ANALYTICS in Healthcare and the Life Sciences

Strategies, Implementation Methods, and Best Practices

Edited by Dwight McNeill
Foreword by Thomas H. Davenport

INTERNATIONAL INSTITUTE FOR ANALYTICS
Analytics in Healthcare and the Life Sciences
This page intentionally left blank
Analytics in Healthcare and the Life Sciences

Strategies, Implementation Methods, and Best Practices

Edited by Dwight McNeill
Foreword by Thomas H. Davenport
To all the people pioneering the field of analytics in healthcare.
Contents

Foreword .. xiii

About The Authors .. xviii

Introduction ... 1

Part I An Overview of Analytics in Healthcare and Life Sciences .. 7

Chapter 1 An Overview of Provider, Payer, and Life Sciences Analytics 9
- Provider Analytics .. 10
- Payer Analytics ... 11
- Life Sciences Analytics .. 12
- Patients Analytics .. 12
- Collaboration Across Sectors 13
- Barriers to Analytics .. 13
- Notes ... 14

Chapter 2 An Overview of Analytics in Healthcare Providers .. 15
- Analytical Applications in Healthcare Providers 18
- The Future of Analytics in Provider Organizations 18
- Notes ... 22

Chapter 3 An Overview of Analytics in Healthcare Payers .. 23
- Payer Analytics: Current State 24
- Maturity Model .. 27
- Note ... 29

Chapter 4 Surveying the Analytical Landscape in Life Sciences Organizations 31
- Discovery .. 32
- Development .. 33
- Manufacturing ... 34
- Sales and Marketing .. 36
- Health Reform ... 37
- Conclusion .. 38
- Notes ... 38
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II</td>
<td>Strategies, Frameworks, and Challenges for Health Analytics</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Chapter 5 Grasping the Brass Ring to Improve Healthcare Through Analytics: The Fundamentals</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Delivering on the Promises</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Fundamental Questions and Answers</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Chapter 6 A Taxonomy for Healthcare Analytics</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Toward a Health Analytics Taxonomy</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Drafting a Health Analytics Taxonomy</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Chapter 7 Analytics Cheat Sheet</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Different Types of Analytics</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Analytic Processes</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Data Scales</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Sampling Techniques</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Data Partitioning Techniques</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Statistical Overview—Key Concepts</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Variable/Feature Selection</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Modeling Algorithms and Techniques</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Time Series Forecasting</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Model Fit and Comparison Statistics</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Chapter 8 Business Value of Health Analytics</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Business Challenges</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Value Life Cycle</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Healthcare Analytics Value Framework: Key Drivers</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Validating Actionability and Measuring Performance Improvement with Key</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Performance Indicators (KPIs)</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Business Intelligence (BI) Performance Benchmarks for IT</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Using BI Competency Centers to Institutionalize Value</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Business Performance Based Approach to Value</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Additional Resources</td>
<td>90</td>
</tr>
</tbody>
</table>
Chapter 9 Security, Privacy, and Risk Analytics in Healthcare
Securing Analytics ... 94
Providers ... 95
Payers ... 96
Life Sciences .. 97
Risk Analytics ... 97
Compliance and Acceptable Use 99
Look to the Future ... 100
Notes ... 100

Chapter 10 The Birds and the Bees of Analytics: The Benefits of Cross-Pollination Across Industries .. 103
Why Analytics Innovations Matter 104
Discovery of Healthcare Adaptations 105
Analytics Adaptations for Health and Healthcare 112
Putting Ideas into Action ... 115
Notes ... 116

Part III Healthcare Analytics Implementation Methods ... 119

Chapter 11 Grasping the Brass Ring to Improve Healthcare Through Analytics: Implementation Methods ... 121
Using the EHR to Achieve Meaningful Results 121
Improving the Delivery of Care 123
Managing the Health of Populations 125
Adopting Social Media to Improve Health 126
Notes ... 127

Chapter 12 Meaningful Use and the Role of Analytics: Complying with Regulatory Imperatives 129
Supporting EHR Adoption with Analytics 131
Shifting the Quality Analysis Paradigm 132
Driving Analytics Behaviors 135
Anticipating the Future ... 139
Conclusion ... 140
Notes ... 141
Chapter 13 Advancing Health Provider Clinical Quality Analytics .. 143
 Clinical Quality Analytics Background 143
 Next Generation Clinical Quality Analytics Solutions 147
 The Clinical Quality Analytics in Action— Case Study: Sepsis Overview 148
 Conclusions ... 151

Chapter 14 Improving Patient Safety Using Clinical Analytics .. 153
 Introduction .. 153
 Background ... 154
 Triggers for Diagnostic Errors 155
 Triggers for Medication Errors 157
 Triggers for Electronic Health Record (EHR)-Related Errors 158
 Conclusion .. 159
 Notes ... 159

Chapter 15 Using Advanced Analytics to Take Action for Health Plan Members’ Health 161
 Actionable Information—A Conceptual Framework 164
 Knowledge Discovery through Multivariate Analytics 165
 Conclusions ... 168
 References .. 172

Chapter 16 Measuring the Impact of Social Media in Healthcare .. 175
 Why Measure at All? 175
 Working Definition of Social Media in Healthcare 176
 The Complexity of Social Media and Healthcare 176
 Who Is Involved in Each Category of Social Media Use Today? 178
 What Analytics Are Enabled Today and in the Future? 178
 Conclusion .. 183
 Notes ... 184
Part IV
Best Practices in Healthcare Analytics
Across the Ecosystem 185

Chapter 17
Overview of Healthcare Analytics Best Practices
Across the Ecosystem 187
Providers ... 188
Payers .. 190
Life Science Companies 192
Notes ... 193

Chapter 18
Partners HealthCare System 195
Centralized Data and Systems at Partners 195
Managing Clinical Informatics and Knowledge at Partners 198
High Performance Medicine at Partners 200
New Analytical Challenges for Partners 202
Centralized Business Analytics at Partners 205
Hospital-Specific Analytical Activities—Massachusetts General Hospital 206
Hospital-Specific Analytical Activities—Brigham and Women’s Hospital 209
Notes ... 211

Chapter 19
Catholic Health Initiatives 213
About the Organization 214
Current Situation 214
Conclusion .. 221
Notes ... 221

Chapter 20
Analytics at the Veterans Health Administration 223
The VA’s EMR System and Related Analytics 224
Analytical Groups and Initiatives 225
Quality Metrics and Dashboards 227
Possible Future Uses of Analytics at the VA. 229
Notes ... 230

Chapter 21
The Health Service Data Warehouse Project
at the Air Force Medical Service (AFMS) 231
Vision and Mission 231
The AFMS Office of the CIO 232
<table>
<thead>
<tr>
<th>Chapter 22</th>
<th>Developing Enterprise Analytics at HealthEast Care System</th>
<th>239</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessing and Integrating Enterprise Analytics Capabilities</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>Designing the Enterprise Analytics Organization</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>243</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 23</th>
<th>Aetna</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>Analytics Maturity Model</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>Bellwether Lessons</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 24</th>
<th>Employee Health and Benefits Management at EMC: An Information Driven Model for Engaged and Accountable Care</th>
<th>253</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision and Lessons Learned</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Chronology</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Employee Experience</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Partner Perspective</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>Executive Scorecard</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>About the Data Warehouse</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>EMC in the Larger Context</td>
<td>269</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 25</th>
<th>Commercial Analytics Relationships and Culture at Merck</th>
<th>273</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Maker Partnerships</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>Reasons for the Group’s Success</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>Embedding Analyses into Tools</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Future Directions for Commercial Analytics and Decision Sciences</td>
<td>278</td>
<td></td>
</tr>
</tbody>
</table>

| Conclusion: Healthcare Analytics: The Way Forward | 281 |
|---|---|---|
| Analytics As We Know It | 281 |
| The Gap Between the Cup and the Lip | 282 |
Foreword

What’s more important to healthcare than analytics? We can use this powerful resource to determine what treatments are most likely to be effective, which care practices are worth the cost, which patients deserve special attention, and which of those patients are likely not to take their medications. In a country—and to a lesser degree, a world—in which we spend too much on healthcare and get too little in return, analytics can help to restore a balance between cost and value. And given all the possible things that we can do with analytics, what could be more important than improving the healthcare of human populations?

For better or worse, however, healthcare is behind other industry sectors in terms of its analytical sophistication. Less charitable observers have told me they think that healthcare is about 25 years behind; I would be more inclined to say five or ten years behind most industries. In any case, healthcare was late to adopt analytics, and late to put in place the data, systems, and skills to use analytics effectively. Other industries have functional silos across which they don’t share data and analyses well, but the divide among clinical, operational, and business groups within healthcare organizations leaves other silos behind.

However, when Jack Phillips—the CEO and co-founder with me of the International Institute for Analytics (IIA)—and I began speaking in 2010 with healthcare providers and payers, and life sciences firms, about undertaking sponsored research on healthcare analytics, the responses couldn’t have been more encouraging. We discovered a great hunger for information about how to use analytics more effectively in every aspect and segment of the industry.

Perhaps we shouldn’t have been surprised by this positive reception, because other actions being taken by healthcare industry members are consistent with a strong interest in analytics. One important signal of interest, for example, is the widespread activity among healthcare providers in installing, replacing, or updating basic transaction systems. You can’t do analytics without solid underlying data on patients, care provision processes, and costs, so provider institutions are pouring massive amounts of resources into electronic health
record, billing, and operational management systems. Each of these systems generates new data that only reporting and analysis can make sense of. The key, of course, will be moving beyond the transactional focus to understanding what all the data mean and how analytics on them translate into better patient care.

There is also huge interest across the industry in health data access: patient portals, mobile patient access to records, telemedicine of various types, and the e-patient movement in general. Patients have an interest in seeing their basic transaction information, but they have an even greater interest in analyses and recommendations for personalized care. Only analytics and decision rules can provide this kind of information to caregivers and patients.

Personalized genetic medicine is still on the horizon, but as the cost of sequencing a human genome continues to fall, before long there will be an incredible amount of genetic information available to correlate with disease states and treatment outcomes. Analytics are the only method possible for reducing the mass of data to a comprehensible level, and for understanding the relationships between a particular genome and the care interventions that will improve that patient’s health.

Finally, if these indicators weren’t enough, there is also a high degree of startup formation in the healthcare big data space—companies dealing with less structured forms of health data. In my hometown of Boston, in particular, there are more than fifty big data startups in a variety of health industry sectors and problem domains. Most of these organizations have venture capital funding; some have already been acquired by larger organizations. Such a big data “gold rush” suggests that there will be many future innovations and potential breakthroughs in the healthcare analytics space.

Healthcare analytics activity also takes place across a variety of sub-sectors within the overall industry, including payers, providers, and life sciences firms. Addressing the content originating in each of these sectors is critical to the focus and value of this book. I’ve already mentioned that healthcare organizations are siloed with respect to internal functions that generate analytics. However, there is also an extreme lack of integration across sectors. Payers, providers, and life sciences firms don’t exchange analytics or even raw data very often.
This situation must change if societies are going to deliver effective and cost-efficient healthcare. Both within and across organizations, the healthcare analytics of the future need to cross boundaries.

There are trends in motion—not only the widespread adoption of electronic medical record systems, but also the “meaningful use” requirements for these systems for reimbursement, and the shift to “accountable care organizations”—that will require greater levels of analytical integration within and across organizations. For the most part, however, the trends have yet to yield dramatic change in analytical integration.

Although we don’t have anything resembling full analytical integration in healthcare, it’s useful to think of what it might look like. Within provider organizations, for example, integrated analytical decisions about patient care would address clinical, financial, and quality concerns—all at the same time. Care providers would be able to employ clinical decision support tools to administer the most effective treatment protocols, but would also simultaneously understand the financial implications of different treatment approaches. On patient admission, hospitals would understand how likely they were to improve the patient’s condition, what the treatment would be likely to cost, and how likely the patient was to be able to pay for the treatment. On discharge, hospitals would know the likelihood of readmission, and the best combination of home healthcare and other interventions to prevent readmission. Primary care institutions would share a patient’s data and analytics—using proper privacy protection, of course—with other institutions and individuals that provide care for the patient.

In terms of planning for new services and facilities, providers would have accurate statistical forecasts of patient demand for existing and planned offerings. They would market those offerings to patients most likely to require them. They would understand the implications of new and enhanced service offerings—and the quality with which they are delivered—for the institution’s financial and operational performance.

In such an integrated world, payer organizations would take the lead in disease management programs driven by analytics. They would use data about their customers and claims in order to understand
what genetic, physiological, and behavioral attributes are associated with particular diseases. After informing their customers or members of any diseases they are likely to contract (assuming patients opt into receiving this information), they would also have analytics on which intervention strategies are most likely to yield the desirable behavior change necessary to avert the disease. They would supply these analytics, again with the appropriate levels of privacy, to anyone who cares for the patient.

Payers would also use analytics to identify employers and providers they want to work with, and who would be likely to employ their services. Payers in the U.S. would also have considerable information on consumers (which will become primary health insurance purchasers under U.S. healthcare reform), and would be able to do predictive modeling of which consumers would be most likely to purchase certain types of insurance.

This integrated vision would also encompass life sciences firms—including pharmaceutical and medical device organizations—which would offer predictive models of responses to drugs and devices. With the advent of personalized genetic medicine, life sciences firms would be able to help care providers understand whether particular drugs and treatment protocols would be likely to work on particular individuals. This would also allow an intelligent decision on whether certain medical interventions would be worth the cost. In addition, life sciences firms would have much more effective models of the business value of relationships with physicians (both individually and as members of social and business networks) and provider organizations, and would target marketing and sales resources to the most likely adopters of particular drug and device interventions. Some of the predictive models for physicians would take into account the analytical results from clinical trials and large-scale population studies.

In addition to these integrated analytics initiatives within healthcare organizations, integration would also feature a variety of integration activities for analytics across sub-sectors of healthcare. In this ideal environment, providers, payers, life sciences firms, pharmacy benefit managers, patient registries, and other organizations would share data and analytics with other organizations within their sector and outside of it. Payers, for example, could share analytics about “at
risk” status of their customers with the providers who would treat them for it. All parties would share data and analysis on post-market surveillance of drugs and medical devices.

This is an appealing vision of integration. However, both within and across healthcare industry sectors, analytical integration is still in its infancy. Fortunately, economic and regulatory trends in the industry are beginning to lead to efforts to combine and share data and analytics across organizations and sectors. But for substantial progress to take place, healthcare organizations need to finish implementing basic transaction data systems. They need to create groups whose function it is to integrate and coordinate analytics within and outside the organization. And because these efforts will require investment, advocates for analytical integration need to work closely with senior executives to help them understand the need for and potential of analytics across boundaries.

The integration of chapters in this book is itself a reflection of the integration needed in healthcare analytics. The book is edited by Dwight McNeill, an expert on healthcare analytics and IT, and a personal force for integration. He has been a consultant, entrepreneur, professor, regulator, and large company executive in the healthcare information domain. He has been IIA’s lead faculty member for our Healthcare Analytics Research Council for several years.

Dwight and I together have authored about half of the chapters in this book. In addition, there are expert authors from consulting firms, analytics and IT vendors, medical centers, and leading practitioners. It would be difficult to imagine a better group of thinkers to address the integration of healthcare analytics within organizations and across payers, providers, and life sciences organizations.

I am confident that readers of the chapters in this book—both those derived from IIA “research briefs” and from “leading practice briefs,” or case studies—will find the blueprint and examples for analytical integration within and across organizations. The healthcare organizations that study these materials, recognize the key issues, and create initiatives to address them will be the pioneers in moving us toward a more analytical future in healthcare.

—Thomas Davenport, Cofounder and Research Director of the International Institute for Analytics
About the Authors

Kathleen Aller is the director of data content for McKesson Enterprise Intelligence. Her current interest is the operational and strategic challenges related to automating healthcare quality and operation measures. She has a particular focus on quality eMeasures and on meaningful use measurement for federal electronic health record incentives. She has spoken and written for Healthcare Information and Management Systems Society (HIMSS), Healthcare Financial Management Association (HFMA), and American Medical Informatics Association (AMIA).

John Azzolini has worked in the healthcare field for 30 years as a nurse and healthcare data analyst. In his 18 years at Thomson Reuters, working as both a director of consulting and practice leadership, much of his work has focused on assisting health plans in the assessment of care processes, the creation of metrics that examine the quality of care, employer account reporting, provider profiling, and disease management program evaluation. Mr. Azzolini earned a Master of Business Administration and Master of Public Health from Columbia University and a Bachelor of Nursing from Cornell University.

Albert Bonnema, MD, MPH, Lt. Col., USAF, MC; Air Force Medical Service Deputy CIO.

Deborah Bulger is the executive director of product management for McKesson Enterprise Intelligence solutions. Her primary focus is identifying and evaluating strategies and solutions that drive intelligence to the healthcare enterprise. In previous roles she served as a healthcare consultant and educator and has published articles for Healthcare Financial Management Association and Hospitals and Health Networks’ Most Wired.

Jason Burke is the former director of health and life sciences at SAS. He coordinated the development and execution of SAS’s industry strategy and solutions portfolio across pharmaceutical, healthcare provider, health plan, biotechnology, and regulatory organizations around the world. Jason was the founding director of SAS’s Health and Life Sciences Global Practice. He regularly consults with industry
leaders and executives on emerging business and technology trends, especially those related to bridging the health and life sciences ecosystems. Prior to joining SAS, he worked at a variety of companies such as GlaxoSmithKline, Quintiles Transnational, and most recently Microsoft where he drove the development and adoption of Microsoft’s industry technology strategy and corresponding architecture. He has served as a technology leader in several industry think tank and strategic development initiatives focusing on the future of healthcare and pharmaceutical research.

Kyle Cheek is director of the Center for Research in Information Management in the College of Business Administration at the University of Illinois—Chicago. In that capacity he is responsible for the Center’s mission to develop opportunities for faculty and student engagement with the local business community to address practical problems in information management. He also holds an appointment as Clinical Professor of Information and Decision Sciences, and teaches courses on enterprise analytics and healthcare information and analytics.

Prior to his current role, Kyle served in various executive roles in the healthcare industry. His expertise is centered on the application of advanced business analytics to healthcare business domain problems including healthcare informatics, payment integrity analytics, and healthcare information management. Some of his notable accomplishments include leading the definition, development, and implementation of an award-winning advanced-analytic healthcare fraud detection solution, and leading the development and execution of an advanced healthcare analytics business strategy. He is active with numerous professional organizations, both in the healthcare industry and more broadly focused on the furtherance of analytics as a business asset, and is frequently invited to provide commentary to various industry and media forums on the broader adoption of advanced analytics across the healthcare domain.

Kyle received a PhD in Political Economy from The University of Texas at Dallas in 1996.

Thomas H. Davenport is the cofounder and research director of the International Institute for Analytics, and the President’s Distinguished Professor of Information Technology and Management at
Babson College. He is the coauthor of *Competing on Analytics* and *Analytics at Work*.

Dave Dimond is the National Leader of Healthcare Consulting at EMC. He is a strategic business advisor and healthcare management consulting leader with more than 20 years of professional experience. Dave received his Master of Science in Management Engineering from Northeastern University, Graduate School of Engineering and his B.S. in Electrical Engineering with High Distinction from the University of Massachusetts College of Engineering. Dave is a candidate in the Executive Scholars Program, Operations Research and Supply Chain Management at Kellogg University.

Dan Gaines is the Provider Health Analytics Solution Lead in Accenture’s Practice where he oversees the design and development of next generation health analytic solutions. Prior to joining Accenture, Dan ran the BI and Analytics product engineering organization at the Advisory Board Company, where he and his team were responsible for the creation and evolution of the company’s analytic Software as a Service offerings for hospital clients. In addition, Dan’s background includes more than 20 years of information management and analytics consulting and product development focused in all aspects of healthcare and life sciences.

Glenn Gutwillig is an executive director in Accenture Analytics, where he serves as the global analytics lead for Health and Public Service industry sectors. Glenn also serves as a member of the faculty for Health Analytics at the International Institute of Analytics (IIA) and is a frequent speaker/instructor at both Analytics and Business Intelligence Conferences and related industry events.

Dave Handelsman is a senior industry consultant in SAS’s Health and Life Sciences division. His primary focus is identifying those market opportunities where advanced analytics brings dramatic innovations and improvements to the business and science of the health and life sciences industries. In previous roles within SAS, Handelsman served as the principal product manager for Clinical R&D, where he was responsible for guiding the development and market success of SAS’s flagship pharmaceutical solution SAS Drug Development.
Evon Holladay, Vice President of Business Intelligence for Catholic Health Initiatives, leads CHI’s efforts to provide information to customers and stakeholders to support timely strategic and operational decision making. She is a seasoned professional in architecting BI solutions through running BI operations and has built scalable, high-value solutions for healthcare, telecommunications, retail, and manufacturing. Her focus is on creating a cross-functional collaborative whereby the information is utilized and maintained. Evon has a passion for designing an operating solution that provides measurable value. Her specific areas of interest are enterprise information integration, data quality management, and working with business partners to build information solutions that improve the quality of care delivered.

Stephan Kudyba is founder of the analytic solutions company, NullSigma, and is also a faculty member of the management department at the New Jersey Institute of Technology, where he teaches courses that address the utilization of IT, advanced quantitative methods, business intelligence, and information and knowledge management to enhance organizational efficiency. He has published numerous books, journal articles, and magazine articles on strategic utilization of data, IT, and analytics to enhance organizational and macro productivity. His latest book, *Healthcare Informatics: Achieving Efficiency and Productivity* (foreword by Jim Goodnight), addresses the critical topic of leveraging new technologies, data, and analytics to achieve efficiency in healthcare.

Dwight McNeill, Ph.D., MPH, is a Lecturer at Suffolk University Sawyer Business School, where he teaches population health and health policy. He is President of WayPoint Health Analytics, which provides guidance to organizations on the analytics of population health management, behavior change, and innovation diffusion. He is the author of *A Framework for Applying Analytics in Healthcare: What Can Be Learned from the Best Practices in Retail, Banking, Politics, and Sports* (FT Press 2013) and numerous journal articles including “The Value of Building Sustainable Health Care Systems: Capturing the Benefits of Health Plan Transformation” (Health Affairs).
Over his thirty year career in healthcare, he has held analytics positions in corporations at IBM and GTE; governments at the Agency for Healthcare Research and Quality and the Commonwealth of Massachusetts; analytics companies; and provider settings.

Jeffrey D. Miller is vice president and leads the Health and Life Sciences business in North America for Capgemini. He oversees the sales and service delivery functions for this industry, driving overall effectiveness and impact across the Capgemini portfolio.

Robert Morison has been leading business research in professional services firms for more than 20 years and is the coauthor of *Analytics at Work: Smarter Decisions, Better Results* and *Workforce Crisis* (both Harvard Business Press). Mr. Morison is also a faculty member with IIA.

Thad Perry has more than 20 years of healthcare experience and is currently the vice president and general manager responsible for all health plan clients within the healthcare business of Thomson Reuters. Prior to 2011, he was director of healthcare informatics at CareSource, chairman and CEO of Health Research Insights, Inc., vice president of healthcare informatics at American Healthways, and held various positions at CIGNA. Dr. Perry earned his M.A. and Ph.D. in Psychology from Vanderbilt University and founded the Medicare and Medicaid Contractors Statistical and Data Analysis Conference, which is now in its 16th year.

Pat Saporito’s role at SAP is to work closely with current and prospective customers to leverage best practices in business intelligence, their data assets, and SAP Business Objects business analytic solutions to improve business performance. Pat joined SAP Business Objects in 2006 as insurance solutions director within the Enterprise Performance COE. She subsequently has held roles in global consulting helping customers define effective performance analytic solutions and in solution management developing predefined industry applications. She is a recognized insurance and healthcare payer industry analytics thought leader.

Dean Sittig is a professor at the School of Biomedical Informatics at the University of Texas Health Science Center at Houston. His research interests center on the design, development,
implementation, and evaluation of all aspects of clinical information systems. In addition to measuring the impact of clinical information systems on a large scale, he is working to improve our understanding of both the factors that lead to success, as well as the unintended consequences associated with computer-based clinical decision support and provider order entry systems. To this end, he and Hardeep Singh, MD, have proposed a new eight-dimension, sociotechnical model for safe and effective use of health IT.

David Wiggin is the Program Director, Healthcare and Life Sciences, for Teradata Corporation. His responsibilities include industry strategy, marketing, offer development, and field enablement and support. Prior to joining Teradata, David was with Thomson Reuters for 25 years supporting employer, health plan, provider, and government markets. He has worked in a variety of roles, including product management, product development, project management, data warehousing, operations management, and systems architecture. David has experience with both the business and IT dimensions of the healthcare industry and has held executive and management positions at Stern Stewart & Co. and Exxon Corporation.

Jesus Zarate, Col, USAF, MSC; Air Force Medical Service CIO.
Introduction

Dwight McNeill

There has never been a better window of opportunity for analytics to strut its stuff and contribute to dramatic improvements in clinical and business outcomes in the healthcare industry.

• The opportunities are mind-boggling. Clinical outcomes are the worst when compared to peer, wealthy countries. Efficiency is the worst among all industries with at least a third of the healthcare industry’s output considered waste. The likelihood of getting the right care at the right time remains just above the probability of a coin toss. Customer engagement ranks among the lowest of all industries.

• The drivers for change are strong and convergent. These include sweeping changes in the financing, payment, and delivery of healthcare resulting from the Affordable Care Act as well as from hypercompetitive market pressures to markedly reduce costs, increase market share, and increase revenues.

• The analytic workbench is chock full of statistical tools, methods, and theories to collect, organize, and understand data and to influence decision making.

• The explosion of “big” data and the technology to harness it more quickly and cheaply provide greenfield opportunities for new discoveries and applications, such as genomics.

Yet, despite these convergent forces, the funding and utility of analytics in healthcare have been low. The irony is that healthcare is built on strong analytic pillars in its extensive research on the causes and treatments of diseases, but this culture and expertise have not
spilled over into the delivery of care. Indeed only a dozen or so of the
best providers and payers approach the full optimization of analytics.

There are many rationales for this. Among them are

- Improving clinical outcomes and efficiency does not necessarily
 make good business sense. After all, the healthcare industry is
 profitable, and the pursuit of social (health) goals is not always
 aligned with the pursuit of profits. If the industry does not
 want to change, there is little call for the analytics to support it.
- There are strong beliefs that the industry data are under-
 digitized, and business cannot benefit from analytics until the
 data are complete, clean, and perfectly integrated.
- Medical care is delivered by highly trained, autonomous, and
 intuitive-thinking professionals (doctors) who may eschew
 data-driven decision making.
- Technology is a two-edged sword. On the one hand it offers
 awesome capabilities to process data. On the other hand, it may
 blind analysts from seeing all that is necessary to make change
 happen through analytics for their industry. The field needs to
 look inward and transform itself to be more results oriented.
- Finally, the (new and improved) discipline of analytics is rela-
 tively young, unknown, and yet to prove itself.

The primary purpose of this book is to address the last bullet
point. The book provides the most comprehensive review of the cur-
rent state of the science and practice of analytics in healthcare to date.
The book is divided into a journey of five parts, the four Parts and the
Conclusion. For a simple guide on navigating the book see Figure I.1.

Part I, “An Overview of Analytics in Healthcare and Life Sciences,”
provides an overview of the analytics landscape in the healthcare and
life sciences ecosystem and includes chapters on payers, providers,
and life science companies. Tom Davenport and Marica Testa, in
Chapter 1, “An Overview of Provider, Payer, and Life Sciences Ana-
lytics,” conclude that despite the many obstacles, “healthcare orga-
nizations have little choice but to embrace analytics. Their extensive
use is the only way patients will receive effective care at an afford-
able cost.” Although the maturity level of analytics is low across the
ecosystem, many opportunities are outlined in the chapters. For providers, these include meaningful use, accountable care, regulatory compliance, clinical decision support, and more. For payers, these include actively improving the health of their members to be more competitive in the new era of the business to consumer model. And for life science companies, the focus is on research discovery, clinical trials, manufacturing, and sales and marketing. Increasingly the focus will be on personalized medicine to tailor individual treatment programs and on cost-effectiveness analysis to determine the value of therapeutics.

Figure I.1 Navigating the five parts of *Analytics in Healthcare and the Life Sciences*

Part II, “Strategies, Frameworks, and Challenges for Health Analytics,” includes six chapters that provide some fundamental answers as well as a reference library of terms and concepts to those wanting
A NALYTICS IN HEALTHCARE AND THE LIFE SCIENCES

to get into the new game of health analytics. It provides a mapping of healthcare analytics “DNA” and addresses the following important questions:

- What is health analytics and what is its scope and various options?
- What is its value to the business and how is it determined?
- What are the different types of analytics and ways to perform them?
- What are some examples of analytics “secret sauce” for supporting clinical and business outcomes?
- What are the privacy concerns that arise with big (personal) data and the use of advanced analytics and how can these be built into data security and privacy practices?

Part III, “Healthcare Analytics Implementation Methods,” looks at implementation methods, or solutions. It provides a workbench of analytics methods that address some of the most vexing issues in healthcare, including

- **Using the EHR**—The electronic health records (EHR) can support meaningful results in three important healthcare reform areas, including insurance reforms (especially health insurance exchanges), Centers for Medicare and Medicaid Services (CMS) Innovations (especially Accountable Care Organizations), and Health Information Technology (HIT) (especially meaningful use). Chapter 12, “Meaningful Use and the Role of Analytics: Complying with Regulatory Imperatives,” by Deborah Bulger and Kathleen Aller makes the case that building the infrastructure for meaningful use has much more value than just a compliance issue and can be the backbone to a new approach to managing care.

- **Improving the delivery of care**—In Chapter 13, “Advancing Health Provider Clinical Quality Analytics,” Glenn Gutwillig and Dan Gaines focus on measuring, monitoring, and improving providers’ adherence to established clinical standards. They assert that clinical quality analytics must measure a health provider’s compliance to established clinical standards of care as
well as analyze the relationship between compliance and clinical outcomes.

• **Medical errors**—Medical errors continue to be seemingly intractable to improvement. In Chapter 14, “Improving Patient Safety Using Clinical Analytics,” Dean Sittig and Stephan Kudyba concentrate on the detection of errors and discuss the use of “triggers,” or automated algorithms, to identify abnormal patterns in laboratory test results, clinical workflows, or patient encounters.

• **Social media**—The use of social media to improve health is just emerging. Healthcare is following industries that have used social media for marketing, sentiment analysis, and brand management. Chapter 16, “Measuring the Impact of Social Media in Healthcare,” by David Wiggin provides an overview of current and emerging uses of social media to improve health and proposes an analytical model to measure its impact. He suggests that the best source of data may come directly from people through surveys rather than what can be “scraped” from websites. This is different, and potentially much more valuable, than the usual “scraping” of websites for social media data.

• **Population health**—One aspect of managing population health is to find high cost/clinical need people so that appropriately tailored programs can be offered to them. In Chapter 15, “Using Advanced Analytics to Take Action for Health Plan Members’ Health,” Kudyba, Perry, and Azzolini detail the difficulty of developing, implementing, and managing population-based care programs. They present a conceptual framework, based on “hotspotting” techniques, that defines the information requirements, analyses, and reporting that will lead to actionable results.

Part IV, “Best Practices in Healthcare Analytics Across the Ecosystem,” includes eight case studies of leading organizations in healthcare analytics. These are bellwether organizations that represent the best of the art and science of analytics as of 2012. The case studies are inclusive of the settings where analytics is practiced including providers, payers, and a life sciences company and includes both the public and private sectors. The lineup includes Partners HealthCare System,
Catholic Healthcare Initiatives, Veterans Health Administration, Air Force Medical Services, HealthEast Care System, Aetna, EMC, and Merck. The chapters address the “whats” (the domains of the content such as business, clinical, and marketing) and “hows” of analytics to support organizational strategies and goals (including how it is organized, how it adds value, and its technical challenges). The common characteristics of these high performing companies are the early adoption and use of EHRs, leadership that clearly articulates organizational mission and goals, the use of clinical warehouses to address organizational needs such as research, the application of analytics to improve business and finance functions, and insights into how to operationalize analytics within organizations for optimal results.

Finally, a conclusion, “Healthcare Analytics: The Way Forward,” addresses the future of analytics in healthcare. It starts off by acknowledging that healthcare has great challenges and that the potential of analytics to address them has been underrated. Analytics is poised to make a difference, but there is a blockage that must be addressed. The conclusion addresses some untapped opportunities including issues related to the big data “gold rush” and the need to appreciate “small” data, new computing technologies such as NoSCL and the seductive trap of technology, and the overlooked science of making change happen and getting innovations adopted in organizations. McNeill suggests that analysts must keep their eyes on the prize of improving outcomes, and it has less to do with the tools and technology and more to do with the sociology of making change happen through communications among people. He concludes with the observation that the field of analytics is undergoing an identity crisis, the role definition needs work, a Chief of Analytics may not be the savior, and what is needed is for analysts to “be the change” they want to see in the organization and the world.

Note

This page intentionally left blank
An Overview of Provider, Payer, and Life Sciences Analytics

Thomas H. Davenport and Marcia A. Testa

The healthcare industry is being transformed continually by the biological and medical sciences, which hold considerable potential to drive change and improve health outcomes. However, healthcare in industrialized economies is now poised on the edge of an analytics-driven transformation. The field of analytics involves “the extensive use of data, statistical and quantitative analysis, explanatory and predictive models, and fact-based management to drive decisions and actions.” Analytics often uses historical data to model future trends, to evaluate decisions, and to measure performance to improve business processes and outcomes. Powerful analytical tools for changing healthcare include data, statistical methods and analyses, and rigorous, quantitative approaches to decision making about patients and their care. These analytical tools are at the heart of “evidence-based medicine.”

Analytics promises not only to aid healthcare providers in offering better care, but also more cost-effective healthcare. Several textbooks have been written on the cost-effectiveness of health and medicine, and health economics and the methods described can be used in healthcare decision making. Moreover, as healthcare spending rose dramatically during the 1970s and 1980s in the United States, an increased focus on “market-driven” healthcare developed. Today, as the amount spent on healthcare has risen to nearly 20% of GDP in the United States, analytic techniques can be used to direct limited resources to areas where they can provide the greatest improvement in health outcomes.
Analytics in healthcare is an issue for several sectors of the healthcare industry involving patients, providers, payers, and the healthcare technology industries (see Figure 1.1). As shown, the patient is the ultimate consumer within the healthcare system. This system consists of several sectors, including providers of care; entities such as employers and government that contribute through subsidized health insurance; and life science industries, such as pharmaceutical and medical device companies.

![Figure 1.1 The healthcare analytics environment](image)

Provider Analytics

A key domain for the application of analytics is in healthcare provider organizations—hospitals, group practices, and individual physicians’ offices. Analytics is not yet widely used in this context, but a new data foundation for analytics is being laid with widespread investments—and government subsidies—in electronic medical records and health outcomes data. As data about patients and their care proliferate, it will soon become feasible to determine which treatments are most cost-effective, and which providers do best at offering them. However, to maximize their usefulness, analytics will have to be employed in provider organizations for both clinical and business purposes and to understand the relationships between them.
Tom Davenport and Jeffrey Miller in Chapter 2, "An Overview of Analytics in Healthcare Providers," make the case that analytics for healthcare providers is poised to take off with the widespread digitization of the sector. They describe the current maturity level of provider analytics as low and describe current analytical applications along the continuum of descriptive, predictive, and prescriptive for both clinical and financial business purposes. And they address future areas for analytics contributions including meaningful use, accountable care organizations, taming the complexity of the clinical domain, increased regulatory requirements, and patient information privacy issues.

Payer Analytics

Payers for healthcare, including both governments and private health insurance firms, have had access to structured data in the form of claims databases. These are more amenable to analysis than the data collected by providers, who have relied largely on unstructured medical chart records. However, historically payers focused on collecting data that ensure efficiencies in billing and accounting, rather than healthcare processes and outcomes. Even with limited administrative databases, payers have, at times, been able to establish that some treatments are more effective and cost-effective than others, and these insights have sometimes led to changes in payment structures. Payers are now beginning to make inroads into analytics-based disease management by redesigning their information databases to include electronic medical records. However, there is much more to be done in developing medical information databases and systems and employing analyses within payer organizations. In addition, at some point, payers are likely to have to share their results with providers, and even patients, if systemic behavior change is to result.

Kyle Cheek in Chapter 3, "An Overview of Analytics in Healthcare Payers," concentrates on analytics as a value driver to improve the business of health insurance and the health of its members. He provides a framework of the types of analytics that can add value, and he reviews the current state, which he describes as "analytical sycophancy." He concludes with paths to maturity and best practice examples from leading organizations.
Life Sciences Analytics

Life sciences companies, which provide the drugs and medical devices that have dramatically changed healthcare over the past several decades, have also employed analytics much more than providers. However, their analytical environment is also changing dramatically. On the R&D and clinical side, analytics will be reshaped by the advent of personalized medicine—the rise of treatments tailored to individual patient genomes, proteomes, and metabolic attributes. This is an enormous (and expensive) analytical challenge that no drug company has yet mastered. On the commercial analytics side, there is new data as well—from marketing drugs directly to consumers, rather than through physicians—and new urgency to rein in costs by increasing marketing and sales effectiveness.

Dave Handelson in Chapter 4, “Surveying the Analytical Landscape in Life Sciences Organizations,” starts off with the contextual reality that it is no longer “business as usual” in the life sciences industries, which has resulted in a heightened focus on analytics. He describes the potential analytical contributions related to the primary business functions, including research discovery, clinical trials, manufacturing, and sales and marketing. He notes that healthcare reform and the emphasis on cost containment place more reliance on analytics that includes new reimbursement strategies and the need to use comparative effectiveness results in assessing the value of therapies.

Patients Analytics

Patients are, of course, the ultimate consumers of healthcare and will need also to become better informed consumers of analytics—at least to some degree. They will need analytics to decide which providers are most effective, whether the chosen treatment will work, and in some payment structures, whether they are getting the best price possible. These consumer roles are consistent with the “consumer health informatics” and “Health 2.0” (use of web-based and e-technology tools by patients and physicians to promote healthcare and education) concepts. Of course, complex biostatistics and the results of comparative effectiveness studies are unlikely to be understood by most patients and will have to be simplified to be helpful.
Collaboration Across Sectors

Each of the sectors that participate in healthcare progressively adds analytical capability, although at different rates. For true progress, analytics must be employed collaboratively across the various sectors of the healthcare system. Providers, payers, and pharmaceutical firms must share data and analyses on patients, protocols, and pricing—with each other and with patients—and all with data security and privacy. For example, members of each sector had data that might have identified much earlier that COX-2 drugs (Vioxx, Celebrex, and Bextra) were potentially associated with greater risk of heart disease.

Barriers to Analytics

Healthcare organizations desiring to gain more analytical expertise face a variety of challenges. Providers—other than the wealthiest academic medical centers—have historically lacked the data, money, and skilled people for analytical projects and models. Even when they are able to implement such systems, they may face difficulties integrating analytics into daily clinical practice and objections from clinical personnel in using analytical decision-making approaches. Payers typically have more data than providers or patients, but as noted above the data are related to processes and payments (administrative databases) rather than health outcomes (research databases). Moreover, many payers do not now have cultures and processes that employ analytical decision making.

Life sciences firms have long had analytical cultures at the core of their research and clinical processes, but this doesn’t ensure their ongoing business success. Clinical trials are becoming increasingly complex and clinical research more difficult to undertake given the restrictions imposed by Institutional Review Boards, ethics committees, and liability concerns. Drug development partnerships make analytics an interorganizational issue. And the decline of margins in an increasingly strained industry makes it more difficult to afford extensive analytics.
While statistical analyses have been used in research, analytics has not historically been core to the commercial side of life sciences industries, particularly in the relationship with physicians’ practice patterns. Life sciences firms must normally buy physician prescribing data from a third-party source, and the data typically arrive in standard tables and reports rather than in formats suitable for further analysis. The firms increasingly need to target particular physicians, provider institutions, and buying groups, but most do not have the data or information to do so effectively.

Despite these obstacles, healthcare organizations have little choice but to embrace analytics. Their extensive use is the only way patients will receive effective care at an affordable cost.

Notes

A

ACA (Affordable Care Act), 78, 121
academic medical centers, analytical capabilities, 17
acceptable use, information security, 99
accountability for measures, 136
Accountable Care Organizations. See ACOs
ACOs (Accountable Care Organizations), 4, 21, 121, 145, 270
action provided by accountable stakeholders, 137
actionability, business value of analytics, 84-85
actualizing value management, business value of analytics, 89-90
actuarial rating, 25
adaptations, cross-pollination across industries, 105-114
adoption of best practices, 187-193
 BI performance analytics, 87
 life sciences organizations, 192-193
 Merck, 273-279
payer organizations, 190-192
 Aetna, 245-250
 EMC Corporation, 253-271
provider organizations, 188-190
 AFMS, 231-238
 Catholic Health Initiatives, 213-220
 HealthEast Care System, 239-243
 Partners, 195-211
 VHA, 223-230
advanced analytics, healthcare improvements, 161-167
care management expert system, 164
hot spotting, 161-163
multivariate analytics, 165-167
Aetna, 245-250
analytical capabilities, 29
bellwether lessons, 249-250
history, 246
Maturity Model, 248-249
organization, 246-248
affinity group sites, 176
Affordable Care Act. See ACA
AFMS (Air Force Medical Service), 231-238
 analytics, 234
 HSDW (Health Service Data Warehouse Project), 234-238
 modernization challenges, 232-234
 OCIO (Office of the CIO), 232
 vision and mission, 231-232
AIC (Akaike’s information criterion), 72
Air Force Medical Service.
 See AFMS
Akaike’s information criterion (AIC), 72
algorithms, modeling, 66-67
alpha, 63
Americas SAP User Group (ASUG)-SAP BI Benchmark Survey, 87
American Recovery and Reinvestment Act (ARRA), 129
Analysis of Variance (ANOVA), 67
Analysts component (DELTAModel), Catholic Health Initiatives, 219-220
analytical applications, provider organizations, 18-19
analytical capabilities, levels, 16-17, 27, 248
analytical competencies, taxonomy for healthcare analytics, 51-52
analytical “needscape,” 52-53
analytics
 advanced, healthcare improvements, 161-167
 AFMS, 234
 business, 25
 business value, 77-91
 BI performance benchmarks, 86-87
 BICCs (BI Competency Centers), 87-88
 challenges, 78
 drivers/levers, 81-83
 key performance indicators, 84-85
 performance management approach, 89-90
 resources, 90-91
 value life cycle, 78-80
care protocol, 19
clinical, patient safety, 153-159
clinical quality, 143-151
 background, 143-146
 case study, 148-151
 next generation solutions, 147
cross-pollination across industries, 103-115
 healthcare adaptations, 105-112
 putting ideas into action, 115
 translating healthcare adaptations, 112-114
 why analytics innovations matter, 104-105
descriptive, 16, 18-19
enterprise, HealthEast Care System, 241
evidence-based medicine, 19
financial risk, 19
information security, 93-100
leveraging, 26
multivariate, 165-167
occupancy, 19
overview, 9-14

barriers, 13-14
collaboration across sectors, 13
environment, 9-10
life sciences, 12, 31-38
patients, 12
payers, 11, 23-29
provider organizations, 10-11, 15-22

patient safety, 19
population, 19
predictive, 16

information security, 98
manufacturing organizations, 37
modeling algorithms, 66-67
provider organizations, 18-19
processes, 56
CRISP-DM, 56
DMAIC, 56
SEMMA, 56
Six Sigma, 56
quantitative, 23
revenue cycle, 19
risk, 97-99
supply chain, 19
types of, 56

Analytic at Work: Smarter Decisions, Better Results, 215
analytics team, HealthEast Care System, 242
Analyze phase (DMAIC), 56
ANOVA (Analysis of Variance), 67
ANOVA test, 67
Archon X prize, 32

ARIMA (autoregressive integrated moving average), 71
ARIMAX models, 71
ARMA (autoregressive moving average), 71
ARRA (American Recovery and Reinvestment Act), 129
aspirational metrics, 140
Assess step (SEMMA process), 56
asset efficiency, as business driver to increase value, 82
association analysis, 67
ASUG (Americas SAP User Group)-SAP BI Benchmark Survey, 87
ASUG-SAP Benchmarking Forum, 90
authentication, 98
autoregressive integrated moving average (ARIMA), 71
autoregressive moving average (ARMA), 71

B
backward elimination, 62
barriers to analytics, 13-14
Bayesian methodology, 33
behavior changes, industry discovery process, 109
best practices adoption, 187-193
BI performance analytics, 87
life science organizations, 192-193, 273-279
payer organizations, 190-192
Aetna, 245-250
EMC Corporation, 253-271
provider organizations, 188-190

AFMS, 231-238

Catholic Health Initiatives, 213-220

HealthEast Care System, 239-243

Partners, 195-211

VHA, 223-230

BI (business intelligence)
performance benchmarks, 86-87

BI Competency Centers
(BICCs), 87-88

BI strategy framework, 88

BI technology, 86

BICCs (BI Competency Centers), 87-88

blogs, 176

Brenner, Jeffrey, 161

Brief Analytical Review (VVA), 228

Brigham and Women’s Hospital, 195, 209-211

business analytics, 25, 50

business intelligence (BI)
performance benchmarks, 86-87

business objectives
clinical performance, 82
financial performance, 83
operational performance, 83

business operations analytics,
analytical competencies, 52

business strategy-IT alignment,
actualizing value management, 90

business value of analytics, 77-91

BI performance benchmarks, 86-87

BICCs (BI Competency Centers), 87-88

challenges, 78

drivers/levers, 81-83

key performance indicators, 84-85

performance management
approach, 89-90

resources, 90-91

value life cycle, 78-80

C
care delivery, 4-5, 123-125

Care Management category (social media impact), 183
care protocol analytics, 19
case studies
best practices

Aetna, 245-250

AFMS, 231-238

Catholic Health Initiatives, 213-220

EMC Corporation, 253-271

HealthEast Care System, 239-243

Merck, 273-279

Partners HealthCare System, 195-211

Veterans Health Administration, 223-230
categorical measures (data scales), 58

Catholic Health Initiatives. See CHI causation, 63

CDER (Center for Drug Evaluation and Research), 36

CDSS (clinical decision support systems), 139, 163

Center for Clinical Excellence (CCE), 209
Center for Connected Health (Partners), 203
Center for Drug Evaluation and Research (CDER), 36
Centers for Excellence (CoEs), 87-88
Centers for Medicare and Medicaid Services Innovations. See CMS
challenges
 AFMS, 232-234
 business value of analytics, 78
 industries, 106-107
charitable providers, analytical capabilities, 16
CHASE (Computerized Hospital Analysis System for Efficiency)
data warehouse, 209
CHI (Catholic Health Initiatives), 213-220
 DELTA model, 214-220
 nonprofit organization, 214
chi-square, 73
chi-square test, 67
CIRD (Clinical Informatics Research & Development) group, 198
classification matrix, 73
clicks (industry challenge), 107
clinical activity, provider organizations, 15, 19
clinical analytics
 analytical competencies, 51
 continuum with business analytics, 50
 patient safety improvements, 153-159
 EHR-related errors, 158-159
 infrastructure components, 154-155
 introduction, 153-154
 triggers for diagnostic errors, 155-157
 triggers for medication errors, 157-158
clinical decision support systems (CDSS), 139, 163
Clinical Informatics Research & Development (CIRD) group, 198
clinical performance, business objectives, 82
clinical problem tracking, 19
clinical quality analytics, 143-151
 background, 143-146
 case study, 148-151
 next generation solutions, 147
clinical quality measurement, 132-135
Clinical Quality Workbench, 124
clinical trials, analytical maturity model, 34
cluster sampling, 60
clustering, 67
CMS (Centers for Medicare and Medicaid Services), 4, 121, 130
CO-OPS (consumer oriented and operated plans), 121
CoEs (Centers for Excellence), 87-88
Commercial Analytics and Decision Sciences group (Merck), 273-279
decision maker partnerships, 274-275
embedding analyses into tools, 277-278
future directions, 278-279
reasons for success, 275-277
commercialization analytics,
analytical competencies, 51-52
Commonwealth Fund, medical errors, 124
communications analysts, 89
community hospitals, analytical capabilities, 16
comparative effectiveness, therapies, 38
comparative performance statistics, 70-73
compliance
 information security, 99
 regulatory imperatives, meaningful use, 129-140
 driving analytics behavior, 135-139
 future, 139-140
 shifting quality analysis paradigm, 132-135
 support of EHR adoption, 131-132
Computerized Hospital Analysis System for Efficiency (CHASE) data warehouse, 209
computerized provider order entry (CPOE), 130
consumer oriented and operated plans (CO-OPS), 121
Control phase (DMAIC), 56
convergent forces, healthcare improvements, 1
correlation, 63
cost management, 19
cost reductions, healthcare value framework, 43-44
covariance, 63
CPOE (computerized provider order entry), 130
CRISP-DM (Cross Industry Standard Process for Data Mining) process, 56
Cross Industry Standard Process for Data Mining (CRISP-DM) process, 56
cross-pollination across industries, 103-115
 healthcare adaptations, 105-112
 putting ideas into action, 115
 translating healthcare adaptations, 112-114
 why analytics innovations matter, 104-105
current healthcare costs, care management systems, 164
current state, payer analytics overview, 24-27
custom informatics, Aetna, 247
customer analytics, healthcare payers, 25
customers
 discovery process, adapting industry ideas, 109
 power (industry challenge), 107

D
DASH for Health, 262
dashboards
 healthcare improvements, 123
 VHA, 227-229
Data component (DELTA model), Catholic Health Initiatives, 215-217
data integration, as challenge for AFMS, 232-233
data leak prevention, 98
data leak protection, 94
data mining, 56
 SEMMA (Sample, Explore, Modify, Model, Assess) process, 56
data partitioning techniques, 59
data scales, 58
 categorical/nominal measures, 58
 interval variables, 58
 ordinal variables, 58
 ratio variables, 58
 boundless personal data, 110
data warehouse, EMC Corporation, 268-269
data warehousing, Aetna, 247
database queries, identifying high cost patients, 165
database security, 98
Davenport-Harris Analytics Maturity Model, 27-29, 248-249
Decentralized Hospital Computer Program (DHCP), 224
decision maker partnerships, Merck, 274-275
decision rules, improving healthcare, 121
Decision Support System (VA), 225
decision trees, 67
Define phase (DMAIC), 56
Define, Measure, Analyze, Improve, Control (DMAIC) process, 56
delivering on the promise of analytics, 42-43
delivery of care, 4-5, 123-125
Deloitte Enterprise Value Map, 90
DELTA model, Catholic Health Initiatives, 214-220
Delta-Powered (Healthcare) Analytics Assessment, 91
dependent variables, 63
descriptive analytics, 16, 18-19
desktop security, 98
development analytics, analytical competencies, 51
development process, life sciences analytics overview, 33-34
DHCP (Decentralized Hospital Computer Program), 224
diagnostic errors, triggers, 155-157
direct-to-consumer advertising, 37
directed marketing, 25
discovery phase, value life cycle, 79
discovery process
 adapting industry ideas, 105-112
 challenges, 106-107
 data promises, 110-111
 identifying analytics sweet spots, 108-109
 modeling behavior change, 109
 privacy concerns, 111-112
 responding to customers, 109
 sociology, 112
 strengths, 108
 technology game changers, 111
 life sciences analytics overview, 32-33
discriminant analysis, 67
disease management (DM) tools, 25
DM (disease management) tools, 25
DMAIC (Define, Measure, Analyze, Improve, Control) process, 56
drivers
 business value of analytics, 81-83
 clinical quality analytics, 145
Driving Partnership in Health program (EMC), 253-255

E
EBM (evidence-based medicine), 25, 145
economics of scale, as challenge for AMS, 233
effectiveness, BI performance analytics, 86
efficiency, BI performance analytics, 86
EHRs (electronic health records), 4, 121-123
 meaningful use, 131-132
 triggers for errors, 158-159
 VHA system, 224-225
electronic health records. See EHRs
EMC Corporation, 253-271
 chronology, 257-260
 data warehouse, 268-269
 employee experience, 260-264
 executive scorecard, 267-268
 lessons for healthcare system at large, 269-271
 partner perspective, 264-267
 vision, 255-257
eMeasures, 139
employer group reporting, 25
encryption, 94
enterprise analytics, HealthEast Care System, 241
Enterprise component (DELTA model), Catholic Health Initiatives, 217
enterprise data team, HealthEast Care System, 242
errors, clinical
diagnostic errors, 155-157
EHR-related, 158-159
medication, 157-158
evidence based care, as driver for clinical quality analytics, 145
evidence-based medicine (EBM), 25, 145
evidence-based medicine analytics, 19
EX reporting tool, 209
explanatory variables, 63
Explore step (SEMMA process), 56
exponential smoothing statistics, 71

F
F-statistic, 72
factor analysis, 62
financial activity, provider organizations, 15, 19
financial analytics
 analytical competencies, 52
 healthcare payers, 25
financial forecasting, 25
financial performance, business objectives, 83
financial risk analytics, 19
firewalls, 94
for-profit hospital chains, analytical capabilities, 16
forecasting, 56, 70-71
forward selection, 62
fraud analytics, analytical competencies, 52
fraud detection, 25
fundamentals, healthcare improvements, 41-46
delivering on the promise of analytics, 42-43
value framework, 43-46
future
information security, 100
meaningful use, 139-140
Merck, 278-279

G
GEMI (Global Environmental Management Initiative) Metrics Navigator, 90
GINI coefficient, 73
Glaser, John, 196
Global Environmental Management Initiative (GEMI) Metrics Navigator, 90
global trigger tool (GTT), 157
Gottlieb, Dr. Gary, 211
governance management, actualizing value management, 90
government reporting requirements, as driver for clinical quality analytics, 145
GPO (group purchasing organization), 19
Great Recession (industry challenge), 107
group purchasing organization (GPO), 19

GTT (global trigger tool), 157
Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials, 33

H
Gustafson, Dr. Michael, 209
Hadloop (industry strength), 111
HCI (Healthcare Integrator), 234
HCSM (healthcare social media) analytics, 178
Health Improvement Capability Score (HICS), 113
Health Informatics Division (HID), 234
Health Informatics Suite (HIS), 234
Health Information Technology. See HIT
Health Information Technology and Standards Panel (HITSP), 134
Health Information Technology for Economic and Clinical Health Act. See HITECH
Health Insurance Portability and Accountability Act. See HIPPA
Health IT Policy committee (ONC), 139
health of populations, healthcare improvements, 125-126
health outcomes analytics, analytical competencies, 51
health reform, life sciences analytics overview, 37-38
Health Service Data Warehouse Project (HSDW), 234-238
healthcare improvements
convergent forces, 1
fundamentals, 41-46
delivering on the promise of analytics, 42-43
value framework, 43-46
implementation methods, 121-127
advanced analytics, 161-167
clinical analytics, 153-159
clinical quality analytics, 143-151
delivery of care, 123-125
EHRs (electronic health records), 121-123
meaningful use, 129-140
population health, 125-126
social media, 126-127
social media impact, 175-183
taxonomy for healthcare analytics, 49-53
analytical competencies, 51-52
inventory of options, 49-51
Healthcare Integrator (HCI), 234
healthcare social media (HCSM) analytics, 178
Healthcare Value Framework, 121
HealthEast Care System, 239-243
design of organization, 242-243
enterprise analytics, 241
HealthEast Quality Institute, 239
HealthEast Quality Journey, 239
HICS (Health Improvement Capability Score), 113
HID (Health Informatics Division), 234
high value management adopters, 80
HIMSS Analytics, 91
HIPAA (Health Insurance Portability and Accountability Act), 96
HIS (Health Informatics Suite), 234
HIT (Health Information Technology), 4, 121
HITECH (Health Information Technology for Economic and Clinical Health Act), 99, 122, 129
HITSP (Health Information Technology and Standards Panel), 134
Hospital Inpatient Quality Reporting Program (Hospital IQR), 133
Hospital IQR (Hospital Inpatient Quality Reporting Program), 133
hot spotting, 161-163
HSDW (Health Service Data Warehouse Project), 234-238
human genome project, discovery process, 32
Humana, analytical capabilities, 29
hypercompetition (industry challenge), 107

I

IDNs (integrated delivery networks), analytical capabilities, 16
IDS (intrusion detection systems), 94
IHI (Institute for Healthcare Improvement), 157
IIA (International Institute for Analytics), 91
implementation methods
EHRs (electronic health records), 4
healthcare improvements, 121-127
 advanced analytics, 161-167
 clinical analytics, 153-159
 clinical quality analytics, 143-151
 delivery of care, 123-125
EHRs (electronic health records), 121-123
meaningful use, 129-140
population health, 125-126
social media, 126-127
social media impact, 175-183
improving delivery of care, 4-5
medical errors, 5
population health, 5
social media, 5
implementation, HSDW, 236
Improve phase (DMAIC), 56
improvements in healthcare
 convergent forces, 1
 fundamentals, 41-46
 delivering on the promise of analytics, 42-43
 value framework, 43-46
implementation methods, 121-127
 advanced analytics, 161-167
 clinical analytics, 153-159
 clinical quality analytics, 143-151
 delivery of care, 123-125
EHRs (electronic health records), 121-123
meaningful use, 129-140
population health, 125-126
social media, 126-127
social media impact, 175-183
taxonomy for healthcare analytics, 49-53
analytical competencies, 51-52
inventory of options, 49-51
increased revenues, healthcare value framework, 43-44
independent variables, 62-63
industries, cross-pollination, 103-115
 healthcare adaptations, 105-112
 putting ideas into action, 115
 translating healthcare adaptations, 112-114
 why analytics innovations matter, 104-105
inferential analytical approaches, 33
information deliverables, as challenge for AFMS, 233
information security, 93-100
 compliance and acceptable use, 99
 future, 100
 life science organizations, 97
 payers, 96
 predictive analytics, 98
 provider organizations, 95-96
 risk analytics, 97-99
infrastructure components, clinical analytics to improve patient safety, 154-155
initiatives
 Partners, 201-202
 VHA, 225-227
Innovation Adoption Factors model, 115
Inpatient Evaluation Center (IPEC), 226
Institute for Healthcare Improvement (IHI), 157
insurance reform, 4, 121
integrated care organizations, analytical capabilities, 17
integrated delivery networks (IDNs), analytical capabilities, 16
internal awareness programs, 98
International Institute for Analytics (IIA), 91
interval variables (data scales), 58
intrusion detection systems (IDS), 94
intrusion prevention systems (IPS), 94
IPEC (Inpatient Evaluation Center), 226
IPS (intrusion prevention systems), 94

J–K
justification, actualizing value management, 89

k-Nearest Neighbor, 67
key concepts, statistics, 61-63
key performance indicators (KPIs), business value of analytics, 84-85
knowledge discovery techniques, 165-167
Kolmogorov-Smirnoff (KS) statistic, 73
KPI analysts, 88
KPIs (key performance indicators), business value of analytics, 84-85
KS (Kolmogorov-Smirnoff) statistic, 73
Kvedar, Dr. Joe, 203

L
lag times (idea to conception), as challenge for AMS, 233
Leadership component (DELTA model), Catholic Health Initiatives, 218
levels, analytical capabilities, 16-17, 27, 248
leveraging analytics, 26
levers, business value of analytics, 81-83
life science organizations
 adoption of best practices, 192-193, 273-279
 analytics overview, 12, 31-38
 development process, 33-34
 discovery process, 32-33
 health reform, 37-38
 manufacturing, 34-36
 sales and marketing, 36-37
 information security, 97
lift, 73
linear regression, 67
LiveHealthy, 262
LMR (longitudinal medical record), 197
logistic regression, 67
longitudinal medical record (LMR), 197
low value management adopters, 80
M

MAE (mean absolute error), 73
manufacturing, life sciences
analytics overview, 34-36
MAPE (mean absolute percentage error), 73
market basket analysis, 67
Mass General Physicians Organization (MGPO), 208
Massachusetts General Hospital (MGH), 195, 206-208
Maturity Model, 27-29, 248-249
MCPs (Medicaid Managed Care Plans), 162
“me-too” drugs, 38
mean absolute error (MAE), 73
mean absolute percentage error (MAPE), 73
mean squared error (MSE), 74
meaningful use, 4, 16, 18, 121-122, 129-140
driving analytics behavior, 135-139
future, 139-140
information security, 99
shifting quality analysis paradigm, 132-135
support of EHR adoption, 131-132
Measure phase (DMAIC), 56
measurement scales (data), 58
categorical/nominal measures, 58
interval variables, 58
ordinal variables, 58
ratio variables, 58
measurements, clinical quality, 132-135
Medicaid Managed Care Plans (MCPs), 162
medical errors, 5, 124
medication errors, 157-158
member engagement, care management systems, 164, 168
Merck, 273-279
decision maker partnerships, 274-275
embedding analyses into tools, 277-278
future directions, 278-279
reasons for success, 275-277
MGH (Massachusetts General Hospital), 195, 206-208
MGPO (Mass General Physicians Organization), 208
MIDAS+ tool, 243
Mission, AFMS, 231-232
mission-focused providers, analytical capabilities, 16
mobile opportunities (industry strength), 111
model fit statistics, 70-73
Model step (SEMMA process), 56
modeling algorithms, 66-67
modeling behavior change, industry discovery process, 109
modernization challenges, AFMS, 232-234
Modify step (SEMMA process), 56
Mollen, Jack, 258
moving average statistics, 71
MSE (mean squared error), 74
multiple linear regression, 67
multivariate analytics, 165-167
n-way ANOVA, 67
National Center for Health Statistics (NCHS) Data Brief, 122
National Priorities Partnership, 139
National Quality Forum (NQF), 139
National Quality Forum (NQF) standards, 145
natural language processing (NLP), 154
NCHS (National Center for Health Statistics) Data Brief, 122
Nesson, Richard, 196
network printer protections, 98
neural networks, 67
NLP (natural language processing), 154
nominal measures (data scales), 58
nonlinear regression, 67
NQF (National Quality Forum), 139
NQF (National Quality Forum) standards, 145
null hypothesis, 63
Nursing Productivity, objectives, 85-84

Office of Productivity, Efficiency, and Staffing (OPES), 226-227
Office of the CIO (OCIO), 232
Ohio Commission to Reform Medicaid (OCRM), 162
ONC (Office of National Coordination), 130
operating margin, as business driver to increase value, 81-82
operational activity, provider organizations, 15, 19
operational benchmarks, 19
operational performance, business objectives, 83
operations analytics, healthcare payers, 25
operations monitoring, 25
OPES (Office of Productivity, Efficiency, and Staffing), 226-227
optimization, 56
optimization phase (value life cycle), 80
ordinal variables (data scales), 58
organizational effectiveness, as business driver to increase value, 82
organizational excellence, actualizing value management, 90
oversampling, 60
overview, analytics, 9-14
barriers, 13-14
collaboration across sectors, 13
environment, 9-10
life sciences, 12, 31-38
patients, 12
payers, 11, 23-29
provider organizations, 10-11, 15-22

Objectives, Nursing Productivity, 85-84
occupancy analytics, 19
OCIO (Office of the CIO), 232
OCRM (Ohio Commission to Reform Medicaid), 162
Office of National Coordination (ONC), 130
p-value, 63, 73
P4P (Pay for Performance), 25, 145
Partitioning, data partitioning techniques, 59
Partner Summit, 267
Partners HealthCare System, best practices case study, 195-211
 Brigham and Women’s, 209-211
 centralized business analytics, 205-206
 centralized data and systems, 195-197
 CIRD group, 198-200
 high performance medicine, 200-202
 MGH, 206-208
 new analytical challenges, 202-205
PAT (Process Analytical Technology), 35
Patient Affinity Groups category (social media impact), 181-182
patient analytics, healthcare payers, 24-25
Patient Education category (social media impact), 180-181
Patient Like Me social network tool, 181-182
Patient Monitoring Groups category (social media impact), 182-183
patient safety, clinical analytics, 153-159
 EHR-related errors, 158-159
 infrastructure components, 154-155
 introduction, 153-154
 triggers for diagnostic errors, 155-157
 triggers for medication errors, 157-158
patient safety analytics, 19
Patty, Dr. Brian, 239
Pay for Performance (P4P), 25, 145
payer organizations
 adoption of best practices, 190-192
 Aetna, 245-250
 EMC Corporation, 253-271
 analytics overview, 11, 23-29
 current state, 24-27
 Maturity Model, 27-29
privacy practices, 96
performance improvement
 actualizing value management, 89
 BI (business intelligence)
 performance benchmarks, 86-87
 business value of analytics, 84-85
performance management
 approach, business value of analytics, 89-90
perimeter security, 94
personal data, industry discovery process, 110
personalized genetic medicine, 19
pharmaceutical manufacturing, life sciences analytics overview, 34-36
Pharmaceutical Quality for the 21st Century: A Risk-Based Approach Progress Report, 35
Pharmacy Benefits Management Services database, 225
Physician Quality Reporting Initiative (PQRI), 145, 208
physician targeting, 37
population analytics, 19
population health, 5, 125-126
portfolio management, actualizing value management, 90
PQRI (Physician Quality Reporting Initiative), 145
predicted healthcare costs, care management systems, 164
predicting patient costs, 167
predictive analytics, 16
 information security, 98
 manufacturing organizations, 37
 modeling algorithms, 66-67
 provider organizations, 18-19
predictive modeling, industry discovery process, 109
principal component analysis, 62
privacy practices, 93-100
 compliance and acceptable use, 99
 future, 100
 life science organizations, 97
 payers, 96
 provider organizations, 95-96
 risk analytics, 97-99
Process Analytical Technology (PAT), 35
processes, 56
 CRISP-DM, 56
 DMAIC, 56
 SEMMA, 56
 Six Sigma, 56
provider analytics, healthcare payers, 25
Provider Collaboration/Education category (social media impact), 178-180
provider organizations, 15-22
 adoption of best practices, 188-190
 AFMS, 231-238
 Catholic Health Initiatives, 213-220
 HealthEast Care System, 239-243
 Partners, 195-211
 VHA, 223-230
analytics overview, 10-11, 15-22
 analytical applications, 18-19
 clinical and patient safety activity, 15
 financial and operational activity, 15
 future of analytics, 18-22
 levels of analytical capability, 16-17
 information security, 95-96
Q
QbD (Quality by Design), 35
QSAC (Quality and Safety Analytics Center), 226
Quality and Safety Analytics Center (QSAC), 226
Quality by Design (QbD), 35
quality measurement programs, as driver for clinical quality analytics, 145
quality metrics, VHA, 227-229
quality reporting paradigm, regulatory imperatives for meaningful use, 132-135
quantifying impact of social media, 175-176
quantitative analytics, 23
Quit for Life smoking cessation program, 262

R
R² (R-squared) adjusted, 73
R-squared (R²) adjusted, 73
random sampling, 60
ratio variables (data scales), 58
Realization of Patient Protection, 78
realization phase, value life cycle, 79
receiver operating characteristic (ROC Index), 73
Red Flag rules, 99
reductions in costs, healthcare value framework, 43-44
reference
analytical processes, 56
CRISP-DM, 56
DMAIC, 56
SEMMA, 56
Six Sigma, 56
data partitioning techniques, 59
data scales, 58
categorical/nominal measures, 58
interval variables, 58
ordinal variables, 58
ratio variables, 58
key statistical concepts, 61-63
model fit and comparative performance statistics, 70-73
modeling algorithms and techniques, 66-67
sampling techniques, 59-60
time series forecasting, 70-71
types of analytics, 56
variable/feature selection techniques, 62
reference sites, 176
regression coefficients, 67, 73
regulatory imperatives, meaningful use, 129-140
driving analytics behavior, 135-139
future of analytics, 21, 139-140
shifting quality analysis paradigm, 132-135
support of EHR adoption, 131-132
reimbursement model changes, as driver for clinical quality analytics, 145
reporting team, HealthEast Care System, 242
research analytics, analytical competencies, 51
residual sum of squares (RSS), 75
resource allocation matrix, care management systems, 164
resources, business value of analytics, 90-91
response variables, 63
results, HSDW, 236-237
revenue cycle analytics, 19
revenue growth, as business driver to increase value, 81
risk analytics, 97-99
risk dashboarding, information security, 98
RMSE (root mean square error), 73
ROC Index (receiver operating characteristic), 73
root mean square error (RMSE), 73
RSS (residual sum of squares), 75
sales and marketing, life sciences
analytics overview, 36-37
sample size, 63
Sample step (SEMMA process), 56
Sample, Explore, Modify, Model,
Assess (SEMMA) process, 56
sampling techniques, 59-60
SAS datasets (VA), 225
scales of data measurement, 58
 categorical/nominal measures, 58
 interval variables, 58
 ordinal variables, 58
 ratio variables, 58
scope of responsibilities, Aetna
Integrated Informatics, 247
scorecards, healthcare
improvements, 123
scoring patients at risk, 19
security analytics, information
security, 93-100
 compliance and acceptable use, 99
 future, 100
 life science organizations, 97
 payers, 96
 provider organizations, 95-96
segmentation, 67
SEMMA (Sample, Explore, Modify,
Model, Assess) process, 56
significance level, 63
Simple Random Sampling
(SRS), 59
Six Sigma, 56
slope, 67
SmartBeat, 262
social media, 5
 healthcare improvements, 126-127
 impact on healthcare
 improvements, 175-183
 categories of social media,
 178-183
 complexity of social media,
 176-177
 defining social media, 176
 HCSM, 178
 quantifying impact, 175-176
solutions (implementation methods
for healthcare improvements),
121-127
 advanced analytics, 161-167
 clinical analytics, 153-159
 clinical quality analytics, 143-151
 delivery of care, 123-125
 EHRs (electronic health records),
 4, 121-123
 improving delivery of care, 4-5
 meaningful use, 129-140
 medical errors, 5
 population health, 5, 125-126
 social media, 5, 126-127
 social media impact, 175-183
SQL (Structured Query
Language)-based queries,
detecting clinical errors, 156
SRS (Simple Random Sampling), 59
SSE (sum of square error), 73
statistical analysis, modeling
 algorithms, 66-67
statistics, 56, 61-63
stepwise selection, 62
Stone, John, 206
strategic alignment, as challenge for AMS, 234
strategy map, Brigham & Women’s Hospital, 210
stratified sampling, 60
strengths of industries, 108
Structured Query Language (SQL)-based queries, detecting clinical errors, 156
student’s t-Test, 73
sum of square error (SSE), 73
supply chain analytics, 19
Svendsen, Dr. Craig, 239

T

t-Test, 73
Target component (DELTA model), Catholic Health Initiatives, 219
taxonomy for healthcare analytics, 49-53
 analytical competencies, 51-52
 inventory of options, 49-51
TCO (Total Cost of Ownership), 86
test sets, 59
text mining, 56
time series, 67, 71
time series forecasting, 70-71
Total Cost of Ownership (TCO), 86
training sets, 59
transformation (industry challenge), 107
translating adaptations, cross-pollination across industries, 112-114

triggers
diagnostic errors, 155-157
EHR-related errors, 158-159
medication errors, 157-158
types of analytics, 56
U.S. Quality Algorithms (USQA), 246
undersampling, 60
United Healthcare, analytical capabilities, 29
USQA (U.S. Quality Algorithms), 246

U–V

utilization impact, care management systems, 164, 166-167
validation of actionability, business value of analytics, 84-85
validation sets, 59
value analysts, 88
value framework, healthcare improvements, 43-46
value life cycle, 78-80
value realization, actualizing value management, 89-90
value-based purchasing, 145
variability, 63
variable/feature selection techniques, 62
Veterans Health Administration.
 See VHA
Veterans Health Information Systems and Technology Architecture (VistA), 224
Veterans Integrated Services Network (VISN), 225
Vetter, Delia, 258
VHA (Veterans Health Administration), 223-230
 analytical groups and initiatives, 225-227
 EMR system, 224-225
 future uses of analytics, 229-230
 quality metrics and dashboards, 227-229
vision
 AFMS, 231-232
 EMC Corporation, 255-257
VISN (Veterans Integrated Services Network), 225
VistA (Veterans Health Information Systems and Technology Architecture), 224

W
weighted moving average
 statistics, 71