Visual Quantitative Finance
This page intentionally left blank
Visual Quantitative Finance

A New Look at Option Pricing, Risk Management, and Structured Securities

Michael Lovelady
Contents

Preface xi

Chapter 1 Introduction 1
Growth in Structured Securities 2
Growing Emphasis on Low Volatility and Dividends 3
Criticisms of Structured Securities 4
Demand for Quantitative Skills 5
Direction of Quantitative Finance 6
When I Realized It Might Be Easier 8
Try Again 10
The Spreadsheet 10
Visualizing the Result 14
What It Means and Why It Works: A Nontechnical Overview 17
It Doesn’t Get Too Complicated 18
An Integrated View of Risk Management 18
Endnotes 19

Chapter 2 Random Variables and Option Pricing 21
Random Variables 22
Building the Spreadsheet 28
Correcting the Mistake 36
Optional: Additional Resources 41

Chapter 3 An Overview of Option Pricing Methods 43
The Black-Scholes Formula 43
Black-Scholes Assumptions 48
The Binomial Option Pricing Method 49
Monte Carlo Methods 51
Putting Visual Quant in Context 52
Additional Reading, Advanced Topics, and Resources 57
Endnotes 60
Chapter 8 Stock-Only Investment Profile 145
The Purpose and Context of the Model 145
The Stock-Only Investment Profile 146
The Calc Engine .. 151
The Stock-Only Profit Calculation 157
Adding the Chart .. 159
Test: Stock-Only Investment Profile 162

Chapter 9 Adding Options to the Model 167
Long Put Profit .. 168
Short Put ... 169
Expected Values ... 170
Black-Scholes Add-In 173
The Heading Formulas 175
Delta Formulas .. 176
Time Value and Total Premium Formulas 176

Chapter 10 Option Investment Profiles 179
Long Call Option Investment Profile 179
Short Call Option ... 190
Long Put Option .. 192
Short Put Option .. 194

Chapter 11 Covered Calls, Condors, and SynAs 197
Covered Call Investment Profile 198
Put–Call Parity .. 200
Iron Condor Investment Profile 205
Synthetic Annuity (SynA) Investment Profile 209
Adding a Customized Utility Function 223
Endnotes ... 225

Chapter 12 Understanding Price Changes 227
Investing in XYZ .. 227
Attribution: Explaining Why the Option Price Changed 238
Endnote ... 245
Chapter 13 The Greeks . 247
 The Option Greeks . 248
 Calculating Greeks: Formulas, Models, and Platforms . . . 249
 Delta . 252
 Theta . 257
 Vega . 262

Introduction to Chapters 14, “Tracking Performance,”
and 15, “Covered Synthetic Annuities” 265

Chapter 14 Tracking Performance . 269
 Tracking Template . 270
 TradeStation Platform . 274
 Putting It All Together: Synthetic Annuity Overview 282

Chapter 15 Covered Synthetic Annuities . 285
 Covered Synthetic Annuity (CSynA) . 286
 Example: Deere & Company . 289
 The Standard CSynA . 304
 Supplemental Material: The CBOE S&P 500
 BuyWrite Index . 311
 BXM Study by Callan Associates . 312

Index . 315
Acknowledgments

I would like to express my sincere gratitude to several people who made this book possible. At Pearson/FT Press, Jim Boyd, who believed in the material; Michael Thomsett, who gave the project guidance and direction from beginning to end; Lori Lyons, who served as both patient editor and production manager; Krista Hansing, Russ Hall, and all those who helped with editing, marketing, illustration, and production.

I would also like to thank Don DePamphilis at Loyola Marymount University for giving me the idea to write and Cooper Stinson for reviewing early manuscripts and asking all the right questions.

Also, my friends and family who gave me encouragement and inspiration, and forgave me for missing tee times: Arnold, Barbara, Barry, Bill, Bobbi, Daniel, David, Ernie, John, Kate, Katy, Kristine, Leslie, Matty, Paul, Steve, and Tony.

Above all, for life itself, the Triune God of Creation—I always remember.
Michael Lovelady, CFA, ASA, EA, works as an investment strategist and portfolio manager, where he specializes in blending traditional and quantitative styles, including reduced-volatility and yield-enhanced option strategies. Michael developed the synthetic annuity and is the author of *Profiting with Synthetic Annuities: Options Strategies to Increase Yield and Control Portfolio Risk*.

Prior to hedge fund management, Michael was a consulting actuary for Towers Watson and PricewaterhouseCoopers, where he worked with employers on the design and funding requirements of plans ranging from defined benefit and defined contribution to hybrid db/dc plans. His experience with retirement income strategies—both as an actuary from the liability side and as a fund manager from the asset side—gives him a unique perspective.

Michael has also been involved in teaching and creating new methods for making quantitative investing more accessible to students, trustees, and others interested in investment and risk management. He developed the investment profile—a graphical representation of risk and the basis of a simplified option pricing model, and visually intuitive presentations of structured securities.

During his career, Michael has served various organizations, including Hughes Aircraft, Boeing, Global Santa Fe, Dresser Industries, the Screen Actors Guild, The Walt Disney Company, Hilton Hotels, CSC, and the Depository Trust Company. He is a CFA charterholder, an Associate of the Society of Actuaries, and an ERISA Enrolled Actuary. He currently lives in Los Angeles.
Preface

Visual Quantitative Finance presents a simplified, but powerful view of financial mathematics. It is written for trustees, investors, advisors, students, and others interested in quantitative finance, risk management, options strategies, structured securities, or financial model building—or for those looking for new ways to explain these topics to someone else.

What makes this book different is its visual presentation of formulas and concepts that may be more intuitive, especially for those without quantitative backgrounds. By working directly with the mathematical building blocks of finance—*random variables*—rather than formulas derived from them, the underlying mechanism of option pricing becomes simple and transparent, creating many advantages:

- The Black-Scholes formula can be derived in a few easy steps, with no complicated formulas.
- The derivation of the option pricing formula highlights the framework for translating option pricing assumptions into future stock price patterns.
- This framework is the key—not only to option pricing, but also to structured securities and risk management in general.
- The visual display of random variables emphasizes the simplicity behind quantitative finance, allowing you to look inside the logic of risk metrics and the power of options to reshape risk-reward profiles.
- You don’t need a prior knowledge of statistical mathematics. Although the tools are developed without stochastic formulas, they may be one of the best ways to learn them.
- Metrics that appear complicated when expressed in words or formulas become nothing more than simple lookups in a visual context.
The book provides an important perspective on options and their value in portfolio management. The material for the book was selected to reflect the change in investor attitudes that began with the 2000–2002 internet bubble and accelerated after the 2008 financial crisis. The change in attitudes has been described in numerous market surveys that indicate investors are (1) tired of traditional portfolios, (2) looking for creative solutions, and (3) not willing to invest in instruments they don’t understand.

In response, the use of alternative strategies and the introduction of new funds have grown rapidly, with much of the activity focused on structured securities. Structured securities, ranging from simple covered call strategies to complex institutional hedges, are proving to be more effective than traditional securities at tailoring risk-reward profiles and generating new sources of income.

Even though the trends are clear and investor interest has never been higher, the challenge for many investors is to become comfortable with unfamiliar, often seemingly complex instruments. This is especially true for institutional trustees and retail investors who might not have experience with options or the mathematics behind them.

One method currently gaining traction is the visual presentation of concepts such as Value-at-Risk, which are more easily communicated in pictures than words. This book extends visual presentation to a variety of topics in hopes of making quantitative finance more accessible to a wider audience.
Introduction

Visual quantitative finance is a different take on the mathematics of investing. It emphasizes an intuitive view of risk and the interrelationships of option pricing, risk management, and structured securities. This chapter begins with an overview of current investment trends that serve as the backdrop for the material covered in the book. The trends include shifts in investor attitudes and the emergence of new investment alternatives being driven by the application of quantitative finance.

I also talk about the personal “discovery” that motivated me to write this book. Like most people involved in asset management, I have struggled often with two things: (1) how to dampen some of the stock market volatility—and losses—that have occurred too often over the last decade, and (2) how to generate higher levels of income in a historically low interest rate environment.

Over time, I have become convinced that adding options—not as trading instruments, but as long-term components of portfolios—is the best answer. But unless an investor really understands options, it is hard to fully commit to a strategy involving them. Unfortunately, really understanding options means getting a little technical—sometimes a lot more than a little. I laughed one day when I saw the title of a paper on computational methods (roughly the same subject as this book). The title was “An Introduction to Computational Finance Without Agonizing Pain. If you have tried to approach this subject, you probably know the feeling. I do.

My personal “discovery” was not really a discovery in the sense that I uncovered some new truth. For me, it was just one of those light-bulb moments when I saw past the differential equations to a
simple, beautiful “picture.” What I saw in the picture was an easier way to visualize option pricing. More than that, the picture contained enough information to break down seemingly complex risk metrics and structured securities into basic elements. The picture is a chart of an Excel spreadsheet, shown at the end of the chapter, and used as the framework for most of what is presented in this book.

Growth in Structured Securities

According to Bloomberg, investment banks sold $45.9 billion of SEC-registered structured securities in 2011 and another $11.1 billion in the first quarter of 2012. The securities offer customized risk-return and payoff profiles using derivatives based on underlying stocks, bonds, currencies, and commodities, with approximately 60% of these notes tied to equities (including the S&P 500 Index).¹

Registered structured products are just the tip of the iceberg. Demand from institutions and retail investors, looking for better ways to invest, is prompting asset management firms and ETF providers to introduce new funds capable of smoothing market volatility and increasing yield. For instance, AQR Capital Management, the hedge fund company, launched four new mutual funds.

July 13, 2012: AQR Capital Management announced Monday the launch of four new mutual funds The funds seek to provide equity-like returns with lower volatility and smaller drawdowns using an actively managed, risk-balanced approach.²

This is one in a string of announcements. Quant funds are rolling out more creative investment vehicles to meet market demand. Most of these vehicles offer forms of risk management and income features that traditional asset classes do not offer. And structured securities are often the means to do it.

Structured securities range from simple covered call strategies to complex institution hedging programs. What they have in common is the ability to tailor risk and reward profiles to match investor objectives in ways that are difficult to do with stocks and bonds.
On the retail side, more investors than ever use options strategies—not only as trades, but as integral parts of investment portfolios. On the institutional side, allocations to hedge funds and other alternatives using options strategies and structured securities are growing rapidly.

Both groups are interested in emerging strategies that combine the explicit use of hedging, insurance, and risk allocations in risk management instead of continuing to rely on traditional portfolio models. Also, in today’s low-interest environment, both groups want access to greater yields, especially those not related to market direction. These investor goals have led to the growing importance of volatility-reducing quantitative methods, particularly methods related to options capable of boosting dividend yields.

Growing Emphasis on Low Volatility and Dividends

Some of 2012’s most successful ETFs were funds that combined these themes, including the PowerShares S&P 500 Low Volatility Portfolio (NYSEArca: SPLV) and the iShares High Dividend Equity Index Fund (NYSEArca: HDV).

Low-volatility ETFs debuted in 2011 with the launch of the PowerShares S&P 500® Low Volatility ETF (SPLV). Since inception, SPLV has exhibited 69% of the volatility in the S&P 500 Index [and] outperformed its cap-weighted benchmark in terms of absolute returns.³

In terms of relative performance, SPLV has delivered an excess return of 11.7% compared to the S&P 500. Many other ETFs have been introduced with variations on the low volatility strategy seeking to deliver market exposures measured by volatility rather than traditional cap-weighted benchmarks. Other funds, such as the Windhaven Portfolios at Charles Schwab & Co., add dynamic allocation strategies, adjusting portfolio allocations based on changing economic conditions. According to the brochure, this form of proactive risk management “strives to capture much of the up markets and less of the down.”
Sage Quant Management filed with regulators in summer 2012 to offer a dividend-focused low-volatility fund to be listed as an ETF. In the filing, the company said that the fund might rely on derivatives such as futures and options contracts to “facilitate trading or to reduce transaction costs.”

That is consistent with the theme of blending dividends and low volatility. And it is consistent with the work of Roger Clarke at Analytic Investors and others who have argued that it may be possible to pick up 40 to 60 basis points of risk-adjusted return. However, funds offered to retail investors have been reluctant to include derivatives simply because a lot of investors view them as dangerous. It appears that attitude is changing, at least when it comes to more conservative types of derivatives. Personally, I believe that including derivatives in the investment toolkit is a step forward in the nature of the funds offered to the retail investor.

After all, derivatives have been utilized in institutional investing for decades to provide exposure to absolute return strategies, long or short, and hedge overlays for pension plans and endowments. Partly, this is in response to the lack of risk management achievable through mean-variance portfolios and their counterparts in the retail space: life cycle and target date funds. It also is partly in response to the need for higher yields to match long-term discount assumptions, which is hard to achieve in a low-yield bond market. Because individual investors face the same challenges, products with derivative components are being offered in more variations by more firms.

That is not to say that everything is going smoothly.

Criticisms of Structured Securities

Criticism of structured securities is growing as fast as the demand. FINRA, the financial regulatory agency, has looked carefully at how these instruments are designed and marketed. Several published papers have warned investors about complexity, expense, and suitability. Some of the products are so misunderstood that investors are completely unaware of what they own or how much they could lose.
In 2008, many investors were burned. Structured products that were supposedly “principle-protected” were not. Investors at some of the largest and most respected investment management firms learned that their securities bought to earn income had overnight been “converted” into depreciated stocks. The losses were huge and unexpected.

In a Forbes article, “When will FINRA stop this insanity?” Seth Lipner says structured products are too complicated for ordinary investors to understand.

They are, in reality, exotic derivatives... Isn’t it clear by now that these newfangled financial products exist just to enrich Wall Street at the expense of naive investors? Isn’t it enough already?4

Other criticisms center not on the danger, but on the fact that they don’t add anything that investors can’t get through simpler and less expensive instruments. One report concluded:

These products add nothing to retail investors’ portfolios that can’t be acquired from investments already available in the market in the form of less risky, less complicated, or less costly products.5

Because these products “add nothing,” they may fail even the most basic regulatory “reasonable basis” rules for suitability to sell to retail investors.

Despite the criticism, the trend is clear. Investors don’t want the roller coaster that investing has become in the last decade. Financially engineered products are not going away, nor is the demand for people who can build them and explain them.

Demand for Quantitative Skills

On the hiring front, recruiters are saying that stock pickers are “out” and quantitative analysts are “in.” The role of quants at hedge
funds for complex trading has been steady, but it seems the demand for quant talent for more mainstream investing applications is increasing. Firms are changing their emphasis on risk, giving it more weight in the balance between risk and return. Instead of selecting return targets and then minimizing the risk involved in achieving them, the new design order is to determine acceptable levels of risk first and then go for returns. Here is an excerpt from a recent job posting at T. Rowe Price:

The T. Rowe Price investment approach strives to achieve superior performance but is always mindful of the risks incurred relative to the potential rewards.

The job posting explains the “greatly expanded” capabilities in Quantitative Research, including portfolio analytics and modeling and the outlook for continued growth.

These are key areas of focus for the firm where we anticipate a strong growth in demand.

The job requirements for this T. Rowe Price job listing include a Ph.D.; a CFA; a Master’s degree in quantitative finance, science, engineering, or mathematics; and proficiency with analytic modeling platforms such as MatLab, R, or S-plus.

Direction of Quantitative Finance

It might seem that at least one branch of quantitative finance would become less complex as it enters the mainstream, but that is apparently not happening yet. How is it possible for the average investor to understand a security that requires a Ph.D. to design? Paul Wilmott, Michael Thomsett, and many others have advocated the practical use of quantitative methods, emphasizing more transparency in the use of derivatives. In 2008, Wilmott blogged:

In my view the main reason why quantitative finance is in a mess is because of complexity and obscurity. Quants are
making their models increasingly complicated, in the belief that they are making improvements. This is not the case. …

finance is not a hard science, one in which you can conduct experiments for which the results are repeatable. Finance, thanks to it being underpinned by human beings and their wonderfully irrational behaviour, is forever changing. It is therefore much better to focus your attention on making the models robust and transparent rather than ever more intricate.

He describes a “sweet spot” in quant finance. The sweet spot is where models are not too elementary to be of practical use, but not so abstract that even the inventors don’t really understand them. He adds, “I teach on the Certificate in Quantitative Finance, and in that, our goal is to make quant finance practical, understandable, and, above all, safe.”

I agree. That is why I have targeted a particular sweet spot in this book: the aspects of quantitative finance that are most helpful in designing and communicating structured securities.

This book introduces a new framework to illustrate the mechanics of option pricing. The logic behind option pricing serves as the basis for much of financial engineering, for building structured securities and evaluating alternative investment strategies. What makes the method different is that it uses a simplified spreadsheet to illustrate the “matrix” nature of the building blocks of quantitative finance: random variables. In random variable form, the underlying probabilities are kept transparent and are not condensed into formulas.

By keeping the probabilities separate, a number of calculations become much easier to understand, which, in turn, makes the securities evaluated on the same basis easier to understand.

I am excited about writing this book because of something that I stumbled across a few years ago that made the entire subject of quantitative finance easier for me. It involved a simple way to replicate complicated formulas. For me, the breakthrough came one night while I was practicing my putting stroke. I had an idea and decided to play with that instead.
When I Realized It Might Be Easier

Starbucks, late. I clearly remember looking at the number: $11.93. It was only 1 cent higher than the number I had gotten using the Black-Scholes formula, $11.92. But I wasn’t using the Black-Scholes formula. I was using a spreadsheet—a simple one.

After a few years as a hedge fund manager, I had finally settled into a strategy I felt comfortable with. What I didn’t know how to do was describe it. I didn’t even know what to call it. For lack of anything better, I called it a synthetic annuity. I used *synthetic* because of the risk-management features that I guessed would qualify as a synthetic hedge, and *annuity* because it involved selling options to generate monthly income.

I knew I needed to devote time to communicating the strategy in a way that the average investor could understand. At a minimum, I needed to put it in context of the various traditional and hedge fund strategies. I struggled with this. Because it involved trading options, I was concerned that it would get the typical bad rap of being too risky or too complex, neither of which I think is true. But it was a form of managed structured security, so I would have to explain the basics of structured securities and how they worked.

The previous day, I had been flipping through one of my go-to texts, McDonald’s *Derivative Markets*, looking for something that might give me a starting point. I saw this:

The Black-Scholes formula arises from a straightforward log-normal probability calculation using risk-neutral probabilities. The contribution of Black and Scholes was not the particular formula but rather the appearance of the risk-free rate in the formula. (p. 613)^8

I had already been thinking about Black-Scholes, having just reread Peter Bernstein’s beautifully written books on the history and evolution in investment thinking, *Capital Ideas* and *Capital Ideas Evolving*. Bernstein referred to options and the pricing model as “the
most powerful financial invention in history.” And I remembered the emphasis Paul Samuelson put on option pricing when he gave his advice to anyone entering the investment field: “Learn the Black-Scholes option-pricing model.”9

My immediate interest was more in tailoring risk and reward profiles, but I had reached a point where I needed to construct a reasonable basis for comparing alternative structures. I was skeptical about using the Black-Scholes framework because of its well-publicized limitations, such as not handling fat tails and assuming constant volatility.

Then I changed my mind. I wasn’t trying to weigh something precisely, so I didn’t need a very accurate scale. I was measuring the difference in two things, which even an inaccurate scale can do. And using Black-Scholes had the advantage of making the structure approximately hedgeable, which is more important in my work than being precise.

So I decided to try what McDonald had suggested: to derive the Black-Scholes formula. I could either start with a differential equation or start with a spreadsheet approximation. I chose the spreadsheet. I was hoping to build something that would fit on a page or two of Excel—and I’m not crazy about differential equations.

I began with one of the assumptions used to derive the Black-Scholes formula:

Continuously compounded returns on the stock are normally distributed.

Excel has a built-in function for the standard version of the normal distribution. That was the first step. Then I went through the process of converting it into a stock return distribution and then a stock price distribution. The option payoff was straightforward, as was weighting the payoffs by probabilities.

The entire calculation fit in six columns, and there were no complicated formulas. It was symmetric and simple.

Too bad it was wrong.
Try Again

That night at Starbucks, I decided to try again. Something was nagging at me. A piece was missing. I knew that volatility affects stock price simulations. The more volatile, the more the distribution of prices is dragged down. But I had not included anything in this spreadsheet to account for that.

I was aware of the fact that, in Monte Carlo simulations, adjustments are made to the distribution being sampled so that returns are not overstated. I wondered if that was what I needed to add.

I went back to the book. On page 597, McDonald said:

[W]e need to subtract $1/2$ times the variance.

That was the term I had been thinking about.

I wrote the following on a napkin:

\[
\text{Mean} - \frac{1}{2} \text{variance} = 0.0\% - 0.5 \times 0.30^2 = 0 - .5 \times .09 = -0.045 = -4.5\%
\]

Worth a shot. So I plugged that into the spreadsheet.

It worked. Then I tried using different assumptions, and it still worked. I still thought it was too easy to be right, but this time I couldn’t show that it was wrong.

The Spreadsheet

Because the adjustment ($1/2$ variance) has important implications, I want to show you what the spreadsheet looked like before the adjustment. In the next chapter, I will correct the mistake and walk through the spreadsheet components step by step.

To get a reference point, I priced an option with the Black-Scholes formula. I assumed a one-year term, 30% volatility, and $100 for the current stock price and the option strike. I also assumed 0% interest and no dividends. The Black-Scholes price was $11.92.

Then I started building the spreadsheet.
At the top, I entered the pricing assumptions. Then I started filling in the body of the sheet, following the rule that “continuously compounded stock returns are normally distributed.”

When dealing with a normal distribution, the usual place to start is with the standard normal distribution. This is just a special case in which the mean or average value is 0 and the standard deviation is 1. Excel has a built-in function, so I filled in the first two columns with an approximate version that fit on two pages. (I divided it into 81 points, ranging from –4 standard deviation to +4 standard deviations in 0.1 increments. To handle the tails, I put everything outside 4 standard deviations in the two endpoints.) I knew it would not be exact, but it would work for a first try.

Next, I used a common rule of statistics to transform the standard normal distribution into a normal distribution with a standard deviation of 30% and a mean of 0. I remembered that “continuous compounding” meant using the EXP function. That gave me the stock prices. Knowing the stock price makes it easy to calculate the option payoff. The option payoff is just the difference between the stock price and the strike price, not less than zero.

The only thing left to do was weight each option payoff by its probability and add the numbers. The answer was $14.63, shown in Cell F95. I am intentionally showing you the wrong version so that I can focus on the correction in the next chapter. What is important here is the basic format.

When I was finished, the spreadsheet looked like Figures 1a and 1b.

This spreadsheet describes a simple world. In this world, stock returns, stock prices, and option payoffs are linked to each other, and each of them can be only one of 81 different values.

Columns A and B are constants representing the approximated standard normal distribution. Here are the other column formulas:

\[
\begin{align*}
\text{Column C} &= \text{Column A} \times 0.30 \\
\text{Column D} &= \text{EXP[Column C]} \\
\text{Column E} &= \text{MAX[0, Column D – Strike price]} \\
\text{Column F} &= \text{Column B} \times \text{Column E}
\end{align*}
\]

The option price is the total of Column F.
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OPTION PRICING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Time in Years</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Stock Price</td>
<td>$100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Option Strike Price</td>
<td>$100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Risk Free Rate</td>
<td>0.000%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Dividend Rate</td>
<td>0.000%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Annualized Volatility</td>
<td>30.000%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Standard Deviation</td>
<td>Discrete Probability</td>
<td>Stock Return</td>
<td>Stock Price</td>
<td>Call Option Payoff</td>
<td>Weighted Call Payoff</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-4</td>
<td>0.00004</td>
<td>-120.00%</td>
<td>$30.12</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>14</td>
<td>-3.9</td>
<td>0.00012</td>
<td>-117.00%</td>
<td>$31.04</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>15</td>
<td>-3.8</td>
<td>0.00003</td>
<td>-114.00%</td>
<td>$31.98</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>16</td>
<td>-3.7</td>
<td>0.00004</td>
<td>-111.00%</td>
<td>$32.96</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>17</td>
<td>-3.6</td>
<td>0.00006</td>
<td>-108.00%</td>
<td>$33.96</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>18</td>
<td>-3.5</td>
<td>0.00009</td>
<td>-105.00%</td>
<td>$34.99</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>19</td>
<td>-3.4</td>
<td>0.00012</td>
<td>-102.00%</td>
<td>$36.06</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>20</td>
<td>-3.3</td>
<td>0.00017</td>
<td>-99.00%</td>
<td>$37.16</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>21</td>
<td>-3.2</td>
<td>0.00024</td>
<td>-96.00%</td>
<td>$38.29</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>22</td>
<td>-3.1</td>
<td>0.00033</td>
<td>-93.00%</td>
<td>$39.46</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>23</td>
<td>-3</td>
<td>0.00044</td>
<td>-90.00%</td>
<td>$40.56</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>24</td>
<td>-2.9</td>
<td>0.00060</td>
<td>-87.00%</td>
<td>$41.69</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>25</td>
<td>-2.8</td>
<td>0.00079</td>
<td>-84.00%</td>
<td>$43.17</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>26</td>
<td>-2.7</td>
<td>0.00104</td>
<td>-81.00%</td>
<td>$44.49</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>27</td>
<td>-2.6</td>
<td>0.00136</td>
<td>-78.00%</td>
<td>$45.84</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>28</td>
<td>-2.5</td>
<td>0.00176</td>
<td>-75.00%</td>
<td>$47.24</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>29</td>
<td>-2.4</td>
<td>0.00224</td>
<td>-72.00%</td>
<td>$48.68</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>30</td>
<td>-2.3</td>
<td>0.00284</td>
<td>-69.00%</td>
<td>$50.16</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>31</td>
<td>-2.2</td>
<td>0.00355</td>
<td>-66.00%</td>
<td>$51.69</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>32</td>
<td>-2.1</td>
<td>0.00440</td>
<td>-63.00%</td>
<td>$53.26</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>33</td>
<td>-2</td>
<td>0.00541</td>
<td>-60.00%</td>
<td>$54.88</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>34</td>
<td>-1.9</td>
<td>0.00657</td>
<td>-57.00%</td>
<td>$56.55</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>35</td>
<td>-1.8</td>
<td>0.00790</td>
<td>-54.00%</td>
<td>$58.27</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>36</td>
<td>-1.7</td>
<td>0.00941</td>
<td>-51.00%</td>
<td>$60.05</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>37</td>
<td>-1.6</td>
<td>0.01110</td>
<td>-48.00%</td>
<td>$61.88</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>38</td>
<td>-1.5</td>
<td>0.01296</td>
<td>-45.00%</td>
<td>$63.76</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>39</td>
<td>-1.4</td>
<td>0.01498</td>
<td>-42.00%</td>
<td>$65.70</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>40</td>
<td>-1.3</td>
<td>0.01714</td>
<td>-39.00%</td>
<td>$67.71</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>41</td>
<td>-1.2</td>
<td>0.01942</td>
<td>-36.00%</td>
<td>$69.77</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>42</td>
<td>-1.1</td>
<td>0.02179</td>
<td>-33.00%</td>
<td>$71.89</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>43</td>
<td>-1</td>
<td>0.02420</td>
<td>-30.00%</td>
<td>$74.08</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>44</td>
<td>-0.9</td>
<td>0.02661</td>
<td>-27.00%</td>
<td>$76.34</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>45</td>
<td>-0.8</td>
<td>0.02896</td>
<td>-24.00%</td>
<td>$78.66</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>46</td>
<td>-0.7</td>
<td>0.03122</td>
<td>-21.00%</td>
<td>$81.06</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>47</td>
<td>-0.6</td>
<td>0.03331</td>
<td>-18.00%</td>
<td>$83.53</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>48</td>
<td>-0.5</td>
<td>0.03520</td>
<td>-15.00%</td>
<td>$86.07</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>49</td>
<td>-0.4</td>
<td>0.03661</td>
<td>-12.00%</td>
<td>$88.69</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>50</td>
<td>-0.3</td>
<td>0.03812</td>
<td>-9.00%</td>
<td>$91.39</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>51</td>
<td>-0.2</td>
<td>0.03909</td>
<td>-6.00%</td>
<td>$94.18</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>52</td>
<td>-0.1</td>
<td>0.03968</td>
<td>-3.00%</td>
<td>$97.04</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>53</td>
<td>0</td>
<td>0.03988</td>
<td>0.00%</td>
<td>$100.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>54</td>
<td>0.1</td>
<td>0.03968</td>
<td>3.00%</td>
<td>$103.05</td>
<td>$3.05</td>
<td>$0.12</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.1a Option pricing, first attempt
Figure 1.1b Option pricing, first attempt (Continued)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Standard Deviation</td>
<td>Discrete Probability</td>
<td>Stock Return</td>
<td>Stock Price</td>
<td>Call Option Payoff</td>
<td>Weighted Call Payoff</td>
</tr>
<tr>
<td>52</td>
<td>-0.1</td>
<td>0.03968</td>
<td>-3.00%</td>
<td>$97.04</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>53</td>
<td>0</td>
<td>0.03988</td>
<td>0.00%</td>
<td>$100.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>54</td>
<td>0.1</td>
<td>0.03968</td>
<td>3.00%</td>
<td>$103.05</td>
<td>$3.05</td>
<td>$0.12</td>
</tr>
<tr>
<td>55</td>
<td>0.2</td>
<td>0.03909</td>
<td>6.00%</td>
<td>$106.18</td>
<td>$6.18</td>
<td>$0.24</td>
</tr>
<tr>
<td>56</td>
<td>0.3</td>
<td>0.03812</td>
<td>9.00%</td>
<td>$109.42</td>
<td>$9.42</td>
<td>$0.36</td>
</tr>
<tr>
<td>57</td>
<td>0.4</td>
<td>0.03681</td>
<td>12.00%</td>
<td>$112.75</td>
<td>$12.75</td>
<td>$0.47</td>
</tr>
<tr>
<td>58</td>
<td>0.5</td>
<td>0.03520</td>
<td>15.00%</td>
<td>$116.18</td>
<td>$16.18</td>
<td>$0.57</td>
</tr>
<tr>
<td>59</td>
<td>0.6</td>
<td>0.03331</td>
<td>18.00%</td>
<td>$119.72</td>
<td>$19.72</td>
<td>$0.66</td>
</tr>
<tr>
<td>60</td>
<td>0.7</td>
<td>0.03122</td>
<td>21.00%</td>
<td>$123.37</td>
<td>$23.37</td>
<td>$0.73</td>
</tr>
<tr>
<td>61</td>
<td>0.8</td>
<td>0.02696</td>
<td>24.00%</td>
<td>$127.12</td>
<td>$27.12</td>
<td>$0.79</td>
</tr>
<tr>
<td>62</td>
<td>0.9</td>
<td>0.02661</td>
<td>27.00%</td>
<td>$131.00</td>
<td>$31.00</td>
<td>$0.82</td>
</tr>
<tr>
<td>63</td>
<td>1</td>
<td>0.02420</td>
<td>30.00%</td>
<td>$134.99</td>
<td>$34.99</td>
<td>$0.85</td>
</tr>
<tr>
<td>64</td>
<td>1.1</td>
<td>0.02179</td>
<td>33.00%</td>
<td>$139.10</td>
<td>$39.10</td>
<td>$0.85</td>
</tr>
<tr>
<td>65</td>
<td>1.2</td>
<td>0.01942</td>
<td>36.00%</td>
<td>$143.33</td>
<td>$43.33</td>
<td>$0.84</td>
</tr>
<tr>
<td>66</td>
<td>1.3</td>
<td>0.01714</td>
<td>39.00%</td>
<td>$147.70</td>
<td>$47.70</td>
<td>$0.82</td>
</tr>
<tr>
<td>67</td>
<td>1.4</td>
<td>0.01498</td>
<td>42.00%</td>
<td>$152.20</td>
<td>$52.20</td>
<td>$0.78</td>
</tr>
<tr>
<td>68</td>
<td>1.5</td>
<td>0.01296</td>
<td>45.00%</td>
<td>$156.83</td>
<td>$56.83</td>
<td>$0.74</td>
</tr>
<tr>
<td>69</td>
<td>1.6</td>
<td>0.01110</td>
<td>48.00%</td>
<td>$161.51</td>
<td>$61.51</td>
<td>$0.68</td>
</tr>
<tr>
<td>70</td>
<td>1.7</td>
<td>0.00941</td>
<td>51.00%</td>
<td>$166.53</td>
<td>$66.53</td>
<td>$0.63</td>
</tr>
<tr>
<td>71</td>
<td>1.8</td>
<td>0.00790</td>
<td>54.00%</td>
<td>$171.60</td>
<td>$71.60</td>
<td>$0.57</td>
</tr>
<tr>
<td>72</td>
<td>1.9</td>
<td>0.00657</td>
<td>57.00%</td>
<td>$176.83</td>
<td>$76.83</td>
<td>$0.50</td>
</tr>
<tr>
<td>73</td>
<td>2</td>
<td>0.00541</td>
<td>60.00%</td>
<td>$182.21</td>
<td>$82.21</td>
<td>$0.44</td>
</tr>
<tr>
<td>74</td>
<td>2.1</td>
<td>0.00440</td>
<td>63.00%</td>
<td>$187.76</td>
<td>$87.76</td>
<td>$0.39</td>
</tr>
<tr>
<td>75</td>
<td>2.2</td>
<td>0.00355</td>
<td>66.00%</td>
<td>$193.48</td>
<td>$93.48</td>
<td>$0.33</td>
</tr>
<tr>
<td>76</td>
<td>2.3</td>
<td>0.00284</td>
<td>69.00%</td>
<td>$199.37</td>
<td>$99.37</td>
<td>$0.28</td>
</tr>
<tr>
<td>77</td>
<td>2.4</td>
<td>0.00224</td>
<td>72.00%</td>
<td>$205.44</td>
<td>$105.44</td>
<td>$0.24</td>
</tr>
<tr>
<td>78</td>
<td>2.5</td>
<td>0.00176</td>
<td>75.00%</td>
<td>$211.70</td>
<td>$111.70</td>
<td>$0.20</td>
</tr>
<tr>
<td>79</td>
<td>2.6</td>
<td>0.00136</td>
<td>78.00%</td>
<td>$218.15</td>
<td>$118.15</td>
<td>$0.16</td>
</tr>
<tr>
<td>80</td>
<td>2.7</td>
<td>0.00104</td>
<td>81.00%</td>
<td>$224.79</td>
<td>$124.79</td>
<td>$0.13</td>
</tr>
<tr>
<td>81</td>
<td>2.8</td>
<td>0.00079</td>
<td>84.00%</td>
<td>$231.54</td>
<td>$131.54</td>
<td>$0.10</td>
</tr>
<tr>
<td>82</td>
<td>2.9</td>
<td>0.00060</td>
<td>87.00%</td>
<td>$238.69</td>
<td>$138.69</td>
<td>$0.08</td>
</tr>
<tr>
<td>83</td>
<td>3</td>
<td>0.00044</td>
<td>90.00%</td>
<td>$245.96</td>
<td>$145.96</td>
<td>$0.06</td>
</tr>
<tr>
<td>84</td>
<td>3.1</td>
<td>0.00033</td>
<td>93.00%</td>
<td>$253.45</td>
<td>$153.45</td>
<td>$0.05</td>
</tr>
<tr>
<td>85</td>
<td>3.2</td>
<td>0.00024</td>
<td>96.00%</td>
<td>$261.17</td>
<td>$161.17</td>
<td>$0.04</td>
</tr>
<tr>
<td>86</td>
<td>3.3</td>
<td>0.00017</td>
<td>99.00%</td>
<td>$269.12</td>
<td>$169.12</td>
<td>$0.03</td>
</tr>
<tr>
<td>87</td>
<td>3.4</td>
<td>0.00012</td>
<td>102.00%</td>
<td>$277.32</td>
<td>$177.32</td>
<td>$0.02</td>
</tr>
<tr>
<td>88</td>
<td>3.5</td>
<td>0.00009</td>
<td>105.00%</td>
<td>$285.77</td>
<td>$185.77</td>
<td>$0.02</td>
</tr>
<tr>
<td>89</td>
<td>3.6</td>
<td>0.00006</td>
<td>108.00%</td>
<td>$294.47</td>
<td>$194.47</td>
<td>$0.01</td>
</tr>
<tr>
<td>90</td>
<td>3.7</td>
<td>0.00004</td>
<td>111.00%</td>
<td>$303.44</td>
<td>$203.44</td>
<td>$0.01</td>
</tr>
<tr>
<td>91</td>
<td>3.8</td>
<td>0.00003</td>
<td>114.00%</td>
<td>$312.68</td>
<td>$212.68</td>
<td>$0.01</td>
</tr>
<tr>
<td>92</td>
<td>3.9</td>
<td>0.00002</td>
<td>117.00%</td>
<td>$322.20</td>
<td>$222.20</td>
<td>$0.00</td>
</tr>
<tr>
<td>93</td>
<td>4</td>
<td>0.00004</td>
<td>120.00%</td>
<td>$332.01</td>
<td>$232.01</td>
<td>$0.01</td>
</tr>
</tbody>
</table>

| 94 | 1.00000 | $14.63 |

Figure 1.1b Option pricing, first attempt (Continued)
As an example in reading the spreadsheet, look at Row 53. It is one of the 81 possible outcomes. In this outcome, the stock return is 0%, the stock price is $100, and the option payoff is $0. The probability that this particular outcome will occur is 3.98776%.

Similarly, in Row 63 at the one standard deviation point, the stock return is 30%, the corresponding stock price is $134.99 (the fact this differs from $130 is explained later), and the option payoff (the difference between the stock price and the option strike price of $100) is $34.99. The probability that this particular outcome will occur is 2.41971%.

Notice that the only positive values for the option payoff are in Rows 54–93. These 40 outcomes are the only numbers factored into the option price. The last column shows the weighted values of the option payoffs.

Looking at Column F, the value of the option is concentrated between 0 and 3 standard deviations. The highest contributions occur at around 1 standard deviation, with a weighted value of $0.85. In the tail of the distribution, the payoffs are very high but the probabilities are very low. For instance, even though the payoff goes as high as $232.01 in Row 93, the effect on the value of the option is only 1 cent. The probability at this point is so low that a high payoff has almost no effect.

Visualizing the Result

Figure 1.2 is a graph of the spreadsheet. The call option payoffs are shown on the right side of the graph, and the values for these payoffs are on the right axis. The probabilities of the payoffs are shown as the normal distribution curve. The probability values are on the left axis.

The option price is the weighted average option payoff, where the weights are the probabilities. In other words, this is Column E (the option payoff) times Column B (the corresponding probabilities), or as shown here in Figure 1.3.
Figure 1.2 Stock option payoffs with probabilities
Figure 1.3 Weighted stock option payoffs
The middle section is the curve representing the option price. The sum of these values is equal to the option price. The relative height of the curve shows which stock prices contribute most to its value. In this view, even though the payoff grows large on the right side, the probabilities of those payoffs are growing smaller at a even faster rate, so high payoffs contribute relatively less than payoffs closer to the center of the graph.

What It Means and Why It Works: A Nontechnical Overview

At this point, why this works may not be obvious. But assuming that it does, it gives a nice interpretation of option pricing. It is just the weighted average of option payoffs, assuming that stock returns are normally distributed.

But why is it logical to assume that stock returns are normally distributed? Normal distributions occur naturally in science and statistics, with some of the earliest work on these distributions linked to observations about purely random events. In fact, normal distributions describe the frequencies of random events. So are stock prices random?

The Efficient Market Hypothesis, one of the best-known and most controversial ideas in investing, says they are. The EMH has been tested over decades and against massive amounts of data, and it seems to be just as predictive and controversial today as when it was first introduced. The conclusion of the EMH is that neither technical nor fundamental analysis of stocks helps to predict stock prices in the future.

The reason for this is the efficiency of large, liquid markets to absorb and digest new information almost immediately as it becomes known, with stock prices moving to their new price points before investors can take advantage of the information. That is, stock prices reflect all currently known information. The next move in price depends only on information that is not known yet and, therefore, is random.

If the EMH is true, stock prices should follow the mathematics of random movements such as Brownian motion, random walks, and
stochastic processes. And if you can describe stock prices, the option payoffs and option values that depend on them can be described as well. What this means is that only one simple idea is behind the mechanics of option pricing: the unpredictability of stock prices.

It Doesn’t Get Too Complicated

The spreadsheet illustrates the basic framework for everything presented in this book. It doesn’t get too complicated. That is the beauty of the method. The underlying assumptions are transparent, and the logic can be broken into simple steps.

The challenge to those of you without quantitative backgrounds might be the terminology. In finance, statistics, and stochastic math, the terminology is challenging to everyone. One of the advantages of having a relatively compact spreadsheet is that you can always go back to specific cells and exact formulas whenever you need clarification about what something means.

An Integrated View of Risk Management

I have asked myself many times why Paul Samuelson thought studying Black-Scholes was so important. I don’t think it is just for the purpose of pricing options. I think it is because the mathematics of option pricing give us a roadmap to risk management. Risk management, in its simplest terms, is a three-step process:

1. Think about what might happen in the future.
2. Know which of those outcomes will hurt you and how likely they are.
3. Decide what to do about it.

Most people weigh the cost of risk management against doing nothing. If the cost of insurance is too high, you can self-insure. But the factors involved are mainly financial.
In the capital markets, another factor is at work. It is hope, which is related to a historical precedence of mean reversion. Most investors believe that markets that fall will also rise again at some point. If you can suffer the pain, you will be rewarded in the end. Maybe. The turbulence of the 2000–2002 and 2008–2009 markets makes it harder to ignore previous bear markets, and consider the Japanese experience, with a 75% decline in the equity market over a 20-year period.

The desire of investors to impose some downside protection is understandable and requires some form of risk management. The three generally recognized ways to manage risk are diversifying, hedging, and buying insurance, and all are related to options. Diversification can be enhanced through options, delta hedging was the most elegant interpretation of option pricing, and put options are the purest form of market risk insurance.

The process of defining possible future events, assigning probabilities to those events, and using that information to price risk is the same as the process of pricing options. In that sense, option pricing is the central analytic framework for quantitative finance, risk management, and options-related structured securities.

Endnotes

4. Lipner, Seth (Zicklin School of Business, Baruch College, City University of New York). “Will FINRA Stop the Structured

Index

A

accuracy, comparing alternatives versus, 56-57
additive, delta as, 254-255
“Adjustments for Anticipated Days of Higher Volatility” (McDonald), 59
alternative comparison with visual option pricing method, 56-57
annualized average theta, 183-184
annuities. See SynAs (synthetic annuities)
Apple (turbulent markets example), 138-143
AQR Capital Management, 2
arbitrage in put-call parity, 203-204
Asness, Cliff, 2
assigning probabilities, 107-110
assumed drift, 156
assumptions in Black-Scholes formula, 48-49, 100-102
effect of changes, 93
visualizing, 94-95
average annualized theta
in short put option investment profile, 196
yield as, 259-261
Average Value at Risk. See CVaR (Conditional Value-at-Risk)
axes in charts, 159-160

Benklifa, Michael, 207
Bernstein, Peter, 8
beta investing, 208
binomial option pricing model, 49-51, 54
Black, Fischer, 43-46, 55
Black-Scholes formula, 8, 43-48, 120
assign probabilities to investment profiles, 120-122
assumptions, 48-49, 100-102
full functionality in option pricing spreadsheet, 77, 79
discount factor, 84-85
effect of assumption changes, 93
Excel code, 90-93
put option pricing, 88-89
stock price median, 85-88
Stock Return, 94
Stock Return Mean, 79-82, 93
Stock Return Standard Deviation, 82-84, 94
visualizing assumptions, 94-95
history of, 44-46
notation for, 46-48
in Profit Calculator, 173-175
relationship with binomial model, 50-51
visual method, compared, 53
breakeven point, stocks versus options, 181
Brown, Aaron, 69
BXM (BuyWrite Index), 310-313

B

backward equation, 102-104
behavioral finance
adjusting investment profiles for, 125-128
concentrated stock example, 133-135
Calc Engine, 104-107
assigning probabilities, 107-110
normal and lognormal distributions, visualizing, 112-114

C
stock-only investment profile, 151-157
stock price range, setting, 110-112
Callan Associates (BXM study), 312-313
calm markets, turbulent markets versus, in option pricing outcomes, 233-238
Capital Asset Pricing Model (CAPM), 44
capital at risk in long call option investment profile, 182-183
Capital Ideas Evolving (Bernstein), 8
Capital Ideas (Bernstein), 8
CAPM (Capital Asset Pricing Model), 44
CBOE (Chicago Board Options Exchange), 43, 46, 232
charts
primary and secondary axes, 159-160
standard deviation markers, 160-162
in stock-only investment profile, creating, 159-162
visualizing Excel code, 14-17
Chicago Board Options Exchange (CBOE), 43, 46, 232
Clarke, Roger, 4
comparing alternatives with visual option pricing method, 56-57
compound interest, 32-33
concentrated stocks in investment profiles, 128-138
conditional expectations, 70-73
Conditional Value-at-Risk. See CVaR
(Conditional Value-at-Risk)
condor investment profile. See iron condor investment profile
contingent CSynAs, 301
continuous compounding, 34, 37
continuous random variables, 25-26
correlations, VaR for multiple stocks, 68
cost basis, 270-273
cost basis reduction, time value in, 299
covered call investment profile, 198-200
covered calls, 285
CSynAs versus, 288-289
definition, 190
disadvantages, 286
short puts versus, 200, 202
SynAs versus, 118, 209, 213
covered percentage parameter (CSynA), 309
covered synthetic annuities. See CSynAs (covered synthetic annuities)
Cox-Ross-Rubinstein model. See binomial option pricing model
crossover
in long call option investment profile, 184-189
stock-only investment profile, 148, 155-156
CSynAs (covered synthetic annuities), 266, 285
building, 289-295
contingent CSynAs, 301
covered calls versus, 288-289
Deere & Company example, 289-304
delta versus theta, 301-303
dividends, 303
explained, 286-289
long-term delta targets, 303-304
option sales and strike prices, 299
payback periods, 295-296, 296-299
standard CSynAs. See standard CSynAs
stock-only, 301
cumulative probabilities, 24-25, 65-66
Cusick, Joe, 262
customizing utility functions, 223-225
CVaR (Conditional Value-at-Risk), 61, 69-75
conditional expectations, 70-73
with fat tails, 74-75
in stock-only investment profile, calculations, 151-154
VaR (Value-at-Risk) compared, 74

D
Deere & Company example (CSynAs), 289-304
delta, 248, 252-257
as additive, 254-255
in covered call strategy, 286-288
in CSynAs, 292, 303-304
delta tables, 255-257
in long call option investment profile, 184
as number, percentage, or dollar amount, 279
price-related delta in standard CSynAs, 308
in Profit Calculator, 176
in short call option investment profile, 192
for SynAs, 215-223
in theoretical positions (TradeStation), 278
theta versus, in CSynAs, 301-303
delta tables, 255-257
Derivative Markets (McDonald), 8
derivatives, the Greeks as, 250-251
directional trading, 208
discount factor, 84-85
discrete normal distribution, creating, 28-30
discrete random variables, 25-26
diversification, VaR (Value-at-Risk) for multiple stocks, 68
for stocks and options, 68-69
dividend paying stocks in Black-Scholes formula, 46
dividends
in CSynAs, 303
in structured securities, 3-4
drift, 39-40, 81, 94
full Black-Scholes functionality, 90-93
Goal Seek, 230
initial development of, 10-14
modifications to, 210-211
for Monte Carlo methods, 52
NORMSDIST function, 27, 30
probabilities within standard deviations, 62-66
put option pricing, 88-89
Stock Return Mean, 79-82
Stock Return Standard Deviation, 82-84
SynA delta adjustments, 216
visualizing, 14-17
expanding Profit Calculator for multiple options, 211-213
Expected Shortfall. See CVaR (Conditional Value-at-Risk)
Expected Tail Loss. See CVaR (Conditional Value-at-Risk)
expected value
in Profit Calculator options section, 170-173
in random variables, 23-24
EXP(X) function, 34
extrinsic value
definition, 232
effect on option pricing, 237-238

E
Efficient Market Hypothesis, 17-18, 205
Einhorn, David, 69
e (number), 33-34, 37
Excel code. See also Calc Engine; option pricing spreadsheet; Profit Calculator
assigning probabilities, 107-110
backward equation, 102-104
for Black-Scholes formula, 48
Calc Engine, 104-107
changes in pricing variables, 238-240
delta, calculating, 252-254
discount factor, 84-85
EXP(X) function, 34
forward equation, 99-100

F
Fama, Eugene, 46
fat tails, CVaR with, 74-75
fiduciary calls, 183, 204
financial crises, resources for information, 57-59
first-order Greeks, 248
formulas, calculating the Greeks, 249-251
Forsyth, Peter, 1
forward equation, 99-102
Fredericks, Michael, 266
fundamental/technical valuation high and low parameters (CSynA), 306-307
G–H

gain (loss) analysis, changes in pricing variables, 244-245
gamma, 248
CSynAs, 294
as number, percentage, or dollar amount, 279
in theoretical positions (TradeStation), 278
Geometric Browian motion, 100
Goal Seek, 230
the Greeks

calculating, 249-251
definition, 247
delta, 252-257
explained, 248-249
as mathematical derivatives, 250-251
as number, percentage, or dollar amount, 279
theta, 257-263
heading formulas in Profit Calculator, 175-176
heading sections in stock-only investment profile, 148
history of Black-Scholes formula, 44-46
Hoadley.net website, 43

I

“Implications for Asset Returns in the Implied Volatility Skew” (Doran), 58
implied volatility
investment profiles, 120-122
modeling stock behavior, 146
price estimations using, 229-232
included stock in long call option investment profile, 189-190
insurance, put options as, 194
integrals, sums versus, 53
intent in long call option investment profile, 182-183
interest compounding, 32-33
in-the-money, definition, 232
intrinsic value
definition, 181, 232
effect on option pricing, 235-238

“An Introduction to Computational Finance Without Agonizing Pain” (Forsyth), 1
investment profiles, 116, 119-120
adjusting for behavioral finance, 125-128
assigning probabilities, 120-122
company XYZ example, 227-238
calm versus turbulent market outcomes, 233-238
implied volatility calculations, 229-232
concentrated stock example, 128-138
option investment profiles. See option investment profiles
payoff curves versus, 116-117
probability distributions, 116, 120
reshaping with options, 123-124
stock-only. See stock-only investment profile
turbulent markets example, 138-143
utility functions, customizing, 223-225
iron condor investment profile, 205-208

“Is the Recent Financial Crisis Really a ‘Once-in-a-Century’ Event?” (Zhou), 58
IV. See implied volatility

J–K–L

Jorion, Philippe, 69
Khan Academy, 194
Level 1 options approval, 285
leverage in long call option investment profile, 182-183
Lipner, Seth, 5
lognormal distribution
assigning probabilities, 107-110
Calc Engine, 104-107
definition, 98-99
relationship with normal distribution, 104
resources for information, 98
visualizing, 112-114
long call option investment profile, 179-190
 annualized average theta, 183-184
capital at risk, 182-183
crossover/probability, 184-189
delta, 184
fiduciary calls and protective
 puts, 183
included stock, 189-190
profit formula, 167
time value, 181
VaR 5.0%, 189
long put gain (loss) random variable, 168-169
long put option investment profile, 167, 192-194
lower delta adjustments parameter
 (CSynA), 309
low volatility in structured securities, 3-4

M
 market direction/volatility
correlation, 245
mathematical derivatives, the Greeks
 as, 250-251
MathWorks/MatLab website, 43
maximum drawdown parameter
 (CSynA), 308
mean
 in random variables, 23-24
 Stock Return Mean, 79-82, 93
 volatility reducing, 36-37
median
 in stock-only investment profile, 156-157
 stock price median, 85-88
Merton, Robert, 43
 history of Black-Scholes formula, 45-46
micro-efficient parameter (CSynA), 307-308
Miller, Merton, 46
minimum value parameter
 (CSynA), 307
mistake in option pricing spreadsheet,
correcting, 36-41
models, calculating the Greeks, 249-250
momentum parameter (CSynA), 307-308
Monte Carlo method, 40, 51-52
 visual method, compared, 54-55
multiple options, expanding Profit
 Calculator, 211-213
multiple stock VaR (Value-at-Risk), 68

N
 naked calls, definition, 190
 net options credit, 272
 net options premium, 272
 net payoff, 116
normal distribution, 26-27
 assigning probabilities, 107-110
 Calc Engine, 104-107
 converting standard normal
distribution to, 28-30
 relationship with lognormal
distribution, 98-99, 104
 resources for information, 41
 visualizing, 112-114
normal distributions, 17-18
NORMSDIST function, 27, 30
 assigning probabilities, 108-109
 probabilities within standard
deviations, 62

O
 one-to-one relationships in
 probabilities, 65
option Greeks. See the Greeks
option investment profiles
 building blocks of, 197-198
 covered calls, 198-200
 iron condors, 205-208
long call options, 179-190
 annualized average theta, 183-184
capital at risk, 182-183
crossover/probability, 184-189
delta, 184
fiduciary calls and protective
 puts, 183
included stock, 189-190
time value, 181
VaR 5.0%, 189
long put options, 192-194
put-call parity, 200-205
short call options, 190-192
short put options, 194-196
SynAs, 209-223
option payoff random variable
 calculating, 35
 relationship with other random variables, 77-79
option payoffs, option profits versus, 167, 173
option prices
 changes in pricing variables, 238-245
 gain (loss) analysis, 244-245
 market direction/volatility correlation, 245
 probability distribution, 240-242
 for structured securities, 245
 in turbulent markets, 242
 company XYZ example, 227-238
 calm versus turbulent market outcomes, 233-238
 implied volatility calculations, 229-232
the Greeks. See the Greeks terminology, 232
option pricing methods
 binomial model, 49-51
 Black-Scholes formula, 43-48
 assumptions, 48-49
 history of, 44-46
 notation for, 46-48
 relationship with binomial model, 50-51
 Monte Carlo method, 51-52
resources for information, 43, 57-59
visual method, 52-57
 binomial method, compared, 54
 Black-Scholes formula, compared, 53
 Monte Carlo method, compared, 54-55
 PDEs (partial differential equations) and, 55-56
 purpose of, 56-57
option pricing spreadsheet. See also Excel code
 correcting mistake in, 36-41
 correct version of, 37-40
 incorrect version of, 28-29
option payoff random variable,
calculating, 35
random variables in, 27
standard normal distribution,
 creating discrete version of, 28-30
stock price random variable,
calculating, 32-35
stock return random variable,
 creating, 31-32
 weighted option payoff, calculating, 35-36
option profit curves, stock profit curves versus, 181
option profits, option payoffs versus, 167, 173
options
 profit formulas, 167
 reshaping investment profiles, 123-124
option sales in CSynAs, 299
Options Analysis Workspace (TradeStation), 274-276
The Options Institute website, 43
options section of Profit Calculator, 167-178
 Black-Scholes formula, 173-175
 delta formulas, 176
 expected values, 170-173
 heading formulas, 175-176
 long put gain (loss) random variable, 168-169
 short put gain (loss) random variable, 169
 time value and total premium formulas, 176-177
P
partial derivatives, the Greeks as, 250-251
partial differential equations (PDEs),
 visual option pricing method and, 55-56
payback period
 CSynACs, 295-299
 in tracking template, 273, 274
payoff curves, investment profiles versus, 116-117
INDEX

PDEs (partial differential equations), visual option pricing method and, 55-56

performance, tracking
 SynA overview, 282-283
 tracking template, 270-274
 TradeStation, 274-282

platforms, calculating the Greeks, 249-250

precision. See accuracy

price-related delta parameter (CSynA), 308

pricing options. See option prices

pricing variables, changes in, 238-245.
 See also the Greeks
 gain (loss) analysis, 244-245
 market direction/volatility correlation, 245
 probability distribution, 240-242
 for structured securities, 245
 in turbulent markets, 242

primary axis in charts, 159-160

probabilities
 assigning, 107-110
 in discrete normal distribution, 28-30
 in investment profiles, 116, 120-122
 in long call option investment profile, 184-189

random variables and
 cumulative probabilities, 24-25
 explained, 22-23
 mean (expected value), 23-24
 in option pricing spreadsheet, 27
 “risk-neutral” probabilities, 156
 in stock-only investment profiles, 149, 155-156
 within standard deviations, 62-66

probability distribution, changes in pricing variables, 240-242

Profit Calculator
 expanding for multiple options, 211-213
 options section, 167-178
 in stock-only investment profile, 157-159

profit curves, 116
 for covered calls, 198-199
 stocks versus options, 181
 for SynAs, 215

profit formulas for options, 167

Profiting with Iron Condors
 (Benklifa), 207

Profiting with Synthetic Annuities,
 115, 265

projected payback period in tracking template, 273, 274

protective puts, 183, 204, 285

put-call parity, 183, 200-205
 arbitrage interpretation, 203-204
 covered calls versus short puts, 202
 fiduciary calls and protective puts, 204

put option pricing, 88-89

put options, as insurance, 194

put spreads, 196

Q–R

quantitative finance
 demand for skills in, 5-6
 direction of, 6-7

random variables, 120
 cumulative probabilities, 24-25
 definition, 21
 discrete versus continuous, 25-26
 explained, 22-23
 long put gain (loss), 168-169
 mean (expected value), 23-24
 normal distribution, 26-27
 option payoffs
 calculating, 35
 relationship with option profits, 173

resources for information
 financial crises, 57-59
 iron condors, 207
 lognormal distribution, 98
 normal distribution, 41
option pricing methods, 43
put-call parity, 205
random variables, 41
reverting parameter (CSynA), 307-308
rho, 248
risk management, 18-19
“risk-neutral” probabilities, 156, 188
risk of loss. See CVaR (Conditional Value-at-Risk); VaR (Value-at-Risk);
risk tolerance, CSynAs, 308

S
Samuelson, Paul, 18, 45, 308
Scholes, Myron, 43, 45-46
secondary axis in charts, 159-160
second-order Greeks, 248
securities, structured. See structured securities model
short call option investment profile, 167, 190-192
Short Put Gain (Loss) random variable, 169
short put option investment profile, 167, 194-196
short puts, covered calls versus, 200, 202
sources of investment return in iron condors, 207-208
spreadsheet. See Excel code; option pricing spreadsheet
standard CSynAs, 304-311
BXM (BuyWrite Index), 310-313
covered percentage, 309
fundamental/technical valuation, 306-307
lower delta adjustments, 309
maximum drawdown, 308
minimum value, 307
momentum, reverting, micro-efficient parameter, 307-308
parameters, 306
price-related delta, 308
upper delta adjustments, 309
standard deviation markers in charts, 160-162
standard deviations
probabilities within, 62-66
Stock Return Standard Deviation, 82-84, 94
VaR 5.0% calculations, 154-155
standard normal distribution, 26-27
creating discrete version of, 28-30
relationship with other random variables, 77-79
stochastic differential equations, forward equation and, 100-102
stochastic math, 120
stock and option VaR (Value-at-Risk), 68-69
stock gain (loss) random variable, 158-159
stock-only CSynAs, 301
stock-only investment profile, 146-149
Calc Engine, 151-157
cart, creating, 159-162
crossover, 148
heading sections, 148
probabilities, 149
Profit Calculator, 157-159
stock price range, 149
SynAs versus, 131-132
testing the spreadsheet, 162-166
VaR 5.0%, 149
stock price
calculating, 32-35
drift, 39-40
normal distributions, 17-18
relationship with other random variables, 77-79
volatility reduces mean, 36-37
stock price median, 85-88
stock price range
setting, 110-112
in stock-only investment profile, 149
stock profit curves, option profit curves versus, 181
stock return, 94
creating, 31-32
relationship with other random variables, 77-79
stock return mean, 79-82, 93
stock return standard deviation, 82-84, 94
stocks
concentrated in investment profiles, 128-138
in long call option investment profile, including, 189-190
as underlying securities, 249
strike prices in CSynAs, 299
structured securities, 116
 criticism of, 4-5
 growth in, 2-3
 low volatility and high dividends, 3-4
structured securities model
 changes in pricing variables, 245
 option investment profiles. See option investment profiles
 Profit Calculator, options section, 167-178
 purpose of, 145-146
 stock-only investment profile. See stock only-investment profile
sums, integrals versus, 53
SynAs (synthetic annuities), 117-119, 209-223. See also CSynAs (covered synthetic annuities)
 aggressive approach, 119
 concentrated stock example, 128-138
 covered calls versus, 118, 209, 213
 covered SynAs, 266
 creating, 118-119
 delta and theta adjustments, 215-223
 Profit Calculator, expanding for multiple options, 211-213
 profit curve, 215
 spreadsheet modifications, 210-211
 stock-only positions versus, 131-132
 tracking performance, 282-283
 in turbulent markets, 138-143
 utility curve, applying, 135-138
 VaR 5%, 215
 yield, 213
synthetic call, creating, 203

T

 tail (of distribution)
 cumulative probabilities, 65-66
 fat tails, CVaR (Conditional Value-at-Risk) with, 74-75
 Taleb, Nassim, 69
 testing stock-only investment profile spreadsheet, 162-166
 theoretical positions, 270, 276-279
 theta, 248, 257-263
 annualized average theta, 183-184, 196
 in covered call strategy, 288
 CSynAs, 294
definition, 183
delta versus, in CSynAs, 301-303
importance of, 261
 as number, percentage, or dollar amount, 279
 for SynAs, adjustments, 216-223
 in theoretical positions (TradeStation), 279
 theta tables, 258-259
 vega tables, 262-263
 yield as average annualized theta, 259-261
theta tables, 258-259
Thomsett, Michael, 6, 237
time decay, definition, 232
time value
 definition, 181, 232
 effect on option pricing, 235-238
 in long call option investment profile, 181
 in short call option investment profile, 190-192
time value formulas in Profit Calculator, 176-177
time value premium, definition, 232
total premium formulas in Profit Calculator, 176-177
tracking performance
 SynA overview, 282-283
 tracking template, 270-274
 TradeStation, 274-282
tracking template, 270-274
 cost basis, 272
 example of, 273-274
 projected payback period, 273
 trade triggers, 272
 TradeStation, 274-282
 Options Analysis Workspace, 274-276
 theoretical positions, 276-279
 transaction records, 280-282
 trade triggers in tracking template, 272, 274
 transaction records, 280-282
trend assumptions, 189
Treynor, Jack, 44
turbulent markets
 calm markets versus in option pricing outcomes, 233-238
 changes in pricing variables, 242
 synthetic annuities in, 138-143
I N D E X

U–V
uncovered calls, definition, 190
underlying securities, stocks as, 249
upper delta adjustments parameter (CSynA), 309
utility curve, 125-128
 applying to SynA profile, 135-136
 concentrated stock example, 133-135
utility functions, customizing, 223-225

Value-at-Risk. See VaR (Value-at-Risk)
VaR 5.0%
calculations with standard deviations, 154-155
in long call option investment profile, 189
in stock-only investment profile, 149, 151-154
on SynAs, 215
VaR (Value-at-Risk), 66-68
criticism of, 69
CVaR (Conditional Value-at-Risk) compared, 74
definition, 66-67
formula approach, 67-68, 71
for multiple stocks, 68
for stocks and options, 68-69
variables
 pricing variables, changes in, 238-245
 random variables. See random variables
vega, 248
vega tables, 262-263
virtual dividends, 129
visualizing
 assumptions, 94-95
 Excel code, 14-17
 normal and lognormal distributions, 112-114
visual option pricing method, 52-57
 binomial option pricing model, compared, 54
 Black-Scholes formula, compared, 53
 Monte Carlo method, compared, 54-55
 PDEs (partial differential equations) and, 55-56
 purpose of, 56-57
volatility
 implied volatility. See implied volatility
 market direction/volatility correlation, 245
 reduction of mean, 36-37
 stock price median, 85-88
 in stock return random variable, 31
 stock return standard deviation, 82-84, 94
 in structured securities, 3-4
 synthetic annuities in turbulent markets, 138-143

W–Z
warrants in history of Black-Scholes formula, 44
websites. See resources for information
weighted option payoff, calculating, 35-36
weighted outcomes in random variables, 24
Weiner process, 100
Whaley, Robert, 312
Wilmott, Paul, 6
written call options. See short call options
written put options. See short put options
yield
 as average annualized theta, 259-261
 on SynAs, 213