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Preface

I have spent more than 30 years toiling away as a digital hardware design 
engineer and as an unsophisticated self- taught software designer. Most of my 
software efforts were in support of my hardware designs and included en-
deavors such as bit- level simulations, microcode generation, assembly code, 
FORTRAN, C/C++, and writing Microsoft Windows application graphics- 
oriented test stations, which I utilized to verify the proper operation of my 
digital creations.

I began my digital design career when digital signal processing (DSP) 
was still in its infancy. In those days, all digital designs were implemented 
with small-scale integrated (SSI) circuits that weren’t much more sophis-
ticated than 4- bit adders and 8-  to 1- bit multiplexers. The first company I 
worked for after graduation was heavily into the early phases of DSP.

DSP algorithms are for the most part dependent on repetitive multipli-
cations and summation operations. The first digital multiplier I ever saw re-
quired an entire chassis of equipment to do a 16- by- 16 multiplication. This 
multiplier consumed so much hardware that it was efficient to time- share it 
with other hardware that was engaged in processing independent tasks. De-
vice propagation delays were so huge that building hardware systems that 
utilized a 5- MHz system clock was considered high tech.

To give some perspective about the state of the art at the time, the term 
Silicon Valley had not been coined yet. It was during this time that a little- 
known, small company that went by the name of Intel was operating out of 
a very tiny building located at 365 Middlefield Road in Mountain View, Cali-
fornia. Intel had just introduced the world’s first microprocessor. It was a 4- 
bit machine called the 4004 microcomputer. It was built under contract to the 
Nippon Calculating Machine Corporation in Tokyo, Japan. With the introduc-
tion of the 4004, the digital age changed gears. Digital technology soon began 
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to evolve so quickly that hardware designed one year was almost obsolete by 
the next.

Program requirements always seemed to demand technology that wasn’t 
developed yet. Design engineers were constantly tasked with implementing 
tomorrow’s designs with today’s technology. This struggle, in a large sense, 
fueled an atmosphere of intense research and development and drove the in-
dustry to continuously produce lower power, faster, and more complex de-
vices and systems. Looking back, it seems like the world of DSP just exploded 
on all fronts. Start- up companies sprouted up in the Silicon Valley almost on 
a daily basis.

During this time, the science and technology of DSP grew and matured 
as integrated circuit manufacturers strived to produce higher speed signal 
processing components and lower power processors. Fusible link program-
mable logic devices were introduced, which quickly evolved into repro-
grammable logic devices and, over time, evolved into field programmable 
gate arrays (FPGAs), complex programmable logic devices (CPLDs), and 
application- specific integrated circuits (ASICs), which are still in use today. 
Other companies began to prosper by serving as fabrication houses for ex-
tremely high- speed gallium arsenide and indium phosphide integrated cir-
cuits. They would teach engineers how to design using their processes and 
then fabricate their application- specific designs.

The design tools necessary to support the programming and testing 
of these complex devices have evolved into big- time software applications. 
FPGA companies are even taking most of the challenges out of DSP design 
by offering a library of DSP circuits called cores that can be incorporated into 
an FPGA design with a simple keystroke, without much knowledge on the 
designer’s part of how these circuits operate.

During my 30- year career I have accumulated a fairly large library of 
DSP textbooks. With few exceptions, these books all cover the same basic 
topics. Different authors address the same subjects but each with their own 
unique approach. Reading several authors’ treatment of the same subject 
helped me view DSP processing techniques from different perspectives and 
tended to fill a lot of the blanks in my understanding of the subject. These 
books were well written by astute people in the field, and they all provided 
an excellent technical baseline for DSP design.

However, there have been few textbooks written that deal specifically 
with the many DSP topics and algorithms that are commonly used in every-
day applied DSP. As a rule, a good working knowledge of these applied DSP 
algorithms usually comes from word of mouth, design mentoring, and de-
sign experience. Over time, all design engineers accumulate (in their minds) a 
toolbox of circuits, procedures, algorithms, and techniques that are a product 
of years of long hours, a lot of sweat, tears, successes, failures, hand- wringing, 
and a fair amount of banging one’s head against the wall. Unfortunately these 
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toolboxes are not documented, and thus it is hard for other engineers to ac-
cess the wealth of information contained within these toolboxes. Engineers 
for the most part are a secretive species and in their quest for job security are 
reluctant to publicize their hard- earned trade secrets.

There are many gray areas in DSP design that have not been addressed 
in detail by any of the engineering textbooks that I am familiar with. These 
gray areas usually don’t address questions like How do I design a circuit that 
will perform this or that critical DSP function?

For example, no DSP textbook I am familiar with has discussed in de-
tail applications that are heavy into the use of complex digital signals, the 
spectra of real and complex digital signals, the science of complex to real sig-
nal conversion, digital signal translation, or the concept of digital frequency 
synthesis.

I have not seen any text that provided a detailed analysis on how to 
design a numerically controlled oscillator (NCO) used in digital tuning ap-
plications, or how to design an elastic store memory used in pulse code 
modulation (PCM) multiplexing applications, or how to design a digital data 
locked loop (DLL) or a digital automatic gain control (dAGC).

Other design topics rarely discussed in application- oriented detail by 
the myriad of DSP books available today include applications of poly phase 
filters (PPF) and cascaded integrator comb (CIC) filters, and applications like 
digital channelizers, sometimes referred to as transmultiplexers. This versatile 
circuit is found in many applications, such as frequency division multiplex 
(FDM) to time division multiplex (TDM) conversion, mixing consoles, wide-
band scanners, and the processing of wideband intercepts in radio astronomy, 
to name just a few. All these subjects and more can be lumped into the gen-
eral topic of Practical Applications in Digital Signal Processing.

THE PURPOSE OF THiS BOOK

The purpose of this book is to unlock and dispense some of the contents of 
my own personal toolbox in the hope of filling in some of these DSP gray 
areas. It is my hope to provide a source of usable information and DSP design 
techniques suitable for use in real- world design applications.

There are a great many DSP textbooks that are considered bibles of the 
DSP design world. Many of these books, along with technical papers writ-
ten by astute people in the field, are referenced within this book. It is not the 
intention of this book to repeat the work that has been done by so many pre-
vious authors. This book does not deal with the derivation and treatment of 
standard DSP concepts, which have been thoroughly addressed in great de-
tail by many other authors. The sole purpose of this book is to serve as an 
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application- oriented addendum to the many great DSP textbooks that have 
already been published.

WHO SHOULD READ THiS BOOK

This book is not intended for a person with no previous DSP knowledge or 
experience. This book is intended for the undergraduate and graduate stu-
dent who will soon enter the signal processing industry. It is also intended for 
the engineer already in the industry who has some experience in DSP design 
and who is now searching for additional information regarding the design 
and implementation of common but largely undocumented DSP hardware or 
software applications.

HOW THiS BOOK  iS  ORGANiZED

This book is organized as a collection of tutorials on common DSP applica-
tions. The first four chapters are detailed reviews on the mathematical tools 
necessary to successfully analyze, design, and build complex digital pro-
cessing systems. The remaining nine chapters provide detailed tutorials on 
independent signal processing applications commonly used in the industry. 
An appendix is included that provides an in- depth discussion on mixed lan-
guage programming. The content of each chapter is summarized in the fol-
lowing sections.

Chapter 1: Review of Digital Frequency

This chapter is a short tutorial on digital frequency and how it is related to 
the system sample rate. It shows how to mathematically represent the value 
of a particular digital frequency and how to determine the value of all the 
samples in a digital sinusoidal waveform.

Chapter 2: Review of Complex variables

This chapter presents a thorough review of the subject of complex variables. 
After reading this chapter, it is possible for a person with no prior experience 
to become proficient in the use of this valuable mathematical tool in the de-
sign and development of signal processing circuits and systems. The review 
starts by defining complex numbers and their properties and progresses all 
the way to a complete discussion of residue theory. The computation of resi-
dues provides the engineer an easy alternative to compute the impulse re-
sponse of a digital system.
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Chapter 3: Review of the Fourier Transform

This chapter provides an in- depth review of the Fourier series and both the 
continuous and discrete Fourier transform (CFT and DFT, respectively). The 
discussion includes the derivation of transform properties, transform pairs, 
Parseval’s theorem, and the derivation of energy and power spectral density 
(PSD) relationships. Attention is also given to the topic of spectral leakage, 
the band pass filter, and the low pass filter models of the DFT. Signal process-
ing discussions include the use of windows, coherent and incoherent process-
ing gain, and signal recognition. Even though this is an extensive review, it is 
written so that a reader without any background in the topics of Fourier se-
ries or Fourier transforms can proficiently use them when working with sig-
nal processing applications.

Chapter 4: Review of the Z- Transform

This chapter provides a comprehensive review of the z- transform. Detailed 
discussions include the use of pole-zero diagrams, inverse z- transforms, 
convergence, and system stability. A person with no prior knowledge of z- 
transforms can, after reading this chapter, utilize the knowledge gained to 
analyze complex digital systems, thereby enabling them to derive a system 
frequency response, determine system stability, and compute a system im-
pulse response. In addition, the reader will learn how to use the z- transform 
in real- world situations to modify existing designs to either enhance perfor-
mance or alter the specifications for incorporation into other systems.

Chapter 5: Finite impulse Response Digital Filtering

The focus of this chapter is on the design of finite impulse response (FIR) dig-
ital filters. It is not my intent to repeat all of the excellent theoretical material 
that has already been published by so many astute authors. Almost all DSP 
texts devote substantial coverage to the history, theory, architecture, mathe-
matics, and legacy design techniques of digital filters. Instead, the intent here 
is to concentrate solely on a single method for the design and implementa-
tion of some of the more common filter types. The purpose of this chapter is 
twofold. First, in order to establish a communication baseline, we will pro-
vide a very brief overview of digital filters. Second, we will demonstrate a 
computer- aided design methodology based on the Parks- McClellan optimal 
filter design program to implement several types of digital filters. A complete 
listing of this program is included in Appendix A.

Chapter 6: Multirate Finite impulse Response Filter Design

This chapter is a detailed discussion on the design of digital filters used to 
modify the sample rate of a signal. A designer is often faced with the task of 
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either increasing or decreasing the sample rate of a signal by some integer or 
fractional amount. There are several methods that can be utilized to change the 
sample rate of a digital signal. All these methods involve the use of a digital 
filter, sometimes referred to as a multirate filter. Some multirate filters are better 
suited for specific rate change applications than others. In this chapter we will 
discuss three rate change methods that use the following three filter types:

 1. Poly phase filters. The preferred method for moderate sized rate changes.
 2. Half band filters. An efficient method for factor of two rate changes.
 3. CIC filters. Computationally efficient filters for large rate changes.

Chapter 7: Complex to Real Conversion

This chapter provides a detailed tutorial on the conversion of a complex sig-
nal to a real signal. This is a common signal processing function, yet material 
dealing with this very important topic is rarely found in engineering text-
books. A very good example of complex signal processing is seen in digital 
systems that employ a front- end tuner. These systems fall into a category that 
can be loosely categorized as “digital radio,” in that an input wideband sig-
nal is tuned up or down in frequency and passed through a band pass or low 
pass filter to isolate some narrow band of interest. The mathematics of the 
tuning function converts the real input signal into a complex signal. The fil-
tered narrow band signal is then processed in its complex form to implement 
whatever the particular application requires. After the intermediate process-
ing is complete, the complex signal is generally converted back to real and 
provided as an output.

Chapter 8: Digital Frequency Synthesis

There are numerous applications in the world of DSP that utilize a numeri-
cally controlled oscillator, or NCO. An NCO is a programmable oscillator that 
outputs a digital sinusoid at some user- specified frequency and phase. The 
sinusoid can be fixed at some programmed frequency, or it can be swept or 
hopped over a band of frequencies. The sinusoid can have a constant phase 
or it can be programmed to have multiple or switched phases. It can be a sim-
ple or a complex device, depending on the requirements of the application 
in which the NCO is used. A typical application utilizes the NCO to produce 
a programmable complex sinusoid to tune band pass signals down to base 
band for filtering and postprocessing, similar to the local oscillator in an AM 
radio. This chapter contains detailed figures that clearly illustrate both the de-
sign of the NCO and the workings of all the internal processing functions. Ex-
tensive simulations graphically illustrate the signals produced by the NCO.
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Chapter 9: Signal Tuning

This chapter provides a thorough discussion on the subject of signal tuning in 
both the continuous analog and discrete digital domains. It is often necessary 
when processing a signal to move it from one region of the frequency spec-
trum to another region. This is especially true when processing communica-
tions signals, where a band limited signal centered at frequency f1 is tuned 
to another center frequency f2 in order to simplify downstream processing. 
This chapter illustrates the methods used to translate the spectrum of real and 
complex signals both up and down in frequency.

Chapter 10: Elastic Store Memory

During their careers, most engineers have designed interfaces between two 
or more data processing systems that utilized synchronous data streams. 
There are occasions, however, when a designer must interface two or more 
processing systems or data streams where the data rates are asynchronous 
to one another. For purposes of this chapter, the term asynchronous refers 
to the case where each data stream is time aligned to its own clock gener-
ated by an independent clock oscillator. The frequency and phase of each 
clocked data stream are similar but not necessarily identical. Each clock os-
cillator’s output frequency uniquely varies over time and temperature. In 
many cases, these clocks may differ by as much as a few thousand hertz. In 
this chapter we illustrate how to synchronize these systems with an elastic 
store memory.

Chapter 11: Digital Data Locked Loops

Suppose you are presented with a time division multiplex, or TDM, bit 
stream composed of a multiplex of two or more independent and originally 
asynchronous tributaries. How can we demultiplex these tributaries and syn-
thesize an independent bit clock for each that is on average identical to its 
original premultiplex clock? This type of signal is similar to a high- level tele-
phone PCM multiplex that carries several lower level tributaries. This is only 
one of many possible examples. The same question can be asked of any de-
multiplex processing where the multiplexed tributaries were originally asyn-
chronous to one another. The answer requires utilizing a digital data locked 
loop, or DLL. The DLL is a fairly simple device that uses an elastic store mem-
ory to synthesize a bit stream clock and then synchronizes the demultiplexed 
bit stream or tributary with that clock, all with no prior knowledge of the 
original clock frequency. This chapter provides a thorough tutorial on how to 
design DLLs for just about any relevant application.
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Chapter 12: Channelized Filter Bank

This chapter presents a high- level functional discussion followed by an in- 
depth, detailed tutorial on the design of a digital channelizer, sometimes re-
ferred to as a transmultiplexer. As mentioned previously, this versatile circuit 
is found in many signal processing applications. The channelizer can easily 
replace hundreds of receivers with not much more than a single integrated 
circuit. In this chapter, we will design a working channelizer that simultane-
ously processes up to 2000 independent equal bandwidth signals.

Chapter 13: Digital Automatic Gain Control

This chapter is a thorough discussion of a Type I and Type II digital auto-
matic gain control, or dAGC. This subject matter is rarely covered in any en-
gineering textbook available today, and if it is covered, it is usually given a 
cursory look amounting to not much more than a paragraph or two. In many 
electronic systems, one of the most important functions is automatic gain 
control (AGC). In general, an AGC is a nonlinear feedback circuit that if not 
designed properly can become unstable. The purpose of this chapter is to de-
sign a dAGC circuit; derive its operational parameters; simulate it; and then 
graphically illustrate the transient response, the steady state operation of the 
loop error, the loop gain, and the circuit output in response to various input 
signals and input signal perturbations.

Appendix A: Mixed Language C/C++ FORTRAN Programming

Over the years, there is a good chance that engineers who have been in the 
business for a while have accumulated a few dusty, old FORTRAN programs, 
functions, or subroutines that represent some pretty valuable legacy code. If 
these coded routines weren’t considered to be so valuable, the engineers more 
than likely would never have saved them. Typically, these routines represent 
a treasure chest of tested, debugged, and proven code that is still relevant in 
today’s engineering environment. The one big problem is that most of the 
software today is developed in C or C++. If this is the predicament that you 
find yourself in, there is some good news and some bad news for you. The 
good news is there is a good chance that the program manager and design 
engineering staff has at their disposal a wealth of proven FORTRAN code. In-
corporating this proven code into a project very well could result in a signifi-
cant reduction in labor costs and a significant reduction in program schedule. 
The bad news, of course, is that C or C++ are today’s preferred languages; 
therefore writing deliverable code in FORTRAN is really not a viable option. 
So if you are a program manager or a design engineer, what can you do in a 
situation such as this? One alternative is to build a mixed language program, 
where the bulk of the code including the main is written in C/C++ and linked 
with one or more valuable FORTRAN legacy functions and/or subroutines. 
This appendix is a tutorial on how to do just that.
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used to bit- level simulate, graphically display, and verify the proper opera-
tion of his digital creations.
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It is easy to mathematically represent an analog frequency on paper. The 
range of frequencies in the analog domain is both continuous and theoreti-
cally infinite. If we use the symbol fO  to represent some arbitrary analog fre-
quency all we need to do is to equate it with any one of an infinite number of 
available frequencies. We could, for example, choose fO  to be equal to 23.456 
Hz, or we could just as easily choose fO  to be equal to 1.005 MHz. We could 
choose just about any other value to any precision that we can dream up. As 
long as we remain realistic, there is no limit on the values that fO  can take on.

However, a digital system operates on digital data and generates digital 
results that are valid only at discrete increments of time equal to the period of 
the system sample clock. Therefore the value that a digitally generated dis-
crete frequency can take on is a small subset of the range of values available 
to analog frequencies. The discrete frequency values within this subset are di-
rectly related to and dependent on the sample rate of the digital system clock.

This leads to some confusion when people deal with digital frequencies 
for the first time. Much of the confusion can be summed up with three fre-
quently asked questions:

	 1.	 How do I define a digital frequency?
	 2.	 How do I mathematically represent a digital frequency?
	 3.	 How do I synthesize a digital frequency in hardware or software?

The scope of this chapter is to provide an answer for the first two of 
these questions. The answer to question number 3 requires its own chapter 
and is dealt with in detail in Chapter 8, “Digital Frequency Synthesis.”
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1.1 DefinitiOns

In this chapter, we will make the following symbol definitions:

	 1.	 f  defines any arbitrary analog frequency in hertz.
	 2.	 fO  defines a specific analog frequency in hertz.
	 3.	 fK  defines a specific digital frequency in hertz.
	 4.	 ωO  defines a specific analog radian frequency in radians/second.
	 5.	 ωK  defines a specific digital radian frequency in radians/second.
	 6.	 fS  defines the sample rate or the frequency of a digital system clock.
	 7.	 T  defines the period of the digital sample clock T fS= 1 .

1.2 Defining Digital frequenCies

Unlike an analog frequency, a digitally generated frequency does not have in-
finite resolution. A digital frequency can only take on discrete values. A dig-
ital sine wave, for example, can only take on discrete values for frequency, 
phase, and amplitude. For the purposes of this chapter, the frequency resolu-
tion of a digitally generated sinusoid is limited by the period of the digital 
sample clock T fS= 1 , and the precision of the sinusoidal waveform ampli-
tude is limited by the bit width of each digital sample. Let us begin our dis-
cussion by considering a digital sinusoidal waveform.

We know that a sine wave has unity amplitude and is repetitive every 
2π  radians. As illustrated in Figure 1.1, we can draw a circle of radius 1, 
called the unit circle, and we can visualize a phasor of unity magnitude ro-
tating around the unit circle at some fixed angular rate ωK . Every time the 
phasor makes a complete revolution around the unit circle, it has passed 
through 2π  radians and has completed one cycle. We quantify the phasor’s 
rotational speed as being ωK  radians per second. To get started, let us assign 
the label C  to this phasor. Since the phasor C  takes on values only at discrete 
instances of the sample period T, we can represent it as a function of discrete 
time by writing C nT n( ) ={ }  for 0 1 2, , , .

We can use some simple trigonometry to represent the phasor C nT( )  
by its vertical and horizontal components, labeled A nT( )  and B nT( )  in 
Figure 1.1. The magnitude of C  is related to the value of its components by 
the Pythagorean theorem: C nT A nT B nT( ) = ( ) + ( )2 2 .

We can see that as the phasor C  rotates around the unit circle, the mag-
nitude of the A  component cyclically grows from 0 at 0 radians to +1 at π 2  
radians. It then attenuates back to 0 at π  radians, grows to –1 at 3 2π  radi-
ans, and finally attenuates back to a value of 0 as the phasor passes through 
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2π  radians. Each time the phasor completes a rotation of 2π  radians, the am-
plitude of the A  component traces out a sine wave and the amplitude of the 
B  component traces out a cosine wave, as illustrated in Figure 1.1.

Since we are dealing with a digital system, we know that the values of 
the phasor components A, B, and C, and the phasor phase angle θ , shown in 
Figure 1.1, take on values only at discrete instants of time equal to the period 
of the sample frequency, or T fS= 1 . Sequential sampling instants can be rep-
resented by the infinite series

1 2 3T T T nT, , , , ,   

We can represent any arbitrary sampling instant as nT  for 0 ≤ < ∞n . 
Incorporating this notation into the unit circle phasor representation Figure 1.1, 
we see that the only values that can be represented by the phasor C, its verti-
cal and horizontal components A  and B, and the phase angle θ  are at the 
instants of time equal to nT . We know from trigonometry that

sin θ( ) = =
+

A
C

A
A B2 2

and

cos θ( ) = =
+

B
C

B
A B2 2

figure 1.1 Unit�circle
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We also know that since we are working on the unit circle, the magni-
tude of C A B= + =2 2 1. Therefore we can state that at any sampling instant nT,

A nT nT( ) = ( ) sin θ

and

B nT nT( ) = ( ) cos θ

Equation	1.1

So far so good, but how do we quantify the discrete values taken on 
by the sinusoidal waveforms? Well, we can start by dividing the unit circle 
into N  equal arc segments, illustrated by the black dots on the unit circle in 
Figure 1.1. Each arch segment is a portion of the unit circle scribed by the tip 
of the phasor C  as the phase angle θ  is incremented by 2π N  radians.

We will take this opportunity to coin a new and highly technical term. 
Let us define the angle 2π N  and the arch segment it describes as a radian 
chunk. The angle between the adjacent black dots on the unit circle in Figure 1.1 
is equal to a radian chunk. The phasor C nT( )  and its components A nT( )  and 
B nT( )  can only be evaluated at each black dot corresponding to each radian 
chunk on the unit circle. Therefore the maximum number of samples that can 
represent a single cycle of a digital sine wave is equal to N.

If the digital oscillator that is generating the digital sinusoid is operating 
with a sample clock of fS  Hz , then the phasor C nT( )  would rotate around 
the unit circle in discrete radian chunks of 2π N  at the clock rate of fS  Hz.
The lowest radian frequency of the digital oscillator can be mathematically 
defined as

ω π
K SN

f=












2  radians
 sample

 sample
second  =  radians/second2π

N
fS

ω π
K SN

f= 2  radians/second

Equation	1.2

The lowest or fundamental frequency of the digital oscillator can be 
mathematically defined as
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f
N

fK S= 











1
2

2
π

π
 radians

 radians
 sample

 ssample
second

 =  second  =  Hz





−1 11

N
f

N
fS S

f
N
fK S= 1  Hz

Equation	1.3

If we think about it for a minute, Equation 1.2 and Equation 1.3 make 
sense. If the phasor points to each black dot on the unit circle for one sam-
ple period, it will take N  sample periods for it to move from dot zero to dot 
N − 1. In doing so, it will make one revolution of the unit circle stopping 
once at each black dot in N  sample periods. It will take N  sample periods 
to trace out exactly one sinusoidal cycle. The total period for each cycle will 
be equal to NT  sec. The frequency of this sinusoidal cycle is then given by 
f NT f NS= ( ) = ( )1  second Hz. Therefore the frequency of the sinusoids 

traced by the A nT( )  and B nT( )  components will be equal to f NS( )Hz.
Let us look at a very simple example. Suppose we have a digital oscilla-

tor clocked with a sample clock of fS = 32 Hz, and suppose we decided that 
N  will be 16. The unit circle is subdivided into 16 equal arc lengths, giving us 
16 equal radian chunks. The rotating phasor C nT( )  will be evaluated at 16 
locations around the unit circle. This means there will be 16 samples per each 
period of the synthesized sinusoidal waveform. The digital radian frequency 
would be

ω π πK = 











2
16

 radians 32   =  4  radians
sec

//second

or, since fK K= ω π2 , we can easily compute the digital oscillator frequency 
to be

fK K= = 





ω
π

π
π2

4
2

radians second
 radians

  =  2 seecond  Hz− =1 2

In this simple example, 2 Hz  is the lowest frequency other than zero 
that our simple digital oscillator can generate. This is based on the value of 
the sample frequency fS  and our choice for the value of N . If, for the same 
sample rate, we had chosen N  to be a larger number, then the resolution of 
fK  would have been greater. For example, if we had selected N = 64 , the 

lowest frequency other than 0 Hz that our oscillator could produce would be
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f
N
fK S= = =1 1

64
32 0 5 Hz  Hz  Hz.

This is a good start, but a digital oscillator that can produce only a single 
frequency isn’t as useful as an oscillator that can be programmed to produce 
any one of a whole range of discrete frequencies. Ideally, we would like to 
be able to program the digital oscillator to output any one of a wide range of 
discrete frequencies. We can achieve this enhancement with the addition of a 
multiplier “k” in Equation 1.2 and Equation 1.3. We can rewrite these equa-
tions to include the multiplier k such that

 
ω π
K S

K S

k
N

f

f k
N
f

k
=

=
=

2

0 1 2
radians second

Hz
where  , , , .... /N 2{ }

Equation	1.4

If k = 1 , then the frequencies represented by Equation 1.4 are identical to 
those represented by Equation 1.2 and Equation 1.3. The value of k  can take 
on discrete integer values ranging from 0 to N 2 . In our previous example, 
we set fS = 32 Hz, and N = 16  so k  could take on values of 0 1 2 3 4 5 6 7 8, , , , , , , , .
All the possible frequency values that this example oscillator can take on are 
tabulated in Table 1.1.

As we can see from the table, this oscillator can be programmed to pro-
duce one of nine possible frequencies with a resolution of 2 Hz. The addition 
of the variable k  in Equation 1.4 causes the phasor C nT( ) to rotate around 
the unit circle in multiples of 2π N  radian chunks at a rate of fS  sample per 
second. When k  is set to unity, the phasor will take on values at every black 
dot on the unit circle producing the oscillator’s lowest or fundamental fre-
quency. In this case, each cycle of the generated sinusoid will be composed of 
N  samples.

When k  is set to 2, the phase angle of the phasor θ nT( )  will increase in 
increments of two radian chunks each tick of the sample clock. The phasor 
C nT( )  will take on the values of every second dot, and it will rotate around 
the unit circle twice as fast, producing a sine or cosine wave that is twice the 
fundamental frequency. In this case, each cycle of the sinusoid will be com-
posed of half or N 2  samples. Similarly, when k  is set to 4 the phasor will 
travel around the unit circle at four times the fundamental rate, taking on val-
ues at every fourth dot to produce an output frequency that is four times the 
fundamental frequency. Each cycle, however, will be composed of N 4  num-
ber of samples per cycle.
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When k  reaches its maximum value of N 2, which in this example 
is 8, there will be just two samples per sinusoidal period. The Nyquist rule 
states that two samples per cycle is the minimum number of samples allowed 
in order to be able to reconstruct an analog waveform from a digital wave-
form. This means that the highest frequency we can theoretically generate 
with a digital oscillator is half the sample rate or fS 2. In our example, when 
k N= =2 8, we were able to generate a sinusoid of 16 Hz, which is exactly 
half the 32 Hz sample rate.

In Table 1.1, a few of the entries for the “Samples per cycle” column 
are in fractions. All this means is that each cycle of the sinusoid is generated 
using a different subset of the N  possible samples. That is, successive cycles 
of the sinusoidal waveform begin on a different sample value.

What happens if we continue to increase the value of k  beyond N 2  
(which in our example is 8)? If we were to let k = 9 , there would be less than 
two samples per cycle, the Nyquist rule would be violated, and the output 
waveform would take on the same frequency as if the value of k  had been 
set to 7. The resulting frequency is said to have been aliased or folded, about 
fS 2. Undersampling an analog sinusoid with an analog to digital converter 

will cause the digital output sinusoid it to alias down in frequency. This is 
identical to setting the multiplication factor k  of a digital frequency to some 
number greater than N 2 , which will result in the folding or aliasing about 
the Nyquist frequency of fS 2.

In our example, if we were to say k = 10 , the resulting digital frequency 
would be identical to that obtained by saying k = 6 . If we choose k N= − 1  

table 1.1 Example�Digital�Oscillator�Frequencies

k ωk  radians
second fK  Hz Samples per cycle

0 0.00 0 —
1 π/8 2 16

2 2π/8 4 8
3 3π/8 6 16/3
4 4π/8 8 4
5 5π/8 10 16/5
6 6π/8 12 16/6
7  7π/8 14 16/7
8  8π/8 16 2
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or 15 in our example, the resulting frequency would be identical to the case 
where k = 1 . We can see that all frequencies above k = 8  are folded or aliased 
down in frequency about the so-called folding frequency of fS 2 16=  Hz . In 
general, the frequency fN K−  aliases down to f N k NK for 2 1( ) < ≤ −( ){ }.

A simple frequency folding diagram for the case where N = 16  is illus-
trated in Figure 1.2.

Care must be taken at the higher frequencies where the value of k  ap-
proaches the upper limit of N 2. On paper there is no problem as k N→ 2,
but in a hardware or software implementation the samples must be carefully 
selected. An extreme example would be setting k N= 2  and using the sam-
ples at 0 and π  radians. This represents the optimum sample selection for a 
cosine wave, since the cosine sequence will take on the form

B T n n( ) = ( ) = + − + − ={ }cos , , , , , , , ,π 1 1 1 1 0 1 2 3   for 

but these same samples will produce a DC output of 0 for a sine waveform

A T n n( ) = ( ) = ={ }sin , , , , , , , ,π 0 0 0 0 0 1 2 3   for 

For this reason, in most designs dealing with narrow band signals, 
the minimum number of samples per cycle is usually held to some number 
around 2.5.

figure 1.2 Frequency�folding�diagram
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1.3 MatheMatiCal representatiOn Of Digital frequenCies

The notation in Equation 1.4 gives us a valid method to represent digital fre-
quencies using a pencil and paper, but it doesn’t help us when it comes to 
the generation of a digital sinusoidal waveform in hardware or software. In 
Equation 1.4, we explicitly included the sample rate represented by the term 
fS . This is fine for mathematical computations on paper but the sample rate is 

a fixed entity that is already implicit in the operation of the digital hardware. 
It does not make sense to include the fS  term in frequency synthesis because 
it is already present due to the fact that each digital computation takes place 
at the sample rate.

In addition, Equation 1.4 provides us with a single value for any par-
ticular frequency—something that we can write down on paper like the value 
16 Hz or 48 Hz. This is not appropriate for the actual synthesis of a complete 
period of a sinusoidal frequency in hardware. In hardware or software, we 
need to generate all N  samples of a sinusoid at the sample rate fS. To do 
that, we need to take into account the sample index n  of the generated sinu-
soid, and we need to normalize the sample frequency to 1. We normalize the 
frequency by dividing the frequency expression by fS. In doing so, we can 
rewrite Equation 1.4 to include these changes and produce

ω π
K

K

n kn
N

f n kn
N

( ) =

( ) =

2  radians/second

 Hz               
      where 

k N
n

=
= ∞







0 1 2 2
0 1 2 3
, , ,
, , , ,










Equation	1.5

In Equation 1.5 we have normalized the sample frequency to 1. The nor-
malized frequency of a digital waveform is usually expressed as a fraction 
given by k N. To convert a normalized frequency back to an unnormalized 
frequency, we simply multiply by the sample rate, or

f k
N
fK S=

Remember the sample rate is implicit in a hardware or software imple-
mentation. It is the rate at which the computations are performed (i.e., the 
rate at which the phasor advances between black dots on the unit circle).

For example, if our sample frequency fS = 256 KHz , k = 16 , and
N = 128, then the normalized frequency would be expressed as  follows:
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f k NK = = =    16 128 0 125. . The actual frequency in Hz can be determined 
by multiplying the fraction k N  by the actual sample frequency fS  or

f k
N
fK S= = ( )( ) =   KHz    KHz0 125 256 32.

The function of the sample index n  in Equation 1.5 is to index succes-
sive samples and to advance the phasor around the unit circle by acting as 
an incrementing multiplier to the fixed value k N . The term nk N  can be 
thought of as an infinite series given by

k
N

k
N

k
N

nk
N

, , , , ,2 3
 

The correct way to generate a digital sinusoid waveform of unity magni-
tude and normalized frequency k N  is given by

A n k
N
n

B n k
N
n

( ) = 





( ) = 





sin

cos

2

2

π

π
            for 

       n
k N

=
=













0 1 2
0 1 2 2

, , ,
, , , ,





Equation	1.6

It is important to remember that the term 
2π
N  is a radian chunk. The 

term 2π
N
k  is a k  multiple of a radian chunk. Since the sample rate is im-

plicit to the hardware and since we are dealing with normalized values of 
frequency, we can now drop the index notation nT  as illustrated in Figure 1.1 
and simply refer to the index as n  as we did in Equation 1.5 and Equation 
1.6. The phasor C n( )  will rotate around the unit circle at the sample clock 
rate in increments of 2πk N  radian chunks. This means that the phasor sine 
and cosine components A n( )  and B n( )  will take on discrete values at each 
kth radian chunk and will do so at the clock rate.

Nothing is stopping us from writing down on a sheet of paper that the 
radian frequency associated with this radian chunk is 2πk N fS( ) , but keep in 
mind that this is just a number on a sheet of paper; it is not the sine or cosine 
argument that will trace out a sinusoidal waveform. This is where the sample 
index n  comes into play. The index increments by one every sample clock so 
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the argument 
2π
N
nk  takes on incremental k  radian chunk values with each 

clock period. This means that ω πK nk N= ( )2  will take on successive values 
of 0 2 4 6, , , ,π π πk N k N k N   at the sample rate. This is the dynamic ar-
gument of the sine and cosine function. If we plot A n( )  and B n( )  for this 
dynamic argument as n = 0 1 2 3, , , , , we will trace out a sine and a cosine 
waveform at the radian frequency 2πk N fS( ) .

For example, suppose we let k = 1 , N = 8 , and fS = 32 KHz . The sine 
argument would be implemented as

2 2
8

0 1 2 3π πkn
N

n n= = for , , , ,

The sine waveform for the first eight values of the sample index n  is 
illustrated in Figure 1.3. The fundamental frequency of this sinusoid is com-
puted by

ω ω π π πK S
k

N
f= = 





= 





=1
2 2

8
32 8 KHz  K radians seecond

   KHz   KHzf f k
N

fK S= = 





= 





=1
1
8

32 4             

figure 1.3 Mapped�sine�wave�using�a�dynamic�argument
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The fundamental frequency is generated when k = 1. Multiples of the 
fundamental frequency are referred to as harmonic frequencies. Frequencies 
generated for k N= 2 3 4 2, , , ,  are harmonics of the fundamental. When the 
multiplier k = 0, we end up with a frequency of 0 Hz, or DC.

We can represent the phase offset in a digital sinusoid by the expression

sin 2 2 0 1π πkn
N

p
N

p N+





= ≤ ≤ −Φ Φ  where   

The phase offset can only take on values equal to p  radian chunks.
When implementing a digital sinusoidal generator in hardware, it is of 

paramount importance to remember the following seven points:

	 1.	 Since Equation 1.6 is computed every T  seconds, it implicitly includes 
the sample rate term fS. This is because the index n  increments at the 
sample rate.

	 2.	 In normalized notation, the frequency of the sinusoid in Equation 1.6 is 
given by the ratio of k N , where 0 0 5≤ ≤k N . .

	 3.	 The frequency resolution of the digital sinusoid waveforms A n( )  and 
B n( )  is determined by the size of N .

	 4.	 The phase resolution of the digital sinusoid waveforms A n( )  and B n( )  
is determined by the size of N .

	 5.	 The precision of the amplitude of the sinusoidal waveform is determined 
by the bit width of the samples used to represent both A n( )  and B n( ).

	 6.	 The base or fundamental frequency of the sinusoids in Equation 1.6 is 
equal to 1 N  normalized and f NS  unnormalized.

	 7.	 The set of discrete frequencies that can be output by a programmable 
oscillator is given by k N  for k N= 0 1 2 2, , , , , which equates to a nor-
malized frequency range of 0 0 5 to .  in steps of 1 N, or an actual fre-
quency range of 0 2 Hz to  HzfS  in steps of f NS .

We will show in Chapter 8, “Digital Frequency Synthesis,” that the value 
of k  in item 7 can take on fractional values, which allows the engineer to de-
sign synthesizers that have much finer frequency resolution.

1.4 nOrMalizeD frequenCy

The notation in Equation 1.4 is based on the concept of dividing the unit circle 
into N  equal arc segments. We can derive an equivalent expression simply 
by observing that the digital frequency
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f k
N
f k N

K S= ≤ ≤  where 0
2

can be normalized by dividing both sides of the equation by the sample fre-
quency fS  to arrive at

f
f

k
N

f f k NK

S
K

S= ≤ ≤ ≤ ≤   where   and  0
2

0
2

Equation	1.7

Both sides of Equation 1.7 are now expressed as a fraction between 0  
and 0 5. . We can drop the subscript K  such that fK  becomes f . When we do 
we can think of both f  and fS  as being two analog frequencies whose ratio 
just happens to be k N. This notation is useful if the unit circle is not specifi-
cally considered in the derivation of digital frequencies. The two methods of 
notation are equivalent, as illustrated in Equation 1.8.

cos cos
, , ,

2 2
0 1 2

π πf
f
n k

N
n

n

S







= 





=
   where 

33
f
f

k
NS

=















      

Equation	1.8

It’s a matter of preference. Either notation is correct. This book uses both 
notations where appropriate.

1.5 representatiOn Of Digital frequenCies

A digital frequency can be written on paper in units of Hz or in units of radi-
ans per second as

f k
N
f k

N
fK S K S= =   or   ω π2

A more common method is to express a digital frequency as a fraction 
where the sampling frequency has been normalized to 1, such as

f k
N

k
NK K= =   or   ω π2
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In all cases, the value of k  can range from 0  to N 2. Examples of the 
four representations of digital frequencies are illustrated in Table 1.2 for sev-
eral values of k .

A frequency in the analog domain has infinite resolution and therefore 
can take on all possible values. A frequency in the digital domain can only 
take on specific discrete values, which are multiples of f NS . The value of an 
analog frequency can always be made to match exactly the value of a digital 
frequency, but since the value of the digital frequency does not have infinite 
resolution, the opposite is not true.

The amplitude of an analog frequency can take on an infinite number of 
different values, whereas the amplitude of a digital frequency can only take 
on discrete values. The number of amplitude values that can be represented 
by a digital sinusoid is dependent on the bit width of the individual digital 
samples. For example, suppose the bit width of a bipolar sinusoidal sequence 
is given by B . The sinusoidal amplitude can take on values equal to 0  and 
± −( ) 

−1 2 3 2 11, , , ,

B .
The sole purpose of this chapter is to introduce the mathematical repre-

sentation of frequency in the digital domain. This book contains a great deal 
more information on the subject. For a detailed analysis and tutorial on the 
synthesis of digital frequencies the reader is encouraged to read Chapter 8, 
“Digital Frequency Synthesis.”

table 1.2 Four�Ways�to�Represent�a�Digital�Frequency

k = 0  k = 1 k = 2  k = N/2

Normalized 
radians ω π

k
k

N
= 2    0 2π

N
4π
N

 π

Radians ω π
k S

k
N

f= 2 0 2π
N
fS

4π
N
fS 

π fS

Normalized 
frequency f k

Nk =        0 1
N

2
N

 0 5.

Frequency f k
N
fk S=    0 f

N
S 2 f

N
S



fS
2
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581f, 610f, 625f, 625, 634, 634f, 638, 
638f

offset, 638f
output, 615
period of, 582, 595, 616
phase accumulator, 582, 615, 616, 616f, 

617, 617f, 643
phase dithered, 643, 643f
sample clock offset and, 617f
width of, 582, 632

address space, 776
circular memory, 813
decision points and, 776
DS- 1 bit stream generation, 809– 810
variance, 776

alarm bit generators, 769, 802f, 803
aliased region, 487f
aliased spectra, 193
aliased zeroes, 521f

aliasing, 1, 7– 8, 192– 195, 204, 438– 439, 
439f, 443– 445, 466, 468, 469f, 483– 490, 
485f, 486f, 487f, 489f, 496– 498, 496– 
498, 496f, 497f, 510, 514– 515, 519, 521– 
523, 521f, 527– 536, 528– 529, 529– 536, 
529f, 535f, 581, 955, 970

attenuation and, 496f
bands, 496f
decimation and, 439f, 510t
first edge, 497f
imaging attenuation and, 497f
imaging bands and, 483f, 485f, 486f, 487f
levels, 487f, 521f
nonaliased spectra, 439f
pass band, 489t, 510t, 515e, 519f

alternating series test, 284
amplitude, 2, 3, 11f, 174, 227, 235, 257, 

875f, 903f, 905f
analog versus digital, 14, 630– 631
Blackman window spectral main lobe, 

246
constant, 290
discrete Fourier transform, 199– 200
double sideband amplitude 

modulation, 665
Euler’s formula and, 215
filtering, 386, 467, 451
fluctuations, 378
Fourier series and, 130, 136– 137, 139– 147, 

141e, 143f, 144t
frequency response, 342, 425, 465

Index

Note: The letters f, e, and t indicate that the entry refers to a page’s figure, 
equation, or table, respectively.
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amplitude (continued)
fundamental frequencies and, 598
growth and decay properties, 292
Hamming window spectral main  

lobe, 244
harmonic frequencies and, 598
identical, 654, 656, 717, 719
impulse, 752– 753
increasing, 323
inverting, 668
loop gain and, 1020
main lobe, 241, 243
maximum, 216, 243, 253f, 257, 583, 

585– 586, 630
modulation, 665, 979, 1020– 1022
numerical clock oscillator phase offsets 

and, 583– 486
negative, 666, 732
noise, 257– 258, 586
overall system, 342
pass band, 465
plotting, 666, 667f, 669f, 707, 732f, 732
pole location and, 339– 340
precision of, 2, 12, 188
pulse, 154, 159– 162
real poles and, 292
rectangular windowing and, 240, 253f
reducing, 630– 631
response, 342, 465, 979, 980
saw tooth waveforms and, 615
sine waves and, 2, 12
single- sided coefficients, 150– 151
spectral line, 207
spectral lines, 182
spectrum, 171, 171e, 174– 175, 225, 243, 

652, 666, 667f, 668, 669f, 729– 730
spectrum for cos(2πf0t), 169e
spectrum of sin(2πf0t), 171e
square waveforms and, 596
system response term, 480
translating, 657, 664– 669, 667f, 669f, 

729– 730, 734
triangle wave, 155
unity, 2, 213, 226, 752– 753
voltage waveforms and, 182
zero, 226, 338

analog AM radio receiver, 575
analog capacitors, 363

analog signal processing, 1– 2, 13, 16, 187, 
200, 595

amplitude of, 630
analog- processing block, 970
bandwidth, 972
circuitry, 363, 970, 973– 974
clipping of, 630
continuous time Fourier transform, 235, 

647– 688, 689, 692, 711
conversion from digital, 7, 535– 536, 584, 

630, 696, 970, 973
conversion to digital, 7, 194– 195, 204, 

355, 534, 535f, 596, 630, 878f, 879– 880, 
970– 972, 971f

filters, 238
frequency, 14– 15
impulse response, 238
input, 535f, 970
narrow band, 194
output, 535f, 820t
sampling, 630
spectrum analyzer, 371
spectrum analyzers, 371
telephone channels, 968
time variable t, 582, 623
tuning, 646
undersampling, 7, 194
wideband, 880f

analysis frequencies, 254, 255, 712, 881, 
890, 1040

analytic functions, 41, 127, 329
annular convergence ring, 282
antennas, 646
antialiasing, 194, 438, 534, 536, 970

filters, 438, 535f
application- specific integrated circuits, 

385– 386, 513, 633, 769, 774, 792, 961
Applied Signal Technology, 873
approximation errors, 394, 403, 424f, 425f
approximation expression, 488e
arc intervals, 29
argument sequences, 950e
arithmetic logic unit, 540f, 543, 558, 558f, 

559f, 577, 577f, 581f, 610f, 612f, 625, 
625f, 634f, 637, 638f, 643f, 948, 949f, 
959f, 962, 962f

arithmetic noise, 209
attack rate, 826, 853, 978, 978
automatic gain control, xx, 977– 1047
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amplitude response, 979f, 980f
attack rate of, 978
circuit parameters, 1030t
circuitry, 1033f
DC signal response, 1000f, 1002f, 1005f
dead band, 978– 979, 980f
decay rate, 978, 1015, 1045
feedback coefficient, 988– 999, 990e, 

991e, 993e, 995e, 1032– 1037, 1033f, 
1034f, 1035f, 1036f, 1037f

initial response, 1017f
noise, 1037– 1044, 1037f, 1038e, 1039e, 

1039f, 1040f, 1042f, 1043f
output signal RMS, 1010f
relationship between output and input 

signals, 987e
root mean square of signals, 1005f
simulations, 999– 1023, 1000f, 1002f, 

1005f, 1006f, 1007f, 1008f, 1009f, 1010f, 
1011f, 1012f, 1013f, 1014f, 1015f, 1016f, 
1017f, 1019f, 1022f, 1032– 1037

transient response, 979f, 980f, 1005f, 
1015f, 1023– 1032, 1023e, 1024e, 1026e, 
1026f, 1027e, 1030t, 1031e, 1031f, 
1032f, 1033f

Type I RMS AGC Circuit, 979f, 981– 
1044, 981e, 982f, 984f, 985e, 986f, 987f, 
988f, 990e, 991e, 993e

Type II RMS AGC Circuit, 980f, 
1044– 1047, 1045f, 1046f

B

band limited signals, 172, 177, 529– 646, 
657– 658

analog, 877
discrete Fourier transform bin, 910
discrete Fourier transform filter, 895
input message signal, 661
multiplication, 174– 175
spectral inversion of, 195
spectrum, 740

band of interest, 194– 195, 468– 469, 482– 
488, 483f, 485f, 486f, 487f, 498, 520f, 
527, 528, 529f, 533

band pass filters, 403t, 411e, 417t, 423t, 
426t, 427t, 432t, 565t, 687f, 878– 884, 
883f, 899f, 914– 918

adjacent, 899f
banks of, 905f
discrete Fourier transform summation 

bank, 894f
enhanced discrete Fourier transform, 

905f
filter response, 905f
overlap, 224
Parks- McClellan routine output, 411e
spectral leakage from, 899f

bands
lower sideband, 666, 731, 731f, 874, 

875f, 879
mirror image spectral, 740
upper sideband, 665, 665f, 731, 731f, 

874, 875f
base band, 194, 204, 219, 482– 485, 518, 

520, 522– 525, 528, 535, 541, 567, 575, 
608, 645– 646, 645, 657, 669, 672, 679– 
680, 685, 687, 738, 744, 873, 895, 902, 
964, 970

Bell Laboratories, 245
binary points, 609– 610, 609f, 612, 612f, 

634– 635, 638, 643, 643f
bit accumulation, 774, 776– 777
bit generators, 802– 803, 802f
bit location, 768, 770, 782– 783, 795– 796, 

803
cascaded integrator comb decimators, 

501t, 503e, 504e, 505e
example, 502t
Hogenauer LSB procedure, 499– 500
Hogenauer LSB procedure, 517

bit rate, 764, 766– 769, 774– 782, 784, 804, 
829, 869, 879, 973

data stream, 766, 768
elastic store memory, 771– 774, 771t
modifying, 768

bit variance, 777, 779
bit width, 2

cascaded integrator comb, 511t
error signal, 843t, 866t
minimal, 359
of digital errors, 843t
register, 511t
register, 517t

bits
do not insert information, 777f
fill, 768
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bits (continued)
garbage, 768
information, 768
insert information bits, 775f
insert information bits, 777f
least significant bits, 372, 501– 502, 501t, 

503e, 504e, 505e, 825
noninformation, 768
register bit width, 355, 356
stuff or garbage, 766, 768f, 768, 770f
truncated, 499

Blackman, Ralph Beebe, 245
block diagrams, 204f, 317

channelizers, 880f, 962f
complex signal translation, 746f, 748f
converting complex signals to real, 540f
decimate by two filter, 446f
decimation, 446f
DS- 1C multiplexer, 802f
elastic store memory, 793f
folding memory, 926f
frequency division multiplex signal 

extraction, 687f
numerically controlled oscillator, 577f, 

581f, 610f, 625f, 634f, 638f, 643f
phase offset, 638f
simplified demultiplexer, 808f
spectral inversion control, 942f
translation by ej 20pt t, 677f
translation of a complex signal, 680f
typical signal processing system, 535f

Brigham, Oran, 268
buffers

double, 923f, 925f
input memory, 923f, 925f, 928f, 962f
split, 959f, 960f
split addresses, 961t

C

carrier signals, 664, 979
cascaded integrator comb filters, 435, 

470– 531
bit pruning, 499– 506, 501t, 503e, 503e, 

505e
cleanup filter, 526– 531
comb filter stage, 471– 473
composite, 473

composite filter z- transform, 475– 477
decimation filter, 477– 478, 483, 499– 506, 

514– 523, 515t, 516f, 517t, 518f, 519f, 
520f, 521f, 527– 528, 529f

filter gain, 498
filter response, 473
frequency response, 473
impulse response, 491– 492
integrator stage, 474– 475
interpolation filter, 478– 479, 506– 514, 

508, 511t, 523– 526, 524f, 528– 531, 530f
pass band droop, 506– 508
phase response, 490– 491
pole- zero placement, 493– 498
sample rate frequency response, 479– 490

Cauchy, Augustin- Louis, 111
Cauchy- Riemann conditions, 42, 47– 51, 

48t, 49t
Cauchy’s theorem, 96– 108, 98f, 102f, 105f, 

109– 120, 111e, 113e, 121e
ceiling line, 53, 53f, 62
center frequency, 261– 262, 537, 621– 622, 

645, 664– 665, 681, 729, 730, 809,  
822– 824, 845, 847, 854– 855, 855

constant increments of, 684
converting to, 194, 262
deviation from, 869, 857f, 858f
filter response, 563
generate, 822
image bands, 525
loop, 862
max variance, 845
normalized, 935
normalized bin, 712
output, 823
point, 847
pull range, 822
sequential discrete Fourier transform 

bins, 895
simulations of, 866
specifying, 822
temperature, 614
tuning signal, 675, 743, 744
variance, 845
voltage controlled crystal oscillator, 

823– 824, 829– 831, 845– 850, 869
wideband frequency division multiplex 

signal, 892
channelized filter banks, xx, 873– 975, 974e
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block diagrams, 958– 962, 959f, 960e, 
960f, 961t, 962f

design of, 919– 962, 967– 974
equations for, 974– 975
function of, 877– 919
hardware, 967– 974, 968f, 969f, 970f, 971f
software simulation results, 962– 967, 

963f, 965t, 966f, 967f
channelizers, 873– 879, 875f, 876f, 878f, 

880f, 958f
complex to real conversion, xviii, 942– 

948, 943e, 944e, 945e, 946e, 947f, 948t
cosine look up tables, 948– 955, 949e, 

949f, 950e, 950t, 951e, 951t, 952e, 953t, 
954t, 955f

data, 942f
data processing, 907– 910, 909f
discrete Fourier transform, 881– 900, 

881e, 883f, 884e, 885f, 887e, 887f, 889f, 
890e, 890f, 891f, 892f, 893f, 894e, 894f, 
896f, 898f, 899f, 913e

functional, 880f
hardware design, 971f
implementation, 873
input signal processing, 919– 923, 920t, 

921f, 923f, 930– 930, 930e, 931e, 931f
input test signal, 963f
mathematical concepts, 910– 919, 911e, 

911f, 912f, 913e, 915e, 916e, 917e, 918e
operational parameters, 919
sample rate decimation, 932– 933
segment folding memory, 923– 930, 924e, 

925f, 926f, 927f, 928e, 928f, 929e, 930e
software simulation design parameters, 

965t
stand- alone, 945e, 974e
time varying phase terms, 933– 942, 

933e, 934e, 936e, 937e, 938f, 939e, 940e, 
941e, 942f

channels, 646
bandwith, 684f, 685f
channel stack, 537– 538, 874, 972– 973
identity tones, 966f, 967f, 968f, 969f, 970f
reference tone, 615, 964– 965, 966f, 967f, 

968f, 969f, 970f
circuitry

analog, 970, 973– 974
analog- processing block, 970
attack rate of, 978

board geometry, 237
calculating time constant k, 854
decay rate, 978, 1015, 1045
feedback coefficient, 985
fixed parameters, 839
frequency response, 376
layout, 237
load, 238
loop gain, 987e
LSI 16- by- 16- bit multiplier chips, 431
macros, 238
scale factor, 985
small scale integrated circuits, 237

circular memory, 761f, 794– 796, 794f, 797f, 
798f, 799, 800f, 811, 813, 814f, 816f, 
817, 825, 835

clock jitter, 825– 826, 828, 844, 851, 852f, 
854, 855f, 857f, 857f, 857f, 857f, 857f, 
858f, 859f

clock oscillators, 455f, 456f, 613– 637, 761, 
768, 790, 820, 827, 859

clock teeth, 809, 814
clock tree skew, 238
code

converter code glitches, 534
length, 642
snippets, 788, 947, 1058, 1060, 1083

coefficient memory, 389, 456, 457f, 461, 
925f, 928f, 962f

coefficients, 388e
double- precision, 404, 564
filter, 904
floating point, 564
sliding filter vectors, 548

coherent integration method, 260– 261
comparison tests, 284
complementary metal- oxide 

semiconductor devices, 237– 238
complex numbers, 17– 37, 38f, 39f

absolute value of, 35– 36
addition, 18e
Cartesian form of, 17– 21, 18f, 18e, 19e, 

20e, 21e
conjugates, 19e, 20e, 21e
converting Cartesian and polar  

forms, 23e
converting to polar form, 106– 107
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complex numbers (continued)
division, 18e, 24e
dot product, 27f
equality, 18e, 23e
exponential form of, 36– 37
graphs of, 38f, 39f
magnitude, 19e
multiplication, 18e
multiplication, 23e
polar form of, 21– 27, 21e, 22e, 22f, 23e, 

24e, 25e, 26e
powers of, 25e, 26e
properties of, 18– 21, 18e, 23– 27
real numbers versus, 16
representation of, 271– 274
roots of, 27– 34, 27e, 28e, 29e, 31f, 33f, 34f

complex variables, 15– 127, 272f
analytic functions, 41– 42
Cauchy- Riemann equations, 47– 51
Cauchy’s theorem, 96– 108, 109– 120
complex differentiation and, 43– 46
contours, 51
entire functions, 42
limits and, 40– 41
line integrals, 51– 54, 84– 96
real line integrals, 54– 84
residue theory and, 120– 127
simply connected regions, 51

components
aging, 614, 618, 637
alternating current, 863– 864
direct current components, 863– 864
in- phase, 16– 17
quadrature, 16– 17
real versus imaginary, 92
scalable libraries, 386

conjugate pairs, 342– 344, 367
constant group delay, 385, 387, 470,  

490– 491
constant phase delay, 387
contours

Cauchy’s theorem, 98f, 102f, 105f
circular, 64– 65, 81f
closed, 51, 54
equivalent, 117f
examples of, 51f, 56f, 67f
integral, 52– 53, 53f
integral summation curtain, 53f
integration, 55

line integrals and, 52
singularities and, 99f
triangular, 62

control bus interface, 793f
Cooley, J. W., 267
Cooley- Tukey FFT algorithm, 268
copper wire, 646, 678, 762, 874, 973
core memory, 632

D

D flip- flop, 614, 769, 792, 794, 803
data

aligning, 911f
blocks, 911, 923f, 926, 933
channelized, 942f
channelizer processing paths, 909f
discrete Fourier transform channel 

outputs, 939e, 940e
driver source current, 801
example data transmission frame, 790f
multiplying, 911f
service level, 764
shifted, 549f, 551f, 553f, 557f, 558f, 

559f, 939e
simulation, 567– 573, 568f, 571f, 572f
synchronous, 968
throttling, 772, 779
tributary data bit streams, 802f

data locked loops, xix, 807– 871, 808f, 808f, 
869e, 869e, 870e, 871e

analog error voltage, 818– 820, 819f, 820t
circular memory and, 814f
clock frequency synthesis, 820– 825, 

821f, 824t
elastic store memory and, 804, 809– 817, 

812f, 813f, 814f, 816f, 810f
error signal bit width versus time 

constant, 843t
error signals, 817
error voltage generation, 819f
fill, 813f
frequency devation and, 867f
frequency response and, 827f, 828f
modulo operation, 814f
operational characteristics, 825– 829, 

827f, 828f
read pointers, 812f, 816f
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reference clock synthesis, 821f
rise time, 861, 862f, 865e, 866t
simulation, 844– 868, 846f, 848t, 849f, 

852f, 853f, 855f, 857f, 858f, 859f, 860f, 
862f, 864f, 865e, 866e, 866t, 867f

steady state behavior, 829– 834, 829e, 
830e, 830f, 831f, 832e, 832f, 866– 868, 
866e, 867f

transient behavior, 834– 844, 836e, 837e, 
838e, 839e, 840e, 841e, 842e, 843t, 838e, 
839e, 861– 866, 862f, 864f, 865e, 866t, 
812f, 816f

decimation, 436, 437– 448, 437f, 438f, 439f, 
440e, 440f, 441e, 442f, 443f, 444e, 445f, 
446f, 447f, 448f, 521f

block diagram, 443f, 446f
decimate by two filter, 445f, 446f, 466
factor, 777f
filtering, 535f, 1045f
magnitude, 539f
poly phase filters and, 443f
ratio, 909f
sample rate, 496f, 529f, 539f

derivatives, 44– 45
design review, 422, 509, 514, 545– 546, 559, 

621, 628, 1021
digital capacitors, 363
“digital radio,” 528, 533, 535, 646, 677
digital signal processing systems, xiii– xv

complex, 533– 570
conversion from analog, 7, 194– 195, 

204, 534, 535f, 596, 630, 878f, 879– 880, 
970– 972, 971f

conversion to analog, 535– 536, 584, 630, 
696, 970, 973

converting complex to real signals, 
560– 573

real, 533– 570
simulating, 560– 573
tuning, 645– 759
typical, 534– 540

digital signals, 1– 14
defining, 2– 8, 3f, 4e, 5e, 6e, 7t
discrete values, 4, 14
errors, 613– 622
mathematical representations of, 9– 12, 

9e, 10e, 14t
representations of, 9– 12, 13– 14

standard implementation 
representation of, 691e

synthesizers, 535f, 575– 644
direct current, 139
direct current components, 863– 864

canceling circuit, 376
removal circuit, 379f
steady state behavior, 863– 864

Dirichlet conditions, 130
discrete Fourier transform, 187– 253,  

880f, 906f
adjacent bins, 246, 714
Bartlett windowing, 241– 243, 242e, 242f
bin band pass filters, 218– 220
Blackman window, 245– 246, 245e, 

246f, 251f
channelizer discrete Fourier transform 

output, 913e, 915e, 917e, 918e
complex output points, 206
discrete power spectrum, 211– 212,  

212e, 213e
enhanced filter, 956f, 957f
example application using, 261– 263
filter banks and, 907
filter response, 931f
finite impulse response filter window, 

246, 247e, 248f
forward, 209e, 210e
frequency, 189– 195
frequency bins and, 249f
Hamming window, 243– 244, 244e, 

244f, 245f
Hanning window, 243, 243e, 252f
increasing processing gain, 260e
inherent frequency response, 974e
inverse, 209– 210, 209e, 210e, 647e, 

650e, 933e
L points, 880, 881e, 883f, 906f
leakage, 220– 236
pairs, 218, 219t
poly phase enhanced, 902f, 903f
preprocessors, 237
processing gain, 254– 261, 255e
processing number of cycles with,  

234f, 236f
properties, 217, 218t
pulse waveforms, 213– 217
rectagular window, 238– 241, 239e, 239f, 

240e, 241f, 250f, 252f
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discrete Fourier transform (continued)
representation, 210– 211
resolution, 209
scale factors and, 210e
shifted input data and, 939e
standard display conventions, 519
summation filters, 884, 893f, 894f, 898f
symmetry, 195– 209
system interpretation of, 896f
time, 263– 267, 264e
windowing, 236– 253, 253t

“do not insert information” bits, 775f, 777f
dot products, 26– 27, 27f, 384, 440– 441, 

458, 547– 549, 552, 557
double precision array, 396t, 1059
double sideband amplitude modulation, 665
down conversion, 645, 685

frequency division multiplex signal, 685f
down sampling, 436– 438, 463, 478, 516
Drichlet conditions, 130
dual inline packages, 637
duty cycles, 140– 142, 141t, 143f, 144f, 144t, 

614, 809, 814, 974
dynamic arguments, 11f

E

elastic store memory, xix, 761– 805, 780t
bit accumulation levels, 774, 776– 777
block diagram, 793f
brute force implementation, 775– 776, 

775f
conceptual, 794f
data locked loops and, 804, 810f
data rates, 770– 774, 771t
depth, 843t
designing, 769– 770, 774– 777
DS- 1C multiplexer design, 768– 774, 

801– 803, 802f
efficient, 776– 777, 777f
example application, 762– 763
fill, 779, 793f, 797f, 798f, 800f, 802f
hardware implementation of, 792– 801, 

793f, 794f, 797f, 798f, 800f
limits, 779
North American Digital Hierarchy, 765– 

768, 766t, 768f
output bit rate, 771t

pulse code modulation multiplexing 
hierarchy, 763– 768, 764t

read bit rate, 771t
simulation, 778– 779, 788– 791, 790f
size, 774– 775
software implementation of, 788– 791
steady state, 779– 783, 780t, 782t, 783t
threshold value, 793f
transient statistics, 784– 791, 785t, 787t

energy spectral density, 185– 186, 185e
equations

Cauchy- Riemann equations, 47– 51
Cauchy- Riemann equations in polar 

form, 50
channelized filter banks, 974– 975
digital data locked loops, 869– 871
plug- in, 350
pole, 334– 350
signal tuning, 754– 759
zero standard form, 334– 350

errors
decay, 856
design specific loop digital error signal, 

829e
error accumulation, 856
frequency error bounds, 620f
initial, 1016f
loop, 1003, 1005f
loop digital error signals, 829e
maximum, 418
MDAC voltage to error relationship, 830e
periodicity of, 602
predefined error bounds, 157
rounding, 600, 601f, 602f, 605f, 639f
scaled feedback signal, 985e
truncation, 597f, 598f
voltage generation, 819f, 821f
voltage response and, 849f
zero error operating point, 832f

Euler’s equation, 167, 188, 188e, 215, 266, 
306, 306e, 307, 322, 337, 344, 480, 653, 
655, 683, 686, 702, 706, 713, 716, 718

European or CEPT Digital Hierarchy, 763

F

factorization, 126, 312
fast edge rate clocks, 801
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fast Fourier transform, 267– 268
fill bit, 768
fill difference, 793f, 794f, 795, 797f, 798f, 

800f, 812, 813f, 814f, 816f
adjacent filters, 899f
analog, 238
antialiasing, 194, 438, 534, 535f, 536, 970
anti- imaging, 449
banks of, 894f, 905f, 907
cascade, 428, 463, 467– 468, 527– 530
clean up, 469f, 514, 523, 529f, 530f
coefficient memory, 962f
coefficients, 388, 565t, 904, 925f, 928f
composite, 906f
decimate by two, 445f, 446f
decimation, 436, 535f, 1045f
design, 392– 425
direct form, 384, 427
discrete Fourier transform filters,  

220, 907
enhanced discrete Fourier transform 

filter, 905f, 931f
examples of, 370t
finite impulse response, 383– 531
four- phase, 447
half band filters, 425– 433
implementation of, 425– 433
length, 423t, 426t, 427t, 432t, 441, 

565t, 906f
multirate filters, 435– 531
overlap, 224
parallel filter structures, 328
poly phase filters, 436– 465
recursive, 364, 371f, 372f
simulations of, 566f, 567f
sliding coefficient vectors, 548
summation, 884, 887f, 888f
transition bands, 904
transversal architecture, 427
two- filter cascade, 463
two- phase, 443

finite impulse response filters, xvii– xviii, 
383– 531, 403t, 417t, 423t, 426t, 427t, 
432t, 565t

architecture, 546f
cascaded integrator comb filters, 470– 531
clean up filters, 529f, 530f
design, 392– 425
direct form, 384

direct form architecture, 389– 392
discrete time differences and, 384e
even coefficient architecture, 389– 390
filter types, 387– 389
half band filters, 425– 433
linear phase, 386– 387, 388e, 389– 392
low pass digital, 393
multirate, 435– 531
odd coefficient architecture, 390– 392
Parks- McClellan design method, 392– 425
poly phase filters, 436– 465
shorthand drawing notation for, 547f
transfer function, 385e
windowing, 248f

flash memory, 581
flip- flop, 614, 769, 792, 794, 803
floating point, 586, 592, 632, 641, 1009, 1050

attenuation of, 417
double- precision, 401, 403, 408, 410, 

414, 417, 421– 422, 430, 564, 956
filter coefficients and, 408, 422
Microsoft Excel, 209
Parks- McClellan FOTRAN subroutine, 

1057– 1060, 1065, 1084t, 1090
processors, 404
samples, 596
system, 379

fold and sum operation, 924, 925f, 948
folding frequencies, 192, 437, 487f, 496f, 

497f, 519f, 519, 521f
folding memory, 923– 924, 926, 946– 947, 

948– 949, 948t, 949f, 958– 961, 962f
block diagram, 926f
computational example, 927f
double buffers and, 928f
inversion term, 947f
modified architecture, 949f
split buffer, 959f

follow on system, 372, 435
forward Fourier transform, 647, 647e
Fourier series, 129– 157, 137f, 140e

coefficients, 153
compact form of, 148e
computed, 153
graphs of, 143f, 149f, 153f
harmonics of, 141t, 144t, 148t
harmonics of, 157
one sided, 153, 153f
Parseval’s theorem, 181
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Fourier series (continued)
single- sided, 150e
trigonometric, 130e, 131e, 132e, 133e, 

135e, 139e
two- sided, 153f

Fourier transform, xvii, 129– 269, 380e
continuous, 180t, 181t, 647– 688
discrete Fourier transform, 263
discrete time (digital), 187– 253, 188e, 

191e, 201, 203f, 205e, 254– 261, 
261– 267, 689– 754

fast Fourier transform, 267– 268
forward, 158e, 159e
Fourier series, 129– 157
graphs of, 201, 202f
inverse, 158e, 159e
pairs, 164e, 165e, 166e, 167e, 180t, 649e, 

650e, 651e
properties, 179, 181t
time sequences and, 274e
unit circle of, 201
zoom, 435
z- transform and, 274e

frames, 766, 876f
DS- 1, 766t
example data transmission, 790f
frame alignment, 766, 802f
half, 772
master, 768f
microframes, 767, 768f, 780t
pulse synchronizers, 363
subframes, 766, 768

frequency
aliasing, 1, 7– 8, 192– 195, 204, 438– 439, 

439f, 443– 444, 443– 445, 466, 468, 469f, 
483– 490, 485f, 486f, 487f, 489f, 496– 
498, 496f, 497f, 510, 514– 515, 519, 521– 
523, 521f, 527– 536, 528– 529, 529– 536, 
529f, 535f, 581, 955, 970

aliasing tree diagram, 194f
axis folding, 192f, 193f
cutoff, 430f
folding, 8, 8f, 192, 192, 193f, 438, 467, 

484, 486f, 487f, 496f, 497f, 519f, 521f
graphs of, 192f, 193f
input tributary bit clock, 848t
normalized, 9– 10, 12, 192, 211, 217, 

225– 227, 234– 235, 239, 249, 250f, 251f, 
252f, 258f, 266– 267, 362, 389, 393, 396t, 

396, 399, 405– 406, 412, 419, 488– 489, 
534– 536, 538, 539– 540, 560, 561f, 563– 
564, 566f, 567f, 567, 570, 571f, 690– 714, 
717e, 889– 892, 1007– 1008, 1013, 1037

Nyquist, 7, 191, 438, 701f, 704f, 708f, 
709f, 718f, 720f

optimal, 590, 604
possible values, 6
radian, 2, 4– 5, 10– 11, 158– 159, 161, 182, 

188– 189, 239, 253t, 266, 338f, 339f, 
341f, 343f, 347f, 349f, 371f, 372f, 372, 
375f, 377f, 378f, 648, 690– 692, 712, 
754e, 755e, 888– 889, 892

resolution, 2, 12, 191– 192, 232– 233, 
233– 234, 240, 243, 264, 268, 435, 579, 
586, 604, 608– 609, 611– 613, 632– 633, 
633, 826, 828, 833, 842– 844, 851– 854, 
856– 858

step changes, 844
step downs, 849f
unnormalized, 224
voltage controlled crystal oscillator, 

832f
frequency axis

calibration of, 201
folding, 193

frequency deviation, 845, 849f, 851, 852f, 
853f, 855f, 857f, 858f, 859f, 860f, 867f, 
869

frequency division multiplex processing 
system, 448, 535, 645– 646, 679– 680, 
684– 685, 878f, 892, 940, 957– 958, 964, 
966– 970, 972

block diagram, 687f
channels, 535
channels, 875f
down conversion, 685f
signal extraction, 687f
signal spectra, 684f, 878f
time division multiplex conversion, 

873– 881
time division multiplex signal  

pathway, 878f
frequency impulse, 221, 570, 668, 671– 672, 

675, 678, 738, 743, 747, 752, 891
cancellation, 656
cosine, 664, 714, 729
function, 165, 650
response, 167
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shifted, 650, 650e
superimposed, 895

frequency inversion phenomenon, 938
frequency jitter, 825, 860f
frequency offset, 848t

output versus voltage controlled crystal 
oscillator control voltage, 824t

unwanted, 615
zero, 620f

frequency rejection, 572f
frequency sampling method, 384
frequency shift keyed communications 

system, 576
fundamental frequency, 4, 6, 11f, 190, 595t, 

612f, 634f, 638f
direct current components, 130, 142
harmonics in relation to, 12, 136, 140
numerically controlled oscillators,  

579– 580, 584– 585, 587– 588, 594– 595, 
598, 608, 611, 613, 615, 632– 634, 638

G

gallium arsenide gate arrays, 238, 800
garbage (stuff) bits, 768f, 770, 776, 779, 802
generic base band signal spectrum, 518
graphical user interface, 395
Green’s theorem, 79– 84, 79e, 80f, 87, 90, 97
ground bounce, 237
grounding techniques, 373
group delay, 386e
guard bands, 777, 792, 833– 834,  

964– 965, 973

H

half band filter, 425, 435, 469f
frequency response, 469f
Parks- McClellan routine output, 432t

half frame, 772
Hamming, Richard Wesley, 243
hardware

channelizers, 971f
digital sinusoidal generators, 12
elastic store memory and, 792– 801
follow on, 372, 435
hardware multipliers, 546
implementation, 12

pole- zero plot of, 297f
recursive structure, 295f
special purpose digital, 237

harmonic frequencies, 12, 595t
fundamental frequencies and, 130
odd, 598

headroom, 801
heap memory, 632
heterodyne, 573
hexadecimal format, 588, 634
Hilbert transforms, 389, 396e, 1067, 

1072, 1087
histogram, 533
Hogenauer, E. B., 470– 471, 488, 512
Hogenauer LSB pruning procedure,  

499, 517

I

identity tones, 966f, 967f, 968f, 969f, 970f
image bands, 512f, 568f

aliasing and, 483f, 485f, 486f, 487f
anti- imaging low pass filter, 449
attenuation, 510t, 515e, 568f
first edge, 497f
interpolate by two, 542f
residue, 530f

image rejection, 512f, 572f, 932
integers, 396e
integral test, 284
integrals

arc length of, 67f, 68e, 69f
common, 110t
complex, 110t
complex line, 84e, 87e, 90e
contour, 73e
definite, 52, 52f, 53f, 91
double, 79
evaluating, 108e
examples of, 57e, 57f, 58e, 59f, 61f, 

63f, 65f
parametric forms of, 70e
path independent, 91e

integration
attenuation, 363t
frequency response, 362f
gain, 260
graphs of, 92f, 95f
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integration (continued)
incoherent, 261
limits of, 58
path of, 57– 59, 59f, 61f, 63f, 65f, 95f
region of convergence of, 352
register bit width, 355, 356
register width versus coefficient, 357t

interference
narrow band, 372f
transfer functions and, 375f

interpolation, 436, 448– 462, 449f, 450f, 
451f, 452e, 453f, 454e, 455f, 456f, 457f, 
458f, 459e, 460f, 461f, 572f

architecture, 559f
cascaded integrator comb, 511t
coefficients, 565t
complex signals, 550– 552, 551f, 552e
complex to real conversion, 565t
poly phase, 549f, 559f
real signals, 543– 550, 544f, 545f, 546f, 

547f, 548e, 549f, 550e
simulation, 560– 567, 561f, 565t, 566, 567

inverse Fourier transform, 647
invisible functions, 234

J

Japanese Digital Hierarchy, 763
jitter period, 826, 852f, 853– 857, 855f, 857f
Joules, 185– 187

L

L points, 902f, 909f, 926f, 928f, 947f, 949f
discrete Fourier transform of, 880, 881e, 

883f, 906f
L’Hôpital’s rule, 45, 280
Laplace transform, 271
Laurent series expansion, 120– 122, 126
lead time, 614, 622, 637
least significant bits, 372, 501t, 503e, 504e, 

505e, 609, 767
cascaded integrator comb decimation 

filter, 499– 506, 514– 518
digital data locked design, 818– 819, 

825– 829
digital data locked loops, 842, 852

digital data locked transient  
behavior, 835

Hogenauer pruning procedure, 499, 517
phase dithering and, 641– 643
truncation, 501– 502, 517t

legacy code, 1049– 1050, 1064– 1065
line integrals, 51, 52– 54, 55

complex, 84– 96
contours and, 52
integration of, 57
path- dependent, 63

linear phase digital filters, 403t, 411e, 417t, 
423t, 426t, 427t, 432t, 565t

linear phase, 385
linear time invariant causal systems,  

290, 340
linearity, 219t, 297
lobes

main, 163, 220, 222– 225, 230, 232, 234– 
236, 240– 244, 246, 248, 250, 253, 373, 
509, 884, 886, 892– 895, 893f, 898f, 898, 
900– 901, 996

side, 223– 225, 230, 232, 236, 240– 245, 
248, 251, 253– 254, 372– 373, 884, 886, 
898f, 899– 901, 904

low pass filters, 194– 195, 538f, 539f, 568f, 
687f, 885f

frequency response, 542f
Parks- McClellan routine output, 403t
recursive, 364

M

Maclaurin series expansion, 120
magnitude, 219e, 21– 25, 31, 35, 37, 68, 

99– 100, 129, 148– 149, 156, 161, 184, 
211– 213

aliased frequencies, 522
applied example, 261– 263
attenuated image frequency, 570
automatic gain control circuit, 989– 990, 

1009, 1017f, 1034f
averaging, 260– 261
band limited signal, 895
band pass filter, 897– 898, 409f, 410f
band pass weight and, 424f, 425f
channelized input test signal, 963f
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channelizer data processing paths  
and, 909f

clock jitter and, 851– 860
complex pole, 364
complex variable z, 272– 273
computing, 266, 345, 361, 374, 1070, 

1073– 1074
cursor measurements and, 415f, 416f, 

422f
digital data locked operations and, 

825– 829
discrete Fourier transform, 200, 210, 

215– 217, 220– 221, 882– 884, 1039– 1041
discrete Fourier transform filtering, 

956f, 957f
error signals, 825, 984, 987, 995, 1009
fill, 819f, 821f
filter lobes, 223– 224, 234– 236, 240– 244, 

254, 886
filter response, 232– 233
finite impulse response filters and, 386
first order complex conjugate poles, 

322– 324, 323f, 324f
floating point sinusoid, 596
frequency discontinuity, 251
frequency response, 222, 334– 342,  

346– 347, 349– 350, 365– 366, 386
half band filtering, 431f
harmonic components and, 599
high pass filtering and, 415f, 416f
high sample rates and, 480
infinite, 347
input, 355, 895
integrator frequency response, 361
interpolation filter stop band, 570, 573
left- sided sequence, 280– 281
log, 595
low pass filtering, 402f
maximum, 482, 594, 993
noise, 255– 260
output, 235, 371, 903, 966f, 968f, 969f, 

970f, 984, 987, 995, 1039– 1041
pass band ripples and, 396– 397
peak, 240
phase response and, 480
reducing, 1035
region of convergence and, 296– 297
residual image, 573
right- sided sequences, 280, 284– 285

round off error, 600
signal discontinuity, 241
signal energy, 225
spectral leakage, 222– 224, 234, 242, 251
spectrum of complex signals, 541
square waveforms and, 599
stabilizing, 825
stop band filtering and, 421f, 422f
system stability and, 290
truncated sinusoid sample, 596
two- sided sequence, 282
uniform, 649, 694
unity, 2, 10, 222, 234, 473, 692
windowing and, 251, 253t
zero, 222, 347, 370t, 964

McClellan, James H., 392
microcontroller command, 642
microprocessor bus, 577
Microsoft Excel, 208– 209, 221, 227, 228f, 

322, 338, 340, 341f, 342, 343f, 347, 349, 
350, 365– 367, 369, 374, 490, 508, 952, 
992, 1029, 1032, 1033f

Microsoft FORTRAN Power Station 4.0 
compiler, 1063

Microsoft Visual C++ 6.0 Professional 
compiler, 1063

mixed language programming, xx, 1049– 
1090

array arguments, 1059– 1060
C/C++ main program, 1051, 1083– 1090, 

1084t
calling subroutines and functions, 

1051– 1054
compiling, 1063– 1064, 1090
floating point arguments, 1057– 1058
FORTRAN functions, 1055
FORTRAN subroutines, 1054– 1055
integer arguments, 1055– 1057
Parks- McClellan Fortran subroutine, 

1064– 1082
pointer arguments, 1060– 1063

multiplexing, 443, 688, 802f, 808f, 880f
asynchronous input tributaries, 763– 764
DS- 1C multiplex elastic store  

memory, 766
functional DS- 0 to DS- 1C, 765f
input, 448
time division signals, 878f

multiply/accumulate operations, 444
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multiplying D/A converter, 818, 819f, 821f
analog voltage controlled crystal 

oscillator control voltage, 824t
bipolar configuration, 820t
digital input words, 824t
unipolar configuration, 820t
voltage controlled crystal oscillator 

control voltage, 824t
voltage reference pin, 822
voltage to error relationship, 830e

N

noise
additive, 1043f
arithmetic, 209
floor level, 252, 262
loop errors and, 1043f
magnitude, 255
maximum amplitude, 1038e
narrow band, 254
noiseless input, 1043f
random, 255

noninformation bit, 768
nonlinearity, 822, 834
nonzero, 152
North American Digital Hierarchy, 763, 

764t, 765– 768, 765f, 766f, 768f
numerically controlled oscillators, xviii, 

575– 644
accumulator offset and, 577f
block diagrams, 577f, 581f, 610f, 625f, 

634f, 638f, 643f
design performance, 638– 641, 639f, 640f
designing, 628– 640
enhanced phase accumulators, 608– 613
frequency errors from, 613– 622
frequency resolution of, 579, 586, 608– 

609, 611– 613, 633
harmonics, 595t
industry- grade, 628– 640, 629e, 630e
operation of, 629e
output, 589f, 591f, 613– 622, 620f, 622– 

628, 626f, 635t, 639f, 640f
phase accumulator, 577– 581, 577f, 579e, 

580e, 601, 608– 613, 609f, 610f, 611t, 
612f

phase dither, 641– 644, 642e, 642f, 643f, 
643t

phase offset, 622– 628, 622e, 624e, 625e, 
625f, 626f, 627f, 628f, 637– 638, 638f, 
640f

phase register, 575– 577, 609f
phase words, 577, 633– 634, 634f, 635t
rounding errors, 639f
sequence length, 606t, 607t
sine look up tables, 581– 608, 581f, 582e, 

583e, 586e, 587e, 588t, 589f, 591f, 593f, 
594e, 595e, 595t, 597f, 598e, 598f, 599e, 
599f, 600f, 630– 633

synthesized output frequency error, 
613– 622, 614e, 616f, 617f, 618e, 619e, 
620f

tuning accuracy, 634– 637, 635t
Nyquist frequency, 7, 204, 191, 536, 541, 

559, 573, 636, 688, 696, 932, 938,  
942– 943

O

oscillators, 4– 7, 4e, 5e, 6e, 7t
buying, 614– 615, 621– 622
clock, 455f
drift, 618, 620, 621– 622
off the shelf, 586– 587, 637, 802f
programmable, 12
quality of, 614– 616
sample clock, 613– 622
stability, 635

overcorrection, 1018
overflow conditions, 352– 354, 356, 358, 

474, 769– 770, 772, 774, 777, 779, 799, 
949, 997, 1021

overlap regions, 304
overshoot, 996, 997, 1018, 1019– 1022, 

1019f, 1020f, 1022f, 1036

P

Parks- McClellan algorithm, 401
argument list, 395, 430
band pass filters and, 411e
FORTRAN subroutine, 1064– 1082
half band filters and, 432t
high pass filters and, 417t
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low pass filters and, 403t
stop band filters and, 423t
subroutine arguments, 396e
subroutines, 395

Parks, Thomas W., 392
Parseval’s theorem, 149– 150, 150e, 

153– 155, 179t, 181– 182, 181e, 181– 182, 
182e, 186

partial fractions, 103– 104, 312, 328
phase accumulators, 575, 577f, 581f, 

608– 613, 610f, 625f
address ramps and, 616f, 617f
block diagrams, 577f
fractional point, 611t, 612f
maximum values, 356
numerically controlled oscillators  

and, 577f
numerically controlled oscillators  

and, 601
output, 577f, 611t
recursive, 982f

phase angle, 274
phase delay, 386e
phase dithering, 628

generator, 644
least significant bits and, 641– 643
spurious free- dynamic range 

specifications, 644
variance, 643f, 643t
poles
complex, 342– 350, 344e, 344f, 345e
complex conjugate, 318– 322, 345– 347, 

349
first order, 124
locations and time response, 291f
multiple order, 314
real, 335f, 337e
real versus complex, 291f
smallest magnitude, 281

pole- zero analysis, 292, 297f, 297, 315, 
316f, 318, 343, 345, 347, 348f, 372– 373, 
373f, 376f, 376, 520, 522, 526, 980, 997

CIC filter pole- zero placement design, 
493– 495, 494f

errors, 380
low pass recursive filter example,  

364– 366, 365f
magnitude and, 369
plotting, 358

quantization and, 380
regions of convergence and, 358

poly phase filters, 435, 436– 465, 558f, 880f, 
925f, 928f

block diagrams, 443f
channelized filter banks, 955– 958, 956f, 

957f, 958
decimation and, 443f
decimation filters, 436
discrete Fourier transform, 900– 907, 

901e, 902f, 903f, 905f, 906f
enhanced discrete Fourier transform 

filters, 956f
frequency response, 931f, 956f
impulse response, 909f
structure, 906f

polynomials, 41
“poor man’s tuner”, 194– 195
power spectral density, 187, 187e
power

average, 150, 154, 187e
average, 255
bin by bin power comparison, 262
consumption, 514
noise, 255
root mean square of, 980
specific frequency bands and, 187e
triangle waveforms and, 154

pseudo random number sequence 
generator, 642

pseudocode, 789, 791
P- test, 284
pulse code modulation, 763, 968, 1006

multiplexing hierarchy, 763– 768
Pythagorean theorem, 2, 25

R

radian chunks, 4– 6, 6e, 10– 12, 190, 691, 
888– 889, 918

radian frequency, 136, 648e, 690e, 691e
ratio convergence test, 283– 285, 283e, 

287, 352
read pointers, 793f, 811, 812f, 813f, 816f, 

819f, 821f
real poles, 280, 282, 296, 366, 368, 379, 381e

first order, 315– 318
placement, 290– 292, 364
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real poles (continued)
recursive filter example, 370t
second order, 324– 327
time response and, 291f

real zeros, 296, 366– 367, 381e
placement, 335– 338, 340, 342, 364, 370t

recursive accumulator, 352f, 353e, 354e, 370t
reference tone, 615, 964– 965, 966f, 967f, 

968f, 969f, 970f
reference voltage, 818– 823, 819f, 821f, 830, 

845, 869
region of convergence, 275, 279, 286f, 288f, 

289f, 352
Remez exchange algorithm, 392, 403t, 

411e, 417t, 423t, 426t, 427t, 432t, 565t
residue, 121, 120– 127, 121e, 122e, 124e

image bands, 530f
postfilter, 523

rise time, 866t
data locked loops, 861, 862f, 865e, 866t
exponential, 854, 864f
transient, 862f

root mean square, 980, 1000f, 1010f, 1019f, 
1022f, 1030t, 1045f

automatic gain control and, 1005f
output signals, 1017f

root test, 284

S

sample clocks, 1– 2, 4– 6, 10– 11, 190, 293, 
435, 440– 441, 455, 462, 544, 546– 547, 
577– 583, 577f, 581f, 604, 608– 625, 610f, 
611f, 612f, 613– 622, 618e, 620f, 620f, 
625f, 628– 629, 634f, 635– 636, 643– 644, 
643f, 704, 709, 878f, 889, 972, 972, 982f

cycle, 611t
offsets, 617f
oscillator drift, 618, 620, 621– 622
oscillators, 620f
phase accumulators and, 617f

sample rates, 612f, 909f
changing by noninteger value, 462– 465, 

463f, 464f, 465f
decimated, 496f, 529f, 539f, 909f
fractional, 253t
normalization of, 1028e
time series and, 921f

sequences
bipolar sinusoidal, 14
correlation scores, 189
current input time series data, 909f
generators, 641
length, 606t, 607t
maximal length, 605, 641
repetition, 605

sidebands
double sideband amplitude 

modulation, 665
lower, 665f, 666, 731f, 875f
upper, 665– 666, 665f, 731f, 875f

sign manipulation operations, 543,  
558f, 688

signal to noise ratio, 254– 260, 255e, 256e, 
258, 595– 596, 595e, 608, 628– 632, 640, 
1038– 1041

signal tuning, xix, 645– 759
complex conjugate symmetry, 681– 684, 

682f, 683f
complex exponential tuning signals, 741
complex frequency translation, 668– 688, 

669f, 684f, 685f, 686e, 687e, 687f
continuous time (analog) Fourier 

transform, 647– 688, 647e, 648e
discrete complex frequency translation, 

734– 759, 750f, 751f, 753f, 754e, 755e, 
756e, 757e, 758e, 759e

discrete frequency domain unit impulse 
response, 696– 702, 699e, 700e, 
701e, 701f

discrete frequency identities, 720– 727, 
721e, 722e, 723e, 724e, 725e, 726e

discrete real frequency translation, 727– 
734, 728f, 729e, 730f, 731f, 732f, 733f

discrete time (digital) Fourier 
transform, 689– 716, 689e, 690e, 691e, 
692e, 710f, 713e, 714e, 714f, 715f

discrete time domain unit impulse 
response, 692– 695, 692e, 693e, 
694e, 695f

frequency domain unit impulse,  
650– 651, 650e

frequency domain unit impulse, 651f
frequency translation, 657– 661, 657e, 

658e, 659e, 660e
incremental, 885f
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maximum error, 629
quadrature, 622
range, 629
real frequency translation, 661– 668, 

662e, 662f, 663e, 663f, 664e, 664f, 665f, 
667f, 668f

resolution, 629
time domain unit impulse, 648– 649, 

648e, 649e
signals

analog, 880f
average power of, 186e
band limited, 172, 665f, 740f, 745f
bounded, 290
carrier, 615, 664
clipping, 630
converting complex signals to real,  

540– 560, 540f, 542f, 544f, 545f, 546f, 
547f, 548e, 549f, 550e, 551f, 552e, 553f, 
554e, 555e, 555f, 556e, 556f, 557f, 558f, 
559f, 535f

detection and identification, 254
discontinuity, 241
discrete Fourier transform of, 196f, 200f, 

204f, 205e, 206f
end- to- end signal flow, 808
energy spectral density, 185– 186
error signals, 829e, 832f, 848t, 866e
interpolated, 530f
mean square of, 981
paths, 670
peak, 1040f
periodic, 150
perturbation, 1021
preprocessing, 252
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