THE DEFINITIVE GUIDE TO INVENTORY MANAGEMENT

Principles and Strategies for the Efficient Flow of Inventory across the Supply Chain

Council of Supply Chain Management Professionals and

Matthew A. Waller
Terry L. Esper
THE DEFINITIVE GUIDE TO INVENTORY MANAGEMENT
This page intentionally left blank
This book is dedicated to my wife, Susanne, who is kind enough not to talk about the fact that she is out of my league, and to my children, Sophia, Grant, Luke, and Sarah.—MW

This book is dedicated to my wife, Mishi, whose love and support allow me to approach academic pursuits with joy, and to the memory of my colleague, mentor, and friend, the late Dr. John “Tom” Mentzer, whose examples and advice I still follow today.—TE
This page intentionally left blank
CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introduction to Inventory</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What Is Inventory?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>The Role of Inventory in Supply Chain Management</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Why Inventory Is Such an Important Metric for Supply Chain Management</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Overview of the Book</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Endnotes</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Inventory Management Fundamentals</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Types of Inventory</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Inventory Costs</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Endnotes</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Inventory Control</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncertainty in Inventory Processes</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Inventory Replenishment Processes</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Demand During Lead Time</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Expected Units Out Per Replenishment Cycle</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Total Annual Cost as a Function of Order Quantity</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Quantity Discounts</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Endnotes</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>The Link Between Inventory Management and Forecasting</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncertainty in Demand and Forecasting</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Time Series Methods</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Causal Models</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Endnotes</td>
<td>109</td>
</tr>
</tbody>
</table>
Channel Separation ...165
Inventory Placement Optimization165
The Global Supply Chain Impact166
Retail and Consumer Products Inventory Management168
Endnotes...172

Chapter 8 Inventory Performance Measurement.............175
 Trade-Off Analysis ..176
 Types of Measures.......................................178
 4-V Model ..179
 Measurement Systems and Frameworks183
 Management by Exception184
 Measurement Dashboards.................................184
 Endnotes...186

Index ..189
ACKNOWLEDGMENTS

My family was very patient with me as I sat in the living room starting early in the morning, sometimes as early as 4:00 a.m., and ending late at night. My wife often encouraged me to keep writing.

Eli Jones, dean of the Sam M. Walton College of Business at the University of Arkansas, and author of *Selling ASAP*, was an encouragement to me in general and is a role model. He is a tremendous blessing to many.

Prashanth (PV) Boccasam, partner at Novak Biddle and CEO of Orchestro was thrilled when he heard about my book. This book breaks from the norm, in part as a result of PV’s role in terms of his willingness to boldly invent new ways of doing things. Working with Orchestro is a huge blessing as it allows me to join them in inventing the future of analytics in CPG and retail.

Over the years I have studied and taught from a number of textbooks on inventory theory. Some of my favorites, which I have learned the most from, include the following: *Analysis of Inventory Systems* (Prentice Hall, 1963); *Foundations of Inventory Management* (McGraw-Hill, 2000); *Inventory Management and Production Planning and Scheduling* (Wiley, 1998); *Production and Operations Analysis* (McGraw-Hill, 2005); *Foundations of Stochastic Inventory Theory* (Stanford University Press, 2002).

I would like to thank the Council of Supply Chain Management Professionals for promoting logistics education of managers globally.

Thank you to Pearson for publishing this book.

—MW

Many thanks to the Council of Supply Chain Management Professionals, for the excellent partnership in educating the masses about logistics and supply chain management; Dr. Chad Autry, for your friendship and foresight; Dr. Matthew Waller, whose knowledge and wisdom is nothing short of amazing; and Pearson, for ensuring that the work being done in this space is made available to markets near and far.

—TE
ABOUT THE AUTHORS

Dr. **Terry L. Esper** is the Oren Harris Endowed Chair of Logistics and Associate Professor of Supply Chain Management at the Sam M. Walton College of Business, University of Arkansas. He also serves as Executive Director of the Walton College Supply Chain Management Research Center. Esper has been a faculty member at the University of Tennessee, the University of San Francisco, and the University of Verona (Italy). He has published several articles on issues associated with supply chain relationships and strategic supply chain management in leading academic and managerial outlets. In addition to his current role at the Walton College, Esper is also a member of the Education Strategies Committee for the Council of Supply Chain Management Professionals, serves as an Educational Advisor to the Health and Personal Care Logistics Conference, and is an Associate Editor of the *Journal of Supply Chain Management*. Esper received both an MBA in transportation and logistics and a Ph.D. in marketing and logistics from the Walton College at the University of Arkansas. Prior to his academic career, Esper worked for Hallmark Cards as a Transportation Manager and for the Arkansas State Highway and Transportation Department in their Research and Statewide Planning Divisions. He is also a three-time recipient of the Dwight D. Eisenhower Transportation Fellowship and a former Eno Fellow.
Founded in 1963, the Council of Supply Chain Management Professionals (CSCMP) is the preeminent worldwide professional association dedicated to the advancement and dissemination of research and knowledge on supply chain management. With more than 8,500 members representing nearly all industry sectors, government, and academia from 67 countries, CSCMP members are the leading practitioners and authorities in the fields of logistics and supply chain management. The organization is led by an elected group of global officers and is headquartered in Lombard, Illinois, USA.
In June 2013 the Council of Supply Chain Management Professionals (CSCMP) released its annual State of Logistics Report. The document consists of several key logistics-related trends and data analyses that provide the reader with a snapshot of the emerging issues in the discipline and a source for benchmarking supply chain activities of a firm. One of the primary aspects of the report was the discussion of inventory trends. According to the report, inventories in the retail, wholesale, and manufacturing sectors all rose in 2012. Interestingly, retail inventories increased by 8.3 percent, more than twice the increase of wholesale inventories and more than six times that of manufacturing inventories. Likewise, inventory-related costs increased, with inventory carrying costs up by 4 percent. Perhaps even more interesting was the fact that these inventories were not necessarily moving, as the retailers reported significant overstocks through the latter half of 2012.

As the CSCMP report highlights, inventory is a fundamental measure of the overall health of supply chain and logistics activities. Because supply chain management efficiencies and executional excellence have become core strategic goals for most major firms over the last two decades, there has been a surge in C-level executives who focus on inventory-related costs and measures. Inventory reduction initiatives have become commonplace, with many supply chain and logistics professionals indicating that inventory-related efficiencies have become a culture and mindset within their organizations.

With so much emphasis on inventory, we feel it necessary to start this book with the basic fundamentals and foundations of the concept. So, we open with a question...
What Is Inventory?

What is inventory? This may seem like somewhat of a rhetorical question. Perhaps, at the very least, it could be considered a question with an obvious answer. However, inventory is one of the most interesting, intriguing, and misunderstood business phenomena. At the root of this misunderstanding are the various perspectives on what inventory represents. Thus, the next sections present the predominant definitional perspectives on inventory.

The GAAP Perspective

According to Generally Accepted Accounting Principles (GAAP), the primary framework for financial accounting standards, inventory is a current asset. In particular, inventory represents “tangible personal property which are held for sale in the ordinary course of business; are in process of production for such sale; or, are to be currently consumed in the production.” In other words, inventory (in the form of “work-in-process,” “raw materials,” or “finished goods”) is an asset because it represents property that is likely to be converted to revenue, as the ultimate goal of inventory is to facilitate sales for an organization. Thus, Accounting 101 would indicate that inventory is properly accounted for on financial statements by being reported in dollar value terms as a current asset on the balance sheet.

Several years ago, an undergraduate student asked one of the authors an insightful question. “If inventory is an asset, then why are so many firms engaging in ‘inventory reduction initiatives’?” This question underscores the intriguing nature of inventory. Yes, according to GAAP, it is an asset, as it represents potential revenues. However, the management of inventory renders it an asset that comes with a price tag. Thus, inventory management is why inventory is such an interesting business phenomenon. It’s the art of managing an asset that is often viewed as a liability even though it is an asset. Various measures of inventory in the supply chain are perhaps the most salient metrics for the efficiency and effectiveness of the supply chain.

The Supply Chain Management Efficiency Perspective

One of the primary goals of supply chain management is to ensure that operations within and across firms in a supply chain are efficient. In many cases, the means to ensure efficiencies is in inventory; more specifically, in inventory reductions. Considering this, inventory is often viewed as a liability to efficient supply chain management. While supply chain managers recognize the necessity of inventory, the unwritten (and in many cases, written) rule is to keep inventory at a bare minimum. This goal gave rise to many of the popular supply chain management frameworks that are ubiquitous today: just-in-time inventory management; lean inventory; and even collaboration initiatives like collaborative planning, forecasting, and replenishment (CPFR). Overall, these strategic
Chapter 1

Introduction to Inventory

Initiatives were all developed with the goal of streamlining inventories across the supply chain and keeping inventory investment as low as possible.

The concept of inventory investment is, perhaps, the underlying reason why supply chain managers attempt to keep inventories low. The cost investment associated with having inventories can be high. These costs are addressed in much more detail later in the book, but suffice it to say, for now, that these costs include the cash outlay required to actually purchase the inventory, the costs of holding the inventories (which includes the cost of having invested in inventories instead of something else), and the costs associated with managing the inventory. Considering this, the managerial approach of keeping inventories as low as possible is not necessarily because it’s inventory, per se, but because it’s money—money tied up in something that costs even more money as it sits idle. In addition, metrics such as return on assets are affected by inventory since inventory is in the asset category on the balance sheet.

The Risk Management Perspective

Perhaps another interesting answer to the “what is inventory?” question is the risk management perspective. An interesting shift occurred recently regarding inventory. Though most firms still attempt to keep inventories as low as possible because of the costs associated with holding and managing it, there has been a growing emphasis on the costs of not having or effectively managing inventories. In other words, inventory has been increasingly viewed from a risk management perspective, where the costs and impacts of stockouts, missed service opportunities, and unforeseen supply chain interruptions have become a primary decision-driver for firms. This has resulted in firms becoming much more favorable to concepts (discussed in much more detail later in the book) such as safety stock. Their rationale has been the sentiment, “we can’t afford to not have safety stock inventory!” Because of this, inventory has interestingly become a means of managing risks.

In general, there appears to be much more sensitivity to the risk of potential supply chain disruptions. In many cases, these disruptions are the result of some uncertainty involved in managing supply chain processes. Sometimes the uncertainty is because of poor information availability; sometimes it is associated with uncertainty in supplier lead times; sometimes it is uncertainty in execution of specific tasks in various supply chain processes. In any case, uncertainty is the primary culprit involved in supply chain disruptions. One way that many firms have chosen to deal with such uncertainties is to hedge against them with inventory investment. Although this philosophy is cause for much debate, the reality is that many businesses engage in this practice for various reasons and, therefore, view inventory as a means of managing and mitigating risks.

Another popular variation of the risk management perspective is investing in inventory as a means of hedging against currency and price fluctuations. Vendors often offer
short-term volume discounts, the prices of many raw materials are based on market value, and purchasing from global suppliers involves currency exchange rates. To hedge against these potential fluctuations and changes, many firms opt to invest in inventory as a means of locking in prices and currency valuations. Doing this ultimately prevents them from being susceptible to the risk of inventory costs going above budgetary and capital constraints.

The Balanced Perspective

As all the preceding definitional perspectives suggest, inventory has a variety of meanings and symbolic roles within supply chains. This understanding is perhaps the most important and fundamental starting point for effective inventory management. Inventory is an asset, but an asset that firms don’t want too much of. Yet not having “too much” could put the firm at risk of potential supply chain disruptions and unforeseen extreme costs. As such, the key to effective inventory management is balance—maintaining adequate inventories to ensure smooth production and merchandising flows while simultaneously minimizing inventory investment to ensure firm financial performance. This balance is often referred to as optimal.

The quest for optimal inventory levels is not an easy undertaking. It involves an interweaving of several analytical methods and techniques. Moreover, several interconnected decisions must be made to maintain optimal flows and seamless exchange of inventories along the supply chain. These issues are the focus of this book and are discussed in much detail in the forthcoming chapters.

The Role of Inventory in Supply Chain Management

Managing customer and vendor relationships is a critical aspect of managing supply chains. In many cases, the collaborative relationship concept has been considered the essence of supply chain management. However, a closer examination of supply chain relationships, particularly those involving product flows, reveals that the heart of these relationships is inventory movement and storage. Much of the activity involved in managing relationships is based on the purchase, transfer, or management of inventory. As such, inventory plays a critical role in supply chains because it is a salient focus of supply chains.

Perhaps the most fundamental role that inventory plays in supply chains is that of facilitating the balancing of demand and supply. To effectively manage the forward and reverse flows in the supply chain, firms have to deal with upstream supplier exchanges and downstream customer demands. This puts an organization in the position of trying to strike a balance between fulfilling the demands of customers, which is often difficult to forecast.
with precision or accuracy, and maintaining adequate supply of materials and goods. This balance is often achieved through inventory.

For example, a growing trend is the implementation of sales and operations planning (S&OP) processes. The fundamental purpose of S&OP is to bring the demand management functions of the firm (for example, sales forecasting, marketing) together with the operations functions of the firm (for example, manufacturing, supply chain, logistics, procurement) and level strategic plans. This often involves extensive discussions about the firm’s on-hand inventory, in-transit inventory, and work-in-process. Such discussions allow the sales and marketing group to adequately plan for the forthcoming time horizon by gaining a realistic picture of the inventory levels available for sale. Additionally, the operations groups are able to get updated and direct sales forecasting information, which can assist in planning for future inventory needs. Such information may very well result in shifts in manufacturing plans or alterations to procurement needs because of the strategic decision to focus on specific units of inventory instead of others in the near future.

Another example of balancing through inventory is the use of point-of-sale (POS) data for perpetual inventory management in the retail industry. For many retailers, every “beep” of a cash register upon scanning of an item’s bar code during checkout triggers a series of messages that another unit of inventory has been sold. This information is not only tracked by the retailer but is also shared with upstream vendors. As items are depleted from inventory, in some cases, both the retailer and vendor work collaboratively to determine when reordering is necessary to replenish the depleted inventory, especially at the distribution center level. This is a balancing of supply and demand because demand information is tracked to determine when to best place replenishment orders based on the time required to get the inventory to the store location. In essence, inventory decisions are used to effectively time when supply inflows are needed to handle demand outflows.

Why Inventory Is Such an Important Metric for Supply Chain Management

As initiatives like S&OP illustrate, inventory can be a vital part of managing supply chains. Because of this, the status of a firm’s inventory is often used as a litmus test for the overall “health” of its supply chain management processes and decision-making. For example, consider the firm that has excessive amounts of inventory in the form of safety stock. Such high safety stock is indeed a problem in and of itself because of the costs of holding this inventory and the opportunity costs of having working capital tied up in assets that aren’t being converted to sales. The larger issue here, however, is that this safety stock situation is likely a symptom of some sort of ineffective supply chain management decision-making. Perhaps demand forecasting is constantly and significantly inaccurate,
maybe supplier lead times are unnecessarily long, perhaps firm operations are laden with bottlenecks and inefficient inventory handling, or maybe transportation carriers are not providing quality service in the form of delivering inventory damage-free and on-time. These are but a few examples of supply chain management ineffectiveness that often manifest in the form of either extensive levels of stagnant inventory or consistent out-of-stocks. Hence, inventory is an important supply chain measurement tool because it is likely one of the first signs that some root cause(s) is causing supply chain inefficiencies.

This has resulted in industry analysts, supply chain consultants and researchers, and even Wall Street paying close attention to inventory metrics to glean insights about supply chain performance trends and changes. Measures such as inventory turns, days of inventory, and cash-to-cash cycle have become popular, as they are all indicators of how well a firm's supply chain is being managed. These inventory measures tell us, for example, how quickly inventory is moving through the supply chain, how likely the firm can handle the fulfillment of customer demands, how the firm's liquidity is impacted by its investment in inventory, and may even signal how effectively supplier relationships are being managed.

Overview of the Book

Considering that inventory management is clearly a fundamental aspect of supply chain management, this book has been developed to outline the concepts and techniques at the heart of effective inventory decision-making. As we established in this chapter, inventory management is a far-reaching and expansive subject. Because of this, we can’t make claims that this book will be exhaustive, by any means. However, we have carefully pieced together what we consider to be the key frameworks and approaches to assist the reader in better understanding the “what, why, how, and by what means” of inventory management decision-making.

Chapter 2, “Inventory Management Fundamentals,” builds on the definitional discussion in this chapter and provides foundational insights into the key terminology and concepts involved in inventory management. Chapter 2 highlights the different types of inventory and the various cost drivers and cost categories associated with these inventories. Because there is often confusion in discussions about inventory that is a result of lack of terminology, we carefully and thoroughly consider many different and overlapping inventory concepts. A thorough understanding of Chapter 2 facilitates your understanding of the remainder of the book.

Chapter 3, “Inventory Control,” takes the inventory management discussion further by focusing on the analyses used to make well-informed inventory decisions. Chapter 3 presents frameworks that assist in determining when inventory should be ordered, how much should be ordered, and ultimately how the inventory ordered should be managed and accounted for. The chapter concludes with some examples of managerial issues that
firms have faced when implementing several of these inventory approaches. This portion of the chapter was developed to help contextualize the analysis techniques by sharing certain roadblocks, problems, and unique successes that some firms have realized when putting these theoretical concepts to practice.

Chapter 4, “The Link Between Inventory Management and Forecasting,” looks at forecasting within the context of inventory management. It is really impossible to even examine inventory management without thoroughly discussing forecasting and how it relates to inventory decisions. You need to know how many units you are expecting to sell if you want to order an appropriate quantity at the appropriate time. In addition, the error in forecasts also contains useful information, because it is an indicator of how much uncertainty there is in demand.

Chapter 5, “Discrete Event Simulation of Inventory Processes,” describes a tool that is useful for analyzing inventory processes, the effects of forecasting methods on inventory processes, and how execution failures affect the performance of the inventory system—namely, discrete event simulation. Discrete event simulation is used to study a wide variety of processes and systems, but we are discussing its use only within the context of forecasting and inventory management. Furthermore, many software packages are specifically designed for discrete event simulation, but we explain how to conduct discrete event simulation in Microsoft Excel.

Prior to Chapter 6, we primarily look at inventory management from the perspective of an individual stock-keeping unit (SKU), but in Chapter 6, “Additional Inventory Management Processes and Concepts,” we consider inventory management with multiple SKUs. One must clearly understand inventory management and theory from the single SKU perspective to be able to fully understand multi-item inventory management since many of the concepts from single item inventory management are used in the discussion of multi-item inventory management. In addition, up to Chapter 6, we only discuss single echelon inventory management, but in Chapter 6 we extend the discussion to include multi-echelon inventory management. Many other related concepts are discussed in Chapter 6, including distribution requirements planning, which is certainly a multi-echelon concept.

Chapter 7, “Managing Supply Chain Inventory Flows,” looks at a number of topics related to overall management of the flow of inventory, including who owns the inventory, who makes decisions about when and how much to order, where the product flows vis-à-vis where the marketing transactions occur, and other related topics. We also look at questions about where inventory should be held and how orders can cause additional uncertainty in demand as they move up the supply chain.

Although performance measurement is discussed both directly and indirectly throughout Chapters 2 through 7, Chapter 8, “Inventory Performance Measurement,” focuses on inventory management performance measurement, covering some metrics we do
not cover earlier in the book but are important in the discussion. We carefully include content regarding cost trade-offs and cost/service trade-offs throughout the discussion of performance measurement. This is important because many times companies focus on some set of performance metrics at the cost of others that are ignored or not measured.

Endnotes

This page intentionally left blank
Numbers
4-V Model, 179, 182
 value measures, 179-181
 variance measures, 182-183
 velocity measures, 181-182
 volume measures, 179

A
ABC inventory classification, 140
additive models, 107-108
aggregate inventory control, 143-148
air carriage, in-transit stock, 17
Amazon.com, 165
assortment, 169-170
assumptions of regression, 108-109
Average Inventory, 179

B
balanced perspective, inventory, 4
balanced scorecard (BSC), 185-186
Benetton, 161
BOM, 142
BSC (balanced scorecard), 185-186
bullwhip, 158-160
 costs, 159
 versus risk pooling, 159

C
C2C (Cash-to-Cash Cycle), 182
calibration, inventory simulations, 127-128
case packs, 170
Cash-to-Cash Cycle (C2C), 182
casual models, 103
 forecasting
 additive and multiplicative models, 107-108
 assumptions of regression, 108-109
 regression, 103-107
censored distributions, 137-140
centralized inventory management system, 133
challenges of incumbent process, 151-152
channel separation, 165
classification, ABC inventory classification, 140
Coca-Cola, 177-178
collaborative planning, forecasting, and replenishment (CPFR), 164
consignment, 163
 reverse consignment, 163-164
continuous review replenishment process, 131
cost curve, 55
costs
 bullwhip, 159
 inventory, 22-23
 fixed and variable ordering costs, 25
 investment, cost, and value, 23-24
 out-of-stock, 25-27
 opportunity costs, 22
 shrinkage costs, 23
 storage costs, 23
cost trade-offs, 54
Council of Supply Chain Management Professionals (CSCMP), 1
CPFR (collaborative planning, forecasting, and replenishment), 164
C(Q), cost curve, 55
cross docking, 168-169
CSCMP (Council of Supply Chain Management Professionals), 1
cumulative poisson distribution, 49
cumulative probability of demand, 71
cycle stock, 11-13

D
damped trend, 88-89
dashboards, measurement dashboards, 184-186
dc (annual demand times cost per unit), 64
dC (distribution center), 151
decentralized inventory replenishment process, 132
demand, 69
cumulative probability, 71
empirical distributions, 116-118
during lead time for retailer distribution centers, 31
versus sales, 121-122
trended demand, 104
uncertainty, 70-73
demand during lead time
forecast errors, 43-44
on-hand inventory, 44-45
inventory control, 40-51
demonstration stock, 18
direct store delivery (DSD), 168
discounts, quantity discounts, 64-65
discrete event simulations, 50
inventory processes
inventory replenishment processes, 112-115
inventory simulation in Excel, 118-119
randomness in demand, 115-116
distribution, censored distributions, 137-140
distribution centers (DCs), 151
distribution requirements planning (DRP), 143
DOI (Days of Inventory On-Hand), 182
DRP (distribution requirements planning), 143
DSD (direct store delivery), 168
E
empirical distributions
demand and lead time, 116-118
uncertainty in inventory processes, inventory, 32-34
EOQ model, 57
errors
execution errors, inventory simulations, 125
forecast errors, demand during lead time, 43-44
estimating ITFs (Inventory Throughput Functions), 146-148
Excel, inventory simulations, 118-119
beginning and ending inventory, 120
calibration, 127-128
demand versus sales, 121-122
execution errors, 125
gamma distribution, 121
inventory measurement, 123
lead time and orders, 122
length of simulation run, 123
number of replications, 124
poisson distribution of demand, 121
variations on the model, 126-127
execution errors, inventory simulations, 125
expected units out per replenishment cycle, inventory control, 51-52
exponential smoothing, 81-85
trend adjusted exponential smoothing, 86-88
F
FIFO (first-in, first-out), 24
fill rate, total annual cost as a function of order quantity, 59-60
finished good stocks, 21
first-in, first-out (FIFO), 24
fixed and variable ordering costs, 25
FOQ (fixed order quantity), 141
forecast errors, demand during lead time, 43-44
forecasting, 69
casual models, 103
 additive and multiplicative models, 107-108
 assumptions of regression, 108-109
 regression, 103-107
time series methods, 73
damped trend, 88-89
exponential smoothing, 81-85
hold out data, 78
measuring uncertainty, 79-80
moving averages, 73-75
naive forecasts, 75
over fitting observations, 77-78
seasonally adjusted forecasts, 89-102
simple averages, 75-76
trend adjusted exponential smoothing, 86-88
uncertainty, 70-73
frameworks, inventory performance measurement, 183

G-H
GAAP (Generally Accepted Accounting Principles), 2
gamma distribution, 48
 inventory simulations in Excel, 121
Gartner rankings, 175
global supply chain impact, 166-168
GMROI (Gross Margin Return on Inventory Investment), 178
Gross Margin Return on Inventory Investment (GMROI), 178
Harmonized Tariff Schedule of the United States (HTSUS), 167
Hewlett-Packard (HP), out-of-stock, 26
hold out data, 78
HTSUS (Harmonized Tariff Schedule of the United States), 167

I
ILFR (item-level fill rate), 11
inner packs, 170
in-transit stock, 15-17
inventory, 1
costs, 22-23
 fixed and variable ordering costs, 25
 investment, cost, and value, 23-24
 of out-of-stock, 25-27
defined
 balanced perspective, 4
 GAAP perspective, 2
 risk management perspective, 3-4
 supply chain management efficiency perspective, 2-3
perpetual inventory, 24
role in supply chain management, 4-5
storage, 149
supply chain management, importance of, 5-6
types of, 9-11
cycle stock, 11-13
demonstration stock, 18
finished good stocks, 21
promotional stock, 17
raw material stock, 20
replenished multiple location impulse stock, 20
replenished retail shelf stock, 19
retail backroom stock, 18-19
safety stock, 13-15
seasonal stock, 19
spare parts stock, 22
in-transit stock, 15-17
work in process stock, 20-21
inventory control, 31
aggregate inventory control, 143-148
demand during lead time, 40-51
expected units out per replenishment cycle, 51-52
inventory replenishment processes, 36-38
 inventory position, 38-39
quantity discounts, 64-65
total annual cost as a function of order quantity, 52-59
 fill rate, 59-60
 trade-off analysis, 60-63
uncertainty in inventory processes, 31-32
 empirical distributions, 32-34
 normal distributions, 36
inventory management
 inventory record management, 150-151
 multi-echelon inventory management, 131-134
 no fixed ordering costs, 134-135
 multi-item inventory management, 129-131
inventory measurement, inventory simulations, 123
inventory performance measurement, 175-176
 4-V Model. See 4-V Model
 frameworks, 183
 MBE (management by exception), 184
 measurement dashboards, 184-186
 trade-off analysis, 176
 inventory-transportation trade-off, 176-177
 lot size-inventory trade-off, 178
 product variety-inventory trade-off, 177-178
 types of measures, 178
inventory placement optimization, 165-166
inventory position, 38-39
inventory postponement, 160-162
inventory processes, discrete event simulations, 112-115
 inventory simulation in Excel. See inventory simulations in Excel
 randomness in demand, 115-116
inventory record management, 150-151
inventory replenishment processes, 36-38
 discrete event simulations, 112-115
 expected units out per replenishment cycle, 51-52
 inventory position, 38-39
inventory simulations in Excel, 118-119
 beginning and ending inventory, 120
 calibration, 127-128
 demand versus sales, 121-122
 execution errors, 125
 gamma distribution, 121
 inventory measurement, 123
 lead time and orders, 122
 length of simulation run, 123
 number of replications, 124
 poisson distribution of demand, 121
 variations on the model, 126-127
inventory status file (ISF), 141
Inventory Throughput Functions (ITFs), 143-148
 estimating, 146-148
inventory-transportation trade-off, 176-177
investment, inventory costs, 23-24
ISF (inventory status file), 141
item-level fill rate (ILFR), 11
ITFs (Inventory Throughput Functions), 143-148
 estimating, 146-148
K-L
 kanban system, 165
KPIs (key performance indicators), 175, 184
L4L (lot-for-lot), 141
lead time
 empirical distributions, 116-118
 orders and, inventory simulations, 122
length of simulation run, 123
less than truckload (LTL), 53
LIFR, 184
loss integral, 51
lot-for-lot (L4L), 141
lot size-inventory trade-off, 178
LTL (less than truckload), 53, 168-169

M

maintenance, spare parts stock, 22
management by exception (MBE), 184
MAPE, 80
markdowns, 161
master production schedule (MPS), 141-142
material requirements planning (MRP), 140-142
MBE (management by exception), 184
measurement dashboards, 184-186
measuring, uncertainty, 79-80
merge-in-transit, 162
metrics, inventory, 5-6
moving averages, 73-75
MPS (master production schedule), 141-142
MRP (material requirements planning), 140-142
multi-echelon inventory management, 131-134
no fixed ordering costs, 134-135
multi-item inventory management, 129-131
multiplicative models, 107-108

N

naïve forecasts, 75
new item introductions, 170
newsvendor model, 135-137
censored distributions, 137-140
NMFC (National Motor Freight Classification), 53
NMFTA (National Motor Freight Traffic Association), 53
no fixed ordering costs, multi-echelon inventory management, 134-135
normal distributions, uncertainty in inventory processes, inventory control, 36

O

ocean carriage, in-transit stock, 17
on-hand inventory, demand during lead time, 44-45
opportunity costs, 22
optimizing, inventory placement, 165-166
order batching, bullwhip, 158
order quantity, total annual cost as a function of order quantity, 52-59
orders, lead time and, inventory simulations, 122
out-of-stock, costs of, 25-27
over fitting observations, 77-78

P

pallets, 170
part period balancing (PPB), 141
performance measurement. See inventory performance measurement
periodic order quantity (POQ), 141
perpetual inventory, 24
point-of-sale (POS), 5, 131
poisson distribution of demand, 121
POQ (periodic order quantity), 141
POS (point-of-sale), 5, 131
postponement, 160-162
PPB (part period balancing), 141
PPIS (protection period in-stock), 41
probability mass, 49
product variety-inventory trade-off, 177-178
promotional stock, 17
protection period, 11
protection period in-stock (PPIS), 41
pull inventory systems, 164-165
push inventory systems, 164-165
Q
(Q,ROP), 11
 cycle stock, 11-13
 demand during lead time, 47
 inventory replenishment processes, 34-37
 safety stock, 13-15
quantity discounts, 64-65

R
randomness in demand, 115-116
 empirical distributions of demand and lead
time, 116-118
ratio of variances, bullwhip, 159
raw material stock, 20
regression, 103-107
 assumptions of regression, 108-109
replenished multiple location impulse
stock, 20
replenished retail shelf stock, 19
replenishment processes, 10
replications, inventory simulations, 124
retail and consumer products inventory
management, 168
 assortment, 169-170
 cross docking, 168-169
 new item introductions, 170
 pallets, case packs, inner packs,
 and units, 170
 shelf layout, 171-172
retail backroom stock, 18-19
retail shelf layout, 171-172
Return on Assets (ROA), 175
reverse consignment, 163-164
risk management perspective, inventory, 3-4
risk pooling, 155-157
 versus bullwhip, 159
ROA (Return on Assets), 175
ROP, demand during lead time, 45-46

S
S&OP (sales and operations planning), 5
 safety stock, 13-15
sales and operations planning (S&OP), 5
sales versus demand, 121-122
seasonal indices, 97
seasonally adjusted forecasts, 89-102
seasonal stock, 19
service, 10
shelf layout, retail, 171-172
shrinkage costs, 23
simple averages, 75-76
SKU (stock-keeping unit), 12, 129
spare parts stock, 22
speculation, 162
stock-keeping unit (SKU), 12, 129
storage, 149
storage costs, 23

supply chain inventory flows
 bullwhip, 158-160
 channel separation, 165
 consignment, 163
CPFR (collaborative planning, forecasting,
 and replenishment), 164
global supply chain impact, 166-168
inventory placement optimization, 165-166
inventory postponement, 160-162
merge-in-transit, 162
push versus pull, 164-165
reverse consignment, 163-164
risk pooling, 155-157
VMI (vendor managed inventory), 162-163

supply chain management
 inventory, importance of, 5-6
 role of inventory, 4-5

supply chain management efficiency
 perspective, inventory, 2-3
time series methods, 73
 damped trend, 88-89
 exponential smoothing, 81-85
 hold out data, 78
 measuring uncertainty, 79-80
 moving averages, 73-75
 naïve forecasts, 75
 over fitting observations, 77-78
 seasonally adjusted forecasts, 89-102
 simple averages, 75-76
 trend adjusted exponential smoothing, 86-88
TL (truckload), 53
total annual cost as a function of order quantity, 52-59
 fill rate, 59-60
 trade-off analysis, 60-63
(T,OUL), 11
 cycle stock, 11-13
 demand during lead time, 46
 safety stock, 13-15
trade-off analysis, 176
 inventory-transportation trade-off, 176-177
 lot size-inventory trade-off, 178
 product variety-inventory trade-off, 177-178
transportation, inventory-transportation trade-off, 176-177
trend adjusted exponential smoothing, 86-88
trended demand, 104
truckload (TL), 53
types of inventory, 9-11
 cycle stock, 11-13
 demonstration stock, 18
 finished good stocks, 21
 in-transit stock, 15-17
 promotional stock, 17
 raw material stock, 20
 replenished multiple location impulse stock, 20
 replenished retail shelf stock, 19
retail backroom stock, 18-19
safety stock, 13-15
seasonal stock, 19
spare parts stock, 22
work in process stock, 20-21
types of measures, inventory performance measurement, 178

U
U(I), 130
uncertainty
 in demand and forecasting, 70-73
 in inventory processes, inventory control, 31-32
 empirical distributions, 32-34
 normal distributions, 36
 measuring, 79-80
units, 170

V
value, inventory costs, 23-24
value added tax (VAT), 167
Value Dime and Five, 55
value measures, 4-V Model, 179-181
variance measures, 4-V Model, 182-183
variations on the model, inventory simulations, 126-127
VAT (value added tax), 167
velocity measures, 4-V Model, 181-182
VMI (vendor managed inventory), 162-163
volume measures, 4-V Model, 179

W-X-Y-Z
work in process stock, 20-21