, 74, 196, 222
Modechart, 58
Models, 25, 121, 123-24, 132, 157,

161, 175, 184, 191, 205-8
during elicitation, 58-59
during specification, 136-46

Modifiable (attribute of require-
ments), 135

Mok, Aloysius, 219
Moore, Geoffrey A., 14, 222
Mooz, Hal, 19, 216
Moreno, Ana M., 222
MRD. See Market requirements

document (MRD).
Multiple stakeholders, 19, 74,

75-76, 83
Mylopoulos, John, 222

Nakajima, Tsuyoshi, 190n., 222
NASA, 19
Natural language, xi, xii, 123,

129, 132, 146, 156, 161, 175
Nawrocki, Jerzi, 222
Necessity dependency, 78-79, 90
Needs. See Customers: needs.
Needs analysis. See Elicitation.
Negotiation of requirements. See

Triage.
Net present value (NPV), 109,

113-14
Nonbehavioral requirements,

146-53, 157
Nonfunctional requirements. See

Nonbehavioral requirements.

234 • INDEX

No surprises, 153
NPV. See Net present value

(NPV).
Nunamaker, Jay, 52, 222
Nuseibeh, Bashar, 215

Object, 56-57
design, 211
orientation, 212

Observation, 47, 53-54
defined, 53

Ocker, Rosalie, 222
One-lane bridge example. See

Traffic signal example.
Open-ended questions, 47
Optimality vs. essentiality, 153
Organized (attribute of require-

ments), 121, 135, 157
Origin of a requirement, 131-32

Palmer, John, 58, 222
Parnas, David L., 67, 223
Paulk, Mark, 8, 223
Perceived quality, 107
Performance requirements, 126
Petri net, xi-xii
Pohl, Klaus, 120, 121, 215
Point of diminishing returns, 113
Politi, M, 218
Portability requirements, 147,

152-153
Price, 11, 12, 14, 17, 96, 98, 105-8,

110, 115, 188
Primary customer, 131, 132
Primary key, 133, 19 In.
Prioritization of candidate

requirements, 30, 65, 69-74,
175. See also Triage.

Problem, 44
decision-based, 142-46
defined, 44
state-based, 140-42

Problem analysis. See Elicitation.
Problem analyst. See Analysts.
Process, 8-9
Product development. See

Development department.
Product management, 35

Product manager, 24, 31, 35, 66n.
Product marketing manager, 24
Programmers. See Resources.
Project

failure, 45, 160-61, 166, 172,
175

management, xii, 35, 129, 171
Promise a little, deliver a lot, 162,

176
Promotions, 107
Prototyping, 38, 47, 55, 154-55

defined, 55
Putnam, Lawrence H., 86, 223

Quality function deployment
(QFD), 74, 196-99

Quality of a requirements docu-
ment, 128-35, 177, 190-92
achievable, 131, 135, 190
ambiguous, 76, 133-34
annotated, 7, 28, 31, 99, 121,

122, 131-32, 135, 136, 138,
140, 156, 168, 185, 191

complete, 120, 134, 157, 161,
191

concise, 135
consistent, 130-31, 190
correct, 129-30, 135, 190
design independent, 135
modifiable, 135
organized, 121, 135, 157
traceable, 132-33, 135, 191
unambiguous, 76, 133-34
verifiable, 134-35

Questionnaires, 47, 54-55

R&D. See Development depart-
ment.

Ramamoorthy, C.V., 58, 223
Ramesh, Balasubramanium, 82,

223
Rauscher, Tomlinson, 213
Reconnoiter, 51
Redundant (attribute of require-

ments), 130
Refinement, 30, 60-61, 73n., 76,

78, 81, 132, 157
Regnell, Bjorn, 57, 212, 223

INDEX • 235

Regression testing, 151
Reifer, Donald J., 116, 223
Reinertsen, Donald G., 103, 223
Rejecting requirements changes,

169, 195
Relationship between require-

ments, 67, 78-83, 84, 131-32
Relative priority of requirements.

See Prioritization of candidate
requirements.

Release, xii, 21-23, 29, 31, 67, 100,
116, 128, 129, 156, 157, 165-70,
173, 174, 176, 185-88, 195
adding new, 168-69, 187-88
time between, 21-23

Reliability, 147, 151-52, 184
defined, 151

Remote mouse example, 5
Report requirements, 156
Request for proposal (RFP), 11
Requirements

activities, 23-36
adaptability, 147, 150-51, 184
agreement, 160
allocation, 12, 65
attainment. See Triage.
baselining, 33, 34, 35, 72, 89,

100, 177, 192-96
bonus, 162, 176
candidate. See Candidate

requirements.
capacity, 148-49
change, 36, 46, 86-87, 125,

131-32, 150, 158, 159, 160,
163-71, 173, 176, 194-96

churn. See Changes to require-
ments.

consultants, 16, 17
context of, 10-18
creep, 34, 58, 86
defect, 38-39, 135
defined, 3-6
degradation, 147, 149
document, xi, xii, 26, 119-62,

163, 177, 188-93, 200-208
drive schedule, 20
elicitation, 6, 23-25, 40-62, 173
environmental, 126

errors, 38-39
evolution, 163-71
hierarchies, 4, 60-61, 76, 157
inputs as, 125
insurance and, 10
interdependencies between.

See Relationships between.
level of detail, 5-6, 184
maintainability, 147, 150-51, 184
management, 6-8, 23-39
minimal, 225
models, 123-24, 205-8
natural language, xi, xii, 123,

129, 132, 146, 156, 161, 175
negotiation. See Triage.
nonbehavioral, 146-53, 157
nonfunctional, 146-53
origin of, 131-32
outputs as, 125, 126
performance, 126
portability, 147, 152-53
prioritizing, 30, 65, 69-74
quality, 128-35, 177, 190-92
refinement, 157
relationships between, 67,

78-83, 84, 131-32
relative importance of, 29, 66,

69, 183
reliability, 151
response time, 126, 147-49,

154, 184
risk, 98-101
schedule and, 18-23
selection. See Triage.
specification, 119-62. See also

Requirements document.
standards, 124, 128
tailorability, 147, 152
team, 25-26
textual, xi, xii, 123, 129, 132,

146, 175
tools, 83
triage, 6, 63-118, 174-75
unsatisfied, 27
validity, determining, 3-4,

183-84
Requirements change, 36, 46,

86-87, 125, 131-32, 150, 158,

236 • INDEX

159, 160, 163-71, 173, 176,
194-96
adding a new point release,

168-69
adding resources, 170
canceling a project, 170
choices, 165-70
database for, 165
delaying delivery, 167
delaying to a future unspeci-

fied release, 169
delaying to next release, 168
deleting other requirements

to accommodate, 169
keeping track of, 165
maintaining schedule, 166
maximum rate, 158
reasons for, 163
rejecting, 169, 195
sources of, 164-65
tracking, 165

Requirements document, xi, xii,
26, 119-62, 120, 121, 122-35,
137, 142, 143, 145, 146, 148,
150, 151, 153, 155ff., 163, 177,
188-93, 200-208
assessing quality, 190-192
content of, 125-127
level of detail, 5-6, 184
qualities of, 116-22, 128-35,

161, 172-74
role of, 127-128
signing off, 158, 160
styles of, 122-125

Requirements elicitation. See
Elicitation.

Requirements management, 6-8,
23-39
components of, 23-36
importance of, 36-39

Requirements specification, 6,
119-62, 175-76. See also
Requirements document,
just enough, 161-62
result of, 156-61
techniques, 136-56

Requirements triage. See Triage.

Requirements workshops. See
Facilitated group meeting.

Research and development
(R&D). See Development
department.

Resources, 74-75, 77-78, 91-93
balancing against require-

ments, 26, 31, 67, 74-75,
77-78, 84, 160, 161, 185-88

insufficient, 31, 39
Return on investment (ROI), 6,

98, 110-14
Revenue, 13, 15, 64, 98, 101-8,

110-15, 118, 174
cumulative, 111-14
defined, 110

RFP. See Request for proposal
(RFP).

Right-brained, 24
Risk, 9-10, 68, 90-93, 98-101, 122,

123
cost, 90-93
requirements, 98-101
schedule, 90-93

Robertson, James, 121, 123, 188,
223

Robertson, Suzanne, 121, 123,
188, 223, 224

Rogich, Michael, 212
ROI. See Return on investment

(ROI).
Rombach, Dieter, 216
Royce, Walker, 41, 224
Royce, Winston, 18, 224
Ruhe, Glinther, 65, 223
Ryan, Kevin, 220

Saiedian, Hossein, 224
Sales. See Marketing.
Sarson, Irish, 214, 216
Savolainen, Juha, 81, 221
Sawyer, Pete, 224
Scenarios, 47, 56-58, 137-38, 184
Schedule, xiii, 98, 176

balancing against require-
ments, 26, 31, 67, 74-75,
77-78, 84, 86, 88, 91-96,
160, 161, 185-88

INDEX • 237

probability, 88, 89, 91-97
requirements and, 18-23
risk, 90-93
who defines, 20-21

Schell, George, 222
Selection of requirements. See

Triage.
Sequence diagram, 57
Shekaran, Chandra, 224
Sheldon, Frederick, 36, 37, 224
Siddiqi, Jawed, 211, 224
Silver, Denise, 225
SME. See Subject-matter experts

(SME).
So, H., 223
Software development. See

Development department.
Software engineering. See Devel-

opment department.
Software requirements docu-

ment. See Requirements
document

Software requirements specifica-
tion (SRS). See Requirements
document.

Sommerville, Ian, 220, 224
Specification (the activity). See

Requirements specificaton.
Specification (the document).

See Requirements document.
Spelling in requirements, 191
Sprague, Ralph, 52, 224
Spiral model, 18, 211
SRS. See Requirements docu-

ment.
Stakeholders, 24-27, 40-44,

192-93
See also Customers, Users.
changing minds, 162
defined, 41-43

Standards
requirements, 121, 123, 189
user interface, 154

Standish Group, 95, 224
Stark, George, 224
Statecharts, xii, 58, 141n.
State transition diagram, 140-42
Stevens, Richard, 209

Stories, 56-58
Storyboarding, 56-58
Subject-matter experts (SME), 6,

23
Subset dependency, 80-81, 91n.
Support personnel, 42, 43
Sutcliffe, Alistair, 224, 225
System

analysis. See Elicitation.
analysts. See Analysis.
architect, 24
embedded, 221
engineer, 24
engineering, 36
requirements, 12, 131
requirements document. See

Requirements document.
specification. See Require-

ments document.
test, 128, 151, 178, 193

Tacit knowledge, 48, 53
Tailorability, 147, 152

defined, 152
Tailorability requirements, 152
Taking notes, 47
Target market, 13, 193
Taylor, Bruce, 80, 222
Technology trends, 28
Testers, 42, 127, 128, 178, 193
Testing, 97, 127, 151, 193
Thayer, Richard, 19n., 215, 216,

225
Three-person seesaw, 68, 84, 90, 98
Time to market, 6, 8, 9, 10
Tools for requirements manage-

ment, 83
Traceable (attribute of require-

ments), 132-33, 135, 191
Traffic signal example, 59-61,

72-73, 74-75, 84-86, 98-99,
123-24, 137-39, 141-42, 147-48,
156,200-208

Trainers, 43, 178, 193
Triage, 36, 63-118, 174-75

advanced techniques for,
97-115

basic techniques for, 68-97

238 • INDEX

defined, 63-67
errors, 38-39
just enough, 116-18
participants, 31-32
reasons for performing, 67-68
synonyms for, 65

UML. See Unified Modeling
Language (UML).

Unambiguous (attribute of
requirements), 133-34

Unified Modeling Language
(UML), 57, 215, 217, 221

Units sold, 106, 108
Unsatisfied requirements, 27
Use cases, 56-58, 136
User interface, 59, 153-55, 184
User interface prototype, 154
User interface requirements,

153-55
User manuals, 133, 193
Users. See Stakeholders.

Value dependency, 82
van Deursen, Arie, 215
Verifiable (attribute of require-

ments), 134-35
Vertical market, 14
Viewpoints, 30, 141
Volere, 121, 188, 223
Volume orders, 107

Wasserman, Anthony, 225
Waterfall model, 18
Weinberg, Gerald M., 43, 44, 47,

216, 217, 225
What vs. how, 4
Whitten, Neal, 225
Widrig, Don, 221
Wiegers, Karl E., 65, 225
Wieringa, Roel J., 58, 225
Wilson, Doug, 211
Windle, Daniel, 225
Wittgenstein, Ludwig, 48, 225
Wood, Jane, 51, 225
Work breakdown structure, 132

Yes-no vote, 69, 71
Young, Ralph R., 158, 225

Yourdon, Ed, 158, 212, 225
Yue, Kaizhi, 225

Zowghi, Didar, 130, 226
Zweig, Ann, 51n., 214

	Contents
	Preface
	THREE: Requirements Triage
	Definitions and Terminology
	Why Do Triage?
	Basic Triage Techniques
	Prioritizing Candidate Requirements by Importance and Cost
	Estimating Effort for Candidate Requirements
	Disagreements Concerning Relative Priority of Requirements
	Disagreements Concerning Effort to Satisfy a Requirement
	Establishing Requirements Relationships
	Performing Triage on Multiple Releases
	Making the Triage Decision
	Delivery Date: Talking Apples and Apples

	Advanced Triage Techniques
	Considering Risks Inherent in Addressing Specific Requirements
	Considering Market and Market Size
	Considering the Market Window
	Considering Market Penetration
	Considering Price
	Considering Costs
	Considering Revenues
	Considering the Effect of Investment
	Putting It All Together

	The Result of Triage
	The Secrets of Just Enough Triage

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

