

A Practical Guide to
Distributed Scrum
By Elizabeth Woodward, Steffan Surdek, and

Matthew Ganis

ISBN-13: 978-0-13-704113-8

This is the fi rst comprehensive, practical guide

for Scrum practitioners working in large-scale

distributed environments. Written by three of

IBM’s leading Scrum practitioners—in close

collaboration with the IBM QSE Scrum Community

of more than 1,000 members worldwide—this

book offers specifi c, actionable guidance for

everyone who wants to succeed with Scrum in

the enterprise.

Readers will follow a journey through the lifecycle

of a distributed Scrum project, from envisioning

products and setting up teams to preparing for

Sprint planning and running retrospectives. Using

real-world examples, the book demonstrates how

to apply key Scrum practices, such as look-ahead

planning in geographically distributed environ-

ments. Readers will also gain valuable new

insights into the agile management of complex

problem and technical domains.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks.com/newsletters

Disciplined Agile Delivery
A Practitioner’s Guide to Agile

Software Delivery in the Enterprise

By Scott W. Ambler and Mark Lines

ISBN-13: 978-0-13-281013-5

It is widely recognized that moving from

traditional to agile approaches to build

software solutions is a critical source of

competitive advantage. Mainstream agile

approaches that are indeed suitable for small

projects require signifi cant tailoring for larger,

complex enterprise projects. In Disciplined
Agile Delivery, Scott W. Ambler and Mark Lines

introduce IBM®’s breakthrough Disciplined

Agile Delivery (DAD) process framework,

which describes how to do this tailoring. DAD

applies a more disciplined approach to agile

development by acknowledging and dealing

with the realities and complexities of a portfolio

of interdependent program initiatives.

Ambler and Lines show how to extend Scrum

with supplementary agile and lean strategies

from Agile Modeling (AM), Extreme Program-

ming (XP), Kanban, Unifi ed Process (UP), and

other proven methods to provide a hybrid

approach that is adaptable to your

organization’s unique needs.

Related Books of Interest

Visit ibmpressbooks.com

for all product information

Agile Career Development
Lessons and Approaches from IBM

By Mary Ann Bopp, Diana A. Bing,

Sheila Forte-Trammell

ISBN-13: 978-0-13-715364-0

Supercharge Performance by Linking

Employee-Driven Career Development with

Business Goals

How do you make career development work for

both the employee and the business? IBM® has

done it by tightly linking employee-driven career

development programs with corporate goals. In

Agile Career Development, three of IBM’s leading

HR innovators show how IBM has accomplished

this by illustrating various lessons and approach-

es that can be applied to other organizations as

well. This book is for every HR professional, learn-

ing or training manager, executive, strategist, and

any other business leader who wants to create a

high-performing organization.

Patterns of Information
Management
By Mandy Chessell and Harald Smith

ISBN-13: 978-0-13-315550-1

Use Best Practice Patterns to Understand

and Architect Manageable, Effi cient

Information Supply Chains That Help You

Leverage All Your Data and Knowledge

In the era of “Big Data,” information pervades

every aspect of the organization. Therefore,

architecting and managing it is a multi-

disciplinary task. Now, two pioneering IBM®

architects present proven architecture patterns

that fully refl ect this reality. Using their pattern

language, you can accurately characterize the

information issues associated with your own

systems, and design solutions that succeed

over both the short- and long-term.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks.com/newsletters

An Introduction to IMS

Your Complete Guide to IBM

Information Management Systems,

2nd Edition

Barbara Klein, et al.

ISBN-13: 978-0-13-288687-1

Outside-in Software

Development

A Practical Approach to Building

Successful Stakeholder-based

Products

Carl Kessler, John Sweitzer

ISBN-13: 978-0-13-157551-6

Enterprise Master Data

Management

An SOA Approach to

Managing Core Information

Dreibelbis, Hechler, Milman,

Oberhofer, van Run, Wolfson

ISBN-13: 978-0-13-236625-0

Implementing the IBM®
Rational Unifi ed Process®
and Solutions
By Joshua Barnes

ISBN-13: 978-0-321-36945-1

This book delivers all the knowledge and insight

you need to succeed with the IBM Rational

Unifi ed Process and Solutions. Joshua Barnes

presents a start-to-fi nish, best-practice roadmap

to the complete implementation cycle of IBM

RUP—from projecting ROI and making the

business case through piloting, implementa-

tion, mentoring, and beyond. Drawing on his

extensive experience leading large-scale IBM

RUP implementations and working with some of

the industry’s most recognized thought leaders in

the Software Engineering Process world, Barnes

brings together comprehensive “lessons learned”

from both successful and failed projects. You’ll

learn from real-world case studies, including

actual project artifacts.

Work Item Management

with IBM Rational

ClearQuest and Jazz

A Customization Guide

Shmuel Bashan, David Bellagio

ISBN-13: 978-0-13-700179-8

Software Test Engineering

with IBM Rational

Functional Tester

The Defi nitive Resource

Davis, Chirillo, Gouveia, Saracevic,

Bocarsley, Quesada, Thomas, van Lint

ISBN-13: 978-0-13-700066-1

This page intentionally left blank

 Being Agile

This page intentionally left blank

Being Agile

Eleven Breakthrough
Techniques to Keep You from
“Waterfalling Backward”

IBM Press
Pearson plc
 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
 New York • Toronto • Montreal • London • Munich • Paris • Madrid
 Cape Town • Sydney • Tokyo • Singapore • Mexico City

 ibmpressbooks.com

 Leslie Ekas

Scott Will

 The authors and publisher have taken care in the preparation of this book, but make no expressed or

implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed

for incidental or consequential damages in connection with or arising out of the use of the information or

programs contained herein.

 © Copyright 2014 by International Business Machines Corporation. All rights reserved.

 Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure

is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

 IBM Press Program Managers: Steven M. Stansel, Ellice Uffer

 Cover design: IBM Corporation

 Executive Editor: Bernard Goodwin

 Marketing Manager: Stephane Nakib

 Publicist: Heather Fox

 Managing Editor: Kristy Hart

 Designer: Alan Clements

 Project Editor: Elaine Wiley

 Copy Editor: Apostrophe Editing Services

 Indexer: Erika Millen

 Senior Compositor: Gloria Schurick

 Proofreader: Jess DeGabriele

 Manufacturing Buyer: Dan Uhrig

 Published by Pearson plc

 Publishing as IBM Press

 IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special

sales, which may include electronic versions and/or custom covers and content particular to your business,

training goals, marketing focus, and branding interests. For more information, please contact

 U. S. Corporate and Government Sales

1-800-382-3419

 corpsales@pearsontechgroup.com .

 For sales outside the United States, please contact

 International Sales

 international@pearsoned.com .

The following terms are trademarks or registered trademarks of International Business Machines

Corporation in the United States, other countries, or both: IBM, the IBM Press logo, FileNet, Rational,

ClearCase, ClearQuest, Rational Team Concert, AIX, and POWER6. A current list of IBM trademarks is

available on the web at “copyright and trademark information” as www.ibm.com/legal/copytrade.shtml.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both. Other company, product, or service names may be trademarks or

service marks of others.

 Library of Congress Control Number: 2013946079

 All rights reserved. This publication is protected by copyright, and permission must be obtained from

the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission

to use material from this work, please submit a written request to Pearson Education, Inc., Permissions

Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to

(201) 236-3290.

ISBN-13: 978-0-13-337562-6

 ISBN-10: 0-13-337562-5

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

 First printing: October 2013

http://www.ibm.com/legal/copytrade.shtml

This page intentionally left blank

xi

Contents

 Preface xviii

 Acknowledgements xxi

 Introduction By Leslie Ekas 1
 Who This Book Is For 1

What Is Our Approach? 1

What Does This Book Cover? 3

An Overview Of The Content 4

What Do You Have To Do? 6

What Benefits Can You Get from Reading This Book? 6

Who Are We? 6

Join the Conversation 7

 Chapter 1 Whole Teams 9
Being agile requires whole teams because the synergy derived
from cross-disciplined and cross-component
teams working together enables teams to be more
productive than working in isolation.
By Leslie Ekas

 Principles 10

What Is a Whole Team? 10

Why Are Whole Teams Hard to Create? 11

Cross-Component Teams 11

Cross-Discipline Teams 12

Cross-Geographical, Cross-Cultural, Large Teams 13

Stable, Dedicated, and Protected 14

Practices 16

Start with Whole Teams 16

Maintain and Protect Dedicated Teams 16

The Conversation 17

Share the Same Truth 19

No Partial Credit 19

Offer Help 20

Metrics 20

Breakthrough 21

Summary 22

xii Contents

 Chapter 2 Active Stakeholder Interaction 25
Being agile requires active stakeholder interaction
because only your stakeholders can confirm that
what you create actually meets their needs.
By Scott Will

 Principles 26

What Is Active Stakeholder Interaction? 26

Why Can It Be Hard to Get Active Stakeholder Interaction? 27

Stakeholder Interaction Is Not a New Idea 29

Stakeholder Interaction Is Not Optional 29

Do What’s Needed—And No More 30

Practices 31

Identifying Stakeholders 31

Review Epics with Stakeholders 33

Set Expectations 33

Stakeholders Should Have Skin in the Game 34

Make Stakeholder Interaction Compelling for Your Customers 35

Doing Regular Demonstrations 35

Reacting to Feedback Received 36

When Is the Development Organization a Stakeholder? 37

Customer Support Teams as Stakeholders 38

Working with Customers in Countries Other Than Your Own 39

Metrics 39

Breakthrough 40

Summary 42

 Chapter 3 Queuing Theory 43
Being agile requires embracing queuing theory
practices because teams achieve greater efficiency
and throughput by leveraging a steady flow of small
work items.
By Scott Will

 Principles 44

Why Does Waterfall Thinking Still Linger? 44

Small Batches of Coordinated Work 45

Frequent Feedback 46

Ensure Sufficient Capacity 46

Practices 47

Small Task Sizes: 4 Hours, 8 Hours, 16 Hours 47

One User Story at a Time 48

Short Iterations 49

Metrics Should Support the Focus on Working Software 50

Metrics 50

Breakthrough 51

Summary 51

Contents xiii

 Chapter 4 No Multitasking 53
Being agile requires teams to avoid multitasking
because teams are more productive when they focus.
By Scott Will

 Principles 55

One Thing at a Time Is More Efficient 55

Flow 56

Stop Starting; Start Finishing 57

Practices 57

Team Members Are Dedicated to a Project 100% of the Time 57

One Project at a Time 58

Be a “Firewall” and Stop Being a “Fast-Forward” Button 58

Pair Programming; Pair Testing 59

Calendar Ruthlessness 59

Metrics 60

Breakthrough 61

Summary 62

 Chapter 5 Eliminate Waste 63
Being agile requires eliminating waste to realize
significant efficiency, productivity, and quality gains.
 By Leslie Ekas

 Principles 64

What Is Eliminating Waste? 64

Why the Focus on Eliminating Waste? 65

Technical Debt 65

Project Debt 67

Why Is It Hard to Eliminate Waste? 67

Practices 69

Get Rid of Waste... One Way or Another 69

Small Tasks 70

Build Quality In 71

Focus on Customer Value 72

Expand “Done!” Criteria 73

Handling Latent Defects 74

Stop Writing Defect Records 74

Metrics 75

Breakthrough 76

Summary 77

xiv Contents

 Chapter 6 Working Software 79
Being agile requires always having working software because it
validates progress, ensures the highest
levels of quality, and enables regular feedback.
By Leslie Ekas

 Principles 80

What Is Working Software? 80

Why Is It Hard to Regularly Have Working Software? 82

Working Software Extends Test Suites 82

Practices 83

Short Iterations 83

Continuous Integration and Automation 84

Vertically Sliced Stories 85

Evolutionary Architecture and Emergent Design 86

In-House Deploys 88

Metrics 89

Breakthrough 89

Summary 91

 Chapter 7 Deliver Value 93
Being agile requires delivering real value so that
customers succeed with your product.
By Scott Will

 Principles 94

Why User Stories? 94

Practices 97

The “So That” Clause 97

Vertically Sliced Stories 98

Acceptance Criteria 99

Using Velocity Effectively 100

Metrics 103

Breakthrough 103

What Exactly Is a Zero-Gravity Thinker? 104

A Real Example 106

Zero Gravity Thinking in Sum... 106

Summary 107

Contents xv

 Chapter 8 Release Often 109
Being agile requires releasing software often so
that teams learn fast and customers succeed sooner.
By Leslie Ekas

 Principles 112

Why Release Often? 112

Do Just Enough 113

Defer Commitment 114

Why Can It Be Hard to Release Often? 116

Practices 117

Start with Shorter Release Cycles 117

Epic Stories 117

Evolutionary Product Design 119

High Value First 120

High Risk First 121

Value-Driven Development: the Outworking of Frequent Code Drops 123

Metrics 124

Breakthrough 125

Summary 128

 Chapter 9 Stop the Line 129
Being agile requires that teams stop the line to
solve critical problems at their core so that they
do not lose time by dealing with the same problem
again and again.
 By Leslie Ekas

 Principles 130

What Is Stop the Line? 130

Why Is Stop the Line Hard? 131

Practices 133

Fix Blockers 133

Reflections as a Guide 133

What if the Problem Is Too Big to Stop the Line? 133

Metrics 134

Breakthrough 139

Summary 141

xvi Contents

 Chapter 10 Agile Leadership 143
Being successful with agile requires leaders who
learn, participate in, and experiment with agile so
that they lead with an agile mindset and react with
agile instincts.
By Leslie Ekas

 Principles 145

Agile Leadership 145

Why Is Agile Leadership Hard? 146

Practices 147

Learn Agile, Experience Agile, Develop Agile Instincts 147

Enable and Protect 148

Help Your Team Learn, Let Your Team Fail 149

Set Priorities, Provide Boundaries, and Let the Team Figure Out How 151

A Single, Visible View of the Truth 153

Metrics 154

Breakthrough 154

Summary 155

 Chapter 11 Continuous Improvement 157
Being agile requires continuous improvement
because teams that continue to learn, adapt, and evolve
are more productive and competitive. Agile is a
never-ending journey of getting better.
By Scott Will

 Principles 158

Why Is Continuous Improvement Important? 158

Why Is Continuous Improvement Hard? 159

There Is No Such Thing as “100 Percent Agile” 159

Realize That You Will Learn New Things as a Project Progresses 160

You Need to Set Time Aside to Sharpen Your Axe 160

Focus on Small, On-Going Improvements 161

Learn from Your Mistakes; Don’t Make Them Again 162

Fail Fast 162

Management Needs to Actively Promote Innovation 162

Practices 164

Reflections 164

Value Stream Mapping 166

Addressing Reluctance 167

The “Art” of Continuous Improvement 167

Share 169

Metrics 169

Breakthrough 169

Summary 170

Contents xvii

Appendix By Scott Will 173
Exploring Your Agility: A Brief, Annotated Questionnaire 173

What Would You Be Willing to Give Up? 174

Questions on Various Agile Practices 175

How Long Are Your Iterations? 175

How Often Do You Build? 176

What Disciplines Are on Your Teams? 176

Do You Carry a Defect Backlog? 176

What Do You Automate? 177

Do You Conduct Status Meetings? 177

Are You Delivering Value to Your Customers? 178

Do You Get to “Done!” Each Iteration? 178

Are You Getting Better? 178

Concluding Thoughts 178

Index 179

xviii

 By Leslie Ekas

 Your team embarked on adopting agile a while ago, but the results you expected to see by now

just haven’t materialized. To be honest, you’re kind of surprised, especially given all the hype

about agile, the stories of wild success you’ve seen online, and the tremendous enthusiasm

expressed by the team early on. There might even be some whispered talk in the hallway about

“chucking this agile thing” and going back to waterfall. If you find yourself in a situation similar

to this, then this book is for you.

 The target audience is software engineers and leaders who understand how to apply agile to

software development but may find their teams falling back into old habits when the going gets

tough or because an old waterfall approach seems like the right thing to do. It is also for those

teams that have adopted agile but do not feel like there has been a significant improvement. Our

goal in writing this book is to give you the means to be agile as well as to help keep you from

“waterfalling backward.”

 Transforming to agile from waterfall is no small undertaking. Resorting to old habits when

trouble hits is what our instincts tell us to do. When I started to learn agile, the first organization

I led experienced challenges adopting agile but, fortunately, I got some unwavering encourage-

ment and then some timely help. Let me explain: I first learned about agile in early 2007 in a

class led by Tom and Mary Poppendieck. Following the class one of my teams jumped into agile

and after approximately 6 months concluded that it was enabling us to deliver better value to our

customers. However, the change was not compelling, we were not getting all the practices to suc-

ceed, and we were wondering when “the big moment” would happen when significant benefits

became obvious. My team leaders and I had the opportunity to get additional coaching from Tom

and Mary after the class to help our team address our specific problems. We described the chal-

lenges we faced with our agile adoption: not getting to “Done!” each iteration, not working well

Preface

Preface xix

together as a team, failing to break our pattern of building up project debt, and so forth. We were

discouraged and hoped that they would give us the key to resolving our problems. Tom and Mary

both smiled and said, “You’ll do fine.” I wanted to scream! “What do you mean by ‘fine’?!?!?

We can’t get it right! And you can’t believe how many problems we have to fix!”

 It took me a while to understand their reaction. They did give us the key to resolving our

problems, or at least they told us that we already had the key. They knew we were trying new

ideas and wanted to have more success than we had experienced. They knew that with more suc-

cess, we would try harder and get better—and they were right. Teams that are actually trying to

get better are well on their way to becoming agile.

 In our quest to get better, my team did finally experience a pivotal moment that not

only fixed a significant waterfall problem that we had but also changed the way that we thought

about working together. We wrote this book for anyone who wants to break through old ways of

thinking—but may need a few tricks to get there.

 Now let me start from the beginning and describe the events that led Scott and me to write

this book. I worked for years as a software developer and then as manager in typical waterfall-

style projects. Our teams had good engineering discipline and shipped good products; however,

I did not think that we were delivering high enough value or quality to our customers. I was frus-

trated because I did not know how to fix the problems. We looked at several popular approaches

but none of them got my attention until I learned about agile. When I started practicing agile in

2007, I was excited because this approach made sense, and the literature indicated that adopting

agile produced some believable and compelling results.

 My team started its agile journey implementing daily standup meetings, using 1-month

iterations, completing iteration planning, demonstrations, and reflections, and even trying to

build a product backlog. I noticed several positive changes taking place within the team—but did

I think the move to agile was compelling? To be honest, no. Our results were not earth shaking.

We were productive before moving to agile and that had not changed significantly.

 At first, my team was organized like many traditional teams are—by discipline. We had

very skilled teams working on the product; however, they were used to working in their silos—

and that is where they stayed. They met as a group but worked in their individual disciplines.

This same problem kept surfacing during our reflections at the end of each iteration—we were

not working well together. We tried to fix this problem in a variety of ways but nothing worked,

and most of us sensed that not solving this problem would lead to defeat with agile. An outside

consultant suggested that we try bullpens (more on this in Chapter 1 , “Whole Teams”)—and it

worked. I mean, it really worked, immediately. Our team started to become a whole team, and it

made a difference in our results. The change was so compelling that we never looked back. This

was our breakthrough. Given how eye opening my team’s first breakthrough was, it prompted us

to continually look for other breakthroughs. This book is the result of our efforts and experiences

in discovering other breakthroughs.

xx Preface

 The goal for this book is to help teams that have adopted agile but are struggling to make

it stick, or struggling to get compelling value from it, or both. Old habits die hard, and in those

instances when agile does not stick, it is often because teams have not experienced an “Ah-ha!”

moment that changes the way they think. When no compelling improvements are noted, teams

tend to “waterfall backward” one compromise (or excuse) at a time. Symptoms of waterfalling

backward include moving to longer iterations, resetting iteration end dates, not breaking down

user stories to fit into an iteration, measuring project progress based on individual disciplines

instead of focusing on “working software,” and an inability to share the work due to limited

domain expertise.

 In this book we offer several breakthrough techniques that enable teams to experience

enough of an “Ah-ha!” moment that it breaks typical, reflexive waterfall thinking, thus allowing

agile thinking which, in turn, helps transform software engineering teams from simply “doing

agile” to actually “being agile”—with the resulting increase in realized benefits.

 So back to my opening comments: If you’re looking for ways to get better, you’ve passed

the first hurdle to actually getting better. In addition, if you know that your team needs to get bet-

ter but have difficulty convincing others that more benefits can be gained from moving further

down the agile path, this book is also for you. Our hope is that you discover valuable techniques

and gain new insights that help you continually improve. We also hope that your successes excite

other teams in your organization (especially those on the verge of giving up) to press on. We like

to see teams not only adopt agile, but also make it stick. Agile is fun and it helps teams produce

higher value and higher quality software.

 Join the Conversation
 We encourage you to join the agile conversation on our blog: “Being Agile.” You can find it at

 www.ibm.com/developerworks/community/blogs/beingagile/?lang=en .

http://www.ibm.com/developerworks/community/blogs/beingagile/?lang=en

xxi

 We really enjoyed writing this book because it helped us to distill our years of thinking about

these topics. We have had many discussions through our work with various teams on what is

required to help them succeed and our hope is that we can help even more teams with this book.

 We received our initial education on agile software development from Tom and Mary Pop-

pendieck. In addition to their education, the Poppendiecks gave IBM® tremendous support that

we have leveraged in our coaching over the years. The Poppendiecks certainly gave Leslie and

her team the motivation early on to stick with their efforts to make agile work and to get better

in the process of doing so. We also want to thank Tom in particular for providing a review of our

initial book proposal and his subsequent reviews of various chapters.

 Leslie would also like to thank Stan Rifkin whose guidance early on helped her team

achieve an “Ah-ha!” moment that really made its agile transformation become permanent.

 Also, we want to thank Pramod Sadalage who provided reviews on every chapter. He

helped us clarify and improve our explanations of several topics that, otherwise, might have been

a little too IBM-centric.

 We thank Scott’s daughter Karoline Strickland for her review of our chapters in the final

weeks. Her strength in writing combined with her lack of subject matter expertise made her

an outstanding reviewer because she could quickly detect when our thoughts were not coming

across clearly. Karoline now calls herself a “zero-gravity reviewer” (you’ll just have to read the

Deliver Value chapter to get the joke).

 Mark Wainwright was a fellow coach in the IBM Software Group Agile Center of Compe-

tence prior to retiring from IBM. He provided very useful feedback early in the process of writing

our proposal that helped us redesign our approach in conveying the material in the book. We had

many great times working with Mark and his insights always kept us on track. We thank him for

all his support, the things we learned from him, and for his friendship.

Acknowledgments

xxii Acknowledgments

 Dibbe Edwards, a Vice President in the IBM Rational Software organization, provided

IBM executive sponsorship for this book. She has championed the agile mission in IBM for a

long time and has supported our efforts to help teams realize the rewards that agile adoption has

to offer. Dibbe willingly supported new approaches to solve some difficult problems and her

leadership helped her teams achieve ever-higher levels of productivity when adopting agile.

 As we’ve continued to work with teams across all of IBM, it’s always gratifying to see

others take up the flag and help drive agile adoption as well. Yvonne Matute is one such person

and Matthew Stave is another. We would like to thank Yvonne for letting us use quotes from an

email she sent to us describing her team’s successes in adopting agile and to Matthew for letting

us include his list of items regarding the adoption of short iterations that we’ve included in the

Appendix of the book.

 We would also like to thank Carl Kessler for his early and ongoing encouragement to all of

IBM to move to agile. We both had the distinct pleasure of working for Carl at various points in

our careers and, even though Carl retired from his role as a senior development executive in IBM

several years ago, his name still regularly comes up in conversations revolving around helping

teams adopt agile. Thank you, Carl!

 It should come as no surprise that writing this book took time away from our respective

families, so we would both like to publicly thank our families for putting up with late nights,

missed dinners, and not doing all the other things we could have been doing with you. The sup-

port we received from you all was critical in seeing this dream come to fruition. Thank you so

much!

 We heartily thank all the teams that we have worked with because they persevered and got

better, and they enabled us to learn and leverage their experiences and their unique perspectives

for our coaching responsibilities. If it wasn’t for your willingness to hear us out and to try new

things, this book would never have been written. You know who you are! And now you know

how thankful we are to you!

 Finally, we would like to thank Steven Stansel from IBM Press, and Bernard Goodwin,

Michelle Housley, and Elaine Wiley of Pearson Press for all their incredible help in making this

book a reality.

 We would also like to acknowledge that, as with any major undertaking, not everything

is going to be perfect. Any errors and any lack of clarity you may find while reading the book

remain the sole responsibility of the authors.

xxiii

Leslie Ekas has worked in software development for over 20 years as
a developer, manager, and agile coach. Her industry experience ranges
from a startup, to a mid-sized company, and now IBM. She has led mul-
tiple products to market successfully over the years. She has managed
teams of all sizes and many disciplines and across broad geographies.
Leslie helped start the IBM Software Group Agile Center of Compe-
tence after her team’s early success transforming to agile. After coaching
for several years, she returned to development to lead the worldwide Rational
ClearCase team. In her new job as the Smarter Infrastructure Portfolio Man-
ager, she is helping the business team adopt an agile operational approach.

Scott Will has been with IBM for more than 22 years, the last six as an
agile consultant. His experience ranges from providing consulting for small,
co-located teams to teams with hundreds of engineers scattered across the
world. Previously Scott was a successful programmer, tester, and customer
support team lead, and he was in management for years. He is a contributing
author to the book Agility and Discipline Made Easy, an IBM Master Inven-
tor with numerous patents, a former Air Force combat pilot, and a graduate
of Purdue University with degrees in Computer Science, Mathematics, and
Numerical Analysis. He also completed his MBA while in the Air Force.

About the Authors

This page intentionally left blank

1

 Introduction

 By Leslie Ekas

 Who This Book Is For
 Transforming from a waterfall-based methodology to agile is no small undertaking. This book is

for people who may find their team falling back into old habits when the going gets tough or just

because an old waterfall approach seems like the right thing to do. It is also for those teams that

have adopted agile but do not feel like there has been a significant improvement. The target audi-

ence includes both leaders and members of agile teams. The goal in writing this book is to give

you the means to react to situations and challenges in an instinctively agile way and, thus, secure

the real benefits that agile promises.

 What Is Our Approach?
 Adopting agile requires a change in thinking—it’s not just adopting a set of practices. Too many

teams have adopted a list of practices and called themselves “agile.” This book can help teams

get past a typical, rote approach to adopting agile and start gaining the real benefits that agile

promises. Even if you are already experienced and successful with agile, you can gain additional

insights that can help you and your teams be even more successful. (Continuous improvement is

one of the fundamental concepts of agile.) Basically, we don’t care what specific agile practices

you’ve adopted—what we’re concerned with in this book is whether you’ve gained the benefits

from adopting those practices and, if not, we can provide some help in showing you how to do so.

 Agile continues to grow in popularity because the benefits promised are substantial. As

markets grow more competitive, and products become more sophisticated, software develop-

ment teams need to become more efficient and effective while still ensuring high product quality

and delivering real customer value. Agile gives teams a proven way to address these challenges.

However, being an agile team is more than having daily standups, chunking up work into short,

time-boxed iterations, and always having working software. Agile means thinking differently:

2 Introduction

focusing on customer-value, continuous high-quality development, constant improvement,

and more. If teams simply adopt some practices—without understanding the principles behind

them—they may never get the full value of agile.

 Through our years of working with teams, we’ve found that teams need ways to overcome

their reflexive waterfall habits to really understand and benefit from agile. In our experience,

if teams couldn’t break an old habit, they would typically wind up with a modified waterfall

approach instead of truly becoming agile.

 This book reviews several of the foundational concepts in agile, covers the principles that

undergird each of the concepts, and then discusses the corresponding practices that complement

the principles. At the end of each chapter we offer a breakthrough technique that can provide a

mechanism for teams to move toward the goal of “being agile” instead of just “doing agile.”

 And now for a warning: To make a breakthrough, we recommend techniques that are radi-

cal enough that you CANNOT fall back into a waterfall habit. You have to remove the safety

net—no “cheating” allowed. One of the differentiators between this book and other agile books

is that we cover more than just agile practices; we discuss the principles on which the practices

are built and also offer breakthrough techniques that can help break old, bad habits. We broke

through ourselves and have seen many other teams succeed with these methods.

 This may sound funny, but it is our hope that when you read any of the breakthrough tech-

niques in this book, your first reaction is to tell us that we’re nuts! We want the ideas to feel edgy

enough that they make you feel uncomfortable. Getting out of your comfort zone is how it works.

Not all the ideas may strike you this way depending on how your team works currently—and

that’s OK.

 AN EXAMPLE OF A BREAKTHROUGH
 The following is an example of the type of habit-breaking we’re referring to, but it comes

from outside the realm of software engineering. Scott is a competitive marksman, as is his

wife and several family members. However, his oldest daughter always had problems with

flinching when she would shoot—she was anticipating the recoil of the firearm and it would

inevitably cause her shots to be off the mark. Scott had tried numerous ways to help his

daughter overcome the flinching habit, but often with little improvement noted. One day

he suggested that his daughter try shooting with both eyes open. (Note that most shoot-

ers will shoot with only their dominant eye open, focusing primarily on the firearm’s front

sight. When shooting with both eyes open, the focus must transition to the target instead

of the front sight.) When his daughter tried shooting with both eyes open, suddenly the

flinching stopped and she started hitting the target right where she was aiming. The radical

change in the shooting fundamentals likely “overloaded” her reflexive, flinching response

and helped her instead to become an excellent shooter, almost immediately. It truly was a

breakthrough...

What Does This Book Cover? 3

 What Does This Book Cover?
 In this book, Scott and I have distilled our collective 12 years’ experience in both leading soft-

ware teams through adopting agile and subsequently coaching many, many additional teams.

The book is divided into chapters that focus on 11 crucial topics for agile organizations. Chapter

 1 , “Whole Teams,” explores the vital need for developers, testers, and product documentation

writers to work together during each iteration to accomplish a small but valuable slice of func-

tionality. Each small portion of functionality can—and should—be regularly demonstrated to

customers, as described in Chapter 2 , “Active Stakeholder Interaction,” where we provide guid-

ance on how to get the most from these regular interactions.

 You may be challenged with getting to “Done!” every iteration. In Chapter 3 , “Queuing

Theory,” you’ll see how working on—and regularly completing—some small amount of func-

tionality allows teams to be much more productive and efficient than has ever been possible

with typical waterfall approaches. A common refrain in agile circles is, “Stop starting and start

finishing!”

 One of the primary obstacles to regularly finishing small amounts of work is the pervasive-

ness of multitasking, and in Chapter 4 , “No Multitasking,” we help you see why multitasking

(sometimes referred to as task-switching) is inherently inefficient. Here we help you see the dif-

ference between busyness and productivity .

 One of the principles of the Agile Manifesto is “Simplicity—the art of maximizing the

amount of work not done—is essential.” 1 To maximize the amount of work not done, there has to

be an intense focus on eliminating waste. Waste can take many forms in software development.

 Chapter 5 , “Eliminate Waste,” provides numerous ways to help you both to see waste and to get

rid of it.

 The flip-side of eliminating waste is ensuring that what is created is valuable—especially

with respect to your stakeholders. Chapter 2 covers how to engage with your stakeholders during

a release. In Chapter 7 , “Deliver Value,” we discuss ways to ensure that what your team is creat-

ing actually provides value to your stakeholders.

 And the best way to engage with your stakeholders regularly is to always have working

software. Two-hundred lines of code that provide some small amount of functionality, that are

“release-ready,” and that can be demonstrated to customers to get their feedback is far more valu-

able than 2,000 lines of code that haven’t been tested and can’t be shown to customers. Teams

should focus on always having working software, and Chapter 6 , “Working Software,” covers

just how important of a practice this is for agile teams.

 Always having working software allows teams to have much greater flexibility for actually

releasing a product. Scott and I come from the enterprise application software world in which it

is common for products to release once every 2 to 3 years. Given the rapid changes going on in

the industry today, with the advent of cloud technologies and continuous delivery approaches,

shorter release cycles are becoming the norm. But even apart from these, shorter release cycles

 1. http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

4 Introduction

are more efficient and provide more flexibility to teams than longer release cycles. Chapter 8 ,

“Release Often,” provides much food for thought on this topic.

 What do you do when a critical problem surfaces? Do you just address the symptoms and

move on? Chapter 9 , “Stop the Line,” encourages teams to immediately stop work when a criti-

cal problem surfaces and fix the problem at its root. Doing so means that the problem will never

surface again.

 As with stop the line behavior, many things covered in the book will likely seem coun-

terintuitive, especially given the hold that waterfall thinking has had on software development

for decades. Real transformation requires both a technical and executive leadership that genu-

inely understands agile principles and practices, is willing to learn more, encourages continuous

improvement, and provides a penalty-free environment. Chapter 10 , “Agile Leadership,” shows

that meaningful transformation cannot occur without leaders who engage with their teams when

embarking on an agile transformation.

 Perhaps the most important chapter in this book is Chapter 11 , “Continuous Improvement.”

We frequently tell teams that there is no such thing as “100 percent agile” because “being agile”

means always looking for ways to get better. The best teams we’ve worked with are those that

continually look for ways to get better. Chapter 11 provides a lot of encouragement to adopt a

continuous improvement mindset as part of your day-to-day thinking.

 The chapters are organized so that they can act as a ready reference for each topic. In addi-

tion, the chapters can be read in any order; in general, one chapter does not build on any previous

chapter. However, because many of the concepts and principles have a lot of affinity with each

other, you can see that we’ve emphasized some items in more than one place in the book. Adopt-

ing one agile concept or practice tends to pull other concepts and practices along with it. For

instance, the concepts of Stop the Line, Eliminate Waste, and Continuous Improvement overlap

in both intent and practice. However, they are separated in the book in order to reinforce the value

of each concept in isolation.

 As a side-note, Scott and I firmly believe that teams should not try to “tip-toe” into adopt-

ing agile. We recommend jumping in with both feet. Yes, it will be messier and more chaotic

than tip-toeing in, but the benefits will accrue faster because teams will learn faster. Pulling stuff

in slowly delays many of the benefits and can often actually derail motivation for going further.

(“We haven’t seen much benefit yet, why should we take on something else? Why not just go

back to waterfall...?”) Jumping into agile allows you to change your thinking, and consequently

your reflexive habits much more quickly.

 An Overview Of The Content
 Each chapter is divided into four main sections: Principles, Practices, Metrics, and Breakthrough.

The Principle section provides the conceptual foundation upon which the topic is built and shows

how the ensuing practices support the concept. These principles often provide the necessary

insight to help teams understand the “why” of adopting any given practice. Each principle is

An Overview Of The Content 5

described in terms of why it is important for agile thinking. The practices described are those

necessary for really making a transformation in an agile way. There is not a one-to-one mapping

between the principles and the practices—there is actually a lot of overlap between all the prin-

ciples and practices. In fact, in some cases it can be hard to classify an item as either a principle or

a practice because it can easily fit into both categories. So if this seems a bit confounding, don’t

worry about it. The content of the concept matters more than the context.

 If things are working well you generally know it, but it might be useful to have a way to

measure progress. Metrics are often useful to entice another team to try something similar, or

just to give you some context for your own results. The metrics section provides possible ways

to evaluate if the principles are sticking. Be careful, though, to not let them be your only guide in

understanding improvement.

 The set of concepts, principles, and practices that we’ve selected are ones that we have

found to be critical in helping our teams succeed. We are not trying to be exhaustive—there are

much better references for that. Our intent is to build a better understanding of each concept so

that you understand the thinking that is achieved by the breakthrough method. At the end of each

chapter we introduce a breakthrough technique to help make lasting transformations. Each tech-

nique is intended to help teams break their traditional, reflexive (waterfall) thinking patterns. We

did not invent all the breakthrough techniques—some have been adopted from our interaction

with other agile practitioners (such as the bullpen technique mentioned in the Preface). The oth-

ers are ones we’ve discovered through our coaching experiences. We know there are more tech-

niques out there and hope that this book will encourage teams to share what’s worked for them.

 We’ve also included a number of stories from teams with which we have worked. Some of

the stories are of successes. Others describe challenging situations we faced when first working

with a team—situations that forced us to think of out-of-the-box ways to help them. Some are

simply illustrative.

 As mentioned earlier, the focus of much of our coaching experience has been in helping

enterprise application software development teams. Enterprise application software is generally

defined as software that enables organizations to run their businesses better. It is not intended just

for individual usage. As such, it is expected to have a life cycle of up to 20 years or more in some

cases, is deployed to thousands of users, can run on a variety of hardware and software platforms,

can typically be enhanced via supported interfaces such as APIs, and generally is built with mil-

lions of lines of code. Examples include Facilities Management for global companies, Enterprise

Content Management that protects intellectual property, and Business Process Management that

guarantees audit-ready process compliance for regulated industries. Enterprise software obvi-

ously needs to operate continuously, needs to provide the ability to scale, must ensure that the

business value offered is secure, and more. For these reasons, enterprise software development

environments have tended to have heavier-weight processes as well as long-entrenched waterfall

practices. Teams tend to be large and are often spread out geographically and functionally. How-

ever, we are convinced that if these principles, practices, and breakthroughs work in enterprise

application software development, they can easily be applied to smaller development projects.

6 Introduction

 What Do You Have To Do?
 For this book to be useful, teams have to be willing to “jump off the cliff” (so to speak) and give

these breakthrough techniques a try. Many of the techniques can be tackled in a couple of weeks,

but adopting one or more means removing other distractions and staying focused so that the tech-

niques get the attention they require. Everyone on the team needs to have “skin in the game” and

make a conscious effort to succeed. Such a mindset can serve the team well on its agile transfor-

mation journey.

 Making agile stick is hard work. You may have to update your technologies, get rid of your

project debt, be rigorous in your planning and execution, learn how to work as a team, listen to

your stakeholders when they tell you what you may not want to hear, and keep the focus on get-

ting better. But your efforts will succeed. We can generally tell when teams are doing well with

their agile transformation because they are having fun .

 What Benefits Can You Get from Reading This Book?
 In this book, you can

 • Learn techniques that will break typical waterfall response patterns learned over many

years and which can also help with adopting a new agile way of thinking.

 • Learn why agile recommends various practices and why they are key to being

successful.

 • See how to gain the real benefits that agile promises.

 • Benefit from the authors’ combined 12 years’ experience at IBM® in coaching IBM

enterprise software teams in agile.

 • Benefit from the experiences of other teams who have adopted agile.

 • Use a short questionnaire at the end of the book to assess whether your team is just

“doing agile” or if you are actually “being agile.”

 • Add a useful, continually referenced agile book to your library.

 Who Are We?
 As with adopting agile, learning how to coach effectively requires years of experience and

continuous improvement. Both Scott and I became agile coaches and have spent many hours

discovering how to help teams get better. Just like agile adoption, coaching is a journey. Scott’s

years as an instructor pilot in the Air Force trained him to communicate techniques effectively,

often requiring him to find different ways to communicate the same principle to people who

learned and understood things differently. One of Scott’s favorite sayings is, “Communicate,

communicate, communicate!” This book has the same intention: to give you different ways to

understand critical agile concepts so that they can be communicated to a wide spectrum of teams.

Join the Conversation 7

 After leaving the Air Force in 1991, Scott joined IBM and has been a developer, Chief

Programmer, Customer Support team lead, Development Operations manager, System Test man-

ager, Quality Engineering manager, and had responsibility for the Quality Management System

for all IBM Software Group—all prior to becoming an agile coach.

 In addition to coaching agile teams, Leslie has been the senior development manager for

several organizations in IBM making the transition to agile. Her efforts started with her heritage

teams in FileNet® working on Enterprise Content Management and continued to Rational® work-

ing on the ClearCase® and ClearQuest® products, and then onto the Cloud and Smarter Infra-

structure organization focusing on the Smarter Infrastructure products. She worked for several

companies prior to joining IBM, including Boeing, Tandem, the Saros Corporation, and FileNet

(acquired by IBM in 2006). Teams are often tasked with “adopting agile” without much man-

agement participation and, given her management background, her perspective is that success-

ful adoption starts with leadership—and Scott is in complete agreement. We drive this point

throughout the book.

 As agile coaches, we enjoy the “I get it!” moments that people experience after they make

a breakthrough in their thinking. This is the goal we have for you. And if you don’t “get it” from

reading this book, hopefully you’ll “get it” from trying the breakthrough techniques. After you

do get it, it feels good—and you will want to find yet more new ways to drive improvement. And

that, in turn, is fun!

 Join the Conversation
 We encourage you to join the agile conversation on our blog: “Being Agile.” You can find it at:

 https://www.ibm.com/developerworks/community/blogs/beingagile/?lang=en

https://www.ibm.com/developerworks/community/blogs/beingagile/?lang=en

This page intentionally left blank

9

 C H A P T E R 1

 Whole Teams

 Being agile requires whole teams because the synergy derived from cross-disciplined and
cross-component teams working together enables teams to be more productive than working in
isolation.

By Leslie Ekas

 Do any of these phrases sound familiar?

 • “When are you going to get your problem solved?”

 • “Oops, I forgot to copy John on the email that discussed our proposed solution.”

 • “The test team can’t start working on this release yet, so we will have to start writing

code without them.”

 These are phrases typical of teams that work in silos. If you regularly hear such comments

from your team, you are likely not experiencing the benefits of whole teams. Whole teams are

composed of people who work together to deliver a product.

 The first time I saw the power of whole teams went something like this: While we were

building a product, our entire team met together to discuss various challenges. One developer was

working on a search interface, and innocently brought up a usability problem he was tackling.

This search interface showed various related fields that the user could select. (Just to describe

the scenario, think of one field being the state selection and another field being the city selection.

The city selection contents would change based on which state the user selected.) The developer

casually mentioned that if a user selected the state and city but then changed the state, he would

receive an error dialog alerting him that the city was no longer valid. One of the testers instantly

became indignant and complained that she hit this issue all the time and getting an error message

would drive her crazy! If she had to close an error message every time she switched the state

selection, she would despise the interface and the application. The meeting came to a halt in a

stunned silence.

 Luckily the whole team was in attendance and that included the user experience (UX)

expert. He agreed that the error dialog was a poor choice and recommended using a visual warn-

ing that the user could open or ignore. This may not seem like a big deal, but the team had already

10 Chapter 1 Whole Teams

used error dialogs in the code, so this was a change in the design pattern. But everyone liked it,

and after they discussed it, it seemed like it should have been the obvious solution all along. In

fact the idea was so well received that over time they updated the application to use it wherever

possible.

 What occurred to me while I listened was that, had this problem been raised after the entire

interface was written and was in test, it would have been considered an enhancement request.

As such, it would not likely have seen the light of day because it would have been too late to do

anything but fix broken functionality—forget about making the application a little easier to use.

The more code that is written before a good suggestion comes in, the harder it is to make a change

because it affects more code and subsequently requires more testing. So the team experienced

“just in time feedback,” which allowed them to make the product better.

 But what was so compelling is that the entire team was there. Without the whole team pres-

ent and working together, this problem would have taken weeks to solve. Using email, we would

likely have missed a few critical team members needed to “seal the deal.” As it was, in a few

hours a problem was solved, the customer got more value from the solution, and the team did not

have to revisit the issue again. During the meeting, feedback was given fearlessly and feedback

was taken constructively. For me, this was an early, albeit unintentional, demonstration of the

power of whole teams.

 Principles

 What Is a Whole Team?
 In the context of agile development, whole teams are teams that are both cross-component and

cross-discipline teams that work together throughout a product life cycle. The whole team is

responsible for the success of its work. By cross-discipline I mean a team that includes develop-

ers, testers, and user documentation professionals (writers). By cross-component I refer to teams

that are responsible—not for just a single component out of a larger project—but which have

the necessary expertise to work on all the affected components. The whole team concept goes

beyond just team composition though: The whole team concept is a way of thinking and acting

that must become the norm. In fact, until a team starts to be a true whole team, the team may

experience limited success with agile and may feel continually stuck in a beginner’s rut.

 Being agile requires whole teams because the synergy derived from cross-disciplined and

cross-component teams working together is more productive than when each discipline works in

isolation and/or when components are developed in isolation. Whole teams succeed because they

capitalize on the combined skills of each team member working together to accelerate their deliv-

erables. Working cooperatively, they can leverage each other’s insights, instincts, and responses

to ongoing work throughout a project.

 This chapter describes why whole teams experience better communication, productivity,

and collective knowledge sharing than traditional silo’d teams. It makes a case for keeping teams

intact as well as protecting them from interruption during a product release. 1

 1. Note that in some agile circles, the term “integrated teams” is used instead of “whole teams.”

Principles 11

 Why Are Whole Teams Hard to Create?
 Traditional software development organizational structures have advocated for teams that spe-

cialize in technology and are grouped by a common discipline, for example, development, test,

user documentation, and so on. The reasoning goes that teams composed of people with similar

skills can help each other within their own domains. Furthermore, it is believed that teams that

share a common discipline can be “time-sliced” across various projects as needed instead of

focusing on one project at a time. This is the epitome of the “job-shop” mentality in which engi-

neers just do their specific job and lose sight of the bigger picture. Unfortunately, optimizing the

efficiency of a particular discipline almost always sub-optimizes the organization—a point that

is often not well understood. Lean thinking in particular focuses on process throughput optimiza-

tion to improve efficiency, versus individual throughput (described more in Chapter 3 , “Queuing

Theory”).

 The whole team approach advocates the idea of team members being “generalizing spe-

cialists” who have deep skills in specific disciplines, domains, and technologies but who can also

work outside their area of expertise to help achieve the team’s iteration goals. At first, teams shy

away from this aspect of the whole team concept because they interpret it to mean that everyone

on the team must do everything. In small, high-performing agile teams, this may be the case, but

it gets more difficult as projects grow in size and encompass many technology domains. How-

ever, teams do not have to achieve the ideal level to become a whole team—but they should at

least move in the direction of becoming “generalizing specialists.”

 Cross-Component Teams
 Software composed of multiple architectural components is often built by separate teams that

develop their respective components independently. There may be a database team, an applica-

tion server team, a user interface team, and so forth. After the components are developed, the

parts are put together to create the product as a whole and tested during an integration phase.

Teams working on a single component find this a convenient way to work because they can easily

capitalize on their common knowledge. However, the overall focus of the work becomes rather

narrow, and it can be tempting to hand off responsibility for some component to a remote team,

further isolating the various parts of an organization. Individual component teams are likely to

work together only at the beginning of a project, during initial design, and again at the end of the

development cycle when trying to integrate the components (perhaps for the first time).

 Building components in isolation rarely produces the best product because the bigger pic-

ture is often lost. And although it may seem counterintuitive, building independent components

in isolation is less productive than building cross-component functionality from the outset. One

of the basic aspects of whole teams is that they include team members from across technology

disciplines that are required to develop the software. These integrated teams work together from

the beginning of the project and continue together throughout the life cycle of the project. One

of the core enablers of teams working together this way is continuous integration, which enables

products to be automatically built, tested, and deployed from the beginning of the project. This

12 Chapter 1 Whole Teams

practice avoids the typical expensive integration problems that arise when large amounts of code

get integrated for the first time.

 The emphasis on cross-component team composition also facilitates the practices of evolu-

tionary architecture and emergent design. 2 Whole teams, using these practices start with a mini-

mal architecture that is “good enough” to enable them to build a “thin slice” of cross-architecture/

cross-component functionality in one of the earliest iterations. All the architectural details will

not have been worked out yet, but the team can test the initial, basic architecture right away.

This approach enables teams to validate their architecture early in the project and have greater

confidence that it is a sound architecture—or adjust it as needed—which can be much easier now

rather than later because the amount of work done up to this point is so small. Compare this with

finding a major problem in the architecture late in a project when various components are inte-

grated together for the first time.

 Working together as a whole team iteratively on the architecture and design enables

everyone on the team to understand the strengths and weakness of the software so that the team

develops good instincts regarding any noted constraints. A whole team will also have a common

history that enables the team to produce more consistent design patterns as more and more fea-

tures are added. Furthermore, because this evolutionary approach enables real functionality to be

manifested earlier, the team can demonstrate this functionality to its customers and get feedback

earlier than was possible with waterfall’s component-based development approach.

 Cross-component, whole teams should be formed around epic stories or product features

rather than technology. Agile teams, working together to build cross-component functionality

from the beginning require that an end-to-end working environment be ready early in the project

life cycle—that is, a continuous integration system that continually builds, validates, and deploys

the product build. These are just a few of the items that need to be addressed for cross-component

teams to function successfully in short iterations. Getting such an environment in place at the

beginning of the project requires cross-component expertise, and this expertise can continue to

be required as the project progresses and the environment requirements continue to grow along

with the product.

 Cross-Discipline Teams
 Whole teams also include team members from each of the disciplines required to develop and

successfully deliver the product. Teams should include developers, testers, and writers, and may

also include a product manager, a build developer, a user interface designer, and so forth. It is

important that teams have the collective skills to fill the required roles. Note, however, that a

“person per role” is not required.

 Teams organized by discipline often operate differently from cross-discipline teams. For

instance, in waterfall, testing groups may wait until the design phase is complete before they

develop a test plan, and testing itself doesn’t typically begin until late in the cycle when a lot of

 2. Note that we discuss evolutionary architecture and emergent design in Chapter 6, “Working Software,” and

Chapter 8, “Release Often” as well.

Principles 13

code has been written. Testers may even be prevented from joining the effort on the new release

because they are finishing up leftover work from an earlier release. Getting to the point in which

whole teams can begin work together on the first day of a project may take a significant amount

of effort, and perhaps some behavioral changes as well. All available engineers should focus on

completing any work that would prohibit them from starting together on the next release. This

means getting the previous release out the door so that everyone can be available on Day 1 of the

next project.

 Why is it so important that a team actually start a release together? The goal for whole

teams is to work together to produce a product, to learn together, and help each other get to

“Done!” each iteration. With whole teams, no one gets credit for anything until the team has got-

ten to “Done!” Only then is any “credit” given for completing work, and it’s the team that gets

the credit. It’s an all-for-one, one-for-all approach in which there’s no “partial credit” and no

“individual credit.” For this to work, the team needs to start together so that coding, testing, user

documentation, automation, defect fixing, code reviews, and so forth can all be accomplished as

part of each iteration, beginning with the first one.

 It is common to see the team members charged with system level testing joining an agile

team well after the initial iterations have been completed. System level testing typically describes

testing that covers scalability testing, failover testing, long-run testing, performance testing, and

more. System testers tend to have a unique set of skills, so they tend to move from one project to

another, always joining a project long after its start. When system testers actually do join a proj-

ect, the rest of the team loses valuable time trying to get this set of contributors caught up and,

more importantly, the project team misses the opportunity to have things such as scalability test-

ing and performance testing executed early in the project when adjusting the code is much more

manageable. If the system testers are not engaged early in the project, it is also harder for them

to devise how best to test the software because much of the discussion and early decisions will

not be known to them. Thus, system testers should be part of an agile whole team from the very

beginning of a project.

 One of the benefits of whole teams is that when the team discovers and solves problems

together, every team member understands the context and history of the issues and resolutions.

Together they gain a shared experience and build a knowledge foundation that will serve them

throughout the entire project. As the team builds its working history, it improves its synergy,

which allows the team to make decisions faster and even anticipate problems before they actually

happen.

 Cross-Geographical, Cross-Cultural, Large Teams
 In enterprise application software projects, whole teams can consist of engineers from around

the globe and from different cultures. Whole teams can work when team sizes are larger than the

recommended 7 to 10 engineers. However, it should be no surprise that all the same principles

still apply: These types of teams need to start a project together, plan their work together, and get

to “Done!” each iteration together. The effort to create a whole team is even more critical in these

situations but—we won’t sugarcoat it—it is much harder.

14 Chapter 1 Whole Teams

 The most difficult part of cross-geographical teams usually has to do with the need for

daily communication. To establish trust and ensure rich communication channels, regular com-

munication is an imperative. The communication needs to be open, the interaction needs to be

constructive, and the focus needs to be on working together to succeed. There are a couple of

ways to tackle the cross-geographical problem. The most successful way is for everyone to share

a bit of the “pain.” By this I mean that some team members may have to stay up late for calls

with the other part of the team, or get up early, or perhaps even shift their schedules to align com-

pletely with the other part of the team. Teams can meet at different times throughout the week

to “share the pain” of difficult meeting times. Some teams record their standups so that the team

members separated by time-zones can understand what happened. There are many ways to make

this communication successful, and teams should try a variety of mechanisms to determine what

works best.

 We know that this is not ideal but we encourage you to be creative, try different approaches,

and keep experimenting until you find the right combination of changes that make it work for

your team. However, please do not dismiss the need for regular communication (whether the

team is local or geographically separated)—it’s just too important.
 There are a couple of positive benefits that cross-geographically organized teams can

obtain: Teams that span time zones can coordinate work so that one part of the team can start

where another part leaves off at the end of their day. In addition, teams that bring different cul-

tural behaviors together can leverage the best from multiple working styles.

 Stable, Dedicated, and Protected
 Whole teams are more effective when they are committed to the project for the complete duration

of the project. With this approach, teams should get new team members or lose team members

only on an exceptional basis. Managers and other project leaders should do everything they can

to protect teams from all interruptions so that the teams can get to “Done!” (which is very, very

hard to do if management acts like a “fast-forward” button, immediately passing along every

interruption to the team).

 Although this probably sounds like common sense, it’s not that common. Companies with

multiple products typically juggle people between projects to align with changing schedules

and revenue expectations. Engineers with particular knowledge or skills may get “time-shared”

between various projects. People may get pulled from doing new development to manage a criti-

cal defect discovered at a customer site. And of course all teams are constantly asked to do more

with less. Team churn ultimately slows down project progress. Furthermore, if team members

slice their time between different projects, their lack of focus for any length of time can nega-

tively affect their productivity and likely the quality of their work as well. The section “Maintain

and Protect Dedicated Teams” discusses the evils of task-switching further, as does Chapter 4 ,

“No Multitasking.”

Principles 15

 Expecting team members to work on multiple projects may feel like an efficient use of

personnel, but it is likely not delivering the best product in the most efficient way. “Protect the

team”—this is a cornerstone principle of whole teams, thus management must have as a primary

goal protecting the team. Protecting the team means that the team should be shielded from dis-

tractions to meet its project goals.

 Rotating people between agile teams is a common practice in some organizations. An indi-

vidual may have a particular expertise that makes him valuable to multiple teams. There are

three primary problems with moving an expert around, however. First, if an expert is moved out

of an agile team for an iteration, the work the expert would normally have contributed will not

be picked up by the rest of the team, thus putting the team behind. Second, if an expert spends

limited time on a project, he will not have the shared history enabling him to make well-informed

decisions regarding his own contributions. For example, he will have to learn what technology

has been developed so that he can determine what to test. This will demand valuable time from

the rest of the team. Finally, it will be difficult for others to learn from the expert due to the lim-

ited time the expert has available by virtue of being pulled in multiple directions at once.

 One development project that I managed included new features that required aggressive

performance tuning. Our company had a skilled team to measure product performance and make

tuning suggestions, but that team had little time for my project until late in the schedule. We

decided to bring the performance testing work inside the scope of our team and get some of our

team members skilled with the performance testing tools. This way we could test and tune early

in the project as the features were developed. Educating the developers, creating the environ-

ments to test, and managing the results took extra time initially for the project. However, by

doing this, we had performance information in one of the earliest iterations, and the data showed

that we had problems. The team stopped further feature work until it understood and fixed the

performance problems. This behavior continued throughout the project, and by the middle of

the project, the team felt confident that it had discovered and fixed the most critical performance

issues. Furthermore it concluded that had the problems been found later in the cycle, the root

causes and the solutions would have been harder to identify. The actual fixes also would have

 3. Brooks, Frederick P., The Mythical Man Month . Boston: Addison-Wesley, 1995: page 232. Print. This is a

book that should be on every software engineer’s shelf.

 THE MYTHICAL MAN MONTH BY FRED BROOKS 3
 Fred Brooks is a former IBMer who came out against the idea of throwing additional bodies

at projects that were running behind. In his classic work titled, The Mythical Man Month ,

he discusses his Brook’s Law, which reads, “Adding manpower to a late software project

makes it later.” My corollary to his point is, when throwing bodies at a project that is running

behind, “What one engineer can do in one week, two engineers can do in two weeks.” ☺

16 Chapter 1 Whole Teams

been difficult and time-consuming to implement. This is also an example of “stop the line” think-

ing, which we address more in-depth in Chapter 9, “Stop the Line.”

 High-performing agile teams have dedicated members and are protected by their manage-

ment from interruptions and from constant changes in team membership.

 Practices

 Start with Whole Teams
 Agile teams are whole teams. Whole teams are created at the beginning of a project and stay

together throughout the project. Whole teams consist of everyone needed to complete the planned

product deliverables.

 Team members each have unique skills and expertise that they use to contribute to the

overall effort, but they are also expected to cross outside of their skill boundaries when required

to help the rest of the team reach the iteration goals. Teams new to agile often respond to this

notion with anxiety. “We cannot afford to have developers test.” “I cannot learn how to develop.”

“I am not a good writer.” Team productivity will obviously increase if the entire team could do

any of the tasks; however, this is not the situation for many teams. Getting to the point in which

team members can contribute outside of their particular skill area takes time for most teams to

achieve, and some teams never achieve the ideal given the size of their projects. Nevertheless,

becoming a whole team requires team members who are willing to jump in and help in any way

they can and learn new skills as they go. This might mean helping to set up computers, looking

over someone’s shoulder to help find bugs, writing draft documentation, and so forth. But it does

not necessarily require that everyone on the team learn the most complex aspects of each job,

such as kernel-level debugging, the use of automated testing tools, or the usage of unique product

documentation tools.

 Teams willing to adopt a whole team approach can experience productivity growth. Fur-

thermore, team members willing to jump into unfamiliar tasks can expand their domain knowl-

edge and skill sets and also gain satisfaction and job growth as a consequence. And of course,

they are making themselves more valuable to the team.

 Maintain and Protect Dedicated Teams
 Unless you’ve adopted the practice of self-organizing teams, it’s typically management’s respon-

sibility to assign team members to a project and then protect the team. It is to management’s

benefit to protect the team so that the team can get its work done and ultimately deliver the prod-

uct with customer value and high quality. Protecting the team means preventing any interruptions

to the work the team has committed to accomplishing in its current iteration. Furthermore, man-

agement must keep each team member focused on and committed to a single project so that team

members can maximize their output.

Practices 17

 In the real world, teams have to respond to short-term crises and shifting priorities. The

easiest way to manage such challenges and continue to protect teams is to keep iterations short.

And by short iterations, we mean 2 weeks maximum. It is easier to protect a team during a short

iteration than a longer iteration. In fact, this is one of the many reasons iterations should be short.

If a critical interruption arises, and the team is halfway through a 1- or 2-week iteration, the

manager can make a better case for the team being allowed to complete its work and stay produc-

tive, rather than stopping the team and getting nothing “Done!” for the iteration. It can use its

next iteration to manage the crisis because the elapsed time is relatively short. Conversely, if the

iteration is as long as a month, it is easy for management to believe new work can be absorbed by

the team by simply having the team “work a little harder” (which, when translated into reality,

implies overtime).

 Highly productive agile teams may even adopt a “no iteration” methodology based on a

“pull” or a “continuous flow” model. In these scenarios the team is maintaining working software

even more aggressively. As teams get better at working together as a whole team, they should

consider trying these lean models.

 When teams get used to getting to “Done!” in short iterations, and they reliably repeat

the pattern, management has a new defensive strategy: It has the data to show that protecting

the team from interruption results in higher productivity. Any situations that arise that require

immediate attention are added to the top of the backlog and addressed the next iteration. This

should remove the typical distractions that are less urgent than maintaining progress on the proj-

ect. Shorter release cycles also help protect the team. When teams deliver “just enough” capabil-

ity in a short release cycle, they can better respond to new priorities that would negatively impact

longer release plans.

 Whole teams can get to “Done!” better by learning how to work together leveraging their

unique skills. Each team is unique and develops its own team dynamics because it is made of

unique people who have their own combinations of gifts and skills. Changing the team make-up

regularly by moving people around disrupts this pattern and hurts a team’s long-term effective-

ness and predictability. Short release cycles also help enable dedicated teams because it is easier

to keep a team together for shorter time periods.

 The Conversation
 The most critical aspect to succeeding as a whole team is effective communication. Communica-

tion is best achieved by interacting, or rather, by having conversations. Agile’s primary mecha-

nisms for this necessary communication include release planning, the daily standup, iteration

planning, customer demonstrations, and reflections. There are additional ways that encourage

increased communication, such as making it a team rule to help each other remove blocking

issues, adopting pair programming, and team creation of user stories. Whatever the mechanism,

the goal is the conversation —live interaction. Conversation enables interaction while ideas are

fresh. It also enables collective thinking, that is, one person’s input inspires another’s feedback.

18 Chapter 1 Whole Teams

Furthermore, timely discussion with all the right people contributing (or maybe even just listen-

ing), results in faster progress. Working together enables a team to stay informed.

 Teams often use documentation to communicate anything that needs to be referenced. For

instance, engineers have a tradition of documenting designs, but often they do not review their

designs with their team because it is written down—anyone can pick it up and read it. However,

even the best writers often struggle to convey their point in written form. 4 So why do we expect

that the written document will succeed in socializing the critical points that need to be conveyed?

Many have heard the familiar quote from Blaise Pascal that goes like this, “I have made this letter

longer than usual, only because I have not had time to make it shorter.” Constructing a message

that is easy to understand takes time. Documentation is useful and should not be abandoned, but

teams need to use live discussions to make sure that they are communicating and that the infor-

mation is understood.

 Email threads often result in failed communication. After you send an email explaining

a problem to a coworker, do you think your job is done? Have you ever received a long email

thread with a message from the sender saying, “How do you want to handle this?” Do you have

emails sitting in your inbox that have been there more than a week? Email is a great storage

repository for unfinished business. Find a way to get critical issues out of email and get them

handled.

 Scott has a great saying, “If a picture is worth a thousand words, then a conversation is

worth a thousand emails.” Live discussions are necessary to get work completed in a timely

fasion. Improving the communication at the daily standup is a great place to start. But it is hard

to enable the teaming on work if you do not share enough descriptive information in the standup.

Common—but frustrating—daily standup meeting comments we have heard are, “I am doing the

same thing that I did yesterday,” “I am still testing,” and so on. This input is practically useless.

The reason that we go through the typical standup protocol, “What I did since the last standup

meeting,” “What I am going to do next,” and “What blocking issues do I have?” is to provide the

opportunity to communicate about our work and help each other.

 The same conclusions apply to teams that cross geographies and cultures. Everything that

is important for local teams is also critical for cross-geographical teams, but communication

alone may determine success or failure.

 To succeed in agile, and even in your career, learn to communicate and learn to communi-

cate well. Engage in live discussions, be willing to listen to feedback, be informative—but to the

point—in your delivery, and most of all, keep trying to communicate better.

 4. To drive this point home, Scott and I would much rather be having a live conversation with you about the

topics covered in this book rather than simply having you read this book. We could cover the material in

less time than it would take you to read the book and in a more comprehensive way. Additionally, you’d

have the opportunity to ask questions of us and gain additional clarifi cations that you obviously aren’t able

to do by just reading the book.

Practices 19

 Share the Same Truth
 For any team to succeed, sharing the same priorities and the same information is critical because

each team member must continually make decisions. The basis for decision making for the team

has to be rooted in the same priorities using all the information available. A prioritized backlog

of work provides a mechanism to ensure team synchronicity, and good tooling can provide the

mechanism for sharing the same information.

 One of the most significant tools for keeping teams coordinated is a team dashboard or

an information radiator. Good dashboard products provide a flexible way to create widgets that

can integrate live data from external tools (such as separate source code management systems,

separate test case repositories, separate build environments, and so on). Providing a single view

of commonly viewed data gives teams a real-time view of the same “truth,” such as how many

defects are active, where the latest build is deployed, what delta functionality is in the latest build,

and how far along the team is on this iteration’s user stories. Several years ago, a team that I was

managing—a large team that spanned the globe—started to use such a tool to coordinate our

work. We quit using most other mechanisms of reporting information because our online dash-

board solution encompassed all aspects of the project and did so in real time. Because the data

that was displayed was live data, it was never out of date.

 This dashboard capability moved our large team a lot closer to succeeding as a whole team.

The Agile Manifesto calls for interaction over tools and processes, but do not discount the power

of excellent tooling to help enable necessary team interaction and communication.

 No Partial Credit
 Whole teams get credit for the work they complete each iteration. Individuals on the team do

not get partial credit for the work they accomplish during the iteration. Team members may give

each other “high fives” for finishing work as they go, but agile works when teams embody the

whole team spirit and succeed or fail together.

 Encourage your team to avoid this kind of thinking: “I have my code written and now it’s

up to the testers to finish testing while I move on to something else.” Encourage them to think

instead about how to help the testers finish their work so that the team can move on together.

Staying tightly coordinated to finish work enables teams to be more productive and achieve

working software every iteration. The notion of “no partial credit” drives this point home. Work-

ing software is the team’s measure of progress. Having working software every iteration requires

coordinated work from the whole team. They all get credit for achieving the goal.

 This whole team “full credit and no partial credit” concept flies in the face of most com-

panies’ Human Resource (HR) practice of reviewing and rewarding individuals for their accom-

plishments. To enable whole teams to succeed in such an HR environment, managers have to

strike a balance between encouraging individuals to grow their own skills and encouraging indi-

viduals to be successful team players who encourage and help each other. Many of the best sports

teams have demonstrated repeatedly that teams that work well together make it to the champion-

ships. Teams dominated by one or two individuals ultimately lose because the burden is too great

for just one player or two players. Whole teams leverage the valuable skills of all the players.

20 Chapter 1 Whole Teams

 Team members need to set their goals around personal growth areas as well as team growth

areas. These goals can naturally work together. To get to “Done!” as a team, each person should

contribute to the effort using his strongest skills. But to make the team better, team members need

to learn new skills so that they can help each other. When team members can help each other,

they can better maintain working software, which is the measure of progress.

 Offer Help
 One critical aspect of whole team success is offering help. Each team member should offer to

help other team members whenever needed. This may seem obvious, but it is contrary to man-

dates commonly practiced by development teams. Typically, individuals are instructed to get

their own work completed, grow their own skills, and achieve individual feats to differentiate

themselves from their peers. However, this focus on the individual has to be paired with the prac-

tice of individuals extending their time and skills to help others on the team. Teams that emerge

from a traditional development culture may be unaware that their culture is not transforming

successfully. They need to pay close attention to warning signs that they might be in trouble. For

instance, silence should be painful if no one offers to help when a blocking issue is raised during

a standup meeting. A whole team culture requires that team members get into the habit of offer-

ing help, even if they have to learn something new.

 Every team has a go-to person. People usually figure out who it is and start to rely on her.

The go-to person knows what the team is doing, how the code works, what the biggest issue

is right now, and so forth. If that go-to person does not know the needed information, she will

often start looking for it before you even finish asking. Agile’s emphasis on whole teams work-

ing together should inspire a whole team of go-to people. Go-to people are not afraid to stretch

beyond their job descriptions; in fact they enjoy learning and helping teams to work together

well. You may be afraid that you do not have the personality for this, but those that try tend to

experience additional job satisfaction, which improves their contributions significantly.

 Metrics
 To validate that you have a whole team, track the team membership each iteration, beginning

with the first iteration, and review it regularly. Confirm that the whole team starts together and

finishes together. Yes, this may seem like a relatively simple (or even simplistic) thing to track,

but if the goal is to have stable, dedicated teams, then having an indicator immediately available

to confirm that this happens can be a big incentive to actually having stable, dedicated teams—

especially if you need to convince others in the organization that problems with team stability

are real.

 As another simple metric, make a rough estimate for the time required to coordinate infor-

mation across the team at the beginning of a release. Find a mechanism to share the same truth

with the entire team. Use a dashboard, a common whiteboard, a wiki, an information radiator,

or whatever works. Use that mechanism as a way to share information during the daily standup.

Breakthrough 21

Re-evaluate the time required to coordinate information across the team at the end of the several

iterations. Compare the results. If significant progress was not made, or rather the time required

for coordination did not decrease, try a new mechanism.

 Breakthrough
 Early in my experience with agile, a development team that I was managing was lucky enough

to make a breakthrough with bullpens that transformed its behavior almost immediately. In fact,

this breakthrough was so profound for the team that it changed my reflexive, waterfall-oriented

thinking permanently. The team I was managing was having communication problems. A project

consultant, Stan Rifkin, suggested we try bullpens to fix these challenges.

 But let me back up and describe how we got to this recommendation. The first development

team I managed that adopted agile got all the basics down quickly. Our daily standups became

essential; we defined the work we planned to complete each iteration; and we demonstrated new

functionality to our customers almost weekly. Despite our early success with many of the typical

agile techniques, we were not working well as a whole team. Several developers would talk to

each other in the hall, decide on a new development strategy, and then forget to tell the testers. An

email discussing changes to how the product could be customized would go out to a part of the

team, but the writers would be left off the email thread. Testers complained among themselves

about the usability problems but did not bring them to the rest of the team. Tempers were mount-

ing and disgruntled team members visited me saying, “He said this; she said that.”

 I took a piece of advice Mary Poppendieck gave me during a conversation about “stop the

line” thinking and identified just one problem to fix during each iteration. If we failed to find a

solution to the problem, then we worked on the same problem the next iteration, and the next, and

so on, until it was fixed. The team agreed that it was not a whole team. We tried everything we

could think of but nothing worked. Over time the team was feeling demoralized, members were

banding together to place blame, and the whole agile effort was losing ground.

 Luckily we got consulting help from Stan Rifkin, a consultant with 40 years’ experience

in data processing, management consulting, software engineering, and computer science. We

reviewed our practices and issues with him. He suggested that we try bullpens. He explained that

bullpens were multihour working meetings with the emphasis on working . Instead of meeting

to discuss status, or to do planning, teams do real work together. Here are the rules for bullpens:

 • Everyone on the agile team MUST attend and pay attention.

 • Do real work together.

 At first we struggled with what this actually meant. Do we write code together, do we test

together, do we review documents together? In the end, it did not matter as long as we worked

together and solved problems.

 Interestingly enough, the majority of the team had a similar response to the suggestion,

“No way!” (although a few people said, “Sounds great, let’s try it”). After listening to all the

22 Chapter 1 Whole Teams

reasons we should not do it for more time than I can stand to remember, I pulled management

rank and said, “We will try it beginning tomorrow.” The team grumbled off and planned for their

first 2-hour bullpen.

 The team floundered a bit, wondering how to start, but a tester broke the silence by talking

about a set of tests that were failing. That quickly led to discussions on how the tests were run,

disagreements about the expected behavior, and candid feedback about how the functionality

could be more usable. With that, the team was off and running.

 The first bullpen worked well. Problems were solved in real time, and the entire team

learned what was going on at the same time. The team proceeded to schedule multiple bullpens

weekly. Because the entire team was not in the same room, let alone the same country, we had

to do this over the phone and with an emeeting—sort of “virtually sitting next to each other.”

Adopting bullpens had the added benefit that when the team was not in a bullpen, it could get

more focused time to work because most of the issues requiring cross-team communication had

already been addressed.

 Bullpens became so successful that the team started to use them for a variety of purposes.

They had bullpens to jointly review code, discuss and solve difficult technology problems,

code bash as a team, and more. We observed these positive outcomes: First, the team became a

whole team. Accusations ceased and productivity increased. Second, the amount of email in my

inbox dropped in size significantly. The team solved problems in real time with the whole team

involved, so no additional communication was required.

 Small agile teams that work in the same room usually develop a bullpen behavior simply

based on their proximity. These may be called team rooms. Teams not residing in the same loca-

tion can get similar value from bullpens. One advantage of bullpens over team rooms is that with

bullpens, the rule is that everyone must attend, and it also leaves nonbullpen time to get focused

work done that is less likely to be interrupted.

 The story at the beginning of this chapter about the user interface design point that the tes-

ter disliked resulted from one of the first bullpens that I attended. The success of the meeting was

stunning to everyone in the meeting. It forever changed our team dynamics and we were hooked.

 When a team becomes a whole team , the team starts to think in a more agile way. When

teams share the ownership of problems and their resolution, they can move faster together, lever-

aging everyone’s collective strengths. Most whole teams have more fun working this way and

certainly experience higher productivity.

 Summary
 Being agile requires whole teams because the synergy derived from cross-disciplined and

cross-component teams working together enables teams to be more productive than working in

isolation.

 • Whole teams accelerate delivery and increase team capacity by working closely together

to leverage each other’s unique skills.

Summary 23

 • Agile advocates the idea of “generalizing specialists” who can work outside their regu-

lar domains when required to achieve iteration goals.

 • Whole teams work across the architecture stack to deliver end-to-end functionality from

the beginning of the project and develop a common history so that consistent design pat-

terns emerge.

 • Whole teams start the project together; they get to “Done!” each iteration together; and

they succeed or fail together. Whole teams may span the globe and cross cultures.

 • Management must protect its teams from interruptions to enable them to deliver value to

customers sooner.

 • Regular, open, and constructive communication is critical to whole team success.

 • Dashboards or information radiators enable teams to share the “same truth.”

 • Aspire to be a go-to team member.

 • Bullpens are a mechanism that breaks teams out of silo’d behaviors and enables them

to become whole teams. The basic rules of bullpens are 1. Everyone on the agile team

MUST attend and pay attention and 2. Do real work together.

This page intentionally left blank

179

Index

 A

 active stakeholder interaction

 breakthrough: “2, 2, 2, 2”

technique, 39 - 40

 IBM case study, 25 - 26

 metrics, 39 - 40

 practices

 compelling interaction,

 35

 customer support teams

as stakeholders, 38 - 39

 development

organization as

stakeholder, 37 - 38

 epic reviews, 33

 expectations, 33 - 35

 foreign customers, 39

 regular demonstrations,

 35 - 36

 response to feedback,

 36 - 37

 stakeholder

identification, 31 - 33

 principles

 challenges to

active stakeholder

interaction, 27 - 29

 doing what is needed,

 30

 explained, 26 - 27

 importance of

stakeholder

communication,

 29 - 30

 stakeholder interaction

in XP (Extreme

Programming), 28 - 29

 summary, 42

 addressing reluctance, 167

 Advanced Release Burndown

Chart, 89

 agile instincts, developing,

 147 - 148

 agile leadership

 breakthrough: giving up

status meetings, 154 - 155

 metrics, 154

 overview, 143 - 144

 practices

 developing agile

instincts, 147 - 148

 enabling and protecting

whole team, 148 - 149

 General Motors (GM)

case study, 152

 helping team learn,

 149 - 150

 learning agile, 147

 letting team fail,

 149 - 150

 setting priorities and

boundaries, 151 - 152

 single, visible view of

the truth, 153

 principles

 challenges of agile

leadership, 146 - 147

 nature of agile

leadership, 145

 promoting innovation,

 162 - 163

 summary, 155 - 156

 allocating people, 60

180 Index

 architecture, evolutionary,

 86 - 88

 “art” of continuous

improvement, 167 - 168

 automation

 assessing, 177

 continuous integration and

automation, 84 - 85

 avoiding multitasking

 breakthrough: nuclear

option, 61

 inefficiency of

multitasking, 53 - 55

 metrics, 60

 practices

 100% dedication to

project, 57 - 58

 becoming a “firewall,”

 58 - 59

 calendar ruthlessness,

 59

 one project at a time, 58

 pair programming/pair

testing, 59

 principles

 efficiency, 55 - 56

 flow, 56 - 57

 “stop starting; start

finishing,” 57

 summary, 62

 B

 backlogs

 defect backlogs, 75 ,

 176 - 177

 reviewing at end of

release, 124

 upfront backlogs, 125 - 127

 becoming a “firewall,” 58 - 59

 “Being Agile” blog, 7

 betas, 28

 big problems, handling,

 133 - 134

 big-batch (waterfall) thinking,

 43 - 45

 blockers, fixing, 133

 blogs, “Being Agile,” 7

 boundaries, setting, 151 - 152

 breaking

 habits, 171

 silos, 21

 breakthroughs

 bullpens, 21 - 22

 “Fix It Now!” approach,

 89 - 91

 giving up status meetings,

 154 - 155

 “inter-release”

improvement iteration,

 169 - 170

 nuclear option, 61

 queuing theory, 51

 removing the biggest

inhibitor to customer

success, 139 - 140

 time-boxed iterations,

 76 - 77

 “2, 2, 2, 2” technique,

 39 - 40

 upfront backlogs, 125 - 127

 zero-gravity thinking,

 103 - 107

 example, 106

 explained, 104 - 105

 Brooks, Fred, 15 , 161

 Brook’s Law, 15

 Bruch, Heike, 52

 building quality in, 71 - 72

 builds, frequency of, 176

 bullpens, 21 - 22

 C

 calendar management, 59

 capacity, ensuring sufficient,

 46 - 47

 Cockburn, Alistair, 153

 code drops, frequency of,

 123 - 124

 Cohn, Mike, 94

 commitment, deferring,

 114 - 115

 communication in teams,

 17 - 18

 continuous improvement, 178

 breakthrough:

“inter-release”

improvement iteration,

 169 - 170

 metrics, 169

 overview, 157 - 158

 practices

 addressing reluctance,

167

 “art” of continuous

improvement,

 167 - 168

 reflections, 164 - 165

 sharing, 169

 value stream mapping,

 166 - 167

 principles

 “100 percent agile”

fallacy, 159 - 160

 challenges of

continuous

improvement, 159

 continuous learning,

 160

 failing fast, 171

 focus on small,

on-going

improvements,

 161 - 162

 importance of

continuous

improvement,

 158 - 159

 learning from your

mistakes, 162

Index 181

 promoting innovation,

 162 - 163

 setting time aside to get

better, 160 - 161

 summary, 170 - 172

 continuous integration and

automation, 84 - 85

 conversations, 17 - 18

 coordinating teams, 19

 credit on teams, 19 - 20

 critical decisions, deferring,

 114 - 115

 cross-component teams,

 11 - 12

 cross-cultural teams, 13 - 14

 cross-discipline teams, 12 - 13

 cross-geographical teams,

 13 - 14

 Cunningham, Ward, 65

 customer demonstrations,

feedback from, 178

 customer interaction. See

stakeholder interaction

 customer success, removing

biggest inhibitor to, 139 - 140

 customer support teams as

stakeholders, 38 - 39

 customer value, focus on,

 72 - 73

 D

 daily standup meetings, 18

 dashboards, 19

 debt

 project debt, 67

 removing, 69 - 70

 technical debt, 65 - 66

 decisions, deferring, 114 - 115

 dedication

 to projects, 57 - 58

 of teams, 14 - 16

 defect backlogs, 75 , 176 - 177

 defects

 avoiding writing defects,

 74 - 75

 defect backlogs, 75 ,

 176 - 177

 defect resolution process,

 76 - 77

 “Fix It Now!” approach,

 89 - 91

 latent defects, handling, 74

 prioritizing, 76

 deferred commitment,

 114 - 115

 delivering value

 breakthrough: zero-gravity

thinking, 103 - 107

 benefits of, 106 - 107

 example, 106

 explained, 104 - 105

 metrics, 103

 overview, 93 - 94

 practices

 acceptance criteria,

 99 - 100

 “so that” clause, 97 - 98

 velocity, 100 - 103

 vertically sliced stories,

 98 - 99

 principles, 94 - 97

 summary, 107

 demonstrations

 feedback from, 178

 performing, 35 - 36

 deploys, in-house, 88 - 89

 design

 emergent design, 86 - 88

 evaluating design

decisions, 125

 evolutionary product

design, 119 - 120

 developing agile instincts,

 147 - 148

 development organization as

stakeholder, 37 - 38

 “do just enough” approach,

 113 - 114

 documentation, 18

 “Done!,” getting to

 expanding “Done!”

criteria, 73

 self-assessment, 178

 E

 efficiency and multitasking,

 53 - 56

 The Elegant Solution
(May), 171

 eliminating waste

 breakthrough: time-boxed

iterations, 76 - 77

 metrics, 75 - 76

 overview, 63 - 64

 practices

 avoiding writing

defects, 74 - 75

 building quality in,

 71 - 72

 expanding “Done!”

criteria, 73

 focus on customer

value, 72 - 73

 handling latent defects,

 74

 removing debt, 69 - 70

 small tasks, 70 - 71

 principles

 challenges, 67 - 69

 importance of waste

elimination, 65

 project debt, 67

 technical debt, 65 - 66

 summary, 77 - 78

 email

 communication

failures, 18

 managing, 60

182 Index

 emergent design, 86 - 88

 enabling whole team,

 148 - 149

 end users, 31

 ensuring sufficient capacity,

 46 - 47

 epics

 epic stories, 117 - 119

 reviewing with

stakeholders, 33

 evaluating design decisions,

 125

 evolutionary architecture,

 86 - 88

 evolutionary product design,

 119 - 120

 expanding “Done!” criteria,

 73

 expectations, setting, 33 - 35

 ExpertThink, 104

 Exploring Your Agility

questionnaire

 questions on various

agility practices, 175 - 178

 waterfall answers

masquerading as agile

answers, 173 - 174

 What Would You Be

Willing to Give Up?

checklist, 174 - 175

 Extreme Programming (XP),

stakeholder interaction,

 28 - 29

 F

 failing fast, 171

 feedback

 from customer

demonstrations, 178

 frequency of, 46

 responding to, 36 - 37

 “firewall,” becoming, 58 - 59

 “Fix It Now!” approach,

 89 - 91

 fixing blockers, 133

 flow, 56 - 57

 Ford, Neal, 88

 foreign customers, 39

 frequency

 of builds, 176

 of code drops, 123 - 124

 of feedback, 46

 FTP (Research Triangle

Park), North Carolina, 47

 “full credit and no partial

credit” concept, 19 - 20

 G

 General Motors (GM), 152

 generalizing specialists, 11

 getting to “Done!,” 178

 giving up status meetings,

 154 - 155

 GM (General Motors), 152

 on-going improvements,

focus on, 161 - 162

 go-to people, 20

 GroupThink, 104

 H

 help

 helping team learn,

 149 - 150

 offering, 20

 high risk first approach,

 121 - 123

 high value first approach,

 120 - 121

 in-house deploys, 88 - 89

 I

 IBM, active stakeholder

interaction, 25 - 26 , 35

 identifying stakeholders,

 31 - 33

 improvement. See continuous

improvement

 inefficiency of multitasking,

 53 - 56

 information radiators, 153

 innovation, promoting,

 162 - 163

 The Innovation Killer: How
‘What We Know’ Limits
What We Can Imagine
(Rabe), 104

 insiders, 31

 integration, continuous

integration and automation,

 84 - 85

 intellectual property

concerns, 28 - 29

 “inter-release” improvement

iteration, 169 - 170

 interruptions, tracking, 60

 isolation, 27 - 28

 iterations

 “inter-release”

improvement iteration,

 169 - 170

 length of, 49 , 83 - 84 ,

 175 - 176

 time-boxed iterations,

 76 - 77

 J-K

 “just enough,” 113 - 114

 Kessler, Carl, 42

 Kirn, Walter, 55

 knowledge, sharing, 169

 Kua, Patrick, 165

Index 183

 L

 large problems, handling,

 133 - 134

 latent defects, handling, 74

 leadership (agile)

 breakthrough: giving up

status meetings, 154 - 155

 metrics, 154

 overview, 143 - 144

 practices

 developing agile

instincts, 147 - 148

 enabling and protecting

whole team, 148 - 149

 General Motors (GM)

case study, 152

 helping team learn,

 149 - 150

 learning agile, 147

 letting team fail,

 149 - 150

 setting priorities and

boundaries, 151 - 152

 single, visible view of

the truth, 153

 promoting innovation,

 162 - 163

 summary, 155 - 156

 learning

 continuous learning, 160

 learning agile, 147

 learning from your

mistakes, 162

 length

 of iterations, 49 , 83 - 84 ,

 175 - 176

 of release cycles, 117

 letting team fail, 149 - 150

 M

 maintaining teams, 16 - 17

 managing

 calendar, 59

 email, 60

 Maute, Yvonne, 49

 May, Matthew, 171

 meetings

 daily standup meetings, 18

 reflections, 133 , 164 - 165

 status meetings, 154 - 155 ,

 177

 Menges, Jochen I., 52

 metrics

 agile leadership, 154

 for avoiding multitasking,

 60

 continuous improvement,

 169

 delivering value, 103

 eliminating waste, 75 - 76

 focus on working

software, 50

 for queuing theory, 50

 release often approach,

 124 - 125

 for stakeholder interaction,

 39 - 40

 “stop the line” behavior,

 134 - 137

 for teams, 20 - 21

 working software, 89

 Minimum Viable Product, 65

 multitasking, avoiding

 breakthrough: nuclear

option, 61

 inefficiency of

multitasking, 53 - 55

 metrics, 60

 practices

 100% dedication to

project, 57 - 58

 becoming a “firewall,”

58 - 59

 calendar ruthlessness,

 59

 one project at a time, 58

 pair programming/pair

testing, 59

 principles

 efficiency, 55 - 56

 flow, 56 - 57

 “stop starting; start

finishing,” 57

 summary, 62

 The Mythical Man Month
(Brooks), 15 , 161

 N

 Nass, Clifford, 55

 Non-Disclosure Agreements,

 28 - 29

 nuclear option, 61

 O

 offering help, 20

 one project at a time, 58

 one release at a time, 48

 “100 percent agile” fallacy,

 159 - 160

 100% dedication to project,

 57 - 58

 P

 PaaS (Platform as a Service),

 80

 pair programming, 59

 pair testing, 59

 partners, 31

184 Index

 Pascal, Blaise, 18

 people allocation, 60

 Platform as a Service

(PaaS), 80

 Poppendieck, Mary, 18 , 21 ,

 45 , 64

 Poppendieck, Tom, 45 , 64

 practices

 active stakeholder

interaction

 compelling interaction,

 35

 customer support teams

as stakeholders, 38 - 39

 development

organization as

stakeholder, 37 - 38

 epic reviews, 33

 expectations, 33 - 35

 foreign customers, 39

 regular demonstrations,

 35 - 36

 response to feedback,

 36 - 37

 stakeholder

identification, 31 - 33

 agile leadership

 developing agile

instincts, 147 - 148

 enabling and protecting

whole team, 148 - 149

 General Motors (GM)

case study, 152

 helping team learn,

 149 - 150

 learning agile, 147

 letting team fail,

 149 - 150

 setting priorities and

boundaries, 151 - 152

 single, visible view of

the truth, 153

 avoiding multitasking

 100% dedication to

project, 57 - 58

 becoming a “firewall,”

 58 - 59

 calendar ruthlessness,

 59

 one project at a time, 58

 pair programming/pair

testing, 59

 continuous improvement

 addressing reluctance,

167

 “art” of continuous

improvement,

 167 - 168

 reflections, 164 - 165

 sharing, 169

 value stream mapping,

 166 - 167

 delivering value

 acceptance criteria,

 99 - 100

 “so that” clause, 97 - 98

 vertically sliced stories,

 98 - 99

 eliminating waste

 avoiding writing

defects, 74 - 75

 building quality in,

 71 - 72

 expanding “Done!”

criteria, 73

 focus on customer

value, 72 - 73

 handling latent defects,

 74

 removing debt, 69 - 70

 small tasks, 70 - 71

 queuing theory

 focus on working

software, 50

 one release at a time, 48

 short iterations, 49

 small task sizes, 47 - 48

 release often approach

 epic stories, 117 - 119

 evolutionary product

design, 119 - 120

 frequent code drops,

 123 - 124

 high risk first, 121 - 123

 high value first,

 120 - 121

 shorter release cycles,

 117

 “stop the line” behavior

 fixing blockers, 133

 handling large

problems, 133 - 134

 reflections as a guide,

 133

 teams, 16 - 20

 communication, 17 - 18

 coordination, 19

 “full credit and no

partial credit”

concept, 19 - 20

 offering help, 20

 protection, 16 - 17

 whole teams, 16

 What Would You Be

Willing to Give Up?

checklist, 174 - 175

 working software

 continuous integration

and automation, 84 - 85

 evolutionary

architecture and

emergent design,

 86 - 88

 in-house deploys, 88 - 89

 short iterations, 83 - 84

 vertically sliced stories,

 85 - 86

 principals (stakeholders), 31

Index 185

 principles

 active stakeholder

interaction

 challenges to

active stakeholder

interaction, 27 - 29

 doing what is needed,

 30

 explained, 26 - 27

 importance of

stakeholder

communication,

 29 - 30

 agile leadership

 challenges of releasing

often, 146 - 147

 nature of agile

leadership, 145

 avoiding multitasking

 efficiency, 55 - 56

 “stop starting; start

finishing,” 57

 continuous improvement

 “100 percent agile”

fallacy, 159 - 160

 challenges of

continuous

improvement, 159

 continuous learning,

 160

 failing fast, 171

 focus on small,

on-going

improvements,

 161 - 162

 importance of

continuous

improvement,

 158 - 159

 learning from your

mistakes, 162

 promoting innovation,

 162 - 163

 setting time aside to get

better, 160

 delivering value, 94 - 97

 eliminating waste

 challenges, 67 - 69

 importance of waste

elimination, 65

 project debt, 67

 technical debt, 65 - 66

 queuing theory

 big-batch (waterfall)

thinking, 43 - 45

 ensuring sufficient

capacity, 46 - 47

 frequent feedback, 46

 small batches of

coordinated work,

 45 - 46

 release often approach

 advantages of release

often approach,

 112 - 113

 challenges of releasing

often, 116 - 117

 deferred commitment,

 114 - 115

 “do just enough”

approach, 113 - 114

 teams, 10 - 16

 cross-component

teams, 11 - 12

 cross-discipline teams,

 12 - 13

 cross-geographical,

cross-cultural teams,

 13 - 14

 dedication, 14 - 16

 protection, 14 - 16

 stability, 14 - 16

 whole teams, 10 - 11

 working software

 challenges, 82

 definition of working

software, 80 - 81

 extending test suites,

 82 - 83

 shippable software, 81

 prioritizing

 defects, 76

 setting priorities and

boundaries, 151 - 152

 product design. See design

 project debt, 67

 projects

 dedication to, 57 - 58

 one project at a time, 58

 project debt, 67

 promoting innovation,

 162 - 163

 protecting teams, 14 - 17 ,

 148 - 149

 Q

 quality, building in, 71 - 72

 questionnaire, Exploring

Your Agility

 questions on various

agility practices, 175 - 178

 waterfall answers

masquerading as agile

answers, 173 - 174

 What Would You Be

Willing to Give Up?

checklist, 174 - 175

 queuing theory

 big-batch (waterfall)

thinking, 43 - 45

 breakthrough, 51

 explained, 43 - 44

 metrics, 50

186 Index

 practices

 focus on working

software, 50

 one release at a time, 48

 short iterations, 49

 small task sizes, 47 - 48

 principles

 ensuring sufficient

capacity, 46 - 47

 frequent feedback, 46

 small batches of

coordinated work,

 45 - 46

 summary, 51 - 52

 R

 Rabe, Cynthia Barton, 104

 Rational Team Concert

(RTC), 89

 reflections, 133 , 164 - 165

 release burndown charts,

89 , 126

 release often approach

 breakthrough: upfront

backlogs, 125 - 127

 metrics, 124 - 125

 overview, 109 - 112

 practices

 epic stories, 117 - 119

 evolutionary product

design, 119 - 120

 frequent code drops,

 123 - 124

 high risk first, 121 - 123

 high value first,

 120 - 121

 shorter release cycles,

 117

 principles

 advantages of release

often approach,

 112 - 113

 challenges of releasing

often, 116 - 117

 deferred commitment,

 114 - 115

 “do just enough”

approach, 113 - 114

 summary, 128

 releases . See also release

often approach

 one release at a time, 48

 release cycles, length of,

 117

 reluctance, addressing, 167

 removing

 biggest inhibitor to

customer success,

 139 - 140

 debt, 69 - 70

 Research Triangle Park

(RTP), North Carolina, 47

 responding

 to email, 60

 to feedback, 36 - 37

 The Retrospective Handbook:
A Guide for Agile Teams
(Kua), 165

 retrospectives. See reflections

 return on investment (ROI),

tracking, 134 - 137

 reviewing

 backlogs at end of release,

 124

 epics with stakeholders, 33

 Ries, Eric, 65

 Rifkin, Stan, 21

 risk, high risk first approach,

 121 - 123

 ROI (return on investment),

tracking, 134 - 137

 RTC (Rational Team

Concert), 89

 S

 SaaS (Software as a Service),

 80

 Schein, Edgar, 171

 setting

 expectations, 33 - 35

 priorities and boundaries,

 151 - 152

 time aside to get better,

 160

 sharing knowledge, 169

 shippable software, 81

 short iterations, 49 , 83 - 84

 shorter release cycles, 117

 silos, breaking with bullpens,

 21

 single, visible view of the

truth, 153

 small, on-going

improvements, 161 - 162

 small batches of coordinated

work, 45 - 46

 small task sizes, 47 - 48 , 70 - 71

 “so that” clause, 97 - 98

 Software as a Service (SaaS),

 80

 sprints. See iterations

 stability

 principles, 26 - 27

 of teams, 14 - 16

 stakeholder interaction

 breakthrough: “2, 2, 2, 2”

technique, 39 - 40

 IBM case study, 25 - 26

 metrics, 39 - 40

 practices

 compelling interaction,

 35

 customer support teams

as stakeholders, 38 - 39

 development

organization as

stakeholder, 37 - 38

Index 187

 epic reviews, 33

 expectations, 33 - 35

 foreign customers, 39

 regular demonstrations,

 35 - 36

 response to feedback,

 36 - 37

 stakeholder

identification, 31 - 33

 principles

 active stakeholder

interaction, 26 - 27

 challenges to

active stakeholder

interaction, 27 - 29

 doing what is needed,

 30

 importance of

stakeholder

communication,

 29 - 30

 stakeholder interaction

in XP (Extreme

Programming), 28 - 29

 summary, 42

 standup meetings, 18

 status meetings, 154 - 155 , 177

 “stop starting; start finishing,”

 57

 “stop the line” behavior,

 89 - 91

 breakthrough: removing

biggest inhibitor to

customer success,

 139 - 140

 challenges, 131 - 132

 metrics, 134 - 137

 overview, 129 - 131

 practices

 fixing blockers, 133

 handling large

problems, 133 - 134

 reflections as a guide,

 133

 principles, 130 - 132

 summary, 141

 stories. See user stories

 sufficient capacity, ensuring,

 46 - 47

 Sutherland, Jeff, 30 , 96

 Svenska Handelsbanken, 155

 Sweitzer, John, 42

 T

 task sizes, 47 - 48 , 70 - 71

 teams

 breakthrough: bullpens,

 20 - 21

 dedication, 57 - 58

 disciplines on teams, 176

 helping team learn,

 149 - 150

 letting team fail, 149 - 150

 metrics, 20 - 21

 people allocation, 60

 practices

 communication, 17 - 18

 coordination, 19

 “full credit and no

partial credit”

concept, 19 - 20

 maintenance, 16 - 17

 offering help, 20

 protection, 16 - 17

 team dashboards, 19

 whole teams, 16

 principles

 cross-component

teams, 11 - 12

 cross-discipline teams,

 12 - 13

 cross-geographical,

cross-cultural teams,

 13 - 14

 dedication, 14 - 16

 protection, 14 - 16

 stability, 14 - 16

 whole teams, 10 - 11

 summary, 22 - 23

 whole teams

 go-to people, 20

 power of, 9 - 10

 protecting, 148 - 149

 technical debt, 65 - 66

 test suites, extending with

working software, 82 - 83

 testing

 pair testing, 59

 test suites, extending with

working software, 82 - 83

 time-boxed iterations, 76 - 77

 Toyota, 130

 tracking ROI (return on

investment), 134 - 137

 truth, single view of, 153

 Twain, Mark, 52

 “2, 2, 2, 2” technique, 39 - 40

 U

 unlearning, 171

 upfront backlogs, 125 - 127

 user stories, 72

 benefits of, 94 - 97

 compared to requirements,

 96

 epic stories, 117 - 119

 example, 95

 format, 95

 “so that” clause, 97 - 98

 vertically sliced stories,

 85 - 86 , 98 - 99

188 Index

 writing, 96

 zero-gravity thinking,

 103 - 107

 user-experience (UX)

professionals, 57

 UX (user-experience)

professionals, 57

 V

 value, delivering

 breakthrough: zero-gravity

thinking, 103 - 107

 benefits of, 106 - 107

 example, 106

 explained, 104 - 105

 metrics, 103

 overview, 93 - 94

 practices

 acceptance criteria,

 99 - 100

 “so that” clause, 97 - 98

 velocity, 100 - 103

 vertically sliced stories,

 98 - 99

 principles, 94 - 97

 summary, 107

 value stream mapping, 77 ,

 109 - 111 , 166 - 167

 value-driven development,

 123 - 124

 velocity, 47 , 100 - 103

 vertically sliced stories,

 85 - 86 , 98 - 99

 VSM (value stream

mapping), 166 - 167

 W

 wait-state, 43

 waste, eliminating

 breakthrough: time-boxed

iterations, 76 - 77

 metrics, 75 - 76

 overview, 63 - 64

 practices

 avoiding writing

defects, 74 - 75

 building quality in,

 71 - 72

 expanding “Done!”

criteria, 73

 focus on customer

value, 72 - 73

 handling latent defects,

 74

 removing debt, 69 - 70

 small tasks, 70 - 71

 principles

 challenges, 67 - 69

 importance of waste

elimination, 65

 project debt, 67

 technical debt, 65 - 66

 summary, 77 - 78

 waterfall (big-batch) thinking,

 43 - 45

 waterfall answers

masquerading as agile

answers, 173 - 174

 What Would You Be Willing

to Give Up? checklist,

 174 - 175

 whole teams

 benefits of, 16

 breakthrough: bullpens,

 21 - 22

 challenges, 11

 communication, 17 - 18

 coordinating, 19

 cross-component teams,

 11 - 12

 cross-discipline teams,

 12 - 13

 cross-geographical,

cross-cultural teams,

 13 - 14

 dedication, 14 - 16

 definition of, 10

 “full credit and no partial

credit” concept, 19 - 20

 go-to people, 20

 helping team learn,

 149 - 150

 letting team fail, 149 - 150

 maintaining, 16 - 17

 metrics, 20 - 21

 offering help, 20

 power of, 9 - 10

 protecting, 14 - 17 , 148 - 149

 stability, 14 - 16

 summary, 22 - 23

 team dashboards, 19

 Williams, Laurie, 59

 working software

 breakthrough: “Fix It

Now!” approach, 89 - 91

 definition of, 80 - 81

 focus on, 50

 metrics, 89

 overview, 79 - 80

 practices

 continuous integration

and automation, 84 - 85

 evolutionary

architecture and

emergent design,

 86 - 88

 in-house deploys, 88 - 89

 short iterations, 83 - 84

 vertically sliced stories,

 85 - 86

 principles

 challenges, 82

 definition of working

software, 80 - 81

 extending test suites,

 82 - 83

 shippable software, 81

 summary, 91 - 92

 writing user stories, 96

 X-Y-Z

 XP (Extreme Programming),

stakeholder interaction,

 28 - 29

 zero-gravity thinking,

 103 - 107

 benefits of, 106 - 107

 example, 106

 explained, 104 - 105

	Contents
	Preface
	Acknowledgements
	Introduction
	Who This Book Is For
	What Is Our Approach?
	What Does This Book Cover?
	An Overview Of The Content
	What Do You Have To Do?
	What Benefits Can You Get from Reading This Book?
	Who Are We?
	Join the Conversation

	Chapter 1 Whole Teams
	Principles
	What Is a Whole Team?
	Why Are Whole Teams Hard to Create?
	Cross-Component Teams
	Cross-Discipline Teams
	Cross-Geographical, Cross-Cultural, Large Teams
	Stable, Dedicated, and Protected

	Practices
	Start with Whole Teams
	Maintain and Protect Dedicated Teams
	The Conversation
	Share the Same Truth
	No Partial Credit
	Offer Help

	Metrics
	Breakthrough
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

