The Definitive Guide to Transportation

Principles, Strategies, and Decisions for the Effective Flow of Goods and Services

Council of Supply Chain Management Professionals and

Thomas J. Goldsby • Deepak Iyengar • Shashank Rao
THE DEFINITIVE GUIDE
TO TRANSPORTATION
This page intentionally left blank
THE DEFINITIVE GUIDE TO TRANSPORTATION

PRINCIPLES, STRATEGIES, AND DECISIONS FOR THE EFFECTIVE FLOW OF GOODS AND SERVICES

Council of Supply Chain Management Professionals

and

Thomas J. Goldsby
Dr. Deepak Iyengar
Dr. Shashank Rao
Tom:
To my darling wife Kathie, my two amazing kids Emma and Aiden, my parents Joe and Sujane Goldsby, my brother Mike, my in-laws Doug and Carole Boyd, and great friends, colleagues, and students who motivate and inspire me every day.

Deepak:
To Advay, the joy of my life, my wife Shilpa, parents Mitra and Jawahar, and in-laws Karabi and Chandrashekar, who make life that much more interesting.

Shashank:
To the people who make my life beautiful—my parents Suresh and Shalini Rao, who have strived every day to give me the opportunities they never had. And to the love of my life, Rekha, who understands me better than I understand myself.
This page intentionally left blank
CONTENTS

Section 1 Transportation: The Basics 1

Chapter 1 Transportation in Business and the Economy 3
 Transportation and Logistics 4
 Transportation and the Supply Chain 6
 Transportation and the Economy 7
 Transportation, Society, and the Environment 10
 Summary .. 12
 Endnotes ... 12

Chapter 2 A Survey of Transportation Modes 15
 An Overview of the Modes .. 15
 The Five Modes of Transportation 17
 Road Transportation .. 17
 Rail Transportation ... 25
 Water Transportation .. 31
 Air Transportation ... 36
 Pipeline Transportation ... 37
 Intermodal Transportation 38
 Summary .. 44
 Endnotes ... 45

Chapter 3 The Economics of Transportation 47
 Accounting Costs and Economic Costs 47
 Fixed Costs and Variable Costs 48
 Carrier Cost Metrics .. 50
 Carrier Pricing and Costs for Shippers 54
Chapter 4 The Transportation Services Market 63
 Private Transportation 63
 Private Road Fleets 63
 Advantages of Private Road Fleets 65
 Other (Nonroad) Private Fleets 66
 Outsourcing Transportation 67
 Contract Carriage (2PLs) 67
 Third-Party Logistics Providers (3PLs) 67
 Lead Logistics Providers/Integrators (4PLs) 70
 Freight Forwarders 71
 Difference Between 3PLs and Freight Forwarders 72
 Brokers 73
 Summary 74
 Endnotes 74

Section 2 Transportation for Managers 77

Chapter 5 An Overview of Transportation Management 79
 Transportation Management Decision Making 79
 Network Design 80
 Typology of Transport Networks 81
 Optimization 83
 Heuristics and Simulations 84
 Lane Analysis 85
 Mode and Carrier Selection 90
 Service Negotiations 94
 Shipper–Receiver Negotiations 94
 Shipper–Carrier Negotiations 96
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Versus Spot Rates</td>
<td>96</td>
</tr>
<tr>
<td>Contractual Provisions</td>
<td>97</td>
</tr>
<tr>
<td>Service Evaluation</td>
<td>99</td>
</tr>
<tr>
<td>Dock- and Movement-Level Decisions</td>
<td>102</td>
</tr>
<tr>
<td>Transportation Documentation</td>
<td>103</td>
</tr>
<tr>
<td>Documents Common to Domestic and International Transportation</td>
<td>104</td>
</tr>
<tr>
<td>Documents Exclusive to International Transportation</td>
<td>106</td>
</tr>
<tr>
<td>Summary</td>
<td>108</td>
</tr>
<tr>
<td>Endnotes</td>
<td>109</td>
</tr>
</tbody>
</table>

Chapter 6
Transportation Technologies ... 111

Understanding the Need for Technology:
The Bullwhip Effect ... 113
Technology Architecture .. 115
Hosted Systems/Hosted Software .. 115
Software as a Service (SaaS) .. 115
Electronic Data Interchange (EDI) 116
What Is EDI? .. 116
Benefits and Applications of EDI 118
EDI Implementation ... 118
Transportation Management System (TMS) 119
Benefits and Applications of TMS 120
TMS Implementation ... 124
Routing and Scheduling (R&S) Systems 125
What Are R&S Systems? .. 125
Benefits and Applications of R&S Systems 126
R&S System Implementation ... 128
Automatic Identification .. 129
What Is Automatic Identification? 129
Bar Codes .. 129
Chapter 9 Transportation and Sustainability 189

Transportation's Role in Sustainable Supply Chain
Management .. 190
The Need for Sustainability in Transportation 191
Triple Bottom Line (TBL) ... 197
Potential Solutions to Make Transportation More Sustainable... 199
Summary ... 202
Endnotes ... 203

Section 3 Transportation in 2013 and Beyond 205

Chapter 10 The Future of Transportation 207

Changes Affecting Consumer Shopping Behavior 209
Internet Retailing (IR) .. 209
Additive Manufacturing/3D Printing 210
Changes in Technology ... 213
Self-Driven Vehicles .. 213
Intelligent Transport System (ITS) 216
Geopolitical, Legislative, and Societal Changes 217
Rising and Erratic Fuel Prices 217
Global Warming and Greenhouse Gases 219
The Need for Infrastructure to Support Growing Populations...... 219
Increasing Demands for Security and Safety in Transportation.... 221
Summary ... 222
Endnotes ... 223
For Further Reading ... 223

Index ... 225
How privileged we are to study and practice logistics and supply chain management. We can think of no other fields in which academia and industry have so much to offer the other. At the forefront of this exchange (for fifty years now) is the Council of Supply Chain Management Professionals (CSCMP). We would like to acknowledge the present and past leadership of the organization for its forthright commitment to advancing our discipline. CSCMP is based on the principles of leading through research and education. To this day, it remains the one place where academics and practitioners simply “must go” to meet, exchange ideas, and collaborate. As academics, we engage in CSCMP activities not only to learn from one another, but to learn from industry and to gain insights into the pressing challenges of modern business. Fortunately, we have something to offer by way of meaningful, real-world research. It makes for a healthy exchange. Sadly, exchanges of this kind between industry and academia are not common to all business fields. We, again, thank CSCMP for fostering such collaboration for the past half century. It is with much enthusiasm that we welcome the next half century.

We also graciously acknowledge Pearson for joining forces with CSCMP in support of the SCPro certification. The certification is an exciting development at the Council, and for the supply chain profession at large. The generation and distribution of world-class materials is only possible with the support of Pearson. Further, we thank the editorial team and Jeanne Glasser Levine, in particular, for serving as excellent stewards of this book series. A special thanks to Dr. Chad Autry for the invitation to offer this work and for keeping us honest in the process.

We would like to acknowledge our home institutions: The Ohio State University, Central Washington University, and Auburn University for their support of our work. These three institutions are dedicated to advancing the field of Logistics and the discipline of Supply Chain Management through the creation of new knowledge, the development of the next generation of business leaders, and our individual efforts to achieve these ends. We are fortunate to have excellent colleagues and collaborators that number too many to list in full, but a short list includes John Caltagirone, Martha Cooper, Keely Croxton, Jim Ginter, Stanley Griffis, Michael Knemeyer, Ike Kwon, Douglas Lambert, Peg Pennington, John Saldanha, Ted Stank, Peter Ward, David Widdifield, and Walter Zinn. A special thanks to Mr. Robert Martichenko of LeanCor for his generous contributions in support of all things that involve learning and good fun. Another huge thanks to the “Columbus Four:” Kenneth Ackerman, Dick Hitchcock, Bud LaLonde, and Art Van Bodegraven for giving so generously to our community and our discipline. We can only hope the others we’ve undoubtedly omitted here will forgive us and realize that they are, indeed, appreciated.
ABOUT THE AUTHORS

Dr. Thomas J. Goldsby is Professor of Logistics at The Ohio State University. Dr. Goldsby has published more than 50 articles in academic and professional journals and serves as a frequent speaker at academic conferences, executive education seminars, and professional meetings around the world. He is co-author of *Lean Six Sigma Logistics: Strategic Development to Operational Success* and *Global Macrotrends and Their Impact on Supply Chain Management*. He serves as Associate Director of the Center for Operational Excellence, research associate of the Global Supply Chain Forum, and a Research Fellow of the National Center for the Middle Market, all with The Ohio State University. Dr. Goldsby has received recognitions for excellence in teaching and research at Iowa State University, The Ohio State University, and the University of Kentucky. He is co-editor of the *Transportation Journal* and co-executive editor of *Logistics Quarterly* magazine. He serves on the boards for the American Society of Transportation & Logistics and Supply Chain Leaders in Action, the Research Strategies Committee of CSCMP, and as a reviewer for the Gartner Top 25 Supply Chains, LQ Sustainability Awards, SCLA Circle of Excellence Award, CSCMP Supply Chain Innovation Award, and University of Kentucky Corporate Sustainability Award programs. He has conducted workshops and seminars throughout North America, South America, Europe, Asia, and Africa.

Dr. Deepak Iyengar received his Ph.D. in the area of Logistics and Supply Chain Management from the University of Maryland, College Park. His areas of research and teaching include logistics and sustainability in supply chains. He is currently an Assistant Professor at Central Washington University, Ellensburg in the Department of Supply Chain Management. Dr. Iyengar has published works in leading supply chain and logistics journals like *Journal of Business Logistics*, *International Journal of Physical Distribution & Logistics Management*, and *Transportation Journal* to name a few. In addition, he has mentored students and led projects using the methodology of Lean Six Sigma to various 3PLs.

Dr. Shashank Rao is the Jim W. Thompson Assistant Professor of Supply Chain Management at Auburn University. He holds a B.S. in Environmental Engineering, an M.B.A. in Marketing, and a Ph.D. in Operations and Supply Chain Management. Along with his academic training, Dr. Rao has several years of industry experience in the banking and engineering sectors. He has also served as a consultant to manufacturers and retailers on issues like order fulfillment and distribution management. His research interests focus on retailing, order fulfillment, and logistics customer service. He has published several articles in academic and professional journals of repute such as the *Journal of Operations Management, Journal of Business Logistics, International Journal of Logistics*
Management, International Journal of Physical Distribution and Logistics Management, Industrial Management, Industrial Engineer, and more. He also serves on the Editorial Review Board of the Journal of Business Logistics, the Journal of Supply Chain Management, and the Journal of Operations Management, along with serving as an Associate Editor at the Journal of Organizational Computing and Electronic Commerce. He is a frequent speaker at academic conferences, executive education seminars, and professional meetings, and also conducts hands-on training on supply chain technologies like TMS, ERP, and Routing Systems.
This page intentionally left blank
TRANSPORTATION IN BUSINESS AND THE ECONOMY

Transportation is among the more vital economic activities for a business. By moving goods from locations where they are sourced to locations where they are demanded, transportation provides the essential service of linking a company to its suppliers and customers. It is an essential activity in the logistics function, supporting the economic utilities of place and time. *Place utility* infers that customers have product available where they demand it. *Time utility* suggests that customers have access to product when they demand it. By working in close collaboration with inventory planners, transportation professionals seek to ensure that the business has product available *where* and *when* customers seek it.

Transportation is sometimes to blame for a company’s inability to properly serve customers. Late deliveries can be the source of service problems and complaints. Products might also incur damage while in transit, or warehouse workers might load the wrong items at a shipping location. Such *over, short, or damaged* (called OS&D) shipments can frustrate customers, too, leading to dissatisfaction and the decision to buy from a competitor for future purchases.

However, when a company performs on time with complete and undamaged deliveries consistently, this can instill customer confidence and gain business for the company. When a company instills confidence in service performance, it can make customers more reluctant to succumb to competitors’ bids to steal business away through clever promotions and reduced prices.

Aside from its service ramifications, transportation can also represent a substantial cost for the business. The cost of transportation can sometimes determine whether a customer transaction results in a profit or a loss for the business, depending on the expense incurred in providing transportation for a customer’s order. Faster modes of transportation generally cost more than slower modes. So although shipping an order overseas by airplane is much faster than transporting by ship, it can cost as much as 20 times more. Such a cost difference might not justify the use of the faster way of transporting the goods. Supply chain managers must therefore carefully consider the cost of transporting...
goods when determining whether to move product and how to move product in the most economical manner.

This book supports the learning objectives of the Transportation Management module (Learning Block 5) of the Council of Supply Chain Management Professionals (CSCMP) SCPro Level 1 certification. These objectives are stated as follows:

1. Describe the basic concepts of transportation management and its essential role in demand fulfillment.
2. Identify the key elements and processes in managing transportation operations and how they interact.
3. Identify principles and strategies for establishing efficient, effective, and sustainable transportation operations.
4. Explain the critical role of technology in managing transportation operations and product flows.
5. Define the requirements and challenges of planning and moving goods between countries.
6. Discuss how to assess the performance of transportation operations using standard metrics and frameworks.

The book is organized into three sections. Section 1, “Transportation: The Basics,” provides a foundation for transportation operations, including a survey of transportation modes, the economics of transportation, and the array of transportation service providers. Section 2, “Transportation for Managers,” provides a customer’s perspective on transportation, including insights on designing a logistics network, selecting services, and evaluating performance. Content is provided on key aspects of transportation management, including strategy formation, technology deployment, and international supply chain operations. Section 3, “Transportation in 2013 and Beyond,” is dedicated to contemporary issues in logistics, including sustainability, and offers an outlook on the future of transportation. Throughout the text, we feature important terms and concepts that are essential for supply chain professionals who are responsible for transportation activity to understand. In this first chapter, we continue by illustrating the role of transportation in the logistics function, the supply chain, and the larger economy.

Transportation and Logistics

Logistics is defined as “that part of supply chain management that plans, implements, and controls the efficient, effective forward and reverse flow and storage of goods, services and related information from the point of origin to the point of consumption in order
to meet customers’ requirements.1 Transportation is represented in this expression through the word \textit{flow}. Transportation provides the flow of inventory from points of origin in the supply chain to destinations, or points of use and consumption. Most businesses manage both inbound and outbound logistics. Inbound logistics involves the procurement of materials and goods from supplier locations. Outbound logistics involves the distribution of materials and goods to customer locations. Therefore, transportation is necessary on the inbound and outbound sides of the business.

The definition of \textit{logistics} mentions not only the forward flow and storage of goods, services, and related information, but also the reverse flow.

Inventory sometimes flows in the reverse direction. \textit{Reverse logistics} refers to “the role of logistics in product returns, source reduction, recycling, materials substitution, reuse of materials, waste disposal, and refurbishing, repair, and remanufacturing.”2 So transportation not only delivers material and products to customers, but also moves reusable and recyclable content to companies that can use it. Figure 1-1 shows the forward and reverse flows managed by logistics.

egin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{logistics_diagram.png}
\caption{Forward and reverse flows in logistics.}
\end{figure}

Transportation is only one activity responsible for providing time and place utilities through inbound and outbound logistics. Logistics also involves forecasting demand, planning inventory, and storing goods as well as delivering them. Optimized logistics performance means that these activities are working closely together so that the customer of the logistics service is satisfied with the service, yet the cost the company incurs is minimized. This optimal performance requires an understanding of how the various logistical decisions and actions affect service for customers and total cost.

Consider, for instance, that a company seeks to minimize its investment in inventory. The company elects to hold all its inventory in one central warehouse location, for it has been shown that consolidated inventory reduces inventory investment. Warehousing
cost should also be minimized because the company is maintaining only a single facility instead of several locations. Customers located close to the central warehouse will be pleased with this decision because the company must travel only a short distance to deliver items to these nearby customers. However, customers located farther from the central warehouse are likely to be disappointed. They will ask for faster transportation to reduce the order lead times. This might involve using faster means of transporting the goods, which, as noted, tends to cost more than using slower modes. In sum, holding inventory in one central location might reduce inventory and warehousing costs, but it will increase transportation costs. The business might also be at risk of losing sales to competitors who can offer shorter and more reliable order lead times.

Conversely, a supply chain strategy that seeks to minimize transportation cost will likely not represent an optimal solution for the company. This might call for shipping orders to customers in large volumes and using slow means of transportation. Requiring large order quantities and using slow forms of transport are two more ways to disappoint customers and risk losing business to competitors. So although transportation is usually a sizeable expense for a company, and often the largest expense in the function of logistics, supply chain managers must consider the interrelationships among the various logistical actions and costs. Tradeoffs are often associated with these decisions, and the company’s customers are also affected. The recognition of interrelationships among transportation, inventory, warehousing, information exchange, and customer service is the embodiment of a systems approach. The manager seeks to optimize the performance of the logistics system instead of optimizing a singular element of the system. This book, therefore, treats transportation as one important element of the logistics system.

Transportation and the Supply Chain

Another system that calls for recognizing tradeoffs and interrelationships among actions and costs is the supply chain. A supply chain is the network of companies that work together to provide a good or service for end users and consumers. Most companies operate within supply chains, relying on outside parties such as suppliers and customers to help them reach the end-user market. In other words, most companies do not entirely own their supply chains.

Supply chain management encompasses the planning and management of all activities involved in sourcing, procurement, conversion, and logistics management. It also includes coordination and collaboration with channel partners, which can be suppliers, intermediaries, third-party service providers, or customers. Supply chain management integrates supply-and-demand management within and across companies. Managing a supply chain, then, means managing the business relationships among the focal company and its outside supply chain partners, including customers and suppliers.
As Figure 1-2 illustrates, transportation represents the physical connection among the companies in the supply chain. The locations in a supply chain network are called nodes, and the connections are referred to as links. When one entity sells product to another, transportation provides the delivery. An outbound delivery for a supplying company is the inbound delivery for its customer. When one level in the supply chain experiences delays and problems, it impacts the abilities of downstream members of the supply chain to serve their customers. For this reason, the larger economy is affected when transportation disruptions occur. Potential sources for disruptions include equipment failures, natural disasters and inclement weather, work stoppages, and government intervention. The next section reviews the role of transportation in the larger economy.

![Diagram of supply chain network with nodes and links]

Figure 1-2 Links and nodes in a supply chain.

Transportation and the Economy

The business of moving freight is a major expense for an individual company and is essential for flowing product through the supply chain. In total, transportation is a significant industry in every developed economy. Each year, the CSCMP conducts an analysis of logistics costs in the United States. Table 1-1 illustrates the expenditures directed toward various logistics activities in the United States in 2012. Of the $1.331 trillion sum, $836 billion (or 62.8 percent of total logistics cost) was spent on transportation. This amount greatly exceeds the expenses dedicated to other logistics activities. Logistics costs amount to 8.5 percent of the nation’s gross domestic product (GDP), and transportation alone represents 5.4 percent of the U.S. GDP. In other words, just over 5 cents of every dollar spent in the United States goes toward transportation. Total logistics costs in Europe run the range of 12 percent. In less developed countries, the share of the GDP directed toward transportation can be even greater because it costs more to move...
products when infrastructure is lacking or not sufficiently maintained. Total logistics costs in China are approximately 21 percent of the GDP.

Table 1-1 U.S. Logistics Cost, 2012

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>$ Billions</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory-Carrying Cost</td>
<td>305</td>
<td>22.9</td>
</tr>
<tr>
<td>Transportation</td>
<td>836</td>
<td>62.8</td>
</tr>
<tr>
<td>Warehousing</td>
<td>130</td>
<td>9.8</td>
</tr>
<tr>
<td>Shipper-Related Costs</td>
<td>10</td>
<td>0.8</td>
</tr>
<tr>
<td>Logistics Administration</td>
<td>51</td>
<td>3.8</td>
</tr>
<tr>
<td>Total Logistics Cost</td>
<td>1,331</td>
<td>100</td>
</tr>
</tbody>
</table>

The ease or difficulty with which companies can transport goods within a country can affect their competitiveness in global trade. When transporting goods is easy and costs are relatively low, exporters can efficiently ship their merchandise to export locations and on to international markets. One such example is that of U.S. farmers in the central states of Illinois, Indiana, Iowa, Nebraska, and Ohio. Farmers in these states compete with farmers in the Pampas region of Argentina to sell grains, such as corn and soybeans, in markets abroad. The growing conditions in Argentina are considered advantageous to those in the United States, allowing farmers to achieve greater yields and enjoy lower costs of production. However, by virtue of using the highly efficient U.S. railroads and river barges to reach the export port, the American farmer enjoys savings in transit time and transportation expense that can offset the inherent advantages in production yield and costs enjoyed by the Argentinian farmer. The more difficult it is to move product over a distance, the greater the friction of distance. With greater friction come higher costs. In the grain-shipping example, the farmer in Argentina faces greater friction of distance (and higher costs) in transporting the grains from the farm to the export port in Buenos Aires. Despite the longer distance, there is less friction for the American farmer, who can efficiently ship the grains via railroad and barge.

Table 1-2 contains statistics of the transportation infrastructure in the United States. With more than 4 million miles of public roadways, enough to circle the globe 157 times, virtually every business and household in the nation enjoys the benefits of easy roadway access. The Interstate Highway System (originally called the National System of Interstate and Defense Highways) provides efficient connectivity among almost every large and medium-size city in the nation. High-speed delivery is supported with a network of more than 5,000 public airports, as well as another 14,339 for private use and 271 for military purposes. Freight rail transportation occurs over 161,000 miles, most of which is operated by major Class I rail operators. The continental United States is also endowed
with various forms of navigable waterways, including rivers, Great Lakes, and ocean shipping on three coasts. Finally, pipelines, an often overlooked mode of transportation, distribute large quantities of fluid material (gas and liquids) over long distances throughout the nation. In sum, this extensive network of transportation assets supports commerce among businesses and consumers within the United States, and also helps to support export and import activity with businesses abroad.

Table 1-2 U.S. Transportation Infrastructure

<table>
<thead>
<tr>
<th>Description</th>
<th>Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles of Public Roadways</td>
<td>4,059,339</td>
</tr>
<tr>
<td>Miles of Interstate Highway System</td>
<td>47,011</td>
</tr>
<tr>
<td>Miles of National Highway System</td>
<td>117,084</td>
</tr>
<tr>
<td>Miles, Other Roads</td>
<td>3,895,244</td>
</tr>
<tr>
<td>Number of Public Airports</td>
<td>5,172</td>
</tr>
<tr>
<td>Miles of Railroad</td>
<td>161,195</td>
</tr>
<tr>
<td>Miles of Navigable Waterways</td>
<td>25,320</td>
</tr>
<tr>
<td>Number of Commercial Ocean Facilities</td>
<td>5,588</td>
</tr>
<tr>
<td>Miles of Pipelines</td>
<td>1,735,237</td>
</tr>
<tr>
<td>Miles, Hazardous Liquid Pipelines</td>
<td>177,631</td>
</tr>
<tr>
<td>Miles, Gas Transmission and Gathering</td>
<td>324,606</td>
</tr>
<tr>
<td>Miles, Gas Distribution</td>
<td>1,233,000</td>
</tr>
</tbody>
</table>

Source: These data are presented in the 2013 Pocket Guide to Transportation, Bureau of Transportation Statistics, U.S. Department of Transportation, compiled from various sources.

A strong argument can be made that the economic health of a nation is linked to the health of its transportation infrastructure. This argument works in two ways. First, an extensive infrastructure supports economic growth. Second, economic strength supports investment in infrastructure. A modern case study that illustrates the strong association between infrastructure development and economic growth is that of China during the past two decades.

Transportation supports an economy not only by connecting people and places, but also through the many people it employs. Table 1-3 presents employment data for the United States in 2011. Nearly 4.3 million people were employed in the provision of for-hire transportation services, with almost 1.3 million in the trucking industry alone. Another 5.4 million were employed in transportation-related services and construction. Finally, almost 1.7 million people were employed in the production of transportation equipment in the United States. Combined, this totals 11.4 million transportation-related private sector jobs, or almost 9 percent of the total U.S. labor force.
Table 1-3 U.S. Transportation-Related Employment, 2011

<table>
<thead>
<tr>
<th>Sector</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>For-hire transport and warehousing</td>
<td>4,292</td>
</tr>
<tr>
<td>Air</td>
<td>456</td>
</tr>
<tr>
<td>Water</td>
<td>63</td>
</tr>
<tr>
<td>Railroad</td>
<td>229</td>
</tr>
<tr>
<td>Transit/Ground Passenger Transportation</td>
<td>436</td>
</tr>
<tr>
<td>Pipeline</td>
<td>43</td>
</tr>
<tr>
<td>Trucking</td>
<td>1,299</td>
</tr>
<tr>
<td>Support Activities</td>
<td>564</td>
</tr>
<tr>
<td>Scenic/Sightseeing Transportation</td>
<td>29</td>
</tr>
<tr>
<td>Couriers/Messengers</td>
<td>529</td>
</tr>
<tr>
<td>Warehousing/Storage</td>
<td>646</td>
</tr>
<tr>
<td>Related Services and Construction</td>
<td>5,405</td>
</tr>
<tr>
<td>Transportation-Related Manufacturing</td>
<td>1,684</td>
</tr>
</tbody>
</table>

Transportation and logistics are regarded as “derived market” activities. That is, demand for transportation and logistics service is derived from the demand of other goods and services in the economy. When a manufacturer seeks supplies from distant locations, there is demand for transportation. Similarly, when consumers have demand for goods produced elsewhere, transportation is demanded. So demand for transportation tends to closely follow the economic activity in a region. For this reason, economists and market analysts pay close attention to transportation shipment data—they present an accurate, timely picture of economic vitality for a region or nation. Rail and trucking volume reflect the economic activity of a nation, and ocean and air transportation statistics illustrate trade levels among nations.

Transportation, Society, and the Environment

Thus far, we have explored the many ways in which transportation contributes to the economic health of individuals, businesses, and entire nations, by facilitating the flow of commerce and providing employment opportunities. Transportation can impact our lives in other profound ways, however. In some ways, it can be lifesaving; in others, it is damaging. In this section, we explore some of the different ways transportation affects society and our physical environment.

In the case of emergency situations and calls for humanitarian relief, transportation is essential to supporting lifesaving missions. Such is the case following a natural disaster.
When earthquakes, hurricanes, floods, or other events imperil a region, the ability to deliver supplies of water, medical equipment, communication equipment, and energy is most pressing. In recent years, relief organizations have adopted advanced transportation methods to support the ability to deploy crucial resources to those in need whenever and wherever a crisis arises.

Transportation also plays a critical role in the success of military endeavors, dating back to the days of Thutmose III and his storied conquests in the fifteenth century B.C. that transformed Egypt into a “superpower.” The same assertion holds true today. The timely deployment of soldiers, armaments, and supplies has often been credited with the success or failure of military campaigns and peacekeeping missions. A considerable share of the budget for any substantial military body is the provision of transporting soldiers and supplies.

Transportation activity also results in many unintended consequences on society. It is one activity that interfaces directly with people in their day-to-day lives. Manufacturing, another major economic activity, occurs within the confines of buildings. Transportation, on the other hand, involves roadways that passenger vehicles share. More than 32,000 fatalities and 2.2 million injuries occurred on U.S. highways in 2011, with about 1 in 10 fatalities attributed to collisions involving large trucks. Fortunately, these numbers represent steady declines over the past several decades. The declines can be attributed to immense safety improvements in passenger vehicles, increased use of safety belts, and fewer incidents involving alcohol. Sharing the roads with 80,000-pound tractor-trailers and crossing railroad grades remain hazardous though.

Transportation is also the biggest consumer of energy resources in our economy, easily outpacing manufacturing and consumer household usage. According to the Department of Energy, the U.S. transportation system consumes more than 13 million barrels of petroleum each day. This also leads to transportation’s regrettable role as the largest contributor to greenhouse gases. Transportation is responsible for emitting nearly 2 billion metric tons of carbon dioxide in the United States each year. Growing concerns of sustainability are changing the way many companies elect to ship products and also the operations of the transportation providers themselves. The carbon footprint for a shipment, an estimate of the greenhouse gases emitted, has become a critical measure of transportation performance, alongside transit time and cost. Consumers are demanding sustainable products and cleaner ways of transporting them. Since 2009, UPS has offered a carbon-neutral service: The shipping company offsets the carbon emissions associated with package delivery by investing in carbon-reduction projects around the world.

Finally, in light of its central role in economic activity, transportation is also a common target for terrorist activity. Whether one considers the hijacking of passenger airlines on September 11, 2001; the disruption of pipelines in oil-producing countries; the use of vehicle-borne improvised explosive devices (VBIEDs) or “car bombs”; or the hijacking
of ships off the coast of Africa, transportation assets can be particularly difficult to secure and, thereby, vulnerable to attack. The formation of the Transportation Security Administration (TSA) immediately following the terrorist attacks of September 2001 serves as testament to the intense focus placed on security and safety in transportation activity. To date, much focus has been directed to passenger safety, although freight transportation has seen greater regulation and scrutiny of shipments. This trend is expected to continue into the future.

Summary

These final observations illustrate the many and diverse ways that transportation impacts our lives. Transportation is a major contributor to the economy and a competitive force in business. It is the activity that physically connects the business to its supply chain partners, such as suppliers and customers. Furthermore, the service rendered through transportation activity is a major influence on the customer’s satisfaction with the company.

Key takeaways from this chapter include:

- Transportation helps to fulfill the economic utilities of place and time.
- The cost and service aspects of transportation decisions must be balanced with the inputs of inventory, warehousing, order processing, information, and customer service policies to serve customers at the lowest possible cost.
- Transportation provides the links that connect nodes in the supply chain network, linking a focal company to its suppliers and customers.
- Transportation is a major contributor to economic prosperity for a nation. The more efficient the transportation system, the easier it is to conduct commerce.
- Although transportation is an essential activity in any economy, it presents several hazards to society, including risks of accidental injury and death, greenhouse gas emissions, environmental impact, and terrorist activity.

Endnotes

1. Definition offered by the CSCMP.
3. For a complete treatment of the total cost of logistics and the tradeoffs among logistics activities and costs, see: Douglas M. Lambert, James F. Robeson, and

4. An end user might be a consumer, business, government entity, or nonprofit organization. It represents the person or organization at the end of the supply chain who will put the supply chain’s product or service to use.

5. Exceptions to this observation do exist. Very large oil and gas companies, for instance, often own the sources of supply, the processing of crude into refined oil and gasoline, and the distribution channels of retail refueling stations.

6. Definition offered by the CSCMP.

This page intentionally left blank
Index

Numbers
2PLs (second-party logistics service providers), 67
3D printing, 210-212
3PLs (third-party logistics providers), 67-70, 179
4PLs (fourth-party logistics providers), 70-71, 179

A
ABC (activity-based costing), 52-53
accessorial fees, 60-61
accounting costs versus economic costs, 47
accuracy of EDI (electronic data interchange), 118
ACMI leases, 173
active shippers, 139
activity-based costing (ABC), 52-53
additive manufacturing, 210-212
AES (Automated Export System), 106-107
AESDirect website, 106
Aframax ships, 165
AIDC (automatic identification and data capture)
bar codes, 129-130
overview, 129
RFID (radio frequency identification), 133-135
SSCC (serial shipping container code), 130-131
air transportation, 36-37. See also intermodal transportation
international transportation
growth of, 168
leases, 173
liability, 174
services, 170-173
tariffs, 174
U.S. transportation infrastructure, 8
airway bill (AWB), 185-186
alternative-fuel vehicles, 200, 218-219
Alyeska pipeline, 38
architecture (technology)
hosted systems/hosted software, 115
SaaS (software as a service), 115-116
Asian silk route, 207-208
assessing performance, 99-101
asset-based 3PLs, 69
audits (TMS), 123
autohauler trailers, 22
Automated Export System (AES), 106-107
automatic identification and data capture.
See AIDC (automatic identification and data capture)
AWB (airway bill), 185-186

B
backhaul, 55-56
balance of freight flows, 55-56
bar codes, 129-130
bareboat charters, 163
barges, 33
bill of lading, 104-105, 185-186
B/L (bill of lading), 104-105, 185-186
Boeing 777 airplanes, 36
BOI (bill of lading), 104-105
boxcars, 27-28
Breton Woods Conference, 157
Brinks, 66
brokers, 73-74
Brundtland Commission report, 189
bulk cargo, 164
bulk ships, 32
bullwhip effect, 113-115

225
C

cabotage, 167-168
CAD (computer-aided design), 211
CAFE (Corporate Average Fuel Economy) regulations, 200
canals, 32-33
Capesize ships, 165
car bombs, 11-12
carbon footprint of transportation industry, 11
cargo air transportation, 173
cargo aircraft, 36-37
cargo types
 bulk cargo, 164
 containerized cargo, 164
 ocean transportation, 163-164
Carriage and Insurance Paid To (CIP), 182
Carriage Paid To (CPT), 182
carrier cost metrics, 50-53
 ABC (activity-based costing), 52-53
 CTS (cost to serve), 50-52
 OR (operating ratio), 50
carrier freight bill (CFB), 106
carrier numbers in different modes of transportation, 175
carrier pricing, 54-56
carrier selection, 90-93
carrier-shipper negotiations, 96
centrifugal networks, 83
centripetal networks, 83
certificate of analysis, 186
certificate of insurance, 186-187
certificate of origin (CO), 107, 186
certification of inspection, 186
CFB (carrier freight bill), 106
CFR: Cost and Freight (CFR destination port), 181
charterers, 162-163
CHAs (custom house agents), 179
CIF: Cost, Insurance, and Freight (CIF destination port), 181-182
CIP: Carriage and Insurance Paid to (CIP place of destination), 182
Class I railroads, 30
class rates, 56-57
CNG (compressed natural gas), 218
CO (certificate of origin), 107, 186
CO₂ emissions, 200-201

Code 128 bar codes, 130
cold chain packaging technologies, 139
cold chain temperature-monitoring technologies, 139-140
collaborative, planning, forecasting, and replenishment (CPFR), 150-151
collaborative transportation management (CTM), 151-154
commercial invoices, 107, 185
commodity classes, 57-58
Compliance, Safety, and Accountability (CSA) program, 221
compressed natural gas (CNG), 218
computer-aided design (CAD), 211
congestion, 194-196
consolidation
 examples, 86-90
 inbound/outbound consolidation, 86
 temporal consolidation, 85
 vehicle consolidation, 85
consular invoice, 107
customer shopping behavior, changes affecting
 additive manufacturing/3D printing, 210-212
 IR (Internet retailing), 209-210
container ships, 31-32, 166
containerized cargo, 164
contract rates, 96-97
contractual provisions, 97-99
control and monitoring systems
 location monitoring systems, 136-137
 overview, 136
 temperature control and monitoring systems, 138-140
Corporate Average Fuel Economy (CAFE) regulations, 200
Cost, Insurance, and Freight (CIF), 181-182
Cost and Freight (CFR), 181
cost to serve (CTS), 50-52
costs
 of 3PLs (third-party logistics providers), 69-70
 ABC (activity-based costing), 52-53
 accessorial fees, 60-61
 accounting costs versus economic costs, 47
 carrier pricing and costs for shippers, 54-56
 CTS (cost to serve), 50-52
 demurrage, 60
 detention fees, 59-60
diversion or reconsignment fees, 59
expressions of transportation rates, 56–59
 class rates, 56–57
 FAK (freight-all-kinds) rates, 57–59
 flat rates, 56
fixed costs versus variable costs, 48–50
linehaul price, 59
logistics costs, 7–8
marginal costs, 48
OR (operating ratio), 50
of private road fleets, 65
surcharges, 60
total cost, 48–49
transportation costs, 3–4
CPFR (collaborative, planning, forecasting, and replenishment), 150–151
CPT: Carriage Paid To (CFR place of destination), 182
“cradle-to-cradle” strategy, 189–190
“cradle-to-grave” strategy, 189–190
crossdocks, 144–145
CSA (Compliance, Safety, and Accountability) program, 221
CTM (collaborative transportation management), 151–154
CTS (cost to serve), 50–52
“cubed out,” 49
custom brokers, 179
custom house agents (CHAs), 179

dock- and movement-level decisions, 102
lane analysis, 85–90
mode and carrier selection, 90–93
network design
 heuristics and simulations, 84–85
 optimization, 83–84
 overview, 80–81
 typology of transport networks, 81–83
service evaluation, 99–101
service negotiations, 94
 contract versus spot rates, 96–97
 contractual provisions, 97–99
 shipper-carrier negotiations, 96
 shipper-receiver negotiations, 94–96
transportation documentation
 bill of lading, 104–105
 carrier freight bill (CFB), 106
 certificate of origin (CO), 107
 commercial invoices, 107
 consular invoice, 107
 declaration of dangerous goods, 106
 delivery receipt, 106
 export/import licenses, 107
 overview, 103–104
 packing list, 105
 shipper’s export declaration (SED), 106–107
decision-making framework, 79–80
declaration of dangerous goods, 106
dedicated fleet service, 66
Delivered at Terminal (DAT), 183
Delivery at Place (DAP), 182–183
Delivery Duty Paid (DDP), 183
delivery receipt, 106
demise charters, 163
demurrage, 60
derived market activities, 10
detention fees, 59–60
DiPiazza, Samuel, 189
DISA (Data Interchange Standards Association), 117
distributed networks, 82
diversion fees, 59
dock-level decisions, 102
documentation
 bill of lading, 104–105, 185–186
carrier freight bill (CFB), 106
certificate of analysis, 186

D
DAP: Delivery at Place (DAP place of destination), 182–183
DAT: Delivered at Terminal (DAT place of destination), 183
Data Interchange Standards Association (DISA), 117
DDP: Delivery Duty Paid (DDP place of destination), 183
decision making
 consolidation
 examples, 86–90
 inbound/outbound consolidation, 86
 temporal consolidation, 85
 vehicle consolidation, 85
decision-making framework, 79–80
Index

certificate of insurance, 186-187
certificate of origin (CO), 107, 186
certification of inspection, 186
commercial invoices, 107, 185
consular invoice, 107
declaration of dangerous goods, 106
delivery receipt, 106
deportment licenses, 107, 186
overview, 103-104
packing list, 105, 185
pro-forma invoices, 185
shipper’s export declaration (SED), 106-107
dredging, 32
dry leases, 173
dry van trailers, 22
Dumbar Armored, 66

E
Economic Bottom Line, 198
economic costs versus accounting costs, 47
economics of transportation, 3-4, 7-10
accessorial fees, 60-61
accounting costs versus economic costs, 47
carrier cost metrics, 50-53
ABC (activity-based costing), 52-53
CTS (cost to serve), 50-52
OR (operating ratio), 50
carrier pricing and costs for shippers, 54-56
demurrage, 60
detention fees, 59-60
diversion or reconsignment fees, 59
expressions of transportation rates, 56-59
class rates, 56-57
FAK (freight-all-kinds) rates, 57-59
flat rates, 56
fixed costs versus variable costs, 48-50
linehaul price, 59
logistics costs, 7-8
marginal costs, 48
overview, 47
surcharges, 60
total cost, 48-49
U.S. transportation infrastructure, 8-9
U.S. transportation-related employment, 9-10
EDI (electronic data interchange)
benefits and applications, 118
implementation, 118-119
overview, 116-118
providers, 119
efficiency, 200
electronic data interchange. See EDI (electronic data interchange)
electronic on-board recorders (EOBRs), 221
Elkington, John, 197
ELVs (End-of-Life Vehicles) Directive, 190
employment, U.S. transportation-related employment, 9-10
end-of-life directive, 200
End-of-Life Vehicles (ELVs) Directive, 190
energy consumption
by mode of transportation, 192
by transportation industry, 11
Energy Policy and Conservation Act, 200
Energy using Product (EuP) Directive, 190
Environmental Bottom Line, 198
environmental impact of transportation, 10-12
EOBRs (electronic on-board recorders), 221
equipment
rail transportation, 27-28
truck equipment, 22-24
erratic fuel prices, 217-219
EuP (Energy using Product) Directive, 190
Exel Logistics, 66
export license, 107, 186
expressions of transportation rates, 56-59
class rates, 56-57
FAK (freight-all-kinds) rates, 58-59
flat rates, 56
EXW: Ex-Works (EXW place), 180
Ex-Works (EXW), 180

F
FAK (freight-all-kinds) rates, 57-59
FAS: Free Alongside Ship (FAS loading port), 180-181
FCA: Free Carrier (FCA place), 180
FCL (full-container-load), 31
Federal Energy Regulatory Commission (FERC), 37
fees. See costs
FERC (Federal Energy Regulatory Commission), 37
fixed costs, 48-50
flags in international ocean transportation, 166-167
flat rates, 56
flatbed trailers, 22
flat cars, 27-28
flexibility of 3PLs (third-party logistics providers), 69-70
FMCSA (U.S. Federal Motor Carrier Safety Administration), 71
FOB (free on board) terms, 94-96
FOB: Free On Board (FOB loading port), 181
forward flows (logistics), 5
fourth-party logistics providers (4PLs), 70-71, 179
Free Alongside Ship (FAS), 180-181
Free Carrier (FCA), 180
free on board (FOB) terms, 94-96, 181
freight forwarders, 71-73, 179
freight imbalances, 55-56
freight-all-kinds (FAK) rates, 57-59
fronthaul, 55-56
fuel prices, 217-219
fuel-efficient fleets, 218
full-container-load (FCL), 31
future of transportation
additive manufacturing/3D printing, 210-212
Asian silk route example, 207-208
global warming and greenhouse gases, 219
IR (Internet retailing), 209-210
ITS (intelligent transport system), 216-217
population growth and migration, 219-220
rising/erratic fuel prices, 217-219
security and safety demands, 221-222
self-driven vehicles, 213-215

Global Reporting Initiative (GRI), 197
Global Reporting Initiative (GRI), 197
global supply chains
3PLs (third-party logistics providers), 179
4PLs (fourth-party logistics providers), 179
custom brokers, 179
custom house agents (CHAs), 179
documentation, 185-187
bill of lading, 185-186
certificate of analysis, 186
certificate of insurance, 186-187
certificate of origin (CO), 186
certification of inspection, 186
commercial invoices, 185
export/import licenses, 186
packing list, 185
pro-forma invoices, 185
freight forwarders, 179
Incoterms, 180-183
CFR: Cost and Freight (CFR destination port), 181
CIF: Cost, Insurance, and Freight (CIF destination port), 181-182
CIP: Carriage and Insurance Paid to (CIP place of destination), 182
CPT: Carriage Paid To (CPT place of destination), 182
DAP: Delivery at Place (DAP place of destination), 182-183
DAT: Delivered at Terminal (DAT place of destination), 183
DDP: Delivery Duty Paid (DDP place of destination), 183
EXW: Ex-Works (EXW place), 180
FAS: Free Alongside Ship (FAS loading port), 180-181
FCA: Free Carrier (FCA place), 180
FOB: Free On Board (FOB loading port), 181
international transportation
air transportation, 168-174
intermodal transportation, 174-178
ocean transportation, 162-168
merchandise trade
growth of world merchandise exports and GDP, 161

Garda, 66
GATT (General Agreement on Tariffs and Trade), 157
General Agreement on Tariffs and Trade (GATT), 157
genetically modified organisms (GMOs), 222
geofencing, 137
Global Positioning System (GPS), 136-137
merchandise trade by commodity
volume, 158
merchandise trade for world and select
economies, 158
world merchandise exports by value, 158
need for, 160-161
non-vessel operating common carriers
(NVOCC), 179
global warming, 219
GLONASS (Russian Global Navigation Satellite
System), 136
GMOs (genetically modified organisms), 222
GPS (Global Positioning System), 136-137
greenhouse gases, 194, 219
GRI (Global Reporting Initiative), 197
growth in population, 219-220

H
Handymax ships, 165
Handysize ships, 165
heuristics, 84-85
hopper cars, 27-28
hopper trucks, 22
HOS (Hours of service) rules, 215
hosted software, 115
hosted systems, 115
hours of service (HOS) rules, 215
hub-and-spoke networks, 81

I
IATA (International Air Transport
Association), 72
Ideal-X, 38
IMF (International Monetary Fund), 157
import licenses, 107, 186
inbound logistics, 4-5
Incoterms, 180-183
CFR: Cost and Freight (CFR destination
port), 181
CIF: Cost, Insurance, and Freight (CIF
destination port), 181-182
CIP: Carriage and Insurance Paid to (CIP place
of destination), 182
CPT: Carriage Paid To (CFR place of
destination), 182
DAP: Delivery at Place (DAP place of
destination), 182-183
DAT: Delivered at Terminal (DAT place of
destination), 183
DDP: Delivery Duty Paid (DDP place of
destination), 183
EXW: Ex-Works (EXW place), 180
FAS: Free Alongside Ship (FAS loading port),
180-181
FCA: Free Carrier (FCA place), 180
FOB: Free On Board (FOB loading port), 181
infrastructure (transportation), 8-9
inland water transportation, 32-35
Institute Marine Cargo Clauses, 186
insurance, certificate of, 186-187
integrators, 70-71
intelligent transport system (ITS), 216-217
intermodal transportation, 38-44
causes for, 177
documentation. See documentation
features of, 175-177
international transportation
critical issues in, 174-175
land bridges, 178
number of carriers in different modes of
transportation, 175
U.S. international merchandise trade by
transportation mode, 177-178
International Air Transport Association
(IATA), 72
International Monetary Fund (IMF), 157
international transportation
air transportation
growth of, 168
leases, 173
liability, 174
services, 170-173
tariffs, 174
intermodal transportation
causes for, 177
critical issues in, 174-175
features of, 175-177
land bridges, 178
number of carriers in different modes of
transportation, 175
U.S. international merchandise trade by
transportation mode, 177-178
Index

ocean transportation, 162
cabotage, 167-168
cargo types, 163-164
flags, 166-167
liability, 168
service types, 162-163
vessel types, 165-166
Internet retailing (IR), 209-210
Interstate Highway System, 8
invoicing
commercial invoices, 107, 185
consular invoice, 107
pro-forma invoices, 185
TMS (transportation management system), 123
IR (Internet retailing), 209-210
IT solutions to SCM problems, 112-113
ITS (intelligent transport system), 216-217

J-K
JIT (just-in-time) operations, 143-146
Jones Act, 35, 167
just-in-time (JIT) operations, 143-146
Kyoto Protocol, 200-201

L
lake freighters, 34-35
land bridges, 178
lane analysis, 85-90
LASH (lighter-aboard-ship) carriers, 32
LCL (less-than-container-load), 31
lead logistics providers (LLPs), 70-71
lean logistics, 143-146
leases of aircraft, 173
legislation
End-of-Life Vehicles (ELVs) Directive, 190
Energy Policy and Conservation Act, 200
Merchant Marine Act of 1920, 35
Motor Carrier Regulatory Reform and Modernization Act, 18-19, 54, 68
Restriction of Hazardous Substances (RoHS) Directive, 190
Staggers Rail Act, 25, 54
less-than-container-load (LCL), 31
less-than-truckload (LTL) carriers, 20-22
Li & Fung, 161
liability
in international air transportation, 174
international ocean transportation, 168
licenses, export/import, 107, 186
lighter-aboard-ship (LASH) carriers, 32
linehaul price, 59
liners, 162-163
links in supply chain, 7
liquefied natural gas (LNG), 218
LLPs (lead logistics providers), 70-71
LNG (liquefied natural gas), 218
load tendering, 120-121
location monitoring systems, 136-137
logistics
costs. See costs
CPFR (collaborative, planning, forecasting, and replenishment), 150-151
CTM (collaborative transportation management), 151-154
definition of, 4-5
forward and reverse flows, 5
inbound logistics, 4-5
lean logistics, 143-146
MIT (merge-in-transit), 147-149
optimization, 5-6
outbound logistics, 4-5
shared transportation resources, 146-147
VMI (vendor-managed inventory), 149-150
LTL (less-than-truckload) carriers, 20-22

M
Maersk, 31, 39-42
Malaccamax ships, 166
management
consolidation
elements, 86-90
inbound/outbound consolidation, 86
temporal consolidation, 85
vehicle consolidation, 85
CPFR (collaborative, planning, forecasting, and replenishment), 150-151
decision-making framework, 79-80
dock- and movement-level decisions, 102
lane analysis, 85-90
mode and carrier selection, 90-93
network design
heuristics and simulations, 84-85
optimization, 83-84
overview, 80-81
typology of transport networks, 81-83
overview, 79
service evaluation, 99-101
service negotiations, 94
contract versus spot rates, 96-97
contractual provisions, 97-99
shipper-carrier negotiations, 96
shipper-receiver negotiations, 94-96
supply chain management
CTM (collaborative transportation management), 151-154
explained, 6-7
lean logistics, 143-146
links, 6-7
MIT (merge-in-transit), 147-149
nodes, 6-7
shared transportation resources, 146-147
VMI (vendor-managed inventory), 149-150
TMS (transportation management system)
benefits and applications, 120-123
implementation, 124-125
overview, 119-120
providers, 125
transportation documentation
bill of lading, 104-105
carrier freight bill (CFB), 106
certificate of origin (CO), 107
commercial invoices, 107
consular invoice, 107
declaration of dangerous goods, 106
delivery receipt, 106
export/import licenses, 107
overview, 103-104
packing list, 105
shipper’s export declaration (SED), 106-107
marginal costs, 48
market for transportation services, 63
outsourcing transportation, 67
brokers, 73-74
contract carriage (2PLs), 67
freight forwarders, 71-73
lead logistics providers/integrators (4PLs), 70-71
third-party logistics providers (3PLs), 67-70
private transportation
definition of, 63
nonroad private fleets, 66-67
private road fleets, 63-66
MCA-80 (Motor Carrier Regulatory Reform and Modernization Act), 18-19, 68
McLeon, Malcolm, 38
merchandise trade
growth of world merchandise exports and GDP, 161
merchandise trade by commodity volume, 158
merchandise trade for world and select economies, 158
trade blocks, 157
world merchandise exports by value, 158
Merchant Marine Act of 1920, 35
MercuryGate TMS, 124
merge-in-transit (MIT), 147-149
metrics, carrier cost, 50-53
ABC (activity-based costing), 52-53
CTS (cost to serve), 50-52
OR (operating ratio), 50
migration, 219-220
military, role of transportation in, 11
milk runs, 144-146
MIT (merge-in-transit), 147-149
modal shift, 200
mode and carrier selection, 90-93
modes of transportation
air transportation
international transportation, 168-174
overview, 36-37
intermodal transportation, 38-44
overview, 15-16
pipeline transportation, 37-38
rail transportation, 25-30
advantages, 25
efficiency, 26
equipment, 27-28
international transportation, 26-27
rail market, 30
speed, 25-26
Index

Staggers Rail Act, 25
U.S. infrastructure, 25
road transportation, 17-24
equipment, 22-24
LTL (less-than-truckload) carriers, 20-22
Motor Carrier Regulatory Reform and Modernization Act, 18-19
speed, 18
track and trailer capacity, 17
trackload carriers, 19-20
U.S. domestic modal split (revenues), 15
U.S. domestic modal split (ton-miles), 16
water transportation, 31-35
inland water transportation, 32-35
ocean transportation, 31-32, 162-168

monitoring systems
location monitoring systems, 136-137
overview, 136
temperature control and monitoring systems, 138-140
Monte Carlo simulation, 84
Motor Carrier Regulatory Reform and Modernization Act, 18-19, 54, 68
motor transportation, 17-24. See also intermodal transportation
equipment, 22-24
LTL (less-than-truckload) carriers, 20-22
Motor Carrier Regulatory Reform and Modernization Act, 18-19
speed, 18
track and trailer capacity, 17
trackload carriers, 19-20
movement-level decisions, 102
multibarge tows, 33

N
NAFTA (North American Free Trade Agreement), 22
National System of Interstate and Defense Highways, 8
negotiations, 94
contract versus spot rates, 96-97
contractual provisions, 97-99
shipper-carrier negotiations, 96
shipper-receiver negotiations, 94-96

network design
heuristics and simulations, 84-85
optimization, 83-84
overview, 80-81
typology of transport networks, 81-83
New Panamax ships, 165
nodes in supply chain, 7
non-asset-based 3PLs, 69
nonroad private fleets, 66-67
non-vessel operating common carriers (NVOCC), 179
North American Free Trade Agreement (NAFTA), 21
number of carriers in different modes of transportation, 175
NVOCC (non-vessel operating common carriers), 179

O
Obama, Barack, 200
objectives of Transportation Management module, 4
ocean transportation
international transportation, 162
cabotage, 167-168
cargo types, 163-164
flags, 166-167
liability, 168
service types, 162-163
vessel types, 165-166
overview, 31-32
OR (operating ratio), 50
operating ratio (OR), 50
optimization, 83-84
logistics, 5-6
TMS (transportation management system), 122
outbound logistics, 4-5
outsourcing transportation, 67
contract carriage (2PLs), 67
lead logistics providers/integrators (4PLs), 70-71
third-party logistics providers (3PLs), 67-70
packing list, 105, 185
Panamax ships, 165
passenger air transportation, 170-171
passive shippers, 139
payments (TMS), 123
PBL (performance-based logistics) programs, 101
PCPs (pneumatic capsule pipelines), 44
performance assessment, 99-101
performance-based logistics (PBL) programs, 101
pipeline transportation, 37-38. See also intermodal transportation
PCPs (pneumatic capsule pipelines), 44
U.S. transportation infrastructure, 8-9
place utility, 3
pneumatic capsule pipelines (PCPs), 44
POD (proof of delivery) document, 106
point-to-point networks, 82
pooled distribution, 149
population growth and migration, 219-220
Post New Panamax ships, 165
PPP (public-private partnership) model, 202
Proctor & Gamble
4PLs (fourth-party logistics providers), 70
bullwhip effect, 113
information sharing with Walmart, 114
pro-forma invoices, 185
proof of delivery (POD) document, 106
providers
EDI providers, 119
R&S providers, 128
TMS providers, 125
public-private partnership (PPP) model, 202
Q-R
Q-max ships, 166
R&S (routing and scheduling) systems
benefits and applications, 126-127
implementation, 128
overview, 125-126
providers, 128
radio frequency identification (RFID), 133-135
rail transportation, 25-30. See also intermodal transportation
advantages, 25
efficiency, 26
equipment, 27-28
international transportation, 26-27
rail market, 30
speed, 25-26
Staggers Rail Act, 25
U.S. infrastructure, 25
U.S. transportation infrastructure, 8
Rails to Trails Conservancy, 25
rate shopping, 120-121
receiver-shipper negotiations, 94-96
reconsignment fees, 59
regional railroads, 30
relay networks, 91-93
reports (TMS), 123
request for proposal (RFP), 97
requests for quotes (RFQs), 97
Restriction of Hazardous Substances (RoHS) Directive, 190
revenues, U.S. domestic modal split, 15
reverse flows (logistics), 5
RFID (radio frequency identification), 133-135
RFP (request for proposal), 97
RFQs (requests for quotes), 97
rising fuel prices, 217-219
risk, carrier pricing and costs for shippers, 55
river corridors, 33
road fleets
advantages, 65-66
largest private fleets in U.S., 63-64
road transportation, 17-24. See also intermodal transportation
equipment, 22-24
LTL (less-than-truckload) carriers, 20-22
Motor Carrier Regulatory Reform and Modernization Act, 18-19
self-driven vehicles, 213-215
speed, 18
tuck and trailer capacity, 17
truckload carriers, 19-20
RoHS (Restriction of Hazardous Substances) Directive, 190
roll-on/roll-off (RORO) carriers, 32, 166
RORO (roll-on/roll-off) carriers, 32, 166
routing
R&S (routing and scheduling) systems
benefits and applications, 126-127
implementation, 128
overview, 125-126
providers, 128
TMS (transportation management system), 122
Russian Global Navigation Satellite System (GLONASS), 136
S
SaaS (software as a service), 115-116
safety demands, 221-222
scheduling, R&S (routing and scheduling) systems
benefits and applications, 126-127
implementation, 128
overview, 125-126
providers, 128
scorecards
for carrier performance, 100
TMS (transportation management system), 123
Seawaymax ships, 166
second-party logistics service providers (2PLs), 67
security demands, 221-222
SED (shipper’s export declaration), 106-107
self-driven vehicles, 213-215
semivariable costs, 49-50
serial shipping container code (SSCC), 130-131
service evaluation, 99-101
service negotiations, 94
contract versus spot rates, 96-97
contractual provisions, 97-99
shipper-carrier negotiations, 96
shipper-receiver negotiations, 94-96
“Seven Bridges of Konigsberg” problem, 81
shared transportation resources, 146-147
shipment tracking, 122-123
shipper-carrier negotiations, 96
shipper-receiver negotiations, 94-96
shipper’s export declaration (SED), 106-107
ships. See water transportation
simulations, 84-85
SKUs (stock-keeping units), 130
Societal Bottom Line, 198
societal impact of transportation, 10-12
software as a service (SaaS), 115-116
speed
EDI (electronic data interchange), 118
of rail transportation, 25-26
of road transportation, 18
spot rates, 96-97
SSCC (serial shipping container code), 130-131
Staggers Rail Act, 25, 54
steamships, 31
stock-keeping units (SKUs), 130
Suezmax ships, 165
supply chain management. See also global supply chains
CPFR (collaborative, planning, forecasting, and replenishment), 150-151
CTM (collaborative transportation management), 151-154
explained, 6-7
lean logistics, 143-146
links, 7
MIT (merge-in-transit), 147-149
nodes, 7
shared transportation resources, 146-147

Index 235
sustainability
 - congestion, 194-196
 - energy consumption by mode of transportation, 192
 - greenhouse gases, 194
 - need for, 191-196
 - overview, 189-190
 - potential solutions, 199-202
 - supply chain operations reference model, 190
 - TBL (Triple Bottom Line), 189, 197-199
VMI (vendor-managed inventory), 149-150

support activities, 102
Supramax ships, 165
surcharges, 60
sustainability
 - congestion, 194-196
 - energy consumption by mode of transportation, 192
 - greenhouse gases, 194
 - need for, 191-196
 - overview, 189-190
 - potential solutions, 199-202
 - supply chain operations reference model, 190
 - TBL (Triple Bottom Line), 189, 197-199

T
 - tank trucks, 22
 - tankcars, 28-29
 - tanker ships, 32
tariffs, 174
TBL (Triple Bottom Line), 189, 197-199

technologies
 - AIDC (automatic identification and data capture)
 - bar codes, 129-130
 - overview, 129
 - RFID (radio frequency identification), 133-135
 - SSCC (serial shipping container code), 130-131
bullwhip effect, 113-115
control and monitoring systems
 - location monitoring systems, 136-137
 - overview, 136
 - temperature control and monitoring systems, 138-140

EDI (electronic data interchange)
 - benefits and applications, 118
 - implementation, 118-119
 - overview, 116-118
 - providers, 119
hosted systems/hosted software, 115
IT solutions to SCM problems, 112-113
need for, 112-115
R&S (routing and scheduling) systems
 - benefits and applications, 126-127
 - implementation, 128
 - overview, 125-126
 - providers, 128
SaaS (software as a service), 115-116
self-driven vehicles, 213-215
TMS (transportation management system)
 - benefits and applications, 120-123
 - implementation, 124-125
 - overview, 119-120
 - providers, 125
temperature control and monitoring systems, 138-140
temporal consolidation, 85
terrorist targeting of transportation, 11-12
third-party logistics providers (3PLs), 67-70, 179
time charters, 163
time utility, 3
TMS (transportation management system)
 - benefits and applications, 120-123
 - implementation, 124-125
 - overview, 119-120
 - providers, 125
ton-miles, U.S. domestic modal split, 16
total cost, 48-49
Toyota Production System (TPS), 143-144
tracking, 122-123
trade blocks, 157
trailers, 22
transportation documentation
 - bill of lading, 104-105
 - carrier freight bill (CFB), 106
 - certificate of origin (CO), 107
 - commercial invoices, 107
 - consular invoice, 107
 - declaration of dangerous goods, 106
delivery receipt, 106
export/import licenses, 107
overview, 103-104
packing list, 105
shipper’s export declaration (SED), 106-107
transportation economics
accessorial fees, 60-61
accounting costs versus economic costs, 47-48
carrier cost metrics, 50-53
 ABC (activity-based costing), 52-53
 CTS (cost to serve), 50-52
 OR (operating ratio), 50
carrier pricing and costs for shippers, 54-56
demurrage, 60
detention fees, 59-60
diversion or reconsignment fees, 59
expressions of transportation rates, 56-59
 class rates, 56-57
 FAK (freight-all-kinds) rates, 57-59
 flat rates, 56
fixed costs versus variable costs, 48-50
linehaul price, 59
marginal costs, 48
overview, 47
surcharges, 60
total cost, 48-49
transportation infrastructure, 8-9
transportation management
consolidation
 examples, 86-90
 inbound/outbound consolidation, 86
 temporal consolidation, 85
 vehicle consolidation, 85
decision-making framework, 79-80
dock- and movement-level decisions, 102
lane analysis, 85-90
mode and carrier selection, 90-93
network design
 heuristics and simulations, 84-85
 optimization, 83-84
 overview, 80-81
 typology of transport networks, 81-83
overview, 79
service evaluation, 99-101

service negotiations, 94
 contract versus spot rates, 96-97
 contractual provisions, 97-99
 shipper-carrier negotiations, 96
 shipper-receiver negotiations, 94-96
TMS (transportation management system)
 benefits and applications, 120-123
 implementation, 124-125
 overview, 119-120
 providers, 125
transportation documentation
 bill of lading, 104-105
 carrier freight bill (CFB), 106
 certificate of origin (CO), 107
 commercial invoices, 107
 consular invoice, 107
 declaration of dangerous goods, 106
 delivery receipt, 106
 export/import licenses, 107
 overview, 103-104
 packing list, 105
 shipper’s export declaration (SED), 106-107
Transportation Management module
 (CSCMP), 4
transportation management system. See TMS
 (transportation management system)
transportation modes
 air transportation
 international transportation, 168-174
 overview, 36-37
 intermodal transportation
 international transportation, 174-178
 overview, 38-44
 overview, 15-16
pipeline transportation, 37-38
rail transportation, 25-30
 advantages, 25
 efficiency, 26
 equipment, 27-28
 international transportation, 26-27
 rail market, 30
 speed, 25-26
 Staggers Rail Act, 25
U.S. infrastructure, 25
road transportation, 17-24
equipment, 22-24
LTL (less-than-truckload) carriers, 20-22
Motor Carrier Regulatory Reform and Modernization Act, 18-19
speed, 18
truck and trailer capacity, 17
truckload carriers, 19-20
U.S. domestic modal split (revenues), 15
U.S. domestic modal split (ton-miles), 16
water transportation, 31-35
inland water transportation, 32-35
ocean transportation, 31-32, 162-168
Transportation Security Administration (TSA), 11-12
transportation services market, 63
outsourcing transportation, 67
brokers, 73-74
contract carriage (2PLs), 67
freight forwarders, 71-73
lead logistics providers/integrators (4PLs), 70-71
third-party logistics providers (3PLs), 67-70
private transportation
definition of, 63
nonroad private fleets, 66-67
private road fleets, 63-66
transportation support activities, 102
transportation technologies
AIDC (automatic identification and data capture)
bar codes, 129-130
overview, 129
RFID (radio frequency identification), 133-135
SSCC (serial shipping container code), 130-131
bullwhip effect, 113-115
control and monitoring systems
location monitoring systems, 136-137
overview, 136
temperature control and monitoring systems, 138-140
EDI (electronic data interchange)
benefits and applications, 118
implementation, 118-119
overview, 116-118
providers, 119
hosted systems/hosted software, 115
IT solutions to SCM problems, 112-113
need for, 112-115
R&S (routing and scheduling) systems
benefits and applications, 126-127
implementation, 128
overview, 125-126
providers, 128
SaaS (software as a service), 115-116
self-driven vehicles, 213-215
TMS (transportation management system)
benefits and applications, 120-123
implementation, 124-125
overview, 119-120
providers, 125
transportation-related employment, 9-10
Triple Bottom Line (TBL), 189, 197-199
Triple-E Class container ships, 31
Triple-E fleet of ships, 39-42
trucking industry, 17-24. See also intermodal transportation
equipment, 22-24
LTL (less-than-truckload) carriers, 20-22
Motor Carrier Regulatory Reform and Modernization Act, 18-19
speed, 18
track and trailer capacity, 17
truckload carriers, 19-20
truckload carriers, 19-20
TSA (Transportation Security Administration), 11-12
typology of transport networks, 81-83

U
ULCC (ultra large crude carriers), 166
ULOC (ultra large ore carrier), 165
ultra large crude carriers (ULCC), 166
ultra large ore carrier (ULOC), 165
United Nation’s Brundtland Commission report, 189
Universal Product Code (UPC), 129
UPC (Universal Product Code), 129
U.S. Department of Defense, 101
Walmart

4PLs (fourth-party logistics providers), 70
information sharing with Proctor & Gamble, 114
private road fleets, 65
water transportation, 31-35. See also intermodal transportation
inland water transportation, 32-35
ocean transportation, 31-32, 162
cabotage, 167-168
cargo types, 163-164
flags, 166-167
liability, 168
service types, 162-163
vessel types, 165-166
U.S. transportation infrastructure, 8-9
“weighed out,” 49
Welland Canal, 34-35
wet leases, 173
World Bank, 157
World Trade Organization (WTO), 157
WTO (World Trade Organization), 157

U.S. domestic modal split
revenues, 15
ton-miles, 16
U.S. Federal Motor Carrier Safety Administration (FMCSA), 71
U.S. transportation infrastructure, 8-9
U.S. transportation-related employment, 9-10
U.S.S. Cole, 32

V

variable costs, 48-50
VBIEDs (vehicle-borne improvised explosive devices), 11-12
vehicle consolidation, 85
vehicle-borne improvised explosive devices (VBIEDs), 11-12
vendor-managed inventory (VMI), 149-150
vendor-owned and -managed inventory (VOMI), 149
very large crude carriers (VLCC), 166
very large ore carrier (VLOC), 165
vessel types, 165-166
VICS (Voluntary Interindustry Commerce Solutions), 151
VLCC (Very large crude carriers), 166
VLOC (very large ore carrier), 165
VMI (vendor-managed inventory), 149-150
Voluntary Interindustry Commerce Solutions (VICS), 151
VOMI (vendor-owned and -managed inventory), 149
voyage charters, 162