

The Robert C.
Martin Clean

Code Collection

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Note from the Publisher
The Robert C. Martin Clean Code Collection consists of two bestselling eBooks:

• Clean Code:A Handbook of Agile Software Craftmanship

• The Clean Coder:A Code of Conduct for Professional Programmers

In this collection, Robert C. Martin, also known as “Uncle Bob,” provides a pragmatic
method for writing better code from the start. He reveals the disciplines, techniques,
tools, and practices that separate software craftsmen from mere “9-to-5” programmers.
Within this collection are the tools and methods you need to become a true software
professional.

To simplify access to each book, we’ve appended “A” to the pages of Clean Code:A
Handbook of Agile Software Craftmanship, and “B” to pages of The Clean Coder:A Code of
Conduct for Professional Programmers.This enabled us to produce a single, comprehensive
table of contents and dedicated indexes.

We hope you find this collection useful!

—The editorial and production teams at Prentice Hall

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks.Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America.This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibit-
ed reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise.To obtain permission
to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458,
or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-292847-2
ISBN-10: 0-13-292847-7

Table of Contents

CLEAN CODE

1 Clean Code .1A
There Will Be Code .2A

Bad Code .3A

The Total Cost of Owning a Mess 4A

The Grand Redesign in the Sky 5A

Attitude .5A

The Primal Conundrum .6A

The Art of Clean Code? 6A

What Is Clean Code? .7A

Schools of Thought .12A

We Are Authors .13A

The Boy Scout Rule .14A

Prequel and Principles .15A

Conclusion .15A

Bibliography .15A

2 Meaningful Names .17A
Introduction .17A

Use Intention-Revealing Names 18A

Avoid Disinformation .19A

Make Meaningful Distinctions 20A

Use Pronounceable Names 21A

Use Searchable Names .22A

Avoid Encodings .23A

Hungarian Notation .23A

Member Prefixes .24A

Interfaces and Implementations 24A

Avoid Mental Mapping .25A

Class Names .25A

Method Names .25A

Don’t Be Cute .26A

Pick One Word per Concept 26A

Don’t Pun .26A

Use Solution Domain Names27A

Use Problem Domain Names27A

Add Meaningful Context .27A

Don’t Add Gratuitous Context 29A

Final Words .30A

3 Functions .31A
Small! .34A

Blocks and Indenting .35A

Do One Thing .35A

Sections within Functions 36A

One Level of Abstraction per Function 36A

Reading Code from Top to Bottom:
The Stepdown Rule .37A

Switch Statements .37A

Use Descriptive Names .39A

Function Arguments .40A

Common Monadic Forms 41A

Flag Arguments .41A

Dyadic Functions .42A

Triads .42A

Argument Objects .43A

Argument Lists .43A

Verbs and Keywords .43A

Have No Side Effects .44A

Output Arguments .45A

Command Query Separation 45A

Prefer Exceptions to Returning Error Codes 46A

Extract Try/Catch Blocks46A

Error Handling Is One Thing 47A

The Error.java Dependency Magnet 47A

Don’t Repeat Yourself .48A

Structured Programming .48A

How Do You Write Functions Like This? 49A

Conclusion .49A

SetupTeardownIncluder 50A

Bibliography .52A

vi Contents

4 Comments .53A
Comments Do Not Make Up for Bad Code 55A

Explain Yourself in Code .55A

Good Comments .55A

Legal Comments .55A

Informative Comments 56A

Explanation of Intent .56A

Clarification .57A

Warning of Consequences 58A

TODO Comments .58A

Amplification .59A

Javadocs in Public APIs 59A

Bad Comments .59A

Mumbling .59A

Redundant Comments 60A

Misleading Comments 63A

Mandated Comments .63A

Journal Comments .63A

Noise Comments .64A

Scary Noise .66A

Don’t Use a Comment When You Can Use a
Function or a Variable 67A

Position Markers .67A

Closing Brace Comments 67A

Attributions and Bylines 68A

Commented-Out Code 68A

HTML Comments .69A

Nonlocal Information .69A

Too Much Information .70A

Inobvious Connection .70A

Function Headers .70A

Javadocs in Nonpublic Code 71A

Example .71A

Bibliography .74A

5 Formatting .75A
The Purpose of Formatting 76A

Vertical Formatting .76A

viiContents

The Newspaper Metaphor 77A

Vertical Openness Between Concepts 78A

Vertical Density .79A

Vertical Distance .80A

Vertical Ordering .84A

Horizontal Formatting .85A

Horizontal Openness and Density 86A

Horizontal Alignment .87A

Indentation .88A

Dummy Scopes .90A

Team Rules .90A

Uncle Bob’s Formatting Rules 90A

6 Objects and Data Structures 93A
Data Abstraction .93A

Data/Object Anti-Symmetry 95A

The Law of Demeter .97A

Train Wrecks .98A

Hybrids .99A

Hiding Structure .99A

Data Transfer Objects .100A

Active Record .101A

Conclusion .101A

Bibliography .101A

7 Error Handling .103A
Use Exceptions Rather Than Return Codes 104A

Write Your Try-Catch-Finally
Statement First .105A

Use Unchecked Exceptions 106A

Provide Context with Exceptions 107A

Define Exception Classes in Terms of a
Caller’s Needs .107A

Define the Normal Flow .109A

Don’t Return Null .110A

Don’t Pass Null .111A

Conclusion .112A

Bibliography .112A

viii Contents

8 Boundaries .113A
Using Third-Party Code .114A

Exploring and Learning Boundaries 116A

Learning log4j .116A

Learning Tests Are Better Than Free 118A

Using Code That Does Not Yet Exist 118A

Clean Boundaries .120A

Bibliography .120A

9 Unit Tests .121A
The Three Laws of TDD .122A

Keeping Tests Clean .123A

Tests Enable the -ilities 124A

Clean Tests .124A

Domain-Specific Testing Language127A

A Dual Standard .127A

One Assert per Test .130A

Single Concept per Test 131A

F.I.R.S.T. .132A

Conclusion .133A

Bibliography .133A

10 Classes .135A
Class Organization .136A

Encapsulation .136A

Classes Should Be Small!136A

The Single Responsibility Principle 138A

Cohesion .140A

Maintaining Cohesion Results in Many
Small Classes .141A

Organizing for Change .147A

Isolating from Change 149A

Bibliography .151A

11 Systems .153A
How Would You Build a City? 154A

Separate Constructing a System from Using It . . .154A

Separation of Main .155A

ixContents

Factories .155A

Dependency Injection 157A

Scaling Up .157A

Cross-Cutting Concerns 160A

Java Proxies .161A

Pure Java AOP Frameworks 163A

AspectJ Aspects .166A

Test Drive the System Architecture 166A

Optimize Decision Making 167A

Use Standards Wisely, When They Add
Demonstrable Value .168A

Systems Need Domain-Specific Languages 168A

Conclusion .169A

Bibliography .169A

12 Emergence .171A
Getting Clean via Emergent Design 171A

Simple Design Rule 1: Runs All the Tests172A

Simple Design Rules 2–4: Refactoring 172A

No Duplication .173A

Expressive .175A

Minimal Classes and Methods 176A

Conclusion .176A

Bibliography .176A

13 Concurrency .177A
Why Concurrency? .178A

Myths and Misconceptions 179A

Challenges .180A

Concurrency Defense Principles180A

Single Responsibility Principle181A

Corollary: Limit the Scope of Data181A

Corollary: Use Copies of Data 181A

Corollary: Threads Should Be as Independent
as Possible .182A

Know Your Library .182A

Thread-Safe Collections 182A

x Contents

Know Your Execution Models183A

Producer-Consumer .184A

Readers-Writers .184A

Dining Philosophers .184A

Beware Dependencies Between Synchronized
Methods .185A

Keep Synchronized Sections Small 185A

Writing Correct Shut-Down Code Is Hard186A

Testing Threaded Code .186A

Treat Spurious Failures as Candidate
Threading Issues .187A

Get Your Nonthreaded Code Working First 187A

Make Your Threaded Code Pluggable 187A

Make Your Threaded Code Tunable 187A

Run with More Threads Than Processors 188A

Run on Different Platforms 188A

Instrument Your Code to Try and Force
Failures .188A

Hand-Coded .189A

Automated .189A

Conclusion .190A

Bibliography .191A

14 Successive Refinement 193A
Args Implementation .194A

How Did I Do This? .200A

Args: The Rough Draft .201A

So I Stopped .212A

On Incrementalism .212A

String Arguments .214A

Conclusion .250A

15 JUnit Internals .251A
The JUnit Framework .252A

Conclusion .265A

16 Refactoring SerialDate 267A
First, Make It Work .268A

Then Make It Right .270A

xiContents

Conclusion .284A

Bibliography .284A

17 Smells and Heuristics 285A
Comments .286A

C1: Inappropriate Information 286A

C2: Obsolete Comment 286A

C3: Redundant Comment 286A

C4: Poorly Written Comment 287A

C5: Commented-Out Code 287A

Environment .287A

E1: Build Requires More Than One Step 287A

E2: Tests Require More Than One Step 287A

Functions .288A

F1: Too Many Arguments 288A

F2: Output Arguments 288A

F3: Flag Arguments .288A

F4: Dead Function .288A

General .288A

G1: Multiple Languages in One Source File . . .288A

G2: Obvious Behavior Is Unimplemented 288A

G3: Incorrect Behavior at the Boundaries289A

G4: Overridden Safeties 289A

G5: Duplication .289A

G6: Code at Wrong Level of Abstraction290A

G7: Base Classes Depending on Their
Derivatives .291A

G8: Too Much Information 291A

G9: Dead Code .292A

G10: Vertical Separation 292A

G11: Inconsistency .292A

G12: Clutter .293A

G13: Artificial Coupling293A

G14: Feature Envy .293A

G15: Selector Arguments 294A

G16: Obscured Intent295A

G17: Misplaced Responsibility 295A

G18: Inappropriate Static 296A

xii Contents

G19: Use Explanatory Variables 296A

G20: Function Names Should Say What
They Do .297A

G21: Understand the Algorithm297A

G22: Make Logical Dependencies Physical . . .298A

G23: Prefer Polymorphism to If/Else or
Switch/Case .299A

G24: Follow Standard Conventions 299A

G25: Replace Magic Numbers with Named
Constants .300A

G26: Be Precise .301A

G27: Structure over Convention 301A

G28: Encapsulate Conditionals 301A

G29: Avoid Negative Conditionals 302A

G30: Functions Should Do One Thing 302A

G31: Hidden Temporal Couplings 302A

G32: Don’t Be Arbitrary 303A

G33: Encapsulate Boundary Conditions 304A

G34: Functions Should Descend Only One
Level of Abstraction 304A

G35: Keep Configurable Data at High Levels . .306A

G36: Avoid Transitive Navigation 306A

Java .307A

J1: Avoid Long Import Lists by
Using Wildcards .307A

J2: Don’t Inherit Constants 307A

J3: Constants versus Enums 308A

Names .309A

N1: Choose Descriptive Names309A

N2: Choose Names at the Appropriate Level
of Abstraction .311A

N3: Use Standard Nomenclature Where
Possible .311A

N4: Unambiguous Names312A

N5: Use Long Names for Long Scopes 312A

N6: Avoid Encodings .312A

N7: Names Should Describe Side-Effects. 313A

xiiiContents

Tests .313A

T1: Insufficient Tests 313A

T2: Use a Coverage Tool! 313A

T3: Don’t Skip Trivial Tests 313A

T4: An Ignored Test Is a Question about an
Ambiguity .313A

T5: Test Boundary Conditions 314A

T6: Exhaustively Test Near Bugs 314A

T7: Patterns of Failure Are Revealing 314A

T8: Test Coverage Patterns Can Be
Revealing .314A

T9: Tests Should Be Fast 314A

Conclusion .314A

Bibliography .315A

A Concurrency II .317A
Client/Server Example .317A

The Server .317A

Adding Threading .319A

Server Observations .319A

Conclusion .321A

Possible Paths of Execution 321A

Number of Paths .322A

Digging Deeper .323A

Conclusion .326A

Knowing Your Library .326A

Executor Framework .326A

Nonblocking Solutions 327A

Nonthread-Safe Classes 328A

Dependencies Between Methods Can Break
Concurrent Code .329A

Tolerate the Failure .330A

Client-Based Locking 330A

Server-Based Locking 332A

Increasing Throughput .333A

Single-Thread Calculation of Throughput 334A

Multithread Calculation of Throughput 335A

xiv Contents

Deadlock .335A

Mutual Exclusion .336A

Lock & Wait .337A

No Preemption .337A

Circular Wait .337A

Breaking Mutual Exclusion 337A

Breaking Lock & Wait 338A

Breaking Preemption 338A

Breaking Circular Wait 338A

Testing Multithreaded Code339A

Tool Support for Testing Thread-Based Code342A

Conclusion .342A
Tutorial: Full Code Examples 343A

Client/Server Nonthreaded 343A

Client/Server Using Threads 347A

B org.jfree.date.SerialDate 349A

C Cross References of Heuristics 409A

Epilogue .411A

Index .413A

THE CLEAN CODER

Pre-Requisite Introduction .1B

1 Professionalism .7B
Be Careful What You Ask For8B

Taking Responsibility .8B

First, Do No Harm .11B

Work Ethic .16B

Bibliography .22B

2 Saying No .23B
Adversarial Roles .26B

High Stakes .29B

xvContents

Being a “Team Player” .30B

The Cost of Saying Yes .36B

Code Impossible .41B

3 Saying Yes .45B
A Language of Commitment 47B

Learning How to Say “Yes” 52B

Conclusion .56B

4 Coding .57B
Preparedness .58B

The Flow Zone .62B

Writer’s Block .64B

Debugging .66B

Pacing Yourself .69B

Being Late .71B

Help .73B

Bibliography .76B

5 Test Driven Development77B
The Jury Is In .79B

The Three Laws of TDD .79B

What TDD Is Not .83B

Bibliography .84B

6 Practicing .85B
Some Background on Practicing 86B

The Coding Dojo .89B

Broadening Your Experience 93B

Conclusion .94B

Bibliography .94B

7 Acceptance Testing .95B
Communicating Requirements95B

Acceptance Tests .100B

Conclusion .111B

xvi Contents

8 Testing Strategies .113B
QA Should Find Nothing 114B

The Test Automation Pyramid 115B

Conclusion .119B

Bibliography .119B

9 Time Management .121B
Meetings .122B

Focus-Manna .127B

Time Boxing and Tomatoes 130B

Avoidance .131B

Blind Alleys .131B

Marshes, Bogs, Swamps, and Other Messes 132B

Conclusion .133B

10 Estimation .135B
What Is an Estimate? .138B

PERT .141B

Estimating Tasks .144B

The Law of Large Numbers 147B

Conclusion .147B

Bibliography .148B

11 Pressure .149B
Avoiding Pressure .151B

Handling Pressure .153B

Conclusion .155B

12 Collaboration .157B
Programmers versus People 159B

Cerebellums .164B

Conclusion .166B

13 Teams and Projects .167B
Does It Blend? .168B

Conclusion .171B

Bibliography .171B

xviiContents

14 Mentoring, Apprenticeship, and Craftsmanship173B
Degrees of Failure .174B

Mentoring .174B

Apprenticeship .180B

Craftsmanship .184B

Conclusion .185B

A Tooling .187B
Tools .189B

Source Code Control .189B

IDE/Editor .194B

Issue Tracking .196B

Continuous Build .197B

Unit Testing Tools .198B

Component Testing Tools 199B

Integration Testing Tools 200B

UML/MDA .201B

Conclusion .204B

Index .205B

This page intentionally left blank

Clean Code
A Handbook of Agile

Software Craftsmanship

The Object Mentors:
Robert C. Martin

Michael C. Feathers Timothy R. Ottinger
Jeffrey J. Langr Brett L. Schuchert

James W. Grenning Kevin Dean Wampler
Object Mentor Inc.

Writing clean code is what you must do in order to call yourself a professional.
There is no reasonable excuse for doing anything less than your best.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Martin, Robert C.
 Clean code : a handbook of agile software craftsmanship / Robert C. Martin.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-235088-2 (pbk. : alk. paper)
 1. Agile software development. 2. Computer software—Reliability. I. Title.
 QA76.76.D47M3652 2008
 005.1—dc22 2008024750

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-235088-4
ISBN-10: 0-13-235088-2
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Ninth printing April, 2011

For Ann Marie: The ever enduring love of my life.

iv

Foreword

One of our favorite candies here in Denmark is Ga-Jol, whose strong licorice vapors are a
perfect complement to our damp and often chilly weather. Part of the charm of Ga-Jol to
us Danes is the wise or witty sayings printed on the flap of every box top. I bought a two-
pack of the delicacy this morning and found that it bore this old Danish saw:

Ærlighed i små ting er ikke nogen lille ting.

“Honesty in small things is not a small thing.” It was a good omen consistent with what I
already wanted to say here. Small things matter. This is a book about humble concerns
whose value is nonetheless far from small.

God is in the details, said the architect Ludwig mies van der Rohe. This quote recalls
contemporary arguments about the role of architecture in software development, and par-
ticularly in the Agile world. Bob and I occasionally find ourselves passionately engaged in
this dialogue. And yes, mies van der Rohe was attentive to utility and to the timeless forms
of building that underlie great architecture. On the other hand, he also personally selected
every doorknob for every house he designed. Why? Because small things matter.

In our ongoing “debate” on TDD, Bob and I have discovered that we agree that soft-
ware architecture has an important place in development, though we likely have different
visions of exactly what that means. Such quibbles are relatively unimportant, however,
because we can accept for granted that responsible professionals give some time to think-
ing and planning at the outset of a project. The late-1990s notions of design driven only by
the tests and the code are long gone. Yet attentiveness to detail is an even more critical
foundation of professionalism than is any grand vision. First, it is through practice in the
small that professionals gain proficiency and trust for practice in the large. Second, the
smallest bit of sloppy construction, of the door that does not close tightly or the slightly
crooked tile on the floor, or even the messy desk, completely dispels the charm of the
larger whole. That is what clean code is about.

Still, architecture is just one metaphor for software development, and in particular for
that part of software that delivers the initial product in the same sense that an architect
delivers a pristine building. In these days of Scrum and Agile, the focus is on quickly
bringing product to market. We want the factory running at top speed to produce software.
These are human factories: thinking, feeling coders who are working from a product back-
log or user story to create product. The manufacturing metaphor looms ever strong in such
thinking. The production aspects of Japanese auto manufacturing, of an assembly-line
world, inspire much of Scrum.

vForeword

Yet even in the auto industry, the bulk of the work lies not in manufacturing but in
maintenance—or its avoidance. In software, 80% or more of what we do is quaintly called
“maintenance”: the act of repair. Rather than embracing the typical Western focus on pro-
ducing good software, we should be thinking more like home repairmen in the building
industry, or auto mechanics in the automotive field. What does Japanese management have
to say about that?

In about 1951, a quality approach called Total Productive Maintenance (TPM) came
on the Japanese scene. Its focus is on maintenance rather than on production. One of the
major pillars of TPM is the set of so-called 5S principles. 5S is a set of disciplines—and
here I use the term “discipline” instructively. These 5S principles are in fact at the founda-
tions of Lean—another buzzword on the Western scene, and an increasingly prominent
buzzword in software circles. These principles are not an option. As Uncle Bob relates in
his front matter, good software practice requires such discipline: focus, presence of mind,
and thinking. It is not always just about doing, about pushing the factory equipment to pro-
duce at the optimal velocity. The 5S philosophy comprises these concepts:

• Seiri, or organization (think “sort” in English). Knowing where things are—using
approaches such as suitable naming—is crucial. You think naming identifiers isn’t
important? Read on in the following chapters.

• Seiton, or tidiness (think “systematize” in English). There is an old American saying:
A place for everything, and everything in its place. A piece of code should be where
you expect to find it—and, if not, you should re-factor to get it there.

• Seiso, or cleaning (think “shine” in English): Keep the workplace free of hanging
wires, grease, scraps, and waste. What do the authors here say about littering your
code with comments and commented-out code lines that capture history or wishes for
the future? Get rid of them.

• Seiketsu, or standardization: The group agrees about how to keep the workplace clean.
Do you think this book says anything about having a consistent coding style and set of
practices within the group? Where do those standards come from? Read on.

• Shutsuke, or discipline (self-discipline). This means having the discipline to follow the
practices and to frequently reflect on one’s work and be willing to change.

If you take up the challenge—yes, the challenge—of reading and applying this book,
you’ll come to understand and appreciate the last point. Here, we are finally driving to the
roots of responsible professionalism in a profession that should be concerned with the life
cycle of a product. As we maintain automobiles and other machines under TPM, break-
down maintenance—waiting for bugs to surface—is the exception. Instead, we go up a
level: inspect the machines every day and fix wearing parts before they break, or do the
equivalent of the proverbial 10,000-mile oil change to forestall wear and tear. In code,
refactor mercilessly. You can improve yet one level further, as the TPM movement inno-
vated over 50 years ago: build machines that are more maintainable in the first place. Mak-
ing your code readable is as important as making it executable. The ultimate practice,
introduced in TPM circles around 1960, is to focus on introducing entire new machines or

vi Foreword

replacing old ones. As Fred Brooks admonishes us, we should probably re-do major soft-
ware chunks from scratch every seven years or so to sweep away creeping cruft. Perhaps
we should update Brooks’ time constant to an order of weeks, days or hours instead of
years. That’s where detail lies.

There is great power in detail, yet there is something humble and profound about this
approach to life, as we might stereotypically expect from any approach that claims Japa-
nese roots. But this is not only an Eastern outlook on life; English and American folk wis-
dom are full of such admonishments. The Seiton quote from above flowed from the pen of
an Ohio minister who literally viewed neatness “as a remedy for every degree of evil.”
How about Seiso? Cleanliness is next to godliness. As beautiful as a house is, a messy
desk robs it of its splendor. How about Shutsuke in these small matters? He who is faithful
in little is faithful in much. How about being eager to re-factor at the responsible time,
strengthening one’s position for subsequent “big” decisions, rather than putting it off? A
stitch in time saves nine. The early bird catches the worm. Don’t put off until tomorrow
what you can do today. (Such was the original sense of the phrase “the last responsible
moment” in Lean until it fell into the hands of software consultants.) How about calibrat-
ing the place of small, individual efforts in a grand whole? Mighty oaks from little acorns
grow. Or how about integrating simple preventive work into everyday life? An ounce of
prevention is worth a pound of cure. An apple a day keeps the doctor away. Clean code
honors the deep roots of wisdom beneath our broader culture, or our culture as it once was,
or should be, and can be with attentiveness to detail.

Even in the grand architectural literature we find saws that hark back to these sup-
posed details. Think of mies van der Rohe’s doorknobs. That’s seiri. That’s being attentive
to every variable name. You should name a variable using the same care with which you
name a first-born child.

As every homeowner knows, such care and ongoing refinement never come to an end.
The architect Christopher Alexander—father of patterns and pattern languages—views
every act of design itself as a small, local act of repair. And he views the craftsmanship of
fine structure to be the sole purview of the architect; the larger forms can be left to patterns
and their application by the inhabitants. Design is ever ongoing not only as we add a new
room to a house, but as we are attentive to repainting, replacing worn carpets, or upgrad-
ing the kitchen sink. Most arts echo analogous sentiments. In our search for others who
ascribe God’s home as being in the details, we find ourselves in the good company of the
19th century French author Gustav Flaubert. The French poet Paul Valery advises us that a
poem is never done and bears continual rework, and to stop working on it is abandonment.
Such preoccupation with detail is common to all endeavors of excellence. So maybe there
is little new here, but in reading this book you will be challenged to take up good disci-
plines that you long ago surrendered to apathy or a desire for spontaneity and just
“responding to change.”

Unfortunately, we usually don’t view such concerns as key cornerstones of the art of
programming. We abandon our code early, not because it is done, but because our value
system focuses more on outward appearance than on the substance of what we deliver.

viiForeword

This inattentiveness costs us in the end: A bad penny always shows up. Research, neither in
industry nor in academia, humbles itself to the lowly station of keeping code clean. Back
in my days working in the Bell Labs Software Production Research organization (Produc-
tion, indeed!) we had some back-of-the-envelope findings that suggested that consistent
indentation style was one of the most statistically significant indicators of low bug density.
We want it to be that architecture or programming language or some other high notion
should be the cause of quality; as people whose supposed professionalism owes to the
mastery of tools and lofty design methods, we feel insulted by the value that those factory-
floor machines, the coders, add through the simple consistent application of an indentation
style. To quote my own book of 17 years ago, such style distinguishes excellence from
mere competence. The Japanese worldview understands the crucial value of the everyday
worker and, more so, of the systems of development that owe to the simple, everyday
actions of those workers. Quality is the result of a million selfless acts of care—not just of
any great method that descends from the heavens. That these acts are simple doesn’t mean
that they are simplistic, and it hardly means that they are easy. They are nonetheless the
fabric of greatness and, more so, of beauty, in any human endeavor. To ignore them is not
yet to be fully human.

Of course, I am still an advocate of thinking at broader scope, and particularly of the
value of architectural approaches rooted in deep domain knowledge and software usability.
The book isn’t about that—or, at least, it isn’t obviously about that. This book has a subtler
message whose profoundness should not be underappreciated. It fits with the current saw
of the really code-based people like Peter Sommerlad, Kevlin Henney and Giovanni
Asproni. “The code is the design” and “Simple code” are their mantras. While we must
take care to remember that the interface is the program, and that its structures have much
to say about our program structure, it is crucial to continuously adopt the humble stance
that the design lives in the code. And while rework in the manufacturing metaphor leads to
cost, rework in design leads to value. We should view our code as the beautiful articulation
of noble efforts of design—design as a process, not a static endpoint. It’s in the code that
the architectural metrics of coupling and cohesion play out. If you listen to Larry Constan-
tine describe coupling and cohesion, he speaks in terms of code—not lofty abstract con-
cepts that one might find in UML. Richard Gabriel advises us in his essay, “Abstraction
Descant” that abstraction is evil. Code is anti-evil, and clean code is perhaps divine.

Going back to my little box of Ga-Jol, I think it’s important to note that the Danish
wisdom advises us not just to pay attention to small things, but also to be honest in small
things. This means being honest to the code, honest to our colleagues about the state of our
code and, most of all, being honest with ourselves about our code. Did we Do our Best to
“leave the campground cleaner than we found it”? Did we re-factor our code before check-
ing in? These are not peripheral concerns but concerns that lie squarely in the center of
Agile values. It is a recommended practice in Scrum that re-factoring be part of the con-
cept of “Done.” Neither architecture nor clean code insist on perfection, only on honesty
and doing the best we can. To err is human; to forgive, divine. In Scrum, we make every-
thing visible. We air our dirty laundry. We are honest about the state of our code because

viii Foreword

code is never perfect. We become more fully human, more worthy of the divine, and closer
to that greatness in the details.

In our profession, we desperately need all the help we can get. If a clean shop floor
reduces accidents, and well-organized shop tools increase productivity, then I’m all for
them. As for this book, it is the best pragmatic application of Lean principles to software I
have ever seen in print. I expected no less from this practical little group of thinking indi-
viduals that has been striving together for years not only to become better, but also to gift
their knowledge to the industry in works such as you now find in your hands. It leaves the
world a little better than I found it before Uncle Bob sent me the manuscript.

Having completed this exercise in lofty insights, I am off to clean my desk.

James O. Coplien
Mørdrup, Denmark

This page intentionally left blank

x

Introduction

Which door represents your code? Which door represents your team or your company?
Why are we in that room? Is this just a normal code review or have we found a stream of
horrible problems shortly after going live? Are we debugging in a panic, poring over code
that we thought worked? Are customers leaving in droves and managers breathing down

Reproduced with the kind permission of Thom Holwerda.
http://www.osnews.com/story/19266/WTFs_m

(c
)

20
08

 F
oc

us
 S

hi
ft

http://www.osnews.com/story/19266/WTFs_m

xiIntroduction

our necks? How can we make sure we wind up behind the right door when the going gets
tough? The answer is: craftsmanship.

There are two parts to learning craftsmanship: knowledge and work. You must gain
the knowledge of principles, patterns, practices, and heuristics that a craftsman knows, and
you must also grind that knowledge into your fingers, eyes, and gut by working hard and
practicing.

I can teach you the physics of riding a bicycle. Indeed, the classical mathematics is
relatively straightforward. Gravity, friction, angular momentum, center of mass, and so
forth, can be demonstrated with less than a page full of equations. Given those formulae I
could prove to you that bicycle riding is practical and give you all the knowledge you
needed to make it work. And you’d still fall down the first time you climbed on that bike.

Coding is no different. We could write down all the “feel good” principles of clean
code and then trust you to do the work (in other words, let you fall down when you get on
the bike), but then what kind of teachers would that make us, and what kind of student
would that make you?

No. That’s not the way this book is going to work.

Learning to write clean code is hard work. It requires more than just the knowledge of
principles and patterns. You must sweat over it. You must practice it yourself, and watch
yourself fail. You must watch others practice it and fail. You must see them stumble and
retrace their steps. You must see them agonize over decisions and see the price they pay for
making those decisions the wrong way.

Be prepared to work hard while reading this book. This is not a “feel good” book that
you can read on an airplane and finish before you land. This book will make you work, and
work hard. What kind of work will you be doing? You’ll be reading code—lots of code.
And you will be challenged to think about what’s right about that code and what’s wrong
with it. You’ll be asked to follow along as we take modules apart and put them back
together again. This will take time and effort; but we think it will be worth it.

We have divided this book into three parts. The first several chapters describe the prin-
ciples, patterns, and practices of writing clean code. There is quite a bit of code in these
chapters, and they will be challenging to read. They’ll prepare you for the second section
to come. If you put the book down after reading the first section, good luck to you!

The second part of the book is the harder work. It consists of several case studies of
ever-increasing complexity. Each case study is an exercise in cleaning up some code—of
transforming code that has some problems into code that has fewer problems. The detail in
this section is intense. You will have to flip back and forth between the narrative and the
code listings. You will have to analyze and understand the code we are working with and
walk through our reasoning for making each change we make. Set aside some time
because this should take you days.

The third part of this book is the payoff. It is a single chapter containing a list of heu-
ristics and smells gathered while creating the case studies. As we walked through and
cleaned up the code in the case studies, we documented every reason for our actions as a

xii Introduction

heuristic or smell. We tried to understand our own reactions to the code we were reading
and changing, and worked hard to capture why we felt what we felt and did what we did.
The result is a knowledge base that desribes the way we think when we write, read, and
clean code.

This knowledge base is of limited value if you don’t do the work of carefully reading
through the case studies in the second part of this book. In those case studies we have care-
fully annotated each change we made with forward references to the heuristics. These for-
ward references appear in square brackets like this: [H22]. This lets you see the context in
which those heuristics were applied and written! It is not the heuristics themselves that are
so valuable, it is the relationship between those heuristics and the discrete decisions we
made while cleaning up the code in the case studies.

To further help you with those relationships, we have placed a cross-reference at the end
of the book that shows the page number for every forward reference. You can use it to look
up each place where a certain heuristic was applied.

If you read the first and third sections and skip over the case studies, then you will
have read yet another “feel good” book about writing good software. But if you take the
time to work through the case studies, following every tiny step, every minute decision—if
you put yourself in our place, and force yourself to think along the same paths that we
thought, then you will gain a much richer understanding of those principles, patterns, prac-
tices, and heuristics. They won’t be “feel good” knowledge any more. They’ll have been
ground into your gut, fingers, and heart. They’ll have become part of you in the same way
that a bicycle becomes an extension of your will when you have mastered how to ride it.

Acknowledgments

Thank you to my two artists, Jeniffer Kohnke and Angela Brooks. Jennifer is responsible
for the stunning and creative pictures at the start of each chapter and also for the portraits
of Kent Beck, Ward Cunningham, Bjarne Stroustrup, Ron Jeffries, Grady Booch, Dave
Thomas, Michael Feathers, and myself.

Angela is responsible for the clever pictures that adorn the innards of each chapter.
She has done quite a few pictures for me over the years, including many of the inside pic-
tures in Agile Software Develpment: Principles, Patterns, and Practices. She is also my
firstborn in whom I am well pleased.

A special thanks goes out to my reviewers Bob Bogetti, George Bullock, Jeffrey
Overbey, and especially Matt Heusser. They were brutal. They were cruel. They were
relentless. They pushed me hard to make necessary improvements.

Thanks to my publisher, Chris Guzikowski, for his support, encouragement, and jovial
countenance. Thanks also to the editorial staff at Pearson, including Raina Chrobak for
keeping me honest and punctual.

xiiiIntroduction

Thanks to Micah Martin, and all the guys at 8th Light (www.8thlight.com) for their
reviews and encouragement.

Thanks to all the Object Mentors, past, present, and future, including: Bob Koss,
Michael Feathers, Michael Hill, Erik Meade, Jeff Langr, Pascal Roy, David Farber, Brett
Schuchert, Dean Wampler, Tim Ottinger, Dave Thomas, James Grenning, Brian Button,
Ron Jeffries, Lowell Lindstrom, Angelique Martin, Cindy Sprague, Libby Ottinger, Joleen
Craig, Janice Brown, Susan Rosso, et al.

Thanks to Jim Newkirk, my friend and business partner, who taught me more than
I think he realizes. Thanks to Kent Beck, Martin Fowler, Ward Cunningham, Bjarne
Stroustrup, Grady Booch, and all my other mentors, compatriots, and foils. Thanks to John
Vlissides for being there when it counted. Thanks to the guys at Zebra for allowing me to
rant on about how long a function should be.

And, finally, thank you for reading these thank yous.

www.8thlight.com

xiv

On the Cover

The image on the cover is M104: The Sombrero Galaxy. M104 is located in Virgo and is
just under 30 million light-years from us. At it’s core is a supermassive black hole weigh-
ing in at about a billion solar masses.

Does the image remind you of the explosion of the Klingon power moon Praxis? I
vividly remember the scene in Star Trek VI that showed an equatorial ring of debris flying
away from that explosion. Since that scene, the equatorial ring has been a common artifact
in sci-fi movie explosions. It was even added to the explosion of Alderaan in later editions
of the first Star Wars movie.

What caused this ring to form around M104? Why does it have such a huge central
bulge and such a bright and tiny nucleus? It looks to me as though the central black hole
lost its cool and blew a 30,000 light-year hole in the middle of the galaxy. Woe befell any
civilizations that might have been in the path of that cosmic disruption.

Supermassive black holes swallow whole stars for lunch, converting a sizeable frac-
tion of their mass to energy. E = MC2 is leverage enough, but when M is a stellar mass:
Look out! How many stars fell headlong into that maw before the monster was satiated?
Could the size of the central void be a hint?

The image of M104 on the cover is a
combination of the famous visible light pho-
tograph from Hubble (right), and the recent
infrared image from the Spitzer orbiting
observatory (below, right). It’s the infrared
image that clearly shows us the ring nature
of the galaxy. In visible light we only see the
front edge of the ring in silhouette. The cen-
tral bulge obscures the rest of the ring.

But in the infrared, the hot particles in
the ring shine through the central bulge. The
two images combined give us a view we’ve
not seen before and imply that long ago it
was a raging inferno of activity.

Cover image: © Spitzer Space Telescope

1A

1

Clean Code

You are reading this book for two reasons. First, you are a programmer. Second, you want
to be a better programmer. Good. We need better programmers.

2A Chapter 1: Clean Code

This is a book about good programming. It is filled with code. We are going to look at
code from every different direction. We’ll look down at it from the top, up at it from the
bottom, and through it from the inside out. By the time we are done, we’re going to know a
lot about code. What’s more, we’ll be able to tell the difference between good code and bad
code. We’ll know how to write good code. And we’ll know how to transform bad code into
good code.

There Will Be Code

One might argue that a book about code is somehow behind the times—that code is no
longer the issue; that we should be concerned about models and requirements instead.
Indeed some have suggested that we are close to the end of code. That soon all code will
be generated instead of written. That programmers simply won’t be needed because busi-
ness people will generate programs from specifications.

Nonsense! We will never be rid of code, because code represents the details of the
requirements. At some level those details cannot be ignored or abstracted; they have to be
specified. And specifying requirements in such detail that a machine can execute them is
programming. Such a specification is code.

I expect that the level of abstraction of our languages will continue to increase. I
also expect that the number of domain-specific languages will continue to grow. This
will be a good thing. But it will not eliminate code. Indeed, all the specifications written
in these higher level and domain-specific language will be code! It will still need to
be rigorous, accurate, and so formal and detailed that a machine can understand and
execute it.

The folks who think that code will one day disappear are like mathematicians who
hope one day to discover a mathematics that does not have to be formal. They are hoping
that one day we will discover a way to create machines that can do what we want rather
than what we say. These machines will have to be able to understand us so well that they
can translate vaguely specified needs into perfectly executing programs that precisely meet
those needs.

This will never happen. Not even humans, with all their intuition and creativity,
have been able to create successful systems from the vague feelings of their customers.
Indeed, if the discipline of requirements specification has taught us anything, it is that
well-specified requirements are as formal as code and can act as executable tests of that
code!

Remember that code is really the language in which we ultimately express the require-
ments. We may create languages that are closer to the requirements. We may create tools
that help us parse and assemble those requirements into formal structures. But we will
never eliminate necessary precision—so there will always be code.

3ABad Code

Bad Code

I was recently reading the preface to Kent Beck’s
book Implementation Patterns.1 He says, “. . . this
book is based on a rather fragile premise: that
good code matters. . . .” A fragile premise? I dis-
agree! I think that premise is one of the most
robust, supported, and overloaded of all the pre-
mises in our craft (and I think Kent knows it). We
know good code matters because we’ve had to
deal for so long with its lack.

I know of one company that, in the late 80s,
wrote a killer app. It was very popular, and lots of
professionals bought and used it. But then the
release cycles began to stretch. Bugs were not
repaired from one release to the next. Load times
grew and crashes increased. I remember the day I
shut the product down in frustration and never
used it again. The company went out of business
a short time after that.

Two decades later I met one of the early employees of that company and asked him
what had happened. The answer confirmed my fears. They had rushed the product to
market and had made a huge mess in the code. As they added more and more features, the
code got worse and worse until they simply could not manage it any longer. It was the bad
code that brought the company down.

Have you ever been significantly impeded by bad code? If you are a programmer of
any experience then you’ve felt this impediment many times. Indeed, we have a name for
it. We call it wading. We wade through bad code. We slog through a morass of tangled
brambles and hidden pitfalls. We struggle to find our way, hoping for some hint, some
clue, of what is going on; but all we see is more and more senseless code.

Of course you have been impeded by bad code. So then—why did you write it?

Were you trying to go fast? Were you in a rush? Probably so. Perhaps you felt that you
didn’t have time to do a good job; that your boss would be angry with you if you took the
time to clean up your code. Perhaps you were just tired of working on this program and
wanted it to be over. Or maybe you looked at the backlog of other stuff that you had prom-
ised to get done and realized that you needed to slam this module together so you could
move on to the next. We’ve all done it.

We’ve all looked at the mess we’ve just made and then have chosen to leave it for
another day. We’ve all felt the relief of seeing our messy program work and deciding that a

1. [Beck07].

4A Chapter 1: Clean Code

working mess is better than nothing. We’ve all said we’d go back and clean it up later. Of
course, in those days we didn’t know LeBlanc’s law: Later equals never.

The Total Cost of Owning a Mess

If you have been a programmer for more than two or three years, you have probably been
significantly slowed down by someone else’s messy code. If you have been a programmer
for longer than two or three years, you have probably been slowed down by messy code.
The degree of the slowdown can be significant. Over the span of a year or two, teams that
were moving very fast at the beginning of a project can find themselves moving at a snail’s
pace. Every change they make to the code breaks two or three other parts of the code. No
change is trivial. Every addition or modification to the system requires that the tangles,
twists, and knots be “understood” so that more tangles, twists, and knots can be added.
Over time the mess becomes so big and so deep and so tall, they can not clean it up. There
is no way at all.

As the mess builds, the productivity of the team continues to decrease, asymptotically
approaching zero. As productivity decreases, management does the only thing they can;
they add more staff to the project in hopes of increasing productivity. But that new staff is
not versed in the design of the system. They don’t know the difference between a change
that matches the design intent and a change that thwarts the design intent. Furthermore,
they, and everyone else on the team, are under horrific pressure to increase productivity. So
they all make more and more messes, driving the productivity ever further toward zero.
(See Figure 1-1.)

Figure 1-1
Productivity vs. time

5AThe Total Cost of Owning a Mess

The Grand Redesign in the Sky

Eventually the team rebels. They inform management that they cannot continue to develop
in this odious code base. They demand a redesign. Management does not want to expend
the resources on a whole new redesign of the project, but they cannot deny that productiv-
ity is terrible. Eventually they bend to the demands of the developers and authorize the
grand redesign in the sky.

A new tiger team is selected. Everyone wants to be on this team because it’s a green-
field project. They get to start over and create something truly beautiful. But only the best
and brightest are chosen for the tiger team. Everyone else must continue to maintain the
current system.

Now the two teams are in a race. The tiger team must build a new system that does
everything that the old system does. Not only that, they have to keep up with the changes
that are continuously being made to the old system. Management will not replace the old
system until the new system can do everything that the old system does.

This race can go on for a very long time. I’ve seen it take 10 years. And by the time it’s
done, the original members of the tiger team are long gone, and the current members are
demanding that the new system be redesigned because it’s such a mess.

If you have experienced even one small part of the story I just told, then you already
know that spending time keeping your code clean is not just cost effective; it’s a matter of
professional survival.

Attitude

Have you ever waded through a mess so grave that it took weeks to do what should have
taken hours? Have you seen what should have been a one-line change, made instead in
hundreds of different modules? These symptoms are all too common.

Why does this happen to code? Why does good code rot so quickly into bad code? We
have lots of explanations for it. We complain that the requirements changed in ways that
thwart the original design. We bemoan the schedules that were too tight to do things right.
We blather about stupid managers and intolerant customers and useless marketing types
and telephone sanitizers. But the fault, dear Dilbert, is not in our stars, but in ourselves.
We are unprofessional.

This may be a bitter pill to swallow. How could this mess be our fault? What about the
requirements? What about the schedule? What about the stupid managers and the useless
marketing types? Don’t they bear some of the blame?

No. The managers and marketers look to us for the information they need to make
promises and commitments; and even when they don’t look to us, we should not be shy
about telling them what we think. The users look to us to validate the way the requirements
will fit into the system. The project managers look to us to help work out the schedule. We

6A Chapter 1: Clean Code

are deeply complicit in the planning of the project and share a great deal of the responsi-
bility for any failures; especially if those failures have to do with bad code!

“But wait!” you say. “If I don’t do what my manager says, I’ll be fired.” Probably not.
Most managers want the truth, even when they don’t act like it. Most managers want good
code, even when they are obsessing about the schedule. They may defend the schedule and
requirements with passion; but that’s their job. It’s your job to defend the code with equal
passion.

To drive this point home, what if you were a doctor and had a patient who demanded
that you stop all the silly hand-washing in preparation for surgery because it was taking
too much time?2 Clearly the patient is the boss; and yet the doctor should absolutely refuse
to comply. Why? Because the doctor knows more than the patient about the risks of dis-
ease and infection. It would be unprofessional (never mind criminal) for the doctor to
comply with the patient.

So too it is unprofessional for programmers to bend to the will of managers who don’t
understand the risks of making messes.

The Primal Conundrum

Programmers face a conundrum of basic values. All developers with more than a few years
experience know that previous messes slow them down. And yet all developers feel
the pressure to make messes in order to meet deadlines. In short, they don’t take the time
to go fast!

True professionals know that the second part of the conundrum is wrong. You will not
make the deadline by making the mess. Indeed, the mess will slow you down instantly, and
will force you to miss the deadline. The only way to make the deadline—the only way to
go fast—is to keep the code as clean as possible at all times.

The Art of Clean Code?

Let’s say you believe that messy code is a significant impediment. Let’s say that you accept
that the only way to go fast is to keep your code clean. Then you must ask yourself: “How
do I write clean code?” It’s no good trying to write clean code if you don’t know what it
means for code to be clean!

The bad news is that writing clean code is a lot like painting a picture. Most of us
know when a picture is painted well or badly. But being able to recognize good art from
bad does not mean that we know how to paint. So too being able to recognize clean code
from dirty code does not mean that we know how to write clean code!

2. When hand-washing was first recommended to physicians by Ignaz Semmelweis in 1847, it was rejected on the basis that
doctors were too busy and wouldn’t have time to wash their hands between patient visits.

7AThe Total Cost of Owning a Mess

Writing clean code requires the disciplined use of a myriad little techniques applied
through a painstakingly acquired sense of “cleanliness.” This “code-sense” is the key.
Some of us are born with it. Some of us have to fight to acquire it. Not only does it let us
see whether code is good or bad, but it also shows us the strategy for applying our disci-
pline to transform bad code into clean code.

A programmer without “code-sense” can look at a messy module and recognize the
mess but will have no idea what to do about it. A programmer with “code-sense” will look
at a messy module and see options and variations. The “code-sense” will help that pro-
grammer choose the best variation and guide him or her to plot a sequence of behavior
preserving transformations to get from here to there.

In short, a programmer who writes clean code is an artist who can take a blank screen
through a series of transformations until it is an elegantly coded system.

What Is Clean Code?

There are probably as many definitions as there are programmers. So I asked some very
well-known and deeply experienced programmers what they thought.

Bjarne Stroustrup, inventor of C++
and author of The C++ Programming

Language

I like my code to be elegant and efficient. The
logic should be straightforward to make it hard
for bugs to hide, the dependencies minimal to
ease maintenance, error handling complete
according to an articulated strategy, and per-
formance close to optimal so as not to tempt
people to make the code messy with unprinci-
pled optimizations. Clean code does one thing
well.

Bjarne uses the word “elegant.” That’s
quite a word! The dictionary in my MacBook®

provides the following definitions: pleasingly
graceful and stylish in appearance or manner; pleasingly ingenious and simple. Notice the
emphasis on the word “pleasing.” Apparently Bjarne thinks that clean code is pleasing to
read. Reading it should make you smile the way a well-crafted music box or well-designed
car would.

Bjarne also mentions efficiency—twice. Perhaps this should not surprise us coming
from the inventor of C++; but I think there’s more to it than the sheer desire for speed.
Wasted cycles are inelegant, they are not pleasing. And now note the word that Bjarne uses

8A Chapter 1: Clean Code

to describe the consequence of that inelegance. He uses the word “tempt.” There is a deep
truth here. Bad code tempts the mess to grow! When others change bad code, they tend to
make it worse.

Pragmatic Dave Thomas and Andy Hunt said this a different way. They used the meta-
phor of broken windows.3 A building with broken windows looks like nobody cares about
it. So other people stop caring. They allow more windows to become broken. Eventually
they actively break them. They despoil the facade with graffiti and allow garbage to col-
lect. One broken window starts the process toward decay.

Bjarne also mentions that error handing should be complete. This goes to the disci-
pline of paying attention to details. Abbreviated error handling is just one way that pro-
grammers gloss over details. Memory leaks are another, race conditions still another.
Inconsistent naming yet another. The upshot is that clean code exhibits close attention to
detail.

Bjarne closes with the assertion that clean code does one thing well. It is no accident
that there are so many principles of software design that can be boiled down to this simple
admonition. Writer after writer has tried to communicate this thought. Bad code tries to do
too much, it has muddled intent and ambiguity of purpose. Clean code is focused. Each
function, each class, each module exposes a single-minded attitude that remains entirely
undistracted, and unpolluted, by the surrounding details.

Grady Booch, author of Object

Oriented Analysis and Design with

Applications

Clean code is simple and direct. Clean code
reads like well-written prose. Clean code never
obscures the designer’s intent but rather is full
of crisp abstractions and straightforward lines
of control.

Grady makes some of the same points as
Bjarne, but he takes a readability perspective. I
especially like his view that clean code should
read like well-written prose. Think back on a
really good book that you’ve read. Remember how the words disappeared to be replaced
by images! It was like watching a movie, wasn’t it? Better! You saw the characters, you
heard the sounds, you experienced the pathos and the humor.

Reading clean code will never be quite like reading Lord of the Rings. Still, the liter-
ary metaphor is not a bad one. Like a good novel, clean code should clearly expose the ten-
sions in the problem to be solved. It should build those tensions to a climax and then give

3. http://www.pragmaticprogrammer.com/booksellers/2004-12.html

http://www.pragmaticprogrammer.com/booksellers/2004-12.html

9AThe Total Cost of Owning a Mess

the reader that “Aha! Of course!” as the issues and tensions are resolved in the revelation
of an obvious solution.

I find Grady’s use of the phrase “crisp abstraction” to be a fascinating oxymoron!
After all the word “crisp” is nearly a synonym for “concrete.” My MacBook’s dictionary
holds the following definition of “crisp”: briskly decisive and matter-of-fact, without hesi-
tation or unnecessary detail. Despite this seeming juxtaposition of meaning, the words
carry a powerful message. Our code should be matter-of-fact as opposed to speculative.
It should contain only what is necessary. Our readers should perceive us to have been
decisive.

“Big” Dave Thomas, founder
of OTI, godfather of the
Eclipse strategy

Clean code can be read, and enhanced by a
developer other than its original author. It has
unit and acceptance tests. It has meaningful
names. It provides one way rather than many
ways for doing one thing. It has minimal depen-
dencies, which are explicitly defined, and pro-
vides a clear and minimal API. Code should be
literate since depending on the language, not all
necessary information can be expressed clearly
in code alone.

Big Dave shares Grady’s desire for readabil-
ity, but with an important twist. Dave asserts that
clean code makes it easy for other people to enhance it. This may seem obvious, but it can-
not be overemphasized. There is, after all, a difference between code that is easy to read
and code that is easy to change.

Dave ties cleanliness to tests! Ten years ago this would have raised a lot of eyebrows.
But the discipline of Test Driven Development has made a profound impact upon our
industry and has become one of our most fundamental disciplines. Dave is right. Code,
without tests, is not clean. No matter how elegant it is, no matter how readable and acces-
sible, if it hath not tests, it be unclean.

Dave uses the word minimal twice. Apparently he values code that is small, rather
than code that is large. Indeed, this has been a common refrain throughout software litera-
ture since its inception. Smaller is better.

Dave also says that code should be literate. This is a soft reference to Knuth’s literate
programming.4 The upshot is that the code should be composed in such a form as to make
it readable by humans.

4. [Knuth92].

10A Chapter 1: Clean Code

Michael Feathers, author of Working

Effectively with Legacy Code

I could list all of the qualities that I notice in
clean code, but there is one overarching quality
that leads to all of them. Clean code always
looks like it was written by someone who cares.
There is nothing obvious that you can do to
make it better. All of those things were thought
about by the code’s author, and if you try to
imagine improvements, you’re led back to
where you are, sitting in appreciation of the
code someone left for you—code left by some-
one who cares deeply about the craft.

One word: care. That’s really the topic of
this book. Perhaps an appropriate subtitle
would be How to Care for Code.

Michael hit it on the head. Clean code is
code that has been taken care of. Someone has taken the time to keep it simple and orderly.
They have paid appropriate attention to details. They have cared.

Ron Jeffries, author of Extreme Programming

Installed and Extreme Programming

Adventures in C#

Ron began his career programming in Fortran at
the Strategic Air Command and has written code in
almost every language and on almost every
machine. It pays to consider his words carefully.

In recent years I begin, and nearly end, with Beck’s
rules of simple code. In priority order, simple code:

• Runs all the tests;

• Contains no duplication;

• Expresses all the design ideas that are in the
system;

• Minimizes the number of entities such as classes,
methods, functions, and the like.

Of these, I focus mostly on duplication. When the same thing is done over and over,
it’s a sign that there is an idea in our mind that is not well represented in the code. I try to
figure out what it is. Then I try to express that idea more clearly.

Expressiveness to me includes meaningful names, and I am likely to change the
names of things several times before I settle in. With modern coding tools such as Eclipse,
renaming is quite inexpensive, so it doesn’t trouble me to change. Expressiveness goes

11AThe Total Cost of Owning a Mess

beyond names, however. I also look at whether an object or method is doing more than one
thing. If it’s an object, it probably needs to be broken into two or more objects. If it’s a
method, I will always use the Extract Method refactoring on it, resulting in one method
that says more clearly what it does, and some submethods saying how it is done.

Duplication and expressiveness take me a very long way into what I consider clean
code, and improving dirty code with just these two things in mind can make a huge differ-
ence. There is, however, one other thing that I’m aware of doing, which is a bit harder to
explain.

After years of doing this work, it seems to me that all programs are made up of very
similar elements. One example is “find things in a collection.” Whether we have a data-
base of employee records, or a hash map of keys and values, or an array of items of some
kind, we often find ourselves wanting a particular item from that collection. When I find
that happening, I will often wrap the particular implementation in a more abstract method
or class. That gives me a couple of interesting advantages.

I can implement the functionality now with something simple, say a hash map, but
since now all the references to that search are covered by my little abstraction, I can
change the implementation any time I want. I can go forward quickly while preserving my
ability to change later.

In addition, the collection abstraction often calls my attention to what’s “really”
going on, and keeps me from running down the path of implementing arbitrary collection
behavior when all I really need is a few fairly simple ways of finding what I want.

Reduced duplication, high expressiveness, and early building of simple abstractions.
That’s what makes clean code for me.

Here, in a few short paragraphs, Ron has summarized the contents of this book. No
duplication, one thing, expressiveness, tiny abstractions. Everything is there.

Ward Cunningham, inventor of Wiki, inventor
of Fit, coinventor of eXtreme Programming.
Motive force behind Design Patterns. Small-
talk and OO thought leader. The godfather of
all those who care about code.

You know you are working on clean code when each
routine you read turns out to be pretty much what
you expected. You can call it beautiful code when
the code also makes it look like the language was
made for the problem.

Statements like this are characteristic of Ward.
You read it, nod your head, and then go on to the
next topic. It sounds so reasonable, so obvious,
that it barely registers as something profound. You might think it was pretty much what
you expected. But let’s take a closer look.

12A Chapter 1: Clean Code

“. . . pretty much what you expected.” When was the last time you saw a module that
was pretty much what you expected? Isn’t it more likely that the modules you look at will
be puzzling, complicated, tangled? Isn’t misdirection the rule? Aren’t you used to flailing
about trying to grab and hold the threads of reasoning that spew forth from the whole sys-
tem and weave their way through the module you are reading? When was the last time you
read through some code and nodded your head the way you might have nodded your head
at Ward’s statement?

Ward expects that when you read clean code you won’t be surprised at all. Indeed, you
won’t even expend much effort. You will read it, and it will be pretty much what you
expected. It will be obvious, simple, and compelling. Each module will set the stage for
the next. Each tells you how the next will be written. Programs that are that clean are so
profoundly well written that you don’t even notice it. The designer makes it look ridicu-
lously simple like all exceptional designs.

And what about Ward’s notion of beauty? We’ve all railed against the fact that our lan-
guages weren’t designed for our problems. But Ward’s statement puts the onus back on us.
He says that beautiful code makes the language look like it was made for the problem! So
it’s our responsibility to make the language look simple! Language bigots everywhere,
beware! It is not the language that makes programs appear simple. It is the programmer
that make the language appear simple!

Schools of Thought

What about me (Uncle Bob)? What do I think
clean code is? This book will tell you, in hideous
detail, what I and my compatriots think about
clean code. We will tell you what we think makes
a clean variable name, a clean function, a clean
class, etc. We will present these opinions as abso-
lutes, and we will not apologize for our stridence.
To us, at this point in our careers, they are abso-
lutes. They are our school of thought about clean
code.

Martial artists do not all agree about the best
martial art, or the best technique within a martial
art. Often master martial artists will form their
own schools of thought and gather students to
learn from them. So we see Gracie Jiu Jistu,
founded and taught by the Gracie family in Brazil. We see Hakkoryu Jiu Jistu, founded
and taught by Okuyama Ryuho in Tokyo. We see Jeet Kune Do, founded and taught by
Bruce Lee in the United States.

13AWe Are Authors

Students of these approaches immerse themselves in the teachings of the founder.
They dedicate themselves to learn what that particular master teaches, often to the exclu-
sion of any other master’s teaching. Later, as the students grow in their art, they may
become the student of a different master so they can broaden their knowledge and practice.
Some eventually go on to refine their skills, discovering new techniques and founding their
own schools.

None of these different schools is absolutely right. Yet within a particular school we
act as though the teachings and techniques are right. After all, there is a right way to prac-
tice Hakkoryu Jiu Jitsu, or Jeet Kune Do. But this rightness within a school does not inval-
idate the teachings of a different school.

Consider this book a description of the Object Mentor School of Clean Code. The
techniques and teachings within are the way that we practice our art. We are willing to
claim that if you follow these teachings, you will enjoy the benefits that we have enjoyed,
and you will learn to write code that is clean and professional. But don’t make the mistake
of thinking that we are somehow “right” in any absolute sense. There are other schools and
other masters that have just as much claim to professionalism as we. It would behoove you
to learn from them as well.

Indeed, many of the recommendations in this book are controversial. You will proba-
bly not agree with all of them. You might violently disagree with some of them. That’s fine.
We can’t claim final authority. On the other hand, the recommendations in this book are
things that we have thought long and hard about. We have learned them through decades of
experience and repeated trial and error. So whether you agree or disagree, it would be a
shame if you did not see, and respect, our point of view.

We Are Authors

The @author field of a Javadoc tells us who we are. We are authors. And one thing about
authors is that they have readers. Indeed, authors are responsible for communicating well
with their readers. The next time you write a line of code, remember you are an author,
writing for readers who will judge your effort.

You might ask: How much is code really read? Doesn’t most of the effort go into
writing it?

Have you ever played back an edit session? In the 80s and 90s we had editors like Emacs
that kept track of every keystroke. You could work for an hour and then play back your whole
edit session like a high-speed movie. When I did this, the results were fascinating.

The vast majority of the playback was scrolling and navigating to other modules!

Bob enters the module.
He scrolls down to the function needing change.
He pauses, considering his options.
Oh, he’s scrolling up to the top of the module to check the initialization of a variable.
Now he scrolls back down and begins to type.

14A Chapter 1: Clean Code

Ooops, he’s erasing what he typed!
He types it again.
He erases it again!
He types half of something else but then erases that!
He scrolls down to another function that calls the function he’s changing to see how it is
called.
He scrolls back up and types the same code he just erased.
He pauses.
He erases that code again!
He pops up another window and looks at a subclass. Is that function overridden?

. . .

You get the drift. Indeed, the ratio of time spent reading vs. writing is well over 10:1.
We are constantly reading old code as part of the effort to write new code.

Because this ratio is so high, we want the reading of code to be easy, even if it makes
the writing harder. Of course there’s no way to write code without reading it, so making it
easy to read actually makes it easier to write.

There is no escape from this logic. You cannot write code if you cannot read the sur-
rounding code. The code you are trying to write today will be hard or easy to write
depending on how hard or easy the surrounding code is to read. So if you want to go fast,
if you want to get done quickly, if you want your code to be easy to write, make it easy to
read.

The Boy Scout Rule

It’s not enough to write the code well. The code has to be kept clean over time. We’ve all
seen code rot and degrade as time passes. So we must take an active role in preventing this
degradation.

The Boy Scouts of America have a simple rule that we can apply to our profession.

Leave the campground cleaner than you found it.5

If we all checked-in our code a little cleaner than when we checked it out, the code
simply could not rot. The cleanup doesn’t have to be something big. Change one variable
name for the better, break up one function that’s a little too large, eliminate one small bit of
duplication, clean up one composite if statement.

Can you imagine working on a project where the code simply got better as time
passed? Do you believe that any other option is professional? Indeed, isn’t continuous
improvement an intrinsic part of professionalism?

5. This was adapted from Robert Stephenson Smyth Baden-Powell’s farewell message to the Scouts: “Try and leave this world a
little better than you found it . . .”

15ABibliography

Prequel and Principles

In many ways this book is a “prequel” to a book I wrote in 2002 entitled Agile Software
Development: Principles, Patterns, and Practices (PPP). The PPP book concerns itself
with the principles of object-oriented design, and many of the practices used by profes-
sional developers. If you have not read PPP, then you may find that it continues the story
told by this book. If you have already read it, then you’ll find many of the sentiments of
that book echoed in this one at the level of code.

In this book you will find sporadic references to various principles of design. These
include the Single Responsibility Principle (SRP), the Open Closed Principle (OCP), and
the Dependency Inversion Principle (DIP) among others. These principles are described in
depth in PPP.

Conclusion

Books on art don’t promise to make you an artist. All they can do is give you some of the
tools, techniques, and thought processes that other artists have used. So too this book can-
not promise to make you a good programmer. It cannot promise to give you “code-sense.”
All it can do is show you the thought processes of good programmers and the tricks, tech-
niques, and tools that they use.

Just like a book on art, this book will be full of details. There will be lots of code.
You’ll see good code and you’ll see bad code. You’ll see bad code transformed into good
code. You’ll see lists of heuristics, disciplines, and techniques. You’ll see example after
example. After that, it’s up to you.

Remember the old joke about the concert violinist who got lost on his way to a perfor-
mance? He stopped an old man on the corner and asked him how to get to Carnegie Hall.
The old man looked at the violinist and the violin tucked under his arm, and said: “Prac-
tice, son. Practice!”

Bibliography

[Beck07]: Implementation Patterns, Kent Beck, Addison-Wesley, 2007.

[Knuth92]: Literate Programming, Donald E. Knuth, Center for the Study of Language
and Information, Leland Stanford Junior University, 1992.

This page intentionally left blank

detection, 237A–238A
++ (pre- or post-increment) operator,
325A, 326A

A
aborted computation, 109A
abstract classes, 149A, 271A, 290A
ABSTRACT FACTORY pattern, 38A,

156A, 273A, 274A
abstract interfaces, 94A
abstract methods

adding to ArgumentMarshaler,
234A–235A

modifying, 282A
abstract terms, 95A
abstraction

classes depending on, 150A
code at wrong level of, 290A–291A
descending one level at a time, 37A

functions descending only one level
of, 304A–306A

mixing levels of, 36A–37A
names at the appropriate level of,

311A
separating levels of, 305A
wrapping an implementation, 11A

abstraction levels
raising, 290A
separating, 305A

accessor functions, Law of Demeter
and, 98A

accessors, naming, 25A
Active Records, 101A

adapted server, 185A
affinity, 84A
Agile Software Development: Principles,

Patterns, Practices (PPP), 15A
algorithms

correcting, 269A–27A0A
repeating, 48A
understanding, 297A–298A

ambiguities
in code, 301A
ignored tests as, 313A

amplification comments, 59A
analysis functions, 265A
“annotation form”, of AspectJ, 166A
Ant project, 76A, 77A
AOP (aspect-oriented programming),

160A, 163A
APIs. See also public APIs

calling a null-returning method
from, 110A

specialized for tests, 127A
wrapping third-party, 108A

applications
decoupled from Spring, 164A
decoupling from construction

details, 156A
infrastructure of, 163A
keeping concurrency-related code

separate, 181A
arbitrary structure, 303A–304A
args array, converting into a list,

231A–232A

Index

413A

Args class
constructing, 194A
implementation of, 194A–200A
rough drafts of, 201A–212A,

26A–231A
ArgsException class

listing, 198A–200A
merging exceptions into,

239A–242A
argument(s)

flag, 41A
for a function, 40A
in functions, 288A
monadic forms of, 41A
reducing, 43A

argument lists, 43A
argument objects, 43A
argument types

adding, 200A, 237A
negative impact of, 208A

ArgumentMarshaler class
adding the skeleton of, 213A–214A
birth of, 212A

ArgumentMarshaler interface,
197A–198A

arrays, moving, 279A
art, of clean code, 6A–7A
artificial coupling, 293A
AspectJ language, 166A
aspect-oriented programming (AOP),
160A, 163A
aspects

in AOP, 160A–161A
“first-class” support for, 166A

assert statements, 130A–131A
assertEquals, 42A
assertions, using a set of, 111A
assignments, unaligned, 87A–88A
atomic operation, 323A–324A
attributes, 68A
authors

of JUnit, 252A
programmers as, 13A–14A

authorship statements, 55A
automated code instrumentation,

189A–190A
automated suite, of unit tests, 124A

B
bad code, 3A–4A. See also dirty code;

messy code
degrading effect of, 250A

example, 71A–72A
experience of cleaning, 250A
not making up for, 55A

bad comments, 59A–74A
banner, gathering functions beneath,

67A
base classes, 290A, 291A
BDUF (Big Design Up Front), 167A
beans, private variables manipulated,

100A–101A
Beck, Kent, 3A, 34A, 71A, 171A, 252A,

289A, 296A
behaviors, 288A–289A
Big Design Up Front (BDUF), 167A
blank lines, in code, 78A–79A
blocks, calling functions within, 35A
Booch,Grady, 8A–9A
boolean, passing into a function, 41A
boolean arguments, 194A, 288A
boolean map, deleting, 224A
boolean output, of tests, 132A
bound resources, 183A, 184A
boundaries

clean, 120A
exploring and learning, 116A
incorrect behavior at, 289A
separating known from unknown,

118A–119A
boundary condition errors, 269A
boundary conditions

encapsulating, 304A
testing, 314A

boundary tests, easing a migration,
118A

“Bowling Game”, 312A
Boy Scout Rule, 14A–15A, 257A

following, 284A
satisfying, 265A

broken windows metaphor, 8A
bucket brigade, 303A

414A Index

BUILD-OPERATE-CHECK pattern,
127A

builds, 287A
business logic, separating from error

handling, 109A
bylines, 68A
byte-manipulation libraries, 161A,

162A–163A

C
The C++ Programming Language, 7A
calculations, breaking into intermediate

values, 296A
call stack, 324A
Callable interface, 326A
caller, cluttering, 104A
calling hierarchy, 106A
calls, avoiding chains of, 98A
caring, for code, 10A
Cartesian points, 42A
CAS operation, as atomic, 328A
change(s)

isolating from, 149A–150A
large number of very tiny, 213A
organizing for, 147A–150A
tests enabling, 124A

change history, deleting, 270A
check exceptions, in Java, 106A
circular wait, 337A, 338A–339A
clarification, comments as, 57A
clarity, 25A, 26A
class names, 25A
classes

cohesion of, 140A–141A
creating for bigger concepts,

28A–29A
declaring instance variables, 81A
enforcing design and business rules,

115A
exposing internals of, 294A
instrumenting into ConTest, 342A
keeping small, 136A, 175A
minimizing the number of, 176A
naming, 25A, 138A

nonthread-safe, 328A–329A
as nouns of a language, 49A
organization of, 136A
organizing to reduce risk of change,

147A
supporting advanced concurrency

design, 183A
classification, of errors, 107A
clean boundaries, 120A
clean code

art of, 6A–7A
described, 7A–12A
writing, 6A–7A

clean tests, 124A–127A
cleanliness

acquired sense of, 6A–7A
tied to tests, 9A

cleanup, of code, 14A–15A
clever names, 26A
client, using two methods, 330A
client code, connecting to a server, 318A
client-based locking, 185A, 329A,

330A–332A
clientScheduler, 320A
client/server application, concurrency

in,
317A–321A
Client/Server nonthreaded, code for,
343A–346A
client-server using threads, code

changes,
346A–347A
ClientTest.java, 318A, 344A–346A
closing braces, comments on, 67A–68A
Clover, 268A, 269A
clutter

Javadocs as, 276A
keeping free of, 293A

code, 2A
bad, 3A–4A
Beck’s rules of, 10A
commented-out, 68A–69A, 287A
dead, 292A
explaining yourself in, 55A
expressing yourself in, 54A

415AIndex

formatting of, 76A
implicity of, 18A–19A
instrumenting, 188A, 342A
jiggling, 190A
making readable, 311A
necessity of, 2A
reading from top to bottom, 37A
simplicity of, 18A, 19A
technique for shrouding, 20A
third-party, 114A–115A
width of lines in, 85A–90A
at wrong level of abstraction,

290A–291A
code bases, dominated by error han-

dling, 103A
code changes, comments not always fol-

lowing, 54A
code completion, automatic, 20A
code coverage analysis, 254A–256A
code instrumentation, 188A–190A
“code sense,” 6A, 7A
code smells, listing of, 285A–314A
coding standard, 299A
cohesion

of classes, 140A–141A
maintaining, 141A–146A

command line arguments, 193A–194A
commands, separating from queries,

45A–46A
comment header standard, 55A–56A
comment headers, replacing, 70A
commented-out code, 68A–69A, 287A
commenting style, example of bad,

71A–72A
comments

amplifying importance of something,
59A

bad, 59A–74A
deleting, 282A
as failures, 54A
good, 55A–59A
heuristics on, 286A–287A
HTML, 69A
inaccurate, 54A

informative, 56A
journal, 63A–64A
legal, 55A–56A
mandated, 63A
misleading, 63A
mumbling, 59A–60A
as a necessary evil, 53A–59A
noise, 64A–66A
not making up for bad code, 55A
obsolete, 286A
poorly written, 287A
proper use of, 54A
redundant, 60A–62A, 272A, 275A,

286A–287A
restating the obvious, 64A
separated from code, 54A
TODO, 58A–59A
too much information in, 70A
venting in, 65A
writing, 287A

“communication gap”, minimizing,
168A

Compare and Swap (CAS) operation,
327A–328A
ComparisonCompactor module,

252A–265A
defactored, 256A–261A
final, 263A–265A
interim, 261A–263A
original code, 254A–256A

compiler warnings, turning off, 289A
complex code, demonstrating failures
in, 341A
complexity, managing, 139A–140A
computer science (CS) terms, using for
names, 27A
concepts

keeping close to each other, 80A
naming, 19A
one word per, 26A
separating at different levels, 290A
spelling similar similarly, 20A
vertical openness between, 78A–79A

conceptual affinity, of code, 84A

416A Index

concerns
cross-cutting, 160A–161A
separating, 154A, 166A, 178A,

250A
concrete classes, 149A
concrete details, 149A
concrete terms, 94A
concurrency

defense principles, 180A–182A
issues, 190A
motives for adopting, 178A–179A
myths and misconceptions about,

179A–180A
concurrency code

compared to nonconcurrency-
related code, 181A

focusing, 321A
concurrent algorithms, 179A
concurrent applications, partition

behavior, 183A
concurrent code

breaking, 329A–333A
defending from problems of, 180A
flaws hiding in, 188A

concurrent programming, 180A
Concurrent Programming in Java:

Design Principles and Patterns, 182A,
342A

concurrent programs, 178A
concurrent update problems, 341A
ConcurrentHashMap implementation,

183A
conditionals

avoiding negative, 302A
encapsulating, 257A–25A8, 301A

configurable data, 306A
configuration constants, 306A
consequences, warning of, 58A
consistency

in code, 292A
of enums, 278A
in names, 40A

consistent conventions, 259A

constants
versus enums, 308A–309A
hiding, 308A
inheriting, 271A, 307A–308A
keeping at the appropriate level, 83A
leaving as raw numbers, 300A
not inheriting, 307A–308A
passing as symbols, 276A
turning into enums, 275A–276A

construction
moving all to main, 155A, 156A
separating with factory, 156A
of a system, 154A

constructor arguments, 157A
constructors, overloading, 25A
consumer threads, 184A
ConTest tool, 190A, 342A
context

adding meaningful, 27A–29A
not adding gratuitous, 29A–30A
providing with exceptions, 107A

continuous readers, 184A
control variables, within loop state-

ments, 80A–81A
convenient idioms, 155A
convention(s)

following standard, 299A–300A
over configuration, 164A
structure over, 301A
using consistent, 259A

convoluted code, 175A
copyright statements, 55A
cosmic-rays. See one-offs
CountDownLatch class, 183A
coupling. See also decoupling; temporal

coupling; tight coupling
artificial, 293A
hidden temporal, 302A–303A
lack of, 150A

coverage patterns, testing, 314A
coverage tools, 313A
“crisp abstraction”, 8A–9A
cross-cutting concerns, 160A

417AIndex

Cunningham, Ward, 11A–12A
cuteness, in code, 26A

D
dangling false argument, 294A
data

abstraction, 93A–95A
copies of, 181A–182A
encapsulation, 181A
limiting the scope of, 181A
sets processed in parallel, 179A
types, 97A, 101A

data structures. See also structure(s)
compared to objects, 95A, 97A
defined, 95A
interfaces representing, 94A
treating Active Records as, 101A

data transfer-objects (DTOs),
100A–101A, 160A

database normal forms, 48A
DateInterval enum, 282A–283A
DAY enumeration, 277A
DayDate class, running SerialDate as,

271A
DayDateFactory, 273A–274A
dead code, 288A, 292A
dead functions, 288A
deadlock, 183A, 335A–339A
deadly embrace. See circular wait
debugging, finding deadlocks, 336A
decision making, optimizing,

167A–168A
decisions, postponing, 168A
declarations, unaligned, 87A–88A
DECORATOR objects, 164A
DECORATOR pattern, 274A
decoupled architecture, 167A
decoupling, from construction details,

156A
decoupling strategy, concurrency as,

178A
default constructor, deleting, 276A

degradation, preventing, 14A
deletions, as the majority of changes,

250A
density, vertical in code, 79A–80A
dependencies

finding and breaking, 250A
injecting, 157A
logical, 282A
making logical physical,

298A–299A
between methods, 329A–333A
between synchronized methods,

185A
Dependency Injection (DI), 157A
Dependency Inversion Principle (DIP),

15A, 150A
dependency magnet, 47A
dependent functions, formatting,

82A–83A
derivatives

base classes depending on, 291A
base classes knowing about, 273A
of the exception class, 48A
moving set functions into, 232A,

233A–235A
pushing functionality into, 217A

description
of a class, 138A
overloading the structure of code

into, 310A
descriptive names

choosing, 309A–310A
using, 39A–40A

design(s)
of concurrent algorithms, 179A
minimally coupled, 167A
principles of, 15A

design patterns, 290A
details, paying attention to, 8A
DI (Dependency Injection), 157A
Dijkstra, Edsger, 48A
dining philosophers execution model,

184A–185A

418A Index

DIP (Dependency Inversion Principle),
15A, 150A

dirty code. See also bad code; messy
code

dirty code, cleaning, 200A
dirty tests, 123A
disinformation, avoiding, 19A–20A
distance, vertical in code, 80A–84A
distinctions, making meaningful,

20A–21A
domain-specific languages (DSLs),
168A–169A
domain-specific testing language, 127A
DoubleArgumentMarshaler class,

238A
DRY principle (Don’t Repeat Yourself),

181A, 289A
DTOs (data transfer objects),

100A–101A, 160A
dummy scopes, 90A
duplicate if statements, 276A
duplication

of code, 48A
in code, 289A–290A
eliminating, 173A–175A
focusing on, 10A
forms of, 173A, 290A
reduction of, 48A
strategies for eliminating, 48A

dyadic argument, 40A
dyadic functions, 42A
dynamic proxies, 161A

E
e, as a variable name, 22A
Eclipse, 26A
edit sessions, playing back, 13A–14A
efficiency, of code, 7A
EJB architecture, early as over-engi-

neered, 167A
EJB standard, complete overhaul of,

164A
EJB2A beans, 160A

EJB3A, Bank object rewritten in,
165A–166A

“elegant” code, 7A
emergent design, 171A–176A
encapsulation, 136A

of boundary conditions, 304A
breaking, 106A–107A
of conditionals, 301A

encodings, avoiding, 23A–24A,
312A–313A

entity bean, 158A–160A
enum(s)

changing MonthConstants to,
272A

using, 308A–309A
enumeration, moving, 277A
environment, heuristics on, 287A
environment control system,

128A–129A
envying, the scope of a class, 293A
error check, hiding a side effect, 258A
Error class, 47A–48A
error code constants, 198A–200A
error codes

implying a class or enum, 47A–48A
preferring exceptions to, 46A
returning, 103A–104A
reusing old, 48A
separating from the Args module,

242A–250A
error detection, pushing to the edges,

109A
error flags, 103A–104A
error handling, 8A, 47A–48A
error messages, 107A, 250A
error processing, testing, 238A–239A
errorMessage method, 250A
errors. See also boundary condition

errors; spelling errors; string compari-
son errors

classifying, 107A
Evans, Eric, 311A
events, 41A
exception classification, 107A

419AIndex

exception clauses, 107A–108A
exception management code, 223A
exceptions

instead of return codes, 103A–105A
narrowing the type of, 105A–106A
preferring to error codes, 46A
providing context with, 107A
separating from Args, 242A–250A
throwing, 104A–105A, 194A
unchecked, 106A–107A

execution, possible paths of, 321A–326A
execution models, 183A–185A
Executor framework, 326A–327A
ExecutorClientScheduler.java,

321A
explanation, of intent, 56A–57A
explanatory variables, 296A–297A
explicitness, of code, 19A
expressive code, 295A
expressiveness

in code, 10A–11A
ensuring, 175A–176A

Extract Method refactoring, 11A
Extreme Programming Adventures in

C#, 10
Extreme Programming Installed, 10A
“eye-full,” code fitting into, 79A–80A

F
factories, 155A–156A
factory classes, 273A–275A
failure
to express ourselves in code, 54A

patterns of, 314A
tolerating with no harm, 330A

false argument, 294A
fast tests, 132A
fast-running threads, starving longer

running, 183A
fear, of renaming, 30A
Feathers, Michael, 10A
feature envy

eliminating, 293A–294A
smelling of, 278A

file size, in Java, 76A
final keywords, 276A
F.I.R.S.T. acronym, 132A–133A
First Law, of TDD, 122A
FitNesse project

coding style for, 90A
file sizes, 76A, 77A
function in, 32A–33A
invoking all tests, 224A

flag arguments, 41A, 288A
focussed code, 8A
foreign code. See third-party code
formatting

horizontal, 85A–90A
purpose of, 76A
Uncle Bob’s rules, 90A–92A
vertical, 76A–85A

formatting style, for a team of develop-
ers, 90A

Fortran, forcing encodings, 23A
Fowler, Martin, 285A, 293A
frame, 324A
function arguments, 40A–45A
function call dependencies, 84A–85A
function headers, 70A
function signature, 45A
functionality, placement of, 295A–296A
functions

breaking into smaller, 141A–146A
calling within a block, 35A
dead, 288A
defining private, 292A
descending one level of abstraction,

304A–306A
doing one thing, 35A–36A, 302A
dyadic, 42A
eliminating extraneous if statements,

262A
establishing the temporal nature of,

260A
formatting dependent, 82A–83A
gathering beneath a banner, 67A
heuristics on, 288A
intention-revealing, 19A
keeping small, 175A

420A Index

length of, 34A–35A
moving, 279A
naming, 39A, 297A
number of arguments in, 288A
one level of abstraction per,

36A–37A
in place of comments, 67A
renaming for clarity, 258A
rewriting for clarity, 258A–259A
sections within, 36A
small as better, 34A
structured programming with, 49A

understanding, 297A–298A
as verbs of a language, 49A
writing, 49A
futures, 326A

G
Gamma, Eric, 252A
general heuristics, 288A–307A
generated byte-code, 180A
generics, improving code readability,

115A
get functions, 218A
getBoolean function, 224A
GETFIELD instruction, 325A, 326A
getNextId method, 326A
getState function, 129A
Gilbert, David, 267A, 268A
given-when-then convention, 130A
glitches. See one-offs
global setup strategy, 155A
“God class,” 136A–137A
good comments, 55A–59A
goto statements, avoiding, 48A, 49A
grand redesign, 5A
gratuitous context, 29A–30A

H
hand-coded instrumentation, 189A
HashTable, 328A–329A
headers. See comment headers; function

headers

heuristics
cross references of, 286A, 409A
general, 288A–307A
listing of, 285A–314A

hidden temporal coupling, 259A,
302A–303A

hidden things, in a function, 44A
hiding

implementation, 94A
structures, 99A

hierarchy of scopes, 88A
HN. See Hungarian Notation
horizontal alignment, of code, 87A–88A
horizontal formatting, 85A–90A
horizontal white space, 86A
HTML, in source code, 69A
Hungarian Notation (HN), 23A–24A,

295A
Hunt, Andy, 8A, 289A
hybrid structures, 99A

I
if statements

duplicate, 276A
eliminating, 262A

if-else chain
appearing again and again, 290A
eliminating, 233A

ignored tests, 313A
implementation

duplication of, 173A
encoding, 24A
exposing, 94A
hiding, 94A
wrapping an abstraction, 11A

Implementation Patterns, 3A, 296A
implicity, of code, 18A
import lists

avoiding long, 307A
shortening in SerialDate, 270A

imports, as hard dependencies, 307A
imprecision, in code, 301A
inaccurate comments, 54A

421AIndex

inappropriate information, in com-
ments, 286A

inappropriate static methods, 296A
include method, 48A
inconsistency, in code, 292A
inconsistent spellings, 20A
incrementalism, 212A–214A
indent level, of a function, 35A
indentation, of code, 88A–89A
indentation rules, 89A
independent tests, 132A
information

inappropriate, 286A
too much, 70A, 291A–292A

informative comments, 56A
inheritance hierarchy, 308A
inobvious connection, between a com-

ment and code, 70A
input arguments, 41A
instance variables

in classes, 140A
declaring, 81A
hiding the declaration of, 81A–82A
passing as function
arguments, 231A
proliferation of, 140A

instrumented classes, 342A
insufficient tests, 313A
integer argument(s)

defining, 194A
integrating, 224A–225A

integer argument functionality,
moving into ArgumentMarshaler,

215A–216A
integer argument type, adding to Args,

212A
integers, pattern of changes for, 220A
IntelliJ, 26A
intent

explaining in code, 55A
explanation of, 56A–57A
obscured, 295A

intention-revealing function, 19A
intention-revealing names, 18A–19A

interface(s)
defining local or remote,

158A–160A
encoding, 24A
implementing, 149A–150A
representing abstract concerns, 150A
turning ArgumentMarshaler into,

237A
well-defined, 291A–292A
writing, 119A

internal structures, objects hiding, 97A
intersection, of domains, 160A
intuition, not relying on, 289A
inventor of C++, 7A
Inversion of Control (IoC), 157A
InvocationHandler object, 162A
I/O bound, 318A
isolating, from change, 149A–150A
isxxxArg methods, 221A–222A
iterative process, refactoring as, 265A

J
jar files, deploying derivatives and

bases in, 291A
Java

aspects or aspect-like mechanisms,
161A–166A

heuristics on, 307A–309A
as a wordy language, 200A

Java 5A, improvements for concurrent
development, 182A–183A

Java 5A Executor framework,
320A–321A

Java 5A VM, nonblocking solutions in,
327A–328A

Java AOP frameworks, 163A–166A
Java programmers, encoding not need-

ed, 24A
Java proxies, 161A–163A
Java source files, 76A–77A
javadocs

as clutter, 276A
in nonpublic code, 71A
preserving formatting in, 270A

422A Index

in public APIs, 59A
requiring for every function, 63A

java.util.concurrent package, col-
lections

in, 182A–183A
JBoss AOP, proxies in, 163A
JCommon library, 267A
JCommon unit tests, 270A
JDepend project, 76A, 77A
JDK proxy, providing persistence sup-

port, 161A–163A
Jeffries, Ron, 10A–11A, 289A
jiggling strategies, 190A
JNDI lookups, 157A
journal comments, 63A–64A
JUnit, 34A
JUnit framework, 252A–265A
Junit project, 76A, 77A
Just-In-Time Compiler, 180A

K
keyword form, of a function name, 43A

L
L, lower-case in variable names, 20A
language design, art of programming

as, 49A
languages

appearing to be simple, 12A
level of abstraction, 2A
multiple in one source file, 288A
multiples in a comment, 270A

last-in, first-out (LIFO) data structure,
operand stack as, 324A

Law of Demeter, 97A–98A, 306A
LAZY INITIALIZATION/

EVALUATION idiom, 154A
LAZY-INITIALIZATION, 157A
Lea, Doug, 182A, 342A
learning tests, 116A, 118A
LeBlanc’s law, 4A
legacy code, 307A
legal comments, 55A–56A
level of abstraction, 36A–37A

levels of detail, 99A
lexicon, having a consistent, 26A
lines of code

duplicating, 173A
width of, 85A

list(s)
of arguments, 43A
meaning specific to programmers,

19A
returning a predefined immutable,

110A
literate code, 9A
literate programming, 9A
Literate Programming, 141A
livelock, 183A, 338A
local comments, 69A–70A
local variables, 324A

declaring, 292A
at the top of each function, 80A

lock & wait, 337A, 338A
locks, introducing, 185A
log4j package, 116A–118A
logical dependencies, 282A, 298A–299A
LOGO language, 36A
long descriptive names, 39A
long names, for long scopes, 312A
loop counters, single-letter names for,

25A

M
magic numbers

obscuring intent, 295A
replacing with named constants,
300A–301A

main function, moving construction to,
155A, 156A
managers, role of, 6A
mandated comments, 63A
manual control, over a serial ID, 272A
Map

adding for ArgumentMarshaler,
221A

methods of, 114A
maps, breaking the use of, 222A–223A

423AIndex

marshalling implementation,
214A–215A

meaningful context, 27A–29A
member variables

f prefix for, 257A
prefixing, 24A
renaming for clarity, 259A

mental mapping, avoiding, 25A
messy code. See also bad code; dirty

code
total cost of owning, 4A–12A

method invocations, 324A
method names, 25A
methods

affecting the order of execution,
188A

calling a twin with a flag, 278A
changing from static to instance,

280A
of classes, 140A
dependencies between, 329A–333A
eliminating duplication between,

173A–174A
minimizing assert statements in,

176A
naming, 25A
tests exposing bugs in, 269A

minimal code, 9A
misleading comments, 63A
misplaced responsibility, 295A–296A,

299A
MOCK OBJECT, assigning, 155A
monadic argument, 40A
monadic forms, of arguments, 41A
monads, converting dyads into, 42A
Monte Carlo testing, 341A
Month enum, 278A
MonthConstants class, 271A
multithread aware, 332A
multithread-calculation, of throughput,

335A
multithreaded code, 188A, 339A–342A
mumbling, 59A–60A
mutators, naming, 25A
mutual exclusion, 183A, 336A, 337A

N
named constants, replacing magic num-

bers, 300A–301A
name-length-challenged languages, 23A
names

abstractions, appropriate level of,
311A

changing, 40A
choosing, 175A, 309A–310A
of classes, 270A–271A
clever, 26A
descriptive, 39A–40A
of functions, 297A
heuristics on, 309A–313A
importance of, 309A–310A
intention-revealing, 18A–19A
length of corresponding to scope,

22A–23A
long names for long scopes, 312A
making unambiguous, 258A
problem domain, 27A
pronounceable, 21A–22A
rules for creating, 18A–30A
searchable, 22A–23A
shorter generally better than longer,

30A
solution domain, 27A
with subtle differences, 20A
unambiguous, 312A
at the wrong level of abstraction,

271A
naming, classes, 138A
naming conventions, as inferior to

structures, 301A
navigational methods, in Active

Records, 101A
near bugs, testing, 314A
negative conditionals, avoiding, 302A
negatives, 258A
nested structures, 46A
Newkirk, Jim, 116A
newspaper metaphor, 77A–78A
niladic argument, 40A
no preemption, 337A

424A Index

noise
comments, 64A–66A
scary, 66A
words, 21A

nomenclature, using standard,
311A–312A

nonblocking solutions, 327A–328A
nonconcurrency-related code, 181A
noninformative names, 21A
nonlocal information, 69A–70A
nonpublic code, javadocs in, 71A
nonstatic methods, preferred to static,

296A
nonthreaded code, getting working first,

187A
nonthread-safe classes, 328A–329A
normal flow, 109A
null

not passing into methods,
111A–112A

not returning, 109A–110A
passed by a caller accidentally, 111A

null detection logic, for
ArgumentMarshaler, 214A

NullPointerException, 110A, 111A
number-series naming, 21A

O
Object Oriented Analysis and Design

with Applications, 8A
object-oriented design, 15A
objects

compared to data structures, 95A,
97A

compared to data types and proce-
dures, 101A

copying read-only, 181A
defined, 95A

obscured intent, 295A
obsolete comments, 286A
obvious behavior, 288A–289A
obvious code, 12A
“Once and only once” principle, 289A
“ONE SWITCH” rule, 299A

one thing, functions doing, 35A–36A,
302A

one-offs, 180A, 187A, 191A
OO code, 97A
OO design, 139A
Open Closed Principle (OCP), 15A, 38A

by checked exceptions, 106A
supporting, 149A

operand stack, 324A
operating systems, threading policies,

188A
operators, precedence of, 86A
optimistic locking, 327A
optimizations, LAZY-EVALUATION

as, 157A
optimizing, decision making,

167A–168A
orderings, calculating the possible,

322A–323A
organization

for change, 147A–150A
of classes, 136A
managing complexity, 139A–140A

outbound tests, exercising an interface,
118A

output arguments, 41A, 288A
avoiding, 45A
need for disappearing, 45A

outputs, arguments as, 45A
overhead, incurred by concurrency,

179A
overloading, of code with description,

310A

P
paperback model, as an academic

model, 27A
parameters, taken by instructions, 324A
parse operation, throwing an excep-

tion, 220A
partitioning, 250A
paths of execution, 321A–326A
pathways, through critical sections,

188A

425AIndex

pattern names, using standard, 175A
patterns

of failure, 314A
as one kind of standard, 311A

performance
of a client/server pair, 318A
concurrency improving, 179A
of server-based locking, 333A

permutations, calculating, 323A
persistence, 160A, 161A
pessimistic locking, 327A
phraseology, in similar names, 40A
physicalizing, a dependency, 299A
Plain-Old Java Objects. See POJOs
platforms, running threaded code, 188A
pleasing code, 7A
pluggable thread-based code, 187A
POJO system, agility provided by, 168A
POJOs (Plain-Old Java Objects)

creating, 187A
implementing business logic, 162A
separating threaded-aware code,

190A
in Spring, 163A
writing application domain logic,

166A
polyadic argument, 40A
polymorphic behavior, of functions,

296A
polymorphic changes, 96A–97A
polymorphism, 37A, 299A
position markers, 67A
positives

as easier to understand, 258A
expressing conditionals as, 302A
of decisions, 301
precision as the point of all naming,

30A
predicates, naming, 25A
preemption, breaking, 338A
prefixes

for member variables, 24A
as useless in today’s environments,

312A–313A

pre-increment operator, ++, 324A,
325A, 326A

“prequel”, this book as, 15A
principle of least surprise, 288A–289A,

295A
principles, of design, 15A
PrintPrimes program, translation into

Java, 141A
private behavior, isolating, 148A–149A
private functions, 292A
private method behavior, 147A
problem domain names, 27A
procedural code, 97A
procedural shape example, 95A–96A
procedures, compared to objects, 101A
process function, repartitioning,

319A–320A
process method, I/O bound, 319A
processes, competing for resources,

184A
processor bound, code as, 318A
producer consumer execution model,

184A
producer threads, 184A
production environment, 127A–130A
productivity, decreased by messy code,

4A
professional programmer, 25A
professional review, of code, 268A
programmers

as authors, 13A–14A
conundrum faced by, 6A
responsibility for messes, 5A–6A
unprofessional, 5A–6A

programming
defined, 2A
structured, 48A–49A

programs, getting them to work, 201A
pronounceable names, 21A–22A
protected variables, avoiding, 80A
proxies, drawbacks of, 163A
public APIs, javadocs in, 59A
puns, avoiding, 26A–27A
PUTFIELD instruction, as atomic, 325A

426A Index

Q
queries, separating from commands,

45A–46A

R
random jiggling, tests running, 190A
range, including end-point dates in,

276A
readability

of clean tests, 124A
of code, 76A
Dave Thomas on, 9A
improving using generics, 115A

readability perspective, 8A
readers

of code, 13A–14A
continuous, 184A

readers-writers execution model, 184A
reading

clean code, 8A
code from top to bottom, 37A
versus writing, 14A

reboots, as a lock up solution, 331A
recommendations, in this book, 13A
redesign, demanded by the team, 5A
redundancy, of noise words, 21A
redundant comments, 60A–62A, 272A,

275A, 286A–287A
ReentrantLock class, 183A
refactored programs, as longer, 146A
refactoring

Args, 212A
code incrementally, 172A
as an iterative process, 265A
putting things in to take out, 233A
test code, 127A

Refactoring (Fowler), 285A
renaming, fear of, 30A
repeatability, of concurrency bugs, 180A
repeatable tests, 132A
requirements, specifying, 2A
resetId, byte-code generated for,

324A–325A

resources
bound, 183A
processes competing for, 184A
threads agreeing on a global order-

ing of, 338A
responsibilities

counting in classes, 136A
definition of, 138A
identifying, 139A
misplaced, 295A–296A, 299A
splitting a program into main, 146A

return codes, using exceptions instead,
103A–105A

reuse, 174A
risk of change, reducing, 147A
robust clear code, writing, 112A
rough drafts, writing, 200A
runnable interface, 326A
run-on expressions, 295A
run-on journal entries, 63A–64A
runtime logic, separating startup from,

154A

S
safety mechanisms, overridden, 289A
scaling up, 157A–161A
scary noise, 66A
schema, of a class, 194A
schools of thought, about clean code,

12A–13A
scissors rule, in C++, 81A
scope(s)

defined by exceptions, 105A
dummy, 90A
envying, 293A
expanding and indenting, 89A
hierarchy in a source file, 88A
limiting for data, 181A
names related to the length of,

22A–23A, 312A
of shared variables, 333A

searchable names, 22A–23A
Second Law, of TDD, 122A
sections, within functions, 36A
selector arguments, avoiding,

294A–295A

427AIndex

self validating tests, 132A
Semaphore class, 183A
semicolon, making visible, 90A
“serial number,” SerialDate using,

271A
SerialDate class

making it right, 270A–284A
naming of, 270A–271A
refactoring, 267A–284A

SerialDateTests class, 268A
serialization, 272A
server, threads created by, 319A–321A
server application, 317A–318A,

343A–344A
server code, responsibilities of, 319A
server-based locking, 329A

as preferred, 332A–333A
with synchronized methods, 185A

“Servlet” model, of Web applications,
178A

Servlets, synchronization problems,
182A

set functions, moving into appropriate
derivatives, 232A, 233A–235A

setArgument, changing, 232A–233A
setBoolean function, 217A
setter methods, injecting dependencies,

157A
setup strategy, 155A
SetupTeardownIncluder.java list-

ing, 50A–52A
shape classes, 95A–96A
shared data, limiting access, 181A
shared variables

method updating, 328A
reducing the scope of, 333A

shotgun approach, hand-coded instru-
mentation as, 189A

shut-down code, 186A
shutdowns, graceful, 186A
side effects

having none, 44A
names describing, 313A

Simmons, Robert, 276A

simple code, 10A, 12A
Simple Design, rules of, 171A–176A
simplicity, of code, 18A, 19A
single assert rule, 130A–131A
single concepts, in each test function,

131A–132A
Single Responsibility Principle (SRP),

15A, 138A–140A
applying, 321A
breaking, 155A
as a concurrency defense principle,

181A
recognizing violations of, 174A
server violating, 320A
Sql class violating, 147A
supporting, 157A
in test classes conforming to, 172A
violating, 38A

single value, ordered components of,
42A

single-letter names, 22A, 25A
single-thread calculation, of through-

put, 334A
SINGLETON pattern, 274A
small classes, 136A
Smalltalk Best Practice Patterns, 296A
smart programmer, 25A
software project, maintenance of, 175A
software systems. See also system(s)

compared to physical systems, 158A
SOLID class design principle, 150A
solution domain names, 27A
source code control systems, 64A, 68A,

69A
source files

compared to newspaper articles,
77A–78A

multiple languages in, 288A
Sparkle program, 34A
spawned threads, deadlocked, 186A
special case objects, 110A
SPECIAL CASE PATTERN, 109A
specifications, purpose of, 2A
spelling errors, correcting, 20A

428A Index

SpreadsheetDateFactory,
274A–275A

Spring AOP, proxies in, 163A
Spring Framework, 157A
Spring model, following EJB3, 165A
Spring V2.5 configuration file,

163A–164A
spurious failures, 187A
Sql class, changing, 147A–149A
square root, as the iteration limit, 74A
SRP. See Single Responsibility Principle
standard conventions, 299A–300A
standard nomenclature, 175A,

311A–312A
standards, using wisely, 168A
startup process, separating from run-

time logic, 154A
starvation, 183A, 184A, 338A
static function, 279A
static import, 308A
static methods, inappropriate, 296A
The Step-down Rule, 37A
stories, implementing only today’s,

158A
STRATEGY pattern, 290A
string arguments, 194A, 208A–212A,

214A–225A
string comparison errors, 252A
StringBuffers, 129A
Stroustrup, Bjarne, 7A–8A
structure(s). See also data structures

hiding, 99A
hybrid, 99A
making massive changes to, 212A
over convention, 301A

structured programming, 48A–49A
SuperDashboard class, 136A–137A
swapping, as permutations, 323A
switch statements

burying, 37A, 38A
considering polymorphism before,

299A
reasons to tolerate, 38A–39A

switch/case chain, 290A

synchronization problems, avoiding
with Servlets, 182A

synchronized block, 334A
synchronized keyword, 185A

adding, 323A
always acquiring a lock, 328A
introducing a lock via, 331A
protecting a critical section

in code, 181A
synchronized methods, 185A
synchronizing, avoiding, 182A
synthesis functions, 265A
system(s). See also software systems

file sizes of significant, 77A
keeping running during develop-

ment, 213A
needing domain-specific, 168A

system architecture, test driving,
166A–167A

system failures, not ignoring one-offs,
187A

system level, staying clean at, 154A
system-wide information, in a local

comment, 69A–70A

T
tables, moving, 275A
target deployment platforms, running

tests on, 341A
task swapping, encouraging, 188A
TDD (Test Driven Development), 213A

building logic, 106A
as fundamental discipline, 9A
laws of, 122A–123A

team rules, 90A
teams

coding standard for every,
299A–300A

slowed by messy code, 4A
technical names, choosing, 27A
technical notes, reserving comments for,

286A

429AIndex

TEMPLATE METHOD pattern
addressing duplication, 290A
removing higher-level duplication,

174A–175A
using, 130A

temporal coupling. See also coupling
exposing, 259A–260A
hidden, 302A–303A
side effect creating, 44A

temporary variables, explaining,
279A–281A

test cases
adding to check arguments, 237A
in ComparisonCompactor,

252A–254A
patterns of failure, 269A, 314A
turning off, 58A

test code, 124A, 127A
TEST DOUBLE, assigning, 155A
Test Driven Development. See TDD
test driving, architecture, 166A–167A
test environment, 127A–130A
test functions, single concepts in,

131A–132A
test implementation, of an interface,

150A
test suite

automated, 213A
of unit tests, 124A, 268A
verifying precise behavior, 146A

testable systems, 172A
test-driven development. See TDD
testing

arguments making harder, 40A
construction logic mixed with run-

time, 155A
testing language, domain-specific, 127A
testNG project, 76A, 77A
tests

clean, 124A–127A
cleanliness tied to, 9A
commented out for SerialDate,

268A–270A
dirty, 123A
enabling the -ilities, 124A
fast, 132A
fast versus slow, 314A

heuristics on, 313A–314A
ignored, 313A
independent, 132A
insufficient, 313A
keeping clean, 123A–124A
minimizing assert statements in,

130A–131A
not stopping trivial, 313A
refactoring, 126A–127A
repeatable, 132A
requiring more than one step, 287A
running, 341A
self validating, 132A
simple design running all, 172A
suite of automated, 213A
timely, 133A
writing for multithreaded code,

339A–342A
writing for threaded code,

186A–190A
writing good, 122A–123A

Third Law, of TDD, 122A
third-party code

integrating, 116A
learning, 116A
using, 114A–115A
writing tests for, 116A

this variable, 324A
Thomas, Dave, 8A, 9A, 289A
thread(s)

adding to a method, 322A
interfering with each other, 330A
making as independent as possible,

182A
stepping on each other, 180A, 326A
taking resources from other threads,

338A
thread management strategy, 320A
thread pools, 326A
thread-based code, testing, 342A
threaded code

making pluggable, 187A
making tunable, 187A–188A
symptoms of bugs in, 187A
testing, 186A–190A
writing in Java 5A, 182A–183A

threading

430A Index

adding to a client/server application,
319A, 346A–347A

problems in complex systems, 342A
thread-safe collections, 182A–183A,

329A
throughput

causing starvation, 184A
improving, 319A
increasing, 333A–335A
validating, 318A

throws clause, 106A
tiger team, 5A
tight coupling, 172A
time, taking to go fast, 6A
Time and Money project, 76A

file sizes, 77A
timely tests, 133A
timer program, testing, 121A–122A
“TO” keyword, 36A
TO paragraphs, 37A
TODO comments, 58A–59A
tokens, used as magic numbers, 300A
Tomcat project, 76A, 77A
tools

ConTest tool, 190A, 342A
coverage, 313A
handling proxy boilerplate, 163A
testing thread-based code, 342A

train wrecks, 98A–99A
transformations, as return values, 41A
transitive navigation, avoiding,

306A–307A
triadic argument, 40A
triads, 42A
try blocks, 105A
try/catch blocks, 46A–4A7, 65A–66A
try-catch-finally statement,

105A–106A
tunable threaded-based code,

187A–188A
type encoding, 24A

U
ubiquitous language, 311A–312A
unambiguous names, 312A
unchecked exceptions, 106A–107A
unencapsulated conditional, encapsu-

lating, 257A
unit testing, isolated as difficult, 160A
unit tests, 124A, 175A, 268A
unprofessional programming, 5A–6A
uppercase C, in variable names, 20A
usability, of newspapers, 78A
use, of a system, 154A
users, handling concurrently, 179A

V
validation, of throughput, 318A
variable names, single-letter, 25A
variables

1 based versus zero based, 261A
declaring, 80A, 81A, 292A
explaining temporary, 279A–281A
explanatory, 296A–297A
keeping private, 93A
local, 292A, 324A
moving to a different class, 273A
in place of comments, 67A
promoting to instance variables of

classes, 141A
with unclear context, 28A

venting, in comments, 65A
verbs, keywords and, 43A
Version class, 139A
versions, not deserializing across, 272A
vertical density, in code, 79A–80A
vertical distance, in code, 80A–84A
vertical formatting, 76A–85A
vertical openness, between concepts,

78A–79A
vertical ordering, in code, 84A–85A
vertical separation, 292A

431AIndex

W
wading, through bad code, 3A
Web containers, decoupling provided

by, 178A
what, decoupling from when, 178A
white space, use of horizontal, 86A
wildcards, 307A
Working Effectively with Legacy Code,

10A
“working” programs, 201A
workmanship, 176A
wrappers, 108A
wrapping, 108A
writers, starvation of, 184A
“Writing Shy Code,” 306A

X
XML

deployment descriptors, 160A
“policy” specified configuration

files, 164A

432A Index

 The Clean Coder

Martin_FMB2.indd i 10/17/11 9:55 AM

Praise for The Clean Coder
“‘Uncle Bob’ Martin definitely raises the bar with his latest book. He explains his
expectation for a professional programmer on management interactions, time
management, pressure, on collaboration, and on the choice of tools to use. Beyond
TDD and ATDD, Martin explains what every programmer who considers him- or
herself a professional not only needs to know, but also needs to follow in order to
make the young profession of software development grow.”

—Markus Gärtner
Senior Software Developer

it-agile GmbH
www.it-agile.de

www.shino.de

“Some technical books inspire and teach; some delight and amuse. Rarely does a
technical book do all four of these things. Robert Martin’s always have for me and
The Clean Coder is no exception. Read, learn, and live the lessons in this book and
you can accurately call yourself a software professional.”

—George Bullock
Senior Program Manager

Microsoft Corp.

“If a computer science degree had ‘required reading for after you graduate,’ this
would be it. In the real world, your bad code doesn’t vanish when the semester’s
over, you don’t get an A for marathon coding the night before an assignment’s due,
and, worst of all, you have to deal with people. So, coding gurus are not necessarily
professionals. The Clean Coder describes the journey to professionalism . . . and it
does a remarkably entertaining job of it.”

—Jeff Overbey
 University of Illinois at Urbana-Champaign

“The Clean Coder is much more than a set of rules or guidelines. It contains hard-
earned wisdom and knowledge that is normally obtained through many years of
trial and error or by working as an apprentice to a master craftsman. If you call
yourself a software professional, you need this book.”

—R. L. Bogetti
Lead System Designer

Baxter Healthcare
www.RLBogetti.com

Martin_FMB2.indd ii 10/17/11 9:55 AM

www.it-agile.de
www.shino.de
www.RLBogetti.com

 The Clean Coder
 A CODE OF CONDUCT FOR

PROFESSIONAL PROGRAMMERS

 Robert C. Martin

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

 New York • Toronto • Montreal • London • Munich • Paris • Madrid

 Cape Town • Sydney • Tokyo • Singapore • Mexico City

Martin_FMB2.indd iii 10/17/11 9:55 AM

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

 For sales outside the United States please contact:

 International Sales
 international@pearson.com

 Visit us on the Web: www.informit.com/ph

 Library of Congress Cataloging-in-Publication Data
Martin, Robert C.
 The clean coder : a code of conduct for professional programmers / Robert Martin.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-708107-3 (pbk. : alk. paper)
1. Computer programming—Moral and ethical aspects. 2. Computer
programmers—Professional ethics. I. Title.
 QA76.9.M65M367 2011
 005.1092—dc22 2011005962

 Copyright © 2011 Pearson Education, Inc.
Illustrations copyright 2011 by Jennifer Kohnke.

 All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

 ISBN-13: 978-0-13-708107-3
 ISBN-10: 0-13-708107-3

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
 Second printing, August 2011

Martin_FMB2.indd iv 10/17/11 9:55 AM

www.informit.com/ph

 Between 1986 and 2000 I worked closely with Jim Newkirk, a colleague from
Teradyne. He and I shared a passion for programming and for clean code.
We would spend nights, evenings, and weekends together playing with different
programming styles and design techniques. We were continually scheming
about business ideas. Eventually we formed Object Mentor, Inc., together.
I learned many things from Jim as we plied our schemes together. But one of
the most important was his attitude of work ethic ; it was something I strove to
emulate. Jim is a professional. I am proud to have worked with him, and to call
him my friend.

Martin_FMB2.indd v 10/17/11 9:55 AM

This page intentionally left blank

vii

 FO R E WO R D

You’ve picked up this book, so I assume you are a software professional. That’s
good; so am I. And since I have your attention, let me tell you why I picked up
this book.

It all starts a short time ago in a place not too far away. Cue the curtain, lights
and camera, Charley

Several years ago I was working at a medium-sized corporation selling highly
regulated products. You know the type; we sat in a cubicle farm in a three-story
building, directors and up had private offices, and getting everyone you needed
into the same room for a meeting took a week or so.

We were operating in a very competitive market when the government opened
up a new product.

Suddenly we had an entirely new set of potential customers; all we had to do
was to get them to buy our product. That meant we had to file by a certain
deadline with the federal government, pass an assessment audit by another date,
and go to market on a third date.

Martin_FMB2.indd vii 10/17/11 9:55 AM

viii

FOREWORD

Over and over again our management stressed to us the importance of those
dates. A single slip and the government would keep us out of the market for a
year, and if customers couldn’t sign up on day one, then they would all sign up
with someone else and we’d be out of business.

It was the sort of environment in which some people complain, and others
point out that “pressure makes diamonds.”

I was a technical project manager, promoted from development. My responsibility
was to get the web site up on go-live day, so potential customers could download
information and, most importantly, enrollment forms. My partner in the endeavor
was the business-facing project manager, whom I’ll call Joe. Joe’s role was to work
the other side, dealing with sales, marketing, and the non-technical requirements.
He was also the guy fond of the “pressure makes diamonds” comment.

If you’ve done much work in corporate America, you’ve probably seen the
finger-pointing, blamestorming, and work aversion that is completely natural.
Our company had an interesting solution to that problem with Joe and me.

A little bit like Batman and Robin, it was our job to get things done. I met with
the technical team every day in a corner; we’d rebuild the schedule every single
day, figure out the critical path, then remove every possible obstacle from that
critical path. If someone needed software; we’d go get it. If they would “love to”
configure the firewall but “gosh, it’s time for my lunch break,” we would buy
them lunch. If someone wanted to work on our configuration ticket but had
other priorities, Joe and I would go talk to the supervisor.

Then the manager.

Then the director.

We got things done.

It’s a bit of an exaggeration to say that we kicked over chairs, yelled, and
screamed, but we did use every single technique in our bag to get things done,
invented a few new ones along the way, and we did it in an ethical way that I am
proud of to this day.

Martin_FMB2.indd viii 10/17/11 9:55 AM

ix

I thought of myself as a member of the team, not above jumping in to write a
SQL statement or doing a little pairing to get the code out the door. At the time,
I thought of Joe the same way, as a member of the team, not above it.

Eventually I came to realize that Joe did not share that opinion. That was a very
sad day for me.

It was Friday at 1:00 PM; the web site was set to go live very early the following
Monday.

We were done. *DONE*. Every system was go; we were ready. I had the entire
tech team assembled for the final scrum meeting and we were ready to flip the
switch. More than “just” the technical team, we had the business folks from
marketing, the product owners, with us.

We were proud. It was a good moment.

Then Joe dropped by.

He said something like, “Bad news. Legal doesn’t have the enrollment forms
ready, so we can’t go live yet.”

This was no big deal; we’d been held up by one thing or another for the length
of the entire project and had the Batman/Robin routine down pat. I was ready,
and my reply was essentially, “All right partner, let’s do this one more time.
Legal is on the third floor, right?”

Then things got weird.

Instead of agreeing with me, Joe asked, “What are you talking about Matt?”

I said, “You know. Our usual song and dance. We’re talking about four PDF
files, right? That are done; legal just has to approve them? Let’s go hang out in
their cubicles, give them the evil eye, and get this thing done!”

Joe did not agree with my assessment, and answered, “We’ll just go live late next
week. No big deal.”

FOREWORD

Martin_FMB2.indd ix 10/17/11 9:55 AM

x

FOREWORD

You can probably guess the rest of the exchange; it sounded something like this:

Matt: “But why? They could do this in a couple hours.”

Joe: “It might take more than that.”

Matt: “But they’ve got all weekend. Plenty of time. Let’s do this!”

Joe: “Matt, these are professionals. We can’t just stare them down and
insist they sacrifice their personal lives for our little project.”

Matt: (pause) “. . . Joe . . . what do you think we’ve been doing to the
engineering team for the past four months?”

Joe: “Yes, but these are professionals.”

Pause.

Breathe.

What. Did. Joe. Just. Say?

At the time, I thought the technical staff were professionals, in the best sense of
the word.

Thinking back over it again, though, I’m not so sure.

Let’s look at that Batman and Robin technique a second time, from a different
perspective. I thought I was exhorting the team to its best performance, but I
suspect Joe was playing a game, with the implicit assumption that the technical
staff was his opponent. Think about it: Why was it necessary to run around,
kicking over chairs and leaning on people?

Shouldn’t we have been able to ask the staff when they would be done, get a
firm answer, believe the answer we were given, and not be burned by that belief?

Certainly, for professionals, we should . . . and, at the same time, we could not.
Joe didn’t trust our answers, and felt comfortable micromanaging the tech

Martin_FMB2.indd x 10/17/11 9:55 AM

xi

FOREWORD

team—and at the same time, for some reason, he did trust the legal team and
was not willing to micromanage them.

What’s that all about?

Somehow, the legal team had demonstrated professionalism in a way the
technical team had not.

Somehow, another group had convinced Joe that they did not need a babysitter,
that they were not playing games, and that they needed to be treated as peers
who were respected.

No, I don’t think it had anything to do with fancy certificates hanging on walls
or a few extra years of college, although those years of college might have
included a fair bit of implicit social training on how to behave.

Ever since that day, those long years ago, I’ve wondered how the technical
profession would have to change in order to be regarded as professionals.

Oh, I have a few ideas. I’ve blogged a bit, read a lot, managed to improve my
own work life situation and help a few others. Yet I knew of no book that laid
out a plan, that made the whole thing explicit.

Then one day, out of the blue, I got an offer to review an early draft of a book;
the book that you are holding in your hands right now.

This book will tell step by step exactly how to present yourself and interact as a
professional. Not with trite cliché, not with appeals to pieces of paper, but what
you can do and how to do it.

In some cases, the examples are word for word.

Some of those examples have replies, counter-replies, clarifications, even advice
for what to do if the other person tries to “just ignore you.”

Martin_FMB2.indd xi 10/17/11 9:55 AM

xii

FOREWORD

Hey, look at that, here comes Joe again, stage left this time:

Oh, here we are, back at BigCo, with Joe and me, once more on the big web site
conversion project.

Only this time, imagine it just a little bit differently.

Instead of shirking from commitments, the technical staff actually makes them.
Instead of shirking from estimates or letting someone else do the planning
(then complaining about it), the technical team actually self-organizes and
makes real commitments.

Now imagine that the staff is actually working together. When the programmers
are blocked by operations, they pick up the phone and the sysadmin actually
gets started on the work.

When Joe comes by to light a fire to get ticket 14321 worked on, he doesn’t need
to; he can see that the DBA is working diligently, not surfing the web. Likewise,
the estimates he gets from staff seem downright consistent, and he doesn’t get
the feeling that the project is in priority somewhere between lunch and
checking email. All the tricks and attempts to manipulate the schedule are not
met with, “We’ll try,” but instead, “That’s our commitment; if you want to make
up your own goals, feel free.”

After a while, I suspect Joe would start to think of the technical team as, well,
professionals. And he’d be right.

Those steps to transform your behavior from technician to professional? You’ll
find them in the rest of the book.

Welcome to the next step in your career; I suspect you are going to like it.

—Matthew Heusser
 Software Process Naturalist

Martin_FMB2.indd xii 10/17/11 9:55 AM

xiii

 PR E FAC E

 At 11:39 AM EST on January 28, 1986, just 73.124 seconds after launch and at an
altitude of 48,000 feet, the Space Shuttle Challenger was torn to smithereens by
the failure of the right-hand solid rocket booster (SRB). Seven brave astronauts,
including high school teacher Christa McAuliffe, were lost. The expression on
the face of McAuliffe’s mother as she watched the demise of her daughter nine
miles overhead haunts me to this day.

 The Challenger broke up because hot exhaust gasses in the failing SRB leaked
out from between the segments of its hull, splashing across the body of the

Martin_FMB2.indd xiii 10/17/11 9:55 AM

xiv

PREFACE

external fuel tank. The bottom of the main liquid hydrogen tank burst, igniting
the fuel and driving the tank forward to smash into the liquid oxygen tank
above it. At the same time the SRB detached from its aft strut and rotated
around its forward strut. Its nose punctured the liquid oxygen tank. These
aberrant force vectors caused the entire craft, moving well above mach 1.5, to
rotate against the airstream. Aerodynamic forces quickly tore everything to
shreds.

 Between the circular segments of the SRB there were two concentric synthetic
rubber O-rings. When the segments were bolted together the O-rings were
compressed, forming a tight seal that the exhaust gasses should not have been
able to penetrate.

 But on the evening before the launch, the temperature on the launch pad got
down to 17°F, 23 degrees below the O-rings’ minimum specified temperature
and 33 degrees lower than any previous launch. As a result, the O-rings grew
too stiff to properly block the hot gasses. Upon ignition of the SRB there was a
pressure pulse as the hot gasses rapidly accumulated. The segments of the
booster ballooned outward and relaxed the compression on the O-rings. The
stiffness of the O-rings prevented them from keeping the seal tight, so some
of the hot gasses leaked through and vaporized the O-rings across 70 degrees
of arc.

 The engineers at Morton Thiokol who designed the SRB had known that there
were problems with the O-rings, and they had reported those problems to
managers at Morton Thiokol and NASA seven years earlier. Indeed, the O-rings
from previous launches had been damaged in similar ways, though not enough
to be catastrophic. The coldest launch had experienced the most damage. The
engineers had designed a repair for the problem, but implementation of that
repair had been long delayed.

 The engineers suspected that the O-rings stiffened when cold. They also knew
that temperatures for the Challenger launch were colder than any previous
launch and well below the red-line. In short, the engineers knew that the risk
was too high. The engineers acted on that knowledge. They wrote memos

Martin_FMB2.indd xiv 10/17/11 9:55 AM

xv

PREFACE

raising giant red flags. They strongly urged Thiokol and NASA managers not to
launch. In an eleventh-hour meeting held just hours before the launch, those
engineers presented their best data. They raged, and cajoled, and protested. But
in the end, the managers ignored them.

 When the time for launch came, some of the engineers refused to watch the
broadcast because they feared an explosion on the pad. But as the Challenger
climbed gracefully into the sky they began to relax. Moments before the
destruction, as they watched the vehicle pass through Mach 1, one of them said
that they’d “dodged a bullet.”

 Despite all the protest and memos, and urgings of the engineers, the managers
believed they knew better. They thought the engineers were overreacting. They
didn’t trust the engineers’ data or their conclusions. They launched because they
were under immense financial and political pressure. They hoped everything
would be just fine.

 These managers were not merely foolish, they were criminal. The lives of seven
good men and women, and the hopes of a generation looking toward space
travel, were dashed on that cold morning because those managers set their own
fears, hopes, and intuitions above the words of their own experts. They made a
decision they had no right to make. They usurped the authority of the people
who actually knew : the engineers.

 But what about the engineers? Certainly the engineers did what they were
supposed to do. They informed their managers and fought hard for their
position. They went through the appropriate channels and invoked all the right
protocols. They did what they could, within the system—and still the managers
overrode them. So it would seem that the engineers can walk away without
blame.

 But sometimes I wonder whether any of those engineers lay awake at night,
haunted by that image of Christa McAuliffe’s mother, and wishing they’d called
Dan Rather.

Martin_FMB2.indd xv 10/17/11 9:55 AM

 ABO UT TH I S BO O K

 This book is about software professionalism. It contains a lot of pragmatic
advice in an attempt to answer questions, such as

 • What is a software professional?

 • How does a professional behave?

 • How does a professional deal with conflict, tight schedules, and unreasonable
managers?

 • When, and how, should a professional say “no”?

 • How does a professional deal with pressure?

 But hiding within the pragmatic advice in this book you will find an attitude
struggling to break through. It is an attitude of honesty, of honor, of self-
respect, and of pride. It is a willingness to accept the dire responsibility of being
a craftsman and an engineer. That responsibility includes working well and
working clean. It includes communicating well and estimating faithfully. It
includes managing your time and facing difficult risk-reward decisions.

 But that responsibility includes one other thing—one frightening thing. As an
engineer, you have a depth of knowledge about your systems and projects that
no managers can possibly have. With that knowledge comes the responsibility
to act .

 B I B LI O G R A PH Y

 [McConnell87]: Malcolm McConnell, Challenger ‘A Major Malfunction’ , New
York, NY: Simon & Schuster, 1987

 [Wiki-Challenger]: “ Space Shuttle Challenger disaster,”

 http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster

PREFACE

xvi

Martin_FMB2.indd xvi 10/17/11 9:55 AM

http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster

xvii

 AC K N OW LE DG M E NT S

 My career has been a series of collaborations and schemes. Though I’ve had
many private dreams and aspirations, I always seemed to find someone to share
them with. In that sense I feel a bit like the Sith, “Always two there are.”

 The first collaboration that I could consider professional was with John
Marchese at the age of 13. He and I schemed about building computers
together. I was the brains and he was the brawn. I showed him where to solder a
wire and he soldered it. I showed him where to mount a relay and he mounted
it. It was a load of fun, and we spent hundreds of hours at it. In fact, we built
quite a few very impressive-looking objects with relays, buttons, lights, even
Teletypes! Of course, none of them actually did anything, but they were very
impressive and we worked very hard on them. To John: Thank you!

 In my freshman year of high school I met Tim Conrad in my German class.
Tim was smart . When we teamed up to build a computer, he was the brains and
I was the brawn. He taught me electronics and gave me my first introduction to
a PDP-8. He and I actually built a working electronic 18-bit binary calculator
out of basic components. It could add, subtract, multiply, and divide. It took us
a year of weekends and all of spring, summer, and Christmas breaks. We worked
furiously on it. In the end, it worked very nicely. To Tim: Thank you!

Martin_FMB2.indd xvii 10/17/11 9:55 AM

xviii

ACKNOWLEDGMENTS

 Tim and I learned how to program computers. This wasn’t easy to do in 1968,
but we managed. We got books on PDP-8 assembler, Fortran, Cobol, PL/1,
among others. We devoured them. We wrote programs that we had no hope of
executing because we did not have access to a computer. But we wrote them
anyway for the sheer love of it.

 Our high school started a computer science curriculum in our sophomore year.
They hooked up an ASR-33 Teletype to a 110-baud, dial-up modem. They had
an account on the Univac 1108 time-sharing system at the Illinois Institute of
Technology. Tim and I immediately became the de facto operators of that
machine. Nobody else could get near it.

 The modem was connected by picking up the telephone and dialing the
number. When you heard the answering modem squeal, you pushed the “orig”
button on the Teletype causing the originating modem to emit its own squeal.
Then you hung up the phone and the data connection was established.

 The phone had a lock on the dial. Only the teachers had the key. But that didn’t
matter, because we learned that you could dial a phone (any phone) by tapping
out the phone number on the switch hook. I was a drummer, so I had pretty
good timing and reflexes. I could dial that modem, with the lock in place, in less
than 10 seconds.

 We had two Teletypes in the computer lab. One was the online machine and the
other was an offline machine. Both were used by students to write their
programs. The students would type their programs on the Teletypes with the
paper tape punch engaged. Every keystroke was punched on tape. The students
wrote their programs in IITran, a remarkably powerful interpreted language.
Students would leave their paper tapes in a basket near the Teletypes.

 After school, Tim and I would dial up the computer (by tapping of course),
load the tapes into the IITran batch system, and then hang up. At 10 characters
per second, this was not a quick procedure. An hour or so later, we’d call back
and get the printouts, again at 10 characters per second. The Teletype did not
separate the students’ listings by ejecting pages. It just printed one after the next

Martin_FMB2.indd xviii 10/17/11 9:55 AM

xix

ACKNOWLEDGMENTS

after the next, so we cut them apart using scissors, paper-clipped their input
paper tape to their listing, and put them in the output basket.

 Tim and I were the masters and gods of that process. Even the teachers left us
alone when we were in that room. We were doing their job, and they knew it.
They never asked us to do it. They never told us we could. They never gave us
the key to the phone. We just moved in, and they moved out—and they gave us
a very long leash. To my Math teachers, Mr. McDermit, Mr. Fogel, and Mr.
Robien: Thank you!

 Then, after all the student homework was done, we would play. We wrote
program after program to do any number of mad and weird things. We wrote
programs that graphed circles and parabolas in ASCII on a Teletype. We wrote
random walk programs and random word generators. We calculated 50 factorial
to the last digit. We spent hours and hours inventing programs to write and
then getting them to work.

 Two years later, Tim, our compadre Richard Lloyd, and I were hired as
programmers at ASC Tabulating in Lake Bluff, Illinois. Tim and I were 18 at the
time. We had decided that college was a waste of time and that we should begin
our careers immediately. It was here that we met Bill Hohri, Frank Ryder, Big
Jim Carlin, and John Miller. They gave some youngsters the opportunity to
learn what professional programming was all about. The experience was not all
positive and not all negative. It was certainly educational. To all of them, and to
Richard who catalyzed and drove much of that process: Thank you.

 After quitting and melting down at the age of 20, I did a stint as a lawn mower
repairman working for my brother-in-law. I was so bad at it that he had to fire
me. Thanks, Wes!

 A year or so later I wound up working at Outboard Marine Corporation. By
this time I was married and had a baby on the way. They fired me too. Thanks,
John, Ralph, and Tom!

Martin_FMB2.indd xix 10/17/11 9:55 AM

xx

ACKNOWLEDGMENTS

 Then I went to work at Teradyne where I met Russ Ashdown, Ken Finder, Bob
Copithorne, Chuck Studee, and CK Srithran (now Kris Iyer). Ken was my boss.
Chuck and CK were my buds. I learned so much from all of them. Thanks, guys!

 Then there was Mike Carew. At Teradyne, he and I became the dynamic duo.
We wrote several systems together. If you wanted to get something done, and
done fast, you got Bob and Mike to do it. We had a load of fun together.
Thanks, Mike!

Jerry Fitzpatrick also worked at Teradyne. We met while playing Dungeons &
Dragons together, but quickly formed a collaboration. We wrote software on a
Commodore 64 to support D&D users. We also started a new project at
Teradyne called “The Electronic Receptionist.” We worked together for several
years, and he became, and remains, a great friend. Thanks, Jerry!

 I spent a year in England while working for Teradyne. There I teamed up with
Mike Kergozou. He and I schemed together about all manner of things, though
most of those schemes had to do with bicycles and pubs. But he was a dedicated
programmer who was very focused on quality and discipline (though, perhaps
he would disagree). Thanks, Mike!

 Returning from England in 1987, I started scheming with Jim Newkirk. We
both left Teradyne (months apart) and joined a start-up named Clear
Communications. We spent several years together there toiling to make the
millions that never came. But we continued our scheming. Thanks, Jim!

 In the end we founded Object Mentor together. Jim is the most direct,
disciplined, and focused person with whom I’ve ever had the privilege to work.
He taught me so many things, I can’t enumerate them here. Instead, I have
dedicated this book to him.

 There are so many others I’ve schemed with, so many others I’ve collaborated
with, so many others who have had an impact on my professional life: Lowell
Lindstrom, Dave Thomas, Michael Feathers, Bob Koss, Brett Schuchert, Dean
Wampler, Pascal Roy, Jeff Langr, James Grenning, Brian Button, Alan Francis,

Martin_FMB2.indd xx 10/17/11 9:55 AM

xxi

ACKNOWLEDGMENTS

Mike Hill, Eric Meade, Ron Jeffries, Kent Beck, Martin Fowler, Grady Booch,
and an endless list of others. Thank you, one and all.

 Of course, the greatest collaborator of my life has been my lovely wife, Ann
Marie. I married her when I was 20, three days after she turned 18. For 38 years
she has been my steady companion, my rudder and sail, my love and my life. I
look forward to another four decades with her.

 And now, my collaborators and scheming partners are my children. I work
closely with my eldest daughter Angela, my lovely mother hen and intrepid
assistant. She keeps me on the straight and narrow and never lets me forget a
date or commitment. I scheme business plans with my son Micah, the founder
of 8thlight.com. His head for business is far better than mine ever was. Our
latest venture, cleancoders.com, is very exciting!

 My younger son Justin has just started working with Micah at 8th Light. My
younger daughter Gina is a chemical engineer working for Honeywell. With
those two, the serious scheming has just begun!

 No one in your life will teach you more than your children will. Thanks, kids!

Martin_FMB2.indd xxi 10/17/11 9:55 AM

This page intentionally left blank

xxiii

 ABO UT TH E AUTH O R

 Robert C. Martin (“Uncle Bob”) has been a programmer since 1970. He is
founder and president of Object Mentor, Inc., an international firm of highly
experienced software developers and managers who specialize in helping
companies get their projects done. Object Mentor offers process improvement
consulting, object-oriented software design consulting, training, and skill
development services to major corporations worldwide.

 Martin has published dozens of articles in various trade journals and is a
regular speaker at international conferences and trade shows.

 He has authored and edited many books, including:

 • Designing Object Oriented C++ Applications Using the Booch Method

 • Patterns Languages of Program Design 3

Martin_FMB2.indd xxiii 10/17/11 9:55 AM

xxiv

 • More C++ Gems

 • Extreme Programming in Practice

 • Agile Software Development: Principles, Patterns, and Practices

 • UML for Java Programmers

 • Clean Code

 A leader in the industry of software development, Martin served for three years
as editor-in-chief of the C++ Report , and he served as the first chairman of the
Agile Alliance.

 Robert is also the founder of Uncle Bob Consulting, LLC, and cofounder with
his son Micah Martin of The Clean Coders LLC.

ABOUT THE AUTHOR

Martin_FMB2.indd xxiv 10/17/11 9:55 AM

xxv

 ON TH E COV E R

 The stunning image on the cover, reminiscent of Sauron’s eye, is M1, the Crab
Nebula. M1 is located in Taurus, about one degree to the right of Zeta Tauri, the
star at the tip of the bull’s left horn. The crab nebula is the remnant of a super-
nova that blew its guts all over the sky on the rather auspicious date of July 4th,
1054 AD. At a distance of 6500 light years, that explosion appeared to Chinese

Martin_FMB2.indd xxv 10/17/11 9:55 AM

xxvi

observers as a new star, roughly as bright as Jupiter. Indeed, it was visible during
the day ! Over the next six months it slowly faded from naked-eye view.

 The cover image is a composite of visible and X-ray light. The visible image was
taken by the Hubble telescope and forms the outer envelope. The inner object
that looks like a blue archery target was taken by the Chandra x-ray telescope.

 The visible image depicts a rapidly expanding cloud of dust and gas laced with
heavy elements left over from the supernova explosion. That cloud is now 11
light-years in diameter, weighs in at 4.5 solar masses, and is expanding at the
furious rate of 1500 kilometers per second. The kinetic energy of that old
explosion is impressive to say the least.

 At the very center of the target is a bright blue dot. That’s where the pulsar is. It
was the formation of the pulsar that caused the star to blow up in the first place.
Nearly a solar mass of material in the core of the doomed star imploded into a
sphere of neutrons about 30 kilometers in diameter. The kinetic energy of that
implosion, coupled with the incredible barrage of neutrinos created when all
those neutrons formed, ripped the star open, and blew it to kingdom come.

 The pulsar is spinning about 30 times per second; and it flashes as it spins. We
can see it blinking in our telescopes. Those pulses of light are the reason we call
it a pulsar, which is short for Pulsating Star.

ON THE COVER

Martin_FMB2.indd xxvi 10/17/11 9:55 AM

1B

 PR E-REQU I S ITE
INTRO D U CTI O N

 (Don’t skip this, you’re going to need it.)

 I presume you just picked up this book because you are a computer
programmer and are intrigued by the notion of professionalism. You should be.
Professionalism is something that our profession is in dire need of.

 I’m a programmer too. I’ve been a programmer for 421 years; and in that time—
 let me tell you —I’ve seen it all. I’ve been fired. I’ve been lauded. I’ve been a
team leader, a manager, a grunt, and even a CEO. I’ve worked with brilliant

1. Don’t Panic.

2B

PRE-REQUISITE INTRODUCTION

programmers and I’ve worked with slugs .2 I’ve worked on high-tech cutting-
edge embedded software/hardware systems, and I’ve worked on corporate
payroll systems. I’ve programmed in COBOL, FORTRAN, BAL, PDP-8, PDP-11,
C, C++, Java, Ruby, Smalltalk, and a plethora of other languages and systems.
I’ve worked with untrustworthy paycheck thieves, and I’ve worked with
consummate professionals. It is that last classification that is the topic of this
book.

 In the pages of this book I will try to define what it means to be a professional
programmer. I will describe the attitudes, disciplines, and actions that I consider
to be essentially professional.

 How do I know what these attitudes, disciplines, and actions are? Because I had
to learn them the hard way. You see, when I got my first job as a programmer,
professional was the last word you’d have used to describe me.

 The year was 1969. I was 17. My father had badgered a local business named
ASC into hiring me as a temporary part-time programmer. (Yes, my father
could do things like that. I once watched him walk out in front of a speeding
car with his hand out commanding it to “Stop!” The car stopped. Nobody said
“no” to my Dad.) The company put me to work in the room where all the IBM
computer manuals were kept. They had me put years and years of updates into
the manuals. It was here that I first saw the phrase: “This page intentionally left
blank.”

 After a couple of days of updating manuals, my supervisor asked me to write a
simple Easycoder3 program. I was thrilled to be asked. I’d never written a
program for a real computer before. I had, however, inhaled the Autocoder
books, and had a vague notion of how to begin.

 The program was simply to read records from a tape, and replace the IDs of
those records with new IDs. The new IDs started at 1 and were incremented by

2. A technical term of unknown origins.

3. Easycoder was the assembler for the Honeywell H200 computer, which was similar to

Autocoder for the IBM 1401 computer.

3B

PRE-REQUISITE INTRODUCTION

1 for each new record. The records with the new IDs were to be written to a
new tape.

 My supervisor showed me a shelf that held many stacks of red and blue
punched cards. Imagine that you bought 50 decks of playing cards, 25 red
decks, and 25 blue decks. Then you stacked those decks one on top of the other.
That’s what these stacks of cards looked like. They were striped red and blue,
and the stripes were about 200 cards each. Each one of those stripes contained
the source code for the subroutine library that the programmers typically used.
Programmers would simply take the top deck off the stack, making sure that
they took nothing but red or blue cards, and then put that at the end of their
program deck.

 I wrote my program on some coding forms. Coding forms were large
rectangular sheets of paper divided into 25 lines and 80 columns. Each line
represented one card. You wrote your program on the coding form using block
capital letters and a #2 pencil. In the last 6 columns of each line you wrote a
sequence number with that #2 pencil. Typically you incremented the sequence
number by 10 so that you could insert cards later.

 The coding form went to the key punchers. This company had several dozen
women who took coding forms from a big in-basket, and then “typed” them
into key-punch machines. These machines were a lot like typewriters, except
that the characters were punched into cards instead of printed on paper.

 The next day the keypunchers returned my program to me by inter-office mail.
My small deck of punched cards was wrapped up by my coding forms and a
rubber band. I looked over the cards for keypunch errors. There weren’t any. So
then I put the subroutine library deck on the end of my program deck, and
then took the deck upstairs to the computer operators.

 The computers were behind locked doors in an environmentally controlled
room with a raised floor (for all the cables). I knocked on the door and an
operator austerely took my deck from me and put it into another in-basket
inside the computer room. When they got around to it, they would run my
deck.

4B

PRE-REQUISITE INTRODUCTION

 The next day I got my deck back. It was wrapped in a listing of the results of the
run and kept together with a rubber band. (We used lots of rubber bands in
those days!)

 I opened the listing and saw that my compile had failed. The error messages in
the listing were very difficult for me to understand, so I took it to my
supervisor. He looked it over, mumbled under his breath, made some quick
notes on the listing, grabbed my deck and then told me to follow him.

 He took me up to the keypunch room and sat at a vacant keypunch machine.
One by one he corrected the cards that were in error, and added one or two
other cards. He quickly explained what he was doing, but it all went by like a
flash.

 He took the new deck up to the computer room and knocked at the door. He
said some magic words to one of the operators, and then walked into the
computer room behind him. He beckoned for me to follow. The operator set up
the tape drives and loaded the deck while we watched. The tapes spun, the
printer chattered, and then it was over. The program had worked.

 The next day my supervisor thanked me for my help, and terminated my
employment. Apparently ASC didn’t feel they had the time to nurture a
17-year-old.

 But my connection with ASC was hardly over. A few months later I got a full-
time second-shift job at ASC operating off-line printers. These printers printed
junk mail from print images that were stored on tape. My job was to load the
printers with paper, load the tapes into the tape drives, fix paper jams, and
otherwise just watch the machines work.

 The year was 1970. College was not an option for me, nor did it hold any
particular enticements. The Viet Nam war was still raging, and the campuses
were chaotic. I had continued to inhale books on COBOL, Fortran, PL/1,
PDP-8, and IBM 360 Assembler. My intent was to bypass school and drive as
hard as I could to get a job programming.

5B

PRE-REQUISITE INTRODUCTION

 Twelve months later I achieved that goal. I was promoted to a full-time
programmer at ASC. I, and two of my good friends, Richard and Tim, also 19,
worked with a team of three other programmers writing a real-time accounting
system for a teamster’s union. The machine was a Varian 620i. It was a simple
mini-computer similar in architecture to a PDP-8 except that it had a 16-bit
word and two registers. The language was assembler.

 We wrote every line of code in that system. And I mean every line. We wrote the
operating system, the interrupt heads, the IO drivers, the file system for the
disks, the overlay swapper, and even the relocatable linker. Not to mention all
the application code. We wrote all this in 8 months working 70 and 80 hours a
week to meet a hellish deadline. My salary was $7,200 per year.

 We delivered that system. And then we quit.

 We quit suddenly, and with malice. You see, after all that work, and after having
delivered a successful system, the company gave us a 2% raise. We felt cheated
and abused. Several of us got jobs elsewhere and simply resigned.

 I, however, took a different, and very unfortunate, approach. I and a buddy
stormed into the boss’ office and quit together rather loudly. This was
emotionally very satisfying—for a day.

 The next day it hit me that I did not have a job. I was 19, unemployed, with no
degree. I interviewed for a few programming positions, but those interviews did
not go well. So I worked in my brother-in-law’s lawnmower repair shop for four
months. Unfortunately I was a lousy lawnmower repairman. He eventually had
to let me go. I fell into a nasty funk.

 I stayed up till 3 AM every night eating pizza and watching old monster movies
on my parents’ old black-and-white, rabbit-ear TV. Only some of the ghosts
where characters in the movies. I stayed in bed till 1 PM because I didn’t want to
face my dreary days. I took a calculus course at a local community college and
failed it. I was a wreck.

6B

PRE-REQUISITE INTRODUCTION

 My mother took me aside and told me that my life was a mess, and that I had
been an idiot for quitting without having a new job, and for quitting so
emotionally, and for quitting together with my buddy. She told me that you
never quit without having a new job, and you always quit calmly, coolly, and
alone. She told me that I should call my old boss and beg for my old job back.
She said, “You need to eat some humble pie.”

 Nineteen-year-old boys are not known for their appetite for humble pie, and I
was no exception. But the circumstances had taken their toll on my pride. In the
end I called my boss and took a big bite of that humble pie. And it worked. He
was happy to re-hire me for $6,800 per year, and I was happy to take it.

 I spent another eighteen months working there, watching my Ps and Qs
and trying to be as valuable an employee as I could. I was rewarded with
promotions and raises, and a regular paycheck. Life was good. When I left that
company, it was on good terms, and with an offer for a better job in my pocket.

 You might think that I had learned my lesson; that I was now a professional. Far
from it. That was just the first of many lessons I needed to learn. In the coming
years I would be fired from one job for carelessly missing critical dates, and
nearly fired from still another for inadvertently leaking confidential information
to a customer. I would take the lead on a doomed project and ride it into the
ground without calling for the help I knew I needed. I would aggressively
defend my technical decisions even though they flew in the face of the
customers’ needs. I would hire one wholly unqualified person, saddling my
employer with a huge liability to deal with. And worst of all, I would get two
other people fired because of my inability to lead.

 So think of this book as a catalog of my own errors, a blotter of my own crimes,
and a set of guidelines for you to avoid walking in my early shoes.

57B

4CO D I N G

 In a previous book 1 I wrote a great deal about the structure and nature of Clean Code .
This chapter discusses the act of coding, and the context that surrounds that act.

 When I was 18 I could type reasonably well, but I had to look at the keys.
I could not type blind. So one evening I spent a few long hours at an IBM 029
keypunch refusing to look at my fingers as I typed a program that I had written
on several coding forms. I examined each card after I typed it and discarded
those that were typed wrong.

1. [Martin09]

CHAPTER 4 CODING

58B

 At first I typed quite a few in error. By the end of the evening I was typing them
all with near perfection. I realized, during that long night, that typing blind is
all about confidence. My fingers knew where the keys were, I just had to gain
the confidence that I wasn’t making a mistake. One of the things that helped
with that confidence is that I could feel when I was making an error. By the end
of the evening, if I made a mistake, I knew it almost instantly and simply
ejected the card without looking at it.

 Being able to sense your errors is really important. Not just in typing, but in
everything. Having error-sense means that you very rapidly close the feedback
loop and learn from your errors all the more quickly. I’ve studied, and mastered,
several disciplines since that day on the 029. I’ve found that in each case that the
key to mastery is confidence and error-sense.

 This chapter describes my personal set of rules and principles for coding. These rules
and principles are not about my code itself; they are about my behavior, mood, and
attitude while writing code. They describe my own mental, moral, and emotional
context for writing code. These are the roots of my confidence and error-sense.

 You will likely not agree with everything I say here. After all, this is deeply personal
stuff. In fact, you may violently disagree with some of my attitudes and principles.
That’s OK—they are not intended to be absolute truths for anyone other than me.
What they are is one man’s approach to being a professional coder.

 Perhaps, by studying and contemplating my own personal coding milieu you
can learn to snatch the pebble from my hand.

 PR E PA R E D N E S S

 Coding is an intellectually challenging and exhausting activity. It requires a level
of concentration and focus that few other disciplines require. The reason for
this is that coding requires you to juggle many competing factors at once.

1. First, your code must work. You must understand what problem you are
solving and understand how to solve that problem. You must ensure that the
code you write is a faithful representation of that solution. You must manage

PREPAREDNESS

59B

every detail of that solution while remaining consistent within the language,
platform, current architecture, and all the warts of the current system.

2. Your code must solve the problem set for you by the customer. Often the
customer’s requirements do not actually solve the customer’s problems. It is
up to you to see this and negotiate with the customer to ensure that the
customer’s true needs are met.

3. Your code must fit well into the existing system. It should not increase the
rigidity, fragility, or opacity of that system. The dependencies must be well-
managed. In short, your code needs to follow solid engineering principles. 2

4. Your code must be readable by other programmers. This is not simply a
matter of writing nice comments. Rather, it requires that you craft the code in
such a way that it reveals your intent. This is hard to do. Indeed, this may be
the most difficult thing a programmer can master.

 Juggling all these concerns is hard. It is physiologically difficult to maintain the
necessary concentration and focus for long periods of time. Add to this the
problems and distractions of working in a team, in an organization, and the
cares and concerns of everyday life. The bottom line is that the opportunity for
distraction is high.

 When you cannot concentrate and focus sufficiently, the code you write will be
wrong. It will have bugs. It will have the wrong structure. It will be opaque and
convoluted. It will not solve the customers’ real problems. In short, it will have
to be reworked or redone. Working while distracted creates waste.

 If you are tired or distracted, do not code . You’ll only wind up redoing what you
did. Instead, find a way to eliminate the distractions and settle your mind.

 3 A M CO D E

 The worst code I ever wrote was at 3 AM . The year was 1988, and I was working
at a telecommunications start-up named Clear Communications. We were all
putting in long hours in order to build “sweat equity.” We were, of course, all
dreaming of being rich.

2. [Martin03]

CHAPTER 4 CODING

60B

 One very late evening—or rather, one very early morning, in order to solve a
timing problem—I had my code send a message to itself through the event
dispatch system (we called this “sending mail”). This was the wrong solution,
but at 3 AM it looked pretty damned good. Indeed, after 18 hours of solid coding
(not to mention the 60–70 hour weeks) it was all I could think of.

 I remember feeling so good about myself for the long hours I was working.
I remember feeling dedicated . I remember thinking that working at 3 AM is what
serious professionals do. How wrong I was!

 That code came back to bite us over and over again. It instituted a faulty design
structure that everyone used but consistently had to work around. It caused all
kinds of strange timing errors and odd feedback loops. We’d get into infinite
mail loops as one message caused another to be sent, and then another,
infinitely. We never had time to rewrite this wad (so we thought) but we always
seemed to have time to add another wart or patch to work around it. The cruft
grew and grew, surrounding that 3 AM code with ever more baggage and side
effects. Years later it had become a team joke. Whenever I was tired or frustrated
they’d say, “Look out! Bob’s about to send mail to himself!”

 The moral of this story is: Don’t write code when you are tired. Dedication and
professionalism are more about discipline than hours. Make sure that your sleep,
health, and lifestyle are tuned so that you can put in eight good hours per day.

 WO R RY CO D E

 Have you ever gotten into a big fight with your spouse or friend, and then tried
to code? Did you notice that there was a background process running in your
mind trying to resolve, or at least review the fight? Sometimes you can feel the
stress of that background process in your chest, or in the pit of your stomach.
It can make you feel anxious, like when you’ve had too much coffee or diet
coke. It’s distracting.

 When I am worried about an argument with my wife, or a customer crisis, or a
sick child, I can’t maintain focus. My concentration wavers. I find myself with
my eyes on the screen and my fingers on the keyboard, doing nothing. Catatonic.

PREPAREDNESS

61B

Paralyzed. A million miles away working through the problem in the
background rather than actually solving the coding problem in front of me.

 Sometimes I will force myself to think about the code. I might drive myself to
write a line or two. I might push myself to get a test or two to pass. But I can’t
keep it up. Inevitably I find myself descending into a stupefied insensibility, seeing
nothing through my open eyes, inwardly churning on the background worry.

 I have learned that this is no time to code. Any code I produce will be trash. So
instead of coding, I need to resolve the worry.

 Of course, there are many worries that simply cannot be resolved in an hour or
two. Moreover, our employers are not likely to long tolerate our inability to
work as we resolve our personal issues. The trick is to learn how to shut down
the background process, or at least reduce its priority so that it’s not a
continuous distraction.

 I do this by partitioning my time. Rather than forcing myself to code while the
background worry is nagging at me, I will spend a dedicated block of time,
perhaps an hour, working on the issue that is creating the worry. If my child is
sick, I will call home and check in. If I’ve had an argument with my wife, I’ll call
her and talk through the issues. If I have money problems, I’ll spend time
thinking about how I can deal with the financial issues. I know I’m not likely to
solve the problems in this hour, but it is very likely that I can reduce the anxiety
and quiet the background process.

 Ideally the time spent wrestling with personal issues would be personal time. It
would be a shame to spend an hour at the office this way. Professional developers
allocate their personal time in order to ensure that the time spent at the office is
as productive as possible. That means you should specifically set aside time at
home to settle your anxieties so that you don’t bring them to the office.

 On the other hand, if you find yourself at the office and the background
anxieties are sapping your productivity, then it is better to spend an hour
quieting them than to use brute force to write code that you’ll just have to
throw away later (or worse, live with).

CHAPTER 4 CODING

62B

 TH E FLOW ZO N E

 Much has been written about the hyper-productive state known as “flow.”
Some programmers call it “the Zone.” Whatever it is called, you are probably
familiar with it. It is the highly focused, tunnel-vision state of consciousness
that programmers can get into while they write code. In this state they feel
 productive . In this state they feel infallible . And so they desire to attain that
state, and often measure their self-worth by how much time they can
spend there.

 Here’s a little hint from someone whose been there and back: Avoid the Zone .
This state of consciousness is not really hyper-productive and is certainly not
infallible. It’s really just a mild meditative state in which certain rational
faculties are diminished in favor of a sense of speed.

 Let me be clear about this. You will write more code in the Zone. If you are
practicing TDD, you will go around the red/green/refactor loop more quickly.
And you will feel a mild euphoria or a sense of conquest. The problem is that
you lose some of the big picture while you are in the Zone, so you will likely
make decisions that you will later have to go back and reverse. Code written in
the Zone may come out faster, but you’ll be going back to visit it more.

 Nowadays when I feel myself slipping into the Zone, I walk away for a few minutes.
I clear my head by answering a few emails or looking at some tweets. If it’s close
enough to noon, I’ll break for lunch. If I’m working on a team, I’ll find a pair
partner.

 One of the big benefits of pair programming is that it is virtually impossible for
a pair to enter the Zone. The Zone is an uncommunicative state, while pairing
requires intense and constant communication. Indeed, one of the complaints I
often hear about pairing is that it blocks entry into the Zone. Good! The Zone
is not where you want to be.

 Well, that’s not quite true. There are times when the Zone is exactly where you
want to be. When you are practicing . But we’ll talk about that in another
chapter.

THE FLOW ZONE

63B

 MU S I C

 At Teradyne, in the late ’70s, I had a private office. I was the system administrator
of our PDP 11/60, and so I was one of the few programmers allowed to have a
private terminal. That terminal was a VT100 running at 9600 baud and connected
to the PDP 11 with 80 feet of RS232 cable that I had strung over the ceiling tiles
from my office to the computer room.

 I had a stereo system in my office. It was an old turntable, amp, and floor
speakers. I had a significant collection of vinyl, including Led Zeppelin, Pink
Floyd, and … . Well, you get the picture.

 I used to crank that stereo and then write code. I thought it helped my
concentration. But I was wrong.

 One day I went back into a module that I had been editing while listening to the
opening sequence of The Wall . The comments in that code contained lyrics
from the piece, and editorial notations about dive bombers and crying babies.

 That’s when it hit me. As a reader of the code, I was learning more about the
music collection of the author (me) than I was learning about the problem that
the code was trying to solve.

 I realized that I simply don’t code well while listening to music. The music does
not help me focus. Indeed, the act of listening to music seems to consume some
vital resource that my mind needs in order to write clean and well-designed code.

 Maybe it doesn’t work that way for you. Maybe music helps you write code. I
know lots of people who code while wearing earphones. I accept that the music
may help them, but I am also suspicious that what’s really happening is that the
music is helping them enter the Zone.

 INTE R R U P TI O N S

 Visualize yourself as you are coding at your workstation. How do you respond
when someone asks you a question? Do you snap at them? Do you glare? Does your
body-language tell them to go away because you are busy? In short, are you rude?

CHAPTER 4 CODING

64B

 Or, do you stop what you are doing and politely help someone who is stuck? Do
you treat them as you would have them treat you if you were stuck?

 The rude response often comes from the Zone. You may resent being dragged
out of the Zone, or you may resent someone interfering with your attempt to
enter the Zone. Either way, the rudeness often comes from your relationship to
the Zone.

 Sometimes, however, it’s not the Zone that’s at fault, it’s just that you are trying
to understand something complicated that requires concentration. There are
several solutions to this.

 Pairing can be very helpful as a way to deal with interruptions. Your pair partner
can hold the context of the problem at hand, while you deal with a phone call,
or a question from a coworker. When you return to your pair partner, he quickly
helps you reconstruct the mental context you had before the interruption.

 TDD is another big help. If you have a failing test, that test holds the context of
where you are. You can return to it after an interruption and continue to make
that failing test pass.

 In the end, of course, there will be interruptions that distract you and cause you
to lose time. When they happen, remember that next time you may be the one
who needs to interrupt someone else. So the professional attitude is a polite
willingness to be helpful.

 WR ITE R’S BLO C K

 Sometimes the code just doesn’t come. I’ve had this happen to me and I’ve seen
it happen to others. You sit at your workstation and nothing happens.

 Often you will find other work to do. You’ll read email. You’ll read tweets. You’ll
look through books, or schedules, or documents. You’ll call meetings. You’ll
start up conversations with others. You’ll do anything so that you don’t have to
face that workstation and watch as the code refuses to appear.

WRITER’S BLOCK

65B

 What causes such blockages? We’ve spoken about many of the factors already.
For me, another major factor is sleep. If I’m not getting enough sleep, I simply
can’t code. Others are worry, fear, and depression.

 Oddly enough there is a very simple solution. It works almost every time. It’s easy
to do, and it can provide you with the momentum to get lots of code written.

 The solution: Find a pair partner.

 It’s uncanny how well this works. As soon as you sit down next to someone else,
the issues that were blocking you melt away. There is a physiological change that
takes place when you work with someone. I don’t know what it is, but I can
definitely feel it. There’s some kind of chemical change in my brain or body that
breaks me through the blockage and gets me going again.

 This is not a perfect solution. Sometimes the change lasts an hour or two, only
to be followed by exhaustion so severe that I have to break away from my pair
partner and find some hole to recover in. Sometimes, even when sitting with
someone, I can’t do more than just agree with what that person is doing. But for
me the typical reaction to pairing is a recovery of my momentum.

 CR E ATI V E IN PU T

 There are other things I do to prevent blockage. I learned a long time ago that
creative output depends on creative input.

 I read a lot, and I read all kinds of material. I read material on software, politics,
biology, astronomy, physics, chemistry, mathematics, and much more. However,
I find that the thing that best primes the pump of creative output is science
fiction.

 For you, it might be something else. Perhaps a good mystery novel, or poetry, or
even a romance novel. I think the real issue is that creativity breeds creativity.
There’s also an element of escapism. The hours I spend away from my usual
problems, while being actively stimulated by challenging and creative ideas,
results in an almost irresistible pressure to create something myself.

CHAPTER 4 CODING

66B

 Not all forms of creative input work for me. Watching TV does not usually help
me create. Going to the movies is better, but only a bit. Listening to music does
not help me create code, but does help me create presentations, talks, and
videos. Of all the forms of creative input, nothing works better for me than
good old space opera.

 DE B U G G I N G

 One of the worst debugging sessions in my career happened in 1972. The
terminals connected to the Teamsters’ accounting system used to freeze once or
twice a day. There was no way to force this to happen. The error did not prefer
any particular terminals or any particular applications. It didn’t matter what the
user had been doing before the freeze. One minute the terminal was working
fine, and the next minute it was hopelessly frozen.

 It took weeks to diagnose this problem. Meanwhile the Teamsters’ were getting
more and more upset. Every time there was a freeze-up the person at that
terminal would have to stop working and wait until they could coordinate all
the other users to finish their tasks. Then they’d call us and we’d reboot. It was a
nightmare.

 We spent the first couple of weeks just gathering data by interviewing the
people who experienced the lockups. We’d ask them what they were doing at
the time, and what they had done previously. We asked other users if they
noticed anything on their terminals at the time of the freeze-up. These
interviews were all done over the phone because the terminals were located in
downtown Chicago, while we worked 30 miles north in the cornfields.

 We had no logs, no counters, no debuggers. Our only access to the internals of
the system were lights and toggle switches on the front panel. We could stop the
computer, and then peek around in memory one word at a time. But we
couldn’t do this for more than five minutes because the Teamsters’ needed their
system back up.

 We spent a few days writing a simple real-time inspector that could be operated
from the ASR-33 teletype that served as our console. With this we could peek

DEBUGGING

67B

and poke around in memory while the system was running. We added log
messages that printed on the teletype at critical moments. We created in-memory
counters that counted events and remembered state history that we could
inspect with the inspector. And, of course, all this had to be written from
scratch in assembler and tested in the evenings when the system was not in use.

 The terminals were interrupt driven. The characters being sent to the terminals
were held in circular buffers. Every time a serial port finished sending a character,
an interrupt would fire and the next character in the circular buffer would be
readied for sending.

 We eventually found that when a terminal froze it was because the three variables
that managed the circular buffer were out of sync. We had no idea why this was
happening, but at least it was a clue. Somewhere in the 5 KSLOC of supervisory
code there was a bug that mishandled one of those pointers.

 This new knowledge also allowed us to un-freeze terminals manually! We could
poke default values into those three variables using the inspector, and the
terminals would magically start running again. Eventually we wrote a little hack
that would look through all the counters to see if they were misaligned and
repair them. At first we invoked that hack by hitting a special user-interrupt
switch on the front panel whenever the Teamsters called to report a freeze-up.
Later we simply ran the repair utility once every second.

 A month or so later the freeze-up issue was dead, as far as the Teamsters were
concerned. Occasionally one of their terminals would pause for a half second or
so, but at a base rate of 30 characters per second, nobody seemed to notice.

 But why were the counters getting misaligned? I was nineteen and determined
to find out.

 The supervisory code had been written by Richard, who had since gone off to
college. None of the rest of us were familiar with that code because Richard had
been quite possessive of it. That code was his , and we weren’t allowed to know
it. But now Richard was gone, so I got out the inches-thick listing and started to
go over it page by page.

CHAPTER 4 CODING

68B

 The circular queues in that system were just FIFO data structures, that is,
queues. Application programs pushed characters in one end of the queue until
the queue was full. The interrupt heads popped the characters off the other end
of the queue when the printer is ready for them. When the queue was empty,
the printer would stop. Our bug caused the applications to think that the queue
was full, but caused the interrupt heads to think that the queue was empty.

 Interrupt heads run in a different “thread” than all other code. So counters and
variables that are manipulated by both interrupt heads and other code must be
protected from concurrent update. In our case that meant turning the
interrupts off around any code that manipulated those three variables. By the
time I sat down with that code I knew I was looking for someplace in the code
that touched the variables but did not disable the interrupts first.

 Nowadays, of course, we’d use the plethora of powerful tools at our disposal to
find all the places where the code touched those variables. Within seconds we’d
know every line of code that touched them. Within minutes we’d know which
did not disable the interrupts. But this was 1972, and I didn’t have any tools like
that. What I had were my eyes.

 I pored over every page of that code, looking for the variables. Unfortunately,
the variables were used everywhere . Nearly every page touched them in one way
or another. Many of those references did not disable the interrupts because they
were read-only references and therefore harmless. The problem was, in that
particular assembler there was no good way to know if a reference was read-
only without following the logic of the code. Any time a variable was read, it
might later be updated and stored. And if that happened while the interrupts
were enabled, the variables could get corrupted.

 It took me days of intense study, but in the end I found it. There, in the middle
of the code, was one place where one of the three variables was being updated
while the interrupts were enabled.

 I did the math. The vulnerability was about two microseconds long. There were
a dozen terminals all running at 30 cps, so an interrupt every 3 ms or so. Given
the size of the supervisor, and the clock rate of the CPU, we’d expect a freeze-up
from this vulnerability one or two times a day. Bingo!

PACING YOURSELF

69B

 I fixed the problem, of course, but never had the courage to turn off the
automatic hack that inspected and fixed the counters. To this day I’m not
convinced there wasn’t another hole.

 DE B U G G I N G TI M E

 For some reason software developers don’t think of debugging time as coding
time. They think of debugging time as a call of nature, something that just has
to be done. But debugging time is just as expensive to the business as coding
time is, and therefore anything we can do to avoid or diminish it is good.

 Nowadays I spend much less time debugging than I did ten years ago. I haven’t
measured the difference, but I believe it’s about a factor of ten. I achieved this
truly radical reduction in debugging time by adopting the practice of Test
Driven Development (TDD), which we’ll be discussing in another chapter.

 Whether you adopt TDD or some other discipline of equal efficacy, 3 it is
incumbent upon you as a professional to reduce your debugging time as close
to zero as you can get. Clearly zero is an asymptotic goal, but it is the goal
nonetheless.

 Doctors don’t like to reopen patients to fix something they did wrong. Lawyers
don’t like to retry cases that they flubbed up. A doctor or lawyer who did that
too often would not be considered professional. Likewise, a software developer
who creates many bugs is acting unprofessionally.

 PAC I N G YO U R S E L F

 Software development is a marathon, not a sprint. You can’t win the race by
trying to run as fast as you can from the outset. You win by conserving your
resources and pacing yourself. A marathon runner takes care of her body both
before and during the race. Professional programmers conserve their energy and
creativity with the same care.

3. I don’t know of any discipline that is as effective as TDD, but perhaps you do.

CHAPTER 4 CODING

70B

 KN OW WH E N TO WA L K AWAY

 Can’t go home till you solve this problem? Oh yes you can, and you probably
should! Creativity and intelligence are fleeting states of mind. When you are
tired, they go away. If you then pound your nonfunctioning brain for hour after
late-night hour trying to solve a problem, you’ll simply make yourself more
tired and reduce the chance that the shower, or the car, will help you solve the
problem.

 When you are stuck, when you are tired, disengage for awhile. Give your
creative subconscious a crack at the problem. You will get more done in less
time and with less effort if you are careful to husband your resources. Pace
yourself, and your team. Learn your patterns of creativity and brilliance, and
take advantage of them rather than work against them.

 DR I V I N G HO M E

 One place that I have solved a number of problems is my car on the way home
from work. Driving requires a lot of noncreative mental resources. You must
dedicate your eyes, hands, and portions of your mind to the task; therefore, you
must disengage from the problems at work. There is something about
 disengagement that allows your mind to hunt for solutions in a different and
more creative way.

 TH E SH OW E R

 I have solved an inordinate number of problems in the shower. Perhaps that
spray of water early in the morning wakes me up and gets me to review all the
solutions that my brain came up with while I was asleep.

 When you are working on a problem, you sometimes get so close to it that you
can’t see all the options. You miss elegant solutions because the creative part of
your mind is suppressed by the intensity of your focus. Sometimes the best way
to solve a problem is to go home, eat dinner, watch TV, go to bed, and then
wake up the next morning and take a shower.

BEING LATE

71B

 BE I N G L ATE

 You will be late. It happens to the best of us. It happens to the most dedicated of
us. Sometimes we just blow our estimates and wind up late.

 The trick to managing lateness is early detection and transparency. The worst
case scenario occurs when you continue to tell everyone, up to the very end,
that you will be on time—and then let them all down. Don’t do this. Instead,
 regularly measure your progress against your goal, and come up with three 4
fact-based end dates: best case, nominal case, and worst case. Be as honest as
you can about all three dates. Do not incorporate hope into your estimates!
Present all three numbers to your team and stakeholders. Update these
numbers daily.

 HO PE

 What if these numbers show that you might miss a deadline? For example, let’s
say that there’s a trade show in ten days, and we need to have our product there.
But let’s also say that your three-number estimate for the feature you are
working on is 8/12/20.

 Do not hope that you can get it all done in ten days! Hope is the project killer.
Hope destroys schedules and ruins reputations. Hope will get you into deep
trouble. If the trade show is in ten days, and your nominal estimate is 12, you
 are not going to make it. Make sure that the team and the stakeholders
understand the situation, and don’t let up until there is a fall-back plan. Don’t
let anyone else have hope.

 RU S H I N G

 What if your manager sits you down and asks you to try to make the deadline?
What if your manager insists that you “do what it takes”? Hold to your estimates!
Your original estimates are more accurate than any changes you make while

4. There’s much more about this in the Estimation chapter.

CHAPTER 4 CODING

72B

your boss is confronting you. Tell your boss that you’ve already considered the
options (because you have) and that the only way to improve the schedule is to
reduce scope. Do not be tempted to rush.

 Woe to the poor developer who buckles under pressure and agrees to try to
make the deadline. That developer will start taking shortcuts and working extra
hours in the vain hope of working a miracle. This is a recipe for disaster because
it gives you, your team, and your stakeholders false hope. It allows everyone to
avoid facing the issue and delays the necessary tough decisions.

 There is no way to rush. You can’t make yourself code faster. You can’t make
yourself solve problems faster. If you try, you’ll just slow yourself down and
make a mess that slows everyone else down, too.

 So you must answer your boss, your team, and your stakeholders by depriving
them of hope.

 OV E RTI M E

 So your boss says, “What if you work an extra two hours a day? What if you work
on Saturday? Come on, there’s just got to be a way to squeeze enough hours in
to get the feature done on time.”

 Overtime can work, and sometimes it is necessary. Sometimes you can make an
otherwise impossible date by putting in some ten-hour days, and a Saturday or
two. But this is very risky. You are not likely to get 20% more work done by
working 20% more hours. What’s more, overtime will certainly fail if it goes on
for more than two or three weeks.

 Therefore you should not agree to work overtime unless (1) you can personally
afford it, (2) it is short term, two weeks or less, and (3) your boss has a fall-back
plan in case the overtime effort fails.

 That last criterion is a deal breaker. If your boss cannot articulate to you what
he’s going to do if the overtime effort fails, then you should not agree to work
overtime.

HELP

73B

 FA L S E DE LI V E RY

 Of all the unprofessional behaviors that a programmer can indulge in, perhaps
the worst of all is saying you are done when you know you aren’t. Sometimes
this is just an overt lie, and that’s bad enough. But the far more insidious case is
when we manage to rationalize a new definition of “done.” We convince
ourselves that we are done enough , and move on to the next task. We rationalize
that any work that remains can be dealt with later when we have more time.

 This is a contagious practice. If one programmer does it, others will see and
follow suit. One of them will stretch the definition of “done” even more, and
everyone else will adopt the new definition. I’ve seen this taken to horrible
extremes. One of my clients actually defined “done” as “checked-in.” The code
didn’t even have to compile. It’s very easy to be “done” if nothing has to work!

 When a team falls into this trap, managers hear that everything is going fine. All
status reports show that everyone is on time. It’s like blind men having a picnic
on the railroad tracks: Nobody sees the freight train of unfinished work bearing
down on them until it is too late.

 DE F I N E “DO N E”

 You avoid the problem of false delivery by creating an independent definition of
“done.” The best way to do this is to have your business analysts and testers
create automated acceptance tests 5 that must pass before you can say that you
are done. These tests should be written in a testing language such as FITNESSE,
Selenium, RobotFX, Cucumber, and so on. The tests should be understandable
by the stakeholders and business people, and should be run frequently.

 HE LP

 Programming is hard . The younger you are the less you believe this. After all, it’s
just a bunch of if and while statements. But as you gain experience you begin to
realize that the way you combine those if and while statements is critically

5. See Chapter 7, “Acceptance Testing.”

CHAPTER 4 CODING

74B

important. You can’t just slather them together and hope for the best. Rather,
you have to carefully partition the system into small understandable units that
have as little to do with each other as possible—and that’s hard.

 Programming is so hard, in fact, that it is beyond the capability of one person
to do it well. No matter how skilled you are, you will certainly benefit from
another programmer’s thoughts and ideas.

 HE LPI N G OTH E R S

 Because of this, it is the responsibility of programmers to be available to help
each other. It is a violation of professional ethics to sequester yourself in a
cubicle or office and refuse the queries of others. Your work is not so important
that you cannot lend some of your time to help others. Indeed, as a professional
you are honor bound to offer that help whenever it is needed.

 This doesn’t mean that you don’t need some alone time. Of course you do. But
you have to be fair and polite about it. For example, you can let it be known
that between the hours of 10 AM and noon you should not be bothered, but
from 1 PM to 3 PM your door is open.

 You should be conscious of the status of your teammates. If you see someone
who appears to be in trouble, you should offer your help. You will likely be quite
surprised at the profound effect your help can have. It’s not that you are so
much smarter than the other person, it’s just that a fresh perspective can be a
profound catalyst for solving problems.

 When you help someone, sit down and write code together. Plan to spend the
better part of an hour or more. It may take less than that, but you don’t want to
appear to be rushed. Resign yourself to the task and give it a solid effort. You
will likely come away having learned more than you gave.

 BE I N G HE LPE D

 When someone offers to help you, be gracious about it. Accept the help
gratefully and give yourself to that help. Do not protect your turf. Do not push

HELP

75B

the help away because you are under the gun. Give it thirty minutes or so. If by
that time the person is not really helping all that much, then politely excuse
yourself and terminate the session with thanks. Remember, just as you are
honor bound to offer help, you are honor bound to accept help.

 Learn how to ask for help. When you are stuck, or befuddled, or just can’t wrap
your mind around a problem, ask someone for help. If you are sitting in a team
room, you can just sit back and say, “I need some help.” Otherwise, use yammer,
or twitter, or email, or the phone on your desk. Call for help. Again, this is a
matter of professional ethics. It is unprofessional to remain stuck when help is
easily accessible.

 By this time you may be expecting me to burst into a chorus of Kumbaya while
fuzzy bunnies leap onto the backs of unicorns and we all happily fly over
rainbows of hope and change. No, not quite. You see, programmers tend to be
arrogant, self-absorbed introverts. We didn’t get into this business because we
like people . Most of us got into programming because we prefer to deeply focus
on sterile minutia, juggle lots of concepts simultaneously, and in general prove
to ourselves that we have brains the size of a planet, all while not having to
interact with the messy complexities of other people .

 Yes, this is a stereotype. Yes, it is generalization with many exceptions. But the
reality is that programmers do not tend to be collaborators. 6 And yet collaboration
is critical to effective programming. Therefore, since for many of us collaboration
is not an instinct, we require disciplines that drive us to collaborate.

 ME NTO R I N G

 I have a whole chapter on this topic later in the book. For now let me simply say
that the training of less experienced programmers is the responsibility of those
who have more experience. Training courses don’t cut it. Books don’t cut it.
Nothing can bring a young software developer to high performance quicker

6. This is far more true of men than women. I had a wonderful conversation with @desi (Desi McAdam,

founder of DevChix) about what motivates women programmers. I told her that when I got a program

working, it was like slaying the great beast. She told me that for her and other women she had spoken to,

the act of writing code was an act of nurturing creation.

CHAPTER 4 CODING

76B

than his own drive, and effective mentoring by his seniors. Therefore, once
again, it is a matter of professional ethics for senior programmers to spend time
taking younger programmers under their wing and mentoring them. By the
same token, those younger programmers have a professional duty to seek out
such mentoring from their seniors.

 B I B LI O G R A PH Y

 [Martin09]: Robert C. Martin, Clean Code , Upper Saddle River, NJ: Prentice
Hall, 2009.

 [Martin03]: Robert C. Martin, Agile Software Development: Principles, Patterns,
and Practices , Upper Saddle River, NJ: Prentice Hall, 2003.

205B

IN D E X

A
Acceptance tests

automated, 97B–99B
communication and, 97B
continuous integration and,

104B–105B
definition of, 94B
developer’s role in, 100B–101B
extra work and, 99B
GUIs and, 103B–105B
negotiation and, 101B–102B
passive aggression and, 101B–102B
timing of, 99B–100B
unit tests and, 102B–103B
writers of, 99B–100B

Adversarial roles, 20B–23B
Affinity estimation, 140B–141B
Ambiguity, in requirements, 92B–94B
Apologies, 6B
Apprentices, 183B
Apprenticeship, 180B–184B
Arguments, in meetings, 120B–121B
Arrogance, 16B

Automated acceptance testing,
97B–99B

Automated quality assurance, 8B
Avoidance, 125B

B
Blind alleys, 125B–126B
Bossavit, Laurent, 83B
Bowling Game, 83B
Branching, 191B
Bug counts, 197B
Business goals, 154B

C
Caffeine, 122B
Certainty, 74B
Code

control, 189B–194B
owned, 157B
3B AM, 53B–54B
worry, 54B–55B

Coding Dojo, 83B–87B
Collaboration, 14B, 151B–160B

INDEX

206B

Collective ownership, 157B–158B
Commitment(s), 41B–46B

control and, 44B
discipline and, 47B–50B
estimation and, 132B
expectations and, 45B
identifying, 43B–44B
implied, 134B–135B
importance of, 132B
lack of, 42B–43B
pressure and, 146B

Communication
acceptance tests and, 97B
pressure and, 148B
of requirements, 89B–94B

Component tests
in testing strategy, 110B–111B
tools for, 199B–200B

Conflict, in meetings, 120B–121B
Continuous build, 197B–198B
Continuous integration, 104B–105B
Continuous learning, 13B
Control, commitment and, 44B
Courage, 75B–76B
Craftsmanship, 184B
Creative input, 59B–60B, 123B
Crisis discipline, 147B
Cucumber, 200B
Customer, identification with, 15B
CVS, 191B
Cycle time, in test-driven

development, 72B

D
Deadlines

false delivery and, 67B
hoping and, 65B
overtime and, 66B
rushing and, 65B–66B

Debugging, 60B–63B
Defect injection rate, 75B
Demo meetings, 120B
Design, test-driven development and,

76B–77B
Design patterns, 12B
Design principles, 12B
Details, 201B–203B
Development. see test driven

development (TDD)
Disagreements, in meetings,

120B–121B
Discipline

commitment and, 47B–50B
crisis, 147B

Disengagement, 64B
Documentation, 76B
Domain, knowledge of, 15B
“Done,” defining, 67B, 94B–97B
“Do no harm” approach, 5B–10B

to function, 5B–8B
to structure, 8B–10B

Driving, 64B

E
Eclipse, 195B–196B
Emacs, 195B
Employer(s)

identification with, 15B
programmers vs., 153B–156B

Estimation
affinity, 140B–141B
anxiety, 92B
commitment and, 132B
definition of, 132B–133B
law of large numbers and, 141B
nominal, 136B
optimistic, 135B–136B
PERT and, 135B–138B

INDEX

207B

pessimistic, 136B
probability and, 133B
of tasks, 138B–141B
trivariate, 141B

Expectations, commitment and, 45B
Experience, broadening, 87B

F
Failure, degrees of, 174B
False delivery, 67B
FitNesse, 199B–200B
Flexibility, 9B
Flow zone, 56B–58B
Flying fingers, 139B
Focus, 121B–123B
Function, in “do no harm”

approach, 5B–8B

G
Gaillot, Emmanuel, 83B
Gelled team, 162B–164B
Git, 191B–194B
Goals, 20B–23B, 118B
Graphical user interfaces (GUIs),

103B–105B
Green Pepper, 200B
Grenning, James, 139B
GUIs, 103B–105B

H
Hard knocks, 179B–180B
Help, 67B–70B

giving, 68B
mentoring and, 69B–70B
pressure and, 148B–149B
receiving, 68B–69B

“Hope,” 42B
Hoping, deadlines and, 65B
Humility, 16B

I
IDE/editor, 194B
Identification, with employer/

customer, 15B
Implied commitments, 134B–135B
Input, creative, 59B–60B, 123B
Integration, continuous, 104B–105B
Integration tests

in testing strategy, 111B–112B
tools for, 200B–201B

IntelliJ, 195B–196B
Interns, 183B
Interruptions, 57B–58B
Issue tracking, 196B–197B
Iteration planning meetings, 119B
Iteration retrospective meetings, 120B

J
JBehave, 200B
Journeymen, 182B–183B

K
Kata, 84B–85B
Knowledge

of domain, 15B
minimal, 12B
work ethic and, 11B–13B

L
Lateness, 65B–67B
Law of large numbers, 141B
Learning, work ethic and, 13B
“Let’s,” 42B
Lindstrom, Lowell, 140B
Locking, 190B

M
Manual exploratory tests, in testing

strategy, 112B–113B
Masters, 182B
MDA, 201B–203B

INDEX

208B

Meetings
agenda in, 118B
arguments and disagreements in,

120B–121B
declining, 117B
demo, 120B
goals in, 118B
iteration planning, 119B
iteration retrospective, 120B
leaving, 118B
stand-up, 119B
time management and, 116B–121B

Mentoring, 14B–15B, 69B–70B,
174B–180B

Merciless refactoring, 9B
Messes, 126B–127B, 146B
Methods, 12B
Model Driven Architecture (MDA),

201B–203B
Muscle focus, 123B
Music, 57B

N
“Need,” 42B
Negotiation, acceptance tests and,

101B–102B
Nominal estimate, 136B
Nonprofessional, 2B

O
Open source, 87B
Optimistic estimate, 135B–136B
Optimistic locking, 190B
Outcomes, best-possible, 20B–23B
Overtime, 66B
Owned code, 157B
Ownership, collective, 157B–158B

P
Pacing, 63B–64B
Pairing, 58B, 148B–149B, 158B
Panic, 147B–148B
Passion, 154B
Passive aggression, 28B–30B,

101B–102B
People, programmers vs., 153B–158B
Personal issues, 54B–55B
PERT (Program Evaluation and

Review Technique), 135B–138B
Pessimistic estimate, 136B
Pessimistic locking, 190B
Physical activity, 123B
Planning Poker, 139B–140B
Practice

background on, 80B–83B
ethics, 87B
experience and, 87B
turnaround time and, 82B–83B
work ethic and, 13B–14B

Precision, premature, in
requirements, 91B–92B

Preparedness, 52B–55B
Pressure

avoiding, 145B–147B
cleanliness and, 146B
commitments and, 146B
communication and, 148B
handling, 147B–149B
help and, 148B–149B
messes and, 146B
panic and, 147B–148B

Priority inversion, 125B
Probability, 133B
Professionalism, 2B
Programmers

employers vs., 153B–156B
people vs., 153B–158B
programmers vs., 157B

Proposal, project, 31B–32B

INDEX

209B

Q
Quality assurance (QA)

automated, 8B
as bug catchers, 6B
as characterizers, 108B–109B
ideal of, as finding no problems,

108B–109B
problems found by, 6B–7B
as specifiers, 108B
as team member, 108B

R
Randori, 86B–87B
Reading, as creative input, 59B
Recharging, 122B–123B
Reputation, 5B
Requirements

communication of, 89B–94B
estimation anxiety and, 92B
late ambiguity in, 92B–94B
premature precision in, 91B–92B
uncertainty and, 91B–92B

Responsibility, 2B–5B
apologies and, 6B
“do no harm” approach and,

5B–10B
function and, 5B–8B
structure and, 8B–10B
work ethic and, 10B–16B

RobotFX, 200B
Roles, adversarial, 20B–23B
Rushing, 34B–35B, 65B–66B

S
Santana, Carlos, 83B
“Should,” 42B
Shower, 64B
Simplicity, 34B
Sleep, 122B
Source code control, 189B–194B

Stakes, 23B–24B
Stand-up meetings, 119B
Structure

in “do no harm” approach, 8B–10B
flexibility and, 9B
importance of, 8B

SVN, 191B–194B
System tests, in testing strategy, 112B

T
Task estimation, 138B–141B
Teams and teamwork, 24B–30B

gelled, 162B–164B
management of, 164B
passive aggression and, 28B–30B
preserving, 163B
project-initiated, 163B–164B
project owner dilemma with,

164B–165B
trying and, 26B–28B
velocity of, 164B

Test driven development (TDD)
benefits of, 74B–77B
certainty and, 74B
courage and, 75B–76B
cycle time in, 72B
debut of, 71B–72B
defect injection rate and, 75B
definition of, 7B–8B
design and, 76B–77B
documentation and, 76B
interruptions and, 58B
three laws of, 73B–74B
what it is not, 77B–78B

Testing
acceptance

automated, 97B–99B
communication and, 97B
continuous integration and,

104B–105B

INDEX

210B

definition of, 94B
developer’s role in, 100B–101B
extra work and, 99B
GUIs and, 103B–105B
negotiation and, 101B–102B
passive aggression and,

101B–102B
timing of, 99B–100B
unit tests and, 102B–103B
writers of, 99B–100B

automation pyramid, 109B–113B
component

in testing strategy, 110B–111B
tools for, 199B–200B

importance of, 7B–8B
integration

in testing strategy, 111B–112B
tools for, 200B–201B

manual exploratory, 112B–113B
structure and, 9B
system, 112B
unit

acceptance tests and, 102B–103B
in testing strategy, 110B
tools for, 198B–199B

TextMate, 196B
Thomas, Dave, 84B
3B AM code, 53B–54B
Time, debugging, 63B
Time management

avoidance and, 125B
blind alleys and, 125B–126B
examples of, 116B
focus and, 121B–123B
meetings and, 116B–121B
messes and, 126B–127B
priority inversion and, 125B
recharging and, 122B–123B
“tomatoes” technique for, 124B

Tiredness, 53B–54B
“Tomatoes” time management

technique, 124B
Tools, 189B
Trivariate estimates, 141B
Turnaround time, practice

and, 82B–83B

U
UML, 201B
Uncertainty, requirements and,

91B–92B
Unconventional mentoring, 179B.

see also mentoring
Unit tests

acceptance tests and, 102B–103B
in testing strategy, 110B
tools for, 198B–199B

V
Vi, 194B

W
Walking away, 64B
Wasa, 85B–86B
Wideband delphi, 138B–141B
“Wish,” 42B
Work ethic, 10B–16B

collaboration and, 14B
continuous learning and, 13B
knowledge and, 11B–13B
mentoring and, 14B–15B
practice and, 13B–14B

Worry code, 54B–55B
Writer’s block, 58B–60B

Y
“Yes”

cost of, 30B–34B
learning how to say, 46B–50B

	Table of Contents
	CLEAN CODE
	1 Clean Code
	There Will Be Code
	Bad Code
	The Total Cost of Owning a Mess
	The Grand Redesign in the Sky
	Attitude
	The Primal Conundrum
	The Art of Clean Code?
	What Is Clean Code?

	Schools of Thought
	We Are Authors
	The Boy Scout Rule
	Prequel and Principles
	Conclusion
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	THE CLEAN CODER
	Pre-Requisite Introduction
	4 Coding
	Preparedness
	The Flow Zone
	Writer’s Block
	Debugging
	Pacing Yourself
	Being Late
	Help
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

