
http://www.facebook.com/share.php?u=http://www.ibmpressbooks.com/title/9780133038460
http://twitter.com/?status=RT: download a free sample chapter http://www.ibmpressbooks.com/title/9780133038460
https://plusone.google.com/share?url=http://www.ibmpressbooks.com/title/9780133038460
http://www.linkedin.com/shareArticle?mini=true&url=http://www.ibmpressbooks.com/title/9780133038460
http://www.stumbleupon.com/submit?url=http://www.ibmpressbooks.com/title/9780133038460/Free-Sample-Chapter

DB2 Developer’s
Guide
By Craig Mullins
ISBN: 0-13-283642-4

The fi eld’s #1 go-to source for on-the-job
information on programming and administering
DB2 on IBM z/OS mainframes.

Now, three-time IBM Information Champion
Craig S. Mullins has thoroughly updated this
classic for the newest versions of DB2 for z/OS:
DB2 V9 andV10.

This Sixth Edition builds on the unique approach
that has made previous editions so valuable.
It brings together condensed, easy-to-read
coverage of all essential topics: information
otherwise scattered through dozens of IBM and
third-party documents. Throughout, Mullins offers
focused drill-down on the key details DB2 devel-
opers need to succeed, with expert, fi eld-tested
implementation advice and realistic examples.

Understanding DB2
Learning Visually with Examples,
Second Edition
By Raul F. Chong, Xiaomei Wang,
Michael Dang, and Dwaine R. Snow
ISBN: 0-13-300704-9

IBM® DB2® 9 and DB2 9.5 provide breakthrough
capabilities for providing Information on Demand,
implementing Web services and Service Oriented

Architecture, and streamlining information man-
agement. Understanding DB2: Learning Visually
with Examples, Second Edition, is the easiest way
to master the latest versions of DB2 and apply their
full power to your business challenges.

Written by four IBM DB2 experts, this book
introduces key concepts with dozens of examples
drawn from the authors’ experiences working
with DB2 in enterprise environments. Thoroughly
updated for DB2 9.5, it covers new innovations
ranging from manageability to performance and
XML support to API integration. Each concept is
presented with easy-to-understand screenshots,
diagrams, charts, and tables. This book is for
everyone who works with DB2: database admin-
istrators, system administrators, developers, and
consultants. With hundreds of well-designed
review questions and answers, it will also help
professionals prepare for the IBM DB2 Certifi cation
Exams 730, 731, or 736.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at
ibmpressbooks/newsletters

Listen to the author’s podcast at:
ibmpressbooks.com/podcasts

IBMFM_Andrews_9780133038460.indd 1 9/20/12 1:55 PM00_9780133038460_FM.indd i 9/20/12 2:08 PM

Visit ibmpressbooks.com
for all product information

DB2 9 for Linux, UNIX, and
Windows
DBA Guide, Reference, and Exam Prep,
Sixth Edition
By George Baklarz and Paul C. Zikopoulos
ISBN: 0-13-185514-X

The sixth edition of this classic offers
complete, start-to-fi nish coverage of DB2® 9
administration and development for Linux®,
UNIX®, and Windows® platforms, as well as
authoritative preparation for the latest IBM®
DB2 certifi cation exam. Written for both DBAs
and developers, this defi nitive reference
and self-study guide covers all aspects of
deploying and managing DB2 9, including DB2
database design and development; day-to-day
administration and backup; deployment of
networked, Internet-centered, and SOA-based
applications; migration; and much more.

You’ll also fi nd an unparalleled collection of
expert tips for optimizing performance, avail-
ability, and value. Download Complete DB2 V9
Trial Version. Visit ibm.com/db2/9/download.
html to download a complete trial version of
DB2, which enables you to try out dozens
of the most powerful features of DB2 for
yourself—everything from pureXML™ support
to automated administration and optimization.

DB2 pureXML Cookbook
Master the Power of the IBM Hybrid
Data Server
By Matthias Nicola and Pav Kumar-Chatterjee
ISBN: 0-13-815047-8

DB2® pureXML® Cookbook provides hands-
on solutions and best practices for developing
and managing XML database applications
with DB2.

More and more database developers and
DBAs are being asked to develop applications
and manage databases that involve XML
data. Many are utilizing the highly praised
DB2 pureXML technology from IBM®. In DB2
pureXML Cookbook, two leading experts from
IBM offer the practical solutions and proven
code samples that database professionals
need to build better XML solutions faster.
Organized by task, this book is packed with
more than 700 easy-to-adapt “recipe-style”
examples covering the entire application
lifecycle–from planning and design through
coding, optimization, and troubleshooting.

Related Books of Interest

Listen to the author’s podcast at:
ibmpressbooks.com/podcasts

IBMFM_Andrews_9780133038460.indd 2 9/18/12 3:54 PM00_9780133038460_FM.indd ii 9/20/12 2:08 PM

Related Books of Interest

Sign up for the monthly IBM Press newsletter at
ibmpressbooks/newsletters

Enterprise Master Data
Management
An SOA Approach to Managing
Core Information
By Allen Dreibelbis, Eberhard Hechler,
Ivan Milman, Martin Oberhofer, Paul van Run,
and Dan Wolfson
ISBN: 0-13-236625-8

Enterprise Master Data Management pro-
vides an authoritative, vendor-independent
MDM technical reference for practitioners:
architects, technical analysts, consultants,
solution designers, and senior IT decision
makers. Written by the IBM® data manage-
ment innovators who are pioneering MDM,
this book systematically introduces MDM’s
key concepts and technical themes, explains
its business case, and illuminates how it inter-
relates with and enables SOA.

Drawing on their experience with cutting-edge
projects, the authors introduce MDM patterns,
blueprints, solutions, and best practices
published nowhere else—everything you
need to establish a consistent, manageable
set of master data, and use it for competitive
advantage.

An Introduction to IMS
Klein, Long, Blackman, Goff,
Nathan, Lanyi, Wilson,
Butterweck, Sherrill
ISBN: 0-13-288687-1

IBM Cognos 10 Report
Studio: Practical Examples
Draskovic, Johnson
ISBN: 0-13-265675-2

Mainframe Basics for
Security Professionals
Pomerantz, Vander, Weele,
Nelson, Hahn
ISBN: 0-13-173856-9

Service-Oriented
Architecture (SOA) Compass
Bieberstein, Bose, Fiammante,
Jones, Shah

ISBN: 0-13-187002-5

WebSphere Business
Integration Primer
Iyengar, Jessani, Chilanti

ISBN: 0-13-224831-X

Outside-in Software
Development
Kessler, Sweitzer

ISBN: 0-13-157551-1

IBMFM_Andrews_9780133038460.indd 3 9/18/12 3:54 PM00_9780133038460_FM.indd iii 9/20/12 2:08 PM

This page intentionally left blank

DB2 SQL Tuning Tips for
z/OS Developers

00_9780133038460_FM.indd v 9/20/12 2:08 PM

This page intentionally left blank

IBM Press, Pearson plc

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
 New York • Toronto • Montreal • London • Munich • Paris • Madrid
 Cape Town • Sydney • Tokyo • Singapore • Mexico City

 ibmpressbooks.com

DB2 SQL Tuning Tips for
z/OS Developers

Tony Andrews

00_9780133038460_FM.indd vii 9/20/12 2:08 PM

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

© Copyright 2013 by International Business Machines Corporation. All rights
reserved.

Note to U.S. Government Users: Documentation related to restricted right.
Use, duplication, or disclosure is subject to restrictions set forth in GSA ADP
Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steven M. Stansel, Ellice Uffer
Cover design: IBM Corporation

Published by Pearson plc
Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact

International Sales
international@pearson.com

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both:
IBM, the IBM Press logo, DB2, z/OS, OMEGAMON, Optim, DB2 Universal
Database, and OS/390. A current list of IBM trademarks is available on the web
at “copyright and trademark information” as www.ibm.com/legal/copytrade.
shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affi liates. Linux is a registered trademark of
Linus Torvalds in the United States, other countries, or both. UNIX is a regis-
tered trademark of The Open Group in the United States and other countries.
Windows and Microsoft are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Other company, product, or service names may be trademarks or service marks
of others.

Some material within this book is used with permission of Themis Inc. All
Rights Reserved.

Some material within this book is used with permission of P+T Solutions, Inc.
All Rights Reserved.

The Library of Congress cataloging-in-publication data is on fi le.

All rights reserved. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13-303846-0
ISBN-10: 0-13-303846-7

Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.

First printing October 2012

Associate Publisher

Dave Dusthimer

Marketing Manager

Stephane Nakib

Executive Editor

Mary Beth Ray

Senior Development

Editor

Christopher Cleveland

Technical Reviewers

Chuck Kosin
David Simpson

Managing Editor

Kristy Hart

Designer

Alan Clements

Project Editor

Jovana Shirley

Copy Editor

Kitty Wilson

Indexer

Angela Martin

Compositor

Nonie Ratcliff

Proofreader

Sarah Kearns

Manufacturing Buyer

Dan Uhrig

00_9780133038460_FM.indd viii 9/21/12 3:36 PM

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

 Dedication

This book is dedicated to the many DB2 SQL professional

developers who want to do the best they can but are not sure

where to start improving performance. It is also for those who

do not have the time or resources to improve their skills. I have

worked with so many developers over the years and am continually

impressed by their commitment and abilities to getting the jobs

done and the commitment to their profession. But I have also

noticed that when it comes to performance and tuning of SQL

statements, programs, or applications, most are unsure of what

exactly to do. Performance and tuning at times can be quite

obvious and easy, and other times it can be quite involved.

My hope is that this book will help educate those in these areas

and empower them for answers and direction.

00_9780133038460_FM.indd ix 9/20/12 2:08 PM

This page intentionally left blank

Contents

CHAPTER 1 SQL Optimization Top 100+ . 1

1. Take Out Any/All Scalar Functions Coded on Columns
in Predicates .2

2. Take Out Any/All Mathematics Coded on Columns
in Predicates .3

3. Code Only the Columns Needed in the Select
Portion of the SQL Statement .4

4. Stay Away from Distinct if Possible .4

5. Try Rewriting an In Subquery as an Exists Subquery.5

6. Always Make Sure Host Variables Are Defined
to Match the Columns Datatype. .6

7. Because Or Logic Can Be Problematic to the Optimizer,
Try a Different Rewrite .6

8. Make Sure the Data Distribution and Other Statistics
Are Good and Current in the Tables Being Processed 8

9. Use UNION ALL in Place of UNION Where Possible 9

10. Consider Hardcoding Versus Using a Host Variable 9

11. Minimize DB2’s SQL Requests .11

12. Try Rewriting Range Predicates as Between Predicates12

13. Consider Using Global Temporary Tables13

14. Give Prominence to Stage 1 over Stage 2 Predicates 14

15. Remember That the Order of (Some) Predicates
Does Matter .15

16. Streamline Multiple Subqueries .16

17. Index Correlated Subqueries .17

18. Get to Know the DB2 Explain Tool .17

19. Use Tools for Monitoring. .18

20. Employ Commit and Restart Strategies .19

21. Implement Good Index Design .19

22. Avoid Discrepancies with Non-Column Expressions 20

23. Begin with All Filtering Logic Outside Application Code 21

24. Ensure That Subquery Predicates Involving Min and
Max Have the Possibility of Nulls Being Returned Handled 21

25. Always Code For Fetch Only or For Read Only with
Cursor Processing When a Query Is Only Selecting Data.22

00_9780133038460_FM.indd xi 9/20/12 2:08 PM

xii DB2 SQL Tuning Tips for z/OS Developers

26. Avoid Selecting a Row from a Table to Help Decide
Whether the Logic in the Code Should Execute an
Update or an Insert .23

27. Avoid Selecting a Row from a Table in Order
to Get Values for an Update. .23

28. Make Use of Dynamic SQL Statement Caching23

29. Avoid Using Select * .24

30. Watch Out for Nullable Columns or Times When SQL
Statements Could Have Nulls Returned from the Database
Manager .25

31. Minimize the Number of Times Open and Close
Cursors Are Executed. .25

32. Avoid Not Logic in SQL .26

33. Use Correlation IDs for Better Readability26

34. Keep Table and Index Files Healthy and Organized27

35. Take Advantage of Update Where Current of Cursor
and Delete Where Current of Cursor .27

36. When Using Cursors, Use ROWSET Positioning and
Fetching Using Multiple-Row Fetch, Multiple-Row Update,
and Multiple-Row Insert .28

37. Know the Locking Isolation Levels .28

38. Know Null Processing .30

39. Always Program with Performance in Mind31

40. Let SQL Do the Work .32

41. Code with Lock Table .32

42. Consider OLTP Front-End Processing. .33

43. Consider Using Dynamic Scrollable Cursors 34

44. Take Advantage of Materialized Query Tables to Improve
Response Time (Dynamic SQL Only) .35

45. Insert with Select .37

46. Take Advantage of Multiple-Row Fetch .38

47. Take Advantage of Multiple-Row Insert .39

48. Take Advantage of Multiple-Row Update.40

49. Take Advantage of Multiple-Row Delete 42

50. Try Scalar Fullselects Within the Select Clause 42

51. Take Advantage of REOPT ONCE and REOPT AUTO in
Dynamic SQL and REOPT VARS and REOPT ALWAYS
in Static SQL .43

52. Identify Times for Volatile Tables. .44

53. Use the ON COMMIT DROP Enhancement.45

54. Use Multiple Distincts .45

55. Take Advantage of Backward Index Scanning 46

00_9780133038460_FM.indd xii 9/20/12 2:08 PM

Contents xiii

56. Watch Out for the Like Statement .46

57. Set Your Clustering Index Correctly .47

58. Use Group By Expressions if Needed .48

59. Watch Out for Tablespace Scans .48

60. Do Not Ask for What You Already Know 49

61. Watch the Order of Tables in a Query. .49

62. Use Left Outer Joins Over Right Outer Joins 51

63. Check for Non-Existence .51

64. Use Stored Procedures .52

65. Do Not Select a Column in Order to Sort on It53

66. Always Limit the Result Set if Possible .53

67. Take Advantage of DB2 V8 Enhanced DISCARD
Capabilities When It Comes to Mass Deletes 54

68. Take Advantage of the DB2 LOAD Utility for
Mass Inserts .54

69. Watch Out for Materialization of Views, Nested Table
Expressions, and Common Table Expressions 55

70. Consider Compressing Data. .56

71. Consider Parallelism. .57

72. Keep the STDDEV, STDDEV_SAMP, VAR, and
VAR_SAMP Functions Apart from Other Functions 58

73. Consider Direct Row Access Using ROWID Datatype
(V8) or RID Function (V9) .58

74. Test Your Queries with Realistic Statistics and a
Level of Data to Reflect Performance Issues.60

75. Specify the Leading Index Columns in
WHERE Clauses .61

76. Use WHERE Instead of HAVING for Filtering
Whenever Possible .62

77. Keep in Mind Index Only Processing Whenever Possible 62

78. Index on Expression in DB2 V9 .63

79. Consider the DB2 V9 Truncate Statement.64

80. Use DB2 V9 Fetch First and Order by Within Subqueries65

81. Take Advantage of DB2 V9 Optimistic Locking 65

82. Use the DB2 V9 MERGE Statement .66

83. Understand the DB2 NOFOR Precompile Option.68

84. Consider Select Into Using Order By .69

85. Code Boolean Term Predicates Whenever Possible 69

86. Try Transitive Closure Coding. .70

87. Avoid Sorts with Order By .71

88. Use Joins Instead of Subqueries Whenever Possible.71

00_9780133038460_FM.indd xiii 9/20/12 2:08 PM

xiv DB2 SQL Tuning Tips for z/OS Developers

89. Watch Out for Case Logic .71

90. Take Advantage of Functions in the Order By Clause72

91. Know Your Version of DB2 .72

92. Understand Date Arithmetic. .73

93. Know Your High-Volume Insert Choices73

94. Know About Skip Locked Data (V9) for Lock Avoidance.75

95. Sort Your Input Streams. .75

96. If You Need True Uniqueness, Try the V8
Generate_Unique Function. .76

97. Know the New Options for Declared Temporary Tables 76

98. Watch Out When Executing Get Diagnostics 77

99. Order Your In List Appropriately .77

100. Update and Delete with Select (V9) .77

101. Execute SQL Statements Only if Necessary 78

102. Take Advantage of In-Memory Tables .78

103. Stay Away from Catchall SQL Statements 79

104. Avoid Unnecessary Sorting .79

105. Understand Expressions and Column Functions79

106. Watch Out When Combining Predicates80

107. Add Redundant Predicates to Search Queries80

108. Take Advantage of Improved Dynamic Caching (V10) 81

109. Try Currently Committed for Lock Avoidance (V10).82

110. Try System Temporal Tables for Historical Data (V10)83

111. Try Business Temporal Tables for Historical Data (V10).85

112. Know Your Ranking Functions (V10). .86

113. Take Advantage of Extended Indicators (V10)87

114. Get Greater Timestamp Precision (V10)88

115. Try Index Includes (V10). .89

116. Use With Return to Client (V10) .89

CHAPTER 2 DB2 SQL Hints . 91

1. Try the Optimize for 1 Row Statement at the End
of the SQL Statement .91

2. Add the A.PKEY = A.PKEY Predicate to the SQL Query,
Where PKEY Equals the Primary Key Column of the Table 92

3. Disqualify an Index Choice .93

4. Change the Order of Table Processing .95

5. Use Distributed Dynamic SQL .96

00_9780133038460_FM.indd xiv 9/20/12 2:08 PM

Contents xv

CHAPTER 3 SQL Standards and Guidelines . 99

For COBOL Developers. .99

For All SQL Developers .102

CHAPTER 4 SQL Program Walkthroughs. 107

CHAPTER 5 Existence Checking . 111

Example 1. .111

Example 2. .113

CHAPTER 6 Runstats . 115

CHAPTER 7 Initial Steps in Tuning a Query . 117

APPENDIX A Predicate Rewrite Examples . 121

Predicate Rewrites: Transitive Closure . 122

APPENDIX B DB2 SQL Terminology . 125

 Index. 131

00_9780133038460_FM.indd xv 9/20/12 2:08 PM

Preface

Most relational tuning experts agree that the majority of performance problems among
applications that access a relational database are caused by poorly coded programs or
improperly coded SQL. Industry experts also note that poor performing SQL is respon-
sible for as much as 80 percent of response-time issues. I personally agree with this. Of
all the IT shops for which I have provided performance and tuning consulting work in,
most of the performance issues are directly related to modifying application and SQL
code, or adding and altering indexes. That is why I continually try to educate developers
in the ways of SQL programming and associated performance issues. I also believe more
developers should be educated in how to read and analyze DB2 Explain output. In addi-
tion I believe that every large development project involved with a RDMS should have
an SQL technical expert as part of the project. There are many SQL developers in the
IT industry, but based on my experience, I have found that less than 10% of them really
know the performance issues involved with SQL programming or how to fix them.
By having an SQL technical expert, many performance and logic issues can be caught
before ever migrating to production.

The purpose of this book is to provide a reference for developers who need to tune an
SQL statement or program. Most developers are too quick to blame the network, the
database, the system, the high volume of transactions, etc., for the slowness of their pro-
gram or application. Yet most of the time the slowness is directly related to their code.
Hopefully, this book will give them something to fall back on before calling DBAs or
others, and try first to improve the performance issue(s) at hand.

There are also times when SQL, along with the Explain, looks good, but is not perform-
ing efficiently. This book also provides some “Tuning Tips” to tweak the SQL into
possibly optimizing differently than the optimizer had chosen. These are tips that many
experts in the industry use to get poor performing SQL statements to optimize differently
and possibly execute faster, especially when time is an issue in getting performance
issues fixed.

I have included a list of SQL Standards and Guidelines that I have implemented in
numerous shops. If there are no SQL standards set up in your IT shop, then these would
be a great place to start. Many shops choose to add more items to the list specific to their
applications.

It’s one thing to have in place Standards and Guidelines, and then it’s another to ensure
they are followed. I have been in many shops where they show me their shop standards
for SQL programming, COBOL programming, Java programming, etc., but have no
quality assurance set up to ensure that the standards are being followed. All programs
going into production should have some kind of code walkthrough or review to ensure
standards are followed, and also to ensure that their SQL was efficiently written. The
reviews are a way to ensure that program and SQL logic is correct and the design of
the program fits its needs. There is a chapter of items that should be asked and checked
when performing code walkthroughs involving SQL programming. The minimal amount

00_9780133038460_FM.indd xvi 9/20/12 2:08 PM

of time for a code walkthrough far offsets any production performance or logic issues
that may arise.

Many times developers have SQL code to tune and are not sure where to start. The first
place I tell them is to look at all the predicates in each query and try to write them more
efficient if possible. This book provides an appendix of poor performing SQL predicates
and a more efficient way to rewrite them. It is important for developers to know whether
a predicate is indexable or non indexable, and whether a predicate is Stage 1 or Stage 2.
These are discussed in more detail later in this book.

Performance is not so much a DB2 issue as it is a relational issue. Developers have to
be careful how they structure the queries, and how they design their application code
around the queries. Database analysts and database modelers have to be careful how
they design a database application. They need to take their time and do a good analysis.
Performance depends on environment, applications and requirements. And performance,
no matter how good it is, can always be better. Although the majority of tuning efforts
are spent at the operating system and database level, the largest performance gains are
obtained from tuning the application code. Applications that use SQL to retrieve data
in a database are the best candidates for tuning. Since a relatively small number of SQL
statements consume the majority of resources, SQL tuning often results in significant
performance improvements. However, SQL tuning can at times be complex. This book
provides a place to start and tries to keep simple the things that developers can do in
order to get SQL driven programs and applications to perform more efficiently.

DISCLAIMER

The tuning tips and comments in this book are my own personal opinions based on many
years of designing, programming, and tuning DB2 applications. Some of the tuning tips
may not necessarily reflect the positions or opinions of IBM, any of their affiliates, or so
called experts in the field. These tuning tips are based upon my personal experience and
have all been used from time to time in applications I hav e been a part of to obtain better
performance. I have personally used each of the 100+ tips when tuning DB2 SQL appli-
cations in order to get queries and programs to execute more efficiently.

Everyone knows the saying “It Depends.” Please keep this in mind. Do not take every
tip in this book and automatically expect instant performance gains. The tips are
intended to give developers some direction and ideas to improve their queries or pro-
grams. Everyone should always conduct their own independent tests to verify the valid-
ity of any statements made in this book before automatically basing decisions upon those
statements.

00_9780133038460_FM.indd xvii 9/20/12 2:08 PM

Acknowledgments

A big “thank you” goes out to the many developers and DBAs I have worked with
over the years. I am a true believer in program design walkthroughs and program code
walkthroughs. I have personally learned much over the years from sitting in with other
co-workers and taking suggestions to improve programs, with the purpose of promoting
the best and most efficient code into production. Many of those developers pushed me to
put together this book as we developed some huge applications years ago. I was continu-
ally having meetings and sending emails on tips to our teams for coding techniques that
would improve their query and program performance. Finally, one day they all said I
need to put those tips in a book.

I would like to thank the two individuals who did the technical editing, Chuck Kosin and
David Simpson. They are two of the best technicians I know in DB2, and I was honored
that they became a part of this project. I really appreciated their many comments and
suggestions as they made the material much better. I have known David for more than
3 years, as we’ve worked together at Themis Inc., and I can truly say he is one of the
most knowledgeable and experienced DB2 people I have met in the industry. Chuck has
a strong technical background and has been through technical editing before, when he
worked with Craig Mullins on DB2 Developer’s Guide.

Additionally, many thanks to the understanding and patient folks at IBM Press who have
worked with me on this edition of the book, specifically Mary Beth Ray, Steven Stansel,
Christopher Cleveland, and all the editorial and production staff who were involved in
producing the first edition of the book. It wasn’t easy fo r me to follow all the formatting
and styles to help get the material together. It made me acknowledge to myself that I
really do need to take some advanced Word classes.

I would like to thank my employer Themis Inc., in Westfield, New Jersey for support-
ing me on this project. I have never met or worked with a better group of technicians
and communicators in all my years of training and consulting. They make it fun to stay
on top of the newest and latest releases, and their real world experiences are invaluable
when questions arise.

And, most importantly, thank you to my wife, Jan. She was the one to help build my
confidence, release any fears, and push me to publish what I had learned and imple-
mented on so many projects.

If you have any questions or comments about this text, you can contact me at
tandrews@themisinc.com. You can also write to me in care of the publisher. I am open
to any suggestions as my ego was parked many years ago during program walkthroughs.
This book is all about educating the many developers in the ways of efficient DB2 SQL
programming.

00_9780133038460_FM.indd xviii 9/20/12 2:08 PM

About the Author

Tony Andrews has more than 23 years’ experience in the development of IBM DB2
relational database applications. Most of this time, he has provided development and
consulting services to Fortune 500 companies and government agencies. Tony has writ-
ten literally thousands of queries and programs during his development years, and he has
also served as a DB2 database analyst. For the past 10 years, Tony has been splitting his
time between consulting engagements and training. His main focus is to teach today’s
developers the ways of RDMS application design, development, and SQL program-
ming—always with a special emphasis on improving performance. Tony’s training, con-
sulting, and speaking engagements are through his employer, Themis, Inc., an onsite and
virtual instructor-led, hands-on IT training company recognized internationally. It offers
more than 400 IT courses and helps to support International DB2 Users Group North
America (IDUG NA) and Europe, Middle East, and Africa (IDUG EMEA), along with
many DB2 user groups.

Tony is a current IBM champion and regular lecturer at industry conferences and local
user groups. You may have seen him present at such events as IDUG NA and EMEA.
He is well known for his “Top 25+ Tuning Tips for Developers” presentation.

Tony graduated from Ohio State University with a major in business and a minor in
mathematical statistics. He currently resides in Dublin, Ohio.

Visit Tony’s site at www.db2sqltuningtips.com, and follow him on Twitter, at
www.twitter.com/tonyandrews12.

00_9780133038460_FM.indd xix 9/20/12 2:08 PM

http://www.db2sqltuningtips.com
http://www.twitter.com/tonyandrews12

This page intentionally left blank

Every IT shop that has applications involving DB2 should have a set of SQL standards
and guidelines for its developers to follow. This chapter is a start for developers and
project managers to use as part of their development. Once you have a set of standards
and guidelines, be sure to enforce them. Every program should have code walkthroughs
to ensure that standards and guidelines are being followed.

The standards and guidelines that follow serve multiple purposes:

 � Relate to performance

 � Alleviate abends and/or production incident reporting

 � Reduce I/O and CPU costs

 � Increase productivity

 � Improve client satisfaction

 � Improve readability and understandability

The standards and guidelines that follow are grouped into two separate areas: one spe-
cific to COBOL SQL developers and the other specific to all SQL developers (no matter
the language in which they are embedding their SQ L code).

For COBOL Developers

 1. The SQLCODE must be checked after every SQL statement. The Declare cursor
statement is only a declarative, and it gets no return code from DB2. All other
SQL calls get some return code. Return code data from the DB2 database system
gets automatically loaded in the SQLCA communications area.

 2. Every program must include the SQLCA and a DCLGEN for each table being
coded against. The DCLGEN is predefined with host variables that match the
column definitions. They are used to select data into, insert and update from, and
serve as the host variables in any Where clause.

 If DCLGEN fields are not being used, then any program declaring variables in the
code must make sure that the variable being declared exactly matches the defini-
tion in DB2. If it doesn’t, then there is a possibility that DB2 may not choose an
index to process. For example, if Column1 is defined as an Integer, then the host
variable in COBOL should be defined as S9(9) comp.

 3. Every program must have a consistent DB2 abend routine. For batch programs,
it is easiest to have a called program that handles the display of the SQLCA
fields and calls the DSNTIAR DB2 routine to display further DB2 messages. For
online programs, sometimes it is good to write out the SQLCA and DSNTIAR

CHAPTER 3

SQL Standards and Guidelines

03_9780133038460_ch03.indd 99 9/19/12 10:58 AM

100 DB2 SQL Tuning Tips for z/OS Developers

information to a file or table in order to fall back on errors that occur. The
SQLCA contains a lot of information specific to a call that is critical to trouble-
shooting an error. It is important to write out all the information captured. Make
sure that at least the SQLSTATE is displayed, along with the SQLCODE.

 4. Never code Select * in a program. Only code for the columns needed. If a pro-
gram needs all the columns, then code each one. This will prevent an abend if a
new column is ever added to the table. The fewer columns being brought into the
program, the more efficient the processing. (See tuning tip #3 and tuning tip #29
in Chapter 1, “SQL Optimization Top 100+.”) More columns can have an effect
on performance due to larger sort sizes, possible index-only processing, and join
types. When DB2 looks at which join type is best, part of its analysis is the num-
ber of columns from each table being selected.

 5. Make sure any columns defined as Nullable contain a null indicator host variable
as part of the Select, Insert, or Update statements. This is most important in Select
statements because DB2 will return an invalid -305 SQLCODE when it returns a
column of null to the program and there is no null indicator specified. These null
indicators must be defined in working storage as Pic S9(4) Comp.

 It is preferable to code the VALUE, COALESCE, or IFNULL SQL scalar func-
tion for any nullable columns because the program will not receive null indicators
from DB2. This will alleviate -305 SQL errors where a program is not set up to
handle the null indicator. It will also spare the program from having to define the
null indicators in working storage.

 For example, Select COALESCE(PK_ID, 0) will return the PK_ID value if
there is one, or it will return a zero if it is null. This could also be coded with the
VALUE and COALESCE functions. All three would return the same result. The
default specified must match the column definition. For example, since PK_ID is
numeric, then the default must be a numeric—in this case, zero.

 6. Any SQL statement that contains one of the following aggregate functions should
have a Null-Indicator host variable as part of the select (MIN MAX, AVG, SUM).
DB2 will return a null indicator to the program if it finds no data to process these
functions, and the COBOL program will have to define a null indicator. If the pro-
gram is not set up with a null indicator, an invalid -305 SQLCODE is returned. It
is preferable to code the VALUE, COALESCE, or IFNULL function to alleviate
any null indicator logic. For example:

SELECT IFNULL(AVG(SALARY), 0)

FROM EMP

WHERE WORKDEPT = 'XYZ'

 This will either return the average if rows are found or a zero if no rows were met
in order to calculate an average.

 7. Minimize the number of times cursors are opened and closed during execution.
If most of the time the open cursor and fetch retrieves only one row, then code
a simple Select statement and execute the cursor processing only when a -811
(duplicate rows) SQLCODE is returned.

 Do not break up processing into multiple cursors unless performance seems to be
an issue. If it takes a seven-table join, then code all seven tables in one cursor and

03_9780133038460_ch03.indd 100 9/19/12 10:58 AM

Chapter 3: SQL Standards and Guidelines 101

let DB2 do the work. When you break it up, the process usually takes longer due
to the extra times DB2 is sent SQL statements to process. So break up the join
only when all other tuning efforts have been applied. Typically it would be more
efficient to execute a seven-table join.

 8. CASE expressions should always contain an ELSE clause. If none of the condi-
tions in the CASE are met, then DB2 will return a null (via a null indicator) to
the program. If the program is not set up to handle a null being returned from the
CASE expression, then a -305 SQLCODE is returned, which usually causes the
program to abend.

 9. Always display counts for the number of Selects, Inserts, Updates, Deletes, and
Open cursors that have been executed in the program. The overhead in COBOL
to define the counters and increment them through the processing is minimal to
the overall runtime of the program. Displaying these counts provides invaluable
information when problems occur, helping a developer figure out which program
to look into. Make sure the counts are displayed on every abend and at the end of
processing.

 10. Always display the values in host variables for a SQL statement that has an
invalid SQL return code and the program goes into its abend error routine. Every
developer knows how frustrating it is to have a program error out or even abend
and not know what values were being processed.

 11. Watch out for any SQL warnings that may occur in an SQL statement. Most pro-
grams seem to ignore warnings that many times help to detect potential problems.
There are two indications of a warning message in the SQLCA: One is a positive
SQLCODE other than +100; the other is a W in the SQLCA’s SQLWARN0 field.
When either of these exists, DB2 is issuing a warning that something worrisome
happened on the prior call and that while you may have received data back, it may
not be what you expected. When SQLWARN0 is a W, DB2 also provides helpful
information about the problem in one or more of the other SQLWARNn fields.
Also check warnings on every SQL statement return. For example:

Evaluate SQLCODE

 When 0

 If SQLWARN0 = 'W'

 Display '*** Warning error ***'

 Display 'Sqlstate = ' Sqlstate

 End-If

 When Other

 ...

End-Evaluate

 12. Take advantage of the SQLERRD (3) out of the SQLCA. The third occurrence of
the SQLERRD array is one of the most useful fields in the SQLCA. This field is
populated after a successful insert, update, or delete with a count of the number of
rows inserted, updated, or deleted. This is not populated when a mass delete with
no Where logic is coded or populated due to deletes affected by delete cascade.

 13. Take advantage of fetching rowsets in your cursor processing. (See tuning tip #46
in Chapter 1.) This should be strictly enforced for large cursors because of the
runtime savings.

03_9780133038460_ch03.indd 101 9/19/12 10:58 AM

102 DB2 SQL Tuning Tips for z/OS Developers

 14. Apply all calculations within the COBOL code and then move the value to a host
variable. Then reference the host variable in the SQL statement. Keep calculations
out of SQL statements whenever possible.

 15. Hard code any and all values known within an SQL statement. For example, if a
program always processes the terminated rows on a table, then use the SQL state-
ment Where Status_Code = ‘T’. This is extremely helpful especially if frequency
value statistics are present for the different values of Status_Code in the catalog
tables. (See tuning tip #10 in Chapter 1.)

For All SQL Developers

 1. All SQL join statements should have the columns from each table noted with a
Correlation ID when referenced in Select, Where, Group By, or Order By clauses.
A Correlation ID should be something other than a letter of the alphabet. Use
something descriptive so others can understand from which table each column is
coming. This makes the join logic more clear and readable.

 2. Do not apply any SQL scalar functions against columns coded in the Where
clause. This is especially important for columns that make up any index for a
table. For example, coding Where Integer(CLM_ID) will automatically eliminate
the use of the index for CLM_ID. As another example, the following:

WHERE YEAR(HIREDATE) = 2003

 should be coded as:

WHERE HIREDATE BETWEEN '2003-01-01' and '2003-12-31'

 to make it an indexable predicate.

 3. Check your queries with the DB2 Explain tool. A Plan_Table under your ID will
need to be created from the DBAs, or use the Plan_Table defined for theDB2 sub-
system you are operating under. For example:

Delete from Plan_Table

;

Explain Plan Set Queryno = 11 for

 SELECT EMPNO, LASTNAME,

 FIRSTNME, WORKDEPT

 FROM EMP

 WHERE DEPTNO = ?

 ;

 Select * from Plan_Table

 Order by Queryno, Planno, Qblockno, Mixopseq

 ;

03_9780133038460_ch03.indd 102 9/19/12 10:58 AM

Chapter 3: SQL Standards and Guidelines 103

 4. Watch out for Order By and Group By statements in queries. Each of these may
cause a sort, which requires resource utilization. Code them only if needed. The
fewer the columns and rows in a sort, the faster the sort will run, so make sure
only the columns needed are coded.

 5. When coding UNION statements in SQL, start with UNION ALL. By just coding
UNION, a sort gets executed to eliminate duplicates, causing more resource utili-
zation. Many times there are not duplicates, so UNION ALL should be the choice
that prevents a sort from taking place. Avoid UNIONs if possible. Sometimes the
logic can be rewritten using outer joins, case statements, etc.

 6. Watch out for DISTINCT. This also causes a sort, which requires more runtime.
Only code this when absolutely necessary. Many times a rewrite of the statement
that can get the same results without the DISTINCT may run more efficiently.
(See tuning tip #4 in Chapter 1.)

 7. Be careful when using the CASE expression as part of the Select statement. This
expression can have some considerable overhead during execution. If there are
many rows being returned as part of the query, it may help to move that logic as
part of your source code after each row is returned. This is especially true if your
source is compiled code.

 8. Do not use Select Count(*) for existence checking. Use this only when you need a
total number of rows. It is best to code a Select using the FETCH FIRST 1 ROW
ONLY and then check for SQLCODE = 0 or +100.

 9. Always check the Performance Monitoring and Tuning guide for V9, and the
Managing Performance guide for V10 for how to code (or how not to code) predi-
cates to make them indexable and/or stage 1 versus stage 2. (See tuning tip #14 in
Chapter 1.) The IBM Data Studio Visual Explain tool will also note any stage 2
predicates.

 10. Watch out for <> (not equal) predicates. These predicates are non-indexable, but
they are stage 1.

 11. Make sure there is an understanding of inner vs. outer joins. Many times SQL is
written with Table1 outer joined to Table2, and then inner joined to Table3. The
inner join being coded last can offset the exceptions that took place in the outer
join. Many times the three tables could all be coded with inner joins, which would
run more efficiently. Outer joins are not inefficient, but if they bring in extra
exception rows, and a subsequent inner join then gets rid of those extra rows, it
was processing not needed.

 Also, make sure that if outer joins are coded, the program is set up to handle
nulls being returned from the table where the join is not met. The VALUE,
COALESCE, or IFNULL function should be used to keep DB2 from trying to
send a null indicator back to the program.

 12. Try to stay away from NOT logic in general. Try to keep predicates positive as
much as possible. For example, the following predicate:

WHERE NOT HIREDATE > :WS-DATE

 could be recoded as:

Where HIREDATE <= :WS-DATE

03_9780133038460_ch03.indd 103 9/19/12 10:58 AM

104 DB2 SQL Tuning Tips for z/OS Developers

 13. When coding predicates, keep the logic away from the column to make it an
indexable predicate. For example:

WHERE SALARY * 1.10 > 100000.00

 is a non-indexable predicate and should be coded as:

WHERE SALARY > 100000.00 / 1.1

 14. When using date-labeled durations (adding or subtracting years/months/days) to
a date, it is logically important in which order they are coded and executed. For
example, when adding, the order should be years first, then months, then days:

SELECT CURRENT DATE + 2 YEARS + 3 MONTHS + 1 DAY

 When subtracting, the order should be just the opposite: days first, then months,
then years:

SELECT CURRENT DATE – 1 DAYS – 3 MONTHS – 2 YEARS

 This is important because if they are coded in a different order, the results could
be incorrect! Results can be different due to date adjustments on the months. For
example, subtracting 1 month from March 31 will result in February 28 or 29.

 15. If you need to know the last day of a month, use the Last_Day SQL function to
get it. For example:

SELECT LAST_DAY(CURRENT DATE)

INTO :HV1 -- Where HV1 is some Host Variable

FROM SYSIBM.SYSDUMMY1

 16. A more efficient way to get the same result as in #15 above is to use the Set state-
ment. For example:

SET :HV1 = LAST_DAY(CURRENT DATE)

NOTE Use the Set Host Variable assignment over the SYSIBM.SYSDUMMY1 when-
ever possible, especially when the statement may get executed hundreds or thousands
of times within its runtime.

 17. Take advantage of the many date functions in SQL instead of programming code
to provide the information needed:

 Year/Month/Day returns only that portion of the date value.

 DAYOFWEEK/DAYOFWEEK_ISO returns a number (1–7), depending on
whether the week begins on Sunday or Monday. DAYOFWEEK_ISO states
Monday as the first day of the week.

 DAYOFMONTH/DAYOFYEAR returns the specific day number in a month
(1–31) or year (1–366).

 LAST_DAY returns the last day of the month for a specific date. If the date was
10/15/2005, the date returned would be 10/31/2005.

 NEXT_DAY returns a timestamp representing the first weekday greater than the
specified date. The function needs to have the weekday specified. For example:

NEXTDAY('01/31/2005', 'MON')

03_9780133038460_ch03.indd 104 9/19/12 10:58 AM

Chapter 3: SQL Standards and Guidelines 105

 returns the date of the next Monday after the date ‘01/31/2005’.

 DAYS is used to get the days difference between two dates. For example:

SELECT DAYS(HIREDATE) - DAYS(BIRTHDATE)

 returns the number of days difference.

 WEEK returns a number (1–54) that represents the week of the year. Week 1 is
the first week that contains the first day of the year.

 WEEK_ISO returns a number (1–53) that represents the week of the year. Week
1 is the first week of the year that contains a Thursday, which is equivalent to the
first week that contains January 4.

 CHAR is used to get a date column back in a specific format (USA, ISO or
JIS, EUR).

 Subtracting two dates from each other returns a decimal number that has the num-
ber of years, months, and days difference between the dates:

SELECT DATE('2010-01-01') - DATE('2007-10-15')

FROM SYSIBM.SYSDUMMY1

 returns 20217, which means 2 years, 2 months, 17 days. To get just the years dif-
ference, use:

SELECT YEAR(DATE('2010-01-01') - DATE('2007-10-15'))

 18. Not Between is non-indexable. For example, the following predicate:

WHERE SALARY NOT BETWEEN 50000.00 and 100000.00

 is a non-indexable predicate and should be cod ed as follows:

WHERE SALARY < 50000.00

OR SALARY > 100000.00

 19. Watch out for the Like predicate. If the Like statement is a Begins With predicate,
then that predicate is indexable. If the Like statement is a Contains or Ends With
predicate, then it is non-indexable. For example:

WHERE LASTNAME LIKE 'A%' - Begins with logic

WHERE LASTNAME LIKE ‘%A%' - Contains logic

WHERE LASTNAME LIKE ‘%A' - End with logic

 20. Code only the columns needed in the Select. Extra columns can cause the opti-
mizer to choose a different access path that may not be the best choice. Extra
columns cause sorts to be more expensive and adds to transmission cost. Even one
extra column (at times) can cause the optimizer to choose a different access path.
Basically, the wider the result set, the more DB2 has to pull and ship.

 21. Queries and/or cursors that bring back multiple rows in the result set should have
For Fetch Only at the end of the query. This tells DB2 that there is no intention
of updating any of the rows being fetched. Because of this, DB2 will try to avoid
locking the pages and will possibly block the data rows being returned. For Read
Only also does the same.

03_9780133038460_ch03.indd 105 9/19/12 10:58 AM

106 DB2 SQL Tuning Tips for z/OS Developers

 22. Code the most restrictive predicates first. This does not mean that this is the exact
order in which DB2 will execute the queries. DB2 will always pick stage 1 index-
able predicates first, no matter where they are coded. But within these, it is impor-
tant to use the correct order.

 23. Rewrite > Any and > All subqueries. For example, recode this:

SELECT EMPNO, LASTNAME

From Emp

Where Salary > Any

 (Select Salary

 from Emp

 Where Workdept = 'C11')

 as follows:

Select Empno, lastname

From Emp

Where Salary >

 (Select Min(Salary)

 from Emp

 Where Workdept = 'C11')

03_9780133038460_ch03.indd 106 9/19/12 10:58 AM

Index

A

A.PKEY = A.PKEY statement, 92-93
aggregate functions, 58, 100
applications, 125
arrays

Delete statement, 42
Fetch statement, 38-39
Insert statement, 39-40
Update statement, 40-41

ATOMIC keyword, 40

B

backward index scanning, 46
between predicates, 12
bi-temporal tables, 86
block fetching, 22
Boolean term predicates, 69
business temporal data support (V10),

85-86

C

caching
dynamic caching, 81-82
dynamic SQL statements, 23-24

cardinality statistics, 115, 125
case logic, 71-72, 101
catchall SQL statements, 79
closing cursors, 25-26
clustering indexes, 47-48, 125
COALESCE function, 22

COBOL developers
DCLGEN host variables, 6
SQL standards and guidelines,

99-102
code, existence checking, 111-113
columns

functions, 79
predicates, 2-4
sorts, 53

combining predicates, 80
commit strategies, 19
common table expressions,

materialization, 56
Compatibility mode, 72
compression of data, 56-57
correlated subqueries, 6, 17
correlation IDs, 26-27
Create Index statement, 63-64
CS (Cursor Stability) locking isolation

level, 28-29
Currently Committed, lock avoidance,

82-83
cursor processing, 100

fetching data from a cursor, 28
For Fetch Only/For Read Only

clauses, 22
minimizing execution of open and

close cursors, 25-26
scrollable cursors, 34-35
Update/Delete statements, 27-28

Cursor Stability (CS) locking isolation
level, 28-29

10_9780133038460_index.indd 131 9/20/12 11:33 AM

132 data compression

dynamic caching, 81-82
dynamic distributed SQL, 96-97
dynamic SQL

REOPT ONCE/REOPT AUTO, 43
statement caching, 23-24

E

Enabling New Function mode, 72
enhancement, DISCARD capabilities, 54
EXCEPT statements, 9
existence checking, 111-113
Exists subqueries, 5-6
Explain tool, 17-18
expressions, combining with column

functions, 79
extended indicators, 87-88

F

Fetch First n Rows Only clause, 53
Fetch statement, 28, 38-39
fetching data from a cursor, 28
fi lter factor, 126
fi ltering

logic, 21
records, 62

For Fetch Only clause (cursor
processing), 22

For Read Only clause (cursor
processing), 22

frequency value statistics, 10, 115, 126
front-end OLTP programs, 33-34
functions

DB2 optimizers, 2
Dense_Rank, 86
Generate_Unique, 76
Order By clause, 72
Rank, 86
ranking (V10), 86-87

G

Generate_Unique function, 76
Get Diagnostics command, 39

D

data compression, 56-57
data distribution, Runstats utility, 8-9
Data Manager, 14
Data Manipulation Language (DML)

statements, 52
Data Studio tool (IBM), 116
database objects, 125
datatypes, defi ning host variables to

match, 6
date arithmetic, 73
date functions, 104
DB2 optimizer, 2
DB2 versions, 72-73
DCLGEN host variables, 6
Declarations Generator, 6
declared GTTs, 13
declared temporary tables, 76
Delete clause (Select statement), 77-78
Delete statement

arrays, 42
cursor processing, 27-28

Dense_Rank function, 86
developers

initial steps in tuning queries,
117-119

program with performance in mind,
31-32

SQL standards and guidelines, 99
all SQL developers, 102-106
COBOL developers, 99-102
purposes, 99

direct row access
RID function, 60
ROWID datatype, 58-59

DISCARD capabilities, 54
discrepancies, non-column expressions,

20-21
disqualifi cation, index choice, 93-95
Distinct feature, 4-5, 45
distributed dynamic SQL, 96-97
DML (Data Manipulation Language)

statements, 52
duplicates, UNION ALL in place of

UNION, 9

10_9780133038460_index.indd 132 9/20/12 11:33 AM

locking isolation levels 133

indexable predicates, 127
indexes

clustering, 47-48, 125
disqualifi cation of a choice, 93-95
fi le maintenance, 27
implementation of good index

design, 19-20
includes, 89
lookaside, 126

indicators, extended (V10), 87-88
inner joins, 127
input streams, 75-76
Insert statements

arrays, 39-40
high-volume inserting, 73-74
with Select statements, 37-38

insuffi cient statistics, 115-116
INTERSECT statements, 9

J–K

joins, 4
defi ned, 127
hybrid, 127
merge scan, 127
nested loop, 127
outer, 128
outer join logic, 51
processing, 4
subqueries versus, 71

L

labeled duration, 73
leading index columns, 61-62
Like statements, 46, 105
limiting the result set, 53
List Prefetch, 127
literal replacement, 24
LOAD utility, mass inserts, 54
lock avoidance, 75, 82-83
Lock Table statements, 32-33
locking isolation levels, 28-30

Get Diagnostics statement, 77
global temporary tables (GTTs), 13-14
Group By expressions, 48
GTTs (global temporary tables), 13-14
guidelines, 99

all SQL developers, 102-106
COBOL developers, 99-102
purposes, 99

H

hard coding, 9-10
hash joins, 4
HAVING clause, fi ltering records, 62
high-volume inserting, 73-74
hints, SQL statements, 91

A.PKEY = A.PKEY statement,
92-93

changing order of table processing,
95-96

disqualifi cation of an index choice,
93-95

dynamic distributed SQL, 96-97
Optimize for Row 1 statement,

91-92
Histogram statistics, 12, 116
Host Declared Variables fi elds, 9
host variables, 101

defi ne to match columns
datatypes, 6

hard coding versus, 9-10
hybrid joins, 4, 127

I

IBM Data Studio tool, 116
IBM Data Studio Visual Explain tool,

128-129
In list predicates, 77
in-memory tables, 78-79
In subqueries, 5-6
IFNULL function, 22
INCLUDE option, 89
Index on Expression, 3, 63-64
index only processing, 62-63

10_9780133038460_index.indd 133 9/20/12 11:33 AM

134 maintenance, table and index files

O

OLTP front-end processing, 33-34
ON COMMIT DROP enhancement, 45
opening cursors, minimizing execution,

25-26
optimistic locking, 65-66
optimization. See performance

improvement
Optimize For n Rows clause, 54
Optimize for Row 1 statement, 91-92
OR logic, 6-7
order

In list, 77
predicates, 15-16
table processing, 95-96
tables, 49-50

Order By, sort avoidance, 71
Order By clause, functions, 72
outer join logic, 51
outer joins, 128

P

parallel processing, 57-58
performance improvement, 1-2

aggregate functions, 58
backward index scanning, 46
block fetching, 22
Boolean term predicates, 69
business temporal data support,

85-86
case logic, 71-72
catchall SQL statements, 79
clustering indexes, 47-48
combining predicates, 80
commit and restart strategies, 19
common causes for poor

performance, 1
correlated subqueries, 17
correlation IDs, 26-27
cursor processing, 27-28
data compression, 56-57

M

maintenance, table and index fi les, 27
mass deletes, 54
mass inserts, 54
materialization

common table expressions, 56
nested table expressions, 55
views, 55

materialized query tables (MQTs), 35-37
mathematics, removal from predicate

columns, 3-4
Max values, null possibilities, 21-22
merge scan joins, 4, 127
MERGE statements, 66-68
Min values, null possibilities, 21-22
minimizing SQL requests, 11
mode levels, 72
monitoring tools, 18-19
MQTs (materialized query tables), 35-37
multiple distincts, 45
multiple-row Delete, 42
multiple-row Fetch, 38-39
multiple-row Insert, 39-40
multiple-row Update, 40-41
multiple subqueries, streamlining, 16

N

nested loop joins, 4, 127
nested table expressions, 55
New Function mode, 72
NOFOR precompile option, 68-69
non-column expressions, 20-21
noncorrelated subqueries, 6
Not Exists logic, 51-52
Not logic, 26
nulls

areas nulls can occur, 25
Min and Max values, 21-22
null processing, 30-31

10_9780133038460_index.indd 134 9/20/12 11:33 AM

performance improvement 135

lock avoidance, 75, 82-83
Lock Table statements, 32-33
locking isolation levels, 28-30
maintaining table and index fi les, 27
materialization, 55-56
MERGE statement, 66-68
minimizing execution of open and

close cursors, 25-26
minimizing SQL requests, 11
monitoring tools, 18-19
MQTs (materialized query tables),

35-37
multiple-row Delete, 42
multiple-row Fetch, 38-39
multiple-row Insert, 39-40
multiple-row Update, 40-41
multiple subqueries, 16
NOFOR precompile option, 68-69
non-column expressions, 20-21
Not Exists logic, 51-52
Not logic, 26
null processing, 30-31
nullable columns, 25
OLTP front-end processing, 33-34
ON COMMIT DROP

enhancement, 45
optimistic locking, 65-66
OR logic, 6-7
ordering In list, 77
outer join logic, 51
parallel processing, 57-58
predicate columns, 2-4
predicate sequence, 15-16
predicates involving Min and Max,

21-22
program with performance in mind,

31-32
ranking functions, 86-87
record fi ltering, 62
redundant predicates, 80-81
REOPT ONCE/REOPT AUTO, 43
REOPT VARS/REOPT ALWAYS,

43-44

date arithmetic, 73
declared temporary tables, 76
direct row access, 58-60
Distinct feature, 4-5, 45
dynamic caching, 81-82
dynamic SQL statement caching,

23-24
enhanced DISCARD

capabilities, 54
execution of necessary SQL

statements, 78
Exists subqueries, 5-6
Explain tool, 17-18
expressions and column

functions, 79
extended indicators, 87-88
Fetch First and Order by within

subqueries, 65
fi ltering logic, 21
functions in Order By clause, 72
Generate_Unique function, 76
Get Diagnostics statement, 77
global temporary tables (GTTs),

13-14
Group By expressions, 48
hard coding versus host variables,

9-10
high-volume inserting, 73-74
host variables, 6
implementation of good index

design, 19-20
in-memory tables, 78-79
In subqueries, 5-6
index includes, 89
index on expression, 63-64
index only processing, 62-63
initial steps in tuning queries,

117-119
Insert with Select statements, 37-38
joins over subqueries, 71
Like statements, 46
limiting the result set, 53
LOAD utility, 54

10_9780133038460_index.indd 135 9/20/12 11:33 AM

136 performance improvement

rewrite examples, 121-122
stage 1 versus stage 2, 14-15

Prepare statement, 116
procedural programming, 32
program walkthroughs, 107-109
project management, SQL standards and

guidelines, 99
all SQL developers, 102-106
COBOL developers, 99-102
purposes, 99

Q–R

queries, testing, 60-61
Query CP parallelism, 58
Query I/O parallelism, 58

range predicates, 12
Rank function, 86
ranking functions, 86-87
RDBMS (relational database management

systems), 1
RDS (relational data services), 14
Read Stability (RS) locking isolation level,

28-29
readability, correlation IDs, 26-27
record fi ltering, 62
redundant predicates, 80-81
relational data services (RDS), 14
relational database management systems

(RDBMS), 1
relational programming, 32
REOPT ALWAYS (static SQL), 43-44
REOPT AUTO (dynamic SQL), 43
REOPT bind parameter, 10
REOPT ONCE (dynamic SQL), 43
REOPT VARS (static SQL), 43-44
REORG utility, 27
Repeatable Read (RR) locking isolation

level, 28-29
residual predicates, 14
response time, MQTs (materialized query

tables), 35-37
restart strategies, 19
result sets, limiting, 53

rewriting range predicates as
between predicates, 12

Runstats utility, 8-9
scalar fullselects, 42-43
scalar functions, 32
scrollable cursors, 34-35
Select *, 24-25
Select Into using Order By, 69
sort avoidance with Order By, 71
sorting input streams, 75-76
sorts, 53
specifi cation of the leading index

column, 61-62
SQL hints, 91-97
SQL INSERT/SQL UPDATE, 23
stage 1 versus stage 2 predicates,

14-15
stored procedures, 52-53
table order, 49-50
tablespace scans, 48-49
temporal data support, 83-84
testing queries, 60-61
timestamp precision, 88
transitive closure coding, 70
Truncate statement, 64
understanding DB2 versions, 72-73
UNION ALL in place of UNION, 9
unnecessary sorting, 79
Update or Delete with Select

statement, 77-78
VOLATILE tables, 44-45
With Return to Client, 89-90

positioned updates, 27
predicates

Boolean term, 69
categories, 14
code only columns needed, 4
combining, 80
indexable, 127
Min and Max values, 21-22
optimal sequence, 15-16
removal of mathematics from

columns, 3-4
removal of scalar functions from

columns, 2-3

10_9780133038460_index.indd 136 9/20/12 11:33 AM

UNION ALL 137

standards, 99
all SQL developers, 102-106
COBOL developers, 99-102
purposes, 99

star joins, 4
static SQL, 43-44
statistics

frequency value, 126
runstats, 115-116
Runstats utility, 8-9

stored procedures, 52-53
streamlining multiple subqueries, 16
subqueries

correlated, 17
Exists, 5-6
Fetch First and Order by, 65
In, 5-6
joins versus, 71
Min and Max values, 21-22
streamlining multiple subqueries, 16

subsystems, 125
SYSIBM.SYSCOLDIST catalog table, 116
SYSPLEX parallelism, 58
systems, 125

T

tables
fi les, 27
order, 49-50
processing, 95-96
Runstats utility, 8-9

tablespace scans, 48-49
temporal data support, 83-86
testing queries, 60-61
timestamp precision, 88
transitive closure, 122
transitive closure coding, 70
Truncate statements, 64

U

Uncommitted Read (UR) locking isolation
level, 28-30

UNION ALL, 9

rewriting predicates, 12, 121-122
RID function, 60
ROWID datatype, 58-59
ROWSET positioning, 28
RR (Repeatable Read) locking isolation

level, 28-29
RS (Read Stability) locking isolation level,

28-29
runstats, 115-116
Runstats utility, 8-9, 116

S

scalar fullselects, 42-43
scalar functions, 2-3, 32
scrollable cursors, 34-35
search queries, 80-81
Select *, 24-25, 100
Select Count(*) statements, 111-113
Select Into using Order By, 69
Select statements

Update and Delete, 77-78
with Insert statements, 37-38

sequence, predicates, 15-16
share locks, 29
SKIP LOCKED DATA, 75
sorts, 4

avoidance with Order By, 71
column selection, 53
input streams, 75-76
UNION ALL in place of UNION, 9
unnecessary sorting, 79

SQL INSERT, 23
SQL requests, 11
SQL Select Count(*) statements, 111-113
SQL statements

catchall, 79
dynamic caching, 23-24
execution of necessary statements

only, 78
hints, 91-97
SKIP LOCKED DATA, 75

SQL UPDATE, 23
stage 1 predicates, 14-15
stage 2 predicates, 14-15

10_9780133038460_index.indd 137 9/20/12 11:33 AM

138 unnecessary sorting

unnecessary sorting, 79
Update clause (Select statement), 77-78
Update statements

arrays, 40-41
cursor processing, 27-28

UR (Uncommitted Read) locking isolation
level, 28-30

V

V10
business temporal data support,

85-86
extended indicators, 87-88
index includes, 89
literal replacement, 24
ranking functions, 86-87
temporal data support, 83-84
timestamp precision, 88
With Return to Client, 89-90

VALUE function, 22
versions of DB2, 72-73
Visual Explain tool, 15, 128-129
VOLATILE tables, 44-45

W–Z

walkthroughs (program), 107-109
WHERE clauses, 61-62
With Return to Client (V10), 89-90

10_9780133038460_index.indd 138 9/20/12 11:33 AM

	Contents
	CHAPTER 3 SQL Standards and Guidelines
	For COBOL Developers
	For All SQL Developers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W–Z

