Praise for
The Natural Gas Revolution

“Robert Kolb has written an excellent and comprehensive volume on the changing energy landscape. Both specialists and non-experts will benefit from the deep analysis he provides.”
—Gawdat Bahgat, Professor of National Security, National Defense University’s Near East South Asia Center for Strategic Studies

“...a very comprehensive scan of the gas landscape with associated shifts from unconventional developments.”
—Matthew Hulbert, Chief Political Advisor, Saudi Aramco

“I have gone over [this] fine effort and can find no reason to be critical or even add anything! Very well done and easy to understand. I enjoyed [the] sections on shale plays and China very much.”
—Randy Brown, Managing Partner, Tremont House Enterprises (Energy Group)

“I was very impressed with the in-depth information and historical data the book provides. It should be required reading for anyone in the industry now and in particular new employees coming into the energy business to help them understand the ‘big picture’ when it comes to energy in the world.”
—Paul Belflower, Vice President, Marketing & Supply, Mustang Fuel Corporation/Mustang Fuel Marketing

“In this crisp and compact book, Robert Kolb pulls together the fast, world-changing transformation in energy across the globe. As dessert, we get a delicious treat of maps and charts that make the new picture visually clear. If you want to understand how your world may change, read this book.”
—Steve LeVine, author of The Oil and the Glory

“This book is a ‘must read’ for anyone working in or interested in the natural gas industry. Kolb’s discourse is eloquent and very insightful as he takes the reader through history up to present day of the natural gas revolution. The book is a pleasure to read!”
—Betty J. Simkins, Professor of Finance and Williams Companies Professor of Business, Spears School of Business, Oklahoma State University
“In *The Natural Gas Revolution*, Robert Kolb presents a thorough yet readable insight into the natural gas industry and its prospects for the future. While he does not shy away from explanation of the technical aspects of natural gas production, he does so in a manner that makes the concepts understandable to a reader with no background in the industry. Neither does he avoid the controversy surrounding fracking and other environmental concerns. The book is well researched and documented and a compelling read even for those of us who are familiar with the energy sector. Anyone concerned with the future of energy on a domestic or global scale should find a few hours with this book as time well spent.”

—James L. Williams, WTRG Economics
The Natural Gas Revolution
This page intentionally left blank
The Natural Gas Revolution
At the Pivot of the World’s Energy Future

Robert W. Kolb
To Lori.
Contents

Preface ... xv

A Note on Energy Values and Conversions............. xix

Plates ... 1

Plate 1: The Structure of Oil and Gas Reservoirs 1
Plate 2: The Natural Gas Resource Triangle 2
Plate 3: Unconventional Natural Gas and Oil Plays in the United States 3
Plate 4: The Barnett and Eagle Ford Shale Formations . 4
Plate 5: The Marcellus and Utica Shale Formations . 5
Plate 6: The Bakken Shale Formation 6
Plate 7: The Process for Liquefying Natural Gas 7
Plate 8: The South Pars and North Fields of Qatar and Iran. .. 8
Plate 9: The Shale Gas Basins of China 9
Plate 10: The Constricted Sea Lanes of the Middle East 10
Plate 11: The Constricted Sea Lanes of Southeast Asia 11
Plate 12: The South China Sea and Its Contested Regions: Paracel Islands, the Spratly Islands, the Senkaku/Diaoyu Islands, and the Scarborough Shoal 12
Plate 13: Principal Shale Basins of Western Europe 13
Plate 14: The Nord Stream Pipeline 14
Plate 15: Pipelines of the Southern Corridor 15
Plate 16: Gas Fields of Southern South America 16
Plate 17: General Map of Central Asia 17
Plate 18: Major International Pipelines from Iran and Central Asia Eastward 18
Plate 19: Turkmenistan’s Key Pipelines 19
Plate 20: Pipelines from the Caspian Sea Westward . 20
Plate 21: Gas Fields of the Eastern Mediterranean 21
Plate 22: Gas Fields of Tanzania and Mozambique . 22
Plate 23: The Monterey Shale 23
Plate 24: Typical Methane Hydrate Deposits 24
Plate 25: The Pressure and Temperature Interface for Methane Hydrates 25
Chapter 5 The United States and China 133
 Energy in the United States and China 133
 China’s Shale Gas Resources 139
 Energy Imports for China and the United States 143
 The Geopolitical Dimension of Energy Imports 148
 The Shale Gas Revolution and the Future of Energy
 Geopolitics ... 153
 Notes ... 155

Chapter 6 The World’s Other Large Economies 159
 Japan .. 165
 The Eurozone Economies: Germany, France,
 and Italy ... 167
 Russian Federation 172
 United Kingdom 178
 India and Brazil 180
 Conclusion ... 186
 Notes ... 187

Chapter 7 The Other Contending Nations 191
 Iran, Qatar, and Iraq 192
 Central Asia and Turkey 197
 The “Quiet Exporters” 202
 Poland and Ukraine 204
 Australia .. 207
 The Eastern Mediterranean 209
 Mozambique and Tanzania 211
 Argentina ... 212
 Conclusion .. 214
 Notes ... 215

Chapter 8 The Next Energy Revolutions 221
 The Shale Oil Revolution 221
 The Bakken Play 223
 The Eagle Ford in Texas 225
 The Monterey Shale 227
 The Tight Oil Effect 229
 A Methane Hydrate Energy Revolution? 231
 A Concluding Note 234
 Notes ... 235
References ... 239

Index ... 265
Acknowledgments

Like any other author, I have a variety of debts that it is my pleasure to acknowledge. First, I would like to thank my home institution, the Quinlan School of Business at Loyola University, Chicago, for its continuing support of my research program and for giving me the freedom to pursue my interests, wherever they lead. Ira G. Liss in Boulder, Colorado, prepared the many maps and diagrams that appear in this book. I believe they add considerably to the clarity of the story I have to tell. I wish I had had access to them as I did the research for this book! I would also like to thank Jim Boyd and Russ Hall at Pearson/FT Press. Jim was committed to the book from first hearing, or at least so it seemed. Russ was always prompt and helpful in shepherding the book through its development. I would also like to thank the editor of the Journal of Social, Political, and Economic Studies, Roger Pearson, for his continuing interest in my work.

A number of people have been very helpful in reviewing a preliminary draft of the text and making helpful comments. I would especially like to offer my sincere appreciation to: Steve LeVine, author of The Oil and the Glory; Betty Simkins, the Williams Energy Companies Professor of Finance at Oklahoma State University; Matthew Hulbert, Chief Political Advisor for Saudi Aramco; Randy Brown at Tremont House Enterprises; Paul Bellflower at Mustang Fuel Corporation; Gawdat Bahgat at the National Defense University; and Jim Williams, at WTRG Economics.
Robert W. Kolb holds two Ph.D.’s from the University of North Carolina at Chapel Hill (philosophy 1974, finance 1978) and has been a finance professor at five universities. He is currently a professor of finance at Loyola University Chicago, where he also holds the Consideine Chair of Applied Ethics.

Kolb’s recent writings include *Futures, Options, and Swaps 5e*, and *Understanding Futures Markets 6e*, both co-authored with James A. Overdahl. Recent edited volumes are: *Lessons from the Financial Crisis: Causes, Consequences, and Our Economic Future*, *Sovereign Debt: From Safety to Default*, and *Financial Contagion: The Viral Threat to the Wealth of Nations*, both published by Wiley. Kolb’s most recent books are *The Financial Crisis of Our Time* (2011) and *Too Much Is Not Enough: Incentives in Executive Compensation* (2012), both published by Oxford University Press and both selected for the Financial Management Association’s Survey and Synthesis Series.
Preface

We live in the midst of a revolution in energy that has already changed the energy future of the United States and now is beginning to transform the rest of the world as well. Because energy is so vital to all modern economies, these developments are rearranging the relative strengths of many of the most important nations in the world. This book tells the story of how this revolution began, where it stands now, and how it is likely to transform the world.

Less than 10 years ago, the United States faced what appeared to be a permanent fate of massive imports of oil and natural gas. In the ensuing years, the country has suffered a massive financial crisis, has endured a deep and persistent recession, and currently struggles through a period of less-than-satisfying anemic economic growth. This malaise has been accompanied by the dynamic rise of China and the perception of many that the United States is on an irretrievable path toward losing its customary preeminence and, perhaps, even to becoming a second-tier nation. In addition, environmental problems in the form of climate change have been gaining increased world attention. Compared to many other leading nations, the United States has done little to address its carbon footprint. There has been almost unanimous agreement that reducing carbon emissions is going to be extremely difficult in an economy used to relying on hydrocarbon energy sources.

Much—perhaps all—of that anticipated dismal future is no longer part of the forecast for the United States. Because of remarkable technological advances in accessing energy and a continuing wave of new discoveries of gas and oil, it now appears almost certain that the United States will soon become a reliable net exporter of energy. Largely benefiting from improved methods in petroleum geology, major new discoveries are occurring almost monthly around the
world, even in areas long thought to be bereft of oil or gas, such as the eastern Mediterranean and the shores of Tanzania and Mozambique.

In the United States, geologists have long known of enormous quantities of gas and oil trapped in deep strata of shale and other sedimentary rocks that have held them inaccessible and beyond the reach of existing technology. But the twin technological innovations of hydraulic fracturing (“fracking”) and horizontal drilling have unlocked these resources and led to an energy renaissance in the United States. Over the same time, the world has extended its ability to ship gas in liquid form around the world, opening economic possibilities that have long been closed and freeing some nations from the grasp of limited supply options.

For 40 years, many of the world’s large economies, including those of the United States, Western Europe, and Japan, have been held as virtual energy hostages, a precarious circumstance of deep concern to policymakers and much of the public. This dependency of the West has been made worse by the nature of the countries that have been the world’s energy jail keepers: Russia and the exporting nations of the Mideast. Following the United States, other nations are starting to extract their own shale gas and oil resources that appear to be abundant and widely distributed around the globe. Even nations that truly possess no gas or oil, such as Japan, can now at least look forward to a variety of suppliers, including many allies.

Chapter 1, “To the Brink of Innovation,” examines the U.S. energy situation just after the turn of the twenty-first century. It was not a pretty picture. U.S. oil production peaked in 1970 and fell steadily for almost 40 years, until 2008. The United States also faced a serious deficit of natural gas and a future of gas imports. The longstanding failure to develop alternative energy sources, an inability to confront the problems of global climate change, and a general environmentally inspired hostility toward hydrocarbon sources of energy all conspired to create quite a serious energy situation. Yet unknown to almost everyone, the United States was about to enjoy a sudden large
increase in energy production. In 2008, as if from another planet, came the first significant increase in oil production.

In contemporary public discourse in the United States, few topics generate more passion than the technology behind the new wave of energy production. Chapter 2, “They Call It a Revolution,” explains this technology in nontechnical terms. Opponents of hydraulic fracturing fear that the process will taint aquifers on which populations depend for their very lives. The technique requires the pumping of water, sand, and chemicals into a well under high pressure to fracture the shale beds in which the gas or oil has been locked. Doing so frees the gas or oil to flow into the well and to the earth’s surface for capture and use. While hydraulic fracturing has been in use for decades, what makes the technique so newly powerful is its combination with horizontal drilling. The sedimentary rocks containing the gas or oil lie in horizontal beds. To reach into them, the driller sinks a vertical well for some distance and then turns the drill to operate at a 90-degree angle and to traverse the shale bed. From any point of view, the ability to drill horizontally at a depth of a mile or more below the earth’s surface is a marvelous technological tour de force.

Merely acquiring energy without a means of transporting it to the point of use remains only a half-achievement. Chapter 3, “Liquid Natural Gas and the World Gas Revolution,” explains the long, slow, and now-maturing development of a worldwide transportation network that allows natural gas to be liquefied by chilling, pumped onto ships, transported to its destination, re-gasified, and then taken to the ultimate consumer. This aspect of the gas revolution is important because it allows producing nations to cash in on their newly discovered bounty, and it also makes it possible for receiving countries to secure needed energy resources at a more favorable price and to diversify their suppliers.

Chapter 4, “Environmental Costs and Benefits,” considers the very real environmental challenges of the natural gas revolution. As mentioned, these include the danger of polluting critical water
sources. But there are a number of other issues as well, including water consumption, the disposal of water laced with chemical and other pollutants generated in the production process, the disturbance of the land around the well site, and the changes that are brought to communities rich in these newly accessible resources. If all these challenges can be addressed successfully, we still face the issue of relying on hydrocarbons as opposed to once and for all, somehow, making a rapid transition to truly renewable and carbon-neutral sources of energy. There is another side to the environmental balance sheet, however. While waiting for the perfect world of completely renewable energy to arrive, substituting natural gas for coal and oil promises significant environmental benefits. Generating electricity by burning natural gas rather than coal is much cleaner. China derives 70% of all its energy from coal, and the environmental costs of that policy are well known. Also, as the United States moves ever more away from coal and toward natural gas for electricity generation, the large economies of the Eurozone are becoming more coal dependent as they close gas-fired plants and accelerate the building of coal-fired power plants.

Chapter 5, “The United States and China,” begins an extended treatment of the effects of the world energy revolution as it will play out around the world. The United States and China have the two largest economies in the world, and both stand to be major beneficiaries from the natural gas revolution. The United States has already begun to cash in, while China sits atop the world’s largest shale gas reserves, waiting to be tapped once China succeeds in assembling the necessary expertise and infrastructure. Chapter 6, “The World’s Other Large Economies,” turns attention to the other eight countries that make up the world’s 10 largest economies: Japan, Germany, France, Italy, the United Kingdom, Brazil, India, and Russia. As we will see, most of these countries are beneficiaries of the natural gas revolution, but Russia almost certainly will be a big loser.
Beyond the big 10 economies, many other nations have a stake in the natural gas revolution, and Chapter 7, “The Other Contending Nations,” explores the role that these countries will play. Iran, Qatar, and Turkmenistan, occupying second through fourth places in total world reserves of natural gas, following Russia in first place, have different problems and opportunities. But many other countries are also dramatically affected, ranging from Argentina to Australia, Turkey to Tanzania, and Malaysia to Mozambique. Developments in the world energy revolution have brought many small or even previously insignificant producing countries into the energy spotlight.

Chapter 8, “The Next Energy Revolutions,” the book’s concluding chapter, considers two further energy revolutions that are on the horizon. The first of these is the development of shale oil on parallel with what is already well under way with shale gas. The chapter also introduces a completely new and untapped resource that is the world’s largest hydrocarbon resource—the mysterious and previously inaccessible “fire ice”—or methane hydrates.

A Note on Energy Values and Conversions

Quantities of energy are expressed in a variety of measures and forms, due in part to our continuing reliance on both the metric and English systems. Also, hydrocarbon energy comes in a variety of forms—solid, liquid, and gaseous—and different measures are suitable to each. But in whatever form, these energy sources are all reducible to a common measure—their energy content. These brief notes are intended to help you understand and compare the basic measures.

We begin with a measure of energy, the British thermal unit (Btu). 1 Btu is the energy required to raise 1 pound of water by 1 degree Fahrenheit. To make the Btu more salient, we can note the following approximate equivalences of energy content:

1 food calorie ≈ 4 Btu
So a normal daily intake of 2,000 food calories is equivalent to about 8,000 Btu.

1 gallon of gasoline \(\approx 139,000 \) Btu

1 barrel of crude oil = 42 gallons \(\approx 5,800,000 \) Btu

1,000 cubic feet of natural gas \(\approx 1,023,000 \) Btu \(\approx 8.05 \) gallons of gasoline

Quantities of natural gas are expressed both in metric measures and English measures. The typical unit of measurement in the metric system is the cubic meter:

1 cubic meter \(\approx 35 \) cubic feet

In the United States, the average residence uses about 75,000 cubic feet, or about 2,100 cubic meters, of natural gas per year:

75,000 cubic feet \(\approx 76,725,000 \) Btu \(\approx 13 \) barrels of crude oil \(\approx 618 \) gallons of gasoline

Quantities of crude oil are often expressed in metric tonnes:

1 metric tonne = 1,000 kilograms \(\approx 2,205 \) U.S. pounds

1 metric tonne of crude oil \(\approx 7.33 \) barrels \(\approx 4,000,000 \) Btu

A standard term of measuring large quantities of energy is in millions of tonnes of energy equivalent (MTOE), meaning the energy equivalent to 1 million tonnes of crude oil.

Large quantities of natural gas are often measured in billions of cubic meters (bcm), a quantity of gas sufficient to serve 468,000 U.S. residences for one year.

When gas is liquefied, it is called LNG, for liquefied natural gas. Liquefying gas reduces the volume of gas by a factor of about 600, so that LNG is much more energy dense than gas:

1 tonne of LNG \(\approx 1.22 \) tonnes of crude oil

1 tonne of LNG \(\approx 1,360 \) cubic meters of natural gas \(\approx 48,000 \) cubic feet of natural gas
Plate 1 The Structure of Oil and Gas Reservoirs

Plate 2 The Natural Gas Resource Triangle

Source: Slightly adapted from Stephen A. Holditch, “Tight Gas Sands,” Journal of Petroleum Technology, June 2006, 84–90. Figure 1, p. 84.
Plate 3 Unconventional Natural Gas and Oil Plays in the United States

Source: Adapted from U.S. Energy Information Administration, “Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays,” July 2011, Figure 1, p. 6. Artwork prepared by Ira G. Liss.
Plate 4 The Barnett and Eagle Ford Shale Formations

Artwork prepared by Ira G. Liss.
Plate 5 The Marcellus and Utica Shale Formations

Artwork prepared by Ira G. Liss.
Plate 6 The Bakken Shale Formation

Artwork prepared by Ira G. Liss.
Plate 7 The Process for Liquefying Natural Gas
Plate 8 The South Pars and North Fields of Qatar and Iran

Artwork prepared by Ira G. Liss.
Plate 9 The Shale Gas Basins of China

Artwork prepared by Ira G. Liss.
Plate 10 The Constricted Sea Lanes of the Middle East

Artwork prepared by Ira G. Liss.
Plate 11 The Constricted Sea Lanes of Southeast Asia

Artwork prepared by Ira G. Liss.
Plate 12 The South China Sea and Its Contested Regions: Paracel Islands, the Spratly Islands, the Senkaku/Diaoyu Islands, and the Scarborough Shoal

Artwork prepared by Ira G. Liss.
Plate 13 Principal Shale Basins of Western Europe

Artwork prepared by Ira G. Liss.
Plate 14 The Nord Stream Pipeline

Artwork prepared by Ira G. Liss.
Plate 15 Pipelines of the Southern Corridor

Artwork prepared by Ira G. Liss.
Plate 16 Gas Fields of Southern South America

Artwork prepared by Ira G. Liss.
Plate 17 General Map of Central Asia

Artwork prepared by Ira G. Liss.
Plate 18 Major International Pipelines from Iran and Central Asia Eastward

Artwork prepared by Ira G. Liss.
Plate 19 Turkmenistan’s Key Pipelines

Artwork prepared by Ira G. Liss.
Plate 20 Pipelines from the Caspian Sea Westward

Artwork prepared by Ira G. Liss.
Plate 21 Gas Fields of the Eastern Mediterranean

Artwork prepared by Ira G. Liss.
Plate 22 Gas Fields of Tanzania and Mozambique

Artwork prepared by Ira G. Liss.
Plate 23 The Monterey Shale

Artwork prepared by Ira G. Liss.
Plate 24 Typical Methane Hydrate Deposits

Artwork prepared by Ira G. Liss.
Plate 25 The Pressure and Temperature Interface for Methane Hydrates

Artwork prepared by Ira G. Liss.
This page intentionally left blank
To the Brink of Innovation

World Energy—A Rapid Tour of the Past 200 Years

From the beginning of human history until about 1750, a common date for the start of the Industrial Revolution, the world was poor, and societies were equal—or at least very roughly so, and dramatically so compared to the state of the world today. Over the past 250 years, some nations have succeeded in building economic institutions and deploying technological innovations to facilitate economic growth. These movements have been the primary drivers of a rapid increase in wealth that was initially concentrated in the United Kingdom and soon spread to other early-moving nations. More recently, other societies have adopted institutions and technologies that permit economic progress, and wealth has spread to many other nations. The original Industrial Revolution has been superseded by further industrial and societal revolutions.

Some historians emphasize the role of the rapid technological changes that occurred starting about 1750, while others emphasize what they see as the greater importance of improving institutions that guarantee property rights and propel economic growth. Whatever the ultimate cause of the prosperity that began some 250 years ago, the world’s new wealth arrived on a drip, then a trickle, and finally a flood of energy derived from hydrocarbons. Pre-industrial societies
consumed relatively little energy, deriving virtually all energy from organic sources. These sources were either human or animal muscle power, or substances that were burned for energy, like wood and peat. Before about 1700, power derived from wind, water, and hydrocarbons played only a negligible or nonexistent role.3 No matter the sophistication of intellect or the brilliant organization of society, a total reliance on these organic energy sources placed an upper bound on human consumption and wealth, so the almost universal condition of poverty “did not arise from lack of personal freedom, from discrimination, or from the nature of the political or legal system, though it might be aggravated by such factors. It sprang from the nature of organic economies.”4

Only the past few centuries have seen a significant increase in energy use. The increased exploitation of new energy sources has paralleled the development of technologies that have been able to actually make productive use of that newfound energy. Without industrial technologies, new energy sources could only be used for heating, and the difficulty of accessing new energy supplies has helped to limit human energy consumption.

The new sources of power that accompanied and made possible the rise of industrial technologies were first coal and then oil. Table 1.1 and Figure 1.1 show the transition of the world’s energy sources since 1800, when the Industrial Revolution was already in full swing.

<table>
<thead>
<tr>
<th>Fuel Transition</th>
<th>Decade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal overtakes biofuels</td>
<td>First decade of the nineteenth century</td>
</tr>
<tr>
<td>Oil overtakes biofuels</td>
<td>1950s</td>
</tr>
<tr>
<td>Oil overtakes coal</td>
<td>1960s</td>
</tr>
<tr>
<td>Gas overtakes biofuels</td>
<td>1960s</td>
</tr>
</tbody>
</table>

In Figure 1.1, the different sources of energy are expressed in a common unit of energy, the energy contained in 1 million barrels of
oil. Perhaps most surprisingly, the entire nineteenth century, with all its rapid technological change and innovation, was still dominantly fueled by organic energy sources—non-petroleum resources including wood, peat, and the muscle power of animals and humans. Coal, however, gained an ever-more-prominent role starting in the middle of the nineteenth century. Nonetheless, coal surpassed organic energy as a world energy source only at the beginning of the twentieth century. Oil surpassed organic energy sources in world usage only in the 1950s, and it did not surpass coal until the 1960s.

![The Succession of Energy Sources: Biofuels, Coal, and Crude Oil](source)

Figure 1.1 The Succession of Energy Sources: Biofuels, Coal, and Crude Oil

Coal’s slow move to ascendancy over organic energy sources stemmed from the relatively slow spread of the Industrial Revolution to other parts of the world. Only northern Europe and the United States saw rapid industrialization following the breakthroughs in the United Kingdom. In these advanced economies, coal was king, supplying more than 90% of all of England’s energy as early as the 1850s. Meanwhile, though it was relatively close to the source of innovation,
Italy had a distribution of energy sources in the 1850s much like England’s in the 1550s.\(^6\)

Figure 1.2 shows that the past 200 years of energy history has featured a falling share for organic energy sources, and that trend continues to the present, with biofuels now constituting less than 10% of world energy usage. Nuclear and hydropower are together even less important than biofuels, constituting slightly more than 8% of total world energy usage. Solar power and wind power are both too slight to be factors. Thus, the world currently relies on hydrocarbons—coal, oil, and natural gas—for more than 80% of energy. Focusing on energy derived just from the three main hydrocarbons, oil provides 37%, slightly leading coal at 35%, with natural gas following at 28%. However, the importance of gas is rising and even accelerating. Natural gas supplied 7% of the world’s energy in 1950, and it supplies 23% today; its proportion is almost certain to increase.

![Shares of World Energy Sources, 1800–2008](image)

Figure 1.2 Shares of World Energy Sources, 1800–2008

That natural gas has gone from a 7% to a 23% share of total world energy in 60 years is all the more impressive when measured against the vast acceleration of world energy usage, as Figure 1.3 shows. In 2008, world energy usage was 10 times as large as in 1900 and 22 times as large as in 1800. Only a relatively small part of this increased energy usage can be attributed to population growth. Rather, there has been a marked increase in energy usage per capita, which has fueled a dramatic increase in per capita gross domestic product (GDP) as well. From 1820 to today, world per capita GDP has risen by a factor of 10, while in the industrialized West, per capita income has surged by a factor of 20 over the same period.7

Figure 1.3 The World’s Energy Sources, 1800–2008

Hydrocarbons: From the Beginnings to Maturity

Today our lives depend so fully on energy derived from hydrocarbons that it is almost impossible to realize how recently these energy sources began to play a significant role in human history. Coal’s dominance gave way to oil due in large measure to oil’s role in transportation. Today, oil rules the energy day and captures our geopolitical attention. A Russian engineer drilled the world’s first oil well in 1848, in Baku on the Caspian Sea. Baku was producing almost the entirety of the world’s oil supply around 1860. Today, as the capital of Azerbaijan, Baku continues to be an important hub of hydrocarbon production and transportation. In the United States, oil collected from surface seeps was first used as an ingredient in patent medicine around 1850, but some innovators recognized oil’s potential as a source of energy for lighting.

The first oil well in the United States was drilled in Titusville, Pennsylvania, in 1859 by “Colonel” Edwin Drake; it set off the first American oil boom. The following decades saw a competition among several players. John D. Rockefeller’s Standard Oil was big in the United States, and the Swedish Nobel family came to be the most important players around Baku. The Nobels were soon joined by a succession of other non-U.S. firms, with the French Rothschilds also playing a prominent role.

It is not too much to say that crude oil made the automobile and that the automobile made oil one of the world’s most important commodities. Although it was not the first country to drill, the United States quickly came to lead world production. Over the 1900 to 1950 period, the United States produced more than half of the world’s oil. The bounty of U.S. oil played a critical role in both world wars. Within days of the 1918 armistice, the French Senator Victor-Henri Bérenger stated, “Oil, the blood of the earth, has become the blood of victory.” Not to be outdone by French metaphors, Earl Curzon of England remarked that the Allies had “floated to victory on a wave of
Although obtaining some oil from Mexico and Persia, the real source of the blood, or wave of victory, came from the United States, which supplied 80% of the Allies’ oil in the last year of World War I. By contrast, Germany had sufficient coal and natural gas but could draw only on Romania for a secure supply of oil.

Oil from the United States played a similar dramatic role in the winning of World War II, as Table 1.2 shows. Germany had adequate supplies of coal, outproducing every other combatant, even able to convert coal and natural gas to oil and then to gasoline. Nonetheless, the Allied powers outproduced the Axis collective by 63%. But with the war truly being a world war, navies and armies could only get to the front by using oil power, not coal. It was in crude oil production and availability that the Axis suffered the most serious disadvantage. Collectively, the Allies outproduced the Axis in oil by a factor of more than 15. Of that total Allied production, the United States contributed 80%, as it also did in World War I. So if the Allies in World War I rode to victory on a wave of oil, the Allies got to and won World War II on the strength of its massive superiority in crude oil, which was overwhelmingly provided by the United States.

Table 1.2 Coal and Crude Oil Suppliers in World War II
(Millions of Metric Tons)

<table>
<thead>
<tr>
<th></th>
<th>Allies</th>
<th>Axis Powers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USA</td>
<td>USSR</td>
</tr>
<tr>
<td>Coal</td>
<td>2,149.7</td>
<td>590.8</td>
</tr>
<tr>
<td>Crude oil</td>
<td>833.2</td>
<td>110.6</td>
</tr>
</tbody>
</table>

Note: Approximately two-thirds of German oil production was in the form of synthetic oil derived from coal or natural gas.
A Rude Awakening

U.S. crude oil production continued to increase after World War II, peaking in 1970, at a production of 9.6 million barrels per day. From this high mark, the United States suffered a persistent slide in production for decades.

Coming almost immediately after the peak in U.S. oil production, the Organization of the Petroleum Exporting Countries (OPEC) oil embargo of 1973–1974 was a rude awakening. The United States had experienced other shortages in the many decades of previous oil history, including the West Coast Oil Famine of 1920, probably the first oil shock of the transportation era. But the 1973–1974 experience was several orders of magnitude larger than any previous supply interruption, and it galvanized the attention of the American public, which was forced for the first time in memory to wait in line to fuel its cars.

Within days after the initiation of the oil embargo, President Nixon put the United States on the road to energy independence, declaring on November 7, 1973, “Let us set as our national goal, in the spirit of Apollo, with the determination of the Manhattan Project, that by the end of this decade we will have developed the potential to meet our own energy needs without depending on any foreign energy source.” Ever since that time, the nation has been on the long road to that elusive and seemingly ever-receding goal, with every president since Richard Nixon renewing the pledge and commitment to energy independence.

Thus, the three decades that followed the oil embargo were largely unhappy ones for energy in the United States. For oil—the critical energy source—the story was one of ever-increasing usage, ever-falling production, and ever-larger imports, and the same was
largely true of natural gas. Even in those times, and continuing to the present day, coal has presented no supply problems. Presently, the United States has about 240 billion metric tons of coal, and even though it is producing almost 1 billion metric tons per year, that is less than one-half of 1% of proved reserves. “Proved reserves” are essentially in-ground resources confidently known to exist that can be extracted profitably under current economic conditions. Generally, “reserves” refers to “proved reserves.” Put another way, the United States has almost 250 years’ worth of coal at present levels of consumption, and it is actually producing more than it consumes. With oil and gas, the situation has been quite otherwise.

U.S. Oil and Natural Gas at the Turn of the Millennium

Figure 1.4 shows the recent history of oil production and consumption in the United States. Even at the height of production, the United States consumed more oil than it produced, and in the 30 years from 1970 to 2000, the gap generally widened, with increasing consumption and falling production. The situation for natural gas has been superficially different but similar in actual fact. As shown in Figure 1.5, in the United States, the production and consumption of natural gas were in a rough balance initially, but starting in about 1986, consumption increased rapidly, even while production increased. The ultimate result was that the gap between consumption and production grew ever wider toward the end of the twentieth century.
Figure 1.4 U.S. Crude Oil Consumption and Production, 1970–2000

Figure 1.5 U.S. Natural Gas Consumption and Production, 1970–2000
Source: U.S. Energy Information Administration.
Also, U.S. oil and gas reserves fell significantly from 1970 to 2000, as Figure 1.6 shows. From this dwindling resource base, the United States continued to extract more and more of both oil and gas, as shown in Figure 1.7. By 2000, the United States was extracting about 10% of its oil reserves and about 11% of its gas reserves each year. While there had been fluctuation in the production-to-reserves ratio for both oil and gas, the general trend was upward, and this was particularly true for natural gas. Further, part of the reason that these rates of production were not higher was resistance to oil and gas production on environmental grounds. Thus, the energy picture for the United States at the start of the new millennium was certainly perilous.

Figure 1.6 U.S. Oil and Natural Gas Proved Reserves, 1970–2000 (1970 = 100.0)

Source: U.S. Energy Information Administration.
Figure 1.7 U.S. Oil and Gas Produced, as a Percentage of Proved Reserves, 1970–2000

Source: U.S. Energy Information Administration.

The geopolitical situation around the turn of the millennium could only exacerbate reasonable fears about the energy future for the United States and its principal allies. The war between Iraq and Iran had dragged on for almost the entire decade of the 1980s, reducing production for both countries. Iraq’s invasion of Kuwait in 1991 only emphasized the turbulence of the Persian Gulf region, with its critical energy supplies. Then came the attack on the World Trade Center in New York in September 2001, ushering in a new era of conflict and supply disruption in the region. In assessing the near- and short-term futures for natural gas in May 2001, the U.S. Energy Information Administration (USEIA) noted that gas prices had more than doubled in the decade 1990 to 2000, and it forecast that prices would rise by 34% in just the next two years.13 Further, so much gas had been withdrawn from storage that the USEIA saw its replenishment as a challenge that would add to price pressure. The same report noted that some policy analysts were questioning the ability of natural gas to play its expected role in supporting economic growth.
Looking out to 2020, the USEIA predicted that total U.S. energy consumption would increase by about one-third over the period, as would the use of oil. The report also predicted that the use of natural gas would increase by almost two-thirds. As a result of these increases, the USEIA predicted that the United States would have to increase gas imports by about three-quarters and oil imports by two-thirds.14

The natural gas supply and demand problems for the United States stemmed from several sources. In the aftermath of the embargo-induced energy crisis of the early 1970s, Congress passed the Powerplant and Industrial Fuel Use Act of 1978 as a centerpiece of President Carter’s energy policy. One of the key purposes cited in the act was “to encourage and foster the greater use of coal and other alternate fuels, in lieu of natural gas and petroleum, as a primary energy source.” In essence, the law required that new electricity-generating plants that were designed to run on natural gas had to also be capable of using coal or some other non-gas fuel. The act also restricted the use of natural gas in large boilers. In the years following the enactment of the act, demand for natural gas waned, prices fell, gas came into excess supply, and exploration for and development of new gas resources slowed. Given the long lead times for energy development, the disincentives to exploration and development inherent in the act soon caused significant problems.

In recognition of the excess supply that developed right after and partially in response to the 1978 act, Congress voted for repeal of the act in 1987. As the USEIA noted, this repeal “set the stage for a dramatic increase in the use of natural gas for electric generation and industrial processing.”15 Soon after this repeal came “third-generation” combined-cycle gas-fired power plants, which were much more efficient and economically attractive than prior technologies. The repeal of the 1978 act, improved technology, and low gas prices stimulated a switchover to the construction of gas-fired power plants, which contributed to a demand surge for gas. In the next 20 years, the use of gas jumped more than 100%, due largely to the expanded use of gas in generating electricity.16
Natural gas sources can be either conventional or unconventional. In short, a conventional natural gas deposit is essentially gas trapped in a single underground reservoir, much like a subterranean pool of water. By contrast, unconventional natural gas deposits consist of gas dispersed over a wider area and held in a variety of rock formations, such as shale, coal, or sandstone. (These types of deposits are explored more fully in Chapter 2, “They Call It a Revolution,” as they play an important role in the natural gas revolution.) In 2000, the USEIA published an assessment of technically recoverable natural gas in the lower 48 states, both conventional and unconventional, as shown in Table 1.3. (Technically recoverable oil and gas are resources that it is possible to access with current technology, without reference to the economic viability of doing so.) The total estimate was more than 22 trillion cubic meters, divided almost exactly evenly between conventional and unconventional deposits. This is enough gas to fill the volume of the New Orleans Superdome more than 5 million times.

Table 1.3 U.S. Unproved Technically Recoverable Natural Gas Resources Onshore in the Lower 48 States, as of January 1, 2000 (Billion Cubic Meters)

<table>
<thead>
<tr>
<th>Region</th>
<th>Conventional</th>
<th>Unconventional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tight Sands</td>
<td>Coal Bed</td>
</tr>
<tr>
<td>West Coast</td>
<td>623</td>
<td>170</td>
</tr>
<tr>
<td>Rocky Mountains</td>
<td>1,557</td>
<td>5,380</td>
</tr>
<tr>
<td>Midcontinent</td>
<td>2,633</td>
<td>425</td>
</tr>
<tr>
<td>Southwest</td>
<td>1,586</td>
<td>425</td>
</tr>
<tr>
<td>Gulf Coast</td>
<td>4,502</td>
<td>736</td>
</tr>
<tr>
<td>Northeast</td>
<td>368</td>
<td>680</td>
</tr>
<tr>
<td>Total</td>
<td>11,270</td>
<td>7,815</td>
</tr>
</tbody>
</table>

Thus, there was lots of gas onshore, but it needed to be extracted. However, legal restrictions prohibited the development of much of
this gas, particularly in the Rocky Mountain region. Further, while the industry had the technology to develop much of this gas, it was not feasible economically. Often the difference between a proved reserve and a technically recoverable reserve depends simply on the price of the resource and the cost of exploiting the resource. Offshore the United States, there are also vast amounts of technically recoverable gas. The USEIA’s analysis divided them into the Pacific, Gulf of Mexico, and Atlantic regions, holding a total of 6.7 trillion cubic meters. However, the entire Pacific and Atlantic regions were legally out of bounds for development, as was one of the three subregions of the Gulf of Mexico. These legal restrictions excluded 1.7 trillion cubic meters of offshore gas from production. Thus, with the new millennium, the prospects for natural gas in the United States appeared highly forbidding on both the supply and demand sides of the equation. Far from being a single voice of doom, the bleak future portrayed by the USEIA represented the consensus of wisdom on the subject of hydrocarbons in general and natural gas in particular.

Contrasted with these dire predictions, and not fully understood or anticipated by anyone, the energy future of the United States and the world stood on the cusp of a dramatic change. As we will see, there was soon to be a remarkable jump in estimates of gas resources, and new technologies would make it economically feasible to develop much gas that previously had been only technically recoverable.

Notes

1. See, for instance, Robert E. Lucas, Jr., “The Industrial Revolution: Past and Future,” Minneapolis Federal Reserve Bank Annual Report, May 1, 2004, p. 1: “Living standards in all economies in the world 300 years ago were more or less equal to one another and more or less constant over time.”

2. As Douglass North and Robert Thomas put it, “The industrial revolution was not the source of modern economic growth. It was the outcome of raising the private rate of return on developing new techniques and applying them to the production process.” It was, in short, the development of secure property rights protected by a system of laws enforced by a capable government that made

3. This is not to minimize or neglect the intellectual achievements of an earlier time. For example, Lynn White chronicles the amazing inventions and technological innovation of the medieval period. Rather, these inventions and technologies were not deployed in a large-scale, sustained, and society-changing way until the advent of the Industrial Revolution. See Lynn White, Jr., *Medieval Technology and Social Change*, Oxford, UK: Oxford University Press, 1966.

8. In his Pulitzer-winning book, on which this section largely relies, Daniel Yergin includes a compelling narrative of these early days of oil. See *The Prize: The Epic Quest for Oil, Money, and Power*, New York: Free Press, 1991.

12. “I am recommending a plan to make us invulnerable to cutoffs of foreign oil…. new stand-by emergency programs to achieve the independence we want.” (President Gerald Ford, January 15, 1975). “This intolerable dependence on foreign oil threatens our economic independence and the very security of our nation” (President Jimmy Carter, July 15, 1979). “We will continue supportive research leading to development of new technologies and more independence from foreign oil” (President Ronald Reagan, February 18, 1981). “There is no security for the United States in further dependence on foreign oil” (President George H. Bush, August 18, 1988). “We need a long-term energy strategy to maximize conservation and maximize the development of alternative sources of energy” (President Bill Clinton, June 28, 2000). “This country can dramatically improve our environment, move beyond a petroleum-based economy, and make our dependence on Middle Eastern oil a thing of the past” (President George
W. Bush, January 31, 2006). “These are extraordinary times, and it calls for swift and extraordinary action. At a time of such great challenge for America, no single issue is as fundamental to our future as energy. America’s dependence on oil is one of the most serious threats that our nation has faced....It falls on us to choose whether to risk the peril that comes with our current course or to seize the promise of energy independence” (President Barack Obama, January 26, 2009). “For decades, we have known the days of cheap and accessible oil were numbered....Now is the moment for this generation to embark on a national mission to unleash America’s innovation and seize control of our own destiny” (President Barack Obama, June 15, 2010).

This page intentionally left blank
Index

A
Afghanistan, 185-186, 194
Ahura Mazda, 46
air quality
 natural gas emissions and, 119-121
 United States versus Europe, 124-126
aircraft carriers, by country, 150
Algeria
 future role of, 214
 liquefaction terminal capacity, 84
 liquefaction terminals under construction, 83
 LNG exports, 79, 81
 natural gas exports to Western Europe, 168
Allied powers, coal and crude oil supply in World War II, 33
Argentina
 “Annual Energy Outlook” (U.S.), 88
 LNG imports, 80
 proved reserves, 207
 regasification terminal capacity, 85
 regasification terminals under construction, 83
 shale gas resources in, 212-213
Armenia, 194
Australia
 liquefaction terminal capacity, 84
 liquefaction terminals under construction, 83
 LNG exports, 79, 81-82, 207-208
to Japan, 167, 196
 proved reserves, 192, 207
Austria, 177
Axis powers, coal and crude oil supply in World War II, 33
Azerbaijan, 175
 border with Caspian Sea, 201
 border with Iran, 194
 proved reserves, 198

B
Bahrain, 193
Bakken Shale play, 62-63, 120, 223-225
Baku, Azerbaijan, 32, 46
Baku-Tbilisi-Ceyhan (BTC) pipeline, 200
Barnett Shale play, 60
Basel, Switzerland, 118
bcm (billions of cubic meters), xx
Belgium
 LNG exports, 79
 LNG imports, 80
 natural gas exports from United Kingdom, 179-180
 regasification terminal capacity, 85

Bérenger, Victor-Henri, 32

billions of cubic meters (bcm), xx

biofuels, 28-30

biogenic formation of natural gas and oil, 49

Blackpool, England, 118, 178

Blue Stream pipeline, 176

boiling points of gases, 75

Bolivia, 184

Brazil
 aircraft carriers, 150
 comparison with China and India, 180-186
 energy consumption/efficiency and GDP, 135
 LNG imports, 80
 LNG prices, 96
 natural gas production/consumption rates, 164
 primary energy sources, 160
 regasification terminal capacity, 85
 shale gas resources in, 163, 213

Brendon, Piers, 148

Brownlow, Darrell, 105

Brunei
 liquefaction terminal capacity, 84
 LNG exports, 79, 81

Btu (British thermal unit), xix

Bulgaria, 176-177

Bunsen, Robert, 47

butane, 74-75

C

California, shale oil production, 227-228

Canada
 LNG imports, 80
 proved reserves, 192
 as “quiet exporter,” 202-204
 regasification terminal capacity, 85

carbon capture and storage (CCS), 119

carbon footprint of natural gas, 119-121

Carter, Jimmy, 39

Caspian Sea, Turkmenistan border with, 200-201

CCS (carbon capture and storage), 119

Central Asia
 natural gas exports, 198-199
 proved reserves, 197-198

Chicago, early use of natural gas, 47

Chile
 LNG imports, 80
 regasification terminal capacity, 85

China
 aircraft carriers, 149-151
 comparison with Brazil and India, 180-186
 early use of natural gas, 46
 energy consumption/efficiency and GDP, 134-137
 energy imports, 143-147
 geopolitics with United States
 current situation, 147-148
 future of, 151-152
 hydrocarbon production/consumption/import reliance, 140-141
 LNG imports, 80, 82
 LNG prices, 96
pipelines
 Central Asia, 198
 Turkmenistan, 200
primary energy sources, comparison with United States, 145-146
regasification terminal capacity, 85
regasification terminals under construction, 83
shale gas resources in, 161-162
water availability, 107
climate change. See greenhouse gases
coal
 environmental impact versus natural gas, 124-126
 for power generation, 89-90
 role in world energy usage history, 28-30, 32-33
 United States supply of, 35
 coal bed methane, 50-51
 Colorado Oil and Gas Conservation Commission (COGCC), 112-113
 completion of conventional deposits, 52-53
consumption
 in Australia and Argentina, 207
 in Central Asia and Turkey, 197-198
 GDP and
 by country, 135
 for India, Brazil, China, 181-180
 of LNG (liquefied natural gas), by country, 78
 in Persian Gulf nations, 193
 in Poland and Ukraine, 204
 of “quiet exporters,” 202-203
 in Saudi Arabia, 197
 in United Arab Emirates, 197
 in United States, 35-41
 in world’s largest economies, 162-164
A Contest for Supremacy: China, America, and the Struggle for Mastery in Asia (Friedberg), 148
conventional deposits
 crude oil, 50
 extraction, production, completion, 52-53
 hydraulic fracturing of, 54-56
 natural gas, 40-41, 50
 extraction, production, completion, 52-53
 hydraulic fracturing of, 54-56
 worldwide resources, 51-52
 production techniques, comparison with unconventional techniques, 58-59
conversion equivalences for energy, xix-xx
cost
 of LNG production facilities, 76
 of LNG production/transportation, 96-98
 of LNG regasification plants, 77
 water usage in hydraulic fracturing, 102-107
crude oil. See also shale gas and oil
 in Bakken Shale play, 62-63
 conventional deposits, 50
 energy conversions for, xx
 energy density, comparison with natural gas, 73
 formation of, 48-50
 imports, United States versus China, 143-145
 indexing LNG prices to, 95-96, 165-166
 oil embargo of 1973-1974, 34-35
 role in world energy usage history, 28-30, 32-33
INDEX

transportation, comparison with natural gas, 73-74
unconventional deposits, 50-51
in United States, recent production and consumption rates, 35-37

Cubic meters, xx
Curzon, Earl, 32
Cyprus
natural gas resources in Eastern Mediterranean, 209-211
proved reserves, 192
Czech Republic, 177

D

dangers of LNG (liquefied natural gas), 77
Delphi, 46, 112
Denmark, 168
Dominican Republic
LNG imports, 80
regasification terminal capacity, 85
Drake, Edwin, 32, 47, 52
drilling
conventional versus unconventional production techniques, 58-59
conventional wells, 52-53
horizontal drilling, 56-58
hydraulic fracturing, 54-56
dry gas, converting wet gas into, 75-76
Dubai, 85

E

East Africa, natural gas resources, 211-212
Eastern Mediterranean, natural gas resources, 209-211
Economides, Michael, 210
Egypt
liquefaction terminal capacity, 84
LNG exports, 79
natural gas exports to Western Europe, 168
proved reserves, 193
electrical power, natural gas as fuel for, 89-90
Ellsworth, Aimee, 113

The End of Country (McGraw), 122
energy
conversion equivalences, xix-xx
density
LNG (liquefied natural gas), 74
natural gas versus crude oil, 73
efficiency and GDP, by country, 135
imports, United States versus China, 143-147
primary sources
United States versus China, 145-146
in world’s largest economies, 159-161
recent production and consumption rates in United States, 35-41
world usage history
since Industrial Revolution, 27-31
in World Wars I and II, 32-33
energy independence, 153-154

Eagle Ford Shale play, 225-227
earthquakes from injection well usage, 118-119
environmental impact
 conventional versus unconventional production techniques, 58-59
 of hydraulic fracturing
 aquifer contamination, 110-116
 fracking fluid components, 107-109
 “produced water,” 116-119
 water usage, 102-107
 of hydrocarbons, 101-102
 land use requirements, 121-122
 of natural gas
 carbon footprint of, 119-121
 coal versus, 124-126
 of recovering China’s shale gas resources, 142
EPA (Environmental Protection Agency), 113, 115
Equatorial Guinea
 liquefaction terminal capacity, 84
 LNG exports, 79
Eternal Flame Falls of Chestnut Ridge Park, 112
ethane, 74-75
Europe. See also names of specific European countries (France, Germany, United Kingdom, etc.)
 environmental impact versus United States, 124-126
 natural gas imports, 167-169, 172-178
exports
 of LNG (liquefied natural gas)
 in 2001, 78-81
 from Australia, 207-208
 by country, 78
 from East Africa, 211-212
 from Qatar, 196-197
 “quiet exporters,” 202-204
 shifts in, 2001-2011, 78-81
support/opposition in United States, 91-93
via pipelines
 from Central Asia, 198-199
 from Iran, 194-195
 “quiet exporters,” 202-204
 from Russia, 172-178, 204-207
 from Turkmenistan, 199-201
 extraction of conventional deposits, 52-53

F
FERC (Federal Energy Regulatory Commission), 87
Finland, 177
“fire ice.” See methane hydrates
Fisher, Daniel, 212
flaring, 120-121
flowback water, disposal of, 116-119
food calories, xix
Fox, Josh, 111
fracking. See hydraulic fracturing
fracking fluid
 aquifer contamination, 110-116
 components of, 107-109
 “produced water,” 116-119
France
 aircraft carriers, 150
 energy consumption/efficiency and GDP, 135
 LNG imports, 80-82
 natural gas imports, 167-169
 natural gas production/consumption rates, 164
 primary energy sources, 160
 regasification terminal capacity, 85
regasification terminals under construction, 83
Russian natural gas prices, 177
shale gas resources in, 163, 169-171
Fredonia, New York, 47
Friedberg, Aaron, 148
future
of geopolitics between United States and China, 151-152
of tight oil production in United States, 229-230

G
gases, melting and boiling points, 75
Gasland (documentary), 111-113
Gaza, 209-211
Gazprom, 177-178
GDP, energy consumption/energy efficiency and
by country, 135
for India, Brazil, China, 181-180
geographical effects of oil and gas production, 121-122
geopolitics
of Eastern Mediterranean resources, 209-211
of Japan’s LNG imports, 167
of Russia’s pipeline infrastructure, 168-169, 174
of United States and China
current situation, 147-148
future of, 151-152
Germany
energy consumption/efficiency and GDP, 135
natural gas imports, 167-169
natural gas production/consumption rates, 164
primary energy sources, 160
Russian natural gas prices, 177
shale gas resources in, 163, 169-171
World War I role, 33
World War II role, 33
Gjelten, Tom, 45
global warming. See greenhouse gases
Great Britain. See United Kingdom
Greece
LNG imports, 80
regasification terminal capacity, 85
Russian natural gas prices, 177
greenhouse gases
methane hydrates, 233
produced by natural gas, 119-121
United States versus Europe, 124-126
groundwater contamination, 110-116
 guar gum, 56

H
Hart, William, 47
Hickenlooper, John, 116
history
of LNG usage, 76-77
of natural gas usage, 46-47
of world energy usage
since Industrial Revolution, 27-31
in World Wars I and II, 32-33
horizontal drilling, 56-58
Hulbert, Matthew, 170
Hungary, 177
hydraulic fracturing
conventional versus unconventional production techniques, 58-59
environmental impact
aquifer contamination, 110-116
fracking fluid components, 107-109
“produced water,” 116-119
water usage, 102-107
process of, 54-56
social impact, 122-124
hydrocarbons
environmental impact, 101-102
primary energy sources in world’s largest economies, 159-161
United States versus China
imports, 141
usage history, 137, 139, 141
usage history of world energy, 32-33
India
aircraft carriers, 150
comparison with Brazil and China, 180-186
energy consumption/efficiency and GDP, 135
LNG imports, 80, 82, 196
LNG prices, 96
natural gas pipelines, 184-186
natural gas production/consumption rates, 164
primary energy sources, 160
regasification terminal capacity, 85
regasification terminals under construction, 83
shale gas resources in, 163
Indiana, early use of natural gas, 47
Indonesia
liquefaction terminal capacity, 84
liquefaction terminals under construction, 83
LNG exports, 79, 81, 167
as “quiet exporter,” 202-204
regasification terminals under construction, 83
Industrial Revolution, 27-31
injection wells, 116-119
Iran
natural gas exports, 194-195
natural gas imports, 198
pipelines to India, 185-186
proved reserves, 191, 193
shared reservoir with Qatar, 196
Iraq
border with Iran, 194
flaring in, 120
proved reserves, 191-193
Ireland, 179-180
Israel

natural gas resources in Eastern Mediterranean, 209-211
proved reserves, 192
regasification terminals under construction, 83

Italy

aircraft carriers, 150
energy consumption/efficiency and GDP, 135
LNG imports, 80-81
natural gas imports, 167-169
natural gas production/consumption rates, 164
primary energy sources, 160
regasification terminal capacity, 85
regasification terminals under construction, 83
Russian natural gas prices, 177
shale gas resources in, 163, 169-171

Japan

aircraft carriers, 150
energy consumption/efficiency and GDP, 135
LNG imports, 80-82, 165-167, 196
LNG prices, 96
LNG usage, 74
long-term LNG contracts with Qatar, 94
natural gas production/consumption rates, 164
primary energy sources, 160
regasification terminal capacity, 85
regasification terminals under construction, 83
shale gas resources in, 163

K

Kaplan, Robert D., 148
Kazakhstan
flaring in, 120
natural gas exports, 198
proved reserves, 198
kerogen, 48
Keystone XL pipeline, 203
Korea. See South Korea
Krauss, Clifford, 45
Kuwait
LNG imports, 80
proved reserves, 193
regasification terminal capacity, 85
Kyrgyzstan, 198

L

land use requirements for oil and gas production, 121-122

Lebanon
natural gas resources in Eastern Mediterranean, 209-211
proved reserves, 192
legal restrictions on energy production, 41
Leviathan field, 209
LeVine, Steve, 45, 97
Libya
liquefaction terminal capacity, 84
LNG exports, 79
Lipton, Eric, 45
liquefaction terminals under construction, 83
cost, 76
by country, 83-84
production techniques in, 74-76
in United States, current and planned, 86-88
LNG (liquefied natural gas)
cost of production, 96-98
creating, 74-76
dangers of, 76-77
energy conversions for, xx
energy density, 74
exports
 from Australia, 207-208
 by country, 78
 from East Africa, 211-212
 from Qatar, 196-197
 “quiet exporters,” 202-204
history of usage, 76-77
imports
 Brazil, 184
 by country, 78
 Japan, 165-167
United States versus China, 146-147
Western Europe, 167-169
infrastructure availability, 83-88
liquefaction terminals, by country, 83-84
liquefaction terminals, under construction, 83
regasification terminals, by country, 84-85
regasification terminals, under construction, 83-86
in Japan, 74
major importers/exporters in 2001, 78-81
potential uses in United States, 88-93
pricing, 94-96, 165-166
shifts in imports/exports 2001-2011, 81-83
United States’ role in world trade, 86-88
Luttwak, Edward, 149

M
Malaysia
 liquefaction terminal capacity, 84
 LNG exports, 79, 81, 167
 as “quiet exporter,” 202-204
 regasification terminals under construction, 83
manufacturing, natural gas usage in, 90-91
Marcellus Shale play, 61-62, 122
Markham, Mike, 113
“The Math Doesn’t Add Up on the US’s Ambitions to Export Natural Gas” (LeVine), 97
McClure, Renee, 113
McGraw, Seamus, 122
melting points of gases, 75
methane
 air quality impact of, 119-121
 creating LNG, 74-76
 water contamination, 111-113
methane hydrates, 51, 231-233
metric tonnes, xx
Mexico
 LNG imports, 80
 regasification terminal capacity, 85
 regasification terminals under construction, 83
Middle East, export chokepoints in, 147
migration of natural gas and oil, 49-50
military capabilities of United States and China
 current situation, 148-153
 future of, 152-155
Miller, Alexei, 177
millions of tonnes of energy equivalent (MTOE), xx
Milner, Brian, 45
INDEX

mineral rights, 171
Mitchell, George, 60
Monsoon: The Indian Ocean and the Future of American Power (Kaplan), 148
Monterey Shale play, 227-228
Moore, Stephen, 45
Morse, Ed, 45
Mozambique
 LNG exports, 211-212
 proved reserves, 192
MTOE (millions of tonnes of energy equivalent), xx
Myers Jaffe, Amy, 45

N
Nabucco pipeline, 175
natural gas. See also LNG (liquefied natural gas); shale gas and oil
 carbon footprint of, 119-121
 conventional deposits, 40-41, 50
 early history of, 46-47
 energy conversions for, xx
 energy density, comparison with crude oil, 73
 environmental impact versus coal, 124-126
exports
 Central Asia, 198-199
 East Africa, 211-212
 Iran, 194-195
 Russia, 172-178, 204-207
 Turkmenistan, 199-201
formation of, 48-50
imports
 India, 184-186
 Turkey, 201-202
 United States versus China, 144-147
Western Europe, 167-169
melting and boiling points of gases in, 75
methane hydrates, 51, 231-233
production versus consumption in United States, 35-41
 in world’s largest economies, 162-164
resources in Eastern Mediterranean, 209-211
role in world energy usage history, 28-31
transportation, comparison with crude oil, 73-74
unconventional deposits, 40-41, 50-51
United States reserves, 64
worldwide resources, 51-52, 66-69
natural gas liquids (NGLs), 75-76
Netherlands
 LNG imports, 80
 natural gas exports
to United Kingdom, 179-180
to Western Europe, 168
Russian natural gas prices, 177
NGLs (natural gas liquids), 75-76
Nigeria
 flaring in, 120
 future role of, 214
liquefaction terminal capacity, 84
LNG exports, 79, 81-82, 184
Nixon, Richard, 34
Nobel family, 32
Nord Stream pipeline, 174
North Dakota, shale oil production, 221-225
Norway
 liquefaction terminal capacity, 84
 LNG exports, 79
natural gas exports, 168, 179-180
as “quiet exporter,” 202-204
nuclear power in Japan, 165

O
oil. See crude oil; shale gas and oil
oil embargo of 1973-1974, 34-35
oil shale, 48-49
Oman
liquefaction terminal capacity, 84
LNG exports, 79, 81
proved reserves, 193
Onnes, Heike Kamerlingh, 76
OPEC (Organization of the Petroleum Exporting Countries), 34-35
Oracle at Delphi, 46, 112
organic energy sources. See biofuels

P
Pakistan, 185-186
border with Iran, 194
pipeline from Iran, 195
Papua New Guinea, 83
Paraná basin, 183
Parnaíba basin, 183
pentane, 74-75
Persian Gulf nations, proved reserves in, 193
Peru
liquefaction terminal capacity, 84
LNG exports, 79
physical effects on land of oil and gas production, 121-122
pipelines
for natural gas exports
from Central Asia, 198-199
from Iran, 194-195
“quiet exporters,” 202-204
from Russia, 172-178
in Turkmenistan, 199-201
from United Kingdom, 179-180
for natural gas imports
in Brazil, 184
in India, 184-186
from United Kingdom, 179-180
United States versus China, 144-147
Western Europe, 167-169
in Poland and Ukraine, 204-207
Plutarch, 46
Poland
natural gas imports
from Qatar, 196
from Russia, 204-206
proved reserves, 204
regasification terminals under construction, 83
Russian natural gas prices, 177
Portugal
LNG imports, 80
regasification terminal capacity, 85
regasification terminals under construction, 83
power generation, natural gas as fuel for, 89-90
Powerplant and Industrial Fuel Use Act of 1978, 39
pre-salt offshore formations, 183
pricing
of LNG (liquefied natural gas), 94-96, 165-166
in Japan, 165
in United States, 165
of Russian natural gas, 176-177
“produced water,” disposal of, 116-119
production
 in Australia and Argentina, 207
 in Central Asia and Turkey, 197-198
 of conventional deposits, 52-53
 conventional versus unconventional techniques, 58-59
 environmental impact. See environmental impact
 in Persian Gulf nations, 193
 in Poland and Ukraine, 204
 of “quiet exporters,” 202-203
 in United States
 at Bakken Shale play, 223-225
 at Eagle Ford Shale play, 225-227
 future of tight oil production, 229-230
 at Monterey Shale play, 227-228
 recent production and consumption rates, 35-41
 shale oil production, 221-223
 in world’s largest economies, 162-164
 propane, 74-75
 proppants, 55-56
 proved reserves
 Argentina, 207
 Australia, 207
 Central Asia and Turkey, 197-198
 defined, 35
 impact, by country, 191-192
 Persian Gulf nations, 193
 Poland and Ukraine, 204
 of “quiet exporters,” 202-203
 of shale gas resources
 India and Brazil, 182
 United States and China, 139-143
 Western Europe, 169-171
 world’s largest economies, 161-162
 United Kingdom, 178
 United States, 64
 worldwide natural gas, 51-52, 66-69
 worldwide shale gas, 67-69
Puerto Rico
 LNG imports, 80
 regasification terminal capacity, 85

Q
 Qatar
 liquefaction terminal capacity, 84
 LNG exports, 79, 81-82, 196-197
 to Brazil, 184
 to Japan, 94, 167
 to Western Europe, 168
 proved reserves, 191, 193
 shared reservoir with Iran, 196
 “Quadrennial Defense Review Report” (U.S. Department of Defense), 153
 “quiet exporters,” 202-204

R
 Rao, Vikram, 106
 regasification terminals
 under construction, 83-86
 cost, 77
 by country, 85-83
 in United States, current and planned, 86-88
religious usage of natural gas, 46
Repsol, 213
reserves. See proved reserves
Richter, Wolf, 45
The Rise of China vs. the Logic of Strategy (Luttwak), 149
Rockefeller, John D., 32
Romania, 177
Rothschild family, 32
Russia
aircraft carriers, 150
Eastern Mediterranean resources and, 210
energy consumption/efficiency and GDP, 135
flaring in, 120
liquefaction terminal capacity, 84
LNG exports, 79, 82, 167
natural gas production/consumption rates, 164
pipelines
in Central Asia, 198
in Poland and Ukraine, 204-207
in Turkmenistan, 199
to Western Europe, 167-169
position in world gas market, 172-178
primary energy sources, 160
proved reserves, 191
shale gas resources in, 163
sea-denial strategy, 152
Serbia, 177
shale gas and oil, 50-51
in Argentina, 212-213
in China, 139-143
horizontal drilling, 56-58
in India and Brazil, 182-184
in Russia, 172-178
in United Kingdom, uncertainty concerning, 178-180
United States deposits, 60-63
United States production, 221-223
in Bakken Shale play, 223-225
in Eagle Ford Shale play, 225-227
future of, 88, 229-230
in Monterey Shale play, 227-228
in Western Europe, 169-171
in world’s largest economies, 161-162
worldwide resources, 67-69
Shtokman project, 173
Singapore, 83
slickwater fracturing, 55
Slovakia, 177
social impact of hydraulic fracturing, 122-124
South Korea
LNG imports, 80-82, 196
LNG prices, 96
regasification terminal capacity, 85
regasification terminals under construction, 83
South Stream pipeline, 176
Spain
LNG exports, 79
LNG imports, 80-82
LNG prices, 96

S
Safe Drinking Water Act of 1974, 115
Saudi Arabia
consumption versus production rates, 197
proved reserves, 192-193
regasification terminal capacity, 85
regasification terminals under construction, 83
spot market pricing of LNG, 95-96, 165-166
storage of LNG, 76-77
string-of-pearls strategy, 151-152
Syria
 imports from Iran, 194
 natural gas resources in Eastern Mediterranean, 209-211

T
Tabriz-Dogubayazit pipeline, 194
Taiwan
 LNG imports, 80-82
 regasification terminal capacity, 85
Tajikistan, 198
Tamar reservoir, 209
TANAP (Trans-Anatolian Pipeline Project), 175
Tanzania
 LNG exports, 211-212
 proved reserves, 192
TAP (Trans-Adriatic Pipeline), 175
TAPI (Turkmenistan-Afghanistan-Pakistan-India) pipeline, 185-186, 201
Tarim Basin, 140
 technically recoverable resources defined, 40
 in India and Brazil, 182-183
 in United States and China, 139-140
 in world’s largest economies, 161-162
Texas shale oil production, 221-223, 225-227
Thailand, 80
thermogenic formation of natural gas and oil, 48-49
tight gas and oil, 50-51, 229-230
Titusville, Pennsylvania, 47
trains. See liquefaction terminals
Trans-Adriatic Pipeline (TAP), 175
Trans-Anatolian Pipeline Project (TANAP), 175
transportation of natural gas
 comparison with crude oil, 73-74
 LNG (liquefied natural gas), 77
 as vehicle fuel, 90-91
Trinidad and Tobago
 liquefaction terminal capacity, 84
 LNG exports, 79, 82
Turkey
 border with Iran, 194
 Eastern Mediterranean resources and, 210
 LNG imports, 80
 natural gas imports, 201-202
 proved reserves, 197-198
 regasification terminal capacity, 85
 Russian natural gas prices, 177
Turkmenistan, 168-169, 174-175
 border with Iran, 194
 future of pipelines, 199-201
 natural gas exports, 198
 proved reserves, 191, 198
Turkmenistan-Afghanistan-Pakistan-India (TAPI) pipeline, 185-186, 201

U
Ukraine, 168-169, 174
 imports from Russia, 206-207
 proved reserves, 204
unconventional deposits
 crude oil, 50-51
 horizontal drilling, 56-58
 hydraulic fracturing of, 54-56
 natural gas, 40-41, 50-51
 defined, 57
 horizontal drilling, 56-58
 hydraulic fracturing of, 54-56
 worldwide resources, 51-52
 production techniques,
 comparison with conventional
 techniques, 58-59
 in United States, 60-63
United Arab Emirates
 consumption versus production
 rates, 197
 liquefaction terminal capacity, 84
 LNG exports, 79, 81
 LNG imports, 80
 proved reserves, 193
United Kingdom
 aircraft carriers, 150
 early use of natural gas, 46
 energy consumption/efficiency
 and GDP, 135
 LNG imports, 80, 82, 196
 LNG prices, 96
 natural gas
 exports to Western
 Europe, 168
 production/consumption
 rates, 164
 primary energy sources, 160
 regasification terminal capacity, 85
 Russian natural gas prices, 177
 shale gas resources in, 163
 uncertainty of natural gas future,
 178-180
United States
 aircraft carriers, 149-151
 coal supply, 35
 early use of natural gas, 47
 energy consumption/efficiency
 and GDP, 134-137
 energy imports, 143-147
 environmental impact versus
 Europe, 124-126
 geopolitics with China
 current situation, 147-148
 future of, 151-152
 hydrocarbon production/
 consumption/import reliance,
 140-141
 initial oil drilling, 32
 liquefaction terminal capacity, 84
 LNG exports, 79
 LNG imports, 80
 LNG infrastructure in, 86-88
 LNG potential uses, 88-93
 LNG prices, 96
 natural gas reserves in, 64
 oil embargo effect, 34-35
 primary energy sources,
 comparison with China, 145-146
 proved reserves, 191
 recent production and
 consumption rates, 35-41
 regasification terminal capacity, 85
 shale gas resources in
 comparison with China,
 139-143
 comparison with world’s
 largest economies, 161-162
 shale oil production, 221-223
 in Bakken Shale play, 223-225
 in Eagle Ford Shale play,
 225-227
future of, 229-230
in Monterey Shale play, 227-228
total cost of LNG production/transportation, 96-98
unconventional deposits in, 60-63
water availability, 102-107
World War I role, 32-33
World War II role, 33
usage history of world energy
 since Industrial Revolution, 27-31
 in World Wars I and II, 32-33
Utica Shale play, 61-62
Uzbekistan
 natural gas exports, 198
 proved reserves, 198
V
vehicle fuel, natural gas as, 90-91
Venezuela
 flaring in, 120
 future role of, 214
venting, 120
viscosity of hydraulic fracturing fluid, 55-56
von Linde, Carl, 76

W-X
water contamination
 in aquifers, 110-116
 flowback water, disposal of, 116-119
water treatment plants, 116-117
water usage
 conventional versus unconventional production techniques, 58-59
environmental impact of hydraulic fracturing, 102-107
recovering China’s shale gas resources, 142-143
well pads, land use requirements, 121-122
Western Europe. See France; Germany; Italy
wet gas, 74-76
Wolf, Martin, 45
world energy usage history
 since Industrial Revolution, 27-31
 in World Wars I and II, 32-33
“World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States” (USEIA), 162
World War I, role of crude oil, 32-33
World War II, role of coal and crude oil, 33
worldwide resources
 natural gas, 51-52, 66-69
 shale gas, 67-69

Y
Yamal Peninsula project, 173
Yemen
 liquefaction terminal capacity, 84
 LNG exports, 79
 proved reserves, 193
YPF (Argentinian oil and gas company), 213

Z
Zoroastrianism, 46