
1 Chapter 16

16.15 Introduction to Regular-Expression Processing
This section introduces regular expressions—specially formatted strings used to find pat-
terns in text. They can be used to ensure that data is in a particular format. For example,
a U.S. zip code must consist of five digits, or five digits followed by a dash followed by four
more digits. Compilers use regular expressions to validate program syntax. If the program
code does not match the regular expression, the compiler indicates that there’s a syntax er-
ror. We discuss classes Regex and Match from the System.Text.RegularExpressions
namespace as well as the symbols used to form regular expressions. We then demonstrate
how to find patterns in a string, match entire strings to patterns, replace characters in a
string that match a pattern and split strings at delimiters specified as a pattern in a regular
expression.

16.15.1 Simple Regular Expressions and Class Regex
The .NET Framework provides several classes to help developers manipulate regular ex-
pressions. Figure 16.16 demonstrates the basic regular-expression classes. To use these
classes, add a using statement for the namespace System.Text.RegularExpressions (line
4). Class Regex represents a regular expression. We create a Regex object named expres-
sion (line 16) to represent the regular expression "e". This regular expression matches the
literal character "e" anywhere in an arbitrary string. Regex method Match returns an ob-
ject of class Match that represents a single regular-expression match. Class Match’s To-
String method returns the substring that matched the regular expression. The call to
method Match (line 17) matches the leftmost occurrence of the character "e" in
testString. Class Regex also provides method Matches (line 21), which finds all matches
of the regular expression in an arbitrary string and returns a MatchCollection object
containing all the Matches. A MatchCollection is a collection, similar to an array, and
can be used with a foreach statement to iterate through the collection’s elements. We in-
troduced collections in Chapter 9 and discuss them in more detail in Chapter 23, Collec-
tions. We use a foreach statement (lines 21–22) to display all the matches to expression
in testString. The elements in the MatchCollection are Match objects, so the foreach
statement infers variable myMatch to be of type Match. For each Match, line 22 outputs the
text that matched the regular expression.

1 // Fig. 16.16: BasicRegex.cs
2 // Demonstrate basic regular expressions.
3 using System;
4 using System.Text.RegularExpressions;
5
6 class BasicRegex
7 {
8 static void Main(string[] args)
9 {

10 string testString =
11 "regular expressions are sometimes called regex or regexp";
12 Console.WriteLine("The test string is\n \"{0}\"", testString);
13 Console.Write("Match 'e' in the test string: ");

Fig. 16.16 | Demonstrating basic regular expressions. (Part 1 of 2.)

Regex.fm Page 1 Wednesday, March 2, 2011 2:47 PM

16.15 Introduction to Regular-Expression Processing 2

Regular expressions can also be used to match a sequence of literal characters any-
where in a string. Lines 27–28 display all the occurrences of the character sequence
"regex" in testString. Here we use the Regex static method Matches. Class Regex pro-
vides static versions of both methods Match and Matches. The static versions take a
regular expression as an argument in addition to the string to be searched. This is useful
when you want to use a regular expression only once. The call to method Matches (line
27) returns two matches to the regular expression "regex". Notice that "regexp" in the
testString matches the regular expression "regex", but the "p" is excluded. We use the
regular expression "regexp?" (line 34) to match occurrences of both "regex" and
"regexp". The question mark (?) is a metacharacter—a character with special meaning in
a regular expression. More specifically, the question mark is a quantifier—a metacharacter

14
15 // match 'e' in the test string
16
17 Console.WriteLine();
18 Console.Write("Match every 'e' in the test string: ");
19
20 // match 'e' multiple times in the test string
21 foreach (var myMatch in)
22 Console.Write("{0} ", myMatch);
23
24 Console.Write("\nMatch \"regex\" in the test string: ");
25
26 // match 'regex' in the test string
27 foreach (var myMatch in)
28 Console.Write("{0} ", myMatch);
29
30 Console.Write(
31 "\nMatch \"regex\" or \"regexp\" using an optional 'p': ");
32
33 // use the ? quantifier to include an optional 'p'
34 foreach (var myMatch in Regex.Matches(testString,))
35 Console.Write("{0} ", myMatch);
36
37 // use alternation to match either 'cat' or 'hat'
38 expression = new Regex();
39 Console.WriteLine(
40 "\n\"hat cat\" matches {0}, but \"cat hat\" matches {1}",
41 expression.Match("hat cat"), expression.Match("cat hat"));
42 } // end Main
43 } // end class BasicRegex

The test string is
 "regular expressions are sometimes called regex or regexp"
Match 'e' in the test string: e
Match every 'e' in the test string: e e e e e e e e e e e
Match "regex" in the test string: regex regex
Match "regex" or "regexp" using an optional 'p': regex regexp
"hat cat" matches hat, but "cat hat" matches cat

Fig. 16.16 | Demonstrating basic regular expressions. (Part 2 of 2.)

Regex expression = new Regex("e");
expression.Match(testString)

expression.Matches(testString)

Regex.Matches(testString, "regex")

"regexp?"

"(c|h)at"

Regex.fm Page 2 Wednesday, March 2, 2011 2:47 PM

3 Chapter 16

that describes how many times a part of the pattern may occur in a match. The ? quanti-
fier matches zero or one occurrence of the pattern to its left. In line 34, we apply the ?
quantifier to the character "p". This means that a match to the regular expression contains
the sequence of characters "regex" and may be followed by a "p". Notice that the foreach
statement (lines 34–35) displays both "regex" and "regexp".

Metacharacters allow you to create more complex patterns. The "|" (alternation)
metacharacter matches the expression to its left or to its right. We use alternation in the
regular expression "(c|h)at" (line 38) to match either "cat" or "hat". Parentheses are
used to group parts of a regular expression, much as you group parts of a mathematical
expression. The "|" causes the pattern to match a sequence of characters starting with
either "c" or "h", followed by "at". The "|" character attempts to match the entire
expression to its left or to its right. If we didn’t use the parentheses around "c|h", the reg-
ular expression would match either the single character "c" or the sequence of characters
"hat". Line 41 uses the regular expression (line 38) to search the strings "hat cat" and
"cat hat". Notice in the output that the first match in "hat cat" is "hat", while the first
match in "cat hat" is "cat". Alternation chooses the leftmost match in the string for
either of the alternating expressions—the order of the expressions doesn’t matter.

Regular-Expression Character Classes and Quantifiers
The table in Fig. 16.17 lists some character classes that can be used with regular expres-
sions. A character class represents a group of characters that might appear in a string. For
example, a word character (\w) is any alphanumeric character (a-z, A-Z and 0-9) or un-
derscore. A whitespace character (\s) is a space, a tab, a carriage return, a newline or a
form feed. A digit (\d) is any numeric character.

Figure 16.18 uses character classes in regular expressions. For this example, we use
method DisplayMatches (lines 53–59) to display all matches to a regular expression.

Method DisplayMatches takes two strings representing the string to search and the reg-
ular expression to match. The method uses a foreach statement to display each Match in
the MatchCollection object returned by the static method Matches of class Regex.

Character class Matches Character class Matches

\d any digit \D any nondigit

\w any word character \W any nonword character

\s any whitespace \S any nonwhitespace

Fig. 16.17 | Character classes.

1 // Fig. 16.18: CharacterClasses.cs
2 // Demonstrate using character classes and quantifiers.
3 using System;
4 using System.Text.RegularExpressions;
5

Fig. 16.18 | Demonstrating using character classes and quantifiers. (Part 1 of 3.)

Regex.fm Page 3 Wednesday, March 2, 2011 2:47 PM

16.15 Introduction to Regular-Expression Processing 4

6 class CharacterClasses
7 {
8 static void Main(string[] args)
9 {

10 string testString = "abc, DEF, 123";
11 Console.WriteLine("The test string is: \"{0}\"", testString);
12
13 // find the digits in the test string
14 Console.WriteLine("Match any digit");
15 DisplayMatches(testString,);
16
17 // find anything that isn't a digit
18 Console.WriteLine("\nMatch any nondigit");
19 DisplayMatches(testString,);
20
21 // find the word characters in the test string
22 Console.WriteLine("\nMatch any word character");
23 DisplayMatches(testString, @"\w");
24
25 // find sequences of word characters
26 Console.WriteLine(
27 "\nMatch a group of at least one word character");
28 DisplayMatches(testString,);
29
30 // use a lazy quantifier
31 Console.WriteLine(
32 "\nMatch a group of at least one word character (lazy)");
33 DisplayMatches(testString,);
34
35 // match characters from 'a' to 'f'
36 Console.WriteLine("\nMatch anything from 'a' - 'f'");
37 DisplayMatches(testString,);
38
39 // match anything that isn't in the range 'a' to 'f'
40 Console.WriteLine("\nMatch anything not from 'a' - 'f'");
41 DisplayMatches(testString,);
42
43 // match any sequence of letters in any case
44 Console.WriteLine("\nMatch a group of at least one letter");
45 DisplayMatches(testString,);
46
47 // use the . (dot) metacharacter to match any character
48 Console.WriteLine("\nMatch a group of any characters");
49 DisplayMatches(testString,);
50 } // end Main
51
52 // display the matches to a regular expression
53 private static void DisplayMatches(string input, string expression)
54 {
55 foreach (var regexMatch in Regex.Matches(input, expression))
56 Console.Write("{0} ", regexMatch);
57

Fig. 16.18 | Demonstrating using character classes and quantifiers. (Part 2 of 3.)

@"\d"

@"\D"

@"\w+"

@"\w+?"

"[a-f]"

"[^a-f]"

"[a-zA-Z]+"

".*"

Regex.fm Page 4 Wednesday, March 2, 2011 2:47 PM

5 Chapter 16

The first regular expression (line 15) matches digits in the testString. We use the
digit character class (\d) to match any digit (0–9). We precede the regular expression
string with @. Recall that backslashes within the double quotation marks following the @
character are regular backslash characters, not the beginning of escape sequences. To
define the regular expression without prefixing @ to the string, you would need to escape
every backslash character, as in

which makes the regular expression more difficult to read.
The output shows that the regular expression matches 1, 2, and 3 in the testString.

You can also match anything that isn’t a member of a particular character class using an
uppercase instead of a lowercase letter. For example, the regular expression "\D" (line 19)
matches any character that isn’t a digit. Notice in the output that this includes punctua-
tion and whitespace. Negating a character class matches everything that isn’t a member of
the character class.

The next regular expression (line 23) uses the character class \w to match any word
character in the testString. Notice that each match consists of a single character. It
would be useful to match a sequence of word characters rather than a single character. The

58 Console.WriteLine(); // move to the next line
59 } // end method DisplayMatches
60 } // end class CharacterClasses

The test string is: "abc, DEF, 123"
Match any digit
1 2 3

Match any nondigit
a b c , D E F ,

Match any word character
a b c D E F 1 2 3

Match a group of at least one word character
abc DEF 123

Match a group of at least one word character (lazy)
a b c D E F 1 2 3

Match anything from 'a' - 'f'
a b c

Match anything not from 'a' - 'f'
, D E F , 1 2 3

Match a group of at least one letter
abc DEF

Match a group of any characters
abc, DEF, 123

"\\d"

Fig. 16.18 | Demonstrating using character classes and quantifiers. (Part 3 of 3.)

Regex.fm Page 5 Wednesday, March 2, 2011 2:47 PM

16.15 Introduction to Regular-Expression Processing 6

regular expression in line 28 uses the + quantifier to match a sequence of word characters.
The + quantifier matches one or more occurrences of the pattern to its left. There are three
matches for this expression, each three characters long. Quantifiers are greedy—they
match the longest possible occurrence of the pattern. You can follow a quantifier with a
question mark (?) to make it lazy—it matches the shortest possible occurrence of the pat-
tern. The regular expression "\w+?" (line 33) uses a lazy + quantifier to match the shortest
sequence of word characters possible. This produces nine matches of length one instead of
three matches of length three. Figure 16.19 lists other quantifiers that you can place after
a pattern in a regular expression, and the purpose of each.

Regular expressions are not limited to the character classes in Fig. 16.17. You can
create your own character class by listing the members of the character class between
square brackets, [and]. [Note: Metacharacters in square brackets are treated as literal
characters.] You can include a range of characters using the "-" character. The regular
expression in line 37 of Fig. 16.18 creates a character class to match any lowercase letter
from a to f. These custom character classes match a single character that’s a member of
the class. The output shows three matches, a, b and c. Notice that D, E and F don’t match
the character class [a-f] because they’re uppercase. You can negate a custom character
class by placing a "^" character after the opening square bracket. The regular expression
in line 41 matches any character that isn’t in the range a-f. As with the predefined char-
acter classes, negating a custom character class matches everything that isn’t a member,
including punctuation and whitespace. You can also use quantifiers with custom character
classes. The regular expression in line 45 uses a character class with two ranges of charac-
ters, a-z and A-Z, and the + quantifier to match a sequence of lowercase or uppercase let-
ters. You can also use the "." (dot) character to match any character other than a newline.
The regular expression ".*" (line 49) matches any sequence of characters. The * quantifier
matches zero or more occurrences of the pattern to its left. Unlike the + quantifier, the *
quantifier can be used to match an empty string.

16.15.2 Complex Regular Expressions
The program of Fig. 16.20 tries to match birthdays to a regular expression. For demon-
stration purposes, the expression matches only birthdays that do not occur in April and

Quantifier Matches

* Matches zero or more occurrences of the preceding pattern.

+ Matches one or more occurrences of the preceding pattern.

? Matches zero or one occurrences of the preceding pattern.

. Matches any single character.

{n} Matches exactly n occurrences of the preceding pattern.

{n,} Matches at least n occurrences of the preceding pattern.

{n,m} Matches between n and m (inclusive) occurrences of the preceding pattern.

Fig. 16.19 | Quantifiers used in regular expressions.

Regex.fm Page 6 Wednesday, March 2, 2011 2:47 PM

7 Chapter 16

that belong to people whose names begin with "J". We can do this by combining the basic
regular-expression techniques we’ve already discussed.

Line 11 creates a Regex object and passes a regular-expression pattern string to its
constructor. The first character in the regular expression, "J", is a literal character. Any
string matching this regular expression must start with "J". The next part of the regular
expression (".*") matches any number of unspecified characters except newlines. The pat-
tern "J.*" matches a person’s name that starts with J and any characters that may come
after that.

Next we match the person’s birthday. We use the \d character class to match the first
digit of the month. Since the birthday must not occur in April, the second digit in the
month can’t be 4. We could use the character class "[0-35-9]" to match any digit other
than 4. However, .NET regular expressions allow you to subtract members from a char-
acter class, called character-class subtraction. In line 11, we use the pattern "[\d-[4]]"
to match any digit other than 4. When the "-" character in a character class is followed by
a character class instead of a literal character, the "-" is interpreted as subtraction instead
of a range of characters. The members of the character class following the "-" are removed
from the character class preceding the "-". When using character-class subtraction, the
class being subtracted ([4]) must be the last item in the enclosing brackets ([\d-[4]]).
This notation allows you to write shorter, easier-to-read regular expressions.

1 // Fig. 16.20: RegexMatches.cs
2 // A more complex regular expression.
3 using System;
4 using System.Text.RegularExpressions;
5
6 class RegexMatches
7 {
8 static void Main(string[] args)
9 {

10 // create a regular expression
11 Regex expression = new Regex();
12
13 string testString =
14 "Jane's Birthday is 05-12-75\n" +
15 "Dave's Birthday is 11-04-68\n" +
16 "John's Birthday is 04-28-73\n" +
17 "Joe's Birthday is 12-17-77";
18
19 // display all matches to the regular expression
20 foreach (var regexMatch in expression.Matches(testString))
21 Console.WriteLine(regexMatch);
22 } // end Main
23 } // end class RegexMatches

Jane's Birthday is 05-12-75
Joe's Birthday is 12-17-77

Fig. 16.20 | A more complex regular expression.

@"J.*\d[\d-[4]]-\d\d-\d\d"

Regex.fm Page 7 Wednesday, March 2, 2011 2:47 PM

16.15 Introduction to Regular-Expression Processing 8

Although the "–" character indicates a range or character-class subtraction when it’s
enclosed in square brackets, instances of the "-" character outside a character class are
treated as literal characters. Thus, the regular expression in line 11 searches for a string
that starts with the letter "J", followed by any number of characters, followed by a two-
digit number (of which the second digit cannot be 4), followed by a dash, another two-
digit number, a dash and another two-digit number.

Lines 20–21 use a foreach statement to iterate through the MatchCollection object
returned by method Matches, which received testString as an argument. For each Match,
line 21 outputs the text that matched the regular expression. The output in Fig. 16.20 dis-
plays the two matches that were found in testString. Notice that both matches conform
to the pattern specified by the regular expression.

16.15.3 Validating User Input with Regular Expressions and LINQ
The application in Fig. 16.21 presents a more involved example that uses regular expres-
sions to validate name, address and telephone-number information input by a user.

1 // Fig. 16.21: Validate.cs
2 // Validate user information using regular expressions.
3 using System;
4 using System.Linq;
5 using System.Text.RegularExpressions;
6 using System.Windows.Forms;
7
8 namespace Validate
9 {

10 public partial class ValidateForm : Form
11 {
12 public ValidateForm()
13 {
14 InitializeComponent();
15 } // end constructor
16
17 // handles OK Button's Click event
18 private void okButton_Click(object sender, EventArgs e)
19 {
20 // find blank TextBoxes and order by TabIndex
21 var emptyBoxes =
22
23 where currentControl is TextBox
24
25 where string.IsNullOrEmpty(box.Text)
26 orderby box.TabIndex
27 select box;
28
29 // if there are any empty TextBoxes
30 if (emptyBoxes.Count() > 0)
31 {

Fig. 16.21 | Validating user information using regular expressions. (Part 1 of 4.)

from Control currentControl in Controls

let box = currentControl as TextBox

Regex.fm Page 8 Wednesday, March 2, 2011 2:47 PM

9 Chapter 16

32 // display message box indicating missing information
33 MessageBox.Show("Please fill in all fields",
34 "Missing Information", MessageBoxButtons.OK,
35 MessageBoxIcon.Error);
36
37 // select first empty TextBox
38 } // end if
39 else
40 {
41 // check for invalid input
42
43
44
45 lastNameTextBox.Select(); // select invalid TextBox
46
47
48
49 firstNameTextBox.Select(); // select invalid TextBox
50
51
52
53
54 addressTextBox.Select(); // select invalid TextBox
55
56
57
58 cityTextBox.Select(); // select invalid TextBox
59
60
61
62 stateTextBox.Select(); // select invalid TextBox
63
64
65
66 zipCodeTextBox.Select(); // select invalid TextBox
67
68
69
70
71 phoneTextBox.Select(); // select invalid TextBox
72 else // if all input is valid
73 {
74 this.Hide(); // hide main window
75 MessageBox.Show("Thank You!", "Information Correct",
76 MessageBoxButtons.OK, MessageBoxIcon.Information);
77 Application.Exit(); // exit the application
78 } // end else
79 } // end else
80 } // end method okButton_Click
81

Fig. 16.21 | Validating user information using regular expressions. (Part 2 of 4.)

emptyBoxes.First().Select();

if (!ValidateInput(lastNameTextBox.Text,
 "^[A-Z][a-zA-Z]*$", "Invalid last name"))

else if (!ValidateInput(firstNameTextBox.Text,
 "^[A-Z][a-zA-Z]*$", "Invalid first name"))

else if (!ValidateInput(addressTextBox.Text,
 @"^[0-9]+\s+([a-zA-Z]+|[a-zA-Z]+\s[a-zA-Z]+)$",
 "Invalid address"))

else if (!ValidateInput(cityTextBox.Text,
 @"^([a-zA-Z]+|[a-zA-Z]+\s[a-zA-Z]+)$", "Invalid city"))

else if (!ValidateInput(stateTextBox.Text,
 @"^([a-zA-Z]+|[a-zA-Z]+\s[a-zA-Z]+)$", "Invalid state"))

else if (!ValidateInput(zipCodeTextBox.Text,
 @"^\d{5}$", "Invalid zip code"))

else if (!ValidateInput(phoneTextBox.Text,
 @"^[1-9]\d{2}-[1-9]\d{2}-\d{4}$",
 "Invalid phone number"))

Regex.fm Page 9 Wednesday, March 2, 2011 2:47 PM

16.15 Introduction to Regular-Expression Processing 10

82 // use regular expressions to validate user input
83 private bool ValidateInput(
84 string input, string expression, string message)
85 {
86 // store whether the input is valid
87
88
89 // if the input doesn't match the regular expression
90 if (!valid)
91 {
92 // signal the user that input was invalid
93 MessageBox.Show(message, "Invalid Input",
94 MessageBoxButtons.OK, MessageBoxIcon.Error);
95 } // end if
96
97 return valid; // return whether the input is valid
98 } // end method ValidateInput
99 } // end class ValidateForm
100 } // end namespace Validate

Fig. 16.21 | Validating user information using regular expressions. (Part 3 of 4.)

bool valid = Regex.Match(input, expression).Success;

(a)

(b)

Regex.fm Page 10 Wednesday, March 2, 2011 2:47 PM

11 Chapter 16

When a user clicks OK, the program uses a LINQ query to select any empty TextBoxes
(lines 22–27) from the Controls collection. Notice that we explicitly declare the type of
the range variable in the from clause (line 22). When working with nongeneric collections,
such as Controls, you must explicitly type the range variable. The first where clause (line
23) determines whether the currentControl is a TextBox. The let clause (line 24) creates
and initializes a variable in a LINQ query for use later in the query. Here, we use the let
clause to define variable box as a TextBox, which contains the Control object cast to a
TextBox. This allows us to use the control in the LINQ query as a TextBox, enabling access
to its properties (such as Text). You may include a second where clause after the let clause.
The second where clause determines whether the TextBox’s Text property is empty. If one
or more TextBoxes are empty (line 30), the program displays a message to the user (lines
33–35) that all fields must be filled in before the program can validate the information.
Line 37 calls the Select method of the first TextBox in the query result so that the user
can begin typing in that TextBox. The query sorted the TextBoxes by TabIndex (line 26)
so the first TextBox in the query result is the first empty TextBox on the Form. If there are
no empty fields, lines 39–71 validate the user input.

We call method ValidateInput to determine whether the user input matches the
specified regular expressions. ValidateInput (lines 83–98) takes as arguments the text
input by the user (input), the regular expression the input must match (expression) and

Fig. 16.21 | Validating user information using regular expressions. (Part 4 of 4.)

(c)

(d)

Regex.fm Page 11 Wednesday, March 2, 2011 2:47 PM

16.15 Introduction to Regular-Expression Processing 12

a message to display if the input is invalid (message). Line 87 calls Regex static method
Match, passing both the string to validate and the regular expression as arguments. The
Success property of class Match indicates whether method Match’s first argument matched
the pattern specified by the regular expression in the second argument. If the value of Suc-
cess is false (i.e., there was no match), lines 93–94 display the error message passed as
an argument to method ValidateInput. Line 97 then returns the value of the Success
property. If ValidateInput returns false, the TextBox containing invalid data is selected
so the user can correct the input. If all input is valid—the else statement (lines 72–78)
displays a message dialog stating that all input is valid, and the program terminates when
the user dismisses the dialog.

In the previous example, we searched a string for substrings that matched a regular
expression. In this example, we want to ensure that the entire string for each input con-
forms to a particular regular expression. For example, we want to accept "Smith" as a last
name, but not "9@Smith#". In a regular expression that begins with a "^" character and
ends with a "$" character (e.g., line 43), the characters "^" and "$" represent the begin-
ning and end of a string, respectively. These characters force a regular expression to
return a match only if the entire string being processed matches the regular expression.

The regular expressions in lines 43 and 47 use a character class to match an uppercase
first letter followed by letters of any case—a-z matches any lowercase letter, and A-Z
matches any uppercase letter. The * quantifier signifies that the second range of characters
may occur zero or more times in the string. Thus, this expression matches any string
consisting of one uppercase letter, followed by zero or more additional letters.

The \s character class matches a single whitespace character (lines 51, 56 and 60). In
the expression "\d{5}", used for the zipCode string (line 64), {5} is a quantifier (see
Fig. 16.19). The pattern to the left of {n} must occur exactly n times. Thus "\d{5}"
matches any five digits. Recall that the character "|" (lines 51, 56 and 60) matches the
expression to its left or the expression to its right. In line 51, we use the character "|" to
indicate that the address can contain a word of one or more characters or a word of one or
more characters followed by a space and another word of one or more characters. Note the
use of parentheses to group parts of the regular expression. This ensures that "|" is applied
to the correct parts of the pattern.

The Last Name: and First Name: TextBoxes each accept strings that begin with an
uppercase letter (lines 43 and 47). The regular expression for the Address: TextBox (line
51) matches a number of at least one digit, followed by a space and then either one or more
letters or else one or more letters followed by a space and another series of one or more
letters. Therefore, "10 Broadway" and "10 Main Street" are both valid addresses. As cur-
rently formed, the regular expression in line 51 doesn’t match an address that does not
start with a number, or that has more than two words. The regular expressions for the City:
(line 56) and State: (line 60) TextBoxes match any word of at least one character or, alter-
natively, any two words of at least one character if the words are separated by a single space.
This means both Waltham and West Newton would match. Again, these regular expressions
would not accept names that have more than two words. The regular expression for the
Zip code: TextBox (line 64) ensures that the zip code is a five-digit number. The regular
expression for the Phone: TextBox (line 68) indicates that the phone number must be of
the form xxx-yyy-yyyy, where the xs represent the area code and the ys the number. The
first x and the first y cannot be zero, as specified by the range [1–9] in each case.

Regex.fm Page 12 Wednesday, March 2, 2011 2:47 PM

13 Chapter 16

16.15.4 Regex Methods Replace and Split
Sometimes it’s useful to replace parts of one string with another or to split a string ac-
cording to a regular expression. For this purpose, class Regex provides static and instance
versions of methods Replace and Split, which are demonstrated in Fig. 16.22.

1 // Fig. 16.22: RegexSubstitution.cs
2 // Using Regex methods Replace and Split.
3 using System;
4 using System.Text.RegularExpressions;
5
6 class RegexSubstitution
7 {
8 static void Main(string[] args)
9 {

10 string testString1 = "This sentence ends in 5 stars *****";
11 string testString2 = "1, 2, 3, 4, 5, 6, 7, 8";
12
13 string output = string.Empty;
14
15 Console.WriteLine("First test string: {0}", testString1);
16
17 // replace every '*' with a '^' and display the result
18
19 Console.WriteLine("^ substituted for *: {0}", testString1);
20
21 // replace the word "stars" with "carets" and display the result
22
23 Console.WriteLine("\"carets\" substituted for \"stars\": {0}",
24 testString1);
25
26 // replace every word with "word" and display the result
27 Console.WriteLine("Every word replaced by \"word\": {0}",
28);
29
30 Console.WriteLine("\nSecond test string: {0}", testString2);
31
32 // replace the first three digits with the word "digit"
33 Console.WriteLine("Replace first 3 digits by \"digit\": {0}",
34);
35
36 Console.Write("string split at commas [");
37
38 // split the string into individual strings, each containing a digit
39
40
41 // add each digit to the output string
42 foreach(var resultString in result)
43 output += "\"" + resultString + "\", ";
44

Fig. 16.22 | Using Regex methods Replace and Split. (Part 1 of 2.)

Regex testRegex1 = new Regex(@"\d");

testString1 = Regex.Replace(testString1, @"*", "^");

testString1 = Regex.Replace(testString1, "stars", "carets");

Regex.Replace(testString1, @"\w+", "word")

testRegex1.Replace(testString2, "digit", 3)

string[] result = Regex.Split(testString2, @",\s");

Regex.fm Page 13 Wednesday, March 2, 2011 2:47 PM

16.15 Introduction to Regular-Expression Processing 14

Regex method Replace replaces text in a string with new text wherever the original
string matches a regular expression. We use two versions of this method in Fig. 16.22.
The first version (line 18) is a static method and takes three parameters—the string to
modify, the string containing the regular expression to match and the replacement
string. Here, Replace replaces every instance of "*" in testString1 with "^". Notice
that the regular expression ("*") precedes character * with a backslash (\). Normally, * is
a quantifier indicating that a regular expression should match any number of occurrences
of a preceding pattern. However, in line 18, we want to find all occurrences of the literal
character *; to do this, we must escape character * with character \. By escaping a special
regular-expression character, we tell the regular-expression matching engine to find the
actual character * rather than use it as a quantifier.

The second version of method Replace (line 34) is an instance method that uses the
regular expression passed to the constructor for testRegex1 (line 12) to perform the
replacement operation. Line 12 instantiates testRegex1 with argument @"\d". The call to
instance method Replace in line 34 takes three arguments—a string to modify, a string
containing the replacement text and an integer specifying the number of replacements to
make. In this case, line 34 replaces the first three instances of a digit ("\d") in testString2
with the text "digit".

Method Split divides a string into several substrings. The original string is broken
at delimiters that match a specified regular expression. Method Split returns an array
containing the substrings. In line 39, we use static method Split to separate a string
of comma-separated integers. The first argument is the string to split; the second argu-
ment is the regular expression that represents the delimiter. The regular expression ",\s"
separates the substrings at each comma. By matching a whitespace character (\s in the reg-
ular expression), we eliminate the extra spaces from the resulting substrings.

45 // delete ", " at the end of output string
46 Console.WriteLine(output.Substring(0, output.Length - 2) + "]");
47 } // end Main
48 } // end class RegexSubstitution

First test string: This sentence ends in 5 stars *****
^ substituted for *: This sentence ends in 5 stars ^^^^^
"carets" substituted for "stars": This sentence ends in 5 carets ^^^^^
Every word replaced by "word": word word word word word word ^^^^^

Second test string: 1, 2, 3, 4, 5, 6, 7, 8
Replace first 3 digits by "digit": digit, digit, digit, 4, 5, 6, 7, 8
String split at commas ["1", "2", "3", "4", "5", "6", "7", "8"]

Fig. 16.22 | Using Regex methods Replace and Split. (Part 2 of 2.)

Regex.fm Page 14 Wednesday, March 2, 2011 2:47 PM

