
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133017533
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133017533
https://plusone.google.com/share?url=http://www.informit.com/title/9780133017533
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133017533
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133017533/Free-Sample-Chapter

Praise for The Official Ubuntu Server Book

“Murphy’s Law is never truer than when it comes to administering a Linux
server. You can pretty much count on something happening to your ma -
chine at a time when you need it the most. That’s when a book with some
basic troubleshooting instructions is worth every penny you paid for it.
 Chapter 11 covers the steps you should take when something goes wrong.”

—Paul Ferrill, LinuxPlanet.com reviewer

“College-level collections catering to Linux programmers and developers
will find The Official Ubuntu Server Book, a top addition to the collection,
covering a complete, free server operating system in a guide to getting
going quickly. From making the most of Ubuntu Server’s latest technolo-
gies to automating installs and protecting the server using Ubuntu’s built-
in security tools, The Official Ubuntu Server Book, is packed with keys to
success for any Ubuntu user.”

—Jim Cox, Midwest Book Review

“This book will get you started on the path of the server admin, both
within the context of Ubuntu server and in the larger realm of managing a
server infrastructure. The desktop and server versions of Ubuntu are con-
tinuing to mature. Read this book if you want to keep up.”

—James Pyles, author

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page i

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page ii

The Official
Ubuntu
Server Book
Third Edition

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Kyle Rankin

Benjamin Mako Hill

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page iii

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2014 Canonical, Ltd.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

The Introduction and Chapter 3 of this book are published under the Creative Commons
Attribution-ShareAlike 3.0 license, http://creativecommons.org/licenses/by-sa/3.0/.

ISBN-13: 978-0-13-301753-3
ISBN-10: 0-13-301753-2
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, July 2013

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page iv

I dedicate this book to my wife, Joy. It is not easy to balance a full-time
job and writing a book while still having time for a family. She has
endured many a book-writing process at this point and has always been
my main source of support and motivation.

—Kyle Rankin

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page v

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page vi

Contents at a Glance

vii

Contents ix

Preface xix

Acknowledgments xxv

About the Authors xxvii

Introduction xxix

Chapter 1: Installation 1

Chapter 2: Essential System Administration 17

Chapter 3: Package Management 51

Chapter 4: Automated Ubuntu Installs 83

Chapter 5: Guide to Common Ubuntu Servers 125

Chapter 6: Security 199

Chapter 7: Backups 239

Chapter 8: Monitoring 267

Chapter 9: Virtualization and Cloud Computing 297

Chapter 10: Fault Tolerance 341

Chapter 11: Troubleshooting 399

Chapter 12: Rescue and Recovery 429

Chapter 13: Help and Resources 449

Chapter 14: Basic Linux Administration 463

Appendix: Cool Tips and Tricks 485

Index 495

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page vii

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page viii

Contents

ix

Preface xix

Acknowledgments xxv

About the Authors xxvii

Introduction xxix

Welcome to Ubuntu Server xxix
Free Software, Open Source, and Linux xxx

Free Software and GNU xxxi
Linux xxxii
Open Source xxxiii

A Brief History of the Ubuntu Project xxxiv
Mark Shuttleworth xxxiv
The Warthogs xxxvi
What Does Ubuntu Mean? xxxvii
Creating Canonical xxxviii
The Ubuntu Community xxxix

Ubuntu Promises and Goals xli
Philosophical Goals xli
Conduct Goals and Code of Conduct xliii
Technical Goals xliv

Canonical and the Ubuntu Foundation xlvi
Canonical, Ltd. xlvi
Canonical’s Service and Support xlvii
The Ubuntu Foundation xlviii

History of Ubuntu Server xlix
Simple, Secure, Supported li

CHAPTER 1 Installation 1

Get Ubuntu 2
Boot Screen 3

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page ix

x Contents

Disk Partitioning 5
What Is a Partition? 5
Guided—Use Entire Disk 8
Guided with LVM 8
Manual 9

Server Roles 13
Installer Console 15
Reboot the System 16

CHAPTER 2 Essential System Administration 17

Basic Command-Line Administration 18
Move Around the System 18
File Ownership 21
Check Running Processes 21
Edit Files 23
Become Root 24

Ubuntu Boot Process 24
GRUB 25
The Kernel Boot Process 26
/sbin/init 27
Services 34

File System Hierarchy 39
Networking 45

Network Configuration Files 46
Core Networking Programs 48

CHAPTER 3 Package Management 51

Introduction to Package Management 52
Background on Packages 53
What Are Packages? 53
Basic Functions of Package Management 55
Advanced Functions of Package Management Systems 58

Debian Packages 60
Source Packages 60
Binary Packages 63

Package Management in Ubuntu 63
Staying Up-to-Date 64
Searching and Browsing 65
Installation and Removal 67
Manipulating Installed Packages 69
Manipulating Repositories 71

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page x

Ubuntu Default Repositories 73
Using Other Repositories 74
Upgrading a Whole System 75
Mirroring a System 76

Making Your Own Packages 77
Rebuilding Packages 77
New Upstream Versions 79
Building Packages from Scratch 80
Hosting Your Own Packages 81

CHAPTER 4 Automated Ubuntu Installs 83

Preseeding 84
Basic Preseed Configuration for CD-ROM 85
Networking Options 89
Partitioning 91
Packages and Mirrors 96
User Settings 98
GRUB 99
Miscellaneous 100
Dynamic Preseeding 100

Kickstart 104
Basic Kickstart Configuration for CD-ROM 104
Changes and Limitations in Ubuntu Kickstart 108
Run Custom Commands during the Install 110

PXE Boot Server Deployment 111
DHCP 112
TFTPD 113
Configure Pxelinux 113
Web 116
Test Your PXE Server 116

Customize Automated Installs 118
Multiple Kickstart Files 118
Boot Cheat Codes 119
DHCP Selection 121
DHCP Selection by Subnet 123

CHAPTER 5 Guide to Common Ubuntu Servers 125

DNS Server 126
Install BIND 127
Ubuntu Conventions 127
Caching Name Server 129

Contents xi

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xi

xii Contents

DNS Master 129
DNS Slave 132
Manage BIND with rndc 134

Web Server 135
Install a Web Server 135
Ubuntu Apache Conventions 136
apache2ctl 139
Apache Documentation 141
WordPress, a Sample LAMP Environment 141

Mail Server 144
Install Postfix 144
Postfix Configuration Types 145
Ubuntu Postfix Conventions 146
Administering Postfix 148
Default Postfix Example 150
Secondary Mail Server 153
Greylisting Mail Server 154

POP/IMAP Server 156
Enable Maildirs on Postfix 156
Install Dovecot 157
Ubuntu Dovecot Conventions 158

OpenSSH Server 158
Ubuntu OpenSSH Conventions 159

DHCP Server 160
Install DHCP 160
Ubuntu DHCP Conventions 161
Configure DHCP 161

Database Server 163
MySQL 163
PostgreSQL 168

File Server 174
Samba 174
NFS 177

Edubuntu and LTSP 180
What Is LTSP? 180
Technical Details of the LTSP Boot Process 181
The Benefits of LTSP 182
Other Uses 183
LTSP Availability in Ubuntu 183
Installing an LTSP Server 183

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xii

Contents xiii

LTSP Server Configurations 184
The Installation Procedure 186
Initial LTSP Server Setup 188
Initial LTSP Client Setup 189
Installing the LTSP Environment in Ubuntu or

on a Desktop Installation 190
Special LTSP Cases 191
Changing Your IP Address 194
Local Devices over LTSP 195
Sound over LTSP 197

CHAPTER 6 Security 199

General Security Principles 200
Sudo 201

Configure sudo 203
sudo Aliases 205

AppArmor 206
AppArmor Profiles 207
Enforce and Complain Modes 209
Ubuntu AppArmor Conventions 210

SSH Security 210
sshd_config 211
Key-Based Authentication 211
SSH Brute-Force Attacks 213

Firewalls 214
ufw Commands 216
ufw Rule Syntax 217
Extended ufw Rules 218
ufw Examples 220
Ubuntu ufw Conventions 224

Intrusion Detection 226
Update Tripwire Policy 227
Initialize the Tripwire Database 229
Update the Tripwire Database 230
Ubuntu Tripwire Conventions 232

Incident Response 233
Do You Prosecute? 233
Pull the Plug 233
Image the Server 234
Server Redeployment 234
Forensics 235

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xiii

CHAPTER 7 Backups 239

Backup Principles 240
Drive Imaging 242
Database Backups 244

MySQL 244
PostgreSQL 248

BackupPC 249
BackupPC Storage 250
Default BackupPC Configuration 251
Configure the Client Machine 254
Add the Client to BackupPC 255
Start the First Backup Job 256
rsync Tweaks 258
Restore Files 263
Ubuntu BackupPC Conventions 265

CHAPTER 8 Monitoring 267

Local Monitoring Tools 268
Smartmontools 268
sysstat 269

Ganglia 273
Install ganglia-monitor on All Hosts 274
Configure Ganglia Server 276
Install the Ganglia Web Front End 278

Nagios 280
Install GroundWork 281
GroundWork File Conventions 282
Initial Configuration 283
Configure Nagios 286
Commit Changes to Nagios 289
Configure Contact List 289
Enable Notifications for Nagios 290
Add a Service Check to a Host 291
Add a New Host 291
Advanced Configuration 292
More GroundWork Information 296

CHAPTER 9 Virtualization and Cloud Computing 297

KVM 298
Install KVM 298
Enable Support in BIOS 299

xiv Contents

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xiv

Install KVM Packages 299
Configure KVM Networking 300
Create a New VM 302
Extra vmbuilder Options 306
Manage VMs with virsh 309
KVM Graphical Console and Management Tools 312

Amazon EC2 315
Register an Account 315
Setting Up EC2 API Tools 316
Create an ssh Key Pair 319
Pick an Amazon AMI 320
Security Groups 324
SSH into the Instance 326
Start, Stop, and Terminate an Instance 327
Userdata Scripts 328

Juju 330
Install and Configure Juju 330
Juju Bootstrap 333
Deploy Juju Services 333
Fault Tolerance 337
Destroying Instances 338

CHAPTER 10 Fault Tolerance 341

Fault Tolerance Principles 342
RAID 344

RAID Levels 345
Configure RAID during Installation 346
Configure RAID after Installation 348
Software RAID Management 351
Migrate Non-RAID to Software RAID 354
Migrate from RAID 1 to RAID 5 359
Add a Drive to a RAID 5 Array 366

LVM 369
LVM Theory and Jargon 370
Setting Up LVM 371

Ethernet Bonding 372
Ubuntu 10.04 Network Configuration 375
Ubuntu 12.04 and Newer Network Configuration 376
Enable the Bonded Interface 377

Contents xv

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xv

Clusters 378
Heartbeat 380
DRBD 388

CHAPTER 11 Troubleshooting 399

General Troubleshooting Philosophy 400
Divide the Problem Space 400
Favor Quick, Simple Tests over Slow, Complex Tests 401
Favor Past Solutions 401
Good Communication Is Critical

When Collaborating 402
Understand How Systems Work 402
Document Your Problems and Solutions 402
Use the Internet, but Carefully 403
Resist Rebooting 403

Localhost Troubleshooting 403
Host Is Sluggish or Unresponsive 404
Out of Disk Space 413

Network Troubleshooting 416
Server A Can’t Talk to Server B 416
Can I Route to the Remote Host? 421
Test the Remote Host Locally 424

Hardware Troubleshooting 425
Network Card Errors 425
Test Hard Drives 426
Test RAM 427

CHAPTER 12 Rescue and Recovery 429

Ubuntu Recovery Mode 430
File Systems Won’t Mount 432
Problem Init Scripts 434
Reset Passwords 435

Ubuntu Server Recovery CD 435
Boot into the Recovery CD 436
Recover GRUB 438
Repair the Root File System 438

Ubuntu Desktop Live CD 439
Boot the Live CD 439
Add the Universe Repository 439
Recover Deleted Files 440

xvi Contents

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xvi

Restore the Partition Table 443
Rescue Dying Drives 444

CHAPTER 13 Help and Resources 449

Paid Support from Canonical 450
Forums 451
Internet Relay Chat 452
Mailing Lists 455
Online Documentation 456
Localhost Documentation 457
Local Community Teams 458
Other Languages 459
Tech Answers System (Launchpad) 459
Bug Reporting 459
For More Information 461

CHAPTER 14 Basic Linux Administration 463

Shell Globs 464
Regular Expressions 465

Pipes and Redirection 466
Redirection 470

File Permissions and Ownership 472
chmod 474

Linux File Types 474
Symbolic Links 475
Hard Links 476
Device Files 477

At and Cron 478
At 478
Cron 480

APPENDIX Cool Tips and Tricks 485

Avoid That grep Command in grep Output 485
Shortcut to a Command Path 486
Wipe a Drive in One Line 486
Run a Command Over and Over 487
Make a Noise When the Server Comes Back Up 487
Search and Replace Text in a File 487
find and exec Commands 488

Contents xvii

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xvii

Bash Commands with Too Many Arguments 488
Use Your Bash History 489
Are These Files Identical? 489
Go Back to Your Previous Directory 489
Find Out Who Is Tying Up a File System You

Want to Unmount 490
Send a Test E-mail Using telnet 490
Easy SSH Key Sharing 491
Get the Most Out of Dig 492

Index 495

xviii Contents

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xviii

Preface

xix

WELCOME to the third edition of The Official Ubuntu Server Book!

When most people talk about Ubuntu these days, they tend to talk about
the Ubuntu Desktop. After all, it’s the easy-to-use, “just works” approach
to the desktop that has made Ubuntu one of the most popular desktop
Linux distributions. What has gotten less attention, although even that is
starting to change, is Ubuntu Server. It turns out that desktop Linux users
aren’t the only ones who want their distribution to “just work”—system
administrators appreciate that on their servers as well. In Ubuntu Server
you will find all of the powerful server infrastructure from the Debian
project plus that extra bit of Ubuntu polish, innovation, and focus on
ease of use.

About This Book
This book is the result of the collaborative effort of not just the principal
authors, but of the Ubuntu Server team itself. As it is the official, author-
ized book on Ubuntu Server, the focus has been on a server guide based on
our collective experience. Beyond that, the goal is to have something to
offer to both the beginner system administrator and the battle-hardened
senior sysadmin. On the surface it might seem a tough balance to achieve,
but in reality both groups ultimately want the same thing: for their servers
to work. Now it’s true that some administrators revel in doing things the
hard way. Some even treat it as a point of pride. The thing is, all of us who
have administered servers for years can do and have done things the hard
way as well, but ultimately you realize that there’s nothing particularly
impressive in doing everything by hand—in the end you just have too
much to do and any time-saving steps are welcome.

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xix

As you will see, most of this book takes a pragmatic approach to server
management. Where Ubuntu offers new programs or features to ease
administration and save time, you will find them mentioned here. If you
are a beginner administrator, you will find that administering an Ubuntu
server isn’t nearly as difficult as you might think. Experienced administra-
tors, especially those coming from other platforms, will find numerous
time-saving tips and programs, as well as where Ubuntu has updated how
a service is organized (Apache being a good example); you can treat this
book as a map to point you to all of the right directories.

One great thing about Ubuntu as a server is that there are so many great
server packages available for it. Of course, this creates a dilemma for us as
writers: It’s just not possible to feature every available e-mail and
IMAP/POP3 server, for instance. In these cases we’ve tried to pick out pro-
grams that are easy to install, configure, and use under Ubuntu, as well as
highlight programs that are preferred by the authors and server team.
While doing that, there’s a good chance that your favorite program for X,
Y, and Z was left out. It’s certainly no slight against any of those pro-
grams—we just had to draw the line somewhere.

How the Book Is Organized
Different people read tech books differently. Some people read them cover
to cover, and others skip right ahead to the topic they need immediate help
with. You will find that the way this book is organized lends itself well to
both approaches. The first few chapters lay the foundation so you can
install Ubuntu and navigate the system even if it’s your first time. After
that the chapters focus on particular server topics, from security to moni-
toring to system rescue.

� Chapter 1—Installation. In the first chapter you will learn how to use
the default Ubuntu Server CD to install Ubuntu on a server. This
guide includes a complete walk-through of the installation process
from the initial boot screen to partitioning to your first login prompt.

� Chapter 2—Essential System Administration. If you are new to
Ubuntu system administration, the amount of learning ahead of you
might seem daunting. In this chapter you will find not only a solid
foundation of instructions on how to navigate the Linux command

xx Preface

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xx

line, but also an introduction to the Ubuntu boot process and the
standards behind all of the directories on an Ubuntu system. By the
end of the chapter you should have a good basis to continue with the
rest of the book.

� Chapter 3—Package Management. This chapter introduces you to
packages and the packaging system—the way that Ubuntu handles
the installation, removal, and management of software. We provide a
solid foundation in what packages do and how they do it before
drilling down into the details of how an administrator can manage
software the Ubuntu way. In the final pages, we cover the way that
administrators can switch from being consumers to producers and
begin making their own packages.

� Chapter 4—Automated Ubuntu Installs. While you can certainly
install Ubuntu step by step from the install CD, that method doesn’t
work so well when you have tens or hundreds of servers to install. This
chapter covers the preseed method for automating Ubuntu installs
along with Kickseed—Ubuntu’s port of Kickstart. In addition to a
description of how to use both of these technologies independently,
you will find out it’s even better when you use them together.

� Chapter 5—Guide to Common Ubuntu Servers. There is an enormous
number of services you can run on an Ubuntu server. In this chapter
we highlight some of the more popular services, from Web to e-mail to
file services. If you are a new administrator, you will find a simple guide
on how to install and configure these services for the first time. If you
are an experienced administrator coming from another distribution,
you will find this chapter a handy, how-to guide on how Ubuntu orga-
nizes all of the configuration files for your favorite services.

� Chapter 6—Security. Security is an important topic for any adminis-
trator. Ubuntu Server already is pretty secure by default, and in this
chapter we highlight some of these mechanisms, along with steps you
can take to increase your security even further. Some of the security
topics include sudo, firewall configuration, an introduction to foren-
sics, and even Ubuntu’s AppArmor software.

� Chapter 7—Backups. There are two kinds of administrators: those
who back up their servers and those who haven’t lost valuable data
yet. Backup software abounds for Linux as a whole and for Ubuntu

Preface xxi

Rankin_3e_FM_Rankin 6/27/13 10:10 AM Page xxi

specifically, and in this chapter you will see a few easy-to-set-up
approaches to keeping your data secure.

� Chapter 8—Monitoring. Monitoring is one of the most valuable sys-
tems an administrator can set up while simultaneously being the
most annoying (why do servers always seem to page you in the
middle of the night?). In this chapter we cover some different
approaches to monitoring systems both for trending purposes and
to alert you to any problems. By the end of the chapter you will no
longer lose sleep wondering if a server is up—you’ll lose sleep only
when it goes down.

� Chapter 9—Virtualization and Cloud Computing. Virtualization and
cloud computing are hot topics in system administration today. With
increasingly powerful hardware out there, virtualization provides you
with a way to squeeze the most efficiency out of your servers and
cloud computing abstracts even further so that servers can be created
and destroyed on a whim. In this chapter we cover one of the most
popular server-based virtualization tools out there: KVM. We also
cover how to use Amazon’s EC2 cloud environment with command-
line tools and also how to automate EC2 server deployment with a
new Canonical tool called Juju.

� Chapter 10—Fault Tolerance. If a lot is riding on your servers and
your downtime is measured in dollars and not minutes, you realize
very quickly that your servers need fault tolerance. This chapter cov-
ers the Ubuntu software RAID, including steps to migrate from one
type of RAID to another. Then we will cover how to set up redundant
network connections and finish up with a guide to setting up your
own Linux cluster. We also discuss how to get up and running with
logical volume management (LVM).

� Chapter 11—Troubleshooting. No matter how great an administrator
you are, eventually something on your servers will fail. Over the years
you develop a series of troubleshooting steps you go through whenever
you find a problem on your systems. In this chapter we condense years
of troubleshooting experience into a series of step-by-step guides to
walk you through common server and network problems and how to
use standard Ubuntu tools and techniques to diagnose them.

xxii Preface

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxii

� Chapter 12—Rescue and Recovery. We’ve often said that we’ve
learned more about Linux from fixing a broken system than in any
other way. In some environments when a system won’t boot, an
administrator might just install a new operating system. Under
Ubuntu, however, you’ll find that most common boot problems also
have a common, easy solution. In this chapter we discuss how to use
different stages of rescue modes both on Ubuntu and the Ubuntu
Server install CD itself to repair your system.

� Chapter 13—Help and Resources. One great thing about Ubuntu is
just how many support avenues there are when you need help.
Whether it’s documentation on the machine itself, guides on the offi-
cial Ubuntu site, forums, or even professional Canonical support,
when you are stuck you aren’t alone. In this chapter we cover all of the
different ways to get support for your Ubuntu server.

� Chapter 14—Basic Linux Administration. This chapter picks up
where Chapter 2, Essential System Administration, left off. Here we
discuss some of the core foundation concepts behind Linux adminis-
tration, including file permissions, different file types, pipes, and
other core Linux information. Beginner administrators will find this
a very useful guide to flesh out any gaps in their command-line
knowledge, and the experienced administrators will find it a good
refresher on core concepts.

� Appendix—Cool Tips and Tricks. Over the years you develop all sorts
of useful tips, one-liners, and other shell commands that make your
life as an administrator easier. Here you will find some of our favorite
time-saving tips and hacks in rapid-fire form.

Media with This Book
This book includes two versions of Ubuntu Server: Ubuntu 12.04.2 for 64-
bit machines and the latest Ubuntu 13.04 release, so you can pick the ver-
sion that best matches your needs.

Although we have included both Ubuntu 12.04.2 and 13.04 releases and
have written the book for both versions, you might decide to try out a

Preface xxiii

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxiii

newer Ubuntu release. In that case, just go to http://ubuntu.com and
either download the CD image or request a copy to be sent to you. No
matter which Ubuntu Server CD you pick, it’s relatively easy to use the
CDs. Just insert the version you want to install into your computer and
boot from the CD-ROM. When the CD boots, you will see a number of
options on the screen, but to install Ubuntu Server, just select Install
Ubuntu Server. The installer that launches will ask some fairly straightfor-
ward questions common to most install discs, and if you get stuck, just
turn to Chapter 1 for a more in-depth walk-through of the install process.

xxiv Preface

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxiv

Acknowledgments

xxv

JORGE, I WOULDN’T HAVE been involved in this book if it weren’t for you. I’m
one in a long list of people using Ubuntu because of Jorge. His enthusiasm
is infectious, and I can’t count how many times he’s introduced me to
some cool new program or tool that I write off at first and then somehow
find myself using eventually.

Debra and Mako, it has been great working with both of you on this
project, and thank you for the opportunity and guidance. Also thanks to
Matthew for his help on the support chapter. Robert, thanks so much for
your great attention to detail and tracking down all the areas where I had
made typos and mistakes. Thanks to Bill “The Cloud” Childers for provid-
ing me with equipment for the UEC section.

Extra thanks to Dustin, Nick, Jamie, Kees, Alan, Mathias, Thierry, and the
rest of the Ubuntu Server team for all of your excellent feedback and help
through this process.

—Kyle Rankin

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxv

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxvi

About the Authors

xxvii

Kyle Rankin is a senior systems administrator, the author of DevOps
Troubleshooting, Knoppix Hacks, Knoppix Pocket Reference, Linux Multi-
media Hacks, and Ubuntu Hacks, and he has contributed to a number of
other O’Reilly books. Kyle is also an award-winning columnist for Linux
Journal and has had articles featured in PC Magazine, TechTarget, and
other publications.

Benjamin Mako Hill is a Ph.D. candidate at the Sloan School of Manage-
ment and Media Lab at MIT, and, as of Fall 2013, an assistant professor of
communications at the University of Washington. As part of the founding
Ubuntu team, his charge at Canonical was to help grow the Ubuntu devel-
opment and user community during the project’s first year. Mako has con-
tinued his involvement with Ubuntu as a member of the Community
Council governance board and through projects such as this book.

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxvii

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxviii

Introduction

xxix

THIS INTRODUCTION GIVES AN overview of Ubuntu and Ubuntu Server. After
a quick welcome, it includes a brief history of free software, open source,
and GNU/Linux and of the Ubuntu project itself, with a focus on some of
the major players on the Ubuntu scene. This introduction ends where the
rest of this book will continue: with a history of the Ubuntu Server project
and an overview of that project’s goals and accomplishments.

Welcome to Ubuntu Server
In the just over eight years of its life, Ubuntu has become one of the most
popular GNU/Linux-based operating systems. In the process, however,
public perception has been disproportionately focused on Ubuntu’s role
as a desktop-based operating system. While all popularity is certainly wel-
come for those of us involved in the project, this success has, at times,
overshadowed the rock-solid server operating system that Ubuntu has
been constructed to be. For those of us who have helped build out
Ubuntu’s server-specific features and who use it daily, this is both unfortu-
nate and undeserved. Designed and used as a server since day one, Ubuntu
has supported a server team that was one of the first active teams in the
Ubuntu community and has been one of the most successful. Although
perceptions have changed in large part, many prospective users—and even
some current Ubuntu users—often continue to think of Ubuntu as some-
thing for desktops.

Perhaps it is just that people are so surprised at the usability of Ubuntu on
the desktop—especially in the early days when expectations for desktop
GNU/Linux distributions were low—that the public focus naturally has
drifted away from Ubuntu’s server offering. Lots of other GNU/Linux dis-
tributions run great on servers, but a solid desktop experience continues

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxix

to be surprising to many users. As a result, when people talk about Ubuntu,
they often tend to talk about desktops. Perhaps, on the other hand, people
just figured that such a well-polished desktop must have come at the cost
of the server-oriented features and support. Of course, no such sacrifices
were made.

To a large extent, times have changed. The Ubuntu Server team has contin-
ued its tireless work both to improve the experience for server users of
Ubuntu and to help promote Ubuntu as a server solution. Documenta-
tion, testimonials, certification of server-based software, support contracts
from a variety of sources, training courses, and more have all contributed
to remaking Ubuntu into a powerful player on the server. Although its
desktop credentials have not been diminished, Ubuntu’s server chops are
increasingly difficult to overlook. Over the past two years, Ubuntu has
begun to become a major player in the GNU/Linux server market.

More than anything else, testimonials have spread and the small group of
early Ubuntu Server users has spread the word. More and more people
choose Ubuntu for their servers every day. In fact, this book is simply the
latest striking example of just how far Ubuntu on servers has come. Not
only do people now know that Ubuntu runs on a server, they know it runs
well. This book is publishable only because there is a market for it. That
market is made up of people who have heard good things about Ubuntu
on the server and who are getting ready to take the plunge themselves.
Welcome. We hope we can help make the process easier. We’ve come a long
way, and we’re still only just beginning.

Free Software, Open Source, and Linux
A history of Ubuntu Server must, in large part, be a history of Ubuntu
itself. A history of Ubuntu must, in large part, be a history of the free soft-
ware movement and of the Linux kernel. While thousands of individuals
have contributed in some form to Ubuntu, the project has succeeded only
through the contributions of many thousands more who have indirectly
laid the technical, social, and economic groundwork for Ubuntu’s success.
While introductions to free software, open source, and GNU/Linux can be
found in many other places, no introduction to Ubuntu is complete with-

xxx Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxx

out a brief discussion of these concepts and the people and history behind
them. It is around these concepts and within these communities that
Ubuntu was motivated and born. Ultimately, it is through these ideas that
it is sustained.

Free Software and GNU

In a series of events that have almost become legend through constant rep-
etition, Richard M. Stallman created the concept of free software in 1983.
Stallman grew up with computers in the 1960s and 1970s, when computer
users purchased very large and extremely expensive mainframe comput-
ers, which were then shared among large numbers of programmers. Soft-
ware was, for the most part, seen as an add-on to the hardware, and every
user had the ability and the right to modify or rewrite the software on his
or her computer and to freely share this software. As computers became
cheaper and more numerous in the late 1970s, producers of software
began to see value in the software itself. Producers of computers began to
argue that their software was copyrightable and a form of intellectual
property much like a music recording, a film, or a book’s text. They began
to distribute their software under licenses and in forms that restricted its
users’ abilities to use, redistribute, or modify the code. By the early 1980s,
restrictive software licenses had become the norm.

Stallman, then a programmer at MIT’s Artificial Intelligence Laboratory,
became increasingly concerned with what he saw as a dangerous loss of the
freedoms that software users and developers had up until that point enjoyed.
He was concerned with computer users’ ability to be good neighbors and
members of what he thought was an ethical and efficient computer-user
community. To fight against this negative tide, Stallman articulated a vision
for a community that developed liberated code—in his words, “free soft-
ware.” He defined free software as software that had the following four
characteristics—labeled as freedoms 0 through 3 instead of 1 through 4 as a
computer programmer’s joke:

� The freedom to run the program for any purpose (freedom 0)

� The freedom to study how the program works and adapt it to your
needs (freedom 1)

Introduction xxxi

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxxi

� The freedom to redistribute copies so you can help your neighbor
(freedom 2)

� The freedom to improve the program and release your improvements
to the public so that the whole community benefits (freedom 3)

Access to source code—the human-readable and modifiable blueprints of
any piece of software that can be distinguished from the computer-read-
able version of the code that most software is distributed as—is a prereq-
uisite to freedoms 1 and 3. In addition to releasing this definition of free
software, Stallman began a project with the goal of creating a completely
free OS to replace the then-popular UNIX. In 1984, Stallman announced
this project and called it GNU—another joke in the form of a recursive
acronym for “GNU’s Not UNIX.”

Linux

By the early 1990s, Stallman and a collection of other programmers work-
ing on GNU had developed a near-complete OS that could be freely shared.
They were, however, missing a final essential piece in the form of a kernel—
a complex system command processor that lies at the center of any OS. In
1991, Linus Torvalds wrote an early version of just such a kernel, released it
under a free license, and called it Linux. Linus’s kernel was paired with the
GNU project’s development tools and OS and with the graphical window-
ing system called X. With this pairing, a completely free OS was born—free
both in terms of price and in Stallman’s terms of freedom.

All systems referred to as Linux today are, in fact, built on the work of this
collaboration. Technically, the term Linux refers only to the kernel. Many
programmers and contributors to GNU, including Stallman, argue emphat-
ically that the full OS should be referred to as GNU/Linux in order to give
credit not only to Linux but also to the GNU project and to highlight
GNU’s goals of spreading software freedom—goals not necessarily shared
by Linus Torvalds. Many others find this name cumbersome and prefer
calling the system simply Linux. Yet others, such as those working on the
Ubuntu project, attempt to avoid the controversy altogether by referring to
GNU/Linux only by using their own project’s name.

xxxii Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxxii

Open Source

Disagreements over labeling did not end with discussions about the nam-
ing of the combination of GNU and Linux. In fact, as the list of contribu-
tors to GNU and Linux grew, a vibrant world of new free-software projects
sprouted up, facilitated in part by growing access to the Internet. As this
community grew and diversified, a number of people began to notice an
unintentional side effect of Stallman’s free software. Because free software
was built in an open way, anyone could contribute to software by looking
through the code, finding bugs, and fixing them. Because software ended
up being examined by larger numbers of programmers, free software was
higher in quality, performed better, and offered more features than similar
software developed through proprietary development mechanisms. In
many situations, the development model behind free software led to soft-
ware that was inherently better than proprietary alternatives.

As the computer and information technology industry began to move into
the dot-com boom, one group of free software developers and leaders,
spearheaded by two free software developers and advocates—Eric S. Ray-
mond and Bruce Perens—saw the important business proposition offered
by a model that could harness volunteer labor or interbusiness collabora-
tion and create intrinsically better software. However, they worried that
the term free software was problematic for at least two reasons. First, it was
highly ambiguous—the English word free means both gratis, or at no cost
(e.g., as in “free beer”) and liberated in the sense of freedom (e.g., as in
“free speech”). Second, there was a feeling, articulated most famously by
Raymond, that all this talk of freedom was scaring off the very business
executives and decision makers whom the free software movement needed
to impress in order to succeed.

To tackle both of these problems, this group coined a new phrase—open
source—and created a new organization called the Open Source Initiative.
The group set at its core a definition of open source software that over-
lapped completely and exclusively both with Stallman’s four-part defini-
tion of free software and with other community definitions that were also
based on Stallman’s.

One useful way to understand the split between the free software and open
source movements is to think of it as the opposite of a schism. In religious

Introduction xxxiii

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxxiii

schisms, churches separate and do not work or worship together because
of relatively small differences in belief, interpretation, or motivation. For
example, most contemporary forms of Protestant Christianity agree on
almost everything but have separated over some small but irreconcilable
difference. However, in the case of the free software and open source move-
ments, the two groups have fundamental disagreements about their motiva-
tion and beliefs. One group is focused on freedom, while the other is focused
on pragmatics. Free software is most accurately described as a social move-
ment, whereas open source is a development methodology. However, the
two groups have no trouble working on projects hand in hand.

In terms of the motivations and goals, open source and free software
diverge greatly. Yet in terms of the software, the projects, and the licenses
they use, they are completely synonymous. While people who identify
with either group see the two movements as being at odds, the Ubuntu
project sees no conflict between the two ideologies. People in the Ubuntu
project identify with either group and often with both. In this book, we
may switch back and forth between the terms as different projects and
people in Ubuntu identify more strongly with one term or the other. For
the purposes of this book, though, either term should be read as implying
the other unless it is stated otherwise.

A Brief History of the Ubuntu Project
A history of Ubuntu, born in April 2004, may seem premature. However,
the last six years have been full ones for Ubuntu. With its explosive growth,
it is difficult even for those involved most closely with the project to track
and record some of the high points. Importantly, there are some key fig-
ures whose own history must be given for a full understanding of Ubuntu.
This brief summary outlines the high points of Ubuntu’s history to date
and gives the necessary background knowledge to understand where
Ubuntu comes from.

Mark Shuttleworth

No history of Ubuntu can call itself complete without a history of Mark
Shuttleworth. Shuttleworth is, undeniably, the most visible and important
person in Ubuntu. More important from the point of view of history,

xxxiv Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxxiv

Shuttleworth is also the originator and initiator of the project—he made
the snowball that would eventually roll on and grow to become the Ubuntu
project.

Shuttleworth was born in 1973 in Welkom, Free State, in South Africa. He
attended Diocesan College and obtained a business science degree in
finance and information systems at the University of Cape Town. During
this period, he was an avid computer hobbyist and became involved with
the free and open source software community. He was at least marginally
involved in both the Apache project and the Debian project and was the
first person to upload the Apache Web server, perhaps the single most
important piece of server software on GNU/Linux platforms, into the
Debian project’s archives.

Seeing an opportunity in the early days of the Web, Shuttleworth founded
a certificate authority and Internet security company called Thawte in his
garage. Over the course of several years, he built Thawte into the second-
largest certificate authority on the Internet, trailing only the security behe-
moth VeriSign. Throughout this period, Thawte’s products and services
were built and served almost entirely from free and open source software.
In December 1999, Shuttleworth sold Thawte to VeriSign for an undis-
closed amount that reached into the hundreds of millions in U.S. dollars.

With his fortune made at a young age, Shuttleworth might have enjoyed a
life of leisure—and probably considered it. Instead, he decided to pursue
his lifelong dream of space travel. After paying approximately $20 million
to the Russian space program and devoting nearly a year to preparation,
including learning Russian and spending seven months training in Star
City, Russia, Shuttleworth realized his dream as a civilian cosmonaut
aboard the Russian Soyuz TM-34 mission. On this mission, Shuttleworth
spent two days on the Soyuz rocket and eight days on the International
Space Station, where he participated in experiments related to AIDS and
genome research. In early May 2002, Shuttleworth returned to Earth.

In addition to space exploration and a less-impressive jaunt to Antarctica,
Shuttleworth played an active role as both a philanthropist and a venture
capitalist. In 2001, he founded the Shuttleworth Foundation (TSF), a non-
profit organization based in South Africa. The foundation was chartered

Introduction xxxv

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxxv

to fund, develop, and drive social innovation in the field of education. Of
course, the means by which TSF attempts to achieve these goals frequently
involves free software. Through these projects, the organization has been
one of the most visible proponents of free and open source software in
South Africa and even the world. In the venture capital area, Shuttleworth
worked to foster research, development, and entrepreneurship in South
Africa with strategic injections of cash into start-ups through a new ven-
ture capital firm called HBD, an acronym for “Here Be Dragons.” During
this period, Shuttleworth was busy brainstorming his next big project—
the project that would eventually become Ubuntu.

The Warthogs

There has been no lack of projects attempting to wrap GNU, Linux, and
other pieces of free and open source software into a neat, workable, and
user-friendly package. Mark Shuttleworth, like many other people,
believed that the philosophical and pragmatic benefits offered by free
software put it on a course for widespread success. That said, none of the
offerings were particularly impressive. Something was missing from all of
them. Shuttleworth saw this as an opportunity. If someone could build
the great free software distribution that helped push GNU/Linux into the
mainstream, he or she would come to occupy a position of strategic
importance.

Shuttleworth, like many other technically inclined people, was a huge fan of
the Debian project (discussed in depth later). However, many things about
Debian did not fit with Shuttleworth’s vision of an ideal OS. For a period of
time, Shuttleworth considered the possibility of running for Debian project
leader as a means of reforming the Debian project from within. With time,
though, it became clear that the best way to bring GNU/Linux into the
mainstream would not be from within the Debian project—which in many
situations had very good reasons for being the way it was. Instead, Shuttle-
worth would create a new project that worked in symbiosis with Debian to
build a new, better GNU/Linux system.

To kick off this project, Shuttleworth invited a dozen or so free and open
source software developers he knew and respected to his flat in London in
April 2004. It was in this meeting (alluded to in the first paragraphs of this

xxxvi Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxxvi

introduction) that the groundwork for the Ubuntu project was laid. By
that point, many of those involved were excited about the possibility of the
project. During this meeting, the members of the team—which would in
time grow into the core Ubuntu team—brainstormed a large list of the
things that they would want to see in their ideal OS. The list is now a famil-
iar list of features to most Ubuntu users. Many of these traits are covered
in more depth later in this introduction. The group wanted

� Predictable and frequent release cycles

� A strong focus on localization and accessibility

� A strong focus on ease of use and user-friendliness on the desktop

� A strong focus on Python as the single programming language
through which the entire system could be built and expanded

� A community-driven approach that worked with existing free soft-
ware projects and a method by which the groups could give back as
they went along—not just at the time of release

� A new set of tools designed around the process of building distribu-
tions that allowed developers to work within an ecosystem of differ-
ent projects and that allowed users to give back in whatever ways
they could

There was consensus among the group that actions speak louder than
words, so there were no public announcements or press releases. Instead,
the group set a deadline for itself—six short months in the future. Shuttle-
worth agreed to finance the work and pay the developers full-time salaries
to work on the project. After six months, they would both announce their
project and reveal the first product of their work. They made a list of goals
they wanted to achieve by the deadline, and the individuals present took
on tasks. Collectively, they called themselves the Warthogs.

What Does Ubuntu Mean?

At this point, the Warthogs had a great team, a set of goals, and a decent
idea of how to achieve most of them. The team did not, on the other hand,
have a name for the project. Shuttleworth argued strongly that they should
call the project Ubuntu.

Introduction xxxvii

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxxvii

Ubuntu is a concept and a term from several South African languages,
including Zulu and Xhosa. It refers to a South African ideology or ethic
that, while difficult to express in English, might roughly be translated as
“humanity toward others,” or “I am because we are.” Others have described
ubuntu as “the belief in a universal bond of sharing that connects all
humanity.” The famous South African human rights champion Archbishop
Desmond Tutu explained ubuntu in this way:

A person with ubuntu is open and available to others, affirming of others,
does not feel threatened that others are able and good, for he or she has a
proper self-assurance that comes from knowing that he or she belongs in a
greater whole and is diminished when others are humiliated or dimin-
ished, when others are tortured or oppressed.

Ubuntu played an important role as a founding principle in postapartheid
South Africa and remains a concept familiar to most South Africans today.

Shuttleworth liked the term Ubuntu as a name for the new project for sev-
eral reasons. First, it is a South African concept. While the majority of the
people who work on Ubuntu are not from South Africa, the roots of the
project are, and Shuttleworth wanted to choose a name that represented
this. Second, the project emphasizes the definition of individuality in terms
of relationships with others and provides a profound type of community
and sharing—exactly the attitudes of sharing, community, and collabora-
tion that are at the core of free software. The term represented the side of
free software that the team wanted to share with the world. Third, the idea
of personal relationships built on mutual respect and connections
describes the fundamental ground rules for the highly functional commu-
nity that the Ubuntu team wanted to build. Ubuntu was a term that encap-
sulated where the project came from, where the project was going, and how
the project planned to get there. The name was perfect. It stuck.

Creating Canonical

In order to pay developers to work on Ubuntu full-time, Shuttleworth
needed a company to employ them. He wanted to pick some of the best
people for the jobs from within the global free software and open source
communities. These communities, inconveniently for Shuttleworth, know
no national and geographic boundaries. Rather than move everyone to a

xxxviii Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxxviii

single locale and office, Shuttleworth made the decision to employ these
developers through a virtual company. While this had obvious drawbacks
in the form of high-latency and low-bandwidth connections, different
time zones, and much more, it also introduced some major benefits in the
particular context of the project. On one hand, the distributed nature of
employees meant that the new company could hire individuals without
requiring them to pack up their lives and move to a new country. More
important, it meant that everyone in the company was dependent on IRC,
mailing lists, and online communication mechanisms to do their work.
This unintentionally and automatically solved the water-cooler problem
that plagued many other corporately funded free software projects—
namely, that developers would casually speak about their work in person
and cut the community and anyone else who didn’t work in the office out
of the conversation completely. For the first year, the closest thing that
Canonical had to an office was Shuttleworth’s flat in London. While the
company has grown and now has several offices around the world, it
remains distributed, and a large number of the engineers work from
home. The group remains highly dependent on Internet collaboration.

With time, the company was named Canonical. The name was a nod to the
project’s optimistic goals of becoming the canonical place for services and
support for free and open source software and for Ubuntu in particular.
Canonical, of course, refers to something that is accepted as authoritative.
It is a common word in the computer programmer lexicon. It’s important
to note that being canonical is like being standard; it is not coercive. Unlike
holding a monopoly, becoming the canonical location for something
implies a similar sort of success—but never one that cannot be undone
and never one that is exclusive. Other companies will support Ubuntu and
build operating systems based on it, but as long as Canonical is doing a
good job, its role will remain central.

The Ubuntu Community

By now you may have noticed a theme that permeates the Ubuntu project
on several levels. The history of free software and open source is one of a
profoundly effective community. Similarly, in building a GNU/Linux dis-
tribution, the Ubuntu community has tried to focus on an ecosystem
model—an organization of organizations—in other words, a community.

Introduction xxxix

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xxxix

Even the definition of the term ubuntu is one that revolves around people
interacting in a community.

It comes as no surprise, then, that an “internal” community plays heavily
into the way that the Ubuntu distribution is created. While the Ubuntu
4.10 version (Warty Warthog) was primarily built by a small number of
people, Ubuntu achieved widespread success only through contributions
by a much larger group that included programmers, documentation writ-
ers, volunteer support staff, and users. While Canonical employs a core
group of several dozen active contributors to Ubuntu, the distribution
has, from day one, encouraged and incorporated contributions from any-
one in the community and rewards and recognizes contributions by all.
Rather than taking center stage, paid contributors are not employed by the
Ubuntu project—instead they are employed by Canonical, Ltd. These
employees are treated simply as another set of community members. They
must apply for membership in the Ubuntu community and have their
contributions recognized in the same way as anyone else. All non-busi-
ness-related communication about the Ubuntu project occurs in public
and in the community. Volunteer community members occupy a majority
of the seats on the two most important governing boards of the Ubuntu
project: the Technical Board, which oversees all technical matters, and the
Community Council, which approves new Ubuntu members and resolves
disputes. Seats on both boards are approved by the relevant community
groups, developers for the Technical Board and Ubuntu members for the
Community Council.

In order to harness and encourage the contributions of its community,
Ubuntu has striven to balance the important role that Canonical plays
with the value of empowering individuals in the community. The Ubuntu
project is based on a fundamental belief that great software is built, sup-
ported, and maintained only in a strong relationship with the individuals
who use the software. In this way, by fostering and supporting a vibrant
community, Ubuntu can achieve much more than it could through paid
development alone. The people on the project believe that while the con-
tributions of Canonical and Mark Shuttleworth have provided an impor-
tant catalyst for the processes that have built Ubuntu, it is the community
that has brought the distribution its success to date. The project members
believe that it is only through increasing reliance on the community that

xl Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xl

the project’s success will continue to grow. The Ubuntu community won’t
outspend the proprietary software industry, but it is very much more than
Microsoft and its allies can afford.

Finally, it is worth noting that, while this book is official, neither of the
authors is a Canonical employee. This book, like much of the rest of
Ubuntu, is purely a product of the project’s community.

Ubuntu Promises and Goals
So far, this Introduction has been about the prehistory, history, and con-
text of the Ubuntu project. After this introduction, the book focuses on
the distribution itself. Before proceeding, it’s important to understand the
goals that motivated the project.

Philosophical Goals

The most important goals of the Ubuntu project are philosophical in
nature. The Ubuntu project lays out its philosophy in a series of documents
on its Web site. In the most central of these documents, the team summa-
rizes the charter and the major philosophical goals and underpinnings:

Ubuntu is a community-driven project to create an operating system and
a full set of applications using free and Open Source software. At the core
of the Ubuntu Philosophy of Software Freedom are these core philosoph-
ical ideals:

1. Every computer user should have the freedom to run, copy, distribute,
study, share, change, and improve their software for any purpose with-
out paying licensing fees.

2. Every computer user should be able to use their software in the language
of their choice.

3. Every computer user should be given every opportunity to use software,
even if they work under a disability.

The first item should be familiar by now. It is merely a recapitulation of
Stallman’s free software definition quoted earlier in the section on free
software history. In it, the Ubuntu project makes explicit its goal that every
user of software should have the freedoms required by free software. This

Introduction xli

Rankin_3e_FM_Rankin 6/27/13 10:11 AM Page xli

is important for a number of reasons. First, it offers users all of the practi-
cal benefits of software that runs better, faster, and more flexibly. More
important, it gives every user the capability to transcend his or her role as a
user and a consumer of software. Ubuntu wants software to be empower-
ing and to work in the ways that users want it to work. Ubuntu wants all
users to have the ability to make sure it works for them. To do this, soft-
ware must be free, so Ubuntu makes this a requirement and a philosophi-
cal promise.

Of course, the core goals of Ubuntu do not end with the free software defi-
nition. Instead, the project articulates two new, but equally important,
goals. The first of these, that all computer users should be able to use their
computers in their chosen languages, is a nod to the fact that the majority
of the world’s population does not speak English while the vast majority of
software interacts only in that language. To be useful, source code com-
ments, programming languages, documentation, and the texts and menus
in computer programs must be written in some language. Arguably, the
world’s most international language is a reasonably good choice. However,
there is no language that everyone speaks, and English is not useful to the
majority of the world’s population that does not speak it. A computer can
be a great tool for empowerment and education, but only if the user can
understand the words in the computer’s interface. As a result, Ubuntu
believes that it is the project’s—and community’s—responsibility to
ensure that every user can easily use Ubuntu to read and write in the lan-
guage with which he or she is most comfortable.

Finally, just as no person should be blocked from using a computer simply
because he or she does not know a particular language, no user should be
blocked from using a computer because of a disability. Ubuntu must be
accessible to users with motor disabilities, vision disabilities, and hearing
disabilities. It should provide input and output in a variety of forms to
account for each of these situations and for others. A significant percent-
age of the world’s most intelligent and creative individuals has disabilities.
Ubuntu’s impact should not be limited to any subset of the world when it
can be fully inclusive. More important, Ubuntu should be able to harness
the ability of these individuals as community members to build a better
and more effective community.

xlii Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xlii

Conduct Goals and Code of Conduct

If Ubuntu’s philosophical commitments describe the why of the Ubuntu
project, the Code of Conduct (CoC) describes Ubuntu’s how. Ubuntu’s
CoC is, arguably, the most important document in the day-to-day opera-
tion of the Ubuntu community and sets the ground rules for work and
cooperation within the project. Explicit agreement to the document is the
only criterion for becoming an officially recognized Ubuntu activist—an
Ubuntero—and is an essential step toward membership in the project.

The CoC covers “behavior as a member of the Ubuntu Community, in any
forum, mailing list, wiki, Web site, IRC channel, install-fest, public meet-
ing, or private correspondence.” The CoC goes into some degree of depth
on a series of points that fall under the following headings:

� Be considerate.

� Be respectful.

� Be collaborative.

� When you disagree, consult others.

� When you are unsure, ask for help.

� Step down considerately.

Many of these headings seem like common sense or common courtesy to
many, and that is by design. Nothing in the CoC is controversial or radical,
and it was never designed to be.

More difficult is that nothing is easy to enforce or decide because acting con-
siderately, respectfully, and collaboratively is often very subjective. There is
room for honest disagreements and hurt feelings. These are accepted short-
comings. The CoC was not designed to be a law with explicit prohibitions
on phrases, language, or actions. Instead, it aims to provide a constitution
and a reminder that considerate and respectful discussion is essential to
the health and vitality of the project. In situations where there is a serious
disagreement on whether a community member has violated or is violat-
ing the code, the Community Council is available to arbitrate disputes and
decide what action, if any, is appropriate.

Introduction xliii

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xliii

Nobody involved in the Ubuntu project, including Mark Shuttleworth and
the other members of the Community Council, is above the CoC. The
CoC is never optional and never waived. In fact, the Ubuntu community
recently created a Leadership Code of Conduct (LCoC), which extends
and expands on the CoC and describes additional requirements and expec-
tations for those in leadership positions in the community. Of course, in no
way was either code designed to eliminate conflict or disagreement. Argu-
ments are at least as common in Ubuntu as they are in other projects and
online communities. However, there is a common understanding within
the project that arguments should happen in an environment of collabora-
tion and mutual respect. This allows for better arguments with better
results—and with less hurt feelings and fewer bruised egos.

While they are sometimes incorrectly used as such, the CoC and LCoC are
not sticks to be wielded against an opponent in an argument. Instead, they
are useful points of reference upon which consensus can be assumed
within the Ubuntu community. Frequently, if a group in the community
feels a member is acting in a way that is out of line with the code, the group
will gently remind the community member, often privately, that the CoC
is in effect. In almost all situations, this is enough to avoid any further
action or conflict. Very few CoC violations are ever brought before the
Community Council.

Technical Goals

While a respectful community and adherence to a set of philosophical
goals provide an important frame in which the Ubuntu project works,
Ubuntu is, at the end of the day, a technical project. As a result, it only
makes sense that in addition to philosophical goals and a project constitu-
tion, Ubuntu also has a set of technical goals.

The first technical goal of the project, and perhaps the most important
one, is the coordination of regular and predictable releases—something
particularly important to server users. In April 2004, at the Warthogs
meeting, the project set a goal for its initial proof-of-concept release six
months out. In part due to the resounding success of that project, and in
larger part due to the GNOME release schedule, the team has stuck to a
regular and predictable six-month release cycle and has only once chosen

xliv Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xliv

to extend the release schedule by six weeks and only after obtaining com-
munity consensus on the decision. The team then redoubled its efforts and
made the next release in a mere four and a half months, putting its release
schedule back on track. Frequent releases are important because users can
then use the latest and greatest free software available—something that is
essential in a development environment as vibrant and rapidly changing
and improving as the free software community. Predictable releases are
important, especially to businesses, because predictability means that they
can organize their business plans around Ubuntu. Through consistent
releases, Ubuntu can provide a platform upon which businesses and deriv-
ative distributions can rely to grow and build.

While releasing frequently and reliably is important, the released software
must then be supported. Ubuntu, like all distributions, must deal with the
fact that all software has bugs. Most bugs are minor, but fixing them may
introduce even worse issues. Therefore, fixing bugs after a release must be
done carefully or not at all. The Ubuntu project engages in major changes,
including bug fixes, between releases only when the changes can be exten-
sively tested. However, some bugs risk the loss of users’ information or
pose a serious security vulnerability. These bugs are fixed immediately and
made available as updates for the released distribution. The Ubuntu com-
munity works hard to find and minimize all types of bugs before releases
and is largely successful in squashing the worst. However, because there is
always the possibility that more of these bugs will be found, Ubuntu com-
mits to supporting every release for 18 months after it is released. In the
case of Ubuntu 6.06 LTS (Dapper Drake), released in 2006, the project
went well beyond even this and committed to support the release for three
full years on desktop computers and for five years in a server configuration
(LTS stands for LongTerm Support). This proved so popular with busi-
nesses, institutions, and the users of Ubuntu servers that Ubuntu 8.04
(Hardy Heron) was named as Ubuntu’s second LTS release with similar
three- and five-year desktop and server extended support commitments.
These five-year support commitments are specifically designed for server
users and make Ubuntu a much more attractive option for an important
class of server users.

This bipartite approach to servers and desktops implies the third major
technical commitment of the Ubuntu project and, in a sense, the most

Introduction xlv

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xlv

important for this book: support for both servers and desktop computers
in separate but equally emphasized modes. While Ubuntu continues to be
more well known, and perhaps more popular, in desktop configurations,
there exist teams of Ubuntu developers focused on both server and desk-
top users. The Ubuntu project believes that both desktops and servers are
essential and provides installation methods on every CD for both types of
systems. Ubuntu provides tested and supported software appropriate to
the most common actions in both environments and documentation for
each. LTS releases in particular mark an important step toward catering to
users on the server.

Finally, the Ubuntu project is committed to making it as easy as possible
for users to transcend their roles as consumers and users of software and
to take advantage of each of the freedoms central to the Ubuntu philoso-
phy. As a result, Ubuntu has tried to focus its development around the use
and promotion of a single programming language, Python. The project
has worked to ensure that Python is widely used throughout the system.
By ensuring that many applications and many of the “guts” of the system
are written in or extensible in Python, Ubuntu is working to ensure that
users need to learn only one language in order to take advantage of, auto-
mate, and tweak many parts of their systems.

Canonical and the Ubuntu Foundation
While Ubuntu is driven by a community, several groups play an important
role in its structure and organization. Foremost among these are Canoni-
cal, Ltd., a for-profit company introduced as part of the Ubuntu history
description, and the Ubuntu Foundation, which is introduced later in this
section.

Canonical, Ltd.

As mentioned earlier, Canonical, Ltd., is a company founded by Mark
Shuttleworth with the primary goal of developing and supporting the
Ubuntu distribution. Many of the core developers on Ubuntu—although
no longer a majority of them—work full-time or part-time under contract
for Canonical, Ltd. This funding by Canonical allows Ubuntu to make the
type of support commitments that it does. Ubuntu can claim that it will

xlvi Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xlvi

release in six months because releasing, in one form or another, is some-
thing that the paid workers at Canonical can ensure. As an all-volunteer
organization, Debian suffered from an inability to set and meet dead-
lines—volunteers become busy or have other deadlines in their paying
jobs that take precedence. By offering paying jobs to a subset of develop-
ers, Canonical can set support and release deadlines and ensure that they
are met.

In this way, Canonical ensures that Ubuntu’s bottom-line commitments
are kept. Of course, Canonical does not fund all Ubuntu work, nor could
it. Canonical can release a distribution every six months, but that distribu-
tion will be made much better and more usable through contributions
from the community of users. Most features, most new pieces of software,
almost all translations, almost all documentation, and much more are cre-
ated outside of Canonical. Instead, Canonical ensures that deadlines are
met and that the essential work, regardless of whether it’s fun, gets done.

Canonical, Ltd., was incorporated on the Isle of Man—a tiny island nation
between Wales and Ireland that is mostly known as a haven for inter-
national businesses. Since Canonical’s staff is sprinkled across the globe
and no proper office is necessary, the Isle of Man seemed as good a place as
any for the company to hang its sign.

Canonical’s Service and Support

While it is surprising to many users, fewer than half of Canonical’s employ-
ees work on the Ubuntu project. The rest of the employees fall into several
categories: business development, support and administration, and devel-
opment on the Bazaar and Launchpad projects.

Individuals involved in business development help create strategic deals
and certification programs with other companies—primarily around
Ubuntu. In large part, these are things that the community is either ill
suited for or uninterested in as a whole. One example of business develop-
ment work is the process of working with companies to ensure that their
software (usually proprietary) is built and certified to run on Ubuntu. For
example, Canonical worked with IBM to ensure that its popular DB2 data-
base would run on Ubuntu and, when this was achieved, worked to have

Introduction xlvii

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xlvii

Ubuntu certified as a platform that would run DB2. Similarly, Canonical
worked with Dell to ensure that Ubuntu could be installed and supported
on Dell laptops as an option for its customers. A third example is the pro-
duction of this book, which, published by Pearson Education’s Prentice
Hall imprint, was a product of work with Canonical.

Canonical also plays an important support role in the Ubuntu project in
three ways. First, Canonical supports the development of the Ubuntu
project. For example, Canonical system administrators ensure that the
servers that support development and distribution of Ubuntu are running.
Second, Canonical helps Ubuntu users and businesses directly by offering
phone and e-mail support. Additionally, Canonical has helped build a large
commercial Ubuntu support operation by arranging for support contracts
with larger companies and organizations. This support is over and above
the free (i.e., gratis) support offered by the community—this commercial
support is offered at a fee and is either part of a longer-term flat-fee support
contract or is pay-per-instance. By offering commercial support for Ubuntu
in a variety of ways, Canonical aims to make a business for itself and to help
make Ubuntu a more palatable option for the businesses, large and small,
that are looking for an enterprise or enterprise-class GNU/Linux product
with support contracts like those offered by other commercial GNU/
Linux distributions.

Finally, Ubuntu supports other support organizations. Canonical does not
seek or try to enforce a monopoly on Ubuntu support; it proudly lists hun-
dreds of other organizations offering support for Ubuntu on the Ubuntu
Web pages. Instead, Canonical offers what is called second-tier support to
these organizations. Because Canonical employs many of the core Ubuntu
developers, the company is very well suited to taking action on many of
the tougher problems that these support organizations may run into. With
its concentrated expertise, Canonical can offer this type of backup, or sec-
ondary, support to these organizations.

The Ubuntu Foundation

Finally, in addition to Canonical and the full Ubuntu community, the Ubuntu
project is supported by the Ubuntu Foundation, which was announced by
Shuttleworth with an initial funding commitment of $10 million. The foun-

xlviii Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xlviii

dation, like Canonical, is based on the Isle of Man. The organization is
advised by the Ubuntu Community Council.

Unlike Canonical, the foundation does not play an active role in the day-
to-day life of Ubuntu. At the moment, the foundation is little more than a
pile of money that exists to endow and ensure Ubuntu’s future. Because
Canonical is a young company, many companies and individuals find it
difficult to trust that Canonical will be able to provide support for Ubuntu
in the time frames (e.g., three to five years) that it claims it will be able to.
The Ubuntu Foundation exists to allay those fears.

If something bad were to happen to Shuttleworth or to Canonical that
caused either to be unable to support Ubuntu development and maintain
the distribution, the Ubuntu Foundation exists to carry on many of
Canonical’s core activities well into the future. Through the existence of
the foundation, the Ubuntu project can make the types of long-term com-
mitments and promises it does.

The one activity in which the foundation can and does engage is receiving
donations on behalf of the Ubuntu project. These donations, and only
these donations, are then put to use on behalf of Ubuntu in accordance
with the wishes of the development team and the Technical Board. For
the most part, these contributions are spent on “bounties” given to com-
munity members who have achieved important feature goals for the
Ubuntu project.

History of Ubuntu Server
The first “production” machines to run Ubuntu were Canonical’s own
development machines in its data center in London. In this sense, Ubuntu
has been used on servers since day one, and Ubuntu has always been a
server operating system. Of course, as we hinted in the welcome at the
beginning of this Introduction, this has not always been universally recog-
nized. After the first release, public perception was tilted so far toward the
idea of Ubuntu as a desktop release that when the developers convened
the first of their biannual developer summits after the first full release
cycle, one of the most important items on the agenda was thinking about
Ubuntu on servers and how to support it.

Introduction xlix

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page xlix

The Ubuntu Server project, as a result, was at least as much a marketing
project as it was a technical project. Sure, there were ways that the team
could make Ubuntu better for servers—and they spent plenty of time
working and thinking about that—but the biggest problem they faced was
simply communicating the message that Ubuntu already was great for
servers to all their users and potential users.

Eventually Canonical funded the creation of a graphical installer, but in
the first few releases there was just a single, nongraphical installer based on
Debian’s very descriptively named Debian Installer project. In the initial
Ubuntu release, a user installing Ubuntu was given a choice between two
modes: “Desktop”—which was self-explanatory enough—and “Custom.”
Custom, in the minds of the early developers, was what anyone would
want for a server. Custom installed just the bare minimum set of packages
and then put the users into this base install and prompted them to install
the packages that they wanted on their system. It provided users with the
bare-bones system and encouraged them to customize it. The first action
of the Ubuntu Server project was purely superficial: The “Custom” install
was renamed “Server.” Although no code had changed, Ubuntu Server
almost immediately began getting more recognition. If one had to pick a
single point in time that the Ubuntu Server project was born, it would be
this moment.

Ubuntu Server isn’t actually any different from other flavors of Ubuntu. As
the desktop has moved on to a new graphical installer based on a live CD,
Ubuntu Server has its own installer that gives users access to features like
RAID and LVM that are much more interesting to server users. Certainly,
there are some pieces of software that are likely to end up on servers and
unlikely to end up on desktops—things like Web servers and mail servers.
When we say that the server edition will be supported, we mean these
applications plus the core, so it certainly seems most accurate to refer to
these as being within the purview of Ubuntu Server.

But at the end of the day, the server and desktop packages come out of a
single repository. This fact, plus the integration among the teams of people
working on different parts of the project—most core developers work on
bits and pieces that get used and reused in server, desktop, and other edi-
tions—introduces a fuzziness that makes it hard to pin down just what

l Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page l

Ubuntu Server is. Of course, it also means that Ubuntu Server gets to ben-
efit from the work, bug reporting, and bug fixing in those core parts of the
operating system that every Ubuntu user shares.

Ubuntu Server now can roughly be interpreted to refer to a collection of
resources that are particularly aimed at and used by server users. Most
obviously, it involves the custom install discs that you’ll be using when you
install Ubuntu Server on your machine. It also refers to the collections of
supported software that are installed primarily on servers—most of the
software that the rest of this book will discuss in more detail. It also refers
to a mass of documentation, to which this book represents the latest addi-
tion, that provides answers to questions. In a broader sense, certifications
of software and training programs for administrators occupy another
point in the growing Ubuntu Server constellation.

But most of all, and in the Ubuntu tradition, Ubuntu Server refers to a
community. It’s a community of developers who use Ubuntu on servers,
who care deeply about Ubuntu on servers, and who work tirelessly to
make sure that Ubuntu performs as well as possible on servers everywhere.
Of course, Ubuntu Server also refers to the growing community of people
who are primarily not contributing through code but who are at least as
important. These people spend time in the support of IRC channels, send
e-mail to the mailing lists, and post in the forums. These users help other
users, file bugs, may contribute their own fixes to documentation, and
contribute in myriad ways and in a variety of venues.

When you “graduate” beyond what this book can teach you, Ubuntu rep-
resents those people who will help you take your next steps. They are the
people described in more depth in the server resources chapter (Chap-
ter 13) of this book. This is the group you will join when you participate in
the Ubuntu project. Let us be the first to welcome to you to the Ubuntu
Server community.

Simple, Secure, Supported
Early on, the initial core Ubuntu team—of which one of this book’s
authors was lucky enough to be a part—resisted the idea of the server ver-
sion of Ubuntu. Or rather, they resisted the idea of a server distribution in

Introduction li

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page li

the way that other GNU/Linux distributions had produced them and the
way in which they were commonly thought of. The team was more than
happy with running Ubuntu on servers, of course, but they resisted the
idea of “server distributions” because of the way that Red Hat, SuSE, and
the other big distributions built their businesses around “enterprise
Linux” distributions that were big, clunky, and expensive. The result was,
in the eyes of many of the early Ubuntu core developers and Canonical
employees, top-heavy monstrosities. That’s not what Ubuntu is about.

The big server-based GNU/Linux distributions seemed to be competing
over who included more services, more features, and more bells and
whistles. Distribution 1 would have a Web server, an FTP server, a DNS
server, several file servers, and a mail server. Distribution 2 would have all
of those plus a DHCP server! A brand-new install of one of these “server
distributions” would be running dozens of daemons—each taking up
many megabytes of memory, loads of disk space, and (most important)
lots of administrator time when they failed or interfered with something
else. But worst of all, most of these daemons lay completely unused on
most installs.

And if that wasn’t enough, the server installs would then run firewalls to
keep people from accessing all these now-open services and to prevent
users from exposing security vulnerabilities from their newly installed
machines. Of course, there would be regular upgrades, security releases,
and the like, to update all these now-firewalled services that nobody was
using. Debian provided one alternative model that focused on custom
installations of just what people needed. Among an elite group of sysad-
mins in the late 1990s and the early 2000s, Debian had become the server
OS of choice. Because nearly everyone on the early Ubuntu team was a
Debian developer, it was to this model and to Debian technology that the
Ubuntu team first turned.

Of course, the commercial GNU/Linux server market was not all horrible.
For example, the early Ubuntu developers liked the idea of commercial
support for its servers. They liked the idea of regular, predictable releases.
As Debian developers, they all knew someone who wanted to install a
simple, custom version of Debian on a server but who, because of the lack
of commercial support and accountability, had been rejected by a higher-

lii Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page lii

up in the company or organization. They liked the idea of a company
using Debian’s technology to offer simple, custom server installs but could
offer a commercial support contract. The Warthogs, and lots of folks like
them, had waited years for this, but nobody had stepped up to the plate.

As we described in the previous section, an Ubuntu server install was sim-
ply a bare-bones installation. We were all administrators—at least of our
own machines—and when we installed servers, we started out with
“naked” machines so that we could choose every application, every dae-
mon, every service that would go onto the machine. As administrators, we
wanted the options of the big enterprise distributions, but we wanted to be
able to choose those options ourselves. Like all administrators, we used
servers to solve problems and to offer services to our users. These prob-
lems and needs are unique and, as a result, the cookie-cutter model of
GNU/Linux servers was always a poor match.

And so that is what the Warthogs built and it is what Ubuntu Server
remains today. At first, some people were confused. Ubuntu’s server offer-
ing was panned in several reviews for not including a firewall by default.
But Ubuntu installed no open ports by default, so there was nothing to fire-
wall! Of course, Ubuntu provided several firewalls for users to install if
they wanted one, but Ubuntu left the decision to install a firewall, just like
the decision to install services that might require one, up to the server’s
administrator. For all installations but for server installations in particular,
Ubuntu’s goal is to make the default installation simple and secure and to
put the user in the driver’s seat. Ubuntu’s job, as distribution producer, is
to make it as close to drop-dead simple for system administrators to do
their jobs. In an Ubuntu Server install, every machine is exactly as compli-
cated as the administrator has requested but never any more than neces-
sary. No extra services or unnecessary features are included—although
they are waiting in the wings for when they become necessary and are eas-
ily installable in ways that are described in Chapter 3.

One important effect of this simplicity is security. When there is less going
on, there is simply less to go wrong. But, of course, the Ubuntu team has
taken this many steps further and pursued proactive security in a number of
other contexts. Ubuntu’s first release was held up for one day because a
single open port was found in the default release. The goal of a machine with

Introduction liii

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page liii

no open ports by default was more important than an on-time release.
Ubuntu’s CTO and the chairman of the Ubuntu technical board, Matt Zim-
merman, is a longtime security-focused developer who made nearly all of
Debian’s security updates for more than a year before joining the Warthogs.
As Ubuntu struggles over hard decisions about what to include or to pass up
for inclusion in the distribution, the most important questions continue to
be ones of security and support. “Can we—and we do want to—maintain
security support and provide security releases for this software for the next
18 months?” Every piece of software included by default is subjected to this
question, and many popular pieces of software are kept out because Ubuntu
is reluctant to support them. Inclusion as an officially supported package
means that a server admin can trust the software—both because Canonical
has indicated that it trusts it and because Canonical has promised to clean
up any security messes that occur through fixing important bugs and issu-
ing a fixed package. Canonical’s security guarantee goes beyond security
bugs to other bugs that might result in data loss. While there are no guaran-
tees beyond this, Canonical makes many dozens of new updates per release
that fix other important bugs in the distribution as well. The result is a rock-
solid system with a commitment to continue.

With customizability, security, and support, Ubuntu truly is ready for the
data room. The rest of this book will show you how.

liv Introduction

Rankin_3e_FM_Rankin 6/26/13 10:34 AM Page liv

51

3C H A P T E R 3

Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 51

THIS CHAPTER BEGINS WITH a discussion of packages in general while focus-
ing on the core features of packages and package management systems
that cross most GNU/Linux distributions. In this discussion, I explain
what packages are and what a package management system does. While I
turn to examples from Ubuntu throughout, this discussion focuses on
building a strong conceptual grounding. After establishing a solid ground-
ing, I introduce Debian packages—the types of packages that Ubuntu
uses—and give a brief view of the very different types of packages: source
packages and binary packages. Most of the rest of the chapter focuses on
package management in Ubuntu using the command-line tools. While
many users of Ubuntu on the desktop are familiar with updating their sys-
tem, this chapter focuses on the way this is done without a desktop system.
It covers the basics and works up to some more advanced uses of a packag-
ing system that many server administrators find useful. Finally, I touch on
the process through which advanced users and administrators can create,
modify, and redistribute their own packages.

Introduction to Package Management
On Ubuntu—and in other GNU/Linux environments—packages are the
primary way that software is built, deployed, and installed. Nearly every
major GNU/Linux operating system distributes software, both binary
software and source code, in packages. These packages are usually either
in the Rpm package format (RPM) or in the Debian package format
(DEB) for binary software or in corresponding “source” RPM and DEB
formats. With its close relationship to the Debian project as a project that
continues to be based on Debian’s work, Ubuntu naturally uses DEB for-
mat packages.

Very simply, packages are an alternative to downloading, building, and
installing software from scratch. They offer a host of advantages in terms
of installation, removal, monitoring, and handling interactions between
pieces of software over the standard “build from source” model. Since
packaging is not common outside of the GNU/Linux world—or at least
not described in the same terms—it is worth going into some background
on packaging before I describe how it is done on Ubuntu systems.

52

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 52

Background on Packages

Nearly every GNU/Linux-based operating system—Fedora, RHEL, open-
SUSE, Slackware, Debian, and others—includes an almost entirely over-
lapping core selection of software. By definition, each of these OSes
includes Linus Torvald’s Linux kernel and a large chunk of the GNU
project’s developer- and user-oriented applications that are necessary to
build and use it. Most also include server-oriented software like OpenSSH
and Apache, either the XFree86 or X.Org implementation of the X Win-
dowing System, and what is often an extremely expansive collection of
both command-line and graphically based applications. Although people
often throw the term around, it is important to establish that this collec-
tion of software is collectively referred to as a distribution. Ubuntu is a dis-
tribution. When people refer to “Linux” as an operating system, they are
usually referring to a Linux or GNU/Linux distribution.

The primary goal of all distributions is the automatic installation, configu-
ration, removal, maintenance, and update of software—both through the
creation of infrastructure for this purpose and in the creation of modified
versions of the preexistent software. The latter customization of existing
software in this specialized way is the act of “packaging,” and it constitutes
the vast proportion of work done by Ubuntu developers. It constitutes, to
a large degree, what Ubuntu is over and above the software that Ubuntu
includes. And while packaging is primarily the work of distribution mak-
ers like Ubuntu, it can also be done by both the users of distributions, for
the clean integration of “unpackaged” pieces of software into their sys-
tems, and by software vendors who wish to allow for easier installation and
maintenance of software by their users.

What Are Packages?

The creation of a package—on Ubuntu or elsewhere—begins with the soft-
ware in need of being packaged. In most, but not all, cases, this involves the
procurement of source code. In all situations, it involves code from an orig-
inal source, usually referred to in the distribution world as an “upstream”

Introduction to Package Managment 53

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 53

source. The packager’s first addition to the code here will be the creation of
extra metadata, which usually includes

� The name of the software

� The name of the upstream author and the person creating the package

� The license of the software

� The upstream location of the software (or a description of where it
was obtained)

� The architecture or architectures on which the software is guaranteed
to run

� Information for classifying the software that often has to do with
the use of the package, primarily to help people who are browsing
for packages

� A description of the software in a computer-parsable format

� Information on the importance or “priority” of the package within
the larger Ubuntu system (e.g., essential, optional)

This information will be used by either a packaging system or a series of
package selection tools to allow users to search, sort, query, or interact
with installed or available software—one of the package system’s jobs.
However, while this type of metadata is important in that it allows users to
find (and find out about) their software, by far the most important group
of metadata added to a package relates to the documentation of the rela-
tionship of the software in the package to software in other packages
within the distribution. While the syntax and semantics of this vary widely
between distributions, they include relationships to

� Other software that the software requires to be built

� Other software that the software requires to be installed or configured

� Other software that the software requires to be run

� Other software with which the software cannot be installed or used
simultaneously

54 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 54

� Other software for which the software can be used as a drop-in
replacement

� Other software that can enhance or improve the software

Modern package systems record even more information. For example,
configuration files, unlike normal files, cannot always be simply replaced
with a new version when the software is upgraded. As a result, packaging
systems have grown to include several pieces of infrastructure for query-
ing users and for maintaining core configuration information over time
and across upgrades of the package that requires changes to configuration
files. Finally, a more recently realized goal of packages is to provide a struc-
ture around which package metadata—such as descriptions—can be
translated to provide users with an interface to software localized to their
language, script, and culture. Details on accessing and creating all of this
metadata in Ubuntu packages are included in the subsequent sections.

Basic Functions of Package Management

A wide range of functionality can be considered core functions of package
management systems. The functions are usually implemented by a low-
level tool or suite of tools. This script is dpkg and associated scripts in the
case of Ubuntu and Debian. These tools were, until several years ago, the
primary way that most users manipulated packages, but with the creation
of higher-level package management tools that provide “front ends” to
these tools, most users of package-based systems rarely use them, although
they are still highly central for developers or system administrators who
build their own packages. Broadly and somewhat imprecisely, many of
these tools are referred to as APT on Debian and Ubuntu.

The first goal of packaging is automating the compilation of software. DEB-
format packages provide two formats: one for source packages and one for
binary packages. These source packages are an excellent system for the dis-
tribution and compilation of source code. Packages are, in Ubuntu and else-
where, designed to be built noninteractively and—in the case of official
Ubuntu packages—can be built automatically on a range of different archi-
tectures by automatic package-building software called “autobuilders.”

Introduction to Package Managment 55

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 55

Packages provide a simple—usually one command—method for building
that is consistent across all packages. Issues of build configurations and
choices are addressed ahead of time by the packager. The cost is build-time
configurability, but the payoffs, as you will see in the rest of the chapter, are
huge. Necessary build-time dependencies are declared in the packages so
that these can be satisfied automatically. For example, architecture-depen-
dent source packages (i.e., packages that must be rebuilt for each architec-
ture) are uploaded to Ubuntu as source and are, in most cases, automatically
built on all architectures supported by Ubuntu without any changes to the
source package.

Any number of binary packages can be created from a single source pack-
age. The creation of multiple binary packages from a single source package
can be useful for large projects that release large or monolithic source
packages containing a wide variety of different pieces of software—or
even highly related pieces of software and/or documentation that it may
be advantageous to split. An example of the former case is the XFree86
windowing system—now replaced by the already modularized X.Org—
which was contained in one source package but would create upward of
several dozen binary packages. Packaging, in this case, is what allowed
users to distribute, install, and remove the Xserver independently from the
terminal emulator, xlib library package, or window manager.

As can be inferred from the preceding discussion, a key benefit of packag-
ing systems is that they help automate the installation of software. When a
binary package is installed:

� The “contents” of the software can be verified to assure integrity of
the package. The origin of the software can be verified using crypto-
graphic authentication.

� The dependencies of the software can be analyzed and the system can
be queried on the installation state of the software on which the soft-
ware being installed depends. If the dependencies are unsatisfied, the
user is prompted as to the lack and the nature of the required soft-
ware, and the installation is aborted.

� The user installing the package can be queried for configuration
options at some point during the installation process. Answers to

56 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 56

these queries can be saved on the system and then used in the cus-
tomization of a configuration file for the software being installed.

� The contents of the package are stored on the system.

� Metadata and accounting information of a variety of forms are placed
in a per-system database to include both current information on the
packages installed and their state of installation (e.g., installed but
unconfigured), the list of files and to which package they belong, and
other information.

Perhaps the most central element here is the check against dependencies of
the package being installed and the list of packages already installed on the
system. With information on dependencies, users can, at a glance, deter-
mine which software is required to run the software in the package. As a
result, people writing software that will ultimately be packaged can easily
write for and deploy software built against shared libraries. The success of
package systems is one reason for the wide use of dynamically linked
shared libraries in the GNU/Linux environment.

When a user wants to remove a piece of software, the packaging system, with
its catalog of the files belonging to the package and the actions done during
installation, is well suited to help ensure a clean uninstallation as well.

While similar to installation, the automatic upgrade of software is another
area where the package system can be employed with similarly useful
results: Users of package systems can safely and easily upgrade from one
version of a piece of software to another. The upgrade of the software will
work almost identically to the installation of the software. In most cases,
software is installed on top of the existing package, and files that are no
longer provided by the package are removed. Configuration files that were
customized by the installation and have not since been changed by the
user can be automatically regenerated by the user, or the user can be
prompted to view and merge changes.

Dependency information can play an important role in the upgrade of
packages involving shared libraries. In the case of ABI changes, a packaging
system will alert users that an upgrade of a package cannot be completed
without the installation of a new library, and users can also be alerted to

Introduction to Package Managment 57

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 57

other packages that will break in this upload. As a result, users can structure
uploads—or the system can structure it for them—so that API and ABI
breakage is not unanticipated, and users can ensure that all packages that
depend on a single shared library can be upgraded in tandem.

Finally, at any point, users can use the cryptographic signature on a pack-
age and the list of hashes (usually MD5 sums) of the files included in that
package to verify the integrity of the files on their system against corrup-
tion or compromise by an attacker.

Advanced Functions of Package Management Systems

While these features lead to the powerful potential to manage software on
a system, packaging systems with only these features—essentially, the state
of packaging in the mid-1990s—introduced important limitations. Large-
scale API and ABI transitions required downloading many packages and a
high degree of coordination by the user. Users were forced to figure out the
dependency status of programs during an installation or upgrade and
then find, download, and do simultaneous installations of new pieces of
software. For complex pieces of software with many dependencies, this
process was often exceedingly tedious.

As a result, most system upgrades and ABI/API changes were done with
large upgrade scripts between releases of a distribution. Users would be
expected to install every package involved in a major transition at once
with an upgrade script that would structure the order correctly and handle
dependencies appropriately. While these problems are limitations of a lim-
ited package management system, they are mostly problems that exist out-
side of package management systems. Without a package management
system, shared libraries that undergo API and ABI changes are either never
or rarely approached (with dangerous consistency and security implica-
tions to each) or are subject to the same limitations without the warnings
that a packaging system provides.

Spurred on by the Debian project’s creation of a program called dselect
and its frequently lauded Advanced Package Tools (APT, originally named
deity and implemented primarily in a program called apt-get), the last
half-decade has seen a major evolution in the scope and success of package
managers. Most of these tools are levels of abstraction upon or “front

58 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 58

ends” to the lower-level package management tools previously described.
Like most other DEB-based distributions, Ubuntu uses apt-get, Aptitude,
dselect, and the graphical front end Synaptic.

As the ability to track and catalog dependencies is perhaps the single most
important aspect of any package management system, the primary func-
tion of these advanced tools has been to add classes of functionality on top
of the extant package tools and to operate on packages in a more-than-
one-at-a-time manner. Each of these tools contains additional databases
that describe not only the packages installed but also the packages that are
available as candidates for installation through package archives stored
locally, on CD, or (in almost all situations today) over a network.

These systems can automatically sort out dependencies and orders, down-
load packages (including dependencies), install the dependencies first, and
then install and configure the package in question using the lower-level
tools detailed in the previous section.

Similarly, the same advanced tools can be used to uninstall packages. If, for
example, a user wants to uninstall a shared library, he or she is prompted
with a screen that describes the consequences as a list of packages that
must be uninstalled because their dependencies will no longer exist on the
system after the uninstallation. Upgrades that involve changing dependen-
cies (e.g., replaced packages) can also be handled through this system.

The real possibilities of such systems are visible when the dependency
aspects of a package change over time or when multiple packages can act
as drop-in replacements. A package that requires the ability to send mail
can depend only on a virtual package “provided” by other packages. New
versions of packages can conflict with and declare that they “replace” other
packages or provide the functionality of the original package. If, for
example, multiple packages are merged into a single package that obso-
letes the three other packages, an advanced package system should be able
to track the changing dependency information and make the correct deci-
sion during upgrade. Along these lines, most advanced package manage-
ment tools give users the ability to do strategic “smart upgrades” of every
package on the system to the newest version of the packages available
using the data declared in the package dependencies.

Introduction to Package Managment 59

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 59

Even more exciting for some users, it is possible to track an in-development
version of a GNU/Linux operating system and upgrade every day to the
latest version of everything. The package manager can figure out safe
upgrade paths and take it from there. During these upgrades, ABI and API
version changes can also be automatically handled because the system will
refuse to do a full upgrade of a library until all of the packages installed on
the system that depend on the package with the shared library can be
upgraded at once. The system will not need to keep or track multiple ver-
sions of a shared library over time.

Debian Packages
As was mentioned earlier in this book, the Ubuntu project is based on the
Debian GNU/Linux distribution. Among many other technological lega-
cies, Ubuntu has inherited the Debian package system. In fact, many core
Ubuntu developers involved early on will credit Debian’s packaging sys-
tem as the reason that Debian proved such an attractive point of departure
and represented its major attraction over other GNU/Linux distributions.
As a result, almost all aspects of package management—from the formats
to the tools—are identical on Ubuntu and Debian. In many situations,
unmodified Debian packages can simply be installed on Ubuntu. In nearly
all situations, unmodified Debian source packages can be built on
Ubuntu. As a result, our first step is to examine an Ubuntu DEB in some
depth to understand the anatomy of the package and the way it imple-
ments the features described in the preceding sections.

Source Packages

DEB source packages are clearly expressed in what is usually a three- or two-
file format but may also include source packages that consist of many more
files as well. This means that the package itself contains multiple files and
downloading “a source package” may in fact involve downloading a small
assortment of different files. Source packages can be broadly classified as
either native DEB packages or nonnative DEB packages. A native DEB is a
piece of software where there is no difference between the upstream version
and the DEB package. In most cases, native packages are specific to either
Ubuntu, Debian, or another Debian-based distribution. In other words, a
native package requires no changes in order to create the package. A DEB
source package will always consist of a “pristine” source archive in the form

60 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 60

of a gzip-compressed GNU tar file and a DSC file that will list the contents of
the package and can be considered the “core” of a source package. An
example DSC for a program called most that I maintain looks like this:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Format: 1.0
Source: most
Binary: most
Architecture: any
Version: 5.0.0a-1
Maintainer: Benjamin Mako Hill <mako@debian.org>
Standards-Version: 3.7.3
Build-Depends: debhelper (>= 4), libslang2-dev
Files:
30f2131b67f61716f6fe1f65205da48b 155233 most_5.0.0a.orig.tar.gz
07e3eb05ad5524fe6d885f5cdc2eb902 20160 most_5.0.0a-1.diff.gz

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.6 (GNU/Linux)

iD8DBQFH4IoAic1LIWB1WeYRAjyOAKCrLCfuZA7b8JcvYTFYeuHrF7r34wCfVTBS
/jGUfIrELNq173sM9CorZA4=
=/Cia
-----END PGP SIGNATURE-----

The file is signed with a GnuPG (Gnu Privacy Guard [GPG]) or PGP
(pretty good privacy) key to ensure the integrity of the file and the identity
of the author. If you were to check this signature with GPG, you would see
that it was signed by my GPG key. The DSC file also contains information
on the version of the source format (in this case, it’s the “old” format, 1.0),
the name of the source package, the version of the package (split into the
version of the upstream source and the version of the package after the
final -), the name and e-mail of the maintainer, the architecture on which
the software will run, the version of policy (marked as “standards”) against
which the software was created, the software that must be present to build
the package, and a list of the other files this source package contains, iden-
tified by file size and MD5 hashes.

In a native DEB, there would be only a single compressed tar (tar.gz) file.
In this nonnative package, there would be additional files that represent all
changes to the package. This is so all the changes that the DEB packager

Debian Packages 61

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 61

made are clearly visible. This is sometimes done for license reasons but is
usually done just so that users can see exactly what the packager has done
and what has been changed. This also makes it easy for the package main-
tainer to understand where a problem lies if there is an error. Changes
made to a package are usually expressed in a gzip-compressed diff file that
expresses all the differences between the package source and the pristine
source. In the case on the previous page, it is listed as most 5.0.0a-1.diff.gz.
In newer versions of the DEB source package format, additional tar files
containing additions or changes to the pristine source archive are also per-
mitted, as long as they are listed in the DSC file in the list of files.

When unpacked and with all necessary patches applied, every DEB source
package will unpack into a single directory of the form packagename-version
with a mandatory debian directory as a subdirectory. In the vast majority of
packages, almost all changes to the source are made inside this directory. This
directory contains a number of files—more than I have space to cover here.
Most important among these are the control file and the rules file. The con-
trol file includes most of the information about the source package found in
the DSC file (which is autogenerated using control file data) and additional
information describing each binary package. The control file expresses all
interpackage relationships, including Depends, Conflicts, Provides, Replaces,
Recommends, Suggests, and Enhances. As the “hard” requirements, the first
four are most important. Suggests and Enhances are rarely used by any pro-
gram. The file also includes both a single-line and a multiline description. A
sample control file (the control for most) is shown here:

Source: most
Section: text
Priority: optional
Maintainer: Benjamin Mako Hill <mako@debian.org>
Standards-Version: 3.7.3
Build-Depends: debhelper (>=4), libslang2-dev

Package: most
Architecture: any
Depends: ${shlibs:Depends}
Description: Pager program similar to more and less

The long-form description was removed from the output but in fact fol-
lowed the final description line and includes text that is indented by one
space and where paragraphs are separated by a single “.”. As mentioned

62 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 62

previously, the control file consists of a series of stanzas. The first stanza
will always begin with Source: and will include information on the source
package. Each following stanza will describe a single binary package. In
this case, there is only one binary package, which, like the source package,
is named most. This situation—a single source package creating a single
binary package of the same name—is a very common case.

The rules file is a GNU Make makefile and contains all of the makefile rules
to create and build a package. Running debian/rules binary from within the
unpacked source package directory results in the creation of a Debian
package in one directory above (../) if your system has all the necessary
dependencies installed. In most cases, the software will build and “install”
into a series of subdirectories in the debian directory; these files in their
temporary location will then be included as the package contents.

Additional files in the debian directory include the copyright file, the
changelog for the package, optional scripts to be run after and before
installation or removal of the package, and extra configuration data plus
anything else the packager would like to include.

Binary Packages

Debian binary packages are very simple in format, so it is unnecessary to
spend much time on them here. More important, they are almost never
manipulated by hand. Binary packages are merely installed and removed.
Changes to a binary package are made first in the source package and then
new, changed binary packages are rebuilt. In Ubuntu and Debian, binary
packages are a single file in an archive in the ar format. In the archive is
debian-binary, which contains a series of lines, separated by newlines. At the
moment, only the format version number is included. The second member
of the archive is named control.tar.gz, and it contains the package control
information (as described previously). The third and last member is called
data.tar.gz, and it contains the file system archive as a gzipped tar archive.

Package Management in Ubuntu
The administrator of every Ubuntu installation—servers and desktops—
must learn the basic mechanics of package management. As administra-
tors need to find new software to solve particular problems, metadata in

Package Management in Ubuntu 63

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 63

the packaging system can be a great place to start. When administrators
want to install new software, the packaging system provides the best way to
do so. The Ubuntu package system will also allow users to install and remove
software, check for updates—and for security updates in particular—and
install these updates. Finally, when a new release of Ubuntu is made, the
packaging system will allow administrators to update their systems.

Ubuntu provides a variety of different tools for package management. On a
desktop Ubuntu system, users’ interaction with the package management
system is primarily through a little icon on the desktop that alerts them to
new releases of software and through the graphical Add/Remove Programs
application and a second graphical package management program called
Synaptic that provides functionality to let users browse the package archives.
Since these programs are covered in depth in The Official Ubuntu Book
(ISBN: 0133017605) and because the focus of this book is servers, this section
focuses on the command-line tools for package browsing and management.

Most server administrators primarily use tools in the APT family that
handle high-level package management. The original tool developed for
this purpose was apt-get. Aptitude is a frequently used alternative to apt-
get that provides both an interactive front end and that takes most of the
default apt-get commands. Many of the commands described in the rest of
this chapter that call aptitude can also be used with apt-get with little or
no difference in either output or behavior. The primary differences are in
the ways that the systems resolve complicated dependency situations and
certainly would not affect the reasonably simple operations described here.

Staying Up-to-Date

Each Ubuntu system stores a list of package repositories in /etc/apt/
sources.list. This describes the list of “places” where your package man-
agers—originally just APT but now several other tools—will look for
updated versions of software. These sources may include local repositories
on your file system, a CD in your computer, or—as is common in the vast
majority of situations—a network location. To update the system’s list of
packages, you can run apt-get update or aptitude update.

This command downloads the latest updated package lists for all reposito-
ries listed in your /etc/apt/sources.list files and checks any cryptographic

64 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 64

signatures on these updates against the keys stored on your machine. On a
new system, it checks only the Ubuntu package repositories that include
the repositories you installed from and the security repositories.

Installing any new version of packages is as simple as running aptitude
safe-upgrade, which is a replacement for the apt-get upgrade command that
may be more familiar to more seasoned users. safe-upgrade simply tries to
upgrade all installed packages to their most recent versions. Installed pack-
ages will not be removed unless they are unused, although additional pack-
ages may also be installed in order to resolve added dependencies.

APT can be configured to automatically download and upgrade packages
with new versions. This is an attractive proposition to administrators
who like the idea of not having to log in to their systems to keep them up-
to-date. However, automatic package upgrades are subject to errors
because of the particular status of software on the system or even particu-
lar configuration changes that have been made, so these automatic pack-
age upgrades can leave systems in unstable or unworkable states. As a
result, automatic upgrades are neither covered in this book nor recom-
mended by the authors.

Searching and Browsing

Historically, the primary way of searching for new packages was using the
program dselect. Users of Ubuntu on the desktop will primarily use the
Add/Remove Programs application and the graphical program Synaptic.
Users on the console have several other options.

First among these is the simple program apt-cache, which can provide sta-
tistics about and information on packages. If, for example, I decide I want
a pager like less, I can search for one in the following way:

$ apt-cache search pager less
less - Pager program similar to more
wdiff - Compares two files word by word
console-log - Puts a logfile pager on virtual consoles
gdesklets-data - Applets for gdesklets
jless - A file pager program, similar to more(1) supporting ISO2022
most - Pager program similar to more and less
nagios-plugins-basic - Plugins for the nagios network monitoring
and management system

Package Management in Ubuntu 65

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 65

As you can see from the previous list, the apt-cache search command
returned eight “hits” for my search on the two keywords pager and less and
returned a list of package names followed by short one-line descriptions.
The keyword search looked through the full list of available packages and
focused on the package names, short descriptions, and full descriptions
that are not shown in the returned list. If I want to know more about a
package, apt-cache can also show me more about the package with the
show subcommand as in the following example:

$ apt-cache show most
Package: most
Priority: optional
Section: universe/text
Installed-Size: 172
Maintainer: Ubuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com>
Original-Maintainer: Benjamin Mako Hill <mako@debian.org>
Architecture: i386
Version: 5.0.0a-1
Depends: libc6 (>= 2.7), libslang2 (>= 2.0.7-1)
Filename: pool/universe/m/most/most_5.0.0a-1_i386.deb
Size: 48092
MD5sum: e089c00005b536e1b8848b7087df2bae
SHA1: 4f4ab395f340be4804732452aa112007916f90cb
SHA256:
ccf50fb49270e7ddf7735da23e699afcd11dcfc8e241973bb17ad03bf49e6f4a

Description: Pager program similar to more and less
Most is a paging program that displays, one windowful at a time, the
contents of a file on a terminal. A status line at the bottom of the
screen displays the file name, the current line number, and the
percentage of the file so far displayed.
.
Unlike other paging programs, most is capable of displaying an
arbitrary number of windows as long as they all fit on the screen,
and different windows could be used to view the same file in
different positions.
.
In addition to displaying ordinary text files, most can also display
binary files as well as files with arbitrary ascii characters.
Bugs: mailto:ubuntu-users@lists.ubuntu.com
Origin: Ubuntu

You may recognize that quite a bit of this information looks like the source
package information and the corresponding stanza referring to this binary

66 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 66

package in the control file described previously. Sure enough, this is
exactly where this metadata has been extracted.

Of course, the bulk of the output is made up of the long-form description
that was omitted in the previous example. There are some other fields of
potential interest, including the “Original-Maintainer” or the person who
packaged the system in Debian, the “Maintainer” or the person or group to
contact with questions about or issues with the package, and sizes and
hashes (e.g., MD5Sum, SHA1, and SHA256), which describe ways to iden-
tify that a particular version of the package was downloaded correctly and
has not been modified.

Called with no arguments, Aptitude also can provide users with a Curses-
based text-based interface that allows for more interactive browsing of all
the packages available. For users familiar with Synaptic, this can be
thought of as a text-based version of the Synaptic interface. In this mode,
many search results can be navigated through with the arrow keys and dif-
ferent applications can be “marked” for installation.

Before concluding this tour of the options for searching and browsing for
packages, it is worth pointing to the Web site at http://packages.ubuntu
.com. This interface lets users search in ways that are similar to some of the
tools I have shown here but with several additional useful options. In par-
ticular, the Web site lets users search for particular files in any package in
Ubuntu. Normally, users are able to find out only which package “owns” a
file if they have the package on their system. If, for example, you need a
particular header file or shared library and you know only the filename,
you can search on the Web site for that filename throughout all packages
available in the Ubuntu archive.

Installation and Removal

Installing and removing packages is another simple task that you will do
frequently. To install a package, you can invoke apt-get or Aptitude in a
similar way, although, unlike searching, a user must be running with root
privileges to do so. The recommended way to do this would be to use the
sudo command. Since prefixing each command in this section with sudo

Package Management in Ubuntu 67

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 67

would be tedious, I have assumed the user is root, although having the user
logged in as root would not be considered the best form. If I want to install
most, I can simply run the following command as root:

aptitude install most
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
Writing extended state information... Done
The following NEW packages will be installed:
libslang2{a} most

0 packages upgraded, 2 newly installed, 0 to remove and 0 not
upgraded.

Need to get 0B/509kB of archives. After unpacking 1323kB will be
used.

Do you want to continue? [Y/n/?] y
Writing extended state information... Done
Selecting previously deselected package libslang2.
(Reading database ... 362131 files and directories currently
installed.)

Unpacking libslang2 (from .../libslang2_2.1.3-3ubuntu1_i386.deb) ...
Setting up libslang2 (2.1.3-3ubuntu1) ...
Selecting previously deselected package most.
(Reading database ... 362143 files and directories currently
installed.)

Unpacking most (from .../most_5.0.0a-1_i386.deb) ...
Processing triggers for man-db ...
Setting up most (5.0.0a-1) ...

Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
Writing extended state information... Done

You can see in the output of the preceding command that libslang2 was
installed alongside most. In this case, Aptitude saw that most required the
S-Lang library but that it was not installed. Aptitude prompted me for
confirmation about the installation of the additional package (which I
approved), downloaded both packages, and then installed and configured
them on my system.

68 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 68

Removing a package is similarly simple. If I decide to remove most, I can
do so by running

aptitude remove most

In this case, libslang2 will not be removed (since I have not asked for it to
be removed). If I were instead to try to remove libslang2, Aptitude would
prompt me and explain that removing libslang2 would also require
removing all of the packages that depend on it—on this system, that
would just be most, but for other packages or on other systems there could
be quite a few packages. This type of dependency management means
that, for example, users should not (and cannot easily) remove core or
essential packages. Extra “unused” packages can be removed using the
command apt-get autoremove.

Finally, while these examples both used Aptitude, the installation and
removal of packages can also be done with the lower-level tool dpkg. In
fact, in both cases Aptitude is simply calling dpkg on the downloaded pack-
age files behind the scenes. Aptitude—or apt-get—will always download
packages and work out dependencies before turning to dpkg. If you have
already installed existing dependencies, you can install a DEB directly with
dpkg by using the -i command and passing the package filename as an
argument. For example, if I were given a DEB file for most, I could install it
with a command like this:

$ dpkg -i most_5.0.0a-1_i386.deb

dpkg will check dependencies and produce an error if there are missing
dependencies but will not automatically download or install packages
since it does not contain the functionality to do this. I could uninstall most
with dpkg with the command dpkg -r most.

Manipulating Installed Packages

dpkg provides dozens of methods of querying, searching, and manipulating
installed packages. It contains a database of information about packages

Package Management in Ubuntu 69

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 69

installed on the system. To get a quick overview of what this might look
like, you could run the following command:

$ dpkg -l most
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Cfg-files/Unpacked/Failed-cfg/Half-inst/
trig-aWait/Trig-pend

|/ Err?=(none)/Hold/Reinst-required/X=both-problems
(Status,Err: uppercase=bad)

||/ Name Version Description
+++-===========-============-=============+=======================
ii most 5.0.0a-1 Pager program similar to more and less

Run without any arguments, dpkg -l will show this basic information on
the installation status, name, version, and description of every package on
your system.

Another simple task is to get a list of files contained within the package. If
you have a DEB file that you have not installed, you can get this informa-
tion by running dpkg --contents as in the following example:

$ dpkg --contents /var/cache/apt/archives/most_5.0.0a-1_i386.deb
drwxr-xr-x root/root 0 2008-05-06 12:06 ./
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/bin/
-rwxr-xr-x root/root 59940 2008-05-06 12:06 ./usr/bin/most
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/man/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/man/man1/
-rw-r--r-- root/root 5912 2008-05-06 12:06 ./usr/share/man/
man1/most.1.gz

drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/doc/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/doc/most/
-rw-r--r-- root/root 2989 2007-09-09 12:14 ./usr/share/doc/
most/changelog.gz

-rw-r--r-- root/root 5544 2008-05-06 12:06 ./usr/share/doc/
most/copyright

-rw-r--r-- root/root 3335 2007-09-06 10:15 ./usr/share/doc/
most/README

-rw-r--r-- root/root 1386 2006-05-01 13:51 ./usr/share/doc/
most/lesskeys.rc

-rw-r--r-- root/root 492 2006-05-01 13:51 ./usr/share/doc/
most/most-fun.txt

-rw-r--r-- root/root 3086 2006-05-01 13:51 ./usr/share/doc/
most/most.rc

70 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 70

-rw-r--r-- root/root 2028 2008-05-06 12:06 ./usr/share/doc/most/
changelog.Debian.gz

drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/lib/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/lib/mime/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/lib/mime/
packages/

-rw-r--r-- root/root 94 2008-05-06 12:06 ./usr/lib/mime/
packages/most

Similar information for installed packages can be retrieved with dpkg -L.
Working in the other direction, if you have a particular file and you want
to know which package “owns” it, you can use dpkg -S to query the data-
base for this information. For example:

dpkg -S /usr/bin/most
most: /usr/bin/most

The binary file /usr/bin/most belongs to—no surprise here for anyone
who’s gotten this far—the binary package called most. Since this com-
mand is searching through each of the file lists of every package on your
system, it may take some time to complete.

Manipulating Repositories

The best way to install new software in the “Ubuntu way” is never to simply
download new DEB packages and install them “by hand” with dpkg. But
APT is only kept up-to-date with the packages that it already knows about.
While dpkg works on packages, APT works on repositories of packages that
contain information on different packages, their versions, and their depen -
dencies. As a result, to manage a package through APT, one needs to add to
the system not the package, but rather the repository that contains it. This is
done by adding or editing the list of “sources.” While the Ubuntu desktop
distribution includes a graphical tool for manipulating repositories, it can
be done easily by hand, which will be the default on most systems.

The sources.list file, already mentioned several times in this chapter, is
located at /etc/apt/sources.list on every Ubuntu and Debian system and is
made up of a series of lines like this:

deb http://us.archive.ubuntu.com/ubuntu/ lucid main universe
deb-src http://us.archive.ubuntu.com/ubuntu/ lucid main universe

Package Management in Ubuntu 71

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 71

The first word will be a # symbol marking the line as a comment or else
either deb or deb-src. This specifies whether the repository is a source
package repository or a binary package repository. The second item is the
location in the form of a URI. The third item is the name of the distribu-
tion or, as it might more accurately be described, the distribution version.
In the previous example, this distribution version is lucid, which refers to
the Ubuntu release of the Lucid Lynx. The remaining arguments are the
lists of the components. The components provided in the core Ubuntu
repositories are detailed in the following section.

An example will help illustrate the process of adding a repository. If I want
to install a version of Bazaar that is always the latest released version, I will
need to do this from outside the default Ubuntu repositories, which will
only be updated based on the Ubuntu release cycle. Luckily, the Bazaar
developers provide their own “Personal Package Repository”—a subject
I’ll come back to at the end of this chapter. On their Web site, they provide
the deb and deb-src lines that I can simply drop into my sources.list:

deb http://ppa.launchpad.net/bzr/ubuntu lucid main
deb-src http://ppa.launchpad.net/bzr/ubuntu lucid main

If I update, I am first greeted by an error that claims that I do not have the
correct cryptographic key to verify that the packages in the repository are
really coming from the Bazaar developers:

W: GPG error: http://ppa.launchpad.net lucid Release: The following
signatures couldn't be verified because the public key is not
available: NO_PUBKEY FE8956A73C5EE1C9

I can easily install that by downloading the key from a trusted source like
the PPA providers’ Web site and saving it into a file (called /tmp/keyfile in
the following example), verifying that is correct, and adding to the package
manager’s key database with a command such as

apt-key add - < /tmp/key
OK

72 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 72

The apt-key manual page gives more details on how keys for repositories
can be managed with this useful command.

Ubuntu Default Repositories

The vast majority of packages that you will need have been packaged for
Ubuntu. This is because, leveraging the work of Debian, Ubuntu provides
access to a large majority of the most popular pieces of free software as
packages in their own repositories.

These tens of thousands of packages are separated into a series of different
sections or components. You can toggle these on and off by including them
in the list of components in your sources.list. Because these have important
consequences for the level of support you will receive for your software, it is
worth understanding these different components so that you can decide
from which areas you want to pull software. Available components on the
Ubuntu server include main, restricted, universe, and multiverse. The fol-
lowing descriptions are adapted from the component descriptions on the
Ubuntu Web site:

� Main
The main distribution component contains applications that are free
software, can freely be redistributed, and are fully supported by the
Ubuntu team. These include the most popular and most reliable open
source applications available, much of which is installed by default
when you install Ubuntu. Software in main includes a hand-selected
list of applications that the Ubuntu developers, community, and users
feel are important and that the Ubuntu security and distribution
teams are willing to support. When you install software from the
main component, you are assured that the software will come with
security updates and technical support.

� Restricted
The restricted component is reserved for software that is very com-
monly used and that is supported by the Ubuntu team even though
it is not available under a completely free license. Please note that it
may not be possible for Ubuntu to provide complete support for this

Package Management in Ubuntu 73

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 73

software since the Ubuntu team is unable to fix the software but can
only forward problem reports to the actual authors.

� Universe
In universe one can find almost every piece of open source software
and software available under a variety of less-open licenses, all built
automatically from a variety of public sources. All of this software is
compiled against the libraries and using the tools that form part of
main, so it should install and work well with the software in main, but
it comes with no guarantee of security fixes and support.

� Multiverse
The multiverse component contains software that is not free, which
means the licensing requirements of this software do not meet the
“main” component license policy. The onus is on you to verify your
rights to use this software and comply with the licensing terms of the
copyright holder. This software is not supported and usually cannot
be fixed or updated. Use it at your own risk.

Using Other Repositories

As you saw when I added the Bazaar repository several sections ago, users
will still sometimes want to make use of a variety of outside repositories
beyond what is provided in Ubuntu. For example, users might want to
install new versions of particular applications or libraries from the devel-
opment release of Ubuntu but might not want to upgrade all of their
packages to the latest version.

The quasi-official “backports” repository in Ubuntu is a useful resource. It
contains versions of software from the development version of Ubuntu
that have been backported to install cleanly on stable versions of Ubuntu.
You can add the backports by installing a DEB package by hand in a one-
by-one with dpkg or by adding an extra line to your sources.list. Informa-
tion on doing both can be found on the Ubuntu Web site at https://
help.ubuntu.com/community/UbuntuBackports.

One reason that many users choose to go the à la carte method—that is, the
method of downloading packages by hand and installing them with dpkg—
as opposed to just adding the repository is because of a limitation in the

74 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 74

way that APT works: APT and other tools will always install the newest ver-
sion of any package available by default. This means that if you add the back-
ports repository, or the development repository for that matter, to your
sources.list, the latest version of everything in that repository will be
installed when you try to run an upgrade. For small repositories (like the
Bazaar PPA described several sections ago that contained only Bazaar and
several closely linked packages) this does not present a problem. However,
in situations where you want to add a large repository of many packages
like the backports repository or the development release of Ubuntu but
only want a few packages, the effects will often not be what you want.

The general solution to this problem is called pinning or apt pinning. Pin-
ning is extraordinarily powerful but, in its advanced forms, can also be
very complicated. As a result, a full discussion is outside the scope of this
chapter. That said, an example is shown next for the situation where I have
Karmic installed but want APT to prefer packages in Lucid. To change this,
I would need to create a file in /etc/apt/preferences.d that included some-
thing like the following code block:

Package: *
Pin: release a=karmic
Pin-Priority: 700

Package: *
Pin: release a=lucid
Pin-Priority: 600

Each stanza describes one release and, as is represented by the wildcard in
the first line, applies to all packages. In the final line of each stanza, the pin-
priority describes both relative position (i.e., in the preceding example,
Karmic is preferred to Lucid) and weight that will be given to each. Weights
can be tweaked so that packages will be installed, or not, except in special
circumstances. Much more information on pinning is available in the
apt_preferences manual page and in several excellent pieces of documen-
tation on the Ubuntu and Debian wikis.

Upgrading a Whole System

A final basic task that every system administrator will need to do is to
upgrade a full system. On desktop Ubuntu systems, the default way of

Package Management in Ubuntu 75

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 75

handling an upgrade is by using the update manager software. However,
this software is designed specifically to upgrade graphical systems. Since
the process can just as easily be done from the command line, that will
probably be more appropriate on most servers.

In the past, upgrading most systems was a two-step process. First, the
administrator would update the list of repositories (detailed in the previous
section) so that references to the old release were replaced with the new
release. For example, if I were upgrading from the Hardy Heron to the Gutsy
Gibbon, I would replace every instance of hardy with gutsy in my source.list
file. After doing this, I would run aptitude update exactly as I described ear-
lier in the section “Staying Up-to-Date.” This would refresh my local pack-
age metadata cache with a list of all the packages in the new distribution.

Finally, I would run aptitude full-upgrade which, unlike safe-upgrade,
described previously, would upgrade all installed packages to their most
recent version and would remove or install additional packages as neces-
sary. full-upgrade is less conservative than safe-upgrade and is much
more likely to perform unwanted actions. However, it is capable of
upgrading packages that safe-upgrade cannot. Because these sorts of situ-
ations are much more common between releases, using full-upgrade
became the recommended course for upgrading between releases. How-
ever, neither method is supported anymore.

In current releases of Ubuntu, the correct way to upgrade systems is with
the do-release-upgrade program. do-release-upgrade is a script that auto-
mates the process described earlier in addition to handling a number of
corner cases and exceptions intelligently. It is the supported way to
upgrade one’s Ubuntu server.

Mirroring a System

One common task many system administrators want to accomplish is to
mirror the installed software from one machine to another. Because all
software on a default Ubuntu system is installed in packages, the packag-
ing system can make this easy. Using dpkg, one can get a list of all packages
on the machine with the following command:

dpkg --get-selections > package_list

76 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 76

This command outputs a simple list of packages and then redirects that out-
put into a file called package_list. I can copy this file to another machine and
then use it to set the list of installable packages with the following command:

dpkg --set-selections < package_list

Finally, I can install those selections onto the target system using the fol-
lowing command:

apt-get dselect-upgrade

dselect-upgrade is a reference to APT’s predecessor dselect but will sim-
ply work to upgrade packages on the system and install any new packages
“marked” for upgrade by dpkg --set-selections in the process.

Making Your Own Packages
The power of a package management system is that you can track depen -
dencies and conflicts, do automatic upgrades, and keep track of every file
on the system and which piece of software it belongs to. Installing through
packages is much easier than if one simply downloads and builds from
scratch, but the package management system truly shines when it comes
time to uninstall or upgrade. If you’ve installed from source, files may be
in any number of places on your file system. If you’ve installed from a
package, removing your package will be as simple as apt-get remove.

As a result, many responsible system administrators find it very conve-
nient to ensure that all software on their systems is installed from pack-
ages. That sounds great, but sometimes a piece of software you want—or a
version of a piece of software that you want—isn’t packaged or isn’t built
for the version of Ubuntu that you are running. The result is that you’ll
need to build, in one way or another, your own packages. The rest of this
chapter gives a brief overview of this process and provides a starting spot
for the system administrator who wants to move beyond simply consum-
ing packages and become a producer.

Rebuilding Packages

As I hinted earlier in this chapter, many users want to rebuild existing
packages as part of backporting a version of a piece of software available in

Making Your Own Packages 77

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 77

one version of Ubuntu—or Debian—to a current one. Sometimes, if an
ABI has changed, a piece of software won’t work on a version of Ubuntu
simply because it was compiled against a set of libraries that are no longer
present. This is the easiest possible case to fix because adjusting for it is
simply a matter of downloading the source and rebuilding it against the
new version of the libraries. This section covers doing exactly that.

Doing so will first require a source package. The source package, as you
may remember from earlier in this chapter, consists of a DSC file and at
least one other file. These can be downloaded as normal files from http://
packages.ubuntu.com and unpacked with dpkg-source -x filename.dsc, or
they can be installed automatically by using the apt-get source package

command.

If one wanted to download and compile a package from a particular distri-
bution—as is often the case—one could specify this explicitly with the -t
option, which, behind the scenes, sets the default PIN for the distribution
at a very high priority (990 in fact) by running (for example)

$ apt-get -t jaunty source --compile most

This would download and unpack the version of most source packages
from Jaunty—assuming, of course, that the necessary deb-src line was
included in /etc/apt/sources.list. The unpacked source code will be in a sub-
directory of the current directory made up of the package name and ver-
sion. In this case, the directory would be called most-5.0.0a since 5.0.0.a is
the version of most that I’ve downloaded. When a --compile flag is added
to the preceding apt-get invocation, the binary packages will also be built
automatically—even if the program is in an interpreted language and there
is no actual compiling taking place. If one does not use the compile flag, it
can be invoked afterward in several ways. One of the simplest is by chang-
ing into the directory and then running dpkg-buildpackage like this:

$ cd most-5.0.0a
$ dpkg-buildpackage -us -uc -rfakeroot

This command will create an unsigned package (the -us and the -uc refer
to unsigned source and unsigned changelog files) without needing root
privileges (fakeroot is a program that allows packages to be built without

78 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 78

root). Of course, the package may also require build dependencies that are
not installed by running a command in the following form:

apt-get -t jaunty build-dep most

The build-dep subcommand to apt-get automates the process of
installing all software necessary to build a given package. Running it is a
frequent first step in rebuilding any package for the first time when that
package is from an installed repository.

When the software in question is successfully rebuilt, the directory will
contain a set of binary packages for this source package that end with .deb
in the directory where it is run. In this case, the single binary package cre-
ated was called most 5.0.0a-1 i386.deb. The -1 following the version num-
ber of the software refers to the version of the package and could be
incremented each time we made a new version of the package. The i386 in
this case simply refers to the architecture for which the binary package was
built. In this case, I built it on an Intel machine. For many users, this will
say amd64, which is an increasingly popular architecture. For most inter-
preted programs that will run on any architectures, this will say all.

New Upstream Versions

New upstream versions of packages are slightly more complicated than
simply rebuilding an existing package with no modifications. Installing
the package devscripts provides the user with a program called uupdate
which helps with this process. To use uupdate, a user must first download
the source package with a command like apt-get source most. Leave off
the compile option for the moment, and then download the new upstream
version tarball. There is no reason to unpack it at this point and, option-
ally, rename it into name-version.tar.gz format. Changing into the direc-
tory of the old package’s source and running uupdate with the new
upstream tarball as the argument will usually do the trick:

$ cd most-5.0.0a $ uupdate ../most-5.0.1.tar.gz

Usually, uupdate then deduces the version number from the upstream tar-
ball and applies all the changes made to the old version to the new upstream

Making Your Own Packages 79

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 79

source. If uupdate can’t decode the version number, the new version num-
ber can be specified as a second argument to the command.

The output from uupdate should explain the process that it follows and
will end with a description of the location of the new modified source. In
this case, changing to ../most-5.0.1 will put me in the new “updated”
package directory. It’s a good idea to look around first to make sure that
things worked well. Especially it is worth checking the debian/ subdirec-
tory and paying attention to both the control file and the changelog file in
that directory, the latter of which will have been updated automatically
but will probably need a little bit of tweaking. The stanza at the top will
include information on the new release and can be updated or tweaked to
reflect changes that you made to the file. Once you are satisfied, you can
build the package with dpkg-buildpackage in the way described in the
previous section.

Building Packages from Scratch

Building packages from scratch is much more complicated and involves
getting to know quite a bit about the internals of Debian packages. As a
result, it is outside the scope of this chapter. As a hint, new packages can be
most easily created using the package dh-make, which installs the program
dh_make, which is invoked from inside the unpacked source tarball from
the upstream developer. For many simple packages, dh_make does most of
the hard work of creating workable packages.

Much more information on creating packages for Ubuntu can be found in
the Ubuntu packaging guide, which goes in depth into the process of cre-
ating packages from scratch: https://wiki.ubuntu.com/PackagingGuide.

It is worth noting one important caveat to the Ubuntu documentation:
The packaging guide is focused on creating packages that are designed to
be uploaded to Ubuntu. If you are creating packages that will be installed
only on your own machine, the potential for harm is much less, and many
of the guidelines in the packaging guide can be treated as just that—espe-
cially in the first version of a package. The difference is between workable
packages and policy-compliant packages.

80 Chapter 3 � Package Management

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 80

If you are going to proceed and create packages to be shared with others or
perhaps even uploaded into the Ubuntu repositories eventually, it is a very
good idea to follow the instructions in the packaging guidelines carefully
and to use programs like lintian, which check your packages for many
common errors—useful steps in any situation. If you just want things to
work, a brief trip through the guide and use of dh_make will probably put
you in good enough shape to get by.

Hosting Your Own Packages

A final step in the creation of your packages will be hosting them in a place
where others can get them in the simple “add a line to your source.list file”
sort of manner to which I have referred throughout this chapter. There are
several different ways to do this. The easiest one and the one most com-
monly practiced in the Ubuntu world is to use Launchpad—the infra-
structure built by Canonical and used extensively in Ubuntu’s own
development—to host what’s called a Personal Package Archives (PPA).

With a PPA, a developer can simply upload a source package to Launchpad
and the package will then be built on a variety of architectures and posted
into a PPA. PPAs work exactly the same way that developing for Ubuntu
does, so using them is a great preview of what you will experience if you
decide to eventually upload your software in Ubuntu and get involved on
the development side of things. Earlier, when I showed how to add Bazaar
packages to the list of packages, I entered the list of the Bazaar PPAs. More
information on PPAs is available at the following URLs: https://help
.launchpad.net/Packaging/PPA and https://launchpad.net/ubuntu/+ppas.

Alternatively, you can host your own repository on your own server with
any of several different tools. Although the classic tool for running these is
a package called apt-ftparchive, the newer project reprepro is probably a
better fit. Installing the package with that name and looking in the docu-
mentation is a good way to get started.

Making Your Own Packages 81

Rankin_3e_ch03_Rankin 6/18/13 11:02 AM Page 81

Rankin_3e_appx_Rankin 6/18/13 11:10 AM Page 494

Index

495

[] (square brackets)
in grep search keywords, 485–486
in regular expressions, 466

* (asterisk)
in shell globs, 208–209, 465
in traceroute output, 422
wildcard character, 465

\ (backslash)
line continuation character, 93
in sudoer aliases, 206

% (percent sign)
group name indicator, 204
Kickstart section indicator, 106

/ (slash), in IRC commands, 452
? (question mark), wildcard character, 464
@ (at sign), Kickstart task indicator, 106
(hash mark), comment indicator

sources.list file, 72
Upstart, 31

^ (caret), Ctrl key symbol, 24
< (left angle bracket), redirection operator, 470–472
| (vertical line), pipe symbol, 466–467
. (dot)

alias for current directory, 20
package paragraph separator, 62–63
partition separator, 94, 96

.. (dot dot), alias for directory above current, 20
> (right angle bracket), redirection operator, 470–472
>> (right angle brackets), redirection operator,

470–472
450 command, 155

A

A time, 12
a2dissite script, 139, 142
a2enmod command, 142
a2ensite script, 138, 142

aa-complain program, 209
aa-enforce program, 209
abort command, 149
Accessibility options, 4
access-key variable, 332
Account options, Kickstart, 109
Active/active clusters, 379
Active-backup or 1 mode, 373
Active-backup policy, 373
Active/passive clusters, 379
Adaptive load balancing, 374
Adaptive transmit load balancing, 374
—add command, 354
add-apt-repository command, 330
Administrator. See System administrator.
Advanced Package Tools (APT). See APT

(Advanced Package Tools).
Alert escalations, 287–288
Alerts for software upgrades, 64
Aliases

for directories, 20
e-mail users, 147, 150
nesting, 21
newaliases command, 150
sudo command, 205–206
updating, 150

alloptions.cfg file, 85
allow command, 217
Amazon EC2. See also Juju.

AMIs, picking, 320–324
API tools, 316–319
availability zones, listing, 319
available AWS regions, listing, 318
AWS Management Console, 315–316
command-line interface, 316–319
description, 315
EBS (Elastic Block Storage), 321

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 495

Amazon EC2, continued
firewall rules, 324–325
My Account page, 315–316
post-install scripts, 329–330
prebuilt hard drive images, 320–324
presetting arguments, 318
private keys, displaying, 320
rates, 315, 319, 321
regions vs. availability zones, 319
registering an account, 315–316
security groups, 324–325
ssh key pairs, creating, 319–320
userdata scripts, 328–330
X.509 certificates, 316–317

Amazon EC2, instances
adding to groups, 325
creating, 321–324. See also Juju.
external IP, determining, 326–327
getting information about, 323–324
instance IDs, 323–324
ssh into, 326–327
starting, 327–328
stopping, 327–328
t1.micro, 315
terminating, 327–328

AMIs (Amazon Machine Images). See also Amazon
EC2.

Canonical Ubuntu defaults, 327
definition, 321
dynamic IP addresses, 327
ebs, 321
finding, 321–322
hostname, default, 327
instance store, 321
instance types, 321
instances, creating, 321–324
user, default, 327

Apache. See also Web servers.
a2dissite script, 139
a2ensite script, 138
apache2ctl program, 139–141
apache2-doc package, 141
CGI scripts directory, 43, 139
configtest command, 140
configuration files, 136–137
configuration files, checking, 140–141
configuring for WordPress, 142–143

diagnostic commands, 140–141
document root directory, 43, 139
documentation, 141
environment variables for scripts, 136
/etc/apache2, 136
/etc/apache2/apache2.conf, 136
/etc/apache2/conf.d/, 137
/etc/apache2/envvars, 136
/etc/apache2/mods-available/, 137
/etc/apache2/mods-enabled/, 137–138
/etc/apache2/ports.conf, 136
/etc/apache2/sites-available/, 138
/etc/apache2/sites-enabled/, 138–139
file conventions, 136–139
fullstatus command, 140–141
graceful command, 140
graceful-stop command, 140
log files, 139
modules available to Apache, 137
multiple sites on same server, 138
port settings, 136
restart command, 139–140
restarting, 139–140
start command, 139–140
starting/stopping, 139–140
status command, 140–141
stop command, 139–140
symlinks to .load and .conf files, 137–138
symlinks to virtual hosts, 138
/usr/lib/cgi-bin/, 139
/var/log/apache2/, 139
/var/www/, 139
virtual hosts, 138

apache2 package
installing, 116
in the LAMP server package, 14

apache2ctl program, 139–141
apache2-doc package, 141
apache2-mpm-prefork package, 14
AppArmor

aa-complain program, 209
aa-enforce program, 209
complain mode, 209–210
configuration files directory, 210
enforce mode, 209–210
/etc/apparmor/, 210
/etc/apparmor.d/, 210

496 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 496

/etc/init.d/apparmor, 210
file conventions, 210
globs, 208–209
init script directory, 210
log directories, 210
overview, 206–207
principle of least privilege, 206–207
profiles, 207–209
rules directory, 210
/var/log/apparmor/, 210
/var/log/syslog, 210

APT (Advanced Package Tools)
apt-cache program, 65–67
apt-ftparchive package, 81
apt-get program, 58–59, 64
Aptitude program, 64
downloading packages automatically, 65
installing new package versions, 65
overview, 58–59
upgrading packages automatically, 65

apt pinning repositories, 75
apt-cache program, 65–67
apt-ftparchive package, 81
apt-get program, 58–59, 64
apt-get-upgrade command, 65
apt-install command, 103
Aptitude program

alternative to apt-get, 64
full-upgrade command, 76
installing packages, 67–68
removing packages, 69
safe-upgrade command, 65, 76
upgrade command, 65

—arch option, 304
Archiving backups, 242
Arguments, editing boot defaults, 87–88
Arguments, listing

commands, 22
init scripts, 35
installation, 5

Asterisk (*)
in shell globs, 208–209, 465
in traceroute output, 422
wildcard character, 465

at command, 478–479. See also cron command.
At sign (@), Kickstart task indicator, 106
Audible alarms, servers, 487

authkeys file
definition, 381
description, 386–388
node authentication, 386–388
syslog file example, 387–388

Autobuilders, 55–56
Autobuilding packages, 55–56
Auto-expiration of sudo access, 202
auto_failback option, 384
autojoin option, 382–383
Automatic

disk failure notification, 353
failback, 384
GRUB boot loader updates, 25
nodes joining clusters, 382–383
package building, 55–56
package downloading, 65
package upgrading, 65
software upgrades, 57
source discovery, Kickstart, 110
system upgrades, 76
updates, enabling, 97

Automating
chroot process, 103
Ubuntu Server installation. See Installing

Ubuntu Server, automating; Kickstart;
Preseeding.

VMs (KVM) creation, 308–309
autopsy package, 235–236
Autopsy tool, 235–236
autostart command, 310
Availability zones, 319
AWS Management Console, 315–316
AWS regions, listing, 318

B

Backing up data. See also BackupPC; Rescue and
recovery; Restoring from backups;
Snapshots.

archiving backups, 242
blackout periods, 262–263
checksum-seed option, 258
dd command, 242–244
drive imaging, 242–244
excluding directories, 259–260
frequency, 241–242
full backup interval, 261–262

Index 497

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 497

Backing up data, continued
full backups, 241
FullAgeMax option, 262
FullKeepCnt option, 262
FullKeepCntMin option, 262
FullPeriod option, 261–262
incremental backups, 241
limiting to one file system, 258–259
pg_dump tool, 248
principles of, 240–241
with RAID, 241
retention options, specifying, 262
scheduling backups, 241, 261–263
to a separate system, 240
testing backups, 241

Backing up data, databases
MySQL, 244–248
mysqldump program, 244–248
number of backup files, specifying, 247–248
password requirements, 245, 247
pg_dump tool, 248
PostgreSQL, 248–249
scheduling, 246–249
to the screen, 244–245

Backport repositories, 74–75
Backporting, 77–79
Backslash (\)

line continuation character, 93
in sudoer aliases, 206

Backup files, location, 266
BackupPC. See also Backing up data; Restoring

from backups.
first backup, starting, 256–257
overview, 249–250
password protection, 249–250
restore file browser, 263–264
storage requirements, 250–251

BackupPC, client machine
adding to BackupPC, 255–256
command-line interface, 256
configuring, 254–255
Web interface, 255–256

BackupPC, configuration
changing, 252–253
client machine, 254–255
command-line based, 253–254
config.pl file, 251–252

default, 251–252
SSH keys, 254
sudo, 255
Web-based, 252–253

BackupPC, rsync tweaks
backup retention, specifying, 262
blackout periods, 262–263
checksum-seed option, 258
excluding directories, 259–260
full backup interval, 261–262
FullAgeMax option, 262
FullKeepCnt option, 262
FullKeepCntMin option, 262
FullPeriod option, 261–262
host-specific tweaks, 260–261
limiting to one file system, 258–259
scheduling backups, 261–263

balance-alb or 6 mode, 374
balance-rr or 0 mode, 373
balance-tlb or 5 mode, 374
balance-xor or 2 mode, 373
Bash commands, too many arguments, 488–489
Bash history, 489
—bcast option, 308
bcast option, 383
/bin directory, 40
Binaries directories, 40–41
Binary packages

autobuilding, 55–56
creating, 55–56
installing, 56–57
overview, 63

BIND (Berkeley Internet Name Domain). See DNS
servers, BIND.

Bind 9 DNS server, 13
BIND configuration files, documentation, 134
bind9 package, 13
bind9-doc package, 13
Black hole, redirecting files to, 478
Blackout periods, 262–263
Blk_read: total blocks read, 412
Blk_read/s: blocks read per second, 412
Blk_wrtn: total blocks written, 412
Blk_wrtn/s: blocks written per second, 412
Blogging software. See WordPress.
Bond modes, Ethernet bonding, 373–374
Boot arguments, editing, 87–88

498 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 498

Boot cheat codes, 119–121
/boot directory, 7, 42
Boot flag, setting, 13
Boot loader, partitioning, 7. See also GRUB.
Boot parameters, listing, 5
Boot process, GRUB boot loader

automating updates to, 25
changing temporarily, 25–26
configuration file, 25
definition, 25–26
documentation for, 25
internal comments, 25
kernel options, defining, 25–26
menu.lst file, 25
update-grub program, 25

Boot process, kernel
init script, 27
initial RAM disk file, 26
initramfs file, 26–27
initrd file, 26
modular kernels, 26–27
root file system, mounting, 27

Boot process, /sbin/init program (System V init
model). See also Upstart.

description, 27–28
drawbacks, 30–31
/etc/init.d script, 28–29
/etc/rc0.d — /etc/rc06.d scripts, 29
/etc/rc.local script, 29
/etc/rcS.d script, 29
force-reload command, 29
init scripts, 28–29
reload command, 29
reloading settings, 29
restart command, 29
runlevels, 28
start command, 29
starting/stopping, 29
start-up scripts, 28–30
status command, 29
stop command, 29
system states. See Runlevels.
user scripts, 29

Boot process, /sbin/init program (Upstart). See also
System V init model.

(hash mark), comment indicator, 31
advantages of, 30–31

checking job status, 32–33
comments, 31
default runlevel, changing, 33–34
description, 30–31
event-driven actions, 30–31
script location, 31
script syntax, 31
start command, 32
starting/stopping jobs, 32
status command, 32
stop command, 32

Boot process services, definition, 34
Boot process services, managing with init scripts

arguments, listing, 35
chkconfig tools, 36
configuration, checking, 36
configuration files, 35–36
enabling/disabling services, 36
extended options, 34–35
force-reload command, 35
PID, tracking, 36
reload command, 35
reloading configuration files, 35
restart command, 35
restarting scripts, 35
service command, 36
service status, checking, 35
skeleton script, 37
status command, 35
symlinks, creating, 38
update-rc.d program, 36
writing your own, 36–38

Boot process services, managing with xinetd
description, 38–39
echo feature, 38
enabling services, 39
FTP feature, 39
system time, displaying, 38
TFTPD (Trivial File Transfer Protocol Daemon),

39
Boot prompts, responding to, 117
Boot screen, 3–5
“Bootable flag” field, 13
Booting LTSP

boot option default, setting, 193
boot option timeout, setting, 193
boot: prompt, displaying, 193

Index 499

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 499

Booting LTSP, continued
from the local hard drive, 193–194
from the network, 189–190

Bootloader options, Kickstart, 109
Bootstrap, Juju, 333
Botnets, 214
Bouncing e-mail messages, 153–154
Braille terminal, enabling, 4
Bridged networking, 300–302
Broadcast address, specifying, 308
broadcast or 3 mode, 373
Broadcast policy, 373
Browsing for packages, 65–67
Brute-force attacks, 213–214
Bug reporting, 459–461
BusyBox shell, 16
Bypassing installation CDs at boot, 4

C

Caches, flushing, 166
Canonical, paid support, 450–451
Caret (^), Ctrl key symbol, 24
cd command, 20
CD ejection, disabling, 100
CDs for installation. See Installation CDs.
CGI scripts directory, Apache Web server, 139
Chaining commands, mdadm tool, 353
Character classes, 466
Charms, Juju, 334
Cheat codes, 119–121
check command, 149
Checking job status, Upstart, 32–33
Checksums, creating, 489
checksum-seed option, 258
chgrp command, 21
chkconfig tools, 36
chkrootkit program, 236
chmod command, 21, 474
Choose a different root file system, menu option,

438
choose_interface option, 89–91
chown command, 21
chroot process, automating, 103
clean option, 431
Client connection, verifying, 416–417
Client machine, BackupPC, 254–256

Client problems vs. server, 416–417
Client root filesystem, 188
Client settings, defaults, 159
Clock (LTSP), setting, 187
Closed ports vs. firewalls, 423–424
Cloud computing. See Amazon EC2; Juju.
Clusters. See also Fault tolerance.

active/active, 379
active/passive, 379
adding hosts to, 279
defining, 276–277
fencing, 380
forcibly killing a server, 380
host status, determining, 379
monitoring nodes. See Heartbeat tool.
overview, 378
quorum, 379
replicated storage. See DRBD.
resource descriptions, 384–385
separate connection for node monitoring, 380
shooting the other node in the head, 380
split-brain syndrome, 379

Command-line administration
becoming root, 24
editing files, 23–24
nano editor, 23–24
sudo command, 24
vi editor, 23–24

Command-line administration, directories
. (dot), alias for current, 20
.. (dot dot), alias for directory above current, 20
aliases, 20–21
cd command, 20
changing, 20
current, 19–20
current, listing files in, 18–19
group, displaying, 20
home, confirming, 18
information about, listing, 19–20
last modification time, displaying, 20
links, displaying, 20
ls command, 18–20
moving around the system, 18–21
name, displaying, 20
ownership, displaying, 20
permissions, displaying, 20

500 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 500

pwd command, 18
size, displaying, 20
symlinks, identifying, 20

Command-line administration, files
chgrp command, 21
chmod command, 21
chown command, 21
groups, 20–21
information about, listing, 19–20
last access time, displaying, 20
name, displaying, 20
ownership, 21
permissions, 21
size, displaying, 20
symlinks, 20

Command-line administration, running processes
killing, 22–23
monitoring in real time, 21–23
PID, finding, 22–23
ps command, 21–23
stopping, 21–23
top command, 21

Commands. See also specific commands.
arguments, listing, 22
bash history, 489
pathname, finding, 486
repeating, 487
vs. services, 288
wildcard characters, 488

Commenting out configuration lines, 375, 376
Comments

(hash mark), comment indicator, 31, 72
GRUB boot loader, 25–26
Upstart, 31

Common section, DRBD configuration file, 390
Communication timeout, setting, 383
Comparing files, 489
Complain mode, AppArmor, 209–210
config.pl file, 251–252
configtest command, 140
configuration. See specific programs.
configuration files. See specific programs.
configurator tool, Kickstart, 111
Contact list, configuring, 289–290
Contacts, configuring, 287
Control file, source packages, 62–63

—copy option, 308
Copying

packages to another system, 77
SSH key files, 308

Copying files
from non-RAID disks to RAID, 356
from RAID 1 to RAID 5, 362

CPU, monitoring
idle time, 407
load, 272
system time, 407
user time, 407

create command, 166
—create option, 350
createdb command, 170
createuser command, 170
Critical thresholds, setting, 286
cron command, 480–483. See also at command.
crontabs, 483
Cryptographic keys, repositories, 72–73
cupsys package, 14
cupsys-bsd package, 14
Current directory

. (dot), alias for, 20
identifying, 18
listing files in, 19–20

Current load, analyzing, 313–315

D

-d option, 304
Database servers. See MySQL databases;

PostgreSQL databases.
Databases, backing up

MySQL, 244–248
mysqldump program, 244–248
number of backup files, specifying, 247–248
password requirements, 245, 247
pg_dump tool, 248
pg_dumpall tool, 248
PostgreSQL, 248–249
psql tool, 248
scheduling, 246–249
to the screen, 244–245

Databases, Tripwire
default directory, 232
“file does not exist” message, 229

Index 501

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 501

Databases, Tripwire, continued
initializing, 229–230
“unknown file system type” message, 229
updating, 230–231

Databases, used by Samba, 176
dd command, 242–244, 445, 486
ddrescue command, 445
deadtime option, 383
DEB (Debian) format. See Package management,

DEB format.
debconf database, dumping, 85
debconf-get-selections, 85
default command, 216–217
DEFAULT keyword, 193
Default runlevel, changing, 33–34
Defense in depth, 201
defoma package, 14
Degraded arrays, 355
deity. See APT (Advanced Package Tools).
delete allow command, 217
delete command, 220
delete deny command, 217
Deleted files, recovering, 440–443
Deleting. See also Removing.

hosts, 289
mail queue messages, 149
services, 289
user accounts, PostgreSQL, 170

deny command, 217
denyhosts program, 213–214
Dependency checking, package management, 57,

59–60
Desktop alerts for software upgrades, 64
Destination directory, specifying, 304
Destination files, list of, 308
destroy command, 310
—detail argument, 352
—detail —scan command, 350–351
/dev directory, 44
device command, 110
Device files, 477–478
Device files directory, 44
Device information directory, 45
/dev/mem, 478
/dev/null, 478
/dev/random, 478

devscripts package, 79
/dev/ttyS0, 478
/dev/urandom, 478
df command, 413–416
DHCP (Dynamic Host configuration Protocol)

automating Ubuntu Server installation,
118–123

leases, list of, 161
selection by static leases, 121–122
selection by subnet, 123
timeout duration, setting, 90
timing out, 90

DHCP servers
coexisting with LTSP, 191–192
configuration files, 161
DHCP leases, list of, 161
dynamic configuration, 161–162
/etc/dhcp3/dhcpd.conf, 161
file conventions, 161
installing, 160
log files, 161
overview, 160
setting up for PXE boot server, 112–113
static configuration, 162–163
/var/lib/dhcp3/dhcpd.leases, 161
/var/log/syslog, 161

dh-make program, 80–81
Diagnostic commands, 140–141
diff command, 489
dig command, 50
dig tool, 420, 492
dir command (Windows). See ls command.
Direct restore, 264
Directories. See also File system hierarchy; specific

directories.
aliases, 20–21
cd command, 20
changing, 20
command-line administration. See Command-

line administration, directories.
excluding from backups, 259–260
group, displaying, 20
information about, listing, 19–20
last access time, 12
last modification time, 20
links, displaying, 20

502 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 502

ls command, 18–20
moving around the system, 18–21, 489–490
moving back to previous, 489–490
name, displaying, 20
noatime option, 12
ownership, displaying, 20
permissions, displaying, 20
pwd command, 18
Samba, sharing, 176–177
size, displaying, 20
symlinks, 20
A time, 12
variable size, directory for, 43

Directories, current
. (dot), alias for, 20
identifying, 18
listing files in, 19–20

disable command, 216
Disabled users. See Accessibility options.
Disk partitioning. See also Installing Ubuntu

Server.
administrator options, 7–13
/boot directory, 7
for the boot loader, 7
for dual-boot capability, 8
grouping partitions or disks, 8
Guided, LVM, 8
Guided, with entire disk, 8
/home directory, 6
Kickstart, 110
with Kickstart, 105–108
KVM VMs, 306
for LTSP, 187
MD (multidisk) devices, 350
migrating from RAID 1 to RAID 5, 359–362,

364–365
migrating non-RAID disks to RAID, 355,

358
/opt directory, 6
partitions, definition, 5–6
partitions, maximum per disk, 10
for personal files for user accounts, 6
for RAID devices, 346–349
resizing current partitions, 8
for temporary files, 7
for third-party programs, 6

/tmp directory, 7
/usr directory, 7
/var directory, 6
for variable-size data, 6

Disk partitioning, manual
allocating free space, 9–10
boot flag, setting, 13
“Bootable flag” field, 13
extended partitions, 10
file system, specifying, 10
file system settings, 10–13
initializing a blank drive, 9
inodes, setting number of, 12
inside extended partitions, 10
“Label” field, 12
logical partitions, 10
mount options, 11–12
“Mount options” field, 11–12
mount point, specifying, 11
“Mount point” field, 11
naming partitions, 12
partition size, specifying, 10
partitions as physical volumes, 10
primary partitions, 10
“Reserved blocks” field, 12
reserving space for the superuser, 12
“Typical usage” field, 12
“Use as” field, 10–11

Disk partitioning, preseeding
custom schemes, 92–94
expert_recipe for, 92–94
formatting partitions, 94
LVM partitions, 95–96
maximal size, 93
minimal size, 93
mountpoint, specifying, 94
overview, 91
partman-auto/choose_recipe option, 92
partman-auto/method option, 91
partman-auto/purge_lvm_from_device option,

91–92
partman/choose_partition option, 92
partman/confirm option, 92
partman-lvm/confirm option, 91–92
partman-partitioning/confirm_write_new_label

option, 92

Index 503

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 503

Disk partitioning, preseeding, continued
primary partition, 94
priority, specifying, 93–94
warning prompts, disabling, 91

Disk space
allocating, 9–10
freeing, rescue and recovery, 430
reserving for the superuser, 12

Disk space, troubleshooting
df command, 413–415
du command, 414–415
excessive tmp files, 415
full file system, 415
out of inodes, 415–416
usage, by directory, 414–415
usage, by file system, 414–415

Diskless clients, 181, 183
Disks. See also Hard drives.

erasing, 486
failure, automatic notification, 353. See also

Hard drives, rescue and recovery.
images, restoring from, 243
I/O, monitoring, 272
management, drbdadm command, 396–397
snapshots of, 8

DISPLAY option, 193
Distributions

definition, 53
specifying, 78

Dividing the problem space, 400–401
DNS (Domain Name System)

address, specifying, 308
administration, documentation, 134
status, checking, 420–421
ufw firewall example, 221

—dns option, 308
DNS queries, dig tool, 492–493
DNS servers

caching name server, 129
definition, 13
DNS master, 129–132
DNS slave, 132–133
host e-mail address, specifying, 130
overview, 126–127
SOA (Start of Authority), specifying, 130
TTL (Time To Live), default setting, 130

DNS servers, BIND
configuration files, 128
configuration files, reloading, 134
current status, checking, 134
default log file, 129
/etc/bind/, 128
/etc/bind/db.*, 128
/etc/bind/named.conf, 128
/etc/init.d/bind9, 128
file conventions, 127–129
flush command, 134
init script, location, 128
installing, 127
managing with rndc, 134
as name server, 127
named.conf file, 128
reconfig command, 134
reload command, 134
retransfer zone command, 134
server caches, flushing, 134
slave zone files, location, 128
status command, 134
/var/cache/bind, 128
/var/log/syslog, 129
working directory, 128
zones, reloading, 134

DNS servers, BIND zone files
adding, 129–132
location, 128
ownership, 131
permissions, 131
referencing in named.conf, 131–132
reloading, 134
retransferring, 134

DNS slave server
configuring the master server, 132–133
configuring the slave server, 133
overview, 132

Document root directory, 139
Documentation. See also Help and resources.

Apache Web server, 141
BIND configuration files, 134
DNS administration, 134
DNS servers, BIND GRUB boot loader, 25
doc files, 458
expert_recipe partitioning, 92–94

504 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 504

GroundWork front end, 296
installation CDs, 4
localhost, 457–458
man command, 22
man pages, 457–458
mdadm tool, 354
The Official Ubuntu Book, 64
online, 456
packages, 54–55
sudoers file, 204
troubleshooting problems and solutions,

402–403
Domain default, specifying, 307
Domain name for sent mail, 152
Domain Name System (DNS). See DNS (Domain

Name System).
—domain option, 307
Domains, accepting mail from, 152
do-release-upgrade program, 76
Dot (.)

alias for current directory, 20
package paragraph separator, 62–63
partition separator, 94, 96

Dot dot (..), alias for directory above current,
20

Dovecot, 157–158
Downloading packages automatically, 65
dpkg option, 431
dpkg program

copying packages to another system, 77
file owner package, identifying, 71
listing installed packages, 76–77
listing package files, 70–71
manipulating installed packages, 69–71
mirroring a system, 76–77
overview, 55, 69
querying installed packages, 69–71
searching installed packages, 69–71

DRBD
configuring Heartbeat, 395–396
drbddisk script, 395–396
initializing resources, 393–395
installing, 389–393
for NFS, 396
overview, 388–389
for Samba, 396

DRBD, drbdadm command
disk management, 396–397
drbd.conf file, changing, 397
initializing resources, 393–395
replacing failed disks, 397
solving split-brain problem, 398

DRBD configuration file, creating
common section, 390
example, 389–390
global section, 390
internal metadisk, 391–392
resource section, 390–391
split-brain policy, changing, 392

drbdadm command
disk management, 396–397
drbd.conf file, changing, 397
initializing resources, 393–395
replacing failed disks, 397
solving split-brain problem, 398

drbd.conf file
changing, 397
condensed, 393
initializing, 393–395

drbddisk script, 395
Driver information directory, 45
Drives. See Disks; Hard drives.
drop command, 166
dropuser command, 170
DSA keys, OpenSSH servers, 160
dselect program, 58–59, 65
du command, 414–415
Dual boot

LTSP servers, 192–194
partitioning for, 8

duck command, 414–415
Duplicate lines, removing from sorted output,

469–470
Dynamic configuration, DHCP servers, 161–162
Dynamic Host configuration Protocol (DHCP). See

DHCP (Dynamic Host Configuration
Protocol).

Dynamic preseeding
chain loading files, 101–102
overview, 100–101
preseed/early_command option, 103
preseed/late_command option, 103–104

Index 505

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 505

Dynamic preseeding, continued
preseed/run option, 102–103
running custom commands, 102–104

E

EBS (Elastic Block Storage), 321
ebs AMIs, 321
ec2-add-keypair command, 320
ec2-api-tools package, 317–319
ec2-authorize command, 324–325
ec2-describe-availability-zones command, 319
ec2-describe-group command, 324–325
ec2-describe-instances command, 323–324
ec2-describe-regions command, 318
ec2din command, 323–324, 326
ec2dre command, 318
ec2kill command, 328
ec2-revoke command, 325
ec2run command, 321–324, 328–330
ec2-run-instances command, 321–324
ec2start command, 328
ec2stop command, 328
echo feature, 38
Editing

boot arguments, 87–88
command-line administration, 23–24
nano editor, 23–24
preseed.cfg file, 87–88
Tripwire policies, 227–228
vi editor, 23–24

Edubuntu. See LTSP (Linux Terminal Server
Project).

802.3ad or 4 mode, 373
E-mail. See also Mail.

bounced messages, avoiding, 153–154
mail servers, 14, 144. See also POP/IMAP servers;

Postfix mail server.
sending a test via telnet, 490–491
sending notifications, 291
storing, 156–157

E-mail, example
configuration file, 151–153
domain name for sent mail, 152
domains, accepting mail from, 152
Internet host name, 152
mailbox size limit, setting, 153

mailbox_size_limit option, 153
mydestination option, 152
myhostname option, 152
mynetworks option, 152–153
myorigin option, 152
networks, relaying mail, 152–153
open relays, 153
overview, 150
relayhost option, 152
routing outbound mail, 152
spam exposure, 153

enable command, 216
Encryption. See also OpenSSH servers; SSH

security.
LVM (Logical Volume Manager), 372
Tripwire settings, 232

Enforce mode, AppArmor, 209–210
Environment variables directory, 225
Environment variables for scripts, 136
Erasing disks, 486
Escalations, 287–288
/etc directory, 42–43
/etc/aliases, 147
/etc/apache2, 136
/etc/apache2/apache2.conf, 136
/etc/apache2/conf.d/, 137
/etc/apache2/envvars, 136
/etc/apache2/mods-available/, 137
/etc/apache2/mods-enabled/, 137–138
/etc/apache2/ports.conf, 136
/etc/apache2/sites-available/, 138
/etc/apache2/sites-enabled/, 138–139
/etc/apparmor/, 210
/etc/apparmor.d/, 210
/etc/backuppc, 265
/etc/backuppc/apache.conf, 265
/etc/backuppc/config.pl, 251–252, 265
/etc/backuppc/hosts, 265
/etc/backuppc/htpasswd, 265
/etc/bind/, 128
/etc/bind/db.*, 128
/etc/bind/named.conf, 128
/etc/defaults/ufw, 225
/etc/dhcp3/dhcpd.conf, 161
/etc/dovecot/, 158
/etc/exports, 177

506 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 506

/etc/fstab file, pointing to arrays, 357, 362
/etc/hosts directory, 47
/etc/init.d script, 28–29
/etc/init.d/apparmor, 210
/etc/init.d/backuppc, 265
/etc/init.d/bind9, 128
/etc/init.d/dovecot, 158
/etc/init.d/mysql, 165
/etc/init.d/nfs-kernel-server, 178
/etc/init.d/nmdb, 175
/etc/init.d/postfix, 148
/etc/init.d/postgresql, 171
/etc/init.d/smdb, 175
/etc/init.d/ssh, 160
/etc/init.d/ufw, 225
/etc/init/nmbd.conf, 175
/etc/init/smdb.conf, 175
/etc/mysql/, 164
/etc/mysql/conf.d/, 165
/etc/mysql/debian-cnf, 165
/etc/mysql/debian-start, 165
/etc/mysql/my.cnf, 164
/etc/network/interfaces directory, 46
/etc/postfix/, 146
/etc/postfix/main.cf, 146–147
/etc/postgresql/, 170
/etc/postgresql/9.1/main/pg_hba.conf, 171
/etc/postgresql/9.1/main/pg_ident.conf, 171
/etc/postgresql/9.1/main/postgresql.conf, 171
/etc/rc0.d — /etc/rc06.d scripts, 29
/etc/rc.boot, removing, 227
/etc/rc.local script, 29
/etc/rcS.d script, 29
/etc/resolv.conf directory, 47
/etc/samba/, 174
/etc/samba/smb.conf, 175
/etc/ssh/, 159
/etc/ssh/ssh_config, 159
/etc/ssh/sshd_config, 159
/etc/ssh/ssh_host_dsa_key, 160
/etc/ssh/ssh_host_dsa_key.pub, 160
/etc/ssh/ssh_host_rsa, 160
/etc/ssh/ssh_host_rsa.pub, 160
/etc/tripwire/, 232
/etc/tripwire/*-local.key, 232
/etc/tripwire/*-site.key, 232

/etc/tripwire/tw.cfg, 232
/etc/tripwire/twcfg.txt, 232
/etc/tripwire/tw.pol, 232
/etc/tripwire/twpol.txt, 227, 232
/etc/ufw/, 224–225
/etc/ufw/after6.rules, 225
/etc/ufw/after.rules, 225
/etc/ufw/before6.rules, 225
/etc/ufw/before.rules, 225
Etherboot booting, 181
Ethernet bonding. See also Fault tolerance.

802.3ad or 4 mode, 373
active-backup or 1 mode, 373
active-backup policy, 373
adaptive load balancing, 374
adaptive transmit load balancing, 374
balance-alb or 6 mode, 374
balance-rr or 0 mode, 373
balance-tlb or 5 mode, 374
balance-xor or 2 mode, 373
bond modes, 373–374
broadcast or 3 mode, 373
broadcast policy, 373
commenting out configuration lines, 375, 376
enabling the bonded interface, 377–378
IEEE 802.3ad Dynamic link aggregation, 373
ifenslave package, installing, 375–377
log entry, example, 378
new bond device, example, 377–378
overview, 372–373
round-robin policy, 373
testing fail-over, 378
XOR policy, 373

Ethernet bonding, network configuration
Ubuntu 10.04, 375–376
Ubuntu 12.04 and newer, 376–377

Ethernet devices, labeling, 46
ethtool program, 417
Event-driven actions, 30–31
exec command, 488
exec option, 32
—execscript option, 308
Execute a shell in /dev/sdal, menu option, 436
Execute a shell in the installer environment, menu

option, 437
Execute permission, 472–473

Index 507

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 507

exit command, 170
expert_recipe for preseeding partitioning, 92–94
Extended options, init scripts, 34–35
Extended partitions, 10
extended-status command, 167

F

F1-F6, key functions, 4–5
Failed disks, replacing, 352–354, 397
Failed logins, monitoring, 213–214
Fail-over, testing, 378
fakeRAID, 344
fakeroot program, 78–79
Fault tolerance

hard drives. See RAID (Redundant Array of
Inexpensive Disks).

hot-swapping components, 342
Juju, 337–338
LVM (Logical Volume Manager), 372
networks. See Ethernet bonding.
principles, 342–343
quick response time, 343
redundancy, 342–343
single points of failure, eliminating, 343
techniques. See Clusters; Ethernet bonding;

RAID (Redundant Array of Inexpensive
Disks).

Favoring past solutions, 401–402
Fencing, 380
File cache, monitoring, 271
File conventions. See specific programs.
File servers. See also NFS; Samba.

overview, 174
role of, 15

File system hierarchy, core directories. See also
Directories; Files.

/bin, 40
/boot, 42
core binaries, 40
core system libraries, 40
/dev, 44
device and driver information, 45
device files, 44
/etc, 42–43
generic mount location, 44
GRUB configuration files, 42

/home, 43–44
home directories, 43–44
intramfs files, 42
kernel images, 42
/lib, 40
/media, 44
/mnt, 44
non-critical binaries and libraries, 41
/opt, 42
/proc, 44–45
removable media, mount location, 44
/root, 44
root user, home directory, 44
/sbin, 40
spool files, 43
/sys, 45
system configuration files, 42–43
system logs, 43
temporary file storage, 45
third-party programs, 42
/tmp, 45
user home directories, 43–44
/usr, 41
/usr/bin, 41
/usr/lib, 41
/usr/local, 41
/usr/sbin, 41
/var, 43
variable size files and directories, 43
/var/log, 43
/var/spool, 43
/var/www, 43
virtual file systems, 45
Web server’s directories, 43

File systems
formatting, MD (multidisk) devices, 350
root, mounting, 27
settings, 10–13
specifying for disk partitions, 10
unintentionally erasing, 433
will not unmount, 490

File systems, rescue and recovery
corrupted, 432–433
fsck tool, 432–433
fstab file mistakes, 433–434
mount command, 432

508 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 508

mounted, displaying, 432
primary superblocks missing, 433
umount command, 432
unintentionally erasing, 433
UUID, discovering, 434
UUID changed, 433–434
won’t mount, 432–434

File types
device files, 477–478
hard links, 476–477
inodes, 476
symlinks, 475

Files. See also specific files.
checksums, creating, 489
chgrp command, 21
chmod command, 21
chown command, 21
command-line administration. See Command-

line administration, files.
comparing, 489
groups, 21
information about, listing, 19–20
last access time, 12, 94
last modification time, 20
MAC (Modify, Access, Change) times, 12
name, displaying, 20
noatime option, 12
open, listing, 490
ownership, 21, 472–473
permissions, 21
redirecting to a null device, 478
search and replace text, 487–488
size, displaying, 20
symlinks, 20
temporary storage, directory for, 45
A time, disabling, 12
for user accounts, partitioning for, 6
variable size, directory for, 43
variable size, partitioning for, 6

Files, copying
from non-RAID disks to RAID, 356
from RAID 1 to RAID 5, 362

Files, in packages
integrity verification, 58
listing, 70–71
owned by, identifying, 71

owner package, identifying, 71
source packages, 60–63

Files, permissions
changing, 474
chmod command, 474
execute, 472–473
groups, listing, 473
groups command, 473
read, 472–473
types of, 472–473
write, 472–473

Filtering input to pipes, 467–468
find command, 488
Firewalls. See also ufw program, firewalls.

vs. closed ports, 423–424
detecting, 423–424
hardware, 215
Kickstart, 110
layers of protection principle, 215
overview, 214–216
software, 215
ufw command, 424

Firewalls, rules
Amazon EC2, 324–325
denying by default, 217
hacking, 214
listing, 424–425
undoing, 217

—firstboot option, 309
—firstlogin option, 309
—flavour option, 303–304
Floating IPs, 379
fls tool, 441–443
flush command, 134, 148–149
flush-* commands, 166
Flushing

DNS server caches, 134
mail queues, 148–149
MySQL caches and settings, 166

foomatic-db package, 14
foomatic-filters package, 14
force-reload command, 29, 35
Forensic analysis, 235–236
Forensics tools, 440–443
format option, 94
Formats, packages, 52

Index 509

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 509

Formatting
partitions, preseeding, 94
RAID arrays, 361

450 command, 155
Free software repositories, 73
fsck tool, 432–433
fstab file mistakes, 433–434
FTP feature, 39
Full backups, scheduling, 241, 261–262
Full file system, 415
FullAgeMax option, 262
FullKeepCnt option, 262
FullKeepCntMin option, 262
FullPeriod option, 261–262
fullstatus command, 140–141
full-upgrade command, 76
Fully-supported software repositories, 73

G

Ganglia monitor. See also Monitoring, tools for.
gmond program, 273–276
installing, on all hosts, 274–276
local RRD files, 274
mcast_join option, 275
overview, 273–274
port option, 275

Ganglia server
clusters, adding hosts to, 279
clusters, defining, 276–277
configuring, 276–278
gmetad program, 273–274, 276–278
grids, defining, 277–278

Ganglia Web front end
clusters, adding hosts to, 279
ganglia-webfrontend package, 278–279
installing, 278–279
monitor duration, changing, 279

ganglia-monitor package, 274–276
ganglia-webfrontend package, 278–279
Gateway access, verifying, 418–419
Gateway address, specifying, 308
Global section, DRBD configuration file, 390
Globs, AppArmor, 208–209
gmetad program, 273–274, 276–278
gmond program, 273–276
gpart tool, 443–444

graceful command, 140
graceful-stop command, 140
Graphical console, VMs (KVM), 313–314
Graphing aggregate statistics. See Ganglia.
grep command

[] (square brackets), in search keywords,
485–486

filtering input to pipes, 467–468
in search results, 485–486

Greylisting, 154–156
Grids, defining, 277–278
GroundWork. See Nagios, GroundWork front end.
Group-based access, sudo command, 202
Groups

chgrp command, 21
configuring, 288
displaying, 20
files, 21
hosts, 288
listing, 473
membership, displaying, 473
membership default, 98
partitions or disks, 8

groups command, 473
GRUB

automating updates to, 25
boot device, specifying, 99
changing temporarily, 25–26
configuration file, 25
configuration files directory, 42
default setup, 99
definition, 25
description, 25–26
documentation for, 25
internal comments, 25
kernel options, defining, 25–26
menu.lst file, 25
migrating from RAID 1 to RAID 5, 359
password protection, 100
reading from RAID 5 arrays, 355
rescue and recovery, 437–438
update-grub program, 25
updating, rescue and recovery, 431

GRUB, manual install
migrating from RAID 1 to RAID 5, 366
migrating non-RAID disks to RAID, 358–359

510 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 510

grub option, 431
GRUB2, 25
Guess Partition tool, 443–444
Guided partitioning, 8
—gw, 308

H

ha.cf file
auto_failback option, 384
autojoin option, 382–383
bcast option, 383
deadtime option, 383
definition, 381
example, 382–384
initdead option, 383
keepalive option, 383
logfacility option, 384
node option, 384
ping option, 384
respawn option, 384
warntime option, 383

halt command, 39
Handicapped users. See Accessibility options.
Hard drives. See also Disks.

erasing, 486
failed, replacing, 352–354, 397. See also Hard

drives, rescue and recovery.
grouping, 8. See also Disk partitioning.
health, monitoring, 268–269
imaging, 242–244
partitioning. See Disk partitioning.
prebuilt images for Amazon EC2, 320–324
setting as faulty, 353
statistics monitoring, 272
testing, 426–427

Hard drives, rescue and recovery
dd command, 445
ddrescue command, 445
drbdadm command, 396–397
imaging drives, 445–447
imaging partitions, 446
mdadm tool, 352–354
replacing failed disks, 352–354, 397
scanning for problems, 444–447
storing drive images, 445–447

Hard links, 476–477

Hardware. See also specific hardware.
firewalls, 215
interrupts, 407
KVM VMs, 313–314
RAID, 344
troubleshooting. See Troubleshooting, hardware.

Hardware/software hybrid RAID. See fakeRAID.
haresources file

cluster resource descriptions, 384–385
definition, 381
description, 384–385

Hash mark (#), comment indicator
sources.list file, 72
Upstart, 31

Headless server, installing Ubuntu Server on, 5
Hearing impaired users. See Accessibility options.
Heartbeat tool

automatic failback, 384
cluster example, 381
communication timeout, setting, 383
configuration files, 381. See also specific files.
configuring, main methods, 380
configuring for DRBD, 395–396
installing, 382
ipfail script, starting, 384
network connectivity, gauging, 384
overview, 380
seconds between heartbeats, setting, 383
service loading timeout, setting, 383
syslog facility, specifying, 384

Heartbeat tool, authkeys file
definition, 381
description, 386–388
node authentication, 386–388
syslog file example, 387–388

Heartbeat tool, ha.cf file
auto_failback option, 384
autojoin option, 382–383
bcast option, 383
deadtime option, 383
definition, 381
example, 382–384
initdead option, 383
keepalive option, 383
logfacility option, 384
node option, 384

Index 511

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 511

Heartbeat tool, ha.cf file, continued
ping option, 384
respawn option, 384
warntime option, 383

Heartbeat tool, haresources file
cluster resource descriptions, 384–385
definition, 381
description, 384–385

Heartbeat tool, nodes
automatically joining clusters, 382–383
communication, 383
manual definition, 384

Help and resources. See also Rescue and recovery;
Troubleshooting.

bug reporting, 459–461
Canonical, paid support, 450–451
general Ubuntu help, 452
installation CDs, 4–5
IRC (Internet Relay Chat), 452–455
Juju, 339
Launchpad project, 459–461
LoCo (Local Community) Teams, 458
mailing lists, 455–456
man command, 22
mouse-over for option help, 293
online support options, list of, 461
in other languages, 459
#ubuntu, 452
#ubuntu-server, 452
Web forums, 451
XChat program, 452–455

Help and resources, documentation
doc files, 458
localhost, 457–458
man pages, 457–458
online, 456

Hesios, 109
hi: hardware interrupts, 407
High I/O wait, troubleshooting, 411–413
High-contrast screen option, 4
history command, 489
Holding mail queue messages, 149–150
/home directory

confirming, 18
description, 43–44
partitioning, 6

Host definitions, BackupPC, 265
Host network address, specifying, 307
Host status, determining, 379
Host-based access, sudo command, 202
Hosting your own packages, 81
Hostname

AMIs, default, 327
LTSP, specifying, 187
for mail servers, 152
translating to IP address. See DNS servers.
VM, specifying, 304

—hostname option, 304
Hosts

adding, 291–292
defining, 47–48
deleting, 289
grouping, 288
MAC address, determining, 162–163
service checks, adding, 291

Hosts, Groundwork
profiles, 287
selecting, 287
settings, specifying, 287

Hot-swapping components, 342

I

icat tool, 441–443
ICMP blocked, 423
id: CPU idle time, 407
IDSs (intrusion detection systems), 226–227. See

also Tripwire.
IEEE 802.3ad Dynamic link aggregation, 373
ifconfig command

configuring network interfaces, 49
confirming network configuration, 418
determining MAC addresses, 162–163
network card errors, 426

“Ifconfig: command not found” message, 49
ifdown command, 48
ifenslave package, installing, 375–377
ifup command, 48
Imaging

hard drives, 445–447
partitions vs. whole drives, 446
servers, 234

Immediate reboot, disabling, 100

512 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 512

Incident response
autopsy package, 235–236
Autopsy tool, 235–236
chkrootkit program, 236
forensic analysis, 235–236
imaging the server, 234
prosecuting the intruder, 233
pulling the plug, 233–234
redeploying the server, 234–235
root kits, checking for, 236
Sleuth Kit tools, 235–236
sleuthkit package, 235–236

Incremental backups, 241
Init scripts. See also System V init model; Upstart.

drawbacks, 30–31
kernel boot process, 27
networking, 30–31
rescue and recovery, 434
respawning, 30
restarting, 35

Init scripts, managing services
arguments, listing, 35
chkconfig tools, 36
configuration, checking, 36
configuration files, 35–36
enabling/disabling services, 36
extended options, 35
force-reload command, 35
PID, tracking, 36
reload command, 35
reloading configuration files, 35
restart command, 35
restarting scripts, 35
service command, 36
service status, checking, 35
status command, 35
symlinks, creating, 38
update-rc.d program, 36
writing your own, 36–38

initctl command, 32–33
initdead option, 383
Initial RAM disk file, 26
Initializing

blank drives, 9
DRBD resources, 393–395
Tripwire databases, 229–230

initramfs file, 26–27
initrd file, 26
Inodes

hard links, 476
running out of, 415–416
setting number of, 12

Input, redirecting, 471–472
Installation CDs

bypassing at boot, 4
checking for defects, 4
documentation, 4
getting, 2–3
help, 4–5
as rescue disks, 4

Installer console, 15–16
Installing

binary packages, 56–57
DHCP servers, 160
DNS servers, BIND, 127
Dovecot, 157–158
DRBD, 389–393
Ganglia monitor, 274–276
Ganglia Web front end, 278–279
Heartbeat, 382
Juju, 330–332
KVM. See KVM, installing.
mdadm tool, 349
MySQL, 163–164
new packages, 65, 67–68
OpenSSH servers, 159
Postfix, 144–145
PostgreSQL, 14, 169–170
Postgrey, 155–156
Samba, 174
ufw program, 216
WordPress, 142

Installing Ubuntu Server. See also Disk partitioning.
accessibility options, 4
arguments, listing, 5
Bind 9 DNS server, 13
bind9 package, 13
bind9-doc package, 13
boot parameters, listing, 5
boot screen, 3–5
Braille terminal, enabling, 4
BusyBox shell, 16

Index 513

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 513

Installing Ubuntu Server, continued
cupsys package, 14
cupsys-bsd package, 14
defoma package, 14
F1-F6, key functions, 4–5
foomatic-db package, 14
foomatic-filters package, 14
on a headless server, 5
high-contrast screen option, 4
install mode, selecting, 4
installation log, viewing, 15–16
installation options, 4–5
installer console, 15–16
keyboard mapping, 4
keyboard modifiers, enabling, 4
language, specifying, 3–4, 4
memory, testing, 4
on-screen keyboard, 4
openssh-server package, 13
Postfix mail server, 14
postgresql package, 14
rebooting the system, 16
samba package, 15
samba-doc package, 15
screen magnifier, enabling, 4
screen reader, enabling, 4
server BIOSs, 3
smbfs package, 15
winbind package, 15
without a monitor, 5

Installing Ubuntu Server, automating. See also
Kickstart; Preseeding; PXE boot server
deployment.

boot cheat codes, 119–121
DHCP approach, benefits of, 118
DHCP selection, by subnet, 123
DHCP selection, static leases, 121–122
multiple Kickstart files, 118–119
overview, 84, 118
pxelinux menu, changing, 118
unattended install, 118

Installing Ubuntu Server, server roles
DNS, 13
LAMP, 14
mail server, 14
OpenSSH, 13

PostgreSQL database, 14
print server, 14
Samba file server, 15

instance store AMIs, 321
in-target command, 103
Internal metadisk, 391–392
Internet, as troubleshooting reference, 403
Internet host name, for mail servers, 152
Internet Relay Chat (IRC), 452–455
Internet site option, 145
Internet with smarthost option, 145
intramfs files, directory for, 42
Intrusion detection systems (IDSs), 226–227. See

also Tripwire.
I/O wait, 407
iostat program, 411–412
iotop program, 413
IP addresses

changing, LTSP, 194–195
displaying, 50
LTSP, tied to MAC addresses, 191–192
translating hostnames to. See DNS servers.

—ip option, 307
ipchains program, 215
ipfail script, starting, 384
iptables, rules directory, 225
iptables program, 215
IRC (Internet Relay Chat), 452–455

J

Java, Tomcat server, 15
JeOS, 302
Job status, querying with Upstart, 32–33
Juice. See JeOS.
Juju

access credentials, 331–332
access key pairs, 331–332
bootstrap, 333
charms, 334
configuring, 330–332
deploying services, 333–337
destroying entire environment, 339
destroying services, 338–339
fault tolerance, 337–338
installing, 330–332
online resources, 339

514 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 514

overview, 330
status, displaying, 333

~/.juju/environments.yaml file, 331
juju bootstrap command, 331, 333
juju deploy command, 334–337
juju deploy mysql command, 334–337
juju destroy-environment command, 339
juju destroy-service command, 338
juju expose command, 337
juju status command, 333, 335–337
juju unexpose command, 337

K

keep option, 94
keepalive option, 383
Keeping it simple

security principle, 200
SSH security, 215–216
troubleshooting principle, 401

Kerberos 5, Kickstart support, 109
Kernel boot process

init script, 27
initial RAM disk file, 26
initramfs file, 26–27
initrd file, 26
modular kernels, 26–27
root file system, mounting, 27

Kernel flavor, specifying, 303–304
Kernel images, directory for, 42
Kernel options, defining with GRUB boot loader,

25–26
Key-based authentication, 211–213
Keyboard

layout, LTSP, 186
mapping at installation, 4
modifiers, enabling, 4
on-screen, 4

Keys, Tripwire, 227, 232
Kickstart. See also Installing Ubuntu Server;

Preseeding; PXE boot server deployment.
@ (at sign), task indicator, 106
% (percent sign), section indicator, 106
account options, 109
automated source discovery, 110
bootloader options, 109
configurator tool, 111

configuring for a CD-ROM, 104–108
device command, 110
excluding %packages packages, 110
firewalls, 110
Hesios, 109
initial user settings, 109
Kerberos 5, 109
launching, 105
LDAP, 109
lilo options, 109
limitations, 109–110
local disk support, 110
multiple files, 118–119
new options, 108–109
NFS support, 110
overview, 104
package group names, 110
partitioning, 105–108, 110
%post section scripts, 110–111
%pre section scripts, 110–111
preseed option, 108–109
root password, disabling, 109
root privileges, enabling, 109
rootpw command, 109
running custom commands, 110–111
Samba authentication, 109
shell scripts, 110
supplemental driver disk, 110
system-config-kickstart package, installing, 105
user command, 109
xconfig —monitor option, 110

kill command, 167
Killing processes

MySQL, 167
by PID, 22–23
Postfix, 149

KVM, installing
KVM packages, 299–300
prerequisites, 298–299
setting up users, 299
support BIOS, enabling, 299
testing the installation, 299–300
ubuntu-vm-builder script, 299. See also

vmbuilder tool.
virsh command, 299–300
virtualization extensions, confirming, 298

Index 515

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 515

KVM, network configuration
—bcast option, 308
bridged networking, 300–302
broadcast address, specifying, 308
default setup, 300
defaults, configuring, 300
DNS address, specifying, 308
—dns option, 308
domain default, specifying, 307
domain option, 307
—domain option, 307
gateway address, specifying, 308
—gw, 308
host network address, specifying, 307
—ip option, 307
—mask option, 307
—net option, 307
static IP address, assigning, 307
subnet mask, specifying, 307
wireless adapters, bridging support, 302

KVM virtual machines. See VMs (KVM).

L

“Label” field, 12
LABEL localboot option, 193
LAMP servers, 14
Language, specifying, 3–4, 186
Last access time

directories, 12
files, 12, 94
logging, 94

Launchpad
bug reporting, 459
help and resources, 459
hosting your own packages, 81

Layers of protection principle, 201, 215
LDAP, in Kickstart, 109
Left angle bracket (<), redirection operator,

470–472
less program, 23
—level option, 350
/lib directory, 41
Lib/ufw/user6.rules, 225
/lib/ufw/user.rules, 225
—libvirt option, 304
Licensed software repositories, 74

lilo options, in Kickstart, 109
Links, displaying, 20
Linux Terminal Server Project (LTSP). See LTSP

(Linux Terminal Server Project).
Listing

boot parameters, 5
directory information, 19–20
files in current directory, 19–20
firewall rules, 424–425
installed packages, 76–77
mail queue messages, 149
open files, 490
package files, 70–71
processes, MySQL, 166

Listing arguments in
commands, 22
init scripts, 35
installation, 5

Ln command
hard links, creating, 476
symlinks, creating, 475

Local devices for LTSP, 195–196
Local disk support, Kickstart, 110
Local keys directory, Tripwire, 232
Local only option, 146
Localhost

documentation, 457–458. See also Help and
resources.

troubleshooting. See Troubleshooting, localhost.
LoCo (Local Community) Teams, 458
Log directories

AppArmor, 210
Tripwire, 233

Log entry, example, 378
Log files

Apache Web server, 139
BackupPC, 266
DHCP servers, 161
DNS servers, BIND, 129
Dovecot, 158
MySQL, 165
NFS, 178
OpenSSH servers, 160
Postfix, 147–148
PostgreSQL, 171
Samba, 176

516 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 516

syslog facility, 384
syslog file example, 387–388
system logs, directory for, 43

logfacility option, 384
Logging access, sudo command, 203
logging command, 217
Logging last access time, 94
Logical partitions, 10
Logical storage. See LVM (Logical Volume

Manager).
Loopback (lo) interface, 46
ls command, 18–20
lsof command, 490
LTSP (Linux Terminal Server Project)

availability in Ubuntu, 183
benefits of, 182–183
boot process, technical details, 181–182
diskless clients, 181, 183
and Edubuntu, 180
Etherboot booting, 181
initial booting, 181
overview, 180–181
PXE booting, 181
required network cards, 181
thin clients, 183

LTSP servers, configuring
boot option default, setting, 193
boot option timeout, setting, 193
boot: prompt, displaying, 193
booting from the local hard drive, 193–194
booting from the network, 189–190
client root filesystem, 188
clock, 187
DEFAULT keyword, 193
DISPLAY option, 193
first user, creating, 188
hostname, 187
initial client setup, 189–190
initial server setup, 188–189
IP addresses, changing, 194–195
keyboard layout, 186
LABEL localboot option, 193
language, 186
for local devices, 195–196
NICs (network interface cards), 184–186
partitioning the hard disk, 187

PROMPT option, 193
screen resolution, 188
sound, 197
SOUND=True statement, 197
SSH keys, updating, 195
TIMEOUT option, 193
for USB devices, 195–196

LTSP servers, installing
coexisting with a DHCP server, 191–192
on a desktop, 190–191
for dual boot, 192–194
IP addresses, tied to MAC addresses, 191–192
prerequisites, 183–184
reservations, 191–192
in Ubuntu, 190–191
from the Ubuntu alternate CD, 186–188

LTSP servers, password suppression, 195
LVM (Logical Volume Manager)

encryption, 372
fault tolerance, 372
Guided partitioning, 8
LVs (logical volumes), 370
overview, 369
partitions, preseeding, 95–96
PEs (physical extents), 370
PVs (physical volumes), 370
redundancy, 372
setting up, 371–372
theory of, 370
VGs (volume groups), 370

LVs (logical volumes), 370

M

MAC address, determining, 162–163
MAC (Modify, Access, Change) times, 12
Magnifier (screen), enabling, 4
Mail queues. See also E-mail.

flushing, 148–149
postqueue command, 149
privileged operations on, 149
status, checking, 149

Mail queues, messages
deleting, 149
hold time before bouncing, 154
holding, 149–150
listing, 149

Index 517

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 517

Mail servers, 14, 144. See also POP/IMAP servers;
Postfix mail server.

Mail spool directory, 147
Mailbox size limit, setting, 153
mailbox_size_limit option, 153
Maildirs, enabling, 156–157
mail.err file, 147
mail.info file, 147
Mailing lists, 455–456
mail.log file, 147
mail.warn file, 147
Main repositories, 73
Man pages, 457–458. See also Help and resources.
Managing

DNS servers, BIND, 134
packages. See Package management.
services, with xinetd, 38–39

Managing boot process services, with init scripts
arguments, listing, 35
chkconfig tools, 36
configuration, checking, 36
configuration files, 35–36
enabling/disabling services, 36
extended options, 34–35
force-reload command, 35
PID, tracking, 36
reload command, 35
reloading configuration files, 35
restart command, 35
restarting scripts, 35
service command, 36
service status, checking, 35
status command, 35
symlinks, creating, 38
update-rc.d program, 36
writing your own, 36–38

Managing boot process services, with xinetd
description, 38–39
echo feature, 38
enabling services, 39
FTP feature, 39
system time, displaying, 38
TFTPD (Trivial File Transfer Protocol Daemon), 39

Managing services with init scripts
arguments, listing, 35
chkconfig tools, 36

configuration, checking, 36
configuration files, 35–36
enabling/disabling services, 36
extended options, 34–35
force-reload command, 35
PID, tracking, 36
reload command, 35
reloading configuration files, 35
restart command, 35
restarting scripts, 35
service command, 36
service status, checking, 35
status command, 35
symlinks, creating, 38
update-rc.d program, 36
writing your own, 36–38

Managing VMs (KVM)
autostart command, 310
current load, 313–315
destroy command, 310
graphical console, 313–314
hardware, 313–314
power off, 310
RAM, changing, 311–312
remote management, 313–315
restore command, 310
resume command, 310–311
resuming, 310–311
rolling back to snapshots, 310
save command, 310
setmaxmem command, 311
setmem command, 311
shutdown command, 310
shutting down, 310
snapshotting, 310, 313
start command, 309–310
starting at boot time, 310
starting the VM, 309–310
suspend command, 310–311
suspending current state, 310–311. See also

Snapshots.
virsh command, 309–312
virt-manager utility, 312–315

Manual partitioning. See also Disk partitioning.
allocating free space, 9–10
boot flag, setting, 13

518 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 518

“Bootable flag” field, 13
extended partitions, 10
file system settings, 10–13
initializing a blank drive, 9
inodes, setting number of, 12
inside extended partitions, 10
“Label” field, 12
logical partitions, 10
mount options, 11–12
“Mount options” field, 11–12
mount point, specifying, 11
“Mount point” field, 11
naming partitions, 12
partition size, specifying, 10
primary partitions, 10
“Reserved blocks” field, 12
reserving space for the superuser, 12
“Typical usage” field, 12
“Use as” field, 10–11

Manuals. See Documentation.
—mask option, 307
Mauelshagen, Heinz, 369
mcast_join option, 275
MD (multidisk) devices, creating and using

after installation, 349–350
file system, 350, formatting
during installation, 347–348
mounting, 350
number of active devices, specifying, 350
partitions, specifying, 350
RAID level, specifying, 350

md5sum tool, 489
mdadm tool

chaining commands, 353
—create option, 350
creating MD devices, 350–351
—detail argument, 352
—detail —scan command, 350–351
disk failure, automatic notification, 353
disks, setting as faulty, 353
documentation, 354
installing, 349
—level option, 350
—query argument, 352
—raid-devices option, 350
replacing a failed disk, 352–354

resyncing swapped disks, 354
software RAID management, 351–354
swapping disks, 352–354

/media directory, 44
Memory. See RAM.
Memtest86+ tool, 427–428
menu.lst file, 25
Metrics, troubleshooting localhost

hi: hardware interrupts, 407
id: CPU idle time, 407
ni: nice CPU time, 407
si: software interrupts, 407
st: steal time, 407
sy: system CPU time, 407
system load average, 404–406
top command, 406–408, 410
us: user CPU time, 407
wa: I/O wait, 407

Migrating from RAID 1 to RAID 5
booting GRUB, 359
copying files to new system, 362
creating mount points, 361
destroying original, 364
disk partitioning, 359–362, 364–365
/etc/fstab file, pointing to arrays, 362
formatting RAID arrays, 361
general procedure, 360–366
GRUB, manual install, 366
overview, 359
partitions, detecting as RAID devices, 366
“partitions contain a file system” warning, 361
rebooting, 363
rescue disk, 359
starting at boot, 362
syncing arrays, 366
update-initramfs argument, changing, 362

Migrating to software RAID from non-RAID disks
adding original partitions, 358
changing the UUID, 358
copying files to new system, 356
creating arrays, 355
degraded arrays, 355
disk partitioning, 355
/etc/fstab file, pointing to arrays, 357
GRUB, manual install, 358–359
overview, 354–355

Index 519

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 519

Migrating to software RAID from non-RAID disks,
continued

partitions, detecting as RAID devices, 359
rebooting, 357–358
rescue disc, 355
starting at boot time, 356–357
syncing arrays, 358
temporary mount points, 356

mirror/country option, 97
Mirroring

preseeding, 96–98
RAID disks, 345
a system, 76–77
the Ubuntu archive, 116

/mnt directory, 44
Modify, Access, Change (MAC) times, 12
Modular kernels, 26–27
Monitor, installing Ubuntu Server without, 5
Monitoring

aggregating statistics. See Ganglia.
alerts. See Nagios.
CPU load, 272–273
disk I/O, 272–273
disk statistics, 272–273
drive health, 268–269
file cache, 271
memory, 271
multicast IP traffic, 276
network I/O, 272
performance, 272
RAM statistics, 269–273
running processes, in real time, 21–23
selected time periods, 272–273
swap cache, 271
system load, 269–273
trending. See Nagios.

Monitoring, tools for
alerts. See Nagios.
ganglia-monitor package, 274–276. See also

Ganglia.
sar tool, 270–273
smartd daemon, 269
Smartmontools, 268–269
sysstat package, 269–273
tcpdump program, 276
trending. See Nagios.

mount command, file system rescue and recovery,
432

Mount location, 44
Mount options, partitions, 11–12
“Mount options” field, 11–12
“Mount point” field, 11
Mount points

migrating from RAID 1 to RAID 5, 361
migrating non-RAID disks to RAID, 356
partitions, 11
preseeded partitions, specifying, 94
temporary, 356

Mounted file systems, displaying, 432
Mounting

MD (multidisk) devices, 350
root file system, 27

mountpoint option, 94
Mouse-over for option help, 293
Moving around the system, 18–21
MTA (Mail Transport Agent), 227
Multicast IP traffic, monitoring, 276
Multidisk (MD) devices. See MD (multidisk)

devices.
Multiverse repositories, 74
My Account page, 315–316
mydestination option, 152
myhostname option, 152
mynetworks option, 152–153
myorigin option, 152
mysql command, 246
MySQL databases. See also PostgreSQL databases.

configuring for WordPress, 143
create command, 166
creating/deleting, 166
current status, checking, 165
database files, location, 165
drop command, 166
/etc/init.d/mysql, 165
/etc/mysql/, 164
/etc/mysql/conf.d/, 165
/etc/mysql/debian-cnf, 165
/etc/mysql/debian-start, 165
/etc/mysql/my.cnf, 164
extended-status command, 167
file conventions, 164–165
files, 165

520 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 520

flush-* commands, 166
init script, 165
installing, 163–164
kill command, 167
log files, 165
mysqladmin tool, 165–167
overview, 163
password command, 166
passwords, 14, 164, 166
phpMyAdmin program, installing,

167–168
process management scripts, 165
processes, 166–167
processlist command, 167
removing, 166
restoring from backups, 246
settings, flushing, 166
status, checking, 167
status command, 167
ufw firewall example, 222
/var/lib/mysql/, 165
/var/log/syslog, 165
Web administration, 167–168

mysqladmin tool, 165–167
mysql-client-5.0 package, 14
mysqldump program, 244–248
mysql-server-5.0 package, 14

N

Nagios, GroundWork front end
administration password, changing, 284
Apache installation, 282
configuration files, 283
configuring, 283–286
core directory, 282
description, 280–281
documentation, 296
/etc/init.d/groundwork, 283
file conventions, 282–283
host status, checking, 285–286
init script, 283
initial host scan, 284–285
installing, 281–282
/usr/local/groundwork, 282
/usr/local/groundwork/apache2, 282
/usr/local/groundwork/nagios, 283

Nagios configuration
advanced, 292–295
alert escalations, 287–288
commands vs. services, 288
committing changes, 288, 289
contact list, 289–290
contacts, 287
control, 288
escalations, 287–288
groups, 288
mouse-over for option help, 293
notifications, enabling, 290–291
notifications, sending via e-mail, 291
overview, 286–289
performance analysis, 289
services, deleting, 289
services vs. commands, 288
settings, exporting, 289
time periods, 288
tools, 289

Nagios configuration, hosts
adding, 291–292
deleting, 289
grouping, 288
profiles, 287
selecting, 287
service checks, adding, 291
settings, specifying, 287

Nagios configuration, service checks
adding, 286, 291
creating, 294–295
critical thresholds, setting, 286
default settings, overriding, 293
options, changing, 286
warning thresholds, setting, 286

Name servers
defining, 47
DNS servers as, 127
inaccessible, 420–421
not configured, 420–421
problems, troubleshooting, 420–421

named.conf file, 128, 131–132
Names of files and directories, displaying, 20
Naming partitions, 12
Native DEB packages, 60–63
—net option, 307

Index 521

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 521

Netboot tarball, 113–115
netstat command, 424
Network card errors, troubleshooting, 425–426
Network configuration

Ubuntu 10.04, 375–376
Ubuntu 12.04 and newer, 376–377

Network interface cards (NICs), 181, 184–186
network option, 431
Networking

connectivity, gauging, 384
core programs, 48–50
dig command, 50
Ethernet devices, labeling, 46
ifconfig command, 49
ifdown command, 48
ifup command, 48
information about, getting, 48–49
interface configuration, verifying, 418
I/O, monitoring, 272
IP address, displaying, 50
under KVM. See KVM, network configuration.
loopback (lo) interface, 46
nslookup command, 50
open relays, 153
relaying mail, 152–153
route command, 49
settings, checking and changing, 48–49
status, checking, 48–49
troubleshooting. See Troubleshooting networks.

Networking, configuration files
for all networking devices, 46–47
/etc/hosts, 47
/etc/network/interfaces, 46
/etc/resolv.conf, 47
hosts, defining, 47–48
name servers, defining, 47

New bond device, example, 377–378
newaliases command, 150
NFS. See also Samba.

configuration files, 177
configuration sample, 178–179
DRBD, 396
/etc/exports, 177
/etc/init.d/nfs-kernel-server, 178
file conventions, 177–178
init script, 178

Kickstart discovery, 110
log files, 178
overview, 177
root squashing, disabling, 179
ufw firewall example, 223–224
user permissions, 179
/var/log/syslog, 178
“Wrong file system type” message, 179

ni: nice CPU time, 407
NICs (network interface cards), 181, 184–186
nmap command, 423–424
No configuration option, 145
noatime option, 12, 94
Node authentication, 386–388
node option, 384
Nodes, cluster

automatically joining clusters, 382–383
communication, 383
manual definition, 384

Nonnative DEB packages, 60–63
NOPASSWD: statement, 205
Notifications

enabling, 290–291
sending via e-mail, 291

nslookup command, 50, 420–421

O

The Official Ubuntu Book, 64
Online documentation, 456. See also Help and

resources.
On-screen keyboard, 4
OOM (out-of-memory) killer, 410–411
Open relays, 153
Open source software repositories, 74
OpenSSH servers. See also SSH security.

client settings, defaults, 159
configuration files, 159
definition, 13
DSA keys, 160
/etc/init.d/ssh, 160
/etc/ssh/, 159
/etc/ssh/ssh_config, 159
/etc/ssh/sshd_config, 159
/etc/ssh/ssh_host_dsa_key, 160
/etc/ssh/ssh_host_dsa_key.pub, 160
/etc/ssh/ssh_host_rsa, 160

522 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 522

/etc/ssh/ssh_host_rsa.pub, 160
file conventions, 159–160
init script, 160
installing, 159
log files, 160
overview, 158–159
RSA keys, 160
server settings, defaults, 159
/var/log/auth.log, 160

openssh-server package, 13
/opt directory

description, 42
partitioning, 6

Original packager, displaying, 67
Out-of-memory issues troubleshooting, 409–411
Out-of-memory (OOM) killer, 410–411
Output, redirecting, 470–472
Ownership

chown command, 21
directory, displaying, 20
files, 472–473
files, displaying, 20
zone files, 131

P

Package management. See also APT (Advanced
Package Tools); Repositories.

Aptitude program, 64, 67–69
autobuilders, 55–56
automatic software upgrades, 57
basic functions, 55–58
binary packages, 55–57
browsing for packages, 65–67
DEB format. See Package management, DEB

format source packages.
dependency checking, 57, 59–60
desktop alerts, 64
do-release-upgrade program, 76
dselect program, 58–59, 65
file integrity verification, 58
formats, 52
front end programs, 58–59
full-system upgrades, 75–76
for in-development software, 60
installing new versions, 65, 67–68
mirroring a system, 76–77

original packager, displaying, 67
package information, getting, 65–67
package maintainer, identifying, 67
package statistics, getting, 65–67
repositories, listing, 64–65
RPM format, 52
searching for packages, 65–67
shared library upgrades, 57
show subcommand, 66–67
smart upgrades, 59
staying current, 64–65
Synaptic, 64–65
tools for, 64–67, 69. See also specific tools.
uninstalling packages, 57, 59, 69
VMs (KVM). See VMs (KVM), package

management.
Package management, DEB format

binary packages, 55–56, 63
introduction, 52
overview, 60

Package management, DEB format source packages
autobuilding, 55–56
control file, 62–63
definition, 55
files contained in, 62–63
native DEB packages, 60–63
nonnative DEB packages, 60–63
rules file, 62–63
unpacking, 62

Package management, dpkg program
copying packages to another system, 77
file owner package, identifying, 71
listing installed packages, 76–77
listing package files, 70–71
manipulating installed packages, 69–71
mirroring a system, 76–77
overview, 69
querying installed packages, 69–71
searching installed packages, 69–71

Packages. See also specific packages.
autobuilders, 55–56
background, 53
browsing for, 65–67
building automatically, 55–56
contents, 54
copying to another system, 77

Index 523

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 523

Packages, continued
description, 53–55
distributions, 53
documentation, 54–55
downloading automatically, 65
files, 70–71
group names, Kickstart, 110
information, getting, 65–67
installed, 69–71
maintainer, identifying, 67
metadata, 54
original packager, displaying, 67
%packages, excluding, 110
preseeding, 96–98
rebuilding, 77–79
removing, 69
rescue and recovery, 431
for server roles, determining, 13
for server roles, listing, 15
statistics, getting, 65–67
uninstalling, 57, 59, 69
upgrading, 76
upgrading automatically, 65

Packages, making your own
apt-ftparchive package, 81
backporting, 77–79
devscripts package, 79
dh-make program, 80–81
fakeroot program, 78–79
guidelines, 80–81
hosting, 81
Launchpad, 81
new upstream versions, 79–80
overview, 77
PPAs (Personal Package Archives), 81
rebuilding packages, 77–79
reprepro project, 81
from scratch, 80–81
specifying a distribution, 78
Ubuntu packaging guide, 80
uupdate program, 79–80
without root permissions, 78–79

—part option, 306
Partially-supported software repositories,

73–74
Partition tables, restoring, 443–444

Partitions. See also Disk partitioning; Preseeding,
partitions.

creating for RAID devices, 346–349
definition, 5–6
detecting as RAID devices, 359, 366
imaging for rescue and recovery, 446
maximum per disk, 10
resizing, 8
root, 6
swap space, 6

“Partitions contain a file system” warning, 361
partman-auto/choose_recipe option, 92
partman-auto/method option, 91
partman-auto/purge_lvm_from_device option, 91–92
partman/choose_partition option, 92
partman/confirm option, 92
partman/confirm_nooverwrite option, 92
partman-lvm/confirm option, 91–92
partman-partitioning/confirm_write_new_label

option, 92
—pass option, 304
Passphrases, 211–213, 227
passwd command, 435
password command, 166
Passwordless access to rules, 203
Passwords

authentication, 202, 211–213
backing up databases, 245, 247
BackupPC, 249–250, 265
default, specifying, 304
disabling, 213
GroundWork administration, changing, 284
GRUB, 100
MySQL, 14, 164, 166
plain-text authentication, 158
prompt, bypassing, 213
removing, 205
resetting, 435
Samba, 175
suppressing display of, 195

Patches, security, 201
Pathnames, shortcuts to, 486
Percent sign (%)

group name indicator, 204
Kickstart section indicator, 106

Performance, monitoring, 272

524 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 524

Performance analysis, Nagios, 289
Period (.). See Dot (.).
Permissions

chmod command, 21
directory, displaying, 20
files, 21
Postfix, checking, 149
root user, assuming, 24
users, NFS, 179
zone files, 131

Personal Package Archives (PPAs), 81
PEs (physical extents), 370
pg_dumpall tool, 248
php5-mysql package, 14
phpMyAdmin program, installing, 167–168
phppgadmin package, 172
phpPgAdmin tool, 172–173
Physical volumes, partitions as, 10. See also PVs

(physical volumes).
PID

finding, in running processes, 22–23
killing processes by, 22–23
tracking with init scripts, 36

ping command, 419
ping option, 384
Pinning repositories, 75
Pipes

| (vertical line), pipe symbol, 466–467
filtering input to, 467–468
grep command, 467–468
overview, 466–470
removing duplicate lines, 469–470
sort command, 468–469
sorting input to, 468–469
uniq command, 469–470

Policy files, Tripwire, 227–228, 232
POP/IMAP servers. See also E-mail; Mail servers.

Dovecot, 157–158
e-mail, storing, 156–157
Maildirs, enabling, 156–157
overview, 156
ufw firewall example, 222

port option, 275
Ports

configuring, 136
first serial, 478

listening, testing, 424
remote, testing, 423–424

%post section scripts, 110–111
Postfix mail server

450 command, 155
abort command, 149
administering, 148–150
bounced messages, avoiding, 153–154
check command, 149
configuration files, 146–147
configuration files, reloading, 148
configuration types, 145–146
current status, checking, 149
/etc/aliases, 147
/etc/init.d/postfix, 148
/etc/postfix/, 146
/etc/postfix/main.cf, 146–147
file conventions, 146–148
flush command, 148–149
greylisting, 154–156
init script, 148
installing, 14, 144–145
Internet site option, 145
Internet with smarthost option, 145
killing processes, 149
Local only option, 146
log files, 147–148
mail spool directory, 147
No configuration option, 145
permissions, checking, 149
Postgrey, installing and configuring, 155–156
postsuper command, 149
relay_domains option, 153–154
reload command, 148
Satellite system option, 146
secondary servers, 153–154
spam exposure, 154–156
status command, 149
user alias mappings, 147, 150
user mailbox directory, 147
/var/log/mail.*, 147–148
/var/spool/mail/, 147
/var/spool/postfix/, 147

Postfix mail server, example
configuration file, 151–153
domain name for sent mail, 152

Index 525

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 525

Postfix mail server, example, continued
domains, accepting mail from, 152
Internet host name, 152
mailbox size limit, setting, 153
mailbox_size_limit option, 153
mydestination option, 152
myhostname option, 152
mynetworks option, 152–153
myorigin option, 152
networks, relaying mail, 152–153
open relays, 153
overview, 150
relayhost option, 152
routing outbound mail, 152
spam exposure, 153

Postfix mail server, mail queue messages
deleting, 149
hold time before bouncing, 154
holding, 149–150
listing, 149

Postfix mail server, mail queues
flushing, 148–149
postqueue command, 149
privileged operations on, 149
status, checking, 149

PostgreSQL databases. See also MySQL.
authentication information, 171
backing up, 248–249
configuration files, 170–171
createdb command, 170
createuser command, 170
databases, setting up, 170
dropuser command, 170
/etc/init.d/postgresql-9.1, 171
/etc/postgresql/, 170
/etc/postgresql/9.1/main/pg_hba.conf, 171
/etc/postgresql/9.1/main/pg_ident.conf, 171
/etc/postgresql/9.1/main/postgresql.conf, 171
exit command, 170
file conventions, 170–171
init script, 171
installing, 14, 169–170
log files, 171
overview, 168–169
phppgadmin package, 172

phpPgAdmin tool, 172–173
restoring from backups, 248
super user account, setting up, 169–170
ufw firewall example, 223
user accounts, creating/deleting, 169–170
usernames, mapping to PostgreSQL usernames,

171
/var/log/postgresql/, 171
Web-based administration, 171–173

postgresql package, 14
Postgresql package, installing, 169–170
Postgrey

default configuration, 155–156
installing and configuring, 155–156
reloading settings, 156
smtpd_recipient_restrictions option, 155
tweaking the whitelist, 155–156

Post-install scripts, 308–309, 329–330
postqueue command, 149
postsuper command, 149
Pound sign (#), comment indicator

sources.list file, 72
Upstart, 31

Power on/off, 310
PPAs (Personal Package Archives), 81
%pre section scripts, 110–111
preseed option, 108–109
preseed.cfg file

creating, 85–89
default, setting up, 86–87
editing, 87–88
example, 86

preseed/early_command option, 103
preseed_fetch command option, 103–104
Preseeding. See also Installing Ubuntu Server;

Kickstart; PXE boot server deployment.
automatic updates, enabling, 97
CD ejection, disabling, 100
choose_interface option, 89–91
configuring for CD-ROM, 85–89
custom package repositories, 97–98
debconf database, dumping, 85
debconf-get-selections, 85
default boot arguments, editing, 87–88
default user account, disabling, 99

526 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 526

group membership default, 98
immediate reboot, disabling, 100
mirrors, 96–98
networking options, 89–91
options, displaying, 85
options, shorthand for, 88
overview, 84–85
packages, 96–98
preserving server data, 86–87
root account, enabling, 98
UID default, 98
user settings, 98–99

Preseeding, dynamic
apt-install command, 103
chain loading files, 101–102
chroot process, automating, 103
installing extra packages, 103–104
in-target command, 103
overview, 100–101
preseed/early_command, 103
preseed_fetch command option, 103–104
preseed/late_command, 103–104
preseed/run option, 102–103
running custom commands, 102–104
running custom programs, 103
setting dynamic values, 103

Preseeding, GRUB
boot device, specifying, 99
default setup, 99
password protection, 100

Preseeding, partitions
custom schemes, 92–94
expert_recipe for, 92–94
formatting partitions, 94
LVM partitions, 95–96
maximal size, 93
minimal size, 93
mountpoint, specifying, 94
overview, 91
partman-auto/choose_recipe option, 92
partman-auto/method option, 91
partman-auto/purge_lvm_from_device

option, 91–92
partman/choose_partition option, 92
partman/confirm option, 92

partman/confirm_nooverwrite option, 92
partman/confirm_write_new_label option,

92
partman-lvm/confirm option, 91–92
primary partition, 94
priority, specifying, 93–94
warning prompts, disabling, 91

Preseeding, preseed.cfg file
creating, 85–89
editing, 87–88
example, 86

preseed/late_command option, 103–104
preseed/run option, 102–103
Preserving server data, 86–87
Primary partitions, 10, 94
Principle of least privilege, 200–201, 206–207
Print servers, installing, 14
Priority of preseeded partitions, specifying,

93–94
Privileged operations on mail queues, 149
Privileges. See Permissions.
/proc, editing, 228
/proc directory, 44–45
Processes

command-line administration. See Command-
line administration, running processes.

listing, MySQL, 167
monitoring in real time, 21–23
PID, finding, 22–23
ps command, 21–23
stopping, 21–23
top command, 21

Processes, killing
MySQL, 167
by PID, 22–23
Postfix, 149

processlist command, 167
Processor architecture, specifying, 304
/proc/mdstat file, 351–354
Profiles

AppArmor, 207–209
Groundwork hosts, 287

PROMPT option, 193
Prosecuting intruders, 233
ps command, 21–23

Index 527

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 527

psql tool, 248
Pulling the plug, 233–234
PVs (physical volumes), 370
pwd command, 18
PXE boot server deployment. See also Installing

Ubuntu Server; Kickstart; Preseeding.
apache2 package, installing, 116
boot prompts, responding to, 117
DHCP server, setting up, 112–113
mirroring the Ubuntu archive, 116
netboot tarball, 113–115
overview, 111
Pxelinux, configuring, 113–115
required services, 111–112
required user interaction, 117
server timeout value, setting, 117
testing, 116–117
TFTPD server, setting up, 113
Web server, setting up, 116

PXE booting, 181
Pxelinux, configuring, 113–115
pxelinux menu, 118
python-software-properties package, 330

Q

—query argument, 352
Querying installed packages, 69–71
Question mark (?), wildcard character, 464
Quorum, 379

R

RAID (Redundant Array of Inexpensive Disks)
as backup device, 241
configuring after installation, 348–351
configuring during installation, 346–348
creating, 349–351
current status, checking, 351–354
fakeRAID, 344
hardware, 344
hardware/software hybrid. See fakeRAID.
levels, 345
migrating to. See Migrating to software RAID.
minimum disk requirements, 345
mirroring, 345
partitioning disks, 346–349
starting at boot time, 350

striping, 345
striping plus parity, 345
UUID, specifying, 351

RAID (Redundant Array of Inexpensive Disks),
software

description, 344
managing, 351–354
migrating non-RAID disks to, 354–360
/proc/mdstat file, 351–354

RAID 0, 345
RAID 1, 345
RAID 5. See also Migrating from RAID 1 to

RAID 5.
adding a drive to, 366–368
description, 345
reading with GRUB, 355
as a root partition, 345

RAID MD (multidisk) devices, creating and using
after installation, 349–350
file system, 350, formatting
during installation, 347–348
mounting, 350
number of active devices, specifying, 350
partitions, specifying, 350
RAID level, specifying, 350

RAID mdadm tool
chaining commands, 353
—create option, 350
creating MD devices, 350–351
—detail argument, 352
—detail —scan command, 350–351
disk failure, automatic notification, 353
disks, setting as faulty, 353
documentation, 354
installing, 349
—level option, 350
—query argument, 352
—raid-devices option, 350
replacing a failed disk, 352–354
resyncing swapped disks, 354
software RAID management, 351–354
swapping disks, 352–354

—raid-devices option, 350
RAM

changing, 311–312
copy of, 478

528 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 528

monitoring, 271
statistics, monitoring, 269–273
testing, 4, 427–428
usage, troubleshooting, 409–411

Random number generators, 478
Read permission, 472–473
reboot command, 39
Reboot the system, menu option, 438
Rebooting

immediate, disabling, 100
Ubuntu, 39
when troubleshooting, 403

Rebuilding packages, 77–79
reconfig command, 134
Recovery. See Rescue and recovery.
Redeploying the server, 234–235
Redirection

< (left angle bracket), redirection operator,
470–472

> (right angle bracket), redirection operator,
470–472

>> (right angle brackets), redirection operator,
470–472

to a black hole, 478
chaining operators, 472
of input, 471–472
to a null device, 478
of output, 470–472
overview, 470–472
overwriting the destination file, 471

Redundancy
disks. See RAID (Redundant Array of

Inexpensive Disks).
fault tolerance, 342–343
LVM (Logical Volume Manager), 372

Redundant Array of Inexpensive Disks (RAID). See
RAID (Redundant Array of Inexpensive
Disks).

Regions vs. availability zones, 319
Regular expressions, in shell globs, 465–466
Reinstall GRUB boot loader, menu option, 437
relay_domains option, 153–154
relayhost option, 152
reload command

init scripts, 35
managing BIND, 134

managing Postfix, 148
System V init model, 29

Reloading configuration files
DNS servers, 134
Postfix, 148
services, 35
System V init model, 29

Reloading zone files, 134
Remote management, VMs (KVM), 313–315
Removable media, mount location, 44
—remove option, 353
Removing. See also Deleting.

duplicate lines in sorted output, 469–470
/etc/rc.boot, 228
MySQL databases, 166
packages, with Aptitude, 69
packages, with VMs (KVM), 306–307
passwords, 205
ufw rules, 219

Replacing failed disks, 352–354, 397
Reports directory, Tripwire, 232
Repositories. See also Package management.

adding, 72, 307
apt pinning, 75
backports, 74–75
cryptographic keys, 72–73
free software, 73
fully-supported software, 73
licensed software, 74
limitations, 74–75
listing, 64
main, 73
manipulating, 71–73
multiverse, 74
open source software, 74
partially-supported software, 73–74
pinning, 75
restricted, 73–74
Ubuntu defaults, 73–74
unintended updates, 75
universe, 74

reprepro project, 81
Rescue and recovery

help. See Help and resources.
resources. See Help and resources.
troubleshooting. See Troubleshooting.

Index 529

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 529

Rescue and recovery, Ubuntu desktop live CD
booting from, 439
dd command, 445
ddrescue command, 445–447
deleted files, recovering, 440–443
fls tool, 441–443
forensic tools, 440–443
gpart tool, 443–444
Guess Partition tool, 443–444
hard drive rescue, 445–447
icat tool, 441–443
imaging drives, 445–447
imaging partitions, 446
partition table, restoring, 443–444
Sleuth Kit, 440–443
storing drive images, 445–447
universe repository, adding, 439–440

Rescue and recovery, Ubuntu recovery mode
clean option, 430
corrupted file systems, 432–433
disk space, freeing, 430
dpkg option, 431
file systems, 432–434
fsck tool, 432–433
fstab file mistakes, 433–434
GRUB, updating, 431
grub option, 431
mount command, 432
mounting file systems, 432–434
network option, 431
passwd command, 435
primary superblocks missing, 433
problems with init scripts, 434
recovery menu, 430–432
repairing packages, 431
resetting passwords, 435
resume option, 430
root option, 431
root shell, enabling, 431–432
system-summary option, 431
umount command, 432
unintentionally erasing file systems, 433
UUID, discovering, 434
UUID changed, 433–434

Rescue and recovery, Ubuntu server recovery CD
bad superblock, 439
booting into the CD, 436

Choose a different root file system, 438
Execute a shell in /dev/sdal, menu option, 436
Execute a shell in the installer environment, 437
GRUB recovery, 437–438
menu options, 436–438
overview, 435–436
Reboot the system, 438
Reinstall GRUB boot loader, 437
root file system repair, 438–439

Rescue disks, installation CDs as, 4
Reservations, LTSP IP addresses, 191–192
“Reserved blocks” field, 12
Resizing. See Sizing.
resolv.conf program, 47
Resource section, DRBD configuration file, 390–391
Resources. See Help and resources; Rescue and

recovery; Troubleshooting.
respawn option, 384
Response time, fault tolerance, 343
restart command, 29, 35, 139–140
Restarting

Apache, 139–140
scripts, 35

restore command, 310
Restoring from backups. See also Backing up data;

Rescue and recovery.
BackupPC file browser, 263–264
direct restore, 264
disk images, 243
download tar archive, 265
download zip archive, 264–265
mysql command, 246
MySQL databases, 246
options, 264–265
overview, 263–265
PostgreSQL databases, 248

Restoring from backups, file conventions
backup file directories, 266
configuration file directories, 265
/etc/backuppc, 265
/etc/backuppc/apache.conf, 265
/etc/backuppc/config.pl, 265
/etc/backuppc/hosts, 265
/etc/backuppc/htpasswd, 265
/etc/init.d/backuppc, 265
host definitions, 265
init script directory, 266

530 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 530

log file directory, 266
password directory, 265
/var/lib/backuppc, 266
/var/lib/backuppc/log, 266
/var/lib/backuppc/pc, 266
virtual host settings, 265

Restricted repositories, 73–74
resume command, 310–311
resume option, 430
Resuming KVM VMs, 310–311
Resyncing swapped disks, 354
retransfer zone command, 134
Retransferring zone files, 134
Right angle bracket (>), redirection operator, 470–472
Right angle brackets (>>), redirection operator,

470–472
rndc tool, 134
Rolling back to snapshots, 310
/root, editing, 228
Root account, enabling, 98
/root directory, 44
Root file system

mounting, 27
repairing, 438–439

Root kits, checking for, 236
root option, 431
Root partition size, specifying, 304
Root partitions, 6
Root shell, enabling, 431–432
Root squashing, disabling, 179
Root user

disk partitioning options, 7–13
home directory, 44
password, disabling, 109
permissions, assuming, 24
privileges, enabling, 109

rootpw command, 109
—rootsize option, 304
Round-robin policy, 373
route command, 49, 418–419
Routing outbound mail, 152
Routing to the remote host, troubleshooting

asterisks in the output, 422
closed ports vs. firewalls, 423–424
firewall rules, listing, 424–425
firewalls, detecting, 423–424
ICMP blocked, 423

listening ports, testing, 424
netstat command, 424
nmap command, 423–424
overview, 421–423
remote port, testing, 423–424
tcptraceroute package, 423
testing locally, 424
testing the route, 422–423
traceroute command, 422–423
ufw command, 424–425

RPM package format, 52
RRD files, 274
RSA keys, 160
rsync tweaks

backup retention, specifying, 262
blackout periods, 262–263
checksum-seed option, 258
excluding directories, 259–260
full backup interval, 261–262
FullAgeMax option, 262
FullKeepCnt option, 262
FullKeepCntMin option, 262
FullPeriod option, 261–262
host-specific tweaks, 260–261
limiting to one file system, 258–259
scheduling backups, 261–263

Rules. See also Firewalls, rules.
AppArmor, directory, 210
passwordless access to, 203

Rules, ufw program
delete command, 220
extended, 218–219
firewall, undoing, 217
iptables, rules directory, 225
removing, 219
syntax, 217–218
undoing, 220

Rules file, source packages, 62–63
Runlevels

default, changing, 33–34
System V init model, 28

S

safe-upgrade command, 65, 76
Samba file servers. See also NFS.

configuration, 176–177
configuration files, 175

Index 531

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 531

Samba file servers, continued
databases used by, 176
DRBD, 396
/etc/init.d/nmdb, 175
/etc/init.d/smdb, 175
/etc/init/nmbd.conf, 175
/etc/init/smdb.conf, 175
/etc/samba/, 174
/etc/samba/smb.conf, 175
file conventions, 174–176
init script, 175
installing, 15, 174
Kickstart authentication, 109
log files, 176
overview, 174
passwords, setting, 175
sharing directories, 176–177
ufw firewall example, 223
user accounts, creating or disabling, 175
/usr/bin/smbpasswd, 175
/usr/share/doc/samba-doc/, 175
/var/lib/samba, 176
/var/log/samba/, 176

samba package, 15
samba-doc package, 15
sar tool, 270–273
Satellite system option, 146
save command, 310
/sbin directory, 40
/sbin/init program. See Boot process, /sbin/init

program.
Scanning hard drives for problems, 444–447
Scheduling

database backups, 246–249
program execution. See at command; cron

command.
system backups, 241, 261–263

Screen magnifier, enabling, 4
Screen reader, enabling, 4
Screen resolution, LTSP, 188
script option, 32
Scripts. See Init scripts.
Scrolling terminal output, 23
Search and replace text, 487–488
Search path missing, 421

Searching for
available packages, 65–67
files. See grep command.
installed packages, 69–71

Secondary Postfix servers, 153–154
secret-key variable, 332
Security

defense in depth, 201
encryption. See SSH security.
general principles, 200–201
greylisting mail servers, 154–156
intrusion detection. See IDSs (intrusion

detection systems); Tripwire.
intrusion response. See Incident response.
keeping it simple, 200
layers of protection, 201
open relays, 153
permissions. See AppArmor; sudo command.
principle of least privilege, 200–201
responding to intrusion. See Incident response.
security by obscurity, 201
security patches, 201
servers. See OpenSSH servers; SSH security.
spam exposure, 153–156
X.509 certificates, 316–317

Security groups, Amazon EC2, 324–325
Selected time periods, monitoring, 272–273
Server BIOSs, 3
Server caches, flushing, 134
Server communication, troubleshooting

client connection, verifying, 416–417
client problems vs. server, 416–417
default gateway access, verifying, 418–419
dig tool, 420
DNS status, checking, 420–421
ethtool program, 417
ifconfig command, 418
inaccessible name server, 420–421
name server not configured, 420–421
name server problem, 420–421
network interface configuration, verifying, 418
nslookup command, 420–421
nslookup tool, 420
overview, 416
ping command, 419

532 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 532

route command, 418–419
search path missing, 421

Server roles
OpenSSH, 13

Server roles
DNS, 13
LAMP, 14
mail server, 14
OpenSSH, 13
packages, determining, 13
packages, listing, 15
PostgreSQL database, 14
print server, 14
Samba file server, 15
Tomcat Java server, 15
virtual machine host, 15

Servers
audible alarms, 487
databases. See MySQL databases; PostgreSQL

databases.
deploying Web sites. See Web servers.
DNS services. See DNS servers.
dynamic host control. See DHCP servers.
Edubuntu. See LTSP (Linux Terminal Server

Project).
for educational use. See LTSP (Linux Terminal

Server Project).
e-mail. See Mail servers; POP/IMAP servers;

Postfix mail server.
file. See File servers; NFS; Samba.
imaging, 234
killing, 380
redeploying after attack, 234–235
remote management. See OpenSSH servers.
SSH security settings, 211

Service checks
adding, 286, 291
creating, 294–295
critical thresholds, setting, 286
default settings, overriding, 293
options, changing, 286
warning thresholds, setting, 286

service command, 36
Service loading timeout, setting, 383
Service status, checking, 35

Services
booting. See Boot process services.
vs. commands, 288
deleting, 289
enabling with xinetd, 39

setmaxmem command, 311
setmem command, 311
Shell globs

? (question mark), wildcard character, 464
[] (square brackets), in regular expressions, 466
* (asterisk), wildcard character, 208–209, 465
character classes, 466
overview, 464–465
regular expressions, 465–466

Shell globs, pipes
| (vertical line), pipe symbol, 466–470
filtering input to, 467–468
grep command, 467–468
overview, 466–470
removing duplicate lines, 469–470
sort command, 468–469
sorting input to, 468–469
uniq command, 469–470

Shell globs, redirection
< (left angle bracket), redirection operator,

470–472
> (right angle bracket), redirection operator,

470–472
>> (right angle brackets), redirection operator,

470–472
to a black hole, 478
chaining operators, 472
of input, 471–472
of output, 470–472
overview, 470–472
overwriting the destination file, 471

Shell scripts, Kickstart, 110
Shooting the other node in the head, 380
+short option, 492–493
Shortcuts to

files. See Hard links; Symlinks.
pathnames, 486

show subcommand, 66–67
shutdown command, 310
Shutting down KVM VMs, 310

Index 533

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 533

si: software interrupts, 407
Simplicity over complexity, troubleshooting, 401
Single points of failure, eliminating, 343
Site keys directory, 232
Size of files and directories, displaying, 20
Sizing partitions, 8, 10
skeleton script, 37
Slash (/), in IRC commands, 452
Slave server. See DNS slave server.
Slave zone files, location, 128
Sleuth Kit, 235–236, 440–443
sleuthkit package, 235–236
Smart upgrades, 59
smartctl tool, 426–427
smartd daemon, 269
Smartmontools, 268–269
smartmontools package, 426–427
smbfs package, 15
SMTP, 221–222
smtpd_recipient_restrictions option, 155
Snapshots. See also Backing up data; Suspending

current state.
KVM VMs, 310, 313
rolling back to, 310
taking, 310

Software. See also specific software.
firewalls, 215
interrupts, 407

Software RAID
description, 344
managing, 351–354
migrating non-RAID disks to, 354–360

sort command, 468–469
Sorting input to pipes, 468–469
Sound in LTSP, 197
SOUND=True statement, 197
Source files, list of, 308
Source packages. See Package management, DEB

format source packages.
sources.list file

(hash mark), comment indicator, 72
manipulating repositories, 71–72

Spam exposure, 153–156
Specifying a distribution, 78
Split-brain policy, changing, 392
Split-brain problem, solving, 398

Split-brain syndrome, 379
Spool files, directory for, 43
Square brackets ([])

in grep search keywords, 485–486
in regular expressions, 466

ssh into Amazon EC2, 326–327
ssh key pairs, creating, 319–320
SSH keys

configuring for BackupPC, 254
copying, 308
sharing, 491
updating in LTSP, 195

SSH security. See also OpenSSH servers; Security;
ufw program.

botnets, 214
brute-force attacks, 213–214
configuration file, 211
denyhosts program, 213–214
failed logins, monitoring, 213–214
firewalls, 214–216
ipchains program, 215
iptables program, 215
keeping it simple, 215–216
key-based authentication, 211–213
overview, 210–211
passphrases, 211–213
password authentication, 211–213
password prompt, bypassing, 213
passwords, disabling, 213
server settings, 211
sshd_config file, 211
TCP wrappers, hacking, 214
thresholds, setting, 214
ufw firewall example, 220–221
whitelists for trusted hosts, 214

ssh-copy-id tool, 491
sshd_config file, 211
—ssh-key option, 308
—ssh-user-key option, 308
st: steal time, 407
start command, 29, 32, 139–140, 309–310
Starting/stopping

Amazon EC2 instances, 327–328
Apache, 139–140
running processes, 21–23
System V init model, 29

534 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 534

terminating Amazon EC2 instances, 327–328
Ubuntu, 39
Upstart jobs, 32
VMs (virtual machines), 309–310

Start-up scripts. See Init scripts; System V init
model; Upstart.

Static configuration, DHCP servers, 162–163
Static IP address, assigning, 307
Static leases, 121–122
Status checking

Apache, 140–141
DNS servers, 134
extended-status command, 167
fullstatus command, 140–141
mail queues, 149
MySQL, 165–167
Postfix, 149
service option, 35
System V init model, 29
ufw program, 216
Upstart, 32

status command
Apache, 140–141
DNS servers, 134
MySQL, 167
Postfix, 149
service option, 35
System V init model, 29
ufw program, 216
Upstart, 32

Steal time, 407
stop command

Apache, 139–140
System V init model, 29
Upstart, 32

Stopping/starting. See also Killing processes.
Amazon EC2 instances, 327–328
Apache, 139–140
running processes, 21–23
System V init model, 29
terminating Amazon EC2 instances, 327–328
Ubuntu, 39
Upstart jobs, 32
VMs (virtual machines), 309–310

Storing drive images, 445–447
Striping plus parity, RAID disk, 345

Striping RAID disks, 345
Subnet mask, specifying, 307
sudo command. See also Security.

aliases, 205–206
assuming root permissions, 24
auto-expiration of access, 202
configuring for BackupPC, 255
features, 202–203
group-based access, 202
host-based access, 202
logging access, 203
password authentication, 202
passwordless access to rules, 203
superuser access, 202

sudo command, configuration file
% (percent sign), group name indicator, 204
changing, 203
checking for mistakes, 203
documentation, 204
location, 203
NOPASSWD: statement, 205
passwords, removing, 205
visudo tool, 203

Sudoers file
changing, 203
checking for mistakes, 203
sudo documentation, 204

—suite option, 303
Super user account, setting up, 169–170
Superblock problems, rescue and recovery, 439
Superuser access, sudo command, 202
Supplemental driver disk, Kickstart, 110
Support. See Help and resources; Rescue and

recovery; Troubleshooting.
Support BIOS, enabling, 299
suspend command, 310–311
Suspending current state, KVM VMs, 310–311
Swap cache, monitoring, 271
swap option, 94
Swap partition size, specifying, 304
Swap space, 6
Swapping (physical disks), 352–354
Swapping (data in memory), troubleshooting,

411–412
—swapsize option, 304
Symbolic links. See Symlinks.

Index 535

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 535

Symlinks
to Apache .load and .conf files, 137–138
creating, 38, 475
directories, 20
files, 20
identifying, 20, 475
overview, 475
uses for, 475
to virtual hosts, 138

Synaptic, 64–65
Syncing arrays

migrating from RAID 1 to RAID 5, 366
migrating non-RAID disks to RAID, 358

/sys directory, 45
Syslog facility, 384
Syslog file example, 387–388
sysstat package, 269–273, 411–412
System administration. See Command-line

administration; Managing.
System administrator

disk partitioning options, 7–13
home directory, 44
password, disabling, 109
permissions, assuming, 24
privileges, enabling, 109

System configuration files, directory for, 42–43
System libraries, directory for, 41
System load

average, 404–406
monitoring, 269–273

System logs, directory for, 43
System time, displaying, 38
System V init model. See also Init scripts; Upstart.

description, 27–28
drawbacks, 30–31
/etc/init.d script, 28–29
/etc/rc0.d — /etc/rc06.d scripts, 29
/etc/rc.local script, 29
/etc/rcS.d script, 29
force-reload command, 29
init scripts, 28–29
reload command, 29
reloading settings, 29
restart command, 29
runlevels, 28
start command, 29

starting/stopping, 29
start-up scripts, 28–30
status command, 29
stop command, 29
user scripts, 29

system-config-kickstart package, installing, 105
system-summary option, 431

T

t1.micro instances, 315
Tar archives, restoring from, 265
tasksel command, 15
TCP wrappers, hacking, 214
tcpdump program, 276
tcptraceroute package, 423
Technical support. See Help and resources; Rescue

and recovery; Troubleshooting.
Telnet, testing e-mail, 490–491
Temporary files, partitions for, 7
Terminating Amazon EC2 instances, 327–328
Testing

backups, 241
fail-over, 378
fault tolerance, 343
hard drives, 426–427
listening ports, 424
memory, 4
PXE boot server deployment, 116–117
RAM, 4, 427–428
remote ports, 423–424
routing to the remote host, 422–424

Text in files, search and replace, 487–488
TFTPD (Trivial File Transfer Protocol Daemon), 39
TFTPD server, setting up, 113
Thin clients, 183
Third-party programs

directory for, 42
partitions for, 6

Thresholds for SSH security, setting, 214
Time between heartbeats, setting, 383
Timeout

DHCP duration, setting, 90
PXE boot servers, 117
service loading, setting, 383

TIMEOUT option, 193
TIMEOUT value, setting, 117

536 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 536

/tmp directory, 7, 45
tmp files, excessive disk space, 415
Tomcat Java server, 15
Tools for package management, 64–67, 69
top command, 406–408, 410
tps: transfers per second, 412
+trace option, 492–493
traceroute command, 422–423
Tripwire

configuration files directory, 232
encrypted settings, directory for, 232
/etc/rc.boot, removing, 228
/etc/tripwire/, 232
/etc/tripwire/*-local.key, 232
/etc/tripwire/*-site.key, 232
/etc/tripwire/tw.cfg, 232
/etc/tripwire/twcfg.txt, 232
/etc/tripwire/tw.pol, 232
/etc/tripwire/twpol.txt, 227, 232
file conventions, 227–228, 232–233
keys, 227, 232
local keys directory, 232
log directory, 233
MTA (Mail Transport Agent), 227
passphrases, 227
policies, updating, 227–228
policy file, editing, 227–228
policy files directory, 232
/proc, editing, 228
reports directory, 232
/root, editing, 228
site keys directory, 232
/var/lib/tripwire/, 232
/var/lib/tripwire/reports, 232
/var/log/syslog, 233

Tripwire database
default directory, 232
“file does not exist” message, 229
initializing, 229–230
“unknown file system type” message, 229
updating, 230–231

Trivial File Transfer Protocol Daemon (TFTPD), 39
Troubleshooting. See also Help and resources;

Rescue and recovery.
bash commands, too many arguments, 488–489
checking installation CDs for defects, 4

DHCP timing out, 90
error retrieving preseed.cfg file, 89
“file does not exist” message, Tripwire, 229
file system will not unmount, 490
“ifconfig: command not found” message, 49
“unknown file system type” message, Tripwire,

229
“Wrong file system type” message, 179

Troubleshooting, general principles
communicating with collaborators, 402
dividing the problem space, 400–401
documenting problems and solutions, 402–403
favoring past solutions, 401–402
Internet as reference, 403
resisting rebooting, 403
simplicity over complexity, 401
understanding the system, 402

Troubleshooting, hardware
hard drives, testing, 426–427
ifconfig command, 49, 425–426
Memtest86+ tool, 427–428
network card errors, 425–426
RAM, testing, 427–428
smartctl tool, 426–427
smartmontools package, 426–427

Troubleshooting, localhost sluggish or

 unresponsive
Blk_read: total blocks read, 412
Blk_read/s: blocks read per second, 412
Blk_wrtn: total blocks written, 412
Blk_wrtn/s: blocks written per second, 412
excessive swapping, 411–412
hi: hardware interrupts, 407
high I/O wait, 411–412
high user time, 408–409
id: CPU idle time, 407
iostat program, 411–412
iotop program, 413
metrics, 404–407
ni: nice CPU time, 407
OOM (out-of-memory) killer, 410–411
out-of-memory issues, 409–411
overview, 404
RAM usage, 409–411
si: software interrupts, 407
st: steal time, 407

Index 537

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 537

Troubleshooting, localhost sluggish or

 unresponsive, continued
sy: system CPU time, 407
sysstat package, 411–412
system load average, 404–406
top command, 406–408
tps: transfers per second, 412
uptime command, 404–405
us: user CPU time, 407
wa: I/O wait, 407

Troubleshooting, out of disk space
df command, 413–416
du command, 414–415
duck command, 414–415
excessive tmp files, 415
full file system, 415
out of inodes, 415–416
usage, by directory, 414–415
usage, by file system, 413–415

Troubleshooting networks, routing to the remote
host

asterisks in the output, 422
closed ports vs. firewalls, 423–424
firewall rules, listing, 424–425
firewalls, detecting, 423–424
ICMP blocked, 423
listening ports, testing, 424
netstat command, 424
nmap command, 423–424
remote port, testing, 423–424
tcptraceroute package, 423
testing locally, 424
testing the route, 422–423
traceroute command, 422–423
ufw command, 424–425

Troubleshooting networks, servers can’t
communicate

client connection, verifying, 416–417
client problems vs. server, 416–417
default gateway access, verifying, 418–419
dig tool, 420
DNS status, checking, 420–421
ethtool program, 417
inaccessible name server, 420–421
name server not configured, 420–421
name server problem, 420–421

network interface configuration, verifying, 418
nslookup command, 420–421
overview, 416
ping command, 419
route command, 418–419
search path missing, 421

Troubleshooting networks, slow network speeds,
417–418

“Typical usage” field, 12

U

Ubuntu
desktop live CD. See Rescue and recovery,

Ubuntu desktop live CD.
recovery mode. See Rescue and recovery, Ubuntu

recovery mode.
server recovery CD. See Rescue and recovery,

Ubuntu server recovery CD.
version, specifying, 303

#ubuntu chat, 452
#ubuntu-server chat, 452
ubuntu-vm-builder. See vmbuilder tool.
ubuntu-vm-builder script, installing, 299. See also

vmbuilder tool; VMs (KVM), creating.
ufw command, 424–425
ufw program. See also SSH security.

configuration file directory, 224–225
environment variables directory, 225
/etc/defaults/ufw, 225
/etc/init.d/ufw, 225
/etc/ufw/, 224–225
/etc/ufw/after6.rules, 225
/etc/ufw/after.rules, 225
/etc/ufw/before6.rules, 225
/etc/ufw/before.rules, 225
file conventions, 224–226
init script directory, 225
iptables, rules directory, 225
/lib/ufw/user6.rules, 225
/lib/ufw/user.rules, 225
/var/log/syslog, 226

ufw program, firewall examples
DNS, 221
MySQL, 222
NFS, 223–224
POP/IMAP, 222

538 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 538

PostgreSQL, 223
Samba, 223
SMTP, 221–222
SSH, 220–221
Web, 221

ufw program, firewalls
allow command, 217
default command, 216–217
default policy, defining, 216–217
delete allow command, 217
delete deny command, 217
deny command, 217
disable command, 216
enable command, 216
enabling/disabling, 216
extended rules, 218–219
installing, 216
locking yourself out, 220
logging command, 217
logs, dumping, 217
periodic disabling, 220
remote management, 220
rule syntax, 217–218
rules, denying by default, 217
rules, undoing, 217
status, checking, 216
status command, 216
undoing rules, 220

UID default, 98
umount command

file system rescue and recovery, 432
file system will not unmount, 490

Understanding the system, troubleshooting, 402
Uninstalling packages, 57, 59, 69
uniq command, 469–470
Universe repositories, 74, 439–440
Unpacking source packages, 62
update-grub program, 25
Update-initramfs argument, changing, 362
update-rc.d program, 36
Updating aliases, 150
Upgrade command, 65
Upgrading

automating, 76
do-release-upgrade program, 76
full-system, 75–76

packages, automatically, 65
shared libraries, 57
smart, 59
to unintended versions, 75

Upstart. See also System V init model.
(hash mark), comment indicator, 31
checking job status, 32–33
comments, 31
default runlevel, changing, 33–34
description, 30–31
event-driven actions, 30
exec option, 32
initctl command, 32–33
job status, querying, 32–33
script location, 31
script option, 32
script syntax, 31
start command, 32
starting/stopping jobs, 32
status command, 32
stop command, 32

uptime command, 404–405
us: user CPU time, 407
USB devices, LTSP, 195–196
“Use as” field, 10–11
User accounts. See also Root user.

default, disabling, 99
default, specifying, 304
PostgreSQL, creating/deleting, 169–170
Samba, creating/disabling, 175

user command, 109
User CPU time, 407
User mailbox directory, 147
—user option, 304
User scripts, System V init model, 30
User time too high, troubleshooting, 408–409
Usernames, mapping to PostgreSQL usernames, 171
Users

alias mappings, 147, 150
AMIs, default, 327
group membership, displaying, 473
KVM, setting up, 299
LTSP, creating first, 188

Users, initial settings
Kickstart, 109
preseeding, 98–99

Index 539

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 539

/usr directory, 7, 41
usr/bin directory, 41
/usr/bin/smbpasswd, 175
/usr/lib directory, 41
/usr/lib/cgi-bin/, 139
/usr/local directory, 41
/usr/sbin directory, 41
/usr/share/doc/samba-doc/, 175
UUID

changed, rescue and recovery, 433–434
discovering, 434
migrating non-RAID disks to RAID, 358
specifying for RAID disks, 351

uupdate program, 79–80

V

/var directory, 6, 43
/var/cache/bind, 128
Variable-size data, partitioning for, 6
Variable-size files, directory for, 43
/var/lib/backuppc, 266
/var/lib/backuppc/log, 266
/var/lib/backuppc/pc, 266
/var/lib/dhcp3/dhcpd.leases, 161
/var/lib/mysql/, 165
/var/lib/samba, 176
/var/lib/tripwire/, 232
/var/lib/tripwire/reports, 232
/var/log directory, 43
/var/log/apache2/, 139
/var/log/apparmor/, 210
/var/log/auth.log, 160
/var/log/mail.*, 147–148
/var/log/mail.log, 158
/var/log/postgresql/, 171
/var/log/samba/, 176
/var/log/syslog

AppArmor, 210
DHCP servers, 161
DNS servers, BIND, 129
Dovecot, 158
MySQL databases, 165
NFS, 178
SSH security, ufw program, 226
Tripwire, 233

/var/spool directory, 43
/var/spool/mail/, 147
/var/spool/postfix/, 147
/var/www/, 139
/var/www directory, 43
Vertical line (|), pipe symbol, 466–470
VGs (volume groups), 370
Vhost_alias module, 142–143
virsh command, 299–300, 309–312
virt-manager utility, 312–315
Virtual file systems, directory for, 45
Virtual host settings, BackupPC, 265
Virtual hosts, Apache Web server, 138
Virtual machines. See VMs.
VirtualDocumentRoot option, 142–143
Virtualization. See also Amazon EC2; Juju; VMs.

extensions, confirming, 298
overview, 298
technologies. See KVM.
virtual machine host server, 15

Visually impaired users. See Accessibility options.
visudo tool, 203
vmbuilder tool, 302–309
VMs (KVM), creating. See also KVM.

adding new VM to local KVM instance, 304
—arch option, 304
automating, 308–309
—copy option, 308
destination directory, specifying, 304
destination files, list of, 308
—execscript option, 308
firstboot option, 309
firstlogin option, 309
—flavour option, 303–304
hostname, specifying, 304
—hostname option, 304
JeOS, 302
kernel flavor, specifying, 303–304
—libvirt option, 304
—part option, 306
—pass option, 304
—rootsize option, 304
—suite option, 303
—swapsize option, 304
—user option, 304

540 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 540

VMs (KVM), managing
autostart command, 310
current load, 313–315
destroy command, 310
graphical console, 313–314
hardware, 313–314
power off, 310
RAM, changing, 311–312
remote management, 313–315
restore command, 310
resume command, 310–311
resuming, 310–311
rolling back to snapshots, 310
save command, 310
setmaxmem command, 311
setmem command, 311
shutdown command, 310
shutting down, 310
snapshotting, 310, 313
start command, 309–310
starting at boot time, 310
starting the VM, 309–310
suspend command, 310–311
suspending current state, 310–311. See also

Snapshots.
virsh command, 309–312
virt-manager utility, 312–315

VMs (KVM), networking
—bcast option, 308
broadcast address, specifying, 308
creating, 302–305
DNS address, specifying, 308
—dns option, 308
domain default, specifying, 307
domain option, 307
gateway address, specifying, 308
—gw, 308
host network address, specifying, 307
—ip option, 307
—mask option, 307
—net option, 307
overview, 300–302
partitioning disks, 306
password default, specifying, 304
post-install scripts, 308–309

processor architecture, specifying, 304
root partition size, specifying, 304
sample command, 303
sample network, 305
source files, list of, 308
SSH key files, copying, 308
—ssh-key option, 308
—ssh-user-key option, 308
static IP address, assigning, 307
subnet mask, specifying, 307
swap partition size, specifying, 304
Ubuntu version, specifying, 303
user default, specifying, 304
vmbuilder tool, 302–309

VMs (KVM), package management
adding packages, 306–307
—addpkg option, 306–307
—components option, 307
—mirror option, 307
—ppa option, 307
PPAs (Personal Package Archives), 307
—removepkg option, 306–307
removing packages, 306–307
repositories, adding, 307
Ubuntu mirror, specifying, 307

VMs (KVM), scripts
interactive, 309
running on command, 308
running on first VM boot, 309

W

wa: I/O wait, 407
Warning prompts for preseeding partitioning,

disabling, 91
Warning thresholds, setting, 286
warntime option, 383
watch command, 487
Web forums, 451
Web servers. See also Apache.

installing, 135–136
LAMP environment, 135, 141–144
setting up for PXE boot server deployment, 116

Web service, ufw firewall example, 221
Web-based administration, PostgreSQL, 171–173
which command, 486

Index 541

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 541

Whitelists
for trusted hosts, 214
tweaking, 155–156

Wildcard characters
? (question mark), wildcard character, 464
* (asterisk), in shell globs, 208–209, 465
in the exec command, 488
in the find command, 488

winbind package, 15
Wireless adapters, bridging support, 302
WordPress, 141–144
Write permission, 472–473

X

X.509 certificates, 316–317
xargs program, 489
XChat program, 452–455
xconfig—monitor option, 110
xinetd

description, 38–39
echo feature, 38

enabling services, 39
FTP feature, 39
managing services, 38–39
system time, displaying, 38
TFTPD (Trivial File Transfer Protocol Daemon),

39
XOR policy, 373

Z

Zip archives, restoring from, 264–265
Zone files

adding, 129–132
location, 128
ownership, 131
permissions, 131
referencing in named.conf, 131–132
reloading, 134
retransferring, 134

542 Index

Rankin_3e_index_Rankin 6/18/13 11:10 AM Page 542

	Contents
	Preface
	Acknowledgments
	About the Authors
	Introduction
	CHAPTER 3 Package Management
	Index

