
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133135732
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133135732
https://plusone.google.com/share?url=http://www.informit.com/title/9780133135732
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133135732
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133135732/Free-Sample-Chapter


NAGIOS

Josephsen_Book 1.indb   i 3/6/13   3:18 PM



This page intentionally left blank 



NAGIOS

Building Enterprise-Grade 
Monitoring Infrastructure 
for Systems and Networks

Second Edition

David Josephsen

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris
Madrid • Cape Town • Sydney • Tokyo • Singapore • Mexico City

Josephsen_Book 1.indb   iii 3/6/13   3:18 PM



Many of the designations used by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in this book, and the publisher was aware of a 
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed 
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is 
assumed for incidental or consequential damages in connection with or arising out of the use of the 
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or 
special sales, which may include electronic versions and/or custom covers and content particular to 
your business, training goals, marketing focus, and branding interests. For more information, please 
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data is on fi le.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by 
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, 
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, 
photocopying, recording, or likewise. To obtain permission to use material from this work, please 
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper 
Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-313573-2
ISBN-10: 0-13-313573-X

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.

First Printing: April 2013

Josephsen_Book 1.indb   iv 3/6/13   3:18 PM



For Cynthia, for enduring and encouraging my incessant curiosity.

And for Tito, the cat with the biggest heart.

Josephsen_Book 1.indb   v 3/6/13   3:18 PM



This page intentionally left blank 



vii

C O N T E N T S

 Foreword by the Nagios Creator, Ethan Galstad  xiii

 Introduction 1

Do It Right the First Time 1

Why Nagios? 2

What’s in This Book?  4

Who Should Read This Book? 7
End Notes 7

CHAPTER 1 Best Practices 9

A Procedural Approach to Systems Monitoring 9

Processing and Overhead 12
Remote Versus Local Processing 12
Bandwidth Considerations 13

Network Location and Dependencies 14

Security 16

Silence Is Golden 19

Watching Ports Versus Watching Applications 20

Who’s Watching the Watchers? 21
End Notes 22

CHAPTER 2 Theory of Operations 23
The Host and Service Paradigm 24

Starting from Scratch 24
Hosts and Services  26
Interdependence 26
The Downside of Hosts and Services 27

Plug-ins 28
Exit Codes 28
Remote Execution 31

Josephsen_Book 1.indb   vii 3/6/13   3:18 PM



viii Contents

Scheduling 34
Check Interval and States  34
Distributing the Load 36
Reapers and Parallel Execution 38

Noti� cation 39
Global Gotchas 39
Noti� cation Options 40
Templates 41
Time Periods 41
Scheduled Downtime,  Acknowledgments, and Escalations 42

I/O Interfaces Summarized 43
The Web Interface 43
Monitoring 45
Reporting 46
The External Command File 48
Performance Data 48
The Event Broker 49
End Notes 50

CHAPTER 3 Installing Nagios 51

OS Support and the FHS 51

Installation Steps and Prerequisites 53

Installing Nagios 54
Con� gure 54
Make 55
Make Install 56

Installing the Plug-ins 57

Installing NRPE 59
End Notes 60

CHAPTER 4 Con� guring Nagios 61
Objects and De� nitions 62

nagios.cfg 64

The CGI Con� g 67

Templates 68

Timeperiods 70

Commands 71

Contacts 73

Contactgroup 74

Josephsen_Book 1.indb   viii 3/6/13   3:18 PM



ixContents

Hosts 75

Services 77

Hostgroups 79

Servicegroups 79

Escalations 80

Dependencies 81

Extended Information 83

Apache Con� guration 83

GO! 85
End Notes 85

CHAPTER 5 Bootstrapping the Nagios Con� g Files 87

Scripting Templates 87

Autodiscovery 91
Check_MK 91
Nagios XI 92
Autodiscovery Is Dead: Long Live Autodiscovery 92

NagiosQL 92

CHAPTER 6  Watching: Monitoring Through the 
Nagios Plug-ins 95
Local Queries 95

Pings 96
Port Queries 98
Querying Multiple Ports 100
 (More) Complex Service Checks 102
E2E Monitoring with WebInject and Cucumber-Nagios 104

Watching Windows 111
The Windows Scripting Environment 111
COM and OLE 113
WMI 113
To WSH or Not to WSH 118
To VB or Not to VB 119
The Future of  Windows Scripting 119
Getting Down to Business 121
NRPE 122
Check_NT 123
NSCP 124

Josephsen_Book 1.indb   ix 3/6/13   3:18 PM



x Contents

Watching UNIX 125
NRPE 125
CPU 126
Memory 129
Disk 130

Check_MK 131

Watching “Other Stuff ” 135
SNMP 135
Working with SNMP 137
Environmental Sensors 142
Standalone Sensors 143
LMSensors 144
IPMI 145
End Notes 146

CHAPTER 7 Scaling Nagios 149

Tuning, Optimization, and Some Building Blocks 149
NRDP/NSCA 150
NDOUtils 150

Distributed Passive Checks with Secondary 
Nagios Daemons 150

Event Broker Modules: DNX, Merlin, 
and Mod Gearman 153

DNX 154
Mod Gearman 156
Op5 Merlin 157

Distributed Dashboards: Fusion, MNTOS, 
and MK-Multisite 159

CHAPTER 8 Visualization 167
Nagios Performance Data 168

RRDTool:  The Foundation 168
Enter RRDTool 170
RRD Data Types 171
Heartbeat and Step 172
Min and Max 174
Round Robin Archives 174
RRDTool Create Syntax 175
RRDTool Graph Mode 180
RPN 182

Josephsen_Book 1.indb   x 3/6/13   3:18 PM



xiContents

Data Visualization Strategies:  A Tale of  Three Networks 185
Suitcorp: Nagios, NagiosGraph, and Drraw 185
singularity.gov:  Nagios and Ganglia 192
Massive Ginormic:  Nagios, Logsurfer, Graphite, and Life After RRDTool  200

DIY Dashboards 209
Know What You’re Doing 210
RRDTool Fetch Mode 212
The GD Graphics Library 214
NagVis 215
GraphViz 217
Sparklines 218
Force Directed Graphs with jsvis 220
End Notes 221

CHAPTER 9 Nagios XI 223

What Is It? 223

How Does It Work? 224

What’s in It for Me? 226
One Slick Interface 226
Integrated Time Series Data 227
Modularized Components 228
Enhanced Reporting and Advanced Visualization 228
Integrated Plug-ins and Con� guration Wizards 230
Operational Improvements 234

How Do I Get My Hands on It?  235

CHAPTER 10 The Nagios Event Broker Interface 237

Function References and Callbacks in C 237

The NEB Architecture 239

Implementing a Filesystem Interface Using NEB 242

DNX, a Real-World Example 255

Wrap Up 258
End Notes 259

 Index 261

Josephsen_Book 1.indb   xi 3/6/13   3:18 PM



This page intentionally left blank 



xiii

F O R E W O R D

People often say that Nagios is “fl exible,” by which I think they mean that it is easily extended, 
but that misses the point. The power inherent in Nagios’ design derives not from its exten-
sibility, but rather from its insistence on being extended. This is an admittedly small but 
important distinction. Many pieces of software can be extended to do new things, but very 
few pieces of software do nothing until you’ve extended them, and it is exactly because of 
this—this inherent demand that you customize it to suit your needs—that Nagios has always 
been a synthesis of contributions from engineers and administrators working to solve their 
own individual problems. No two installations are alike, and that is by design.

In the years since I fi rst created Nagios, it has grown in breadth and scope beyond any-
thing I’d imagined. With over 1 million users worldwide, Nagios Core has found a home 
everywhere from huge Fortune-500 conglomerates to state of the art scientifi c research labs. 
The Nagios user community is one of the healthiest and most actively contributing open 
source communities out there, with nearly 4,000 published plug-ins, add-ons, and exten-
sions—many of which are suffi ciently complex to warrant books of their own. The commu-
nity is so large, diverse, and active, that Nagios now has its own annual conference where 
contributors, users, and educators come together to share ideas, learn tips and tricks, and fi nd 
out about upcoming developments in the project.

There is also a thriving community of corporations at work on extending and supporting 
Nagios. In 2007 I joined them, founding Nagios Enterprises. Our fl agship product, Nagios 
XI, is both an evolutionary step forward, and (as it should be) a fully-reverse compatible 
extension to Nagios Core. XI embraces the extend-by-design lineage of Core, preserving the 
power and fl exibility of Core, while expanding its accessibility and usability.

But even given the wonderful success Nagios has enjoyed, I’m the fi rst to admit that fl ex-
ibility comes with a price. It can be diffi cult for newcomers and experienced admins alike to 
build and deploy a successful monitoring solution, and many of the challenges have nothing 
whatsoever to do with computers. Luckily, David is one of the few technical writers that are 
able to cover a complex subject like this in an easy-to-understand format. Whether you’re 
a newcomer to the world of network, system, and IT monitoring, or you’re an experienced 
Nagios admin, David’s work is sure to be helpful to you.

—Ethan Galstad, Nagios Founder and President

Josephsen_Book 1.indb   xiii 3/6/13   3:18 PM



This page intentionally left blank 



xv

A C K N O W L E D G M E N T S

My lovely wife, Cynthia, is patient and encouraging and pretty, and I love her.

Ethan Galstad, whose interest prompted the second edition, and without whom there 
would be no Nagios. 

The tech reviewers on this project were outstanding—thanks, guys. 

Last, my editors at Prentice Hall have been great. They aren’t at all like the editors in 
Spiderman or Fletch. Debra Williams Cauley and Kim Boedigheimer are a hardworking, on 
the ball, and clued-in pair of professionals. They’ve been patient and helpful, and I appreciate 
their time and attention.

Thanks.

00_9780133135732_FM.indd   xv 3/8/13   10:15 AM



This page intentionally left blank 



xvii

A B O U T  T H E  A U T H O R

David Josephsen is the Director of Systems Engineering at DBG, Inc., where he maintains a 
collection of geographically dispersed server farms. He has more than a decade of hands-on 
experience with UNIX systems, routers, fi rewalls, and load balancers in support of complex, 
high-volume networks. In addition to this book, he authored several chapters in the O’Reilly 
book Monitoring with Ganglia, and currently writes “iVoyer,” the systems monitoring col-
umn for ;login magazine. Josephsen is just one of many thousands of avid Nagios users.

Josephsen_Book 1.indb   xvii 3/6/13   3:18 PM



This page intentionally left blank 



xix

A B O U T  T H E  T E C H N I C A L  R E V I E W E R S

Mark Bainter

Mark Bainter leads a team of sysadmins providing outsourced monitoring and manage-
ment of high volume mail systems for Message Systems’ clients, leveraging over 15 years 
experience as a sysadmin specializing in systems integration, monitoring, and automation. 
He is an autodidactic polymath and impenitent sesquipedalian. Mark currently resides in 
Texas with his lovely wife and four children and in his free time he enjoys reading, wood-
working, and losing at Settlers to his wife.

Mike Guthrie

Mike Guthrie is the lead developer at Nagios enterprises and has developed new features 
and add-ons for Nagios Core, Nagios XI, and Nagios Fusion. Mike does the bulk of his 
programming in PHP and particularly enjoys front-end web development and data visual-
izations. When he’s not at work, he enjoys spending time with his family, being outside, and 
working on his house.

Mathias Kettner

Mathias Kettner is known as the author of Check_MK, MK Livestatus, and other Nagios 
add-ons. He runs a fast growing company in Munich, Germany, which is dedicated to system 
monitoring based on Nagios, and offers professional support and software development.

00_9780133135732_FM.indd   xix 3/8/13   12:46 PM



This page intentionally left blank 



1

Introduction

This is a book about untrustworthy machines—machines, in fact, that are every bit as 
untrustworthy as they are critical to our well being. But I don’t need to bore you with a 
laundry list of how prevalent computer systems have become or with horror stories about 
what can happen when they fail. If you picked up this book, I’m sure you’re well aware of the 
problems: layer upon layer of interdependent libraries hiding bugs in their abstraction, script 
kiddies, viruses, DDOS attacks, hardware failure, end-user error, backhoes, hurricanes, and 
on and on. It doesn’t matter whether the root cause is malicious or accidental; your systems 
will fail, and when they do, only two things will save you from the downtime: redundancy 
and monitoring systems.

Do It Right the First Time

In concept, monitoring systems are simple: an extra system or collection of systems whose 
job is to watch the other systems for problems. For example, the monitoring system could 
periodically connect to a Web server to  make sure it responds and, if not, send notifi cations to 
the administrators. Although it sounds straightforward, monitoring systems have grown into 
expensive, complex pieces of software. Many now have agents larger than 500MB, include 
proprietary scripting languages, and sport price tags above $60,000. 

When implemented correctly, a monitoring system can be your best friend. It can notify 
administrators of glitches before they become crises, help architects tease out patterns 
corresponding to chronic interoperability issues, and give engineers detailed capacity planning 
information. A good monitoring system will help the security guys correlate interesting 
events, show the network operations center personnel where the bandwidth bottlenecks are, 
and provide management with much needed high-level visibility into the critical systems that 
they bet their business on. A good monitoring system can help you uphold your service level 

Josephsen_Book 1.indb   1 3/6/13   3:18 PM



2 Introduction

agreement (SLA) and even take steps to solve problems without waking anyone up at all. 
Good monitoring systems save money, bring stability to complex environments, and make 
everyone happy. 

When done poorly, however, the same system can wreak havoc. Bad monitoring systems 
cry wolf at all hours of the night so often that nobody pays attention anymore; they install 
backdoors into your otherwise secure infrastructure, leech time and resources away from 
other projects, and congest network links with megabyte upon megabyte of health checks. 
Bad monitoring systems can really suck.

Unfortunately, getting it right the fi rst time isn’t as easy as you might think, and in my 
experience, a bad monitoring system doesn’t usually survive long enough to be fi xed. Bad 
monitoring systems are too much of a burden on everyone involved, including the systems 
being monitored. In this context, it’s easy to see why large corporations and governments 
employ full-time monitoring specialists and purchase software with six-fi gure price tags. 
They know how important it is to get it right the fi rst time. 

Small- to medium-sized businesses and universities can have environments as complex 
as or even more complex than large companies, but they obviously don’t have the luxury of 
high-priced tools and specialized expertise. Getting a well-built monitoring infrastructure in 
these environments, with their geographically  dispersed campuses and satellite offi ces, can 
be a challenge. But having spent a good part of the past 13 years building and maintaining 
monitoring systems, I’m here to tell you that not only is it possible to get it done right the 
fi rst time, but you can do it for free, with a bit of elbow grease, some open source tools, and 
a pinch of imagination.

Why Nagios?

Nagios is, in my opinion, the best system and network monitoring tool available, open source 
or otherwise. Its modularity and straightforward approach to monitoring make it easy to 
work with and highly scalable. Further, Nagios’s  open source license makes it freely available 
and easy to extend to meet your specifi c needs. Instead of trying to do everything for you, 
Nagios excels at interoperability with other open source tools, which makes it very fl exible. 
If you’re looking for a monolithic piece of software with check boxes that solve all your 
problems, this probably isn’t the book for you. But before you stop reading, give me another 
paragraph or two to convince you that the check boxes aren’t really what you’re looking for.

Most commercial offerings get it wrong because their approach to the problem assumes 
that everyone wants the same solution. To a certain extent, this is true. Everyone has a large 
glob of computers and network equipment and wants to be notifi ed if some subset of it fails. 

Josephsen_Book 1.indb   2 3/6/13   3:18 PM



3Why Nagios?

So if you want to sell monitoring software, the obvious way to go about it is to create a piece 
of software that knows how to monitor every conceivable piece of computer software and 
networking gear in existence. The more gadgets your system can monitor, the more people 
you can sell it to. To someone who wants to sell monitoring software, it’s easy to believe that 
monitoring systems are turnkey solutions and whoever’s software can monitor the largest 
number of gadgets wins.

The large commercial packages I’ve worked with all seem to follow this logic. Not unlike 
the Borg, they are methodically locating new computer gizmos and adding the requisite 
monitoring code to their solution—or worse, acquiring other companies who already know 
how to monitor lots of computer gadgetry and bolting those companies’ code onto their own. 
They quickly become obsessed with features, creating enormous spreadsheets of supported 
gizmos. Their software engineers exist so that the presales engineers can come to your offi ce 
and say to your managers, through seemingly layers of white gleaming teeth, “Yes, our 
software can monitor that.”

The problem is that monitoring systems are not turnkey solutions. They require a large 
amount of customization before they start solving problems and herein lies the difference 
between people selling monitoring software and those designing and implementing 
monitoring systems. When you’re trying to build a monitoring system, a piece of software 
that can monitor every gadget in the world by clicking a check box is not as useful to you 
as one that makes it easy to monitor what you need, in exactly the manner that you want. 
By focusing on what to monitor, the proprietary solutions neglect the how, which limits the 
context in which they may be used.

Take ping, for example. Every monitoring system I’ve ever dealt with uses ICMP Echo 
requests, otherwise   known as pings, to check host availability in one way or another. But if 
you want to control how a proprietary monitoring system uses ping, architectural limitations 
become quickly apparent. Let’s say I want to specify the number of ICMP packets to send, 
or I want to be able to send notifi cations based on the round-trip time of the packet in 
microseconds instead of simple pass/fail. More complex environments may necessitate that I 
use IPv6 pings, or that I portknock1 before I ping. The problem with the monolithic, feature-
full approach is that these changes represent changes to the core application logic and are, 
therefore, nontrivial to implement.

In the commercial monitoring applications I’ve worked with, if these ping examples 
could be performed at all, they would require reimplementing the ping logic in the monitoring 
system’s proprietary scripting language. In other words, you would have to toss out the 
built-in ping functionality altogether. Perhaps being able to control the specifi cs of ping checks 
is of questionable value to you, but if you don’t have any control over something as basic as 
ping, what are the odds that you’ll have fi nite enough control over the most important checks 

Josephsen_Book 1.indb   3 3/6/13   3:18 PM



4 Introduction

in your environment? They’ve made the assumption that they know how you want to ping 
things and from then on it was game over; they never thought about it again. And why would 
they? The ping feature is already in the spreadsheet, after all.

When it comes to gizmos, Nagios’s focus is on modularity. Single-purpose monitoring 
applets called plug-ins provide support for specifi c devices and services. Rather than 
participating in the feature arms race, hardware support is community driven. As community 
members have a need to monitor new devices or services, new plug-ins  are written and usually 
more quickly than the commercial applications can add the same support. In practice, Nagios 
will always support everything you need it to and without ever needing to upgrade Nagios 
itself. Nagios also provides the best of both worlds when it comes to support, with several 
commercial options, as well as a thriving and helpful community that provides free support 
through various forums and mailing lists.

Choosing Nagios as your monitoring platform means that your monitoring effort will 
be limited by your own imagination, technical prowess, and political savvy. Nagios can go 
anywhere you want it to and the trip there is usually pretty simple. Although Nagios can 
do everything the commercial applications can, and more, without the bulky, insecure agent 
install, it usually doesn’t compare favorably to commercial monitoring systems because when 
spreadsheets are parsed, Nagios doesn’t have as many checks. In fact, if they’re counting 
correctly, Nagios has no checks at all, because technically it doesn’t know how to monitor 
anything; it prefers that you tell it how. The question of “how” is diffi cult to encompass with 
a check box. 

What’s in This Book? 

Although Nagios is the biggest piece of the puzzle, it’s only one of the myriad of tools that 
make up a world-class open source monitoring system. With several books, superb online 
documentation, and lively and informative mailing lists, it’s also the best-documented piece 
of the puzzle. So my intention in writing this book is to pick up where the documentation 
leaves off. This is not a book about Nagios as much as it is a book about the construction 
of monitoring systems using Nagios, and there is much more to building monitoring systems 
than confi guring a monitoring tool. 

I’ll cover the usual confi guration boilerplate, but confi guring and installing Nagios 
is not my primary focus. Instead, to help you build great monitoring systems, I need to 
introduce you to the protocols and tools that enhance Nagios’s functionality and simplify its 
confi guration. I need to give you an in-depth understanding of the inner workings of Nagios 
itself, so you can extend it to do whatever you might need. I need to spend some time in 
this book exploring possibilities because Nagios is limited only by what you feel it can do. 

Josephsen_Book 1.indb   4 3/6/13   3:18 PM



5What’s in This Book?

Finally, I need to write about things only loosely related to Nagios, like best practices, SNMP, 
visualizing time-series data, and various Microsoft scripting technologies, such as WMI and 
WSH. 

Most important, I need to document Nagios itself in a different way. By introducing 
it in terms of a task-effi cient scheduling and notifi cation engine, I can keep things simple 
while talking about the internals up front. Rather than relegating important information 
to the seldom-read advanced section, I’ll empower you early by covering topics like plug-in 
customization and scheduling as core concepts.

Although the chapters more or less stand on their own, and I’ve tried to make the book 
as reference-friendly as possible, I think it reads better as a progression from start to fi nish. I 
encourage you to read from cover to cover, skipping over anything you are already familiar 
with. The text is not large, but I think you’ll fi nd it dense with information and even the most 
seasoned monitoring veterans should fi nd more than a few useful nuggets of wisdom. 

The chapters tend to build on each other and casually introduce Nagios-specifi c details 
in the context of more general monitoring concepts. Because many important decisions need 
to be made before any software is installed, I begin with “Best Practices” in Chapter 1.  This 
should get you thinking in terms of what needs to take place for your monitoring initiative 
to be successful, such as how to go about implementing, who to involve, and what pitfalls 
to avoid.

Chapter 2, “Theory of Operations,” builds on Chapter 1’s general design guidance by 
providing a theoretical overview of Nagios from the ground up. Rather than inundating you 
with confi guration minutiae, Chapter 2 will give you a detailed understanding of how Nagios 
works without being overly specifi c about confi guration directives. This knowledge will go a 
long way toward making confi guration more transparent later. 

Before we can confi gure Nagios to monitor our environment, we need to install it. 
Chapter 3, “Installing Nagios,” should help you install Nagios, either from source or via a 
package manager.

Chapter 4, “Confi guring Nagios,” is the dreaded confi guration chapter. Confi guring 
Nagios for the fi rst time is not something most people consider to be fun, but I hope I’ve kept 
it as painless as possible by taking a bottom-up approach, documenting only the most used 
and required directives, providing up front examples, and specifying exactly what objects 
refer to what other objects and how.

Josephsen_Book 1.indb   5 3/6/13   3:18 PM



6 Introduction

Most people who try Nagios become attached to it2 and are loathe to use anything else. 
But if there is a universal complaint, it is certainly confi guration. Chapter 5, “Bootstrapping 
the Nagios Confi g Files,” takes a bit of a digression to document some of the tools available 
to make confi guration easier to stomach. These include automated discovery tools, as well as 
graphical user interfaces.

In Chapter 6, “Watching: Monitoring Through the Nagios Plug-ins,” we are fi nally ready 
to get into the nitty-gritty of watching systems, including specifi c examples with Nagios 
plug-in confi guration syntax solving real-world problems. I begin with a section on watching 
Microsoft Windows boxes, followed by a section on UNIX, and ending with the “other stuff” 
section, which encompasses networking gear and environmental sensors.

Chapter 7, “Scaling Nagios,” is new to the second edition. Scaling Nagios for large 
networks has been one of the most interesting problems Nagios sysadmins have had to deal 
with over the past fi ve or six years. The explosion of machine virtualization and cost-effective 
cloud services have created a lot of interest in large parallel processing architectures that 
are composed of lots of little nodes.  In this chapter, I cover several tools and strategies that 
will enable you to distribute the monitoring load and build a stable large-scale monitoring 
infrastructure for tens of thousands of nodes and beyond. 

Chapter 8, “Visualization,” covers one of my favorite topics: data visualization. Good 
data visualization solves problems that couldn’t be solved otherwise, and I’m excited about 
the options that exist now, as well as what’s on the horizon. With fantastic visualization tools 
like RRDTool, Ganglia, and Graphite, graphing time series data from Nagios is getting easier 
every day, but this chapter doesn’t stop at mere line graphs.

Also new in the second edition is Chapter 9, “Nagios XI,” which is dedicated to the 
new commercial version of Nagios. Built from many of the tools covered in this book by 
the guys who originally wrote Nagios, XI is truly a masterpiece of integration and usability. 
They’ve made monitoring with Nagios so simple my mom could do it (well, my mom writes 
optimizing cross-compilers for embedded FLIR systems, but you get my point).

And fi nally, now that you know the rules, it’s time to teach you how to break them. 
At the time of this writing, Chapter 10, “The Nagios Event Broker Interface,” is the only 
print documentation I’m aware of that covers the new Nagios Event Broker interface. The 
event broker is the most powerful Nagios interface available. Mastering it rewards you with 
nothing less than the ability to rewrite Chapter 2 for yourself by fundamentally changing any 
aspect of how Nagios operates or extending it to meet any need you might have. I describe 
how the event broker works and walk you through building an NEB module. 

Josephsen_Book 1.indb   6 3/6/13   3:18 PM



7Who Should Read This Book?

Who Should Read This Book?

If you are a systems administrator with a closet full of UNIX and Windows systems and 
assorted network gadgetry, and you need a world-class monitoring system on the cheap, this 
book is for you. Contrary to what you might expect, building monitoring systems is not a 
trivial undertaking. Constructing the system that potentially interacts with every TCP-based 
device in your environment requires a bit of knowledge on your part. But don’t let that 
give you pause; systems monitoring has taught me more than anything else I’ve done in 
my career and, in my experience, no matter what your level of knowledge, working with 
monitoring systems has a tendency to constantly challenge your assumptions, deepen your 
understanding, and keep you right on the edge of what you know.

To get the most out of this book, you should have a pretty good handle on the text-based 
Internet protocols that you use regularly, such as SMTP and HTTP. Although it interacts with 
Windows servers very well, the Nagios daemon is meant to run on Linux, which makes the 
text pretty Linux heavy, so a passing familiarity with Linux or POSIX-ish systems is helpful. 
Although not strictly required, you should also have some programming skills. The book has 
a fair number of code listings, but I’ve tried to keep them as straightforward and as easy-to-
follow as possible. With the exception of Chapter 8, which is exclusively C, the code listings 
are written in either UNIX shell or Perl. 

Perhaps the only strict requirement is that you approach the subject matter with a healthy 
dose of open curiosity. If something seems unclear, don’t be discouraged; check out the online 
documentation, ask on the lists, or even shoot me an email; I’d be glad to help if I can. 

Have fun!

—Dave

End Notes
 1 www.portknocking.org
 2 Dare I say, love it?

Josephsen_Book 1.indb   7 3/6/13   3:18 PM

http://www.portknocking.org


This page intentionally left blank 



223

C H A P T E R  9

Nagios XI

In 2009, Nagios Enterprises, the corporation formed by Nagios creator Ethan  Galstad, 
launched Nagios XI, a commercial version of Nagios. XI truly is  an amazing accomplish-
ment. You need to know next to nothing to use it, and yet the fi rst eight chapters of this 
book are prerequisite to your understanding it. But now that you have a good handle on how 
Nagios and the various add-ons surrounding it work, we can fi nally examine XI and see if it 
might be a good fi t for you. 

What Is It?

After the release of 3.0, Nagios was, it seemed, in danger of becoming a victim of its own 
success. Sysadmins who knew  and loved it were happy to see it continue in the way it always 
had, but its popularity had risen to the point that a different and more populous group of 
potential end users had taken notice, and with them, Nagios wasn’t comparing favorably 
with newer, prettier, and less fl exible commercial competitors.

This new breed of user was quite vocal and had a few very specifi c gripes. First they found 
Nagios’s confi guration syntax unwieldy, to say nothing of the intolerable notion of (gasp) 
editing text fi les by hand. Second, they found the Nagios web interface, with its C-based 
CGI and lack of integrated time-series data, unforgivably old-fashioned. Finally they had no 
idea what to make of the fact that there was no database back-end. Jiminy Christmas—wrist 
watches and garbage disposals run MySQL these days! How was one to take seriously a 
monitoring system that didn’t?

Josephsen_Book 1.indb   223 3/6/13   3:18 PM



224 Chapter 9 Nagios XI

For this considerable subset of users, Nagios’s price tag didn’t make up for its abhorrent 
lack of bling, and answers to the effect that all these things could be rectifi ed with add-ons fell 
on deaf Bluetooth earpieces. Add-on options were birds in the bush, and they would rather 
pay for a bird in the hand than go beating around the bush themselves for free. 

XI might best be called the perfect compromise between maintaining the power and 
fl exibility of Nagios and providing a turnkey monitoring system that more than satiates 
the desires of the PHP proletariat. But that description sells it short; XI is much more than 
just a shiny interface; it represents a huge amount of custom  development and integration 
work. Further, there is real functionality in XI that simply can’t be found in Nagios Core. But 
neither can it be called a new monitoring system in its own right, because in very important 
ways, it remains Nagios and retains all the fl exibility and power that I’ve described in the 
previous chapters. Everything I’ve written up to now about the underlying architecture, plug-
ins, scalability, and even advanced visualization, is applicable to Nagios XI. 

It’ll be easier to just show you.

How Does It Work?

Figure 9.1 is a rough sketch of the Nagios XI architecture. As you can see, all host and service 
monitoring, as well as  notifi cation, escalation, and so on, relies on an unmodifi ed Nagios 
Core daemon, so any preexisting plug-ins or customization you might have can be made 
to work under XI. The NDOUtils plug-in (described in Chapter 7, “Scaling Nagios”) has 
been enabled and confi gured to replicate state information from Nagios Core into a MySQL 
database. Here is the primary information hand-off between Core and XI; Nagios XI reads 
this database to glean information about the current state of hosts and services, as well as the 
Core daemon itself. This adds an information layer to Core that can be consumed by third-
party UIs as well as your own custom integration scripts. 

The NagiosQL add-on (described in Chapter 5, “Bootstrapping the Nagios Confi g Files”) 
provides the hooks necessary to modify the Nagios Core confi guration from the XI interface. 
Every parameter that can be confi gured in  the fl at fi les may be set via the web interface using 
the customized NagiosQL forms in the “Advanced Confi guration” section of the XI interface. 
Although these forms are well integrated into XI, and retain an XI look and feel, there is a 
bit of a line in the sand between NagiosQL-driven core confi guration, which is referred to as 
“advanced” in the XI interface, and the confi guration parameters that are specifi c to XI itself.

Josephsen_Book 1.indb   224 3/6/13   3:18 PM



225How Does It Work?

Figure 9.1 The Nagios XI   architecture, simplifi ed

XI goes beyond presenting a simple web wrapper to the Nagios Core confi guration fi les, 
providing in addition a litany of semiautomated wizards and autodiscovery tools to ease the 
burden of initial and ongoing host and service confi guration. I talk more about these later, 
but suffi ce to say that it is the intention of the XI creators to isolate the majority of XI users 
from the intricacies of the Nagios core confi guration to the extent that they never need to 
know what a check command is, much less a template. This makes it possible for monitoring 
confi guration, traditionally an operations task, to be delegated to fi rst-level support types, 
or in some environments, even to normal users. More clueful administrators who need to 
customize this or that can still do so, without editing the confi g fi les by hand, using the 
NagiosQL-driven advanced confi guration tool. 

Confi guration created by NagiosQL is  automatically written to text confi guration 
fi les in etc/nagios and is read by the Core daemon from these fl at fi les in the usual fashion. 
Although it’s technically possible to hand edit these confi guration fi les, you will gain nothing 

NDOUtils NagioSql

MySqlpostgreSql

Config
Files

Local
Checks

NRDP/
NSCA

NRPE

Josephsen_Book 1.indb   225 3/6/13   3:18 PM



226 Chapter 9 Nagios XI

because NagiosQL will eventually overwrite any changes you make. If you have your own 
confi guration-generating automation (like Check_MK), or  preexisting confi guration that you 
do not want to import into NagiosQL, or even if you’re a curmudgeon who just prefers to 
manually edit the confi guration, you can still maintain static confi g fi les in etc/nagios/static, 
and your fi les will still be parsed by the Core daemon while being left alone by NagiosQL. 
That runs both ways; statically confi gured hosts and services can’t be modifi ed via the UI 
unless you manually import them into NagiosQL (at which point they cease to be static). 

  Finally, Nagios XI maintains its own Postgresql database to store various confi guration 
parameters such as user-settings, custom dashboards, authentication info, and the like. Given 
the shiny new PHP interface, the simplifi ed confi guration options, and the open database 
back-end, Nagios XI should satisfy the complaints I’m used to hearing from corporate 
administrators who are in the market for a “grown up” commercial  monitoring product; 
however, there’s a lot more functionality than what I’ve encompassed in the architecture 
diagram. 

What’s in It for Me?

Now that we’ve taken a quick look at what XI is and how it works, let’s take a look at how 
XI compares to Nagios Core and the various commercial monitoring systems with which it 
was designed to compete.

One Slick Interface

Given the general quality of the    alternative PHP interfaces we fi nd in the Nagios Exchange 
repository, the XI interface is shockingly excellent. It is certainly not yet another effort to 
bring the CGI interface “up to date” by replacing it with a PHP version of itself. The XI user 
interface is a complete rethinking of the UI, which truly takes advantage of the strengths of 
a web programming platform like PHP at every opportunity. Elements within dashboards 
can be unlocked, moved around, or even deleted to suit the preferences of the user. AJAX is 
employed, both to update individual information elements and to provide feedback, so that 
when I send a command via the UI to reschedule a service check or acknowledge an alert, a 
box momentarily appears to let me know my command has been accepted. One of my least 
favorite things about the Core UI is the way it dumps me to an acknowledgment page after 
I’ve issued a command, forcing me to manually navigate back to somewhere useful.

The traditional Nagios tables like “service detail” and “hostgroup grid” still exist, but are 
implemented as repurposable widgets that I can use to build custom dashboards. New tables 
have been added, a few of which are very    dense and handy, like the “minemap” visualization 
pictured in Figure 9.2. 

Josephsen_Book 1.indb   226 3/6/13   3:18 PM



227What’s in It for Me?

Figure 9.2 Nagios XI   Minemap

One of my favorite Nagios Core views is the hostgroup grid, which shows at a glance 
the state of entire hostgroups, including their services. This is one of the more dense 
status visualizations available in the old UI; unfortunately, I still need to scroll around to 
see everything in my environment. The Minemap visualization, by comparison, shows the 
same information in a much smaller amount of screen space, enabling    me to get a coherent, 
uncluttered, detailed service-level visualization of my entire network on a single screen.

Integrated Time Series Data

PNP4Nagios (described in Chapter 8, “Visualization”) is integrated out of the box, and defi -
nitions exist for all the included plug-ins. This means that without any additional confi gu-
ration whatsoever you get    time series data for every service you confi gure. The RRDTool 
graphs are so well integrated into the UI that the uninitiated user would never guess PNP or 
RRDTool were community-sourced add-ons, so you get a snazzy UI without losing any of the 
power and fl exibility that these community-driven development efforts provide.

In addition to the RRDTool graphs, small bar-graph visualizations for metrics collected 
by  the Nagios Core daemon, as well as remote execution tools like NRPE, are sprinkled 
throughout the interface. These do a great job of conveying capacity planning info at a 
glance, as well as giving the UI a very polished look. 

Rounding out the time series visualization is a Graph Explorer tool, which allows 
you to draw, among other things, ad hoc time series and stacked time series graphs. The 
graph explorer uses a commercial JavaScript library from HiCharts.com and looks quite 
elegant. The data comes from the RRD’s resident on the Nagios server via rrdtool fetch and 
is provided to the end-user’s browser to compute the graph locally. This saves the server’s 

Hostgroup ‘all boxes’ Status Grid

Hosts
192.168.1.254

192.168.1.3

192.168.1.4

192.168.1.69

DiskStation

localhost

lois-PC

skeptech.org

Last Updated: 2012-08-16 19:07:56

Services

1919 1919 1919

Josephsen_Book 1.indb   227 3/6/13   3:18 PM



228 Chapter 9 Nagios XI

CPU and provides a snappy, feature-rich data visualization, allowing you to scale the graph 
by dragging to select a range and providing pop-up numerical values when    you mouse over 
any data areas. The stacked time series graphs include time-shifted historical data, so you can 
easily compare today’s data to that of yesterday, and so on.

Modularized Components

The UI as a whole is highly modular, incorporating add-on components to implement extra 
features. This enables the XI developers to quickly react to the needs of the user commu-
nity by adding features to the UI as needed    or even adding custom developing features for 
larger end users with special needs. A notable example is the Operations screen depicted in 
Figure 9.3, which is intended to be displayed on a dedicated screen in a Network Operations 
Center. In addition to this and other single-page summaries, custom views can be confi gured 
to rotate between pages with more detailed information on timed intervals. I bring up these 
little summary views because seeing them so prominently displayed in the XI interface hits 
home for both the extent to which the Nagios developers are listening to the needs of the 
community and their eagerness to satisfy those needs now that incremental progress in the 
UI is possible. 

Figure 9.3 Nagios XI Operations screen

Finally! Acknowledgments and Scheduled Downtime for Multiple Hostsv
Another component that implements a feature for which the core community has been 
begging for years is the    Mass Acknowledgment Component. This allows an admin to sched-
ule downtime and acknowledge    problems for groups of hosts and services. I know more than 
one sysadmin who would purchase XI for this feature alone.

Enhanced Reporting and Advanced Visualization

The XI developers are not solely focused on the community, however, as a quick glance at the 
Reporting tab in XI shows; they     are proactively exploring some interesting data visualization 

Josephsen_Book 1.indb   228 3/6/13   3:18 PM



229What’s in It for Me?

techniques from the neoformix data-visualization fi eld. Components that implement heat 
maps, force directed graphs, and stream graphs, as depicted in Figure 9.4, have been added 
to the classic reporting options. Several shiny new implementations of the core reports are 
also provided, each of which I fi nd generally cleaner than their legacy counterparts and more 
likely to impress the wearers of neckties and high heels in our lives. The new reports may be 
exported in CSV and PDF formats with the click of a button. The button, which links to a 
predictable URL, makes it possible for the shorts and t-shirt wearers among us to automati-
cally grab the reports     with tools like curl and wget. 

A
le

rt
s

From: 2012-08-17 16:46:56  To: 2012-08-18 16:46:56

The alert stream provides a visual representation of host and service alerts over time.

Clicking on a host name will cause the graph to drill down to show service alerts for that particular host.

Neoformix

15

3p 4p 5p 6p 8p 9p 10p 11p Aug 181a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a noon 1p 2p 3p

lois–PC

Alert Stream

Figure 9.4 Nagios XI Stream Graph component

Nagvis
Nagvis, (described in Chapter 8) is installed and available in the Maps section of the Home 
view. Setting up your own NagVis diagrams  couldn’t be easier. First, copy your map or 
diagram graphic to /usr/local/nagvis/share/userfi les/images/maps, launch the Nagvis tool in 
the XI UI, select Manage Maps from the options menu, and create a new map, pointing the 
Background to the map you uploaded. Finally, open your map using the Open menu, and add 
status icons to it by selecting Add Icon from the Map menu. 

Josephsen_Book 1.indb   229 3/6/13   3:18 PM



230 Chapter 9 Nagios XI

Business Processes
Nagios XI contains wrapper logic for grouping individual services into higher-level entities 
called business processes. The intent here   is to implement what the Gardiner Group calls 
Business Application Monitoring, or BAM. BAM attempts to provide real-time status for 
critical business entities like a sales catalog web site or corporate email. Nagios XI imple-
ments BAM by breaking a high-level concept like “corporate email,” into its requisite pieces, 
such as Mail Transfer Agents, Mail Exchangers, Groupware systems, and Databases, and 
then quantifying the relative importance of each of the services that make up those pieces as 
well as describing dependency relationships between them.

XI Business Process groups contain services that are said to be “essential” or “non-
essential.” A database service in our example might be considered essential, whereas the 
SMTP port on a single mail exchanger might be “non-essential” (because they are usually 
redundant, and even if they go down, the mail will queue somewhere else). When any essential 
service or the combination of all non-essential services goes critical, the XI business process 
logic registers this as a “problem.” 

Each business process group contains critical and warning thresholds that depend on the 
number of problems that are occurring in the group. In our example, we might imagine two 
business process groups, one for SMTP speakers (MXs and MTAs) and one for SQL-speakers 
(groupware systems and DBs). If the latter group registers a single problem because a database 
is down, that might throw the whole group into a warning state. 

Business process groups can contain other nested business process groups, and so on. 
Our top-level entity, corporate email, is therefore just a business process group that contains 
the two groups previously described. It is confi gured like the other two groups so that a 
single “problem” in any of the nested groups causes it to go into a warning state. Finally, 
notifi cation commands can be assigned on each business process group in the same way they 
are assigned to individual host and service events. Additionally, visualization widgets exist for 
the top-level groups. These can be added to any dashboard or view, and     they allow the user 
to drill down into the groups to see what services or subgroups constitute them.

Integrated Plug-ins and Confi guration Wizards

The core installation of Nagios XI includes all the plug-ins in the standard plug-ins package, 
as well as NRPE, NSCA, and NRDP. In       addition to all the plug-ins being preinstalled, the XI 
developers have provided a plethora of semiautomated confi guration wizards, which, given 
the bare-minimum information about a host, take care of the initial setup as well as adding 
and modifying services on already confi gured hosts.

Josephsen_Book 1.indb   230 3/6/13   3:18 PM



231What’s in It for Me?

If you consult the offi cial XI documentation at

http://library.nagios.com/library/products/nagiosxi/documentation, 

you’ll quickly discover that the wizards are the preferred method for host and service 
confi guration. With names like Exchange Server, website, and Windows Workstation, they 
make setting up new hosts and services easy enough that these tasks can be delegated to fi rst-
level support techs, or even end users. The autodiscovery wizard is capable of bootstrapping 
an environment given only a CIDR netblock to start with, and it does a good job of initial 
setup. To add NRPE-based host checks or other services after the fact, run the appropriate 
wizard on the preexisting host. 

For example, if Server1 was created with the autodiscovery wizard, and you now want 
to add NRPE checks to get CPU, memory, and disk information from the host, you must 
fi rst install NRPE on Server1. If Server1 doesn’t already have NRPE on it, and is one of 
several common server types, such as a Windows 200X server, Red Hat, or Ubuntu, the XI 
developers have an agent package designed to work with XI specifi cally at: 

http://assets.nagios.com/downloads/nagiosxi/wizards

After the agent is installed on Server1, run the NRPE Wizard on   the server from the 
confi guration tab of the XI user interface, as       shown in Figure 9.5, entering the IP or FQDN 
of the server, and choosing the type from the drop-down list. The wizard will then display a 
preconfi gured subset of available check commands relevant to your server type, and provide 
text-entry fi elds for you to specify custom settings or additional commands if you’d like.

As I said earlier, static confi guration fi les may still be maintained in etc/nagios/static. So 
it’s entirely possible to run your own scripts, or autogeneration tools like those included with 
check_mk, provided you confi gure them to write their confi guration to the static directory. 
I can’t deny that the automated confi guration features in XI have, perhaps ironically, 
complicated things a bit for those of us who have reason to maintain the confi guration 
manually. In the Nagios Core universe, there is a single way to confi gure Nagios (text 
fi les). However, there are three ways to confi gure  Nagios Core in the XI universe (text fi les, 
NagiosQL, and XI Wizards), and although the three coexist well enough, it can become 
burdensome to ensure a uniformity of parameters if the administrators mix and match their       
confi guration methodologies in XI. I’ll give you an example. 

Larry, his brother Darryl, and his other brother Darryl all work at Bloody Stump 
Lumber Mill, where they recently purchased a Nagios XI server to monitor their growing 
sales web-application server farm. Larry was a UNIX admin in college, so he prefers to edit 
the confi g fi les. Darryl likes to have fi ne-grained control over the confi g, but isn’t very good 

Josephsen_Book 1.indb   231 3/6/13   3:18 PM

http://library.nagios.com/library/products/nagiosxi/documentation
http://assets.nagios.com/downloads/nagiosxi/wizards


232 Chapter 9 Nagios XI

in vim, so he uses the XI advanced confi guration section, and other Darryl would rather be 
watching football, so he just runs the wizard for everything. Each of the brothers has a server 
running sshd that he wants to confi gure in XI. 

Figure 9.5 The Nagios XI NRPE Wizard

When other Darryl runs the Autodiscovery Wizard on his server’s IP, XI scans the host 
and automatically confi gures a host check and a check_tcp service check for the SSH port. It 
then pushes the confi g to NagiosQL, which commits it to the DB, writes out the confi guration, 
and restarts the daemon. 

Darryl meanwhile, sets up his host using the NagiosQL forms directly, but instead of 
choosing check_tcp, he chooses the check_ssh service, which does pretty much the same 
thing, but returns slightly different output. He also names the service “ssh” instead of “SSH” 
like the wizard does. 

Larry, meanwhile, has really done his homework. He already has a servicegroup for ssh 
servers in the static confi g fi les he created, so rather than doing all the typing and clicking 
that his brothers do, he simply adds his server to the ssh_servers servicegroup, and the rest 

Josephsen_Book 1.indb   232 3/6/13   3:18 PM



233What’s in It for Me?

takes care of itself. The problem is, his servicegroup inherits a different set of templates than 
NagiosQL, so although his service check uses the same name and check command as the 
wizard, his polling interval is different, and he has a different notifi cation target for service 
warnings.

In this way, the brothers end up with three       different defi nitions for the same service, 
which might not be a problem immediately, but will cause all manner of headaches if and 
when they want to integrate Nagios with another tool, or generally try to do any sort of 
automation using their monitoring server. 

I admit these sorts of disconnects are possible with text confi guration fi les, but my 
point is the text confi guration encourages administrators to use templates to normalize 
the confi guration, like Larry did in the previous example. The automated tools by 
comparison encourage isolating the confi guration at the host level, because it’s easier for 
the automated tools to parse them that way. Thus, in Larry’s confi guration, we fi nd a single 
services.cfg wherein every service is defi ned and assigned a hostgroup, whereas in NagiosQL’s 
confi guration, we fi nd a services directory with a single fi le for each host. The former makes 
it pretty easy to verify that all the service checks for every host are implemented in the same 
way. The later makes it much more diffi cult. 

Further, in my experience, the disdain that people like Larry naturally feel for people 
like other Darryl generally discourages them from paying close attention to what people 
like other Darryl are doing. In fact, merely inviting other Darryl to confi gure the monitoring 
server with wizards might trigger a tendency in Larry to go off on his own and “do it the 
right way” using well-written static confi g fi les, which only exacerbates the problem by more 
widely diverging the confi guration paths. 

Whether this will be a problem in your shop will depend on how many hands are stirring 
the pot and the extent to which the more clueful users are aware of the potential problem. 
The idea of delegating the confi gs is certainly tempting, and I’m not saying you shouldn’t. 
If you do, my advice would be to use either the wizards or static confi g for service and host 
creation, and avoid using NagiosQL directly if you can avoid it (you could still safely use 
it for host and service modifi cation). That way, you can carefully set up the static confi g to 
ensure that it references the wizard templates, or simply copy defi nitions       from the NagiosQL 
fi les, and everything should remain pretty much uniform.

Automated Confi guration for Passive Checks
Another very cool bit of functionality that is related to automated confi guration in Nagios XI 
is the Unconfi gured Objects feature. In   the event that XI receives a passive check result for a 
host or service that it doesn’t know about, it automatically generates an inert confi guration 
for that host or service and places it in the Unconfi gured Objects section of the Confi gure tab. 

Josephsen_Book 1.indb   233 3/6/13   3:18 PM



234 Chapter 9 Nagios XI

Administrators may then approve the inert objects, and they will become part of the running 
confi guration. Good stuff.

Operational Improvements

In addition to the   myriad functional improvements in Nagios XI, several maintenance-related 
features exist that make it easier to manage the Nagios server itself. 

Backups
Out of the box, XI takes a snapshot of the running confi guration each time it changes. These 
confi guration snapshots can be    downloaded from the UI in an automated fashion using 
tools like curl or wget. It can be used to restore the confi guration in the event the monitoring 
system kicks the bucket, or it can roll it back to a prior version if someone made an inap-
propriate change. A real system backup, including historical state and metric data, involves a 
lot more than just the confi guration fi les, however. Remember, XI maintains three databases 
and has untold amounts of performance data stored in RRDs, not to mention the Nagios 
Core state fi le and logs. For detailed instructions on properly backing up your XI install, see:

http://assets.nagios.com/downloads/nagiosxi/docs/Backing_Up_And_
Restoring_XI.pdf

User Management
Account management is more important in XI, especially when individual users are encour-
aged to change    confi guration parameters and create new hosts and services. Individual users 
in XI also have the ability to confi gure the interface with custom views and dashboards as 
they see fi t. For these reasons, XI must track users in its own database rather than leaving it 
up to Apache to sort out like the Nagios Core UI does. Account management is well done 
in XI and generally behaves in a manner that enterprise users expect. Access control exists 
to prevent individual accounts from making modifi cations, and components exist to enable 
XI to use LDAP servers. Nagios has published offi cial documentation on multitenant setups, 
where, for example, access to a Nagios server hosted by a service provider is shared by 
multiple customers. This documentation resides at: 

http://assets.nagios.com/downloads/nagiosxi/docs/XI_Multi-Tenancy.pdf

Daemon Status
As depicted in Figure 9.6, the XI interface provides an array of detailed of information 
about the Core daemon process. This    includes metric values for the server hardware as well 

Josephsen_Book 1.indb   234 3/6/13   3:18 PM

http://assets.nagios.com/downloads/nagiosxi/docs/Backing_Up_And_Restoring_XI.pdf
http://assets.nagios.com/downloads/nagiosxi/docs/Backing_Up_And_Restoring_XI.pdf
http://assets.nagios.com/downloads/nagiosxi/docs/XI_Multi-Tenancy.pdf


235How Do I Get My Hands on It?

as performance metrics internal to the daemon itself. A real-time graph of the event queue 
displays reaper and service check events scheduled 5 minutes into the future. This really is 
fantastic capacity planning info of a quality I’ve never seen in any monitoring system.

Figure 9.6 Detailed daemon statistics

How Do I Get My Hands on It? 

Fully functional demo versions of XI (60-day expiration) are available from nagios.org. You 
may download self-contained installers, or  VMware disk images with XI preinstalled. The 
latter can be run by any system that supports the free vmplayer utility, while the former 
requires a relatively recent Red Hat or CentOS install.

The reason for the RHEL dependency is the dizzying array of packages that must exist 
for XI to run. The XI developers have chosen to rely heavily on YUM to satisfy the requisite 
dependencies, so although it’s possible to run XI on other distros, you won’t be able to use 
the offi cial installation script to get it up and running on anything other than a Red Hat or 
CentOS system.

Josephsen_Book 1.indb   235 3/6/13   3:18 PM



This page intentionally left blank 



261

I N D E X

Symbols
.1.3.6.1 prefi x, 135
* (asterisk), 67
{} (curly braces), 64
$ (dollar signs), 96
. (dot), 116

A
abnormal utilization, 169
acknowledgement, notifi cation, 43
action_url, 198-199
active_checks_enabled, 150
address directive, 75
Afterglow, 218
alarms, false alarms, 19
Alert summary, 47
Apache, confi guration, 83-85
applications versus ports, watching, 

20-22
architecture

Event Broker, 239-241
Nagios XI, 225

AREA, RRDTool, 181
argument passing, command defi nitions 

(check_load), 128
asterisk (*), 67
authorized_for_all_host_commands, 68
authorized_for_all_hosts, 68

authorized_for_all_service_
commands, 68

authorized_for_all_services, 68
authorized_for_confi guration_

information, 68
authorized_for_system_information, 68
authorizied_for_system_commands, 68
autodiscovery, 91-92

Check_MK, 91
Nagios XI, 92

automated confi guration for passive 
checks, 233

AVERAGE, RRDTool, 180
averageSeries, 209
awk, 196

B
backups, Nagios XI, 234
bandwidth, monitoring systems, 13-14
bar charts, data visualization, 210
baselines, 19
benefi ts of Nagios XI

advanced reporting and advanced 
visualization, 228-230

integrated plug-ins and confi guration 
wizards, 230-233

integrated time series data, 227-228
interface, 226-227
modularized components, 228
operational improvements, 234

Josephsen_Book 1.indb   261 3/6/13   3:18 PM



262 Index

bootstrapping Nagios confi g fi les, 87
business processes, Nagios XI, 230

C
C

callbacks, 237-239
function references, 237-239

-c, SNMP, 141
callbacks, 157

C, 237-239
NEB callback types, 240

carbon, 202
CDEF, 185

data summarization, 184
RRDTool, 181
syntax, 182

cgi.cfg, 63, 67-68
directives, 68

check_cluster, 116
check_command directive, 76-78
check_disk, 189

command defi nition, 131
check_dllhost

command defi nitions, 122
service defi nitions, 123

check_dllHost, 114
check_host_regix.sh, 197
check_http, 99-100, 104
check_http service defi nition, 98-100
check_load

command defi nitions with argument 
passing, 128

service defi nitions, 129

Check_MK, 13, 91, 131-134
Check_NT, 123-124
check_nt_cpuload, 124
check_ping, 96, 189
check_ping service defi nition, 97
check_snmp, command defi nitions, 141
check_ssl service defi nition, 104
check_swap, command defi nitions, 130
check_tcp, 98-99
check_tcp command defi nition, 99
check_tcp wrappers, 101
child instance, ping service 

defi nitions, 152
child/parent relationships, 27
CIM (Common Information Model), 114
Cisco routers, enabling SNMP, 138
COM, 113
command, 62
command defi nition, check_ping, 96
command defi nitions, 68

check_disk, 131
check_dllhost, 122
check_load with argument passing, 

128
check_nt_cpuload, 124
check_snmp, 141
check_swap, 130
check_tcp, 99
WebInject, 108

command_line, 72
command_name, 72
command objects, 72
commands, 71-73

Josephsen_Book 1.indb   262 3/6/13   3:18 PM



263Index

compile-time options, 55
complex service checks, local queries, 

102-104
confi guration wizards, Nagios XI, 

230-233
confi guring Nagios, 54-55
confi g.xml, WebInject, 106
consolidation functions, RRDTool, 177
contact, 62
contactgroup, 62
contact_groups, 78
contactgroups, 74-75
contact objects, 73
contacts, 73-74
COUNTER, 171-172
CPU, UNIX, 126-129
Cscript, 113
Cucumber-Nagios, 108-111

installing, 110
cut, 196

D
daemon, OS support, 51
daemon status, Nagios XI, 234
daemon, 51
dashboards, 209

creating, 210-212
distributed. See distributed dashboards
force direct graphs with jsvis, 220-221
GD graphics library, 214-215
GraphViz, 217-218
NagVis, 215-216
RRDTool fetch mode, 212-214
sparklines, 218-220

data, sending
with Event Broker, 249
from Nagios to Ganglia, 194-197

data polling glitches, heartbeat, 173
data sources (DS), 171
data summarization, CDEF, 184
data visualization, 167, 185

dashboards
creating, 210-212

force directed graphs with jsvis, 
220-221

GD graphics library, 214-215

GraphViz, 217-218

NagVis, 215-216

RRDTool fetch mode, 212-214

sparklines, 218-220

Massive Ginormic, 200-209
Nagios XI, 228-230
singularity.gov, 192-193

displaying graphs from Ganglia in 
Nagios UI, 198-200

Ganglia, 193-194

monitoring Ganglia metrics using 
Nagios, 197-198

sending data from Nagios to Ganglia, 
194-197

Suitcorp, 185-187
drraw, 190-192

NG (NagiosGraph), 187-190

DEF, RRDTool, 180
default_user_name, 68
defi nitions, 64
defi nition skeleton, services template, 89

Josephsen_Book 1.indb   263 3/6/13   3:18 PM



264 Index

dependencies, 81-83
monitoring systems, 14-16

dependent_host_name, 82
DERIVE, 172
directives

address, 75
cgi.cfg, 68
check_command, 76-78
event_handler, 76
fi rst_notifi cation, 81
hostgroup, 79
host_name, 77
_interval type, 78
last_notifi cation, 81
parents, 76
service_description, 77
servicegroup_members, 80

disk, UNIX, 130-131
displaying graphs from Ganglia in 

Nagios UI, 198-200
distributed architecture with passive 

checks, 151
distributed dashboards, 159-165

Fusion, 160-161
Livestatus. See Livestatus
MNTOS (Multi Nagios Tactical Over-

view System), 160-161
distributed passive checks with second-

ary Nagios daemons, 150-153
distributing loads, scheduling, 36-38
DNX (Distributed Nagios Executor), 

154-155, 255-258
dnxPluginInit(), 257
dollar signs ($), 96

dot (.), 116
downtime

scheduled downtime, 42
scheduling (Nagios XI), 228

drraw, 190-192
DS (data sources), 171
ds struct, 251-252

E
-e, 99
E2E (End to End), 20
E2E monitoring, 104

Cucumber-Nagios, 108-111
WebInject, 105-108

ehProcessData, 256
ehSvcCheck function, 258
EMU, 143
End to End (E2E), 20
environmental sensors, 142-143
escalations, 80-81

notifi cation, 42
Event Broker, 237

architecture, 239-241
DNX, 255-258
implementing fi le system interfaces, 

242-255
I/O interfaces, 49-50

event broker modules, 153
DNX (Distributed Nagios Executor), 

154-155
Mod Gearman, 154-157
Op5 Merlin, 154, 157-159

event_handler directive, 76

Josephsen_Book 1.indb   264 3/6/13   3:18 PM



265Index

event scheduling, 35
execution_failure_criteria, 82
Exit Codes, 28-32
extended information, 83
external command fi le, I/O interfaces, 48

F
false alarms, 19
fetch mode, RRDTool, 212-214
FHS (File System Hierarchy 

Standard), 52
fi le locations, 52
File System Hierarchy Standard 

(FHS), 52
fi lesystem interfaces, implementing 

(Event Broker), 242-255
fi lter headers, LQL, 165
fi rst_notifi cation directive, 81
force directed graphs with jsvis, 220-221
fPointer, 239
function pointers, 237-239
function references, C, 237-239
functions, Massive Ginormic, 208
Fusion, 160-161

G
Galstad, Ethan, 223
Ganglia, 193-194

displaying graphs in Nagios UI, 198-
200

monitoring using Nagios, 197-198
sending data from Nagios to, 194-197

ganglia_service_name, 199
GAUGE, 171-172

GD graphics library, 214-215
GET columns, 163
GET hosts, 163
global enablers, nagios.cfg, 65
global notifi cation settings, 39-40
global timeouts, nagios.cfg, 66
gmetric, 194
Gmond.conf, 194
Graphite, 202-204
graph mode, RRDTool, 180-182
graph.php, 198
graphs

forced directed graphs, jsvis, 220-221
from Ganglia displaying in Nagios UI, 

198-200
GraphViz, 217-218

H

-H switch, 96
headers, LQL, 163

OR headers, 166
stats headers, 166

heartbeat, RRDTool, 172-173
host and service paradigm, 24

downside of, 27-28
hosts and services, 26
interdependence, 26-27
starting from scratch, 24-25

host defi nition skeletons, 88
hostdependency, 63
hostescalation, 63
hostextendedinfor, 63
hostgroup, 63, 79

Josephsen_Book 1.indb   265 3/6/13   3:18 PM



266 Index

hostgroups, 79
host_name, 82
host_name directive, 77
hosts, 26, 62, 75-77

downside of, 27-28
host templates, 69
host template skeletons, 88

I
i2c, 142
ICMP Echo requests, 3
implementing fi lesystem interfaces (Event 

Broker), 242-255
include statements, 245
installing

Cucumber-Nagios, 110
Nagios, 54

confi guring, 54-55

make install, 56-57

make targets, 55-56

steps for, 53-54

NRPE, 59-60
plug-ins, 57-58

integrated plug-ins, Nagios XI, 230-233
integrated time series data, Nagios XI, 

227-228
Intelligent Platform Management Inter-

face (IPMI), 145-146
interdependence, host and service

 paradigm, 26-27
interesting events, 20
interfaces

I/O interfaces
Event Broker, 49-50

external command fi le, 48

monitoring, 45-46

overview, 43

performance data, 48-49

reporting, 46-47

web interfaces, 43-44

Nagios XI, 226-227
internal RRDTool metric averaging, 214
_interval type directives, 78
intervals, scheduling, 34-36
I/O interfaces

Event Broker, 49-50
external command fi le, 48
monitoring, 45-46
overview, 43
performance data, 48-49
reporting, 46-47
web interfaces, 43-44

IPMI (Intelligent Platform Management 
Interface), 145-146

J

jsvis, force directed graphs, 220-221

K

Kettner, Mathias, 131, 161
Klein, Dan, 143

L

last_notifi cation directive, 81
LINE, RRDTool, 181
Linux, installing daemon, 59

Josephsen_Book 1.indb   266 3/6/13   3:18 PM



267Index

listings
Apache Sample VirtualHost Confi g, 

84
Broker5s smake_callbackm code for 

SERVICE_STATUS_DATA, 251
CDEFs for Data Summarization, 184
CDEF Syntax, 182
A check_cluster Plug-in in 

Perl/WMI, 116
Check_disk Command Defi nition, 131
A check_disk Defi nition for NG, 189
Check_dllHost, 114
Check_dllhost Command 

Defi nition, 122
Check_dllhost Service Defi nition, 123
Check_http service Defi nition, 98
Check_load Command Defi nition 

with Argument Passing, 128
The check_load Service Defi nition, 

129
Check_nt_cpuload Command 

Defi nition, 124
Check_nt_cpuload Service 

Defi nition, 124
Check_ping Command Defi nition, 96
Check_ping Service defi nition, 97
The Check_snmp Command 

Defi nition, 141
The check_ssl Service Defi nition, 104
Check_swap Command Defi nition, 

130
A check_tcp Wrappper, 101
Command Example, 71
A Command to Perform an SMTP 

Handshake, 103

The confi g.xml for WebInject, 106
Contact Example, 73-74
Creating a Multicounter RRD, 178
Creating a Single-Counter RRD, 175
A Cucumber Feature File, 109
dnxPluginInit() Function, 257
Enabling SNMP on Cisco Routers, 

138
The Event Broker Sending Data, 249
Fully MIBd snmpwalk Output, 140
The Generic check_tcp Defi nition, 98
The Host Defi nition Skeleton, 88
A Host Template and Consumer 

Defi nition, 69
Hostdependency Example, 81
Hostescalation Example, 80
Host Example, 75
Hostextendedinfo Example, 83
Hostgroup Example, 79
A Host Template Skeleton, 88
Includes, 245
The init Function, 246
Installing Nagios for the Impatient 

Person, 54
Internal RRDTool Metric Averaging, 

214
A List of Boxes, 120
A List of Hosts, 89
A Merlin Load-Balanced Peer 

Confi guration, 159
Modifying RRAs in Nagios Graph, 

188
My qls Script, an Interactive Shell for 

MK-Livestatus, 163

Josephsen_Book 1.indb   267 3/6/13   3:18 PM



268 Index

The nebmodule struct, 247
An NEB Module That Implements a 

Filesystem Interface, 242
The nebstruct_service_status_data 

struct, 252
NGns check_ping Defi nition, 189
A Notifi cation Command 

Defi nition, 74
OCSP Confi guration in the nagios.cfg 

on the Child, 152
Our Event Handler Function, 250
Output from sconfi gurec, 57
Output from Plug-ins Oconfi gurec, 58
Output from the rrdtool Fetch 

Command, 212
Output from the Sensors Program, 

144
A Performance Data Wrapper for All 

Plug-ins, 49
A Ping Plug-in, 30
Ping Service Defi nition for the Child 

(Poller) Instance, 152
Ping Service Defi nition for the Parent 

Instance, 151
Ping with Summary Output, 30
The process-service-perfdata Com-

mand for Use with NG, 188
Protocol_Specifi c check_tcp Com-

mand Defi nition, 99
A Realistic Nagios Installation, 56
A Remote Load Average Checker, 31
A Remote Load Average Checker with 

Exit Codes, 32
A Sample Host Defi nition, 64
A Script That Calls load-checker and 

Parrots Its Output and Exit Code, 33

Servicedependency Example, 82
Service Example, 77
Servicegroup Example, 79
Servicescalation Example, 80
A Services Defi nition Skeleton, 90
A Services Template for Use with a 

Defi nition Skeleton, 89
The service_struct Def from 

nagios.h, 252
A Shell Script to Create a hosts.cfg 

from the Skeletons and Host List, 89
A Shell Script to Parse the Output 

from the fetch Command, 213
Shiny New check_http Service 

Defi nition, 100
A Solution for Ted, 104
Some Required Tidbits, 245
Specifying Object Confi g Files by 

Directory, 65
Specifying Object Confi g Files 

Individually, 65
Step Defi nition Example, 109
The submit_service_check.sh Shell 

Script on the Child, 153
The submit_service_check_to_parent 

Defi nition on the Child, 153
The Test Case File for WebInject, 106
Timeperiod Example, 70
Unrecognizable SNMP 

Gobbledygook, 138
Using a Function Pointer, 238
Verbose Output from WebInject, 107
A WebInject Command Defi nition, 

108
A WebInject Service Defi nition, 108

Josephsen_Book 1.indb   268 3/6/13   3:18 PM



269Index

Livestatus, 161-163, 166
fi lter headers, 165
tables, 162

Livestatus Query Language (LQL), 162
lm78 sensor chip, 142
lm-sensors, 144-145
local installs, fi le locations, 52
local processing versus remote 

processing, 12-13
local queries, 95

complex service checks, 102-104
pings, 96-98
port queries, 98-100
querying multiple ports, 100-102

LQL (Livestatus Query Language), 162
headers, 163
OR headers, 166
stats headers, 166

M
macros, 73
make cgis, 56
make contrib, 56
make install, 56-57
make install-command mode, 65
make install-confi g, 64
make modules, 56
make nagios, 56
make targets, 55-56
Mass Acknowledgement 

Component, 228
Massive Ginormic, 200-209

max, RRDTool, 174
max_check_attempts, 78
max check attempts option, 35
memory, UNIX, 129-130
MIBs, SNMP, 140
Microsoft Visual Basic, script 

Edition, 112
Microsoft Windows, installing NRPE, 60
min, RRDTool, 174
Minemap, Nagios XI, 227
minimizing overhead, 14
MK-Livestatus, 163
MK-Multisite, 161
MMCs (Microsoft Management 

Consoles), 113
MNTOS (Multi Nagios Tactical Over-

view System), 160-161
Mod Gearman, 154

event broker modules, 156-157
modularized components, Nagios 

XI, 228
monitoring

Ganglia metrics, using Nagios, 
197-198

I/O interfaces, 45-46
monitoring systems, 1-2

bandwidth considerations, 13-14
dependencies, 14-16
network locations, 14-16
procedural approach to, 9-12
processing, remote versus local, 12-13
silence, 19-20

MRTG, 170
multicounter RRD, 178

Josephsen_Book 1.indb   269 3/6/13   3:18 PM



270 Index

Multi Nagios Tactical Overview System 
(MNTOS), 160-161

Multisite, 166
MX outages, 28

N
Nagios, 2-4

installing, 54
confi guring, 54-55

make install, 56-57

make targets, 55-56

steps for, 53-54

nagios.cfg, 62-65
global enablers, 65
global timeouts, 66

nagios.cfg fi le, 62
Nagios Core, XI, 231
NagiosGraph, 187-190
NagiosQL, 92-94, 225
Nagios Remote Plugin Executor. 

See NRPE
Nagios UI, displaying Ganglia graphs, 

198-200
Nagios XI, 92, 160, 223-224

architecture, 225
benefi ts of

enhanced reporting and advanced 
visualization, 228-230

integrated plug-ins and confi guration 
wizards, 230-233

integrated time series data, 227-228

interface, 226-227

modularized components, 228

operational improvements, 234

business processes, 230
getting access to, 235
how it works, 224-226
Minemap, 227

NagVis, 215-216, 229
name-space collisions, preventing, 73
NANs, 201
Navigation bar, 44
NDOUtils, tuning, 150
NEB_API_VERSION, 245
NEBCALLBACK_PROCESS_DATA, 256
NEB call back types, 240
NEB module, 161
neb_register_callback, 248, 256
nebstruct_service_status_data struct, 252
.NET, 119
Network Interface Card (NIC), 18
network locations, monitoring systems, 

14-16
network segments, security, 18
NG, 189
NIC (Network Interface Card), 18
normal_check_interval, 78
notifi cation, 39

acknowledgement, 43
escalation, 42
global, 39-40
scheduled downtime, 42
templates, 41
time periods, 41-42

notifi cation_commands, 74
notifi cation_failure_criteria, 82

Josephsen_Book 1.indb   270 3/6/13   3:18 PM



271Index

notifi cation_interval, 77-78, 81
notifi cation options, 40-41
notifi cation_options, 74, 78
notifi cation_period, 78
notifi cations, service notifi cations, 78
NRDP, tuning, 150
NRPE (Nagios Remote Plugin Executor), 

33, 59, 122-123
installing, 59-60
UNIX, 125

NRPE-NT, 122-123
NRPE Wizard, 231
NSC++, 124
NSCA, tuning, 150
NSClient++, 60, 124-125
NSCP, 124-125

O
object confi guration fi les, 62
object defi nitions, 68
object defi nition skeletons, 88
objects, 62-63

summary of, 62
object template skeletons, 88
OCSP (Obsessive Compulsive Service 

Processor), 152
Oetiker, Tobias, 170
OIDs, SNMP, 136, 139-141
OLE, 113
OLE CPAN, 118
-On switch, SNMP, 139
Op5 Merlin, 154, 157-159

OR headers, LQL, 166
OS support, 51
overhead, minimizing, 14

P
parallel executing, scheduling, 38-39
parent instances, ping service 

defi nitions, 151
parents directive, 76
passive checks

automated confi guration, 233
distributed passive checks, 150-153

passive_checks_enabled, 150
PDPs (primary data points), 174
performance data, 168
I/O interfaces, 48-49
Perl, 111
pie charts, data visualization, 210
ping, 3

local queries, 96-98
service defi nitions

child instance, 152

parent instances, 151

summary output, 30
PluginInit function, 257
plug-ins

check_host_regex.sh, 197
check_http, 104
Check_MK, 131-134
check_ping, 189
check_swap, 130
Exit Codes, 28-31

Josephsen_Book 1.indb   271 3/6/13   3:18 PM



272 Index

installing, 57-58
integrated plug-ins, Nagios XI, 

230-233
redundant plug-ins, 13
Remote Execution, 31-34

PNP4Nagios, 187-190
port queries, 98-100
ports

versus applications, watching, 20-21
querying multiple, 100-102

PowerShell, 120
PowerShell cmdlets, 121
preventing name-space collisions, 73
primary data points (PDPs), 174
problems, defi ning, 11
procedural approach to monitoring 

systems, 9-12
processing monitoring systems, remote 

versus local, 12-13
process-service-perfdata, 188
Python, 111

Q

queries, local queries, 95
complex service checks, 102-104
pings, 96-98
port queries, 98-100
querying multiple ports, 100-102

querying multiple ports, 100-102

R
reapers, scheduling, 38-39
redundant plug-ins, 13

relationships, child/parent 
relationships, 27

remote execution, NRPE, 59
Remote Execution, 31-34
remote processing versus local 

processing, 12-13
reporting

I/O interfaces, 46-47
Nagios XI, 228-230

resource_fi le, 72
resources.cfg, 72
retry_check_interval, 78
Round Robin Archive (RRA), 174-175
RPN, RRDTool, 182-185
RRA (Round Robin Archive), 174-175
RRD data types, 171-172
RRDs, 171

multicounter, 178
RRDTool, 149, 168-171

AREA, 181
AVERAGE, 180
CDEF, 181
consolidation functions, 177
create syntax, 175-179
DEF, 180
fetch mode, 212-214
graph mode, 180-182
heartbeat, 172-173
history of, 171
LINE, 181
max, 174
min, 174
RPN, 182-185

Josephsen_Book 1.indb   272 3/6/13   3:18 PM



273Index

RRA (Round Robin Archive), 
174-175

RRD data types, 171-172
step, 172-173

RRDTool wrappers, 187
Ruby, 110

S
-s, 99
scheduled downtime, notifi cations, 42
scheduling, 34

check intervals and states, 34-36
distributing loads, 36-38
downtime, Nagios XI, 228
events, 35
parallel execution, 38-39
reapers, 38-39

Scholz, Kyle, 221
scripting templates, 87-90
secondary Nagios daemons, distributed 

passive checks, 150-153
secondAxis, 209
security, 16-19

network segments, 18
sending data

Event Broker, 249
from Nagios to Ganglia, 194-197

sensors
environmental sensors, 142-143
lm-sensors, 144-145
standalone sensors, 143

service, 63

SERVICE_CHECK_DATA, 258
service checks, complex service checks, 

102-104
service defi nitions, 68

check_dllhost, 123
check_http, 98-100
check_load, 129
check_nt_cpuload, 124
check_ping, 97
check_ssl, 104
ping

child instance, 152

parent instances, 151

WebInject, 108
servicedependency, 63
service_description directive, 77
serviceescalation, 63
serviceextendedinfo, 63
servicegroup, 63
servicegroup_members directive, 80
servicegroups, 79-80
service notifi cations, 78
service objects, 77-78
SERVICEOUTPUT, 195
service_perfdata_command, 194
services, 26, 77-78

downside of, 27-28
services defi nition skeleton, 90
SERVICE_STATUS_DATA, 251
services template, defi nition skeleton, 89
shell wrappers, 100
silence, monitoring systems, 19-20
Simple Network Protocol. See SNMP

Josephsen_Book 1.indb   273 3/6/13   3:18 PM



274 Index

singularity.gov, 192-193
displaying graphs from Ganglia in 

Nagios UI, 198-200
Ganglia, 193-194
monitoring Ganglia metrics using 

Nagios, 197-198
sending data from Nagios to Ganglia, 

194-197
skeleton confi g fi les, scripting templates, 

87-90
SMTP handshakes, 103
SNMP (Simple Network Management 

Protocol), 17, 135-138
-c, 141
enabling on Cisco routers, 138
MIBs, 140
OIDs, 139-141
-On switch, 139
-v switch, 138

SNMP agents, 137
SNMP Version 1, 136
SNMP Version 2, 136
SNMP Version 3, 137
Solaris, vmstat, 130
sparklines, 218-220
SSH authentication, 33
standalone sensors, 143
states, scheduling, 34-36
stats headers, LQL, 166
step, RRDTool, 172-173
struct, 254
submit_service_check_to_parent com-

mand, 152

Suitcorp, data visualization, 185-187
draw, 190-192
NG (NagiosGraph), 187-190

summarize, 206
syntax

CDEF, 182
RRDTool, 175-179

T
tables, Livestatus, 162
templates, 69-70

notifi cations, 41
scripting, 87-90

test case fi les, WebInject, 106
Thermd, 143
threshold, 207
TIMED_EVENT_DATA, 258
timeperiod, 62
timeperiods, 70-71

notifi cation, 41-42
Tufte, Edward, 210, 218
tuning, 149

NDOUtils, 150
NRDP, 150
NSCA, 150

tuning documentation, 149

U
UNIX, 125

CPU, 126-129
disk, 130-131
memory, 129-130
NRPE, 125

Josephsen_Book 1.indb   274 3/6/13   3:18 PM



275Index

use_authentication, 68
use directives, 69
user management, Nagios XI, 234
user registrations, 208

V
-v switch, SNMP, 138
VBScript, 112

choosing to use, 119
verbose output, WebInject, 107
vmstat (Solaris), 130

W-Z
watching ports versus watching 

applications, 20-21
watching the watchers, 21-22
web GUI, 43
WebInject, 105-108

command defi nition, 108
confi g.xml, 106
service defi nitions, 108
test case fi les, 106
verbose output, 107

web interfaces, 43-44
Websensor EM01B, 143
Whisper, 201
Windows, 111

Check_NT, 123-124
COM, 113
future of Windows scripting, 119-121
NRPE-NT, 122-123
NSCLient++, 124-125

OLE, 113
VBScript, choosing to use, 119
Windows Scripting Environment, 

111-113
WMI (Windows Management Instru-

mentation), 113-117
WSH, choosing to use, 118

Windows Management Instrumentation 
(WMI), 113-117

Windows Script Host (WSH), 111
Windows scripting, future of, 119-121
Windows Scripting Environment, 

111-113
wizards

confi guration wizards, Nagios XI, 
230-233

NRPE Wizard, 231
WMI (Windows Management 

Instrumentation), 113-117
wrappers, RRDTool, 187
Wscript, 112
WSH (Windows Script Host), 111-112

choosing to use, 118

Josephsen_Book 1.indb   275 3/6/13   3:18 PM


	Contents
	Foreword
	Introduction
	Do It Right the First Time
	Why Nagios?
	What’s in This Book?
	Who Should Read This Book?
	End Notes


	CHAPTER 9 Nagios XI
	What Is It?
	How Does It Work?
	What’s in It for Me?
	One Slick Interface
	Integrated Time Series Data
	Modularized Components
	Enhanced Reporting and Advanced Visualization
	Integrated Plug-ins and Configuration Wizards
	Operational Improvements

	How Do I Get My Hands on It?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-Z




