
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133462067
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133462067
https://plusone.google.com/share?url=http://www.informit.com/title/9780133462067
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133462067
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133462067/Free-Sample-Chapter

C FOR PROGRAMMERS
WITH AN INTRODUCTION TO C11
DEITEL® DEVELOPER SERIES

Deitel® Series Page
Deitel® Developer Series
C for Programmers
C++ for Programmers, 2/E
Android™ for Programmers: An App-Driven

Approach
C# 2010 for Programmers, 3/E
Dive Into® iOS 6: An App-Driven Approach
Java™ for Programmers, 2/E
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android® App Development Fundamentals
C++ Fundamentals
C# Fundamentals
iOS® 6 App Development Fundamentals
Java™ Fundamentals
JavaScript Fundamentals
Visual Basic® Fundamentals

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
Simply Visual Basic® 2010, 4/E: An App-Driven

Tutorial Approach

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 7/E, 8/E & 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 7/E, 8/E & 9/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2012 How to Program
Visual Basic® 2010 How to Program
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

How To Program Series
Android™ How to Program
C How to Program, 7/E
C++ How to Program, 9/E
C++ How to Program, Late Objects Version, 7/E
Java™ How to Program, 9/E
Java™ How to Program, Late Objects Version, 8/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program
Visual C#® 2012 How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Small Java™ How to Program, 6/E
Small C++ How to Program, 5/E

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and
more, please register for the free Deitel® Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html

and join the Deitel communities on Twitter®

@deitel

Facebook®

facebook.com/DeitelFan

Google+
gplus.to/deitel

and LinkedIn
bit.ly/DeitelLinkedIn

To communicate with the authors, send e-mail to: deitel@deitel.com
For information on government and corporate Dive-Into® Series on-site seminars offered by Deitel &
Associates, Inc. worldwide, visit:

www.deitel.com/training/

or write to
deitel@deitel.com

For continuing updates on Pearson/Deitel publications visit:
www.deitel.com
www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software devel-
opment, Android™ and iPhone®/iPad® app development, and Internet- and web-related topics:

www.deitel.com/ResourceCenters.html

http://www.deitel.com/books/LiveLessons/
http://www.deitel.com/books/CourseSmart/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/training/
http://www.deitel.com
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html

C FOR PROGRAMMERS
WITH AN INTRODUCTION TO C11

DEITEL® DEVELOPER SERIES

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission
to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-346206-7
ISBN-10: 0-13-346206-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April 2013

In memory of Dennis Ritchie,
creator of the C programming language
and co-creator of the UNIX operating system.

Paul and Harvey Deitel

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS
AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE.
ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY
DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMA-
TION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY,
WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS
RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PER-
FORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE
TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODI-
CALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE
SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS
MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Preface xv

1 Introduction 1
1.1 Introduction 2
1.2 The C Programming Language 2
1.3 C Standard Library 4
1.4 C++ and Other C-Based Languages 4
1.5 Typical C Program Development Environment 5

1.5.1 Phase 1: Creating a Program 6
1.5.2 Phases 2 and 3: Preprocessing and Compiling a C Program 7
1.5.3 Phase 4: Linking 7
1.5.4 Phase 5: Loading 7
1.5.5 Phase 6: Execution 7
1.5.6 Standard Input, Standard Output and Standard Error Streams 8

1.6 Test-Driving a C Application in Windows, Linux and Mac OS X 8
1.6.1 Running a C Application from the Windows Command Prompt 9
1.6.2 Running a C Application Using GNU C with Linux 11
1.6.3 Running a C Application Using GNU C with Mac OS X 14

1.7 Operating Systems 16
1.7.1 Windows—A Proprietary Operating System 17
1.7.2 Linux—An Open-Source Operating System 17
1.7.3 Apple’s Mac OS X; Apple’s iOS® for iPhone®, iPad® and

iPod Touch® Devices 17
1.7.4 Google’s Android 18

2 Introduction to C Programming 19
2.1 Introduction 20
2.2 A Simple C Program: Printing a Line of Text 20
2.3 Another Simple C Program: Adding Two Integers 24
2.4 Arithmetic in C 27
2.5 Decision Making: Equality and Relational Operators 31
2.6 Secure C Programming 35

Contents

viii Contents

3 Control Statements: Part I 37
3.1 Introduction 38
3.2 Control Structures 38
3.3 The if Selection Statement 40
3.4 The if…else Selection Statement 40
3.5 The while Repetition Statement 43
3.6 Class Average with Counter-Controlled Repetition 44
3.7 Class Average with Sentinel-Controlled Repetition 46
3.8 Nested Control Statements 49
3.9 Assignment Operators 51
3.10 Increment and Decrement Operators 52
3.11 Secure C Programming 55

4 Control Statements: Part II 57
4.1 Introduction 58
4.2 Repetition Essentials 58
4.3 Counter-Controlled Repetition 59
4.4 for Repetition Statement 60
4.5 for Statement: Notes and Observations 63
4.6 Examples Using the for Statement 64
4.7 switch Multiple-Selection Statement 67
4.8 do…while Repetition Statement 73
4.9 break and continue Statements 75
4.10 Logical Operators 77
4.11 Confusing Equality (==) and Assignment (=) Operators 80
4.12 Secure C Programming 81

5 Functions 83
5.1 Introduction 84
5.2 Program Modules in C 84
5.3 Math Library Functions 85
5.4 Functions 86
5.5 Function Definitions 87
5.6 Function Prototypes: A Deeper Look 91
5.7 Function Call Stack and Stack Frames 94
5.8 Headers 97
5.9 Passing Arguments By Value and By Reference 98
5.10 Random Number Generation 99
5.11 Example: A Game of Chance 104
5.12 Storage Classes 107
5.13 Scope Rules 109
5.14 Recursion 112
5.15 Example Using Recursion: Fibonacci Series 116

Contents ix

5.16 Recursion vs. Iteration 119
5.17 Secure C Programming 121

6 Arrays 122
6.1 Introduction 123
6.2 Arrays 123
6.3 Defining Arrays 124
6.4 Array Examples 125
6.5 Passing Arrays to Functions 138
6.6 Sorting Arrays 142
6.7 Case Study: Computing Mean, Median and Mode Using Arrays 144
6.8 Searching Arrays 149
6.9 Multidimensional Arrays 155
6.10 Variable-Length Arrays 162
6.11 Secure C Programming 165

7 Pointers 167
7.1 Introduction 168
7.2 Pointer Variable Definitions and Initialization 168
7.3 Pointer Operators 169
7.4 Passing Arguments to Functions by Reference 172
7.5 Using the const Qualifier with Pointers 176

7.5.1 Converting a String to Uppercase Using a Non-Constant
Pointer to Non-Constant Data 177

7.5.2 Printing a String One Character at a Time Using a Non-Constant
Pointer to Constant Data 178

7.5.3 Attempting to Modify a Constant Pointer to Non-Constant Data 180
7.5.4 Attempting to Modify a Constant Pointer to Constant Data 181

7.6 Bubble Sort Using Pass-by-Reference 182
7.7 sizeof Operator 185
7.8 Pointer Expressions and Pointer Arithmetic 188
7.9 Relationship between Pointers and Arrays 190
7.10 Arrays of Pointers 194
7.11 Case Study: Card Shuffling and Dealing Simulation 195
7.12 Pointers to Functions 199
7.13 Secure C Programming 204

8 Characters and Strings 205
8.1 Introduction 206
8.2 Fundamentals of Strings and Characters 206
8.3 Character-Handling Library 208

8.3.1 Functions isdigit, isalpha, isalnum and isxdigit 209
8.3.2 Functions islower, isupper, tolower and toupper 211
8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph 212

x Contents

8.4 String-Conversion Functions 213
8.4.1 Function strtod 214
8.4.2 Function strtol 215
8.4.3 Function strtoul 216

8.5 Standard Input/Output Library Functions 217
8.5.1 Functions fgets and putchar 217
8.5.2 Function getchar 219
8.5.3 Function sprintf 220
8.5.4 Function sscanf 220

8.6 String-Manipulation Functions of the String-Handling Library 221
8.6.1 Functions strcpy and strncpy 222
8.6.2 Functions strcat and strncat 223

8.7 Comparison Functions of the String-Handling Library 224
8.8 Search Functions of the String-Handling Library 225

8.8.1 Function strchr 226
8.8.2 Function strcspn 227
8.8.3 Function strpbrk 228
8.8.4 Function strrchr 228
8.8.5 Function strspn 229
8.8.6 Function strstr 229
8.8.7 Function strtok 230

8.9 Memory Functions of the String-Handling Library 231
8.9.1 Function memcpy 232
8.9.2 Function memmove 233
8.9.3 Function memcmp 234
8.9.4 Function memchr 234
8.9.5 Function memset 235

8.10 Other Functions of the String-Handling Library 236
8.10.1 Function strerror 236
8.10.2 Function strlen 236

8.11 Secure C Programming 237

9 Formatted Input/Output 238
9.1 Introduction 239
9.2 Streams 239
9.3 Formatting Output with printf 239
9.4 Printing Integers 240
9.5 Printing Floating-Point Numbers 241
9.6 Printing Strings and Characters 243
9.7 Other Conversion Specifiers 244
9.8 Printing with Field Widths and Precision 245
9.9 Using Flags in the printf Format Control String 247
9.10 Printing Literals and Escape Sequences 250
9.11 Reading Formatted Input with scanf 251
9.12 Secure C Programming 257

Contents xi

10 Structures, Unions, Bit Manipulation and
Enumerations 258

10.1 Introduction 259
10.2 Structure Definitions 259

10.2.1 Self-Referential Structures 260
10.2.2 Defining Variables of Structure Types 260
10.2.3 Structure Tag Names 261
10.2.4 Operations That Can Be Performed on Structures 261

10.3 Initializing Structures 262
10.4 Accessing Structure Members 262
10.5 Using Structures with Functions 264
10.6 typedef 264
10.7 Example: High-Performance Card Shuffling and Dealing Simulation 265
10.8 Unions 268

10.8.1 Union Declarations 268
10.8.2 Operations That Can Be Performed on Unions 268
10.8.3 Initializing Unions in Declarations 269
10.8.4 Demonstrating Unions 269

10.9 Bitwise Operators 270
10.9.1 Displaying an Unsigned Integer in Bits 271
10.9.2 Making Function displayBits More Scalable and Portable 273
10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and

Complement Operators 273
10.9.4 Using the Bitwise Left- and Right-Shift Operators 276
10.9.5 Bitwise Assignment Operators 278

10.10 Bit Fields 279
10.11 Enumeration Constants 282
10.12 Secure C Programming 284

11 File Processing 285
11.1 Introduction 286
11.2 Files and Streams 286
11.3 Creating a Sequential-Access File 287
11.4 Reading Data from a Sequential-Access File 292
11.5 Random-Access Files 296
11.6 Creating a Random-Access File 297
11.7 Writing Data Randomly to a Random-Access File 299
11.8 Reading Data from a Random-Access File 302
11.9 Case Study: Transaction-Processing Program 303
11.10 Secure C Programming 309

12 Data Structures 311
12.1 Introduction 312
12.2 Self-Referential Structures 312

xii Contents

12.3 Dynamic Memory Allocation 313
12.4 Linked Lists 314

12.4.1 Function insert 320
12.4.2 Function delete 321
12.4.3 Function printList 322

12.5 Stacks 323
12.5.1 Function push 327
12.5.2 Function pop 328
12.5.3 Applications of Stacks 328

12.6 Queues 329
12.6.1 Function enqueue 333
12.6.2 Function dequeue 334

12.7 Trees 335
12.7.1 Function insertNode 338
12.7.2 Traversals: Functions inOrder, preOrder and postOrder 339
12.7.3 Duplicate Elimination 340
12.7.4 Binary Tree Search 340

12.8 Secure C Programming 340

13 Preprocessor 342
13.1 Introduction 343
13.2 #include Preprocessor Directive 343
13.3 #define Preprocessor Directive: Symbolic Constants 344
13.4 #define Preprocessor Directive: Macros 344
13.5 Conditional Compilation 346
13.6 #error and #pragma Preprocessor Directives 347
13.7 # and ## Operators 348
13.8 Line Numbers 348
13.9 Predefined Symbolic Constants 348
13.10 Assertions 349
13.11 Secure C Programming 349

14 Other Topics 351
14.1 Introduction 352
14.2 Redirecting I/O 352
14.3 Variable-Length Argument Lists 353
14.4 Using Command-Line Arguments 355
14.5 Notes on Compiling Multiple-Source-File Programs 356
14.6 Program Termination with exit and atexit 358
14.7 Suffixes for Integer and Floating-Point Literals 359
14.8 Signal Handling 360
14.9 Dynamic Memory Allocation: Functions calloc and realloc 362
14.10 Unconditional Branching with goto 363

Contents xiii

A Operator Precedence Chart 365

B ASCII Character Set 367

C Number Systems 368
C.1 Introduction 369
C.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 372
C.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 373
C.4 Converting from Binary, Octal or Hexadecimal to Decimal 373
C.5 Converting from Decimal to Binary, Octal or Hexadecimal 374
C.6 Negative Binary Numbers: Two’s Complement Notation 376

D Sorting: A Deeper Look 378
D.1 Introduction 379
D.2 Big O Notation 379
D.3 Selection Sort 380
D.4 Insertion Sort 384
D.5 Merge Sort 387

E Additional Features of the C Standard 394
E.1 Introduction 395
E.2 Support for C99 396
E.3 C99 Headers 396
E.4 Mixing Declarations and Executable Code 397
E.5 Declaring a Variable in a for Statement Header 397
E.6 Designated Initializers and Compound Literals 398
E.7 Type bool 401
E.8 Implicit int in Function Declarations 402
E.9 Complex Numbers 403
E.10 Variable-Length Arrays 404
E.11 Additions to the Preprocessor 407
E.12 Other C99 Features 408

E.12.1 Compiler Minimum Resource Limits 408
E.12.2 The restrict Keyword 409
E.12.3 Reliable Integer Division 409
E.12.4 Flexible Array Members 409
E.12.5 Relaxed Constraints on Aggregate Initialization 410
E.12.6 Type Generic Math 410
E.12.7 Inline Functions 410
E.12.8 return Without Expression 411
E.12.9 __func__ Predefined Identifier 411
E.12.10 va_copy Macro 411

xiv Contents

E.13 New Features in the C11 Standard 411
E.13.1 New C11 Headers 412
E.13.2 Multithreading Support 412
E.13.3 quick_exit function 420
E.13.4 Unicode® Support 420
E.13.5 _Noreturn Function Specifier 420
E.13.6 Type-Generic Expressions 420
E.13.7 Annex L: Analyzability and Undefined Behavior 421
E.13.8 Anonymous Structures and Unions 421
E.13.9 Memory Alignment Control 422
E.13.10 Static Assertions 422
E.13.11 Floating Point Types 422

E.14 Web Resources 422

F Using the Visual Studio Debugger 425
F.1 Introduction 426
F.2 Breakpoints and the Continue Command 426
F.3 Locals and Watch Windows 430
F.4 Controlling Execution Using the Step Into, Step Over, Step Out and

Continue Commands 432
F.5 Autos Window 434

G Using the GNU Debugger 436
G.1 Introduction 437
G.2 Breakpoints and the run, stop, continue and print Commands 437
G.3 print and set Commands 442
G.4 Controlling Execution Using the step, finish and next Commands 444
G.5 watch Command 446

Index 449

Welcome to the C programming language. This book presents leading-edge computing
technologies for software development professionals.

At the heart of the book is the Deitel signature “live-code approach.” We present con-
cepts in the context of complete working programs, rather than in code snippets. Each
code example is followed by one or more sample executions. Read the online Before You
Begin section (www.deitel.com/books/cfp/cfp_BYB.pdf) to learn how to set up your
computer to run the 130 code examples and your own C programs. All the source code is
available at www.deitel.com/books/cfp and www.pearsonhighered.com/deitel. Use
the source code we provide to run every program as you study it.

This book will give you an informative, challenging and entertaining introduction to
C. If you have questions, send an e-mail to deitel@deitel.com—we’ll respond promptly.
For book updates, visit www.deitel.com/books/cfp, join our communities on Facebook
(www.deitel.com/deitelfan), Twitter (@deitel), Google+ (gplus.to/deitel) and
LinkedIn (bit.ly/deitelLinkedIn), and subscribe to the Deitel® Buzz Online newsletter
(www.deitel.com/newsletter/subscribe.html).

Features
Here are some key features of C for Programmers with an Introduction to C11:

• Coverage of the New C standard. The book is written to the new C standard, of-
ten referred to as C11 or simply “the C standard” since its approval in 2011. Sup-
port for the new standard varies by compiler. Most of our readers use either the
GNU gcc compiler—which supports many of the key features in the new stan-
dard—or the Microsoft Visual C++ compiler. Microsoft supports only a limited
subset of the features that were added to C in C99 and C11—primarily the fea-
tures that are also required by the C++ standard. To accommodate all of our read-
ers, we placed the discussion of the new standard’s features in optional, easy-to-
use-or-omit sections and in Appendix E, Additional Features of the C Standard.
We’ve also replaced various deprecated capabilities with newer preferred versions
as a result of the new C standard.

• Chapter 1. We’ve included test-drives that show how to run a command-line C
program on Microsoft Windows, Linux and Mac OS X.

• Secure C Programming Sections. We’ve added notes about secure C program-
ming to many of the C programming chapters. We’ve also posted a Secure C Pro-
gramming Resource Center at www.deitel.com/SecureC/. For more details, see
the section A Note About Secure C Programming in this Preface.

Preface

http://www.deitel.com/books/cfp/cfp_BYB.pdf
http://www.deitel.com/books/cfp
http://www.pearsonhighered.com/deitel
http://www.deitel.com/books/cfp
http://www.deitel.com/deitelfan
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/SecureC/

xvi Preface

• Focus on Performance Issues. C is often favored by designers of performance-inten-
sive applications such as operating systems, real-time systems, embedded systems
and communications systems, so we focus intensively on performance issues.

• All Code Tested on Windows and Linux. We’ve tested every example program us-
ing Visual C++® and GNU gcc in Windows and Linux, respectively.

• Sorting: A Deeper Look. Sorting is an interesting problem because different sort-
ing techniques achieve the same final result but they can vary hugely in their con-
sumption of memory, CPU time and other system resources—algorithm
performance is crucial. We begin our presentation of sorting in Chapter 6 and,
in Appendix D, we present a deeper look. We consider several algorithms and
compare them with regard to their memory consumption and processor de-
mands. For this purpose, we introduce Big O notation, which indicates how hard
an algorithm may have to work to solve a problem. Appendix D discusses the se-
lection sort, insertion sort and recursive merge sort.

• Debugger Appendices. We include Visual Studio® and GNU gdb debugging ap-
pendices.

• Order of Evaluation. We discuss subtle order of evaluation issues to help you
avoid errors.

• C++-Style // Comments. We use the newer, more concise C++-style // com-
ments in preference to C’s older style /*...*/ comments.

• C Standard Library. Section 1.3 references en.cppreference.com/w/c where
you can find thorough searchable documentation for the C Standard Library
functions.

A Note About Secure C Programming
Experience has shown that it’s difficult to build industrial-strength systems that stand up
to attacks from viruses, worms, etc. Today, via the Internet, such attacks can be instanta-
neous and global in scope. Software vulnerabilities often come from easy-to-avoid pro-
gramming issues. Building security into software from the start of the development cycle
can greatly reduce costs and vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—pub-
lishes and promotes secure coding standards to help C programmers and others implement
industrial-strength systems that avoid the programming practices that open systems to
attack. The CERT standards evolve as new security issues arise.

Our code conforms to various CERT recommendations as appropriate for a book at
this level. If you’ll be building C systems in industry, consider reading two books by
Robert Seacord—The CERT C Secure Coding Standard (Addison-Wesley Professional,
2009) and Secure Coding in C and C++ (Addison-Wesley Professional, 2013). The CERT
guidelines are available free online at www.securecoding.cert.org. Seacord, a technical
reviewer for this book, also provided specific recommendations on each of our new Secure
C Programming sections. Mr. Seacord is the Secure Coding Manager at CERT at Carn-
egie Mellon University’s Software Engineering Institute (SEI) and an adjunct professor in
the Carnegie Mellon University School of Computer Science.

http://www.cert.org
http://www.securecoding.cert.org

Teaching Approach xvii

The Secure C Programming sections at the ends of Chapters 2–13 discuss many
important topics, including testing for arithmetic overflows, using unsigned integer types,
new more secure functions in the C standard’s Annex K, the importance of checking the
status information returned by standard-library functions, range checking, secure random-
number generation, array bounds checking, techniques for preventing buffer overflows,
input validation, avoiding undefined behaviors, choosing functions that return status
information vs. similar functions that do not, ensuring that pointers are always NULL or
contain valid addresses, preferring C functions to preprocessor macros, and more.

Teaching Approach
C for Programmers with an Introduction to C11 contains a rich collection of examples. We
focus on good software engineering, stressing program clarity.

Syntax Shading. For readability, we syntax shade the code, similar to the way most IDEs
and code editors syntax color code. Our syntax-shading conventions are:

Code Highlighting. We place gray rectangles around the key code segments in each source-
code program.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easy reference. We emphasize on-screen components
in the bold Helvetica font (e.g., the File menu) and C program text in the Lucida font (for
example, int x = 5;).

Objectives. Each chapter includes a list of chapter objectives.

Illustrations/Figures. Abundant charts, tables, line drawings, flowcharts, programs and
program outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined eight decades of programming and corporate training experience.

comments appear like this
keywords appear like this

constants and literal values appear like this

all other code appears in black

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs; many
describe aspects of C that prevent bugs from getting into programs in the first place.

xviii Preface

Index. We’ve included an extensive index, which is especially useful when you use the
book as a reference. Defining occurrences of key terms are highlighted with a bold page
number.

Software Used in C for Programmers with an Introduction to C11
We wrote this book using the free GNU C compiler (gcc.gnu.org/install/
binaries.html), which is already installed on most Linux systems and can be installed on
Mac OS X, and Windows systems and Microsoft’s free Visual Studio Express 2012 for
Windows Desktop (www.microsoft.com/express). The Visual C++ compiler in Visual
Studio can compile both C and C++ programs. Apple includes the LLVM compiler in its
Xcode development tools, which Mac OS X users can download for free from the Mac
App Store. Many other free C compilers are available online.

C Fundamentals: Parts I and II LiveLessons Video Training Product
Our C Fundamentals: Parts I and II LiveLessons video training product (available Fall 2013)
shows you what you need to know to start building robust, powerful software with C. It
includes 10+ hours of expert training synchronized with C for Programmers with an Intro-
duction to C11. For additional information about Deitel LiveLessons video products, visit

or contact us at deitel@deitel.com. You can also access our LiveLessons videos if you
have a subscription to Safari Books Online (www.safaribooksonline.com).

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
We’re fortunate to have worked with the dedicated team of publishing professionals at
Prentice Hall/Pearson. We appreciate the extraordinary efforts and mentorship of our
friend and professional colleague of 17 years, Mark L. Taub, Editor-in-Chief of Pearson
Technology Group. Carole Snyder did a marvelous job managing the review process.
Chuti Prasertsith designed the cover with creativity and precision. John Fuller does a su-
perb job managing the production of all our Deitel Developer Series books.

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tips
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

www.deitel.com/livelessons

http://www.microsoft.com/express
http://www.deitel.com/livelessons
http://www.safaribooksonline.com

About the Authors xix

Reviewers
We wish to acknowledge the efforts of our reviewers, who under tight deadlines scruti-
nized the text and the programs and provided countless suggestions for improving the pre-
sentation: Dr. John F. Doyle (Indiana University Southeast), Hemanth H.M. (Software
Engineer at SonicWALL), Vytautus Leonavicius (Microsoft), Robert Seacord (Secure
Coding Manager at SEI/CERT, author of The CERT C Secure Coding Standard and tech-
nical expert for the international standardization working group for the programming lan-
guage C) and José Antonio González Seco (Parliament of Andalusia).

Well, there you have it! C11 is a powerful programming language that will help you
write high-performance programs quickly and effectively. C11 scales nicely into the realm
of enterprise systems development to help organizations build their business-critical and
mission-critical information systems. As you read the book, we would sincerely appreciate
your comments, criticisms, corrections and suggestions for improving the text. Please
address all correspondence to:

We’ll respond promptly and post corrections and clarifications on:

We hope you enjoy working with C for Programmers with an Introduction to C11 as much
as we enjoyed writing it!

Paul and Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of programming courses to industry, government and military
clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the
Kennedy Space Center, the National Severe Storm Laboratory, White Sands Missile
Range, Rogue Wave Software, Boeing, SunGard Higher Education, Nortel Networks, Pu-
ma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are
the world’s best-selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has more than 50 years of experience in the computer field. Dr. Deitel earned B.S. and
M.S. degrees in Electrical Engineering (studying computing) from MIT and a Ph.D. in
Mathematics (studying computer science) from Boston University. He has extensive
industry and college teaching experience, including earning tenure and serving as the
Chairman of the Computer Science Department at Boston College before founding
Deitel & Associates, Inc., in 1991 with his son, Paul Deitel. Dr. Deitel has delivered hun-
dreds of professional programming seminars to major corporations, academic institutions,
government organizations and the military. The Deitels’ publications have earned inter-
national recognition, with translations published in traditional Chinese, simplified Chi-
nese, Korean, Japanese, German, Russian, Spanish, French, Polish, Italian, Portuguese,
Greek, Urdu and Turkish.

deitel@deitel.com

www.deitel.com/books/cfp

http://www.deitel.com/books/cfp

xx Preface

Corporate Training from Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring, corporate training and software development organization special-
izing in computer programming languages, object technology, Android and iOS app de-
velopment and Internet and web software technology. The company offers instructor-led
training courses delivered at client sites worldwide on major programming languages and
platforms, including C, C++, Visual C++®, Java™, Visual C#®, Visual Basic®, XML®,
Python®, object technology, Internet and web programming, Android™ app develop-
ment, Objective-C and iOS® app development and a growing list of additional program-
ming and software development courses. The company’s clients include some of the
world’s largest companies as well as government agencies, branches of the military, and ac-
ademic institutions.

Through its 37-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming professional books, college text-
books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
send an e-mail to deitel@deitel.com.

This book is also available as an e-book to Safari Books Online subscribers at

The last printed page of the book tells you how to get a free 45-day trial subscription to
access the e-book.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

www.deitel.com/training

www.safaribooksonline.com

www.informit.com/store/sales.aspx

http://www.deitel.com/training
http://www.safaribooksonline.com
http://www.deitel.com
http://www.informit.com/store/sales.aspx

2
Introduction to C Programming

O b j e c t i v e s
In this chapter you’ll:

� Write simple C programs.

� Use simple input and output statements.

� Use the fundamental data types.

� Use arithmetic operators.

� Learn the precedence of arithmetic operators.

� Write simple decision-making statements.

20 Chapter 2 Introduction to C Programming
O

u
tl

in
e

2.1 Introduction
The C language facilitates a structured and disciplined approach to computer-program
design. In this chapter we introduce C programming and present several examples that
illustrate many important features of C. In Chapters 3 and 4 we present an introduction
to structured programming in C. We then use the structured approach throughout the re-
mainder of the text.

2.2 A Simple C Program: Printing a Line of Text
We begin by considering a simple C program. Our first example prints a line of text. The
program and its screen output are shown in Fig. 2.1.

Comments
This program illustrates several important C features. Lines 1 and 2

begin with //, indicating that these two lines are comments. Comments do not cause the
computer to perform any action when the program is run. Comments are ignored by the
C compiler and do not cause any machine-language object code to be generated. The pre-
ceding comment simply describes the figure number, file name and purpose of the pro-
gram.

You can also use /*…*/ multi-line comments in which everything from /* on the
first line to */ at the end of the last line is a comment. We prefer // comments because
they’re shorter and they eliminate common programming errors that occur with /*…*/

comments, especially when the closing */ is omitted.

2.1 Introduction
2.2 A Simple C Program: Printing a Line

of Text
2.3 Another Simple C Program: Adding

Two Integers

2.4 Arithmetic in C
2.5 Decision Making: Equality and

Relational Operators
2.6 Secure C Programming

1 // Fig. 2.1: fig02_01.c
2 // A first program in C.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void)
7 {
8 printf("Welcome to C!\n");
9 } // end function main

Welcome to C!

Fig. 2.1 | A first program in C.

// Fig. 2.1: fig02_01.c
// A first program in C

2.2 A Simple C Program: Printing a Line of Text 21

#include Preprocessor Directive
Line 3

is a directive to the C preprocessor. Lines beginning with # are processed by the prepro-
cessor before compilation. Line 3 tells the preprocessor to include the contents of the stan-
dard input/output header (<stdio.h>) in the program. This header contains information
used by the compiler when compiling calls to standard input/output library functions such
as printf (line 8). We explain the contents of headers in more detail in Chapter 5.

Blank Lines and White Space
Line 4 is simply a blank line. You use blank lines, space characters and tab characters (i.e.,
“tabs”) to make programs easier to read. Together, these characters are known as white
space. White-space characters are normally ignored by the compiler.

The main Function
Line 6

is a part of every C program. The parentheses after main indicate that main is a function.
C programs contain one or more functions, one of which must be main. Every program in
C begins executing at the function main. Functions can return information. The keyword
int to the left of main indicates that main “returns” an integer (whole-number) value.
We’ll explain what this means when we demonstrate how to create your own functions in
Chapter 5. For now, simply include the keyword int to the left of main in each of your
programs. Functions also can receive information when they’re called upon to execute. The
void in parentheses here means that main does not receive any information. In Chapter 14,
we’ll show an example of main receiving information.

A left brace, {, begins the body of every function (line 7). A corresponding right brace
ends each function (line 9). This pair of braces and the portion of the program between
the braces is called a block. The block is an important program unit in C.

An Output Statement
Line 8

instructs the computer to perform an action, namely to print on the screen the string of
characters marked by the quotation marks. A string is sometimes called a character string,
a message or a literal. The entire line, including the printf function (the “f” stands for
“formatted”), its argument within the parentheses and the semicolon (;), is called a state-
ment. Every statement must end with a semicolon (also known as the statement termina-
tor). When the preceding printf statement is executed, it prints the message Welcome to

C! on the screen. The characters normally print exactly as they appear between the double
quotes in the printf statement.

#include <stdio.h>

int main(void)

Good Programming Practice 2.1
Every function should be preceded by a comment describing the purpose of the function.

printf("Welcome to C!\n");

22 Chapter 2 Introduction to C Programming

Escape Sequences
Notice that the characters \n were not printed on the screen. The backslash (\) is called an
escape character. It indicates that printf is supposed to do something out of the ordinary.
When encountering a backslash in a string, the compiler looks ahead at the next character
and combines it with the backslash to form an escape sequence. The escape sequence \n

means newline. When a newline appears in the string output by a printf, the newline
causes the cursor to position to the beginning of the next line on the screen. Some com-
mon escape sequences are listed in Fig. 2.2.

Because the backslash has special meaning in a string, i.e., the compiler recognizes it
as an escape character, we use a double backslash (\\) to place a single backslash in a string.
Printing a double quote also presents a problem because double quotes mark the bound-
aries of a string—such quotes are not printed. By using the escape sequence \" in a string
to be output by printf, we indicate that printf should display a double quote. The right
brace, }, (line 9) indicates that the end of main has been reached.

We said that printf causes the computer to perform an action. As any program
executes, it performs a variety of actions and makes decisions. Section 2.5 discusses deci-
sion making. Chapter 3 discusses this action/decision model of programming in depth.

The Linker and Executables
Standard library functions like printf and scanf are not part of the C programming lan-
guage. For example, the compiler cannot find a spelling error in printf or scanf. When
the compiler compiles a printf statement, it merely provides space in the object program
for a “call” to the library function. But the compiler does not know where the library func-
tions are—the linker does. When the linker runs, it locates the library functions and inserts
the proper calls to these library functions in the object program. Now the object program
is complete and ready to be executed. For this reason, the linked program is called an ex-
ecutable. If the function name is misspelled, the linker will spot the error, because it will
not be able to match the name in the C program with the name of any known function in
the libraries.

Escape sequence Description

\n Newline. Position the cursor at the beginning of the next line.

\t Horizontal tab. Move the cursor to the next tab stop.

\a Alert. Produces a sound or visible alert without changing the current
cursor position.

\\ Backslash. Insert a backslash character in a string.

\" Double quote. Insert a double-quote character in a string.

Fig. 2.2 | Some common escape sequences .

Good Programming Practice 2.2
Add a comment to the line containing the right brace, }, that closes every function, in-
cluding main.

2.2 A Simple C Program: Printing a Line of Text 23

Using Multiple printfs
The printf function can print Welcome to C! several different ways. For example, the pro-
gram of Fig. 2.3 produces the same output as the program of Fig. 2.1. This works because
each printf resumes printing where the previous printf stopped printing. The first
printf (line 8) prints Welcome followed by a space, and the second printf (line 9) begins
printing on the same line immediately following the space.

One printf can print several lines by using additional newline characters as in
Fig. 2.4. Each time the \n (newline) escape sequence is encountered, output continues at
the beginning of the next line.

Good Programming Practice 2.3
Indent the entire body of each function one level of indentation (we recommend three
spaces) within the braces that define the body of the function. This indentation emphasizes
the functional structure of programs and helps make programs easier to read.

Good Programming Practice 2.4
Set a convention for the size of indent you prefer and then uniformly apply that conven-
tion. The tab key may be used to create indents, but tab stops may vary.

1 // Fig. 2.3: fig02_03.c
2 // Printing on one line with two printf statements.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void)
7 {
8
9

10 } // end function main

Welcome to C!

Fig. 2.3 | Printing on one line with two printf statements.

1 // Fig. 2.4: fig02_04.c
2 // Printing multiple lines with a single printf.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void)
7 {
8 printf("Welcome to C!\n");
9 } // end function main

Welcome
to
C!

Fig. 2.4 | Printing multiple lines with a single printf.

printf("Welcome ");
printf("to C!\n");

\n \n

24 Chapter 2 Introduction to C Programming

2.3 Another Simple C Program: Adding Two Integers
Our next program uses the Standard Library function scanf to obtain two integers typed
by a user at the keyboard, computes the sum of these values and prints the result using
printf. The program and sample output are shown in Fig. 2.5. [In the input/output dia-
log of Fig. 2.5, we emphasize the numbers entered by the user in bold.]

The comment in line 2 states the purpose of the program. As we stated earlier, every
program begins execution with main. The left brace { (line 7) marks the beginning of the
body of main, and the corresponding right brace } (line 21) marks the end of main.

Variables and Variable Definitions
Lines 8–10

are definitions. The names integer1, integer2 and sum are the names of variables—lo-
cations in memory where values can be stored for use by a program. These definitions
specify that variables integer1, integer2 and sum are of type int, which means that
they’ll hold integer values, i.e., whole numbers such as 7, –11, 0, 31914 and the like.

1 // Fig. 2.5: fig02_05.c
2 // Addition program.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void)
7 {
8
9

10
11
12 printf("Enter first integer\n"); // prompt
13
14
15 printf("Enter second integer\n"); // prompt
16
17
18
19
20
21 } // end function main

Enter first integer
45
Enter second integer
72
Sum is 117

Fig. 2.5 | Addition program.

int integer1; // first number to be entered by user
int integer2; // second number to be entered by user
int sum; // variable in which sum will be stored

int integer1; // first number to be entered by user
int integer2; // second number to be entered by user
int sum; // variable in which sum will be stored

scanf("%d", &integer1); // read an integer

scanf("%d", &integer2); // read an integer

sum = integer1 + integer2; // assign total to sum

printf("Sum is %d\n", sum); // print sum

2.3 Another Simple C Program: Adding Two Integers 25

All variables must be defined with a name and a data type before they can be used in
a program. For readers using the Microsoft Visual C++ compiler, note that we’re placing
our variable definitions immediately after the left brace that begins the body of main. The
C standard allows you to place each variable definition anywhere in main before that vari-
able’s first use in the code. Some compilers, such as GNU gcc, have implemented this
capability. We’ll address this issue in more depth in later chapters.

The preceding definitions could have been combined into a single definition state-
ment as follows:

but that would have made it difficult to describe the variables with corresponding com-
ments as we did in lines 8–10.

Identifiers and Case Sensitivity
A variable name in C is any valid identifier. An identifier is a series of characters consisting
of letters, digits and underscores (_) that does not begin with a digit. C is case sensitive—
uppercase and lowercase letters are different in C, so a1 and A1 are different identifiers.

Syntax Errors
We discussed what syntax errors are in Chapter 1. Recall that the Microsoft Visual C++
compiler requires variable definitions to be placed after the left brace of a function and be-
fore any executable statements. Therefore, in the program in Fig. 2.5, inserting the defini-
tion of integer1 after the first printf would cause a syntax error in Visual C++.

Prompting Messages
Line 12

displays the literal "Enter first integer" and positions the cursor to the beginning of the
next line. This message is called a prompt because it tells the user to take a specific action.

int integer1, integer2, sum;

Error-Prevention Tip 2.1
Avoid starting identifiers with the underscore character (_) to prevent conflicts with com-
piler-generated identifiers and standard library identifiers.

Good Programming Practice 2.5
The first letter of an identifier used as a simple variable name should be a lowercase letter.
Later in the text we’ll assign special significance to identifiers that use all capital letters.

Good Programming Practice 2.6
Multiple-word variable names can help make a program more readable. Separate the
words with underscores as in total_commissions, or, if you run the words together, begin
each word after the first with a capital letter as in totalCommissions. The latter style is
preferred.

Common Programming Error 2.1
Placing variable definitions among executable statements causes syntax errors in the Mi-
crosoft Visual C++ Compiler.

printf("Enter first integer\n"); // prompt

26 Chapter 2 Introduction to C Programming

The scanf Function and Formatted Inputs
The next statement

uses scanf (the “f” stands for “formatted”) to obtain a value from the user. The function
reads from the standard input, which is usually the keyboard. This scanf has two argu-
ments, "%d" and &integer1. The first, the format control string, indicates the type of data
that should be entered by the user. The %d conversion specifier indicates that the data
should be an integer (the letter d stands for “decimal integer”). The % in this context is
treated by scanf (and printf as we’ll see) as a special character that begins a conversion
specifier. The second argument of scanf begins with an ampersand (&)—called the ad-
dress operator—followed by the variable name. The &, when combined with the variable
name, tells scanf the location (or address) in memory at which the variable integer1 is
stored. The computer then stores the value that the user enters for integer1 at that loca-
tion. The use of ampersand (&) is often confusing to novice programmers or to people who
have programmed in other languages that do not require this notation. For now, just re-
member to precede each variable in every call to scanf with an ampersand. Some excep-
tions to this rule are discussed in Chapters 6 and 7. The use of the ampersand will become
clear after we study pointers in Chapter 7.

When the computer executes the preceding scanf, it waits for the user to enter a value
for variable integer1. The user responds by typing an integer, then pressing the Enter key
to send the number to the computer. The computer then assigns this number, or value, to
the variable integer1. Any subsequent references to integer1 in this program will use this
same value. Functions printf and scanf facilitate interaction between the user and the
computer. Because this interaction resembles a dialogue, it’s often called interactive com-
puting.

Line 15

displays the message Enter second integer on the screen, then positions the cursor to the
beginning of the next line. This printf also prompts the user to take action.

Line 16

obtains a value for variable integer2 from the user.

Assignment Statement
The assignment statement in line 18

calculates the total of variables integer1 and integer2 and assigns the result to variable
sum using the assignment operator =. The statement is read as, “sum gets the value of
integer1 + integer2.” Most calculations are performed in assignments. The = operator

scanf("%d", &integer1); // read an integer

Good Programming Practice 2.7
Place a space after each comma (,) to make programs more readable.

printf("Enter second integer\n"); // prompt

scanf("%d", &integer2); // read an integer

sum = integer1 + integer2; // assign total to sum

2.4 Arithmetic in C 27

and the + operator are called binary operators because each has two operands. The + oper-
ator’s two operands are integer1 and integer2. The = operator’s two operands are sum
and the value of the expression integer1 + integer2.

Printing with a Format Control String
Line 20

calls function printf to print the literal Sum is followed by the numerical value of variable
sum on the screen. This printf has two arguments, "Sum is %d\n" and sum. The first ar-
gument is the format control string. It contains some literal characters to be displayed, and
it contains the conversion specifier %d indicating that an integer will be printed. The sec-
ond argument specifies the value to be printed. Notice that the conversion specifier for an
integer is the same in both printf and scanf—this is the case for most C data types.

Calculations in printf Statements
Calculations can also be performed inside printf statements. We could have combined
the previous two statements into the statement

The right brace, }, at line 21 indicates that the end of function main has been reached.

2.4 Arithmetic in C
Most C programs perform calculations using the C arithmetic operators (Fig. 2.6). The
asterisk (*) indicates multiplication and the percent sign (%) denotes the remainder opera-
tor, which is introduced below. In algebra, to multiply a times b, we simply place these
single-letter variable names side by side, as in ab. In C, however, if we were to do this, ab
would be interpreted as a single, two-letter name (or identifier). Therefore, multiplication
must be explicitly denoted by using the * operator, as in a * b. The arithmetic operators
are all binary operators. For example, the expression 3 + 7 contains the binary operator +
and the operands 3 and 7.

Good Programming Practice 2.8
Place spaces on either side of a binary operator for readability.

printf("Sum is %d\n", sum); // print sum

printf("Sum is %d\n", integer1 + integer2);

Common Programming Error 2.2
Forgetting to precede a variable in a scanf statement with an ampersand when that vari-
able should, in fact, be preceded by an ampersand results in an execution-time error. On
many systems, this causes a “segmentation fault” or “access violation.” Such an error occurs
when a user’s program attempts to access a part of the computer’s memory to which it does
not have access privileges. The precise cause of this error will be explained in Chapter 7.

Common Programming Error 2.3
Preceding a variable included in a printf statement with an ampersand when, in fact,
that variable should not be preceded by an ampersand.

28 Chapter 2 Introduction to C Programming

Integer Division and the Remainder Operator
Integer division yields an integer result. For example, the expression 7 / 4 evaluates to 1
and the expression 17 / 5 evaluates to 3. C provides the remainder operator, %, which
yields the remainder after integer division. The remainder operator is an integer operator
that can be used only with integer operands. The expression x % y yields the remainder af-
ter x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. We’ll discuss many interesting
applications of the remainder operator.

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in C must be written in straight-line form to facilitate entering
programs into the computer. Thus, expressions such as “a divided by b” must be written
as a/b so that all operators and operands appear in a straight line. The algebraic notation

is generally not acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C expressions in the same manner as in algebraic expressions. For
example, to multiply a times the quantity b + c we write a * (b + c).

Rules of Operator Precedence
C applies the operators in arithmetic expressions in a precise sequence determined by the
following rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are said to be at the “highest level of precedence.” In cases of nested,
or embedded, parentheses, such as

the operators in the innermost pair of parentheses are applied first.

C operation Arithmetic operator Algebraic expression C expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 2.6 | Arithmetic operators.

Common Programming Error 2.4
An attempt to divide by zero is normally undefined on computer systems and generally re-
sults in a fatal error, i.e., an error that causes the program to terminate immediately with-
out having successfully performed its job. Nonfatal errors allow programs to run to
completion, often producing incorrect results.

((a + b) + c)

x
y--

a
b
--

2.4 Arithmetic in C 29

2. Multiplication, division and remainder operations are applied next. If an ex-
pression contains several multiplication, division and remainder operations, eval-
uation proceeds from left to right. Multiplication, division and remainder are said
to be on the same level of precedence.

3. Addition and subtraction operations are evaluated next. If an expression contains
several addition and subtraction operations, evaluation proceeds from left to right.
Addition and subtraction also have the same level of precedence, which is lower
than the precedence of the multiplication, division and remainder operations.

4. The assignment operator (=) is evaluated last.

The rules of operator precedence specify the order C uses to evaluate expressions.1

When we say evaluation proceeds from left to right, we’re referring to the associativity of
the operators. We’ll see that some operators associate from right to left. Figure 2.7 sum-
marizes these rules of operator precedence for the operators we’ve seen so far.

Sample Algebraic and C Expressions
Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its C equivalent. The following expression calcu-
lates the arithmetic mean (average) of five terms.

The parentheses are required to group the additions because division has higher prece-
dence than addition. The entire quantity (a + b + c + d + e) should be divided by 5. If
the parentheses are erroneously omitted, we obtain a + b + c + d + e / 5, which evaluates
incorrectly as

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in more
complex expressions that you’ll encounter later in the book. We’ll discuss these issues as they arise.

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the expres-
sion in the innermost pair is evaluated first. If there are
several pairs of parentheses “on the same level” (i.e., not
nested), they’re evaluated left to right.

*
/
%

Multiplication
Division
Remainder

Evaluated second. If there are several, they’re evaluated
left to right.

+
-

Addition
Subtraction

Evaluated third. If there are several, they’re evaluated left
to right.

= Assignment Evaluated last.

Fig. 2.7 | Precedence of arithmetic operators.

Algebra:

C: m = (a + b + c + d + e) / 5;

m
a b c d e+ + + +

5
-------------------------------------=

a b c d
e
5
---+ + + +

30 Chapter 2 Introduction to C Programming

The following expression is the equation of a straight line:

No parentheses are required. The multiplication is evaluated first because multiplication
has a higher precedence than addition.

The following expression contains remainder (%), multiplication, division, addition,
subtraction and assignment operations:

The circled numbers indicate the order in which C evaluates the operators. The multipli-
cation, remainder and division are evaluated first in left-to-right order (i.e., they associate
from left to right) because they have higher precedence than addition and subtraction. The
addition and subtraction are evaluated next. They’re also evaluated left to right. Finally,
the result is assigned to the variable z.

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the following expression does not contain nested parentheses—instead, the
parentheses are said to be “on the same level.”

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, let’s see how C eval-
uates a second-degree polynomial.

The circled numbers under the statement indicate the order in which C performs the oper-
ations. There’s no arithmetic operator for exponentiation in C, so we’ve represented x2 as
x * x. The C Standard Library includes the pow (“power”) function to perform expo-
nentiation. Because of some subtle issues related to the data types required by pow, we defer
a detailed explanation of pow until Chapter 4.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initial-
ized as follows: a = 2, b = 3, c = 7 and x = 5. Figure 2.8 illustrates the order in which the
operators are applied.

As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make
the expression clearer. These are called redundant parentheses. For example, the pre-
ceding statement could be parenthesized as follows:

Algebra: y = mx + b

C: y = m * x + b;

a * (b + c) + c * (d + e)

y = (a * x * x) + (b * x) + c;

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:
C:

6 1 2 4 3 5

y = a * x * x + b * x + c;

2.5 Decision Making: Equality and Relational Operators 31

2.5 Decision Making: Equality and Relational Operators
Executable statements either perform actions (such as calculations or input or output of
data) or make decisions (we’ll soon see several examples of these). We might make a deci-
sion in a program, for example, to determine whether a person’s grade on an exam is great-
er than or equal to 60 and whether the program should print the message
“Congratulations! You passed.” This section introduces a simple version of C’s if state-
ment that allows a program to make a decision based on the truth or falsity of a statement
of fact called a condition. If the condition is true (i.e., the condition is met), the statement
in the body of the if statement is executed. If the condition is false (i.e., the condition
isn’t met), the body statement isn’t executed. Whether the body statement is executed or
not, after the if statement completes, execution proceeds with the next statement after the
if statement.

Conditions in if statements are formed by using the equality operators and relational
operators summarized in Fig. 2.9. The relational operators all have the same level of prece-
dence and they associate left to right. The equality operators have a lower level of prece-
dence than the relational operators and they also associate left to right. [Note: In C, a
condition may actually be any expression that generates a zero (false) or nonzero (true) value.]

Fig. 2.8 | Order in which a second-degree polynomial is evaluated.

Common Programming Error 2.5
Confusing the equality operator == with the assignment operator. To avoid this confusion,
the equality operator should be read “double equals” and the assignment operator should
be read “gets” or “is assigned the value of.” As you’ll see, confusing these operators may not
cause an easy-to-recognize compilation error, but may cause extremely subtle logic errors.

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

3 * 5 is 15

Step 4. y = 50 + 15 + 7;

50 + 15 is 65

Step 5. y = 65 + 7;

65 + 7 is 72

Step 6. y = 72

32 Chapter 2 Introduction to C Programming

Figure 2.10 uses six if statements to compare two numbers entered by the user. If the
condition in any of these if statements is true, the printf statement associated with that
if executes. The program and three sample execution outputs are shown in the figure.

Algebraic equality or
relational operator

C equality or
relational
operator

Example
of C
condition Meaning of C condition

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 2.9 | Equality and relational operators.

1 // Fig. 2.10: fig02_10.c
2 // Using if statements, relational
3 // operators, and equality operators.
4 #include <stdio.h>
5
6 // function main begins program execution
7 int main(void)
8 {
9 int num1; // first number to be read from user

10 int num2; // second number to be read from user
11
12 printf("Enter two integers, and I will tell you\n");
13 printf("the relationships they satisfy: ");
14
15 scanf("%d%d", &num1, &num2); // read two integers
16
17
18
19
20
21 if () {
22 printf("%d is not equal to %d\n", num1, num2);
23 } // end if
24
25 if () {
26 printf("%d is less than %d\n", num1, num2);
27 } // end if

Fig. 2.10 | Using if statements, relational operators, and equality operators. (Part 1 of 2.)

if (num1 == num2) {
printf("%d is equal to %d\n", num1, num2);

} // end if

num1 != num2

num1 < num2

2.5 Decision Making: Equality and Relational Operators 33

The program uses scanf (line 15) to input two numbers. Each conversion specifier
has a corresponding argument in which a value will be stored. The first %d converts a value
to be stored in the variable num1, and the second %d converts a value to be stored in the
variable num2.

28
29 if () {
30 printf("%d is greater than %d\n", num1, num2);
31 } // end if
32
33 if () {
34 printf("%d is less than or equal to %d\n", num1, num2);
35 } // end if
36
37 if () {
38 printf("%d is greater than or equal to %d\n", num1, num2);
39 } // end if
40 } // end function main

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy: 7 7

7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

Good Programming Practice 2.9
Although it’s allowed, there should be no more than one statement per line in a program.

Common Programming Error 2.6
Placing commas (when none are needed) between conversion specifiers in the format con-
trol string of a scanf statement.

Fig. 2.10 | Using if statements, relational operators, and equality operators. (Part 2 of 2.)

num1 > num2

num1 <= num2

num1 >= num2

34 Chapter 2 Introduction to C Programming

Comparing Numbers
The if statement in lines 17–19

compares the values of variables num1 and num2 to test for equality. If the values are equal,
the statement in line 18 displays a line of text indicating that the numbers are equal. If the
conditions are true in one or more of the if statements starting in lines 21, 25, 29, 33
and 37, the corresponding body statement displays an appropriate line of text. Indenting
the body of each if statement and placing blank lines above and below each if statement
enhances program readability.

A left brace, {, begins the body of each if statement (e.g., line 17). A corresponding
right brace, }, ends each if statement’s body (e.g., line 19). Any number of statements can
be placed in the body of an if statement.2

Figure 2.11 lists from highest to lowest the precedence of the operators introduced in
this chapter. Operators are shown top to bottom in decreasing order of precedence. The
equals sign is also an operator. All these operators, with the exception of the assignment
operator =, associate from left to right. The assignment operator (=) associates from right
to left.

Some of the words we’ve used in the C programs in this chapter—in particular int
and if—are keywords or reserved words of the language. Figure 2.12 contains the C key-
words. These words have special meaning to the C compiler, so you must be careful not
to use these as identifiers such as variable names.

if (num1 == num2) {
printf("%d is equal to %d\n", num1, num2);

}

Common Programming Error 2.7
Placing a semicolon immediately to the right of the right parenthesis after the condition
in an if statement.

Good Programming Practice 2.10
A lengthy statement may be spread over several lines. If a statement must be split across
lines, choose breaking points that make sense (such as after a comma in a comma-separated
list). If a statement is split across two or more lines, indent all subsequent lines. It’s not
correct to split identifiers.

2. Using braces to delimit the body of an if statement is optional when the body contains only one
statement. Many programmers consider it good practice to always use these braces. In Chapter 3,
we’ll explain the issues.

Good Programming Practice 2.11
Refer to the operator precedence chart when writing expressions containing many opera-
tors. Confirm that the operators in the expression are applied in the proper order. If you’re
uncertain about the order of evaluation in a complex expression, use parentheses to group
expressions or break the statement into several simpler statements. Be sure to observe that
some of C’s operators such as the assignment operator (=) associate from right to left rather
than from left to right.

2.6 Secure C Programming 35

2.6 Secure C Programming
We mentioned The CERT C Secure Coding Standard in the Preface and indicated that we
would follow certain guidelines that will help you avoid programming practices that open
systems to attacks.

Avoid Single-Argument printfs
One such guideline is to avoid using printf with a single string argument. If you need to
display a string that terminates with a newline, use the puts function, which displays its
string argument followed by a newline character. For example, in Fig. 2.1, line 8

should be written as:

Operators Associativity

() left to right

* / % left to right

+ - left to right

< <= > >= left to right

== != left to right

= right to left

Fig. 2.11 | Precedence and associativity of the
operators discussed so far.

Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Keywords added in C99 standard

_Bool _Complex _Imaginary inline restrict

Keywords added in C11 standard

_Alignas _Alignof _Atomic _Generic _Noreturn _Static_assert _Thread_local

Fig. 2.12 | C’s keywords.

printf("Welcome to C!\n");

puts("Welcome to C!");

36 Chapter 2 Introduction to C Programming

We did not include \n in the preceding string because puts adds it automatically.
If you need to display a string without a terminating newline character, use printf

with two arguments—a "%s" format control string and the string to display. The %s con-
version specifier is for displaying a string. For example, in Fig. 2.3, line 8

should be written as:

Although the printfs in this chapter as written are actually not insecure, these changes
are responsible coding practices that will eliminate certain security vulnerabilities as we get
deeper into C—we’ll explain the rationale later in the book. From this point forward, we
use these practices in the chapter examples and you should use them in your own code.

For more information on this issue, see CERT C Secure Coding rule FIO30-C

In Chapter 6’s Secure C Programming section, we’ll explain the notion of user input as
referred to by this CERT guideline.

scanf and printf, scanf_s and printf_s

We introduced scanf and printf in this chapter. We’ll be saying more about these in sub-
sequent Secure C Coding Guidelines sections. We’ll also discuss scanf_s and printf_s,
which were introduced in C11.

printf("Welcome ");

printf("%s", "Welcome ");

www.securecoding.cert.org/confluence/display/seccode/
FIO30-C.+Exclude+user+input+from+format+strings

http://www.securecoding.cert.org/confluence/display/seccode/FIO30-C.+Exclude+user+input+from+format+strings
http://www.securecoding.cert.org/confluence/display/seccode/FIO30-C.+Exclude+user+input+from+format+strings

Symbols
\t horizontal-tab escape sequence 22
^ bitwise exclusive OR operator 271
^ inverted scan set 254
^= bitwise exclusive OR assignment oper-

ator 278
__func__ predefined identifier 411
__VA_ARGS__ 408
_Pragma operator 407
, (comma operator) 62, 65
!, logical negation (NOT) operator 77,

78
!= inequality operator 32
? 41
?: conditional operator 41, 54, 119
. dot operator 262
. structure member operator 263
" 250
* assignment suppression character 256
* multiplication operator 27, 48
*= multiplication assignment operator 54
/ division operator 48
/*…*/ multi-line comment 20
/= division assignment operator 54
\\ backslash-character escape sequence

22
\? escape sequence 250
\' single-quote-character escape sequence

250
\" double-quote-character escape se-

quence 250
\\ backslash-character escape sequence

250
\0 null character escape sequence 133
\a alert escape sequence 22, 250
\b escape sequence 250
\f escape sequence 209
\f form-feed escape sequence 250
\n escape sequence 209
\n newline escape sequence 22, 251
\r carriage-return escape sequence 251
\r escape sequence 209
\t escape sequence 209
\t horizontal-tab escape sequence 251
\v escape sequence 209, 251
& address operator 26
& and * pointer operators 171
& bitwise AND operator 271
&& operator 77, 119
&&, logical AND operator 77
&= bitwise AND assignment operator 278
flag 249
preprocessor operator 21, 348
preprocessor operator 348
% character in a conversion specifier 48,

239

% remainder operator 27, 99
%% conversion specifier 244
%= remainder assignment operator 54
%c conversion specifier 93, 244, 254
%d conversion specifier 93
%E conversion specifier 242, 253
%e conversion specifier 242, 253
%f conversion specifier 48, 93
%g conversion specifier 253
%hd conversion specifier 93
%hu conversion specifier 93
%i conversion specifier 252
%ld conversion specifier 93
%Lf conversion specifier 93
%lf conversion specifier 93
%lld conversion specifier 93
%llu conversion specifier 93
%lu conversion specifier 93
%p conversion specifier 170, 244
%s conversion specifier 36, 196, 244, 254
%u conversion specifier 50, 93, 240
%X conversion specifier 252
+ flag 248
+ flag 247
- minus operator 54
+ unary plus operator 54
-- operator 52, 54, 189
++ operator 52, 54, 189
+= addition assignment operator 52, 54
< less than operator 32
< redirect input symbol 352
<< left-shift operator 271
<<= left-shift assignment operator 278
= assignment operator 54
-= subtraction assignment operator 54
== equality operator 81
> greater than operator 32
> redirect output symbol 353
-> structure pointer operator 262
>> append output symbol 353
>> right-shift operator 271
>>= right shift assignment operator 278
| bitwise inclusive OR operator 271
| pipe 352
|= bitwise inclusive OR assignment oper-

ator 278
|| 119
||, logical OR operator 77
~ bitwise one’s complement 271
~, bitwise complement operator 276

Numerics
0 Conversion specifier 26, 252, 253
0x 249

A
a file open mode 291
a.out 7
a+ file open mode 291
ab file open mode 291
ab+ file open mode 291
abnormal program termination 360
abort function 349
absolute-value 86
abstraction 87
access privileges 177
access violation 27, 208, 244
action 21, 22, 31, 43
action symbol 39
action/decision model 22
actions 31
active window 429
add an integer to a pointer 188
addition assignment operator (+=) 51
address 320
address of a bit field 282
address operator (&) 26, 99, 134, 169,

172, 182
aggregate data types 180
aggregates 259
alert (\a) 22
algorithm

insertion sort 384
merge sort 387
selection sort 380

aligning 239
American National Standards Committee

on Computers and Information Pro-
cessing 3

American National Standards Institute
(ANSI) 3, 3

ampersand (&) 26, 27
AND 270
Android 18

operating system 16, 18
smartphone 18

Annex K 165, 166
ANSI 3
Apache Software Foundation 17
append output symbol >> 353
Apple Inc. 17
Apple Macintosh 18
argc 355
argument 21
argument (of a function) 85
arguments 344
argv 355
arithmetic assignment operators 52

+=, -=, *=, /=, and %= 52
arithmetic conversion rules 92
arithmetic expressions 188

Index

450 Index

arithmetic mean 29
arithmetic operators 27
arithmetic overflow 55
array 123, 124

bounds checking 165
array bounds checking 131
array initializer 126
array initializer list 127
array notation 193
array of pointers 194, 202
array of strings 194
array subscript notation 134, 181, 194
arrow operator (->) 262
ASCII (American Standard Code for In-

formation Interchange) 70
assert macro 349
<assert.h> 97, 349
Assigning elements of an array in C89 398
assignment expressions 188
assignment operator (=) 31
assignment operators

=, +=, -=, *=, /=, and %= 52
assignment statement 26
associate from right to left 34, 48
associativity 29, 35, 54, 124, 170, 278
asterisk (*) 27
atexit function 358
audible (bell) 250
auto 108
auto storage class specifier 108
automatic array 127
automatic storage 108, 123
automatic storage duration 108, 136
automatic variable 108, 109
Autos window 434

displaying state of objects 435
Autos window displaying the state of lo-

calTime 435
average 29

B
B 2
backslash (\) 22, 250, 346
bank account program 304
bar chart 131
base 369
base 10 number system 215
base 16 number system 215
base 8 number system 215
base case(s) 113
BCPL 2
Bell Laboratories 2, 4
Big O notation 379, 383
binary 209
binary (base 2) number system 369
binary arithmetic operators 48
binary operator 27
binary search 149, 151, 152
binary search tree 335, 339, 340
binary tree 335
binary tree sort 339
bit field 279, 280
bit field member name 279
bit manipulation 282
bitwise AND (&) operator 270, 275
bitwise AND, bitwise inclusive OR, bit-

wise exclusive OR and bitwise comple-
ment operators 273

bitwise assignment operators 278
bitwise complement operator (~) 273,

276, 376
bitwise data manipulations 270
bitwise exclusive OR (^) operator 270,

276
bitwise inclusive OR (|) operator 270,

276
bitwise operators 270
bitwise shift operators 277
bitwise XOR 270
BlackBerry OS 16
blank 40
block 43, 89
block of data 231
block scope 109
body of a function 21, 34
body of a while 44
Bohm, C. 38
_Bool 401
_Bool Data Type 79
boolean type 79, 401
bounds checking 131, 165
braces ({}) 43
break 71, 75, 76
break debugger command 439
break mode 428, 439
breakpoint 426, 437

inserting 439, 442
yellow arrow in break mode 429

breakpoints
inserting 428, 430
red circle 428

bubble sort 142, 182, 184, 199
bubble sort 149
bubble sort with pass by reference 182
buffer overflow 165
building block approach 4
byte 270

C
C compiler 20
C development environment 6
C Environment 5
C language 2
C preprocessor 7, 21, 343
C program and sample execution for the

class average problem with counter-
controlled repetition 45

C program and sample execution for the
class average problem with sentinel-
controlled repetition 46

C program and sample executions for ex-
amination results problem 50

C standard document (INCITS/ISO/IEC
9899-1999) 3

C Standard Library 4, 5
C standard library 84, 99, 177
C Standard Library documentation 4
C# programming language 5
C++ 91
C11 395
C11 headers 412
C95 396
C95 headers 396
C99 3, 395, 411
C99 headers 396
calculations 26

call a function 84, 85, 88
call-by-reference 264
call-by-value 264
caller 85
calling function 85
calloc 362
Card dealing program 196
card shuffling and dealing simulation

195, 196, 265
caret (^) 255
carriage return (’\r’) 209
carry bit 376
case label 71, 72, 109
case sensitive 25
casino 104
cast 346
cast operator 48, 93

(float) 48
cbrt function 86
ceil function 86
char 69
char 93, 207
char * 244
char ** 214
char primitive type 69
CHAR_BIT symbolic constant 273
character array 133, 135
character constant 178, 206, 244
character handling library 208
character handling library functions 208
character set 70, 206
character string 21, 125
child 335
class averaging problem 44
clock 102
coercion of arguments 92
column 155
comma operator (,) 62, 65, 119
comma-separated list 62
command-line arguments 355, 356
comment 20
Common Programming Errors overview

xvii
Communications of the ACM 38
comparing strings 221
comparison expressions 188
compilation 7
compilation error 7, 80
compile 7
compile phase 5
compile-time error 7
compiler 7, 20, 21, 22
complement operator (~) 270
complete algorithm 39
_Complex 404
complex 404
complex number 403
complex.h 404
components (software) 5
compound interest 65, 66
compound literal 400
compound statement 43
computing the sum of the elements of an

array 129
concatenating strings 221
condition 31, 77
conditional compilation 343, 346
conditional execution of preprocessor di-

rectives 343

Index 451

conditional expression 41
conditional operator (?:) 41, 54
connector symbols 39
conserve storage 279
const 177, 180, 184, 194
const keyword 139
const qualifier 176
const type qualifier 141
constant integral expression 73
constant pointer 180, 181, 190
constant pointer to constant data 177,

181
constant pointer to non-constant data

177, 180, 181
constant run time 379
constant string 194
continue 75, 76
Continue command (debugger) 429
continue debugger command 440
control characters 212
control-statement nesting 40
control-statement stacking 40
control structures 38
control variable 58, 64

increment 59
initial value 59
name 59

controlling expression in a switch 71
conversion 374
conversion rules 92
conversion specifications 239
conversion specifier 26, 239

c 243
e and E 241
f 241
for scanf 251
g (or G) 242
s 243

conversion specifiers
%u 50

converson specifiers
%s 36

convert
a binary number to decimal 374
a hexadecimal number to decimal

374
an octal number to decimal 374
lowercase letters to uppercase letters

97
copy 98
copying strings 221
cos function 86
cosine 86
counter 45
counter-controlled loop 50
counter-controlled repetition 45, 59, 60
counting letter grades 71
counting loop 60
CPU 7
craps (casino game) 104
Creating and traversing a binary tree 336
<Ctrl> c 360
<ctype.h> header file 208, 97, 346
Cube a variable using pass by reference

173
Cube a variable using pass by value 172
cube root function 86
custom header 97
Cygwin 396

D
data structure 312
date 98
__DATE__, predefined symbolic constant

349
deallocate memory 313
debug 38
debugger 347, 439

Autos window displaying state of ob-
jects 435

break command 439
break mode 428, 429, 439
breakpoint 426, 437
Continue command 429, 429
continue command 440
convenience variable (GNU debug-

ger) 440
defined 437
delete command 441
finish command 445
-g compiler option 438
gdb command 438
help command 439
info break command 441
inserting a breakpoint 428
inserting breakpoints 439
Locals window (Visual Studio de-

bugger) 430, 431
logic error 437
margin indicator bar 428
next command 446
print command 440
quit command 441
run command 438
set command 442, 443
Solution Configurations combobox

427
step command 444
Step Into command 432
Step Out command 434
Step Over command 433
suspending program execution 430,

442
watch command 446
Watch window (Visual Studio) 430,

431
decimal 209, 215
decimal (base 10) number system 369
decision 22, 22, 31, 31, 44
decision symbol 39
deck of cards 194, 195
Declaring a variable in a for statement

header in C99 397
decomposition 87
decrement 59, 63, 189
decrement a pointer 188
decrement operator (--) 52
default case 71, 72, 73
default precision 48, 242
#define 344
#define preprocessor directive 128, 344
defining occurrence 8
definite repetition 58
definition 24, 25
delete debugger command 441
deleting a node from a list 322
delimiting characters 230
dequeue 329
dereferencing a pointer 170

dereferencing a void * pointer 190
dereferencing operator (*) 170, 263
derived data type 259
designated initializer 398, 400
determining the length of strings 221
devices 7, 8
diagnostics 97
diamond symbol 39
dice game 104
dice rolling 104
dice-rolling program 132
Dice-rolling program using arrays instead

of switch 132
digit 369
directly reference a value 168
disk 7
displacement 300
display 8
Displaying an unsigned integer in bits

271
Displaying the value of a union in both

member data types 269
divide and conquer 84, 87
division 28
division by zero 360
do...while repetition statement 39
do…while statement example 73, 74
document a program 20
dot operator (.) 262
double 92
double backslash (\\) 22
double complex 404
double indirection (pointer to a pointer)

320
double primitive type 66
double quote character (") 22
double quotes 244
double-selection statement 39
double-subscripted array 155, 158
double-subscripted array representation

of a deck of cards 195
double-subscripted array 195
dummy value 46
duplicate elimination 340
duration 108, 110
dynamic array 362
dynamic data structure 168, 312
dynamic memory allocation 313, 362
dynamic memory management 168

E
Eclipse 6
Eclipse Foundation 17
edit phase 5
editor 7, 206
editor program 6
efficiency of

insertion sort 387
merge sort 392
selection sort 383

element of an array 123
elements 123
#elif 346
ellipsis (...) in a function prototype 353
emacs 6
embedded parentheses 28
embedded system 3, 17
empty statement 43

452 Index

“end of data entry” 46
end-of-file 70
end-of-file marker 286, 289
#endif 346
end-of-file indicator 208, 217
end-of-file key combination 352
enqueue 329
Enter key 72
enter key 7, 26
enum 107, 282
enumeration 107, 283
enumeration constant 107, 282, 346
enumeration example 283
environment 5
EOF 70, 208
equality and relational operators 190
equality operator 31
e-reader device 18
<errno.h> 98
#error 347
error checking (in file processing) 302
error conditions 98
error message 8
#error preprocessor directive 347
escape character 22, 250
escape sequence 22, 250
event 360
ex 86
exclusive write mode 291
executable image 7
executable program 22
execute 7
execute phase 5
executes 7
exit and atexit functions 358
exit function 358
EXIT_FAILURE 358
EXIT_SUCCESS 358
exp function 86
expand a macro 344
explicit conversion 48
exponential complexity 119
exponential format 239
exponential function 86
exponential notation 241, 242
exponentiation 30
exponentiation operator 66
expression 67, 90
extern 108, 357
external linkage 357
external variable 109

F
f or F for a float 360
fabs function 86
Facebook 5, 17
factorial function 113
false 31
FCB 286, 288
fclose function 289
fenv.h 396
feof function 289, 302
fgetc function 286
fgets function 217, 287
Fibonacci function 119
Fibonacci series 116
field width 67, 239, 245, 247, 256
FIFO (first-in first-out) 329

FILE 286
file 286
file control block (FCB) 286, 288
file descriptor 286
file name 7
file offset 293
file open mode 288, 291
FILE pointer 292
file position pointer 293, 301
__FILE__, predefined symbolic constant

349
file processing

error checking 302
file scope 109
FILE structure 286
final value 59
final value of a control variable 62, 64
finish debugger command 445
first-in first-out (FIFO) 329
flag value 46
flags 239, 247, 249
flexible array member 410
(float) 48
float 46, 48, 93
<float.h> 98
floating point 242
floating-point conversion specifiers 242,

246, 252
floating-point exception 360
floating-point number 46, 49
floating-point size limits 98
floating-point suffix

f or F for a float 360
l or L for a long double 360

floor function 86
flowchart 39, 40
flowcharting C’s sequence structure 39
flowcharting double-selection if/else

statement 41
flowcharting the do...while repetition

statement 75
flowcharting the single-selection if state-

ment 40
flowcharting the while repetition state-

ment 44
flowline 38
fmod function 86
fopen function 291
for header components 61
for repetition statement 39, 64
format control string 26, 239, 240, 246,

251
formatted input/output model 296
form-feed character (\f) 209
fprintf function 287
fprintf_s function 309
fputc function 287
fputs function 287
fread function 287, 297
free function 313, 328
front of a queue 312
fscanf function 287
fseek function 299
function 4, 7, 21, 84

argument 85
body 89
call 85, 89
call and return 98
caller 85

function (cont.)
header 88, 89, 184, 201
invoke 85, 88
name 88, 108, 120, 199
parameter 88, 174, 176, 180
pointer 199, 202
prototype 67, 88, 89, 91, 109, 174,

184
prototype scope 109, 110
return from 85, 85
scope 109

function call
stack 94, 180

fwrite 287, 297, 299

G
-g command-line compiler option 438
game of craps 104
game playing 99
gcc compilation command 7
gdb command 438
general utilities library (stdlib) 213
generic pointer 190
getc 346
getchar 219, 219, 286, 346
global variable 108, 109, 185, 268, 356
golden mean 116
golden ratio 116
Good Programming Practices overview

xvii
goto elimination 38
goto-less programming 38
goto statement 38, 109, 363
Graphical User Interface (GUI) 18
GUI (Grahical User Interface) 18

H
hard disk 7
hardcopy printer 8
hardware independent 2
hardware platform 3
head of a queue 312, 329
header file

complex.h 404
fenv.h 396
inttypes.h 396
iso646.h 396
stdbool.h 401
stdint.h 396
tgmath.h 396
wchar.h 396
wctype.h 396

headers 21, 97, 343
79
<ctype.h> 208
<stdio.h> 217
<stdlib.h> 213
<string.h> 221

help debugger command 439
hexadecimal 209, 215, 239, 244
hexadecimal (base 16) number system

369
hexadecimal integer 170
hierarchical boss function/worker func-

tion relationship 85
highest level of precedence 28

Index 453

High-performance card shuffling and
dealing simulation 265

histogram 131
Histogram printing 131
horizontal tab (\t) 22, 209

I
identifier(s) 25, 344
#if 346
if selection statement 31, 40, 43
if...else selection statement 39, 40
#ifdef preprocessor directive 346
#ifndef preprocessor directive 346
illegal instruction 360
image 7
implicit conversion 48
INCITS/ISO/IEC 9899-1999 (C stan-

dard document) 3
#include preprocessor directive 128,

343
including headers 98
increment 63
increment a control variable 59, 62, 64
increment a pointer 188
increment operator (++) 52
incremented 189
indefinite postponement 196
indefinite repetition 58
indent 23
indentation 40, 42
indirection 168, 172
indirection operator (*) 99, 170, 172
indirectly reference a value 168
infinite loop 48, 62
infinite recursion 116
info break debugger command 441
information hiding 109, 182
initial value of a control variable 59, 64
initializer list 134
Initializing multidimensional arrays 156
initializing structures 262
Initializing the elements of an array to ze-

ros 125
Initializing the elements of an array with

an initializer list 126
inline function 410
inner block 110
innermost pair of parentheses 28
inorder 336
inOrder traversal 339
Inputting data with a field width 256
inserting a breakpoint 428
inserting literal characters 239
insertion sort algorithm 384, 385, 387
instruction 7
int type 21, 24, 93
integer 21, 24
integer array 123
integer constant 181
integer conversion specifiers 240
integer division 28, 48
integer promotion 92
integer suffix

l or L for a long int 359
ll or LL for a long long int 359
u or U for an unsigned int 359

integral size limits 98
interactive attention signal 360

interactive computing 26
Interface Builder 18
internal linkage 357
International Standards Organization

(ISO) 3
interrupt 360
inttypes.h 396
inverted scan set 255
invoke a function 85, 88
iOS 16
iPod Touch 18
isalnum function 208, 209
isalpha function 208, 209
isblank function 208
iscntrl function 209, 212
isdigit function 208, 209
isgraph function 209, 212
islower function 209, 211
ISO 3
iso646.h header file 396
isprint function 209, 212
ispunct function 209, 212
isspace function 209, 212
isupper function 211
isxdigit function 209,
iteration 120
iteration statement 43
iterative function 151

J
Jacopini, G. 38
Java programming language 5, 18
JavaScript 5
Jobs, Steve 17

K
kernel 16
Kernighan, B. W. 2
key value 149
keyboard 24, 26, 217
Keywords

_Bool 401
_Complex 404
inline 410
restrict 409

keywords 34
added in C11 35
added in C99 35

L
l or L for a long double 360
l or L for a long int 359
label 109, 363
last-in, first-out (LIFO) 94, 323
leaf node 335
least access privilege 181
left child 335
left justification 239
left justified 70
left justify 67
left justifying strings in a field 248
left subtree 335
left-shift operator (<<) 270
legacy code 176
length modifier 240
library function 4

LIFO (last-in, first-out) 94, 323
<limits.h> header file 98, 273
__LINE__, predefined symbolic constant

349
#line preprocessor directive 348
linear data structure 314
linear data structures 335
linear run time 379
linear search 149, 150
link (pointer in a self-referential structure)

313
link phase 5
linkage 107
linkage of an identifier 108
linked list 168, 259, 312, 314
linker 7, 22, 357
linker error 357
linking 7
links 314
Linux 5, 6, 7, 16

shell prompt 8
Linux operating system 17, 17
list debugger command 439
literal 21, 27
literal characters 239
live-code approach 2
ll or LL for a long long int 359
-lm command line option for using the

math library 67
load phase 5
loader 7
loading 7
local variable 86, 108, 135
locale 98
<locale.h> 98
Locals window 430
Locals window (Visual Studio debugger)

431
log function 86
log10 function 86
log2n comparisons 340
logic error 61, 80, 128, 268, 437
logical AND operator (&&) 77, 272
logical negation (NOT) operator (!) 77,

78
logical OR operator (||) 77
logical page 250
long 73
long double 93
long int 93
long long int 93
loop 61
loop continuation condition 58, 61, 62,

63, 73
looping 61
lowercase letter 97
lvalue ("left value") 80, 124

M
Mac OS X 16, 18
machine dependent 270
machine independent 2
machine language 7
machine language code 7
Macintosh 18
macro 98, 343, 344

complex 404
defined in 353

454 Index

macro (cont.)
definition 344
expansion 345
identifier 344
with arguments 344

main 21
make 358
makefile 358
malloc function 313, 362
margin indicator bar 428
mask 272, 272
math library functions 98
<math.h> header file 66, 86, 98
maximum 90
m-by-n array 155
mean 144
median 144
member 260
member name (bit field) 279
members 260
memchr function 232, 234
memcmp function 232, 234
memcpy function 232, 232
memmove function 233
memory 7
memory access violation 177
memory addresses 168
memory allocation 98
memory functions of the string handling

library 231, 232
memory utilization 279
memset function 232, 235
menu-driven system 202
merge sort algorithm 387, 388, 392
merge two arrays 387
message 21
Microsoft Visual Studio 6, 396
MinGW (Minimalist GNU for Win-

dows) 396
mixed-type expressions 92
mixing declarations and executable code

397
mode 144
module 84
Mozilla Foundation 17
multidimensional array 155, 156, 157
multiple selection statement 39, 71
multiple-source-file programs 108, 109
multiple source files 356, 357
multiple-subscripted array 155
multiple-word variable name 25
multiplication 27, 28
multiplicative operators 48
Multipurpose sorting program using

function pointers 199

N
n factorial (n!) 113
n! 113
name 59, 124
name of a control variable 59
name of an array 123
natural logarithm 86
negative value 376
negative binary numbers 368
nested if...else statement 42, 43
nested parentheses 28, 30
nesting 49

newline (\n) 22, 40, 134, 206, 208, 209,
256

NeXTSTEP operating system 18
nodes 313, 314
non-constant pointer to constant data

177, 178, 179
non-constant pointer to non-constant da-

ta 177
nonfatal error 91
NULL 169, 190, 194, 288, 313, 320
null character ('\0') 133, 134, 178, 194,

207
NULL pointer 362
null-terminated string 194
Number Systems Appendix 368
numeric codes 225

O
O(1) 379
O(n log n) time 392
O(n) time 379
O(n2) time 380, 383, 387
object 5
object code 7
object-oriented programming (OOP) 18,

87, 5
object program 22
Objective-C 18
Objective-C programming language 5
octal (base-8) number system 369
octal number 209, 215, 239
off-by-one error 61
offset 190, 300
one’s complement 276
one’s complement notation 376
ones position 369
open a file 288
open file table 286
Open Handset Alliance 18
open source 17, 18
operand 27
operating system 2, 16, 18
operator precedence 34
operator precedence chart 365
Operator sizeof when applied to an ar-

ray name returns the number of bytes
in the array 185

operators 51
order 38
order of evaluation of operands 118
order of operands of operators 119
OS X 18
outer block 110
out-of-bounds array elements 165
oval symbol 39
overflow 360

P
packets in a computer network 329
padding 280
page layout software 206
parameter 87
parameter list 89
parameter of a function 88
parameter passing 176
parameter types 184
parent node 335

parentheses () 28, 34
pass-by-reference 138, 139, 168, 172,

174, 176, 180, 182
pass-by-value 172, 174, 176, 180
passing an array 139
passing an array element 139
Passing arrays and individual array ele-

ments to functions 140
percent sign (%) 27
performance 4
performance requirements 109
PHP 5
pipe symbol (|) 352
piping 352
pointer 168, 170, 172
pointer arithmetic 188, 191
pointer arrow (->) operator 262
pointer comparisons 190
pointer expression 190
pointer notation 174, 190, 193
pointer parameter 173
pointer subscripting 191
pointer to a function 199
pointer to pointer (double indirection)

320
pointer to the structure 262
pointer to void (void *) 190, 313
pointer variable 181, 182
pointer/offset notation 190
pointer/subscript notation 191
poll 129
polynomial 30, 31
pop 323
pop off a stack 94
portability 4
Portability Tips overview xviii
portable 4
portable code 4
portable programs 2
position number 123
positional notation 369
positional value 369, 370
positional values in the decimal number

system 370
postdecrement 52
postfix increment and decrement opera-

tors 52
postincrement 52, 54
postorder 336
postOrder traversal 339, 340
pow (power) function 30, 66, 67, 86
power 86
#pragma 347
#pragma processor directive 347
precedence 28, 124, 170
precedence of arithmetic operators 29, 34
precision 48, 67, 239, 239, 241
predecrement operator 52
predefined symbolic constants 348
predicate function 320
prefix increment and decrement operators

52
preincrement operator 52
preincrementing 53
preincrementing vs. postincrementing 53
preorder 336
preOrder traversal 339
preprocess phase 5
preprocessor 7, 97

Index 455

preprocessor directive 7, 343, 346
principle of least privilege 109, 142, 176,

180, 184, 185
print characters 210
print debugger command 440
printf 239
printf 287
printf function 21
Printing a string one character at a time

using a non-constant pointer to con-
stant data 178

printing character 212
Printing positive and negative numbers

with and without the + flag 248
probability 99
Processing a queue 329
program execution stack 94
Program to simulate the game of craps

104
programmer-defined function 84
Programmer-defined maximum function

90
prompt 25
pseudo-random numbers 102
push 323, 327
push onto a stack 94
putchar 217, 287
puts 219
puts function 35

Q
quadratic run time 380
queue 168, 259, 312, 329, 329
Quick Info box 429
quit debugger command 441

R
r file open mode 291
r+ file open mode 291, 292
radians 86
raise 360
rand 99
RAND_MAX 99, 103
random number 98
random number generation 195
random-access file 296, 299
randomizing 102
range checking 82
rb file open mode 291
rb+ file open mode 291
readability 34, 60
record 180, 287
rectangle symbol 39
recursion 112, 119

recursion step 113
recursive call 113, 114
recursive calls to method fibonacci

118
recursive definition 113
recursive evaluation 114
recursive function 112
vs. iteration 119

red breakpoint circle, solid 428
redirect input from a file 352
redirect input or output 239
redirect input symbol < 352
redirect output symbol > 353

redundant parentheses 30
register 108
reinventing the wheel 4, 84
relational operators 31
reliable integer division 409
remainder 86
remainder operator (%) 27, 99
repetition statement 38, 43
replacement text 128, 344
requirements 109
reserved word 34
restrict 409
restricted pointer 409
return 172
return from a function 85
return key 7
return statement 88, 90
return type 184
return value type 88
return without expression 411
reusable software 5
Richards, Martin 2
right brace (}) 21, 22
right child 335
right justification 239
right justified 67, 245
right subtree 335
right-justifying integers 245
Right-justifying integers in a field 245
right-shift (>>) operator 271
Ritchie, D. 2
Rolling a six-sided die 6000 times 100
root node of a binary tree 335
rounded 49
rounding 113, 239
rounding toward negative infinity 409
rounding toward zero 409
rows 155
rules of operator 28
run debugger command 438
rvalue (“right value”) 80

S
savings account example 65
scalable 128
scalar 139
scalars 182
scaling 99
scaling factor 99, 104
scan characters 252
scan set 254
scanf 239
scanf function 26
scanf_s function 165
scientific notation 241
scope 346
scope of an identifier 107, 108, 108, 109
Scoping example 110
screen 8
search functions of the string handling li-

brary 225
search key 150
searching 149, 151
searching a binary tree 340
searching strings 221
second-degree polynomial 31
secondary storage device 7
seed 102

seed the rand function 102
SEEK_CUR 302
SEEK_END 302
SEEK_SET 300, 302
segmentation fault 27, 177
segmentation violations 360
selection sort algorithm 380, 381, 383
selection statement 40
selection structure 38
self-referential structure 260
semicolon (;) 21, 34
sentinel-controlled repetition 58
sentinel value 46, 48
sequence structure 38, 39
sequential access file 287
sequential execution 38
sequential file 287
set debugger command 442
<setjmp.h> 98
shell prompt on Linux 8
shift 99
Shifted, scaled integers produced by 1 +
rand() % 6 99

shifting value 104
short 73, 92
short-circuit evaluation 78
sibling 335
side effect 98, 109, 119
SIGABRT 360
SIGFPE 360
SIGILL 360
SIGINT 360
signal 360
Signal handling 361
signal handling library 360
signal value 46
<signal.h> 98, 360
signed decimal integer 240
SIGSEGV 360
SIGTERM 360
simple condition 77
simulation 99, 99, 195
sin function 86
sine 86
single quote (') character 244
single-selection statement 39
single-entry/single-exit control statements

40
single-subscripted array 177, 184
sinking sort 142
size_t 126, 222, 225
sizeof operator 185, 261, 313, 346
small circle symbol 39
smartphone 18
software engineering 76, 109, 184
Software Engineering Observations over-

view xviii
software reusability 4, 87, 184, 357
Solution Configurations combobox 427
sort algorithms

insertion sort 384
merge sort 387
selection sort 380

sort key 379
sorting 142
sorting data 379
SourceForge 17
space 256
space flag 249

456 Index

special characters 207
split the array in merge sort 387
sprintf 217, 220
sqrt function 85
square brackets ([]) 123
square root 86
srand 102
sscanf 217, 220
stack 94, 168, 259, 312, 323
stack frame 94
stack overflow 95
Stack program 323
Standard C 3
standard data types 186
standard error (stderr) 239
standard error stream 286
standard error stream (stderr) 8
standard input 26, 217, 352
standard input stream 286
standard input stream (stdin) 8, 239
standard input/output header (stdio.h)

21
standard input/output library (stdio)

217
standard libraries 7
standard library

header 97, 97, 343
Standard Library documentation 4
standard output 352
standard output stream 286
standard output stream (stdout) 8, 239
standard version of C 3
statement 21, 38
statement terminator (;) 21
statements

return 88
static 108
static 108, 110, 136
static array 127
Static arrays are automatically initialized

to zero if not explicitly initialized by
the programmer 136

_Static_assert 349
static data structures 362
static storage duration 108
<stdarg.h> 98, 353
stdbool.h 79, 401
<stddef.h> 98
<stddef.h> header 169
stderr (the standard error device) 8, 286
stdin (standard input stream) 8, 217,

286
stdint.h 396
<stdio.h> header file 21, 70, 98, 109,

217, 239, 286, 346
<stdlib.h> header file 98, 99, 213,

343, 358, 362
stdout (standard output stream) 8, 286,

287, 289
step debugger command 444
Step Into command (debugger) 432
Step Out command (debugger) 434
Step Over command (debugger) 433
StepStone 18
stepwise refinement 195
storage class 107
storage class of an identifier 108
storage class specifiers 108

auto 108

storage duration 107, 108, 136
storage duration of an identifier 108
storage unit boundary 282
stored array 314
straight-line form 28
strcat function 223
strchr function 226
strcmp function 224, 225
strcpy function 222
strcspn function 225, 227
stream 239, 286
strerror 236
string 21, 207
string array 194
string comparison functions 224
string constant 207
string conversion functions 213
string is a pointer 207
string literal 134, 207
string literals separated only by whitespace

134
string manipulation functions of the

string handling library 221, 225
string processing 133
string processing function 98
<string.h> header 222
<string.h> header file 98
strlen function 236
strncat function 222, 223
strncmp function 224, 225
strncpy function 222
Stroustrup, Bjarne 4
strpbrk 228
strpbrk function 226, 228
strrchr function 226, 228
strspn function 225, 229
strstr function 226, 229
strtod function 214
strtok function 226, 230
strtol function 214, 215
strtoul function 214, 216
struct 123, 259
structure 180, 259
structure definition 260
structure member (.) operator 262, 263,

268
Structure member operator and structure

pointer operator 263
structure pointer (->) operator 262, 263,

268
structure tag name 259, 261
structure type 259
structure variable 261
structured programming 2, 20, 38, 363
Structures 259
Student poll analysis program 130
student poll program 130
subscript 124, 131
subscript notation 180
subtract an integer from a pointer 188
subtracting one pointer from another 188
subtracting two pointers 189
suffix

floating point 360
integer 359

sum of the elements of an array 129
survey data analysis 144, 148
Survey data analysis program 145
swapping values 380, 384

switch multiple-selection statement 39,
68, 71
with break 72

symbol 39
symbol value 369
symbolic constant 70, 128, 343, 344, 348
syntax error 7, 54, 81

T
tab 22, 23, 40, 250, 256
table 155
tablet computer 18
tabular format 125
tail of a queue 312, 329
tan 86
tangent 86
temporary <double> representation 66
temporary copy 48
terminating null character 133, 134, 207,

208, 218, 243
termination request 360
ternary operator 41, 119
text processing 206
tgmath.h 396
Thompson, Ken 2
_Thread_local storage class specifier

108
time 98
__STDC__, predefined symbolic constant

349
__TIME__, predefined symbolic constant

349
<time.h> 98
token 226, 348
tokenizing strings 221
tokens 230
tolower function 211
top of a stack 312
top-down stepwise refinement 195
toupper function 177, 211
trailing zeros 242
transaction-processing program 303
transaction-processing systems 297
transfer of control 38
trap 360
trap a SIGINT 360
traversing a binary tree 336
Treating character arrays as strings 135
tree 30, 168, 259, 335
trigonometric cosine 86
trigonometric sine 86
trigonometric tangent 86
true 31
truth 77
truth table 77
Turing Machine 38
two’s complement 376
two’s complement notation 376
two-dimensional array 194
twos position 371
type checking 91
type mismatch 177
typedef 264
type-generic macro 410
typesetting systems 206

Index 457

U
u or U for an unsigned int 359
unary operator 48, 54, 169
unary operator sizeof 185
unconditional branch 363
#undef 348
#undef preprocessor directive 346
underscore (_) 25
union 268, 269
UNIX 2, 70
unnamed bit field 280
unnamed bit field with a zero width 282
unresolved references 357
unsafe macro 350
unsigned 102
unsigned decimal integer 240
unsigned hexadecimal integer 240
unsigned int 93
unsigned integer 270
unsigned long int 216
unsigned long long int 114, 115, 116
unsigned octal integer 240
unsigned short 93
uppercase letter 97
usual arithmetic conversion rules 92
utility function 98

V
va_arg 354

va_copy macro 411
va_end 355
va_list 354
va_start 354
validate data 82
value 124
variable 24
variable arguments header stdarg.h 353
variable initialization 194
variable-length argument list 353, 354
variable-length array (VLA) 162, 405
vertical spacing 60
vertical tab ('\v') 209
vi 6
Visual C# programming language 5, 5
Visual Studio 396
Visual C++ programming language 5
Visual Studio 6

Quick Info box 429
void * (pointer to void) 190, 232, 313

W
w file open mode 291
w+ file open mode 291
w+ file update mode 291
watch debugger command 446
Watch window (Visual Studio debugger)

430, 431
wb file open mode 291
wb+ file open mode 291

wchar.h 396
wctype.h 396
while repetition statement 43
white-space character 21, 40, 256
whitespace

string literals separated 134
width of a bit field 279, 282
Wikipedia 5
Windows 16, 360
Windows operating system 17
Windows Phone 7 16
worst-case runtime for an algorithm 379
Wozniak, Steve 17
writing to a file 289

X
x 244
Xerox PARC (Palo Alto Research Center)

17

Y
yellow arrow in break mode 429

Z
0 (zero) flag 250
zeroth element 123

	Contents
	Preface
	2 Introduction to C Programming
	2.1 Introduction
	2.2 A Simple C Program: Printing a Line of Text
	2.3 Another Simple C Program: Adding Two Integers
	2.4 Arithmetic in C
	2.5 Decision Making: Equality and Relational Operators
	2.6 Secure C Programming

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

