Enterprise Analytics
This page intentionally left blank
Enterprise Analytics

Optimize Performance, Process, and Decisions Through Big Data

Thomas H. Davenport
Contents at a Glance

Foreword and Acknowledgments

Jack Phillips xii

About the Authors xiv

Introduction: The New World of Enterprise Analytics

Thomas H. Davenport 1

Part I Overview of Analytics and Their Value 7

Chapter 1 What Do We Talk About When We Talk About Analytics?

Thomas H. Davenport 9

Chapter 2 The Return on Investments in Analytics

Keri E. Pearlson 19

Part II Application of Analytics 35

Chapter 3 Leveraging Proprietary Data for Analytical Advantage

Thomas H. Davenport 37

Chapter 4 Analytics on Web Data: The Original Big Data

Bill Franks 47

Chapter 5 The Analytics of Online Engagement

Eric T. Peterson 71

Chapter 6 The Path to “Next Best Offers” for Retail Customers

Thomas H. Davenport, John Lucker, and Leandro DalleMule 83

Part III Technologies for Analytics 95

Chapter 7 Applying Analytics at Production Scale

James Taylor 97

Chapter 8 Predictive Analytics in the Cloud

James Taylor 111
Chapter 9 Analytical Technology and the Business User
Thomas H. Davenport 123

Chapter 10 Linking Decisions and Analytics for Organizational Performance
Thomas H. Davenport 135

Part IV *The Human Side of Analytics* 155

Chapter 11 Organizing Analysts
Robert F. Morison and Thomas H. Davenport 157

Chapter 12 Engaging Analytical Talent
Jeanne G. Harris and Elizabeth Craig 179

Chapter 13 Governance for Analytics
Stacy Blanchard and Robert F. Morison 187

Chapter 14 Building a Global Analytical Capability
Thomas H. Davenport 203

Part V *Case Studies in the Use of Analytics* 213

Chapter 15 Partners HealthCare System
Thomas H. Davenport 215

Chapter 16 Analytics in the HR Function at Sears Holding Corporation
Carl Schleyer 233

Chapter 17 Commercial Analytics Culture and Relationships at Merck
Thomas H. Davenport 241

Chapter 18 Descriptive Analytics for the Supply Chain at Bernard Chaus, Inc.
Katherine Busey and Callie Youssi 249

Index 255
Contents

Foreword and Acknowledgments ... xii
About the Authors .. xiv
Introduction: The New World of Enterprise Analytics 1

Part I Overview of Analytics and Their Value

Chapter 1 What Do We Talk About When We Talk About Analytics? ... 9
 Why We Needed a New Term: Issues with Traditional Business Intelligence ... 11
 Three Types of Analytics ... 12
 Where Does Data Mining Fit In? .. 14
 Business Analytics Versus Other Types 15
 Web Analytics ... 16
 Big-Data Analytics ... 16
 Conclusion ... 18

Chapter 2 The Return on Investments in Analytics 19
 Traditional ROI Analysis ... 19
 The Teradata Method for Evaluating Analytics Investments ... 24
 An Example of Calculating the Value 27
 Analytics ROI at Freescale Semiconductor 28

Part II Application of Analytics

Chapter 3 Leveraging Proprietary Data for Analytical Advantage 37
 Issues with Managing Proprietary Data and Analytics 39
 Lessons Learned from Payments Data 45
 Endnote ... 46

Chapter 4 Analytics on Web Data: The Original Big Data 47
 Web Data Overview .. 48
 What Web Data Reveals ... 54
 Web Data in Action .. 60
 Wrap-Up ... 68
<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Analytical Technology and the Business User</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Separate but Unequal</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Staged Data</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Multipurpose</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Generally Complex</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Premises- and Product-Based</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Industry-Generic</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Exclusively Quantitative</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Business Unit-Driven</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Specialized Vendors</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Problems with the Current Model</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Changes Emerging in Analytical Technology</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Creating the Analytical Apps</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>of the Future</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Linking Decisions and Analytics for Organizational Performance</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A Study of Decisions and Analytics</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Linking Decisions and Analytics</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>A Process for Connecting Decisions and Information</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Looking Ahead in Decision Management</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Endnotes</td>
<td>151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part IV</th>
<th>The Human Side of Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 11</td>
<td>Organizing Analysts</td>
</tr>
<tr>
<td></td>
<td>Why Organization Matters</td>
</tr>
<tr>
<td></td>
<td>General Goals of Organizational Structure</td>
</tr>
<tr>
<td></td>
<td>Goals of a Particular Analytics Organization</td>
</tr>
<tr>
<td></td>
<td>Basic Models for Organizing Analysts</td>
</tr>
<tr>
<td></td>
<td>Coordination Approaches</td>
</tr>
<tr>
<td></td>
<td>What Model Fits Your Business?</td>
</tr>
<tr>
<td></td>
<td>How Bold Can You Be?</td>
</tr>
<tr>
<td></td>
<td>Triangulating on Your Model and Coordination Mechanisms</td>
</tr>
<tr>
<td></td>
<td>Analytical Leadership and the Chief Analytics Officer</td>
</tr>
</tbody>
</table>
Hospital-Specific Analytical Activities:
Massachusetts General Hospital 226
Hospital-Specific Analytical Activities:
Brigham & Women’s Hospital 229
Endnotes 232

Chapter 16 Analytics in the HR Function at Sears Holdings Corporation 233
What We Do 233
Who Make Good HR Analysts 235
Our Recipe for Maximum Value 237
Key Lessons Learned 238

Chapter 17 Commercial Analytics Culture and Relationships at Merck 241
Decision-Maker Partnerships 242
Reasons for the Group’s Success 243
Embedding Analyses into Tools 245
Future Directions for Commercial Analytics and Decision Sciences 246

Chapter 18 Descriptive Analytics for the Supply Chain at Bernard Chaus, Inc. 249
The Need for Supply Chain Visibility 250
Analytics Strengthened Alignment Between Chaus’s IT and Business Units 253

Index 255
The collection of research in this book personifies the contributions of a group of people who have made the International Institute for Analytics the success it is today. This book is the result of three cups of hard work, two cups of perseverance, and a pinch of serendipity that got our fledgling company started.

First, the hard work. Obvious thanks go to Tom Davenport for editing and compiling this initial collection of IIA research into book form. For the raw material Tom had to work with, thanks to all IIA faculty members who have contributed insightful research during IIA’s first two years, particularly Bill Franks, Jeanne Harris, Bob Morison, James Taylor, Eric Peterson, and Keri Pearlson. Marcia Testa (Harvard School of Public Health) and Dwight McNeil played key roles as we grew our coverage of health care analytics. Ananth Raman (Harvard Business School) and Marshall Fisher (Wharton) were instrumental in forming our initial retail analytics research agenda. We look forward to additional books in these two areas. And, of course, thanks to all the practitioner organizations who volunteered their time to be the subjects of much of our research.

For their continued belief in IIA, thanks to the entire team at SAS, who validated our mission and direction early on and have shown their trust in us ever since. In particular, thanks to Scott Van Valkenburgh (for all the whiteboard sessions), Deb Orton, Mike Bright, Anne Milley, and Adele Sweetwood. We’re also grateful for the support of other IIA underwriters, including Accenture, Dell, Intel, SAP, and Teradata.

This book is also a credit to the perseverance of two great talents within IIA. Katherine Busey was IIA’s first employee in Boston and was the person who helped convince Jeanne Glasser at Pearson that IIA’s research deserved to be read by more than just our research clients. Thanks as well to Callie Youssi, who coordinates all of IIA’s faculty research activities, which is no simple task.
It’s hard to imagine Tom without his wife and agent, Jodi, to add vector to the thrust. Thanks to you both for betting on me as an entrepreneur, particularly during a challenging first year.

And for the pinch of serendipity, Tom and I are indebted to Eric McNulty for having the foresight to bring us together, be the first voice of IIA, and help set our early publishing and research standards.

Jack Phillips
Chief Executive Officer, International Institute for Analytics
About the Authors

Thomas H. Davenport is co-founder and research director of IIA, a Visiting Professor at Harvard Business School, Distinguished Professor at Babson College, and a Senior Advisor to Deloitte Analytics. Voted the third leading business-strategy analyst (just behind Peter Drucker and Tom Friedman) in Optimize magazine, Davenport is a world-renowned thought leader who has helped hundreds of companies revitalize their management practices. His Competing on Analytics idea recently was named by Harvard Business Review one of the 12 most important management ideas of the past decade. The related article was named one of the ten must-read articles in HBR’s 75-year history. Published in February 2010, Davenport’s related book, Analytics at Work: Smarter Decisions, Better Results, was named one of the top 15 must-reads for 2010 by CIO Insight.

Elizabeth Craig is a research fellow with the Accenture Institute for High Performance in Boston. She is the coauthor, with Peter Cheese and Robert J. Thomas, of The Talent-Powered Organization (Kogan Page, 2007).

Robert Morison serves as lead faculty for the Enterprise Research Subscription of IIA. He is an accomplished business researcher, writer, discussion leader, and management consultant. He is coauthor of Analytics at Work: Smarter Decisions, Better Results (Harvard Business Press, 2010), Workforce Crisis: How to Beat the Coming Shortage of Skills and Talent (Harvard Business Press, 2006), and three Harvard Business Review articles, one of which received a McKinsey Award as best article of 2004. He has spoken before scores of corporate, industry, and government groups and has been a commentator on workforce issues on Nightly Business Report on PBS. Most recently executive vice president and director of research with
nGenera Corporation, he earlier held management positions with the Concours Group, CSC Index, and General Electric Information Services Company.

Dr. Keri E. Pearlson is an expert in the area of managing and using information. She has worked with CIOs and executives from some of the largest corporations in the world. She has expertise in helping executives create strategies to become Web 2.0-enabled enterprises, designing and delivering executive leadership programs, and managing multienvironment programs on issues of interest to senior executives of information systems. She specializes in helping IT executives prepare to participate in the strategy formulation processes with their executive peers. She’s a faculty member of the International Institute for Analytics and the Founding Partner and President of KP Partners, a CIO advisory services firm.

Bill Franks is a faculty member of the International Institute for Analytics and is Chief Analytics Officer for Teradata’s global alliance programs. He also oversees the Business Analytic Innovation Center, which is jointly sponsored by Teradata and SAS; it focuses on helping clients pursue innovative analytics. In addition, Bill works to help determine the right strategies and positioning for Teradata in the advanced analytics space. He is the author of the book *Taming the Big Data Tidal Wave* (John Wiley & Sons, Inc., April, 2012, www.tamingthebigdatatidalwave.com).

Eric T. Peterson is a faculty member of the International Institute for Analytics. He is the founder of Web Analytics Demystified and has worked in web analytics for over 10 years as a practitioner, consultant, and analyst. He is the author of three best-selling web analytics books: *Web Analytics Demystified*, *Web Site Measurement Hacks*, and *The Big Book of Key Performance Indicators*. He is one of the most widely read web analytics writers at www.webanalyticsdemystified.com.

John Lucker is a principal with Deloitte Consulting LLP, where he leads Deloitte’s Advanced Analytics and Modeling practice, one of the leading analytics groups in the professional services industry. He has vast experience in the areas of advanced analytics, predictive modeling, data mining, scoring and rules engines, and numerous other advanced analytics business solution approaches.
James Taylor is a faculty member of the International Institute for Analytics and is CEO of Decision Management Solutions. Decision Management Systems apply business rules, predictive analytics, and optimization technologies to address the toughest issues facing businesses today, changing how organizations do business. He has over 20 years of experience in developing software and solutions for clients. He has led Decision Management efforts for leading companies in insurance, banking, health management, and telecommunications.

Stacy Blanchard is the Organization Effectiveness Services and Human Capital Analytics lead for Accenture Analytics. With over 15 years of experience in aligning strategy, culture, and leadership for organizations, she has worked globally across a multitude of client situations and industries. She integrates real-world experience with recognized approaches to coach and align the C-suite to drive transformational agendas. Prior to Accenture, she was the CEO of Hagberg Consulting Group, an organization consultancy specializing in the assessment, alignment, and transformation of strategy, corporate culture, and leadership.

Carl Schleyer is Director of Operations and Analytics for Sears Holdings Corporation (an IIA sponsor) and is responsible for gathering and analyzing large volumes of data in order to support talent and human capital strategies and tactics. As a part of this role, Carl created the first analytical team dedicated to purely human capital pursuits within Sears Holdings. His passion is unlocking the value of data through influencing decisions. Carl is a 20+ year veteran of the retail industry, having served various functions within HR.

Leandro DalleMule is Senior Director for Global Analytics at CitiGroup. Prior to this, he was a Senior Manager for Deloitte’s analytics consulting practice, a risk manager for GE Capital, and a brand manager for Exxon in Brazil.

Callie Youssi is Vice President of Research Operations for the International Institute for Analytics. In this role, she works to build, manage, and support IIA’s global faculty as they uncover the most compelling applications of analytics. She is responsible for aggregating and analyzing the areas of greatest interest to IIA clients and ensuring a strong faculty bench to address those focus areas.
Katherine Busey is Vice President of Business Development for the International Institute for Analytics. In this role, she is responsible for developing global business opportunities for IIA. She works with IIA’s underwriters, partners, and research clients to uncover new trends in the analytics space and bring together vendors and practitioners.
This page intentionally left blank
Introduction: The New World of Enterprise Analytics

Thomas H. Davenport

The Rise of Analytics

Analytics aren’t new—I’ve found references to corporate analytical groups as far back as 1954—but they seem to be more important to business and organizational life than ever before. Analytical approaches to decision-making and management are on the rise because of several factors:

• The dramatic increase in the amounts of data to analyze from various business information systems
• Powerful and inexpensive computers and software that can analyze all this data
• The movement of quantitatively trained managers into positions of responsibility within organizations
• The need to differentiate products and offers, optimize prices and inventories, and understand what drives various aspects of business performance

As a result, many factors indicate that analytical initiatives, jobs, and organizations are taking off around the world. According to LinkedIn data, for example, the number of people starting analytics or data scientist jobs increased tenfold from 1990 to 2010. Every major consulting firm has developed an analytics practice. According
to Google Trends, the number of searches using the term “analytics” increased more than twenty-fold between 2005 and 2012; searches for the term “big data” (defined in a moment) showed an even more dramatic rise beginning in 2010. The current era has been described as the “Age of Analytics,” the “Age of Algorithms,” and the “Money-ball Era,” after the book and movie about the application of analytics to professional baseball.

Enterprise Analytics

One important attribute of the increased focus on analytics is that it has become—at least for many organizations—an “enterprise” resource. That is, instead of being sequestered into several small pockets of an organization—market research or actuarial or quality management—analytical capabilities are being recognized as something that can benefit an entire organization. Diverse groups are being centralized, or at least coordination and communication are taking place between them. Analytical talent is being inventoried and assessed across the organization. Plans, initiatives, and priorities are being determined by enterprise-level groups, and the goal is to maximize the impact on the enterprise.

Hence the title of this book. Many of the chapters relate to how analytics can and should be managed at an enterprise level. If there were a set of guidelines for a Chief Analytics Officer—and some people in this role are emerging, albeit still in relatively small numbers—this book would provide many of them. We are not yet at the point where analytics is a broadly recognized business function, but we are clearly moving in that direction.

The Rise of “Big Data”

Excitement about analytics has been augmented by even more excitement about *big data*. The concept refers to data that is either too voluminous or too unstructured to be managed and analyzed through traditional means. The definition is clearly a relative one that
will change over time. Currently, “too voluminous” typically means databases or data flows in petabytes (1,000 terabytes); Google, for example, processes about 24 petabytes of data per day. “Too unstructured” generally means that the data isn’t easily put into the traditional rows and columns of conventional databases.

Examples of big data include a massive amount of online information, including clickstream data from the Web and social media content (tweets, blogs, wall postings). Big data also incorporates video data from retail and crime/intelligence environments, or rendering of video entertainment. It includes voice data from call centers and intelligence interventions. In the life sciences, it includes genomic and proteomic data from biological research and medicine.

Many IT vendors and solutions providers, and some of their customers, treat the term as just another buzzword for analytics, or for managing and analyzing data to better understand the business. But there is more than vendor hype; there are considerable business benefits from being able to analyze big data on a consistent basis.

Companies that excel at big data will be able to use other new technologies, such as ubiquitous sensors and the “Internet of things.” Virtually every mechanical or electronic device can leave a trail that describes its performance, location, or state. These devices, and the people who use them, communicate through the Internet—which leads to another vast data source. When all these bits are combined with those from other media—wireless and wired telephony, cable, satellite, and so forth—the future of data appears even bigger.

Companies that employ these tools will ultimately be able to understand their business environment at the most granular level and adapt to it rapidly. They’ll be able to differentiate commodity products and services by monitoring and analyzing usage patterns. And in the life sciences, of course, effective use of big data can yield cures to the most threatening diseases.

Big data and analytics based on it promise to change virtually every industry and business function over the next decade. Organizations that get started early with big data can gain a significant competitive edge. Just as early analytical competitors in the “small data” era (including Capital One bank, Progressive insurance, and Marriott hotels) moved out ahead of their competitors and built a
sizable competitive edge, the time is now for firms to seize the big-data opportunity.

The availability of all this data means that virtually every business or organizational activity can be viewed as a big-data problem or initiative. Manufacturing, in which most machines already have one or more microprocessors, is already a big-data situation. Consumer marketing, with myriad customer touchpoints and clickstreams, is already a big-data problem. Governments have begun to recognize that they sit on enormous collections of data that wait to be analyzed. Google has even described the self-driving car as a big-data problem.

This book is based primarily on small-data analytics, but occasionally it refers to big data, data scientists, and other issues related to the topic. Certainly many of the ideas from traditional analytics are highly relevant to big-data analytics as well.

IIA and the Research for This Book

I have been doing research on analytics for the last fifteen years or so. In 2010 Jack Phillips, an information industry entrepreneur, and I cofounded the International Institute for Analytics (IIA). This still-young organization was launched as a research and advisory service for vendors and users of analytics and analytical technologies. I had previously led sponsored research programs on analytics, and I knew they were a great way to generate relevant research content.

The earliest support for the Institute came from the leading analytics vendor SAS. We also worked with key partners of SAS, including Intel, Accenture, and Teradata. A bit later, other key vendors, including SAP and Dell, became sponsors of IIA. The sponsors of IIA provided not only financial support for the research, but also researchers and thought leaders in analytics who served as IIA faculty.

After recruiting other faculty with academic or independent consulting backgrounds, we began producing research outputs. You’ll see several examples of the research outputs in this book. The IIA produced three types of outputs: research briefs (typically three-to-five-page documents on particular analytics topics); leading-practice briefs (case studies on firms with leading or typical analytical issues);
and write-ups of meetings, webcasts, and audioconferences. The emphasis was on short, digestible documents, although in some cases more than one brief or document has been combined to make one chapter in this book.

With some initial research in hand, we began recruiting corporate or organizational participants in IIA. Our initial approach was to focus on general “enterprise” topics—how to organize analytics, technology architectures for analytics, and so forth. We did find a good reaction to these topics, many of which are covered in this book. Practitioner companies and individual members began to join IIA in substantial numbers.

However, the strongest response was to our idea for industry-specific research. Companies seemed quite interested in general materials about analytical best practices but were even more interested in how to employ analytics in health care or retail, our first two industry-specific programs. That research is not featured in this book—we may do other books on analytics within specific industries—but we did include some of the leading-practice briefs from those industries as chapters.

The Structure of This Book

All the chapters in this book were produced in or derived from IIA projects. All the authors (or at least one author of each chapter) are IIA faculty members. A few topics have appeared in a similar (but not exactly the same) form in journal articles or books, but most have not been published outside of IIA. The chapters describe several broad topics. Part I is an overview of analytics and its value. Part II discusses applying analytics. Part III covers technologies for analytics. Part IV describes the human side of analytics. Part V consists of case studies of analytical activity within organizations.
This page intentionally left blank
Index

A

A/B testing, 16
Accenture, center of excellence model, 207
Acquah, Victor, 78
actions based on decisions, 98
activity, engagement versus, 72
advertising results assessment, web data for, 66-68
airline reservation proprietary data example, 40-41
Amadeus, 41
analyst sandbox, 129
analysts
engaging, 180-181
business knowledge of, 182
centralized organizational model, 185-186
defined roles for, 183
maintaining skills of, 184
organizing, 157
assessment over time, 176-177
CAO (Chief Analytics Officer), 173
consolidating groups, 168-169
coordination methods for analysts, 163-165
ecosystem, building, 175-176
goals of organizational structure, 158-159
importance of, 157-158
organizational models for, 160-162
organization’s goals, 159-160
refining organizational model, 169-172
reporting structure, 174-175
variables to consider, 165-168
qualities of, Sears Holdings Corp. (SHC) case study, 235-237
types of, 179-180
analytical applications, 129
analytical ecosystem, building, 175-176
analytical intelligence, as analyst quality, 236
analytical orientation, analyst organization, 168
analytics
big-data analytics, 2-4, 16-17
business analytics
attributes of, 123
business unit-driven, 126

255
central coordination of apps, 132
central coordination of apps, 132
central coordination of apps, 132
complexity, 125
exclusively quantitative, 126
future environment, 128-129
industry-generic, 125-126
multipurpose capabilities, 124
nonbusiness-sector analytics versus, 15
Partners HealthCare System case study, 225-226
premises- and product-based, 125
problems with, 127-128
separation from application environment, 123-124
service-based apps, 131-132
single-purpose industry-specific apps, 130-131
staged data, 124
vendor integration, 133
vendor specialization, 127
business intelligence versus, 11-12
cloud-based, 111-112
adoption of, 119-120
business solutions focus, 112-113
deployment patterns, 113-116
pros and cons, 118-119
state of market for, 116-118
data mining, role of, 14-15
decisions and, 135
automated decision systems, 144-145
decision design, 148-149
decision execution, 150
decision-making process, 146-150
future of decision management, 150-151
information and analytics provision, 147-148
linking methods, 138-145
loosely coupled, 138-141
in organizational strategy, 146-147
structured human decisions, 141-144
types of decisions, 136-138
defined, 9-10
descriptive analytics, 12-13, 249-254
embedded analytics, 129, 171, 245-246
type of decision analytics, defined, 2
global capability for, 203
center of excellence model, 206-207
centralized coordination, 205-206
coordination methods, 205
decentralized model, 207-210
geographic variation, 203-205
trends in, 210-212
governance of, 187
descriptive versus predictive analytics, 198
elements of, 189-190
importance of, 190-192
principles for, 188-189
processes for, 197-199
relationships with other governance bodies, 200
scope of, 192-193
stakeholders and decision rights, 196-197
structure of, 193-196
success of, 200-201
increase in usage of, 1-2
predictive analytics, 13
prescriptive analytics, 13-14
at production scale, 97-98
actions based on decisions, 98
compliance issues, 100-101
coopera[tion between business and IT departments, 100
data issues, 101
lessons learned, 107-108
timely model deployment, 99-100
YouSee example, 101-107
ROI (return on investment), 19
audiences for, 28
cash flow and, 21
complexity of business environment, 23-24
credible ROI, 21-22
Freescale Semiconductor example, 28-33
Teradata method, 24-27
traditional ROI calculations, 19-24
terminology, 9-10
types of, 12-14, 171
web analytics, 16
Analytics at Work, 158, 179
assigned customers, analyst coordination, 164
AT&T Labs, 184
attrition modeling, web data for, 62-63

audiences for ROI (return on investment), 28
automated decision systems, 97, 144-145. See also production scale analytics
actions based on, 98
collaboration, 253-254
data issues, 101
lessons learned, 68-69
timely model deployment, 99-100

Banco Santander, global capability for analytics, 204
Bernard Chaus, Inc. case study, 249-250
business unit and IT collaboration, 253-254
supply chain visibility, 249-253
“best home” model for analyst organization, 161
BI. See business intelligence
big data defined, 2-4
proprietary data as, 38
web data, 47-48
advertising results assessment, 66-68
attrition modeling, 62-63
customer segmentation, 65-66
feedback behaviors, 59-60
lessons learned, 68-69
missing elements of, 50
as new information source, 51-52
next best offers, 60-62
possible uses of, 50-51
privacy issues, 53-54
purchase paths and preferences, 56-57
business decisions
 in cloud-based predictive analytics, 112-113
 in production scale analytics, 100
business environment complexity, effect on ROI calculations, 23-24
business group (ROI audience), 28
business intelligence, 9
 as analyst quality, 236
 analytics versus, 11-12
 defined, 11
business knowledge of analysts, 182
business structure, analyst organization, 166-167
business unit and IT collaboration, Bernard Chaus, Inc. case study, 253-254
business value assessment. See ROI (return on investment)
business value, Commercial Analytics and Decision Sciences group (Merck) case study, 243-245

calculations. See measuring engagement; metrics; ROI (return on investment)
CAO (Chief Analytics Officer), 173
case studies
 Bernard Chaus, Inc. case study, 249-250
 business unit and IT collaboration, 253-254
 supply chain visibility, 249-253
Commercial Analytics and Decision Sciences group (Merck) case study, 241-242
 business value, 243-245
decision-making partnerships, 242-243
embedded analytics, 245-246
future of, 246-247
Partners HealthCare System, 215
 analytical challenges, 223-225
Brigham & Women’s Hospital analytics, 229-231
business analytics, 225-226
centralized data, 215-218
HFM (High-Performance Medicine) initiative, 220-223
knowledge management, 218-220
Massachusetts General Hospital analytics, 226-229
Sears Holdings Corp. (SHC) case study, 233
 analysts, qualities of, 235-237
 lessons learned, 238-239
 prioritization, 233-235
 projects, components of, 237-238
cash flow, ROI and, 21
center of excellence model for analyst organization, 162
 for global analytical capabilities, 206-207
centralization of analysts, 157-158, 161, 185-186
 of global analytical capabilities, 205-206
Partners HealthCare System case study, 215-218
Chief Analytics Officer (CAO), 173
churn models, 62
cloud-based predictive analytics, 111-112
 adoption of, 119-120
 business solutions focus, 112-113
 deployment patterns, 113-116
 pros and cons, 118-119
 state of market for, 116-118
Commercial Analytics and Decision Sciences group (Merck) case study, 241-242
 business value, 243-245
 decision-making partnerships, 242-243
 embedded analytics, 245-246
 future of, 246-247
community, analyst coordination, 164
Competing on Analytics, 9, 179, 190
complexity of business analytics, 125
 of business environment, effect on ROI calculations, 23-24
compliance issues in production scale analytics, 100-101
consolidation of analysts, 168-169
consulting model for analyst organization, 161
consumer payment data example (proprietary data), 42-45
data ownership, 45
enhanced customer services, 44-45
lessons learned, 45-46
macroeconomic intelligence, 42-43
targeted marketing, 43-44
contextual information needed for next best offers, 88-90
conversion, engagement versus, 71-72
coordination methods
for analysts, 163-165
for global analytical capabilities, 205
center of excellence model, 206-207
centralized coordination, 205-206
decentralized model, 207-210
cost of capital, 21
Coursen, Sam, 28-31
credible ROI (return on investment), 21-22
customer data. See also web data
decision-making behavior, 51-52
differentiation among customers, 64-65
needed for next best offers, 87
privacy issues, 53-54
360-degree view of, 47-48
customer engagement. See engagement
customer satisfaction, engagement versus, 72
customer segmentation
by engagement level, 76-77
web data for, 65-66
customer services, enhancing from consumer payment data, 44-45
CVM (customer value management), 209-210

data cloud, modeling with, 115-116
data issues in production scale analytics, 101
data mining
defined, 14
role of, 14-15
data ownership, consumer payment data example (proprietary data), 45
data scientists, defined, 179
Davenport, Tom, 179
decentralized model
for analyst organization, 162
for global analytical capabilities, 207-210
decision design, 148-149
decision execution, 150
decision management systems, 97. See also production scale analytics
actions based on, 98
increased analytic value of, 117
decision rights in analytics governance, 196-197
decision support systems, 9
decision-centered analytics, 171
decision-making behavior
in analytics governance, 197
Commercial Analytics and Decision Sciences group (Merck) case study, 242-243
web data for, 51-52, 55-59
decisions, analytics and, 135
 automated decision systems, 144-145
decision design, 148-149
decision execution, 150
decision-making process, 146-150
future of decision management, 150-151
information and analytics provision, 147-148
linking methods, 138-145
loosely coupled, 138-141
in organizational strategy, 146-147
structured human decisions, 141-144
types of decisions, 136-138
defined roles for analysts, 183
Deloitte, center of excellence model, 207
deployment patterns for cloud-based predictive analytics, 113-116
descriptive analytics, 12-13
 Bernard Chaus, Inc. case study, 249-250
 business unit and IT collaboration, 253-254
 supply chain visibility, 249-253
governance of, 198
designing decision-making process, 148-149
differentiation among customers, 64-65
Dykes, Brent, 16

E
early adopters of cloud-based predictive analytics, 117
elastic compute power for modeling, 116
embedded analytics, 129, 171, 245-246
engagement
 activity versus, 72
 of analysts, 180-181
 business knowledge of, 182
 centralized organizational model, 185-186
 defined roles for, 183
 maintaining skills of, 184
 conversion versus, 71-72
customer satisfaction versus, 72
customer segmentation by, 76-77
defined, 71-73
 measuring, 74-75
 PBS example, 77-79
 Philly.com example, 79-81
enhanced customer services from consumer payment data, 44-45
enterprise analytics, defined, 2.
 See also analytics
time-to-value, 60-62
evaluation of technologies. See IT evaluation
enterprise commitment, analyst organization, 168
Eskew, Ed, 249-253-254
evaluating investments. See ROI (return on investment)
external factor, 236
execution of next best offers, 90-92
executive information systems, 9
experts, defined, 180
FACELESS CUSTOMER ANALYSIS, 53-54
FEDERATION, ANALYST
COORDINATION, 164
FEEDBACK BEHAVIORS, COLLECTING IN WEB DATA, 59-60
FINANCE, ANALYST REPORTING STRUCTURE, 175
FINANCE GROUP (ROI AUDIENCE), 28
FIVE-STAGE MATURITY MODEL, 169-170, 190
FRANKS, BILL, 17
FREESCALE SEMICONDUCTOR EXAMPLE (ANALYTICS ROI), 28-33
FREQUENCY VALUE METRICS, 49
FUNCTIONAL MODEL FOR ANALYST ORGANIZATION, 161
FUNCTION-SPECIFIC ANALYTICS, 171
FUNDING SOURCES, ANALYST ORGANIZATION, 167
FUTURE
OF COMMERCIAL ANALYTICS AND DECISION SCIENCES (MERCK) CASE STUDY, 246-247
OF DECISION MANAGEMENT, 150-151

CENTRALIZED COORDINATION, 205-206
DECENTRALIZED MODEL, 207-210
GEOGRAPHIC VARIATION, 203-205
TRENDS IN, 210-212
GOTTLIB, GARY, 230-231
GOVERNANCE OF ANALYTICS, 187
DESCRIPTIVE VERSUS PREDICTIVE ANALYTICS, 198
ELEMENTS OF, 189-190
IMPORTANCE OF, 190-192
PRINCIPLES FOR, 188-189
PROCESSES FOR, 197-199
RELATIONSHIPS WITH OTHER GOVERNANCE BODIES, 200
SCOPE OF, 192-193
STAKEHOLDERS AND DECISION RIGHTS, 196-197
STRUCTURE OF, 193-196
SUCCESS OF, 200-201
GRiffin, JANE, 119
GUSTAFSON, MICHAEL, 229

H&M, CUSTOMER LOCATION INFORMATION, 87
HARRIS, JEANNE, 9, 158
HIGH-PERFORMANCE MEDICINE (HPM) INITIATIVE, PARTNERS HEALTHCARE SYSTEM CASE STUDY, 220-223
HOME LOCATION, ANALYST ORGANIZATION, 165-166
HONGSERMEIER, TONYA, 219-220, 224
HOSPITAL CASE STUDY. SEE PARTNERS HEALTHCARE SYSTEM CASE STUDY

GEOGRAPHIC VARIATION IN GLOBAL ANALYTICAL CAPABILITY, 203-205
GLASER, JOHN, 216, 220-221, 223, 224, 230
GLOBAL CAPABILITY FOR ANALYTICS, 203
COORDINATION METHODS, 205
CENTER OF EXCELLENCE MODEL, 206-207
HD
H&M, CUSTOMER LOCATION INFORMATION, 87
HARRIS, JEANNE, 9, 158
HIGH-PERFORMANCE MEDICINE (HPM) INITIATIVE, PARTNERS HEALTHCARE SYSTEM CASE STUDY, 220-223
HOME LOCATION, ANALYST ORGANIZATION, 165-166
HONGSERMEIER, TONYA, 219-220, 224
HOSPITAL CASE STUDY. SEE PARTNERS HEALTHCARE SYSTEM CASE STUDY
HPM (High-Performance Medicine) initiative, Partners HealthCare System case study, 220-223
HR functions case study. See Sears Holdings Corp. (SHC) case study
HR intelligence, as analyst quality, 236
Hutchins, Chris, 227, 228

I

IATA (International Air Transport Authority), 40-41
IIA (International Institute for Analytics), 4-5
indices, measuring engagement, 74-75
industry-specific analytics, 130-131, 171
information. See analytics
information and analytics provision in decision-making process, 147-148
information technology (IT), analyst reporting structure, 174
infrastructure, analyst organization, 167
internal rate of return (IRR), 22
International Air Transport Authority (IATA), 40-41
International Institute for Analytics (IIA), 4-5
IRR (internal rate of return), 22
issue management, in analytics governance, 199
IT and business unit collaboration, Bernard Chaus, Inc. case study, 253-254
IT group (ROI audience), 28

K

Al-Kindi, 10
knowledge management, Partners HealthCare System case study, 218-220, 223-225
Krebs, Valdis, 111
Kvedar, Joe, 224

L

leadership roles in analytics, 173
legacy systems, predictive analytics for, 114-115
linking decisions and analytics, 138-145
 automated decision systems, 144-145
decision design, 148-149
decision execution, 150
future of decision management, 150-151
information and analytics provision, 147-148
loosely coupled, 138-141
in organizational strategy, 146-147
structured human decisions, 141-144
location information. See SoMoLo data (social, mobile, location)
loosely coupled analytics and decisions, 138-141

M

macroeconomic intelligence from consumer payment data, 42-43
market for cloud-based predictive analytics, 116-118
marketing
 analyst reporting structure, 175
targeted marketing from consumer payment data, 43-44
Massachusetts General Hospital analytics, Partners HealthCare System case study, 226-229
matrix, analyst coordination, 164
maturity model, 169-170, 190
McDonald, Bob, 206
Meares, Chris, 79-81
measuring engagement, 74-75
Merck case study. See Commercial Analytics and Decision Sciences group (Merck) case study
metrics
 ROI. See ROI (return on investment)
types of, 22
MGH (Massachusetts General Hospital) analytics, Partners HealthCare System case study, 226-229
Microsoft, offer strategy design, 86
Middleton, Blackford, 218, 224
mobile information. See SoMoLo data (social, mobile, location)
modeling
 with data cloud, 115-116
elastic compute power for, 116
statistical modeling, 13
monetary value metrics, 49
Mongan, Jim, 220-221
Morey, Daryl, 38
Morison, Bob, 179

N
NBOs. See next best offers
Nesson, Richard, 216, 230
net present value (NPV), 22
Netflix, 184
new product development, proprietary data and, 37-38
next best offers
customer data needed, 87
defined, 83-84
execution of, 90-92
framework for, 84-85
lessons learned, 93-94
product data needed, 87-88
purchase context information, 88-90
strategy design, 85-87
web data for, 60-62
nonbusiness-sector analytics, business analytics versus, 15
nonstandard data analytics, 171
NPV (net present value), 22

O
OLAP (online analytical processing), 9
online engagement. See engagement optimization, 14
organizational goals for analytics, 159-160
organizational strategy, decisions and analytics in, 146-147
organizational structure, goals of, 158-159
organizing analysts, 157
assessment over time, 176-177
CAO (Chief Analytics Officer), 173
consolidating groups, 168-169
coordination methods for
analysts, 163-165
ecosystem, building, 175-176
goals of organizational structure,
158-159
importance of, 157-158
organizational models for,
160-162
organization’s goals, 159-160
refining organizational model,
169-172
reporting structure, 174-175
variables to consider, 165-168
ownership of data, consumer
payment data example
(proprietary data), 45

enhanced customer services,
44-45
lessons learned, 45-46
macroeconomic intelligence,
42-43
targeted marketing, 43-44
PBS example (engagement),
77-79
performance management, in
analytics governance, 199
permissions, consumer payment
data example (proprietary
data), 45
personalized offers. See next
best offers
Philly.com example
(engagement), 79-81
pooled data, in cloud-based
predictive analytics, 118
predictive analytics, 13
cloud-based, 111-112
adoption of, 119-120
business solutions focus,
112-113
deployment patterns,
113-116
pros and cons, 118-119
state of market for, 116-118
governance of, 198
at production scale, 97-98
actions based on
decisions, 98
compliance issues, 100-101
cooperation between
business and IT
departments, 100
data issues, 101
lessons learned, 107-108
timely model deployment,
99-100
YouSee example, 101-107

P

P&G, centralized coordination of
global analytics, 205-206
Partners HealthCare System case
study, 215
analytical challenges, 223-225
Brigham & Women’s Hospital
analytics, 229-231
business analytics, 225-226
centralized data, 215-218
HPM (High-Performance
Medicine) initiative, 220-223
knowledge management,
218-220
Massachusetts General Hospital
analytics, 226-229
PaxIS example (proprietary data),
40-41
payback, 22
payment data example
(proprietary data), 42-45
data ownership, 45

owners of data, consumer
payment data example
(proprietary data), 45

P&G, centralized coordination of
global analytics, 205-206
Partners HealthCare System case
study, 215
analytical challenges, 223-225
Brigham & Women’s Hospital
analytics, 229-231
business analytics, 225-226
centralized data, 215-218
HPM (High-Performance
Medicine) initiative, 220-223
knowledge management,
218-220
Massachusetts General Hospital
analytics, 226-229
PaxIS example (proprietary data),
40-41
payback, 22
payment data example
(proprietary data), 42-45
data ownership, 45

enhanced customer services,
44-45
lessons learned, 45-46
macroeconomic intelligence,
42-43
targeted marketing, 43-44
PBS example (engagement),
77-79
performance management, in
analytics governance, 199
permissions, consumer payment
data example (proprietary
data), 45
personalized offers. See next
best offers
Philly.com example
(engagement), 79-81
pooled data, in cloud-based
predictive analytics, 118
predictive analytics, 13
cloud-based, 111-112
adoption of, 119-120
business solutions focus,
112-113
deployment patterns,
113-116
pros and cons, 118-119
state of market for, 116-118
governance of, 198
at production scale, 97-98
actions based on
decisions, 98
compliance issues, 100-101
cooperation between
business and IT
departments, 100
data issues, 101
lessons learned, 107-108
timely model deployment,
99-100
YouSee example, 101-107

P

P&G, centralized coordination of
global analytics, 205-206
Partners HealthCare System case
study, 215
analytical challenges, 223-225
Brigham & Women’s Hospital
analytics, 229-231
business analytics, 225-226
centralized data, 215-218
HPM (High-Performance
Medicine) initiative, 220-223
knowledge management,
218-220
Massachusetts General Hospital
analytics, 226-229
PaxIS example (proprietary data),
40-41
payback, 22
payment data example
(proprietary data), 42-45
data ownership, 45

enhanced customer services,
44-45
lessons learned, 45-46
macroeconomic intelligence,
42-43
targeted marketing, 43-44
PBS example (engagement),
77-79
performance management, in
analytics governance, 199
permissions, consumer payment
data example (proprietary
data), 45
personalized offers. See next
best offers
Philly.com example
(engagement), 79-81
pooled data, in cloud-based
predictive analytics, 118
predictive analytics, 13
cloud-based, 111-112
adoption of, 119-120
business solutions focus,
112-113
deployment patterns,
113-116
pros and cons, 118-119
state of market for, 116-118
governance of, 198
at production scale, 97-98
actions based on
decisions, 98
compliance issues, 100-101
cooperation between
business and IT
departments, 100
data issues, 101
lessons learned, 107-108
timely model deployment,
99-100
YouSee example, 101-107
preferences, collecting in web data, 56-57
prescriptive analytics, 13-14, 16
principles for analytics governance, 188-189
prioritization, Sears Holdings Corp. (SHC) case study, 233-235
privacy
 of proprietary data, 40
 of web data, 53-54
process-specific analytics, 171
product data needed for next best offers, 87-88
production scale analytics, 97-98
 actions based on decisions, 98
 compliance issues, 100-101
 cooperation between business and IT departments, 100
data issues, 101
 lessons learned, 107-108
 timely model deployment, 99-100
 YouSee example, 101-107
program management office, 164
projects, components of (Sears Holdings Corp. (SHC) case study), 237-238
propensity modeling, web data for, 63-65
proprietary data
 consumer payment data
 example, 42-45
 data ownership, 45
 enhanced customer services, 44-45
 lessons learned, 45-46
 macroeconomic intelligence, 42-43
 targeted marketing, 43-44
 PaxIS example, 40-41
 privacy of, 40
 questions to address, 39-40
 usefulness of, 37-39
purchase context, needed for next best offers, 88-90
purchase paths and preferences, collecting in web data, 56-57
Q
Qdoba Mexican Grill, execution of next best offers, 91
R
randomized testing, 14, 16
real-time data, in cloud-based predictive analytics, 118
recency value metrics, 49
Redbox, offer strategy design, 86
reporting structure, analyst organization, 166, 174-175
research behaviors, collecting in web data, 57-59
response modeling, web data for, 63-65
return on investment. See ROI (return on investment)
RFM value metrics, 49, 50
Rocha, Roberto, 224
ROI (return on investment), 19
 audiences for, 28
 cash flow and, 21
 complexity of business environment, 23-24
 credible ROI, 21-22
 Freescale Semiconductor example, 28-33
 Teradata method, 24-27
 traditional ROI calculations, 19-24
 rotation, analyst coordination, 164
S

SaaS (software as a service),
 predictive analytics for, 114
salespeople, offer delivery, 91
Sample, Amy, 77-78
scientists, defined, 179
Sears Holdings Corp. (SHC) case study, 233
 analysts, qualities of, 235-237
 lessons learned, 238-239
 prioritization, 233-235
 projects, components of, 237-238
segmentation of customers
 by engagement level, 76-77
 web data for, 65-66
Seiken, Jason, 77, 79
Sense Networks, location information, 89-90
service-based apps, 131-132
shared services, analyst reporting structure, 175
SHC (Sears Holdings Corp.) case study. See Sears Holdings Corp. (SHC) case study
Sheppard, Colin, 182
shopping behaviors, collecting in web data, 55-56
single-purpose industry-specific apps, 130-131
skill development for analysts, 184
social media information. See SoMoLo data (social, mobile, location)
software as a service (SaaS),
 predictive analytics for, 114
SoMoLo data (social, mobile, location), 87, 89
Sony, purchase context information, 89
sponsors, defined, 179
sports, proprietary data in, 38
staged data for business analytics, 124
stakeholders in analytics governance, 196-197
Starbucks, execution of next best offers, 91
state of market, for cloud-based predictive analytics, 116-118
statistical modeling, 13
Stetter, Kevin, 80-81
Stone, John, 226
strategic planning in analytics governance, 199
strategy design for next best offers, 85-87
strategy group, analyst reporting structure, 174
strategy of organization, decisions and analytics in, 146-147
structured data, in cloud-based predictive analytics, 118
structured human decision environments, 141-144
supply chain visibility, Bernard Chaus, Inc. case study, 249-253
systems intelligence, as analyst quality, 236

T
target setting, in analytics governance, 199
targeted marketing from consumer payment data, 43-44.
 See also next best offers Teradata method (for ROI), 24-27
Tesco
coordination of analytics, 205
global capability for analytics, 203-204
offer strategy design, 86
product data information, 88
360-degree view of customer data, 47-48
Ting, David Y., 227
traditional analytics, 171
traditional ROI calculations, 19-24
transactional history metrics, 49-50

U
unstructured data, analysis of, 17.
See also big-data analytics
users, defined, 180

V
vendor integration, 133
visitor engagement. See engagement
Volinsky, Chris, 184

W
web analytics, 16. See also engagement
web data, 47-48
lessons learned, 68-69
missing elements of, 50
as new information source, 51-52
possible uses of, 50-51
privacy issues, 53-54
360-degree view of customer data, 47-48
usage examples
advertising results
assessment, 66-68
attrition modeling, 62-63
customer segmentation, 65-66
next best offers, 60-62
response modeling, 63-65
what to collect, 52-53
feedback behaviors, 59-60
purchase paths and preferences, 56-57
research behaviors, 57-59
shopping behaviors, 55-56
Whittemore, Andy, 230
work location, analyst organization, 166

Y
YouSee example (production scale analytics), 101-107