

The Ruby on
Rails 3 Tutorial
and Reference

Collection

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Note from the Publisher
The Ruby on Rails 3 Tutorial and Reference Collection consists of two bestselling Rails
eBooks:

• Ruby on Rails 3 Tutorial: Learn Rails by Example by Michael Hartl

• The Rails 3 Way by Obie Fernandez

Ruby on Rails 3 Tutorial: Learn Rails by Example is a hands-on guide to the Rails 3 envi-
ronment.Through detailed instruction, you develop your own complete sample
application using the latest techniques in Rails Web development. The Rails 3 Way
addresses real challenges development teams face, showing how to use Rails 3 to
maximize your productivity. It is an essential reference for professional developers to
deliver production-quality code using Rails 3.

To simplify access to each book, we’ve appended “A” to pages of Ruby on Rails 3 Tutorial
and “B” to pages of The Rails 3 Way.This enabled us to produce a single, comprehensive
table of contents and dedicated indexes.

We hope you find this collection useful!

—The editorial and production teams at Addison-Wesley Professional

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks.Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Ruby on Rails 3 Tutorial copyright © 2011 Michael Hartl

The Rails 3 Way copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America.This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibit-
ed reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise.To obtain permission
to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458,
or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-292800-7
ISBN-10: 0-13-292800-0

Table of Contents

RUBY ON RAILS 3 TUTORIAL

1 From Zero to Deploy .1A
1.1 Introduction .3A

1.1.1 Comments for Various Readers 4A

1.1.2 “Scaling” Rails .7A

1.1.3 Conventions in This Book 7A

1.2 Up and Running .9A

1.2.1 Development Environments 9A

1.2.2 Ruby, RubyGems, Rails, and Git 11A

1.2.3 The First Application 15A

1.2.4 Bundler .16A

1.2.5 rails server .20A

1.2.6 Model-View-Controller (MVC) 22A

1.3 Version Control with Git 24A

1.3.1 Installation and Setup 24A

1.3.2 Adding and Committing 26A

1.3.3 What Good Does Git Do You? 28A

1.3.4 GitHub .29A

1.3.5 Branch, Edit, Commit, Merge 31A

1.4 Deploying .35A

1.4.1 Heroku Setup .36A

1.4.2 Heroku Deployment, Step One 37A

1.4.3 Heroku Deployment, Step Two 37A

1.4.4 Heroku Commands 39A

1.5 Conclusion .40A

2 A Demo App .41A
2.1 Planning the Application 41A

2.1.1 Modeling Users .43A

2.1.2 Modeling Microposts 44A

2.2 The Users Resource .44A

2.2.1 A User Tour .46A

2.2.2 MVC in Action .49A

2.2.3 Weaknesses of This Users Resource 58A

2.3 The Microposts Resource 58A

2.3.1 A Micropost Microtour 58A

2.3.2 Putting the micro in Microposts 61A

2.3.3 A User has_many Microposts 63A

2.3.4 Inheritance Hierarchies 66A

2.3.5 Deploying the Demo App 68A

2.4 Conclusion .69A

3 Mostly Static Pages .71A
3.1 Static Pages .74A

3.1.1 Truly Static Pages 75A

3.1.2 Static Pages with Rails 78A

3.2 Our First Tests .84A

3.2.1 Testing Tools .84A

3.2.2 TDD: Red, Green, Refactor86A

3.3 Slightly Dynamic Pages 103A

3.3.1 Testing a Title Change 103A

3.3.2 Passing Title Tests 106A

3.3.3 Instance Variables and Embedded
Ruby .108A

3.3.4 Eliminating Duplication with Layouts112A

3.4 Conclusion .115A

3.5 Exercises .116A

4 Rails-Flavored Ruby .119A
4.1 Motivation .119A

4.1.1 A title Helper119A

4.1.2 Cascading Style Sheets122A

4.2 Strings and Methods 125A

4.2.1 Comments .125A

4.2.2 Strings .126A

4.2.3 Objects and Message Passing 129A

4.2.4 Method Definitions 132A

4.2.5 Back to the title Helper 133A

4.3 Other Data Structures134A

4.3.1 Arrays and Ranges 134A

4.3.2 Blocks .137A

vi Contents

4.3.3 Hashes and Symbols 139A

4.3.4 CSS Revisited .142A

4.4 Ruby Classes .144A

4.4.1 Constructors .144A

4.4.2 Class Inheritance 145A

4.4.3 Modifying Built-In Classes 148A

4.4.4 A Controller Class 150A

4.4.5 A User Class .152A

4.5 Exercises .154A

5 Filling in the Layout .157A
5.1 Adding Some Structure 157A

5.1.1 Site Navigation 159A

5.1.2 Custom CSS .164A

5.1.3 Partials .171A

5.2 Layout Links .177A

5.2.1 Integration Tests 178A

5.2.2 Rails Routes .181A

5.2.3 Named Routes 183A

5.3 User Signup: A First Step 186A

5.3.1 Users Controller 186A

5.3.2 Signup URL .188A

5.4 Conclusion .191A

5.5 Exercises .191A

6 Modeling and Viewing Users, Part I 193A
6.1 User Model .194A

6.1.1 Database Migrations 196A

6.1.2 The Model File 201A

6.1.3 Creating User Objects 203A

6.1.4 Finding User Objects 207A

6.1.5 Updating User Objects208A

6.2 User Validations .210A

6.2.1 Validating Presence210A

6.2.2 Length Validation 217A

6.2.3 Format Validation 218A

6.2.4 Uniqueness Validation222A

viiContents

6.3 Viewing Users .227A

6.3.1 Debug and Rails Environments227A

6.3.2 User Model, View, Controller 230A

6.3.3 A Users Resource 232A

6.4 Conclusion .236A

6.5 Exercises .237A

7 Modeling and Viewing Users, Part II 239A
7.1 Insecure Passwords 239A

7.1.1 Password Validations 240A

7.1.2 A Password Migration 244A

7.1.3 An Active Record Callback 247A

7.2 Secure Passwords .250A

7.2.1 A Secure Password Test 251A

7.2.2 Some Secure Password Theory 252A

7.2.3 Implementing has_password?254A

7.2.4 An Authenticate Method 258A

7.3 Better User Views .262A

7.3.1 Testing the User Show Page
(With Factories) .263A

7.3.2 A Name and A Gravatar 268A

7.3.3 A User Sidebar 276A

7.4 Conclusion .279A

7.4.1 Git Commit .279A

7.4.2 Heroku Deploy 280A

7.5 Exercises .280A

8 Sign Up .283A
8.1 Signup Form .283A

8.1.1 Using form_for 286A

8.1.2 The Form HTML 288A

8.2 Signup Failure .292A

8.2.1 Testing Failure .292A

8.2.2 A Working Form295A

8.2.3 Signup Error Messages 299A

8.2.4 Filtering Parameter Logging 303A

8.3 Signup Success .305A

8.3.1 Testing Success 305A

8.3.2 The Finished Signup Form 308A

viii Contents

8.3.3 The Flash .308A

8.3.4 The First Signup 312A

8.4 RSpec Integration Tests 313A

8.4.1 Integration Tests with Style 315A

8.4.2 Users Signup Failure Should not
Make a New User .315A

8.4.3 Users Signup Success Should
Make a New User .319A

8.5 Conclusion .321A

8.6 Exercises .321A

9 Sign In, Sign Out .325A
9.1 Sessions .325A

9.1.1 Sessions Controller326A

9.1.2 Signin Form .328A

9.2 Signin Failure .332A

9.2.1 Reviewing form Submission 333A

9.2.2 Failed Signin (Test and Code)335A

9.3 Signin Success .338A

9.3.1 The Completed create Action 338A

9.3.2 Remember Me 340A

9.3.3 Current User .345A

9.4 Signing Out .354A

9.4.1 Destroying Sessions 354A

9.4.2 Signin Upon Signup356A

9.4.3 Changing the Layout Links358A

9.4.4 Signin/Out Integration Tests 362A

9.5 Conclusion .363A

9.6 Exercises .363A

10 Updating, Showing, and Deleting Users 365A
10.1 Updating Users .365A

10.1.1 Edit Form .366A

10.1.2 Enabling Edits373A

10.2 Protecting Pages .376A

10.2.1 Requiring Signed-In Users 376A

10.2.2 Requiring the Right User 379A

10.2.3 Friendly Forwarding 382A

ixContents

10.3 Showing Users .384A

10.3.1 User Index .385A

10.3.2 Sample Users389A

10.3.3 Pagination .392A

10.3.4 Partial Refactoring 398A

10.4 Destroying Users .399A

10.4.1 Administrative Users 399A

10.4.2 The destroy Action 404A

10.5 Conclusion .408A

10.6 Exercises .409A

11 User Microposts .411A
11.1 A Micropost Model 411A

11.1.1 The Basic Model 412A

11.1.2 User/Micropost Associations414A

11.1.3 Micropost Refinements 419A

11.1.4 Micropost Validations 423A

11.2 Showing Microposts 425A

11.2.1 Augmenting the User Show Page 426A

11.2.2 Sample Microposts 432A

11.3 Manipulating Microposts 434A

11.3.1 Access Control 436A

11.3.2 Creating Microposts 439A

11.3.3 A Proto-feed .444A

11.3.4 Destroying Microposts452A

11.3.5 Testing the New Home Page 456A

11.4 Conclusion .457A

11.5 Exercises .458A

12 Following Users .461A
12.1 The Relationship Model 463A

12.1.1 A Problem with the Data Model
(and a Solution) .464A

12.1.2 User/Relationship Associations 470A

12.1.3 Validations .473A

12.1.4 Following .474A

12.1.5 Followers .479A

x Contents

12.2 A Web Interface for Following
and Followers .482A

12.2.1 Sample Following Data 482A

12.2.2 Stats and a Follow Form 484A

12.2.3 Following and Followers Pages 494A

12.2.4 A Working Follow Button the
Standard Way .498A

12.2.5 A Working Follow Button with Ajax 502A

12.3 The Status Feed .507A

12.3.1 Motivation and Strategy508A

12.3.2 A First Feed Implementation 511A

12.3.3 Scopes, Subselects, and a Lambda . . .513A

12.3.4 The New Status Feed 518A

12.4 Conclusion .519A

12.4.1 Extensions to the Sample
Application .520A

12.4.2 Guide to Further Resources 522A

12.5 Exercises .523A

Index .527A

THE RAILS 3 WAY

1 Rails Environments and Configuration 1B
1.1 Bundler .2B

1.1.1 Gemfile .3B

1.1.2 Installing Gems .5B

1.1.3 Gem Locking .7B

1.1.4 Packaging Gems .7B

1.2 Startup and Application Settings 8B

1.2.1 application.rb .8B

1.2.2 Initializers .11B

1.2.3 Additional Configuration 15B

1.3 Development Mode .15B

1.3.1 Automatic Class Reloading 16B

1.3.2 Whiny Nils .18B

1.3.3 Error Reports .18B

1.3.4 Caching .18B

1.3.5 Raise Delivery Errors19B

xiContents

1.4 Test Mode .19B

1.5 Production Mode .20B

1.5.1 Asset Hosts .22B

1.5.2 Threaded Mode 22B

1.6 Logging .23B

1.6.1 Rails Log Files .24B

1.6.2 Log File Analysis26B

1.7 Conclusion .29B

2 Routing .31B
2.1 The Two Purposes of Routing 32B

2.2 The routes.rb File .33B

2.2.1 Regular Routes .34B

2.2.2 URL Patterns .35B

2.2.3 Segment Keys .36B

2.2.4 Spotlight on the :id Field 38B

2.2.5 Optional Segment Keys 38B

2.2.6 Constraining Request Methods 38B

2.2.7 Redirect Routes 39B

2.2.8 The Format Segment40B

2.2.9 Routes as Rack Endpoints 41B

2.2.10 Accept Header 42B

2.2.11 Segment Key Constraints 43B

2.2.12 The Root Route 44B

2.3 Route Globbing .45B

2.4 Named Routes .46B

2.4.1 Creating a Named Route 46B

2.4.2 name path vs. name url 47B

2.4.3 What to Name Your Routes 48B

2.4.4 Argument Sugar 49B

2.4.5 A Little More Sugar with Your Sugar? 50B

2.5 Scoping Routing Rules 50B

2.5.1 Controller .51B

2.5.2 Path Prefix .51B

2.5.3 Name Prefix .52B

2.5.4 Namespaces .52B

2.5.5 Bundling Constraints52B

xii Contents

2.6 Listing Routes .53B

2.7 Conclusion .54B

3 REST, Resources, and Rails 55B
3.1 REST in a Rather Small Nutshell 55B

3.2 Resources and Representations 56B

3.3 REST in Rails .57B

3.4 Routing and CRUD .58B

3.4.1 REST Resources and Rails 59B

3.4.2 From Named Routes to REST Support . . .59B

3.4.3 Reenter the HTTP Verb 60B

3.5 The Standard RESTful Controller Actions 61B

3.5.1 Singular and Plural RESTful Routes 62B

3.5.2 The Special Pairs: new/create
and edit/update .63B

3.5.3 The PUT and DELETE Cheat64B

3.5.4 Limiting Routes Generated 64B

3.6 Singular Resource Routes64B

3.7 Nested Resources .65B

3.7.1 RESTful Controller Mappings 66B

3.7.2 Considerations .67B

3.7.3 Deep Nesting? .67B

3.7.4 Shallow Routes .68B

3.8 RESTful Route Customizations 69B

3.8.1 Extra Member Routes 70B

3.8.2 Extra Collection Routes 72B

3.8.3 Custom Action Names72B

3.8.4 Mapping to a Different Controller 72B

3.8.5 Routes for New Resources 73B

3.8.6 Considerations for Extra Routes73B

3.9 Controller-Only Resources 74B

3.10 Different Representations of Resources76B

3.10.1 The respond to Method76B

3.10.2 Formatted Named Routes 77B

3.11 The RESTful Rails Action Set78B

3.11.1 Index .78B

3.11.2 Show .80B

3.11.3 Destroy .80B

xiiiContents

3.11.4 New and Create 81B

3.11.5 Edit and Update 82B

3.12 Conclusion .83B

4 Working with Controllers 85B
4.1 Rack .86B

4.1.1 Configuring Your Middleware Stack87B

4.2 Action Dispatch: Where It All Begins 88B

4.2.1 Request Handling 89B

4.2.2 Getting Intimate with the Dispatcher 89B

4.3 Render unto View .92B

4.3.1 When in Doubt, Render 92B

4.3.2 Explicit Rendering 93B

4.3.3 Rendering Another Action’s Template 93B

4.3.4 Rendering a Different Template
Altogether .94B

4.3.5 Rendering a Partial Template 95B

4.3.6 Rendering Inline Template Code96B

4.3.7 Rendering Text .96B

4.3.8 Rendering Other Types of Structured
Data .96B

4.3.9 Rendering Nothing 97B

4.3.10 Rendering Options 98B

4.4 Additional Layout Options 101B

4.5 Redirecting .101B

4.5.1 The redirect to Method 102B

4.6 Controller/View Communication 104B

4.7 Filters .105B

4.7.1 Filter Inheritance106B

4.7.2 Filter Types .107B

4.7.3 Filter Chain Ordering 108B

4.7.4 Around Filters .109B

4.7.5 Filter Chain Skipping 110B

4.7.6 Filter Conditions 110B

4.7.7 Filter Chain Halting 111B

4.8 Verification .111B

4.8.1 Example Usage111B

4.8.2 Options .112B

xiv Contents

4.9 Streaming .112B

4.9.1 Via render :text => proc 112B

4.9.2 send data(data,
options ={}) .113B

4.9.3 send file(path,
options = {}) .114B

4.10 Conclusion .117B

5 Working with Active Record 119B
5.1 The Basics .120B

5.2 Macro-Style Methods 121B

5.2.1 Relationship Declarations 121B

5.2.2 Convention over Configuration 122B

5.2.3 Setting Names Manually 122B

5.2.4 Legacy Naming Schemes 122B

5.3 Defining Attributes .123B

5.3.1 Default Attribute Values123B

5.3.2 Serialized Attributes 125B

5.4 CRUD: Creating, Reading, Updating,
Deleting .127B

5.4.1 Creating New Active Record
Instances .127B

5.4.2 Reading Active Record Objects 128B

5.4.3 Reading and Writing Attributes128B

5.4.4 Accessing and Manipulating
Attributes Before They Are Typecast 131B

5.4.5 Reloading .131B

5.4.6 Cloning .131B

5.4.7 Dynamic Attribute-Based Finders 132B

5.4.8 Dynamic Scopes133B

5.4.9 Custom SQL Queries133B

5.4.10 The Query Cache 135B

5.4.11 Updating .136B

5.4.12 Updating by Condition 137B

5.4.13 Updating a Particular Instance 138B

5.4.14 Updating Specific Attributes139B

5.4.15 Convenience Updaters 139B

5.4.16 Touching Records 139B

5.4.17 Controlling Access to Attributes 140B

xvContents

5.4.18 Readonly Attributes141B

5.4.19 Deleting and Destroying 141B

5.5 Database Locking .142B

5.5.1 Optimistic Locking 143B

5.5.2 Pessimistic Locking 145B

5.5.3 Considerations 145B

5.6 Where Clauses .146B

5.6.1 where(*conditions) 146B

5.6.2 order(*clauses) 148B

5.6.3 limit(number) and
offset(number) .149B

5.6.4 select(*clauses) 149B

5.6.5 from(*tables) 150B

5.6.6 group(*args) 150B

5.6.7 having(*clauses) 150B

5.6.8 includes(*associations)151B

5.6.9 joins .151B

5.6.10 readonly .152B

5.6.11 exists? .152B

5.6.12 arel_table .152B

5.7 Connections to Multiple Databases
in Different Models .153B

5.8 Using the Database Connection Directly 154B

5.8.1 The DatabaseStatements Module 154B

5.8.2 Other Connection Methods 156B

5.9 Other Configuration Options 158B

5.10 Conclusion .159B

6 Active Record Migrations 161B
6.1 Creating Migrations 161B

6.1.1 Sequencing Migrations 162B

6.1.2 Irreversible Migrations162B

6.1.3 create_table(name,
options, & block) .164B

6.1.4 change_table(table name, &
block) .165B

6.1.5 API Reference .165B

6.1.6 Defining Columns 167B

6.1.7 Command-line Column Declarations 172B

xvi Contents

6.2 Data Migration .173B

6.2.1 Using SQL .173B

6.2.2 Migration Models 174B

6.3 schema.rb .174B

6.4 Database Seeding .175B

6.5 Database-Related Rake Tasks 176B

6.6 Conclusion .179B

7 Active Record Associations181B
7.1 The Association Hierarchy181B

7.2 One-to-Many Relationships 183B

7.2.1 Adding Associated Objects
to a Collection .185B

7.2.2 Association Collection Methods 186B

7.3 The belongs_to Association 191B

7.3.1 Reloading the Association 192B

7.3.2 Building and Creating Related
Objects via the Association 192B

7.3.3 belongs_to Options 193B

7.4 The has_many Association 200B

7.4.1 has_many Options 200B

7.5 Many-to-Many Relationships 209B

7.5.1 has_and_belongs_to_many209B

7.5.2 has_many :through 215B

7.5.3 has_many :through Options 220B

7.6 One-to-One Relationships 223B

7.6.1 has_one .223B

7.7 Working with Unsaved Objects
and Associations .226B

7.7.1 One-to-One Associations 226B

7.7.2 Collections .226B

7.7.3 Deletion .227B

7.8 Association Extensions227B

7.9 The AssociationProxy Class 229B

7.10 Conclusion .230B

xviiContents

8 Validations .231B
8.1 Finding Errors .231B

8.2 The Simple Declarative Validations 232B

8.2.1 validates_acceptance_of232B

8.2.2 validates_associated 233B

8.2.3 validates_confirmation_of 233B

8.2.4 validates_each 234B

8.2.5 validates_format_of 235B

8.2.6 validates_inclusion_of and
validates_exclusion_of 236B

8.2.7 validates_length_of 236B

8.2.8 validates_numericality_of 237B

8.2.9 validates_presence_of 238B

8.2.10 validates_uniqueness_of239B

8.2.11 validates_with 241B

8.2.12 RecordInvalid 242B

8.3 Common Validation Options 242B

8.3.1 :allow_blank and :allow_nil 242B

8.3.2 :if and :unless 242B

8.3.3 :message .242B

8.3.4 :on .243B

8.4 Conditional Validation 243B

8.4.1 Usage and Considerations244B

8.4.2 Validation Contexts 245B

8.5 Short-form Validation 245B

8.6 Custom Validation Techniques246B

8.6.1 Add Custom Validation Macros
to Your Application .247B

8.6.2 Create a Custom Validator Class 248B

8.6.3 Add a validate Method
to Your Model .248B

8.7 Skipping Validations 249B

8.8 Working with the Errors Hash 249B

8.8.1 Checking for Errors 250B

8.9 Testing Validations with Shoulda 250B

8.10 Conclusion .250B

xviii Contents

9 Advanced Active Record 251B
9.1 Scopes .251B

9.1.1 Scope Parameters 252B

9.1.2 Chaining Scopes252B

9.1.3 Scopes and has many252B

9.1.4 Scopes and Joins 253B

9.1.5 Scope Combinations 253B

9.1.6 Default Scopes254B

9.1.7 Using Scopes for CRUD255B

9.2 Callbacks .256B

9.2.1 Callback Registration 256B

9.2.2 One-Liners .257B

9.2.3 Protected or Private 257B

9.2.4 Matched before/after Callbacks258B

9.2.5 Halting Execution 259B

9.2.6 Callback Usages259B

9.2.7 Special Callbacks:
after_initialize and after_find 262B

9.2.8 Callback Classes 263B

9.3 Calculation Methods265B

9.3.1 average(column_name,
*options) .267B

9.3.2 count(column_name,
*options) .267B

9.3.3 maximum(column_name,
*options) .267B

9.3.4 minimum(column_name,
*options) .267B

9.3.5 sum(column_name, *options) 267B

9.4 Observers .268B

9.4.1 Naming Conventions 268B

9.4.2 Registration of Observers 269B

9.4.3 Timing .269B

9.5 Single-Table Inheritance (STI) 269B

9.5.1 Mapping Inheritance to the
Database .271B

9.5.2 STI Considerations 273B

9.5.3 STI and Associations 274B

xixContents

9.6 Abstract Base Model Classes 276B

9.7 Polymorphic has many Relationships 277B

9.7.1 In the Case of Models with
Comments .278B

9.8 Foreign-key Constraints281B

9.9 Using Value Objects 281B

9.9.1 Immutability .283B

9.9.2 Custom Constructors and
Converters .283B

9.9.3 Finding Records by a Value Object 284B

9.10 Modules for Reusing Common Behavior285B

9.10.1 A Review of Class Scope
and Contexts .287B

9.10.2 The included Callback288B

9.11 Modifying Active Record Classes
at Runtime .289B

9.11.1 Considerations 290B

9.11.2 Ruby and Domain-Specific
Languages .291B

9.12 Conclusion .292B

10 Action View .293B
10.1 Layouts and Templates 294B

10.1.1 Template Filename Conventions294B

10.1.2 Layouts .294B

10.1.3 Yielding Content 295B

10.1.4 Conditional Output 296B

10.1.5 Decent Exposure 297B

10.1.6 Standard Instance Variables 298B

10.1.7 Displaying flash Messages 300B

10.1.8 flash.now .301B

10.2 Partials .302B

10.2.1 Simple Use Cases 302B

10.2.2 Reuse of Partials 303B

10.2.3 Shared Partials304B

10.2.4 Passing Variables to Partials 305B

10.2.5 Rendering Collections 306B

10.2.6 Logging .308B

10.3 Conclusion .308B

xx Contents

11 All About Helpers .309B
11.1 ActiveModelHelper 309B

11.1.1 Reporting Validation Errors 310B

11.1.2 Automatic Form Creation 313B

11.1.3 Customizing the Way Validation
Errors Are Highlighted 315B

11.2 AssetTagHelper .316B

11.2.1 Head Helpers 316B

11.2.2 Asset Helpers319B

11.2.3 Using Asset Hosts 321B

11.2.4 Using Asset Timestamps323B

11.2.5 For Plugins Only 324B

11.3 AtomFeedHelper .324B

11.4 CacheHelper .326B

11.5 CaptureHelper .326B

11.6 DateHelper .328B

11.6.1 The Date and Time Selection
Helpers .328B

11.6.2 The Individual Date and Time
Select Helpers .329B

11.6.3 Common Options for Date
Selection Helpers .332B

11.6.4 distance_in_time Methods
with Complex Descriptive Names 332B

11.7 DebugHelper .333B

11.8 FormHelper .333B

11.8.1 Creating Forms for Models 334B

11.8.2 How Form Helpers Get Their Values . . .342B

11.8.3 Integrating Additional Objects
in One Form .343B

11.8.4 Customized Form Builders347B

11.8.5 Form Inputs .348B

11.9 FormOptionsHelper 350B

11.9.1 Select Helpers 350B

11.9.2 Option Helpers 351B

11.10 FormTagHelper .355B

11.11 JavaScriptHelper 358B

11.12 NumberHelper .359B

11.13 PrototypeHelper 361B

xxiContents

11.14 RawOutputHelper 361B

11.15 RecordIdentificationHelper 362B

11.16 RecordTagHelper 363B

11.17 SanitizeHelper364B

11.18 TagHelper .366B

11.19 TextHelper .367B

11.20 TranslationHelper and
the I18n API .372B

11.20.1 Localized Views 373B

11.20.2 TranslationHelper Methods 374B

11.20.3 I18n Setup .374B

11.20.4 Setting and Passing the Locale 375B

11.20.5 Setting Locale from Client
Supplied Information 379B

11.20.6 Internationalizing Your Application . . .380B

11.20.7 Organization of Locale Files382B

11.20.8 Looking up Translations383B

11.20.9 How to Store Your Custom
Translations .386B

11.20.10 Overview of Other Built-In
Methods that Provide I18n Support388B

11.20.11 Exception Handling 391B

11.21 UrlHelper .391B

11.22 Writing Your Own View Helpers 398B

11.22.1 Small Optimizations:
The Title Helper .398B

11.22.2 Encapsulating View Logic:
The photo for Helper 399B

11.22.3 Smart View: The breadcrumbs
Helper .400B

11.23 Wrapping and Generalizing Partials 401B

11.23.1 A tiles Helper 401B

11.23.2 Generalizing Partials 404B

11.24 Conclusion .407B

12 Ajax on Rails .409B
12.0.1 Changes in Rails 3 410B

12.0.2 Firebug .410B

12.1 Unobtrusive JavaScript 411B

12.1.1 UJS Usage .411B

xxii Contents

12.2 Writing JavaScript in Ruby with RJS 412B

12.2.1 RJS Templates 414B

12.2.2 <<(javascript) 415B

12.2.3 [](id) .415B

12.2.4 alert(message) 416B

12.2.5 call(function, *arguments, & block) . . .416B

12.2.6 delay(seconds = 1)416B

12.2.7 draggable(id, options = {}) 416B

12.2.8 drop receiving(id, options = {}) 417B

12.2.9 hide(*ids) .417B

12.2.10 insert_html(position, id,
*options_for_render) 417B

12.2.11 literal(code) 417B

12.2.12 redirect to(location)418B

12.2.13 remove(*ids) 418B

12.2.14 replace(id, *options for render) 418B

12.2.15 replace html(id, *options
for render) .418B

12.2.16 select(pattern) 418B

12.2.17 show(*ids) .418B

12.2.18 sortable(id, options = {}) 418B

12.2.19 toggle(*ids) 419B

12.2.20 visual effect(name, id = nil,
options = {}) .419B

12.3 Ajax and JSON .419B

12.3.1 Ajax link to .419B

12.4 Ajax and HTML .421B

12.5 Ajax and JavaScript 423B

12.6 Conclusion .424B

13 Session Management 425B
13.1 What to Store in the Session 426B

13.1.1 The Current User 426B

13.1.2 Session Use Guidelines 426B

13.2 Session Options .427B

13.3 Storage Mechanisms 427B

13.3.1 Active Record Session Store 427B

13.3.2 Memcache Session Storage 428B

xxiiiContents

13.3.3 The Controversial CookieStore429B

13.3.4 Cleaning Up Old Sessions 430B

13.4 Cookies .431B

13.4.1 Reading and Writing Cookies 431B

13.5 Conclusion .432B

14 Authentication .433B
14.1 Authlogic .434B

14.1.1 Getting Started434B

14.1.2 Creating the Models 434B

14.1.3 Setting Up the Controllers 435B

14.1.4 Controller, Limiting Access
to Actions .436B

14.1.5 Configuration 437B

14.1.6 Summary .439B

14.2 Devise .439B

14.2.1 Getting Started439B

14.2.2 Modules .439B

14.2.3 Models .440B

14.2.4 Controllers .441B

14.2.5 Devise, Views 442B

14.2.6 Configuration 442B

14.2.7 Extensions .443B

14.2.8 Summary .443B

14.3 Conclusion .443B

15 XML and Active Resource 445B
15.1 The to_xml Method 445B

15.1.1 Customizing to_xml Output 446B

15.1.2 Associations and to_xml 448B

15.1.3 Advanced to_xml Usage451B

15.1.4 Dynamic Runtime Attributes 452B

15.1.5 Overriding to_xml 453B

15.2 The XML Builder .454B

15.3 Parsing XML .456B

15.3.1 Turning XML into Hashes456B

15.3.2 Typecasting .457B

xxiv Contents

15.4 Active Resource .457B

15.4.1 List .458B

15.4.2 Show .459B

15.4.3 Create .460B

15.4.4 Update .462B

15.4.5 Delete .462B

15.4.6 Headers .462B

15.4.7 Customizing URLs463B

15.4.8 Hash Forms .464B

15.5 Active Resource Authentication 465B

15.5.1 HTTP Basic Authentication465B

15.5.2 HTTP Digest Authentication 466B

15.5.3 Certificate Authentication 466B

15.5.4 Proxy Server Authentication 466B

15.5.5 Authentication in the Web
Service Controller .467B

15.6 Conclusion .469B

16 Action Mailer .471B
16.1 Setup .471B

16.2 Mailer Models .472B

16.2.1 Preparing Outbound Email
Messages .472B

16.2.2 HTML Email Messages 474B

16.2.3 Multipart Messages 475B

16.2.4 Attachments .475B

16.2.5 Generating URLs476B

16.2.6 Mailer Layouts 476B

16.2.7 Sending an Email 477B

16.3 Receiving Emails .477B

16.3.1 Handling Incoming Attachments478B

16.4 Server Configuration479B

16.5 Testing Email Content479B

16.6 Conclusion .481B

17 Caching and Performance 483B
17.1 View Caching .483B

17.1.1 Caching in Development Mode?484B

17.1.2 Page Caching 484B

xxvContents

17.1.3 Action Caching 484B

17.1.4 Fragment Caching 486B

17.1.5 Expiration of Cached Content488B

17.1.6 Automatic Cache Expiry
with Sweepers .490B

17.1.7 Cache Logging 492B

17.1.8 Action Cache Plugin 492B

17.1.9 Cache Storage 493B

17.2 General Caching .495B

17.2.1 Eliminating Extra Database
Lookups .495B

17.2.2 Initializing New Caches 496B

17.2.3 fetch Options 496B

17.3 Control Web Caching 497B

17.3.1 expires_in(seconds,
options = {}) .498B

17.3.2 expires_now498B

17.4 ETags .498B

17.4.1 fresh_when(options) 499B

17.4.2 stale?(options) 499B

17.5 Conclusion .500B

18 RSpec .501B
18.1 Introduction .501B

18.2 Basic Syntax and API 504B

18.2.1 describe and context 504B

18.2.2 let(:name) (expression) 504B

18.2.3 let!(:name) (expression) 506B

18.2.4 before and after 506B

18.2.5 it .507B

18.2.6 specify .507B

18.2.7 expect .508B

18.2.8 pending .509B

18.2.9 should and should_not 510B

18.2.10 Implicit Subject511B

18.2.11 Explicit Subject 511B

18.2.12 its .512B

18.3 Predicate Matchers 513B

xxvi Contents

18.4 Custom Expectation Matchers514B

18.4.1 Custom Matcher DSL 516B

18.4.2 Fluent Chaining516B

18.5 Shared Behaviors .517B

18.6 RSpec’s Mocks and Stubs 517B

18.7 Running Specs .520B

18.8 RSpec Rails Gem .521B

18.8.1 Installation .521B

18.8.2 Model Specs 524B

18.8.3 Mocked and Stubbed Models 526B

18.8.4 Controller Specs 526B

18.8.5 View Specs .529B

18.8.6 Helper Specs 531B

18.9 RSpec Tools .531B

18.9.1 RSpactor .531B

18.9.2 watchr .532B

18.9.3 Spork .532B

18.9.4 Specjour .532B

18.9.5 RCov .532B

18.9.6 Heckle .532B

18.10 Conclusion .533B

19 Extending Rails with Plugins 535B
19.1 The Plugin System 536B

19.1.1 Plugins as RubyGems 536B

19.1.2 The Plugin Script536B

19.2 Writing Your Own Plugins 537B

19.2.1 The init.rb Hook 538B

19.2.2 The lib Directory 539B

19.2.3 Extending Rails Classes 540B

19.2.4 The README and MIT-LICENSE
File .541B

19.2.5 The install.rb and
uninstall.rb Files 542B

19.2.6 Custom Rake Tasks 543B

19.2.7 The Plugin’s Rakefile 544B

19.2.8 Including Assets With Your Plugin545B

xxviiContents

19.2.9 Testing Plugins 545B

19.2.10 Railties .546B

19.3 Conclusion .547B

20 Background Processing549B
20.1 Delayed Job .550B

20.1.1 Getting Started550B

20.1.2 Creating Jobs 551B

20.1.3 Running .552B

20.1.4 Summary .552B

20.2 Resque .553B

20.2.1 Getting Started553B

20.2.2 Creating Jobs 554B

20.2.3 Hooks .554B

20.2.4 Plugins .555B

20.2.5 Running .556B

20.2.6 Monitoring .556B

20.2.7 Summary .557B

20.3 Rails Runner .557B

20.3.1 Getting Started558B

20.3.2 Usage Notes 558B

20.3.3 Considerations 559B

20.3.4 Summary .559B

20.4 Conclusion .559B

A Active Model API Reference 561B
A.1 AttributeMethods 561B

A.1.1 active_model/
attribute_methods.rb 562B

A.2 Callbacks .563B

A.2.1 active_model/callbacks.rb 563B

A.3 Conversion .563B

A.3.1 active_model/conversion.rb 563B

A.4 Dirty .564B

A.4.1 active_model/dirty.rb 565B

A.5 Errors .565B

A.5.1 active_model/errors.rb566B

xxviii Contents

A.6 Lint::Tests .567B

A.7 MassAssignmentSecurity 567B

A.7.1 active_model/
mass_assignment_security.rb 567B

A.8 Name .568B

A.8.1 active_model/naming.rb569B

A.9 Naming .569B

A.9.1 active_model/naming.rb569B

A.10 Observer .569B

A.10.1 active_model/observing.rb 570B

A.11 Observing .570B

A.11.1 active_model/observing.rb 571B

A.12 Serialization .571B

A.12.1 active_model/
serialization.rb .571B

A.13 Serializers::JSON 572B

A.13.1 active_model/
serializers/json.rb 572B

A.14 Serializers::Xml 572B

A.14.1 active_model/
serializers/xml.rb 573B

A.15 Translation .573B

A.15.1 active_model/
translation.rb .573B

A.16 Validations .574B

A.16.1 active_model/
validations.rb .574B

A.17 Validator .578B

A.17.1 active_model/validator.rb 578B

B Active Support API Reference 579B
B.1 Array .579B

B.1.1 active_support/core_ext/
array/access .579B

B.1.2 active_support/core_ext/
array/conversions580B

B.1.3 active_support/core_ext/
array/extract_options 582B

B.1.4 active_support/core_ext/
array/grouping .583B

xxixContents

B.1.5 active_support/core_ext/
array/random_access 584B

B.1.6 active_support/core_ext/
array/uniq_by .584B

B.1.7 active_support/core_ext/
array/wrap .584B

B.1.8 active_support/core_ext/
object/blank .585B

B.1.9 active_support/core_ext/
object/to_param .585B

B.2 ActiveSupport::BacktraceCleaner 585B

B.2.1 active_support/
backtrace_cleaner585B

B.3 ActiveSupport::Base64 586B

B.3.1 active_support/base64 586B

B.4 ActiveSupport::BasicObject 586B

B.4.1 active_support/basic_object 586B

B.5 ActiveSupport::Benchmarkable587B

B.5.1 active_support/
benchmarkable .587B

B.6 BigDecimal .588B

B.6.1 active_support/core_ext/
big_decimal/conversions 588B

B.6.2 active_support/json/
encoding .588B

B.7 ActiveSupport::BufferedLogger 588B

B.7.1 active_support/
buffered_logger .589B

B.8 ActiveSupport::Cache::Store590B

B.9 ActiveSupport::Callbacks 595B

B.9.1 active_support/callbacks596B

B.10 Class .598B

B.10.1 active_support/core_ext/
class/attribute .598B

B.10.2 active_support/core_ext/
class/attribute_accessors 599B

B.10.3 active_support/core_ext/
class/attribute_accessors 600B

B.10.4 active_support/core_ext/
class/delegating_attributes 600B

xxx Contents

B.10.5 active_support/core_ext/
class/inheritable_attributes 600B

B.10.6 active_support/core_ext/
class/subclasses .601B

B.11 ActiveSupport::Concern 602B

B.11.1 active_support/concern 602B

B.12 ActiveSupport::Configurable603B

B.12.1 active_support/
configurable .603B

B.13 Date .603B

B.13.1 active_support/core_ext/
date/acts_like .603B

B.13.2 active_support/core_ext/
date/calculations603B

B.13.3 active_support/core_ext/
date/conversions .607B

B.13.4 active_support/core_ext/
date/freeze .608B

B.13.5 active_support/json/
encoding .609B

B.14 DateTime .609B

B.14.1 active_support/core_ext/
date_time/acts_like 609B

B.14.2 active_support/core_ext/
date_time/calculations 609B

B.14.3 active_support/core_ext/
date_time/conversions 611B

B.14.4 active_support/core_ext/
date_time/zones .612B

B.14.5 active_support/json/
encoding .613B

B.15 ActiveSupport::Dependencies613B

B.15.1 active_support/
dependencies/autoload 614B

B.16 ActiveSupport::Deprecation 617B

B.17 ActiveSupport::Duration 617B

B.17.1 active_support/duration 617B

B.18 Enumerable .619B

B.18.1 active_support/core_ext/
enumerable .619B

B.18.2 active_support/json/
encoding .620B

xxxiContents

B.19 ERB::Util .620B

B.19.1 active_support/core_ext/
string/output_safety 620B

B.20 FalseClass .621B

B.20.1 active_support/core_ext/
object/blank .621B

B.20.2 active_support/json/
encoding .621B

B.21 File .621B

B.21.1 active_support/core_ext/
file/atomic .621B

B.21.2 active_support/core_ext/
file/path .622B

B.22 Float .622B

B.22.1 active_support/core_ext/
float/rounding .622B

B.23 Hash .622B

B.23.1 active_support/core_ext/
hash/conversions .622B

B.23.2 active_support/core_ext/
hash/deep_merge .623B

B.23.3 active_support/core_ext/
hash/diff .624B

B.23.4 active_support/core_ext/
hash/except .624B

B.23.5 active_support/core_ext/
hash/indifferent_access 624B

B.23.6 active_support/core_ext/
hash/keys .625B

B.23.7 active_support/core_ext/
hash/reverse_merge 626B

B.23.8 active_support/core_ext/
hash/slice .626B

B.23.9 active_support/core_ext/
object/to_param .627B

B.23.10 active_support/core_ext/
object/to_query .627B

B.23.11 active_support/json/
encoding .627B

B.23.12 active_support/core_ext/
object/blank .627B

xxxii Contents

B.24 HashWithIndifferentAccess 627B

B.24.1 active_support/
hash_with_indifferent_access 627B

B.25 ActiveSupport::Inflector::
Inflections .628B

B.25.1 active_support/inflector/
inflections .629B

B.25.2 active_support/inflector/
transliteration .631B

B.26 Integer .632B

B.26.1 active_support/core_ext/
integer/inflections 633B

B.26.2 active_support/core_ext/
integer/multiple .633B

B.27 ActiveSupport::JSON 633B

B.27.1 active_support/json/
decoding .633B

B.27.2 active_support/json/
encoding .634B

B.28 Kernel .634B

B.28.1 active_support/core_ext/
kernel/agnostics .634B

B.28.2 active_support/core_ext/
kernel/debugger .634B

B.28.3 active_support/core_ext/
kernel/reporting .634B

B.28.4 active_support/core_ext/
kernel/requires .635B

B.28.5 active_support/core_ext/
kernel/singleton_class 635B

B.29 Logger .635B

B.29.1 active_support/core_ext/
logger .636B

B.30 ActiveSupport::
MessageEncryptor .636B

B.30.1 active_support/
message_encryptor637B

B.31 ActiveSupport::
MessageVerifier .637B

B.31.1 active_support/
message_verifier .637B

xxxiiiContents

B.32 Module .638B

B.32.1 active_support/core_ext/
module/aliasing .638B

B.32.2 active_support/core_ext/
module/anonymous .639B

B.32.3 active_support/
core_ext/module/
attr_accessor_with_default 640B

B.32.4 active_support/core_ext/
module/attr_internal 640B

B.32.5 active_support/core_ext/
module/attribute_accessors 640B

B.32.6 active_support/core_ext/
module/delegation641B

B.32.7 active_support/core_ext/
module/introspection 643B

B.32.8 active_support/core_ext/
module/synchronization 644B

B.32.9 active_support/
dependencies .644B

B.33 ActiveSupport::Multibyte::
Chars .645B

B.33.1 active_support/
multibyte/chars .645B

B.33.2 active_support/
multibyte/unicode646B

B.33.3 active_support/
multibyte/utils .647B

B.34 NilClass .648B

B.34.1 active_support/core_ext/
object/blank .648B

B.34.2 active_support/json/
encoding .648B

B.34.3 active_support/whiny_nil648B

B.35 ActiveSupport::Notifications649B

B.36 Numeric .650B

B.36.1 active_support/core_ext/
object/blank .650B

B.36.2 active_support/json/
encoding .650B

xxxiv Contents

B.36.3 active_support/numeric/
bytes .650B

B.36.4 active_support/numeric/
time .651B

B.37 Object .653B

B.37.1 active_support/core_ext/
object/acts_like .653B

B.37.2 active_support/core_ext/
object/blank .653B

B.37.3 active_support/core_ext/
object/duplicable654B

B.37.4 active_support/core_ext/
object/instance_variables 654B

B.37.5 active_support/core_ext/
object/to_param .655B

B.37.6 active_support/core_ext/
object/with_options 656B

B.37.7 active_support/
dependencies .656B

B.37.8 active_support/json/
encoding .657B

B.38 ActiveSupport::OrderedHash 657B

B.38.1 active_support/
ordered_hash .657B

B.39 ActiveSupport::OrderedOptions 657B

B.39.1 active_support/
ordered_options .657B

B.40 ActiveSupport::Railtie 658B

B.40.1 active_support/railtie 658B

B.41 Range .658B

B.41.1 active_support/core_ext/
range/blockless_step 658B

B.41.2 active_support/core_ext/
range/conversions659B

B.41.3 active_support/core_ext/
range/include_range 659B

B.41.4 active_support/core_ext/
range/include_range 659B

xxxvContents

B.42 Regexp .660B

B.42.1 active_support/core_ext/
enumerable .660B

B.42.2 active_support/json/
encoding .660B

B.43 ActiveSupport::Rescuable 660B

B.43.1 active_support/rescuable660B

B.44 ActiveSupport::SecureRandom661B

B.44.1 active_support/
secure_random .661B

B.45 String .662B

B.45.1 active_support/json/
encoding .662B

B.45.2 active_support/core_ext/
object/blank .662B

B.45.3 active_support/core_ext/
string/access .663B

B.45.4 active_support/core_ext/
string/acts_like .664B

B.45.5 active_support/core_ext/
string/conversions 664B

B.45.6 active_support/core_ext/
string/encoding .665B

B.45.7 active_support/core_ext/
string/exclude .665B

B.45.8 active_support/core_ext/
string/filters .665B

B.45.9 active_support/core_ext/
string/inflections 666B

B.45.10 active_support/core_ext/
string/multibyte .669B

B.45.11 active_support/core_ext/
string/output_safety 670B

B.45.12 active_support/core_ext/
string/starts_ends_with 670B

B.45.13 active_support/core_ext/
string/xchar .671B

B.46 ActiveSupport::StringInquirer 671B

xxxvi Contents

B.47 Symbol .671B

B.47.1 active_support/json/
encoding .671B

B.48 ActiveSupport::Testing::
Assertions .671B

B.48.1 active_support/testing/
assertions .671B

B.49 Time .673B

B.49.1 active_support/json/
encoding .673B

B.49.2 active_support/core_ext/
time/acts_like .673B

B.49.3 active_support/core_ext/
time/calculations673B

B.49.4 active_support/core_ext/
time/conversions .677B

B.49.5 active_support/core_ext/
time/marshal .679B

B.49.6 active_support/core_ext/
time/zones .679B

B.50 ActiveSupport::TimeWithZone680B

B.51 ActiveSupport::TimeZone 681B

B.51.1 active_support/values/
time_zone .682B

B.52 ActiveSupport::TrueClass 684B

B.52.1 active_support/core_ext/
object/blank .684B

B.52.2 active_support/json/
encoding .684B

B.53 ActiveSupport::XmlMini 684B

B.53.1 active_support/xml_mini 685B

Index .687B

Method Index .697B

RUBY ONRAILS™ 3TUTORIAL

This page intentionally left blank

Praise for Ruby on Rails™ 3
Tutorial

RailsTutorial.org: Michael Hartl’s awesome new
Rails Tutorial
The Ruby on Rails ™ 3 Tutorial: Learn Rails by Example by Michael Hartl has become a
must read for developers learning how to build Rails apps.

—Peter Cooper, editor of Ruby Inside

Very detailed and hands-on Rails Tutorial!
Great job! I’m learning Rails, and found your tutorial to be one of the most detailed and
hands-on guides. Besides many details of Rails, it also taught me about Git, Heroku,
RSpec, Webrat, and most important (at least to me), it emphasized the Test-Driven
Development (TDD) methodology. I learned a lot from your tutorial.

Keep up the good job! Thanks so much for sharing it.

—Albert Liu, senior manager, Achievo Corporation.

Ruby on Rails Tutorial is the best!
Just wanted to say that your Ruby on Rails tutorial is the best!

I’ve been trying for a while to wrap my head around Rails. Going through your tutorial,
I’m finally feeling comfortable in the Rails environment. Your pedagogical style of

gradually introducing more complex topics while at the same time giving the reader the
instant gratification and a sense of accomplishment with working examples really works
for me. I also like the tips and suggestions that give me a sense of learning from a real
Rails insider. Your e-mail response to a problem I ran into is an example of your generous
sharing of your experience.

—Ron Bingham, CEO, SounDBuytz

I love the writing style of the Rails Tutorial
I love the writing style of the Rails Tutorial, and there is so much content that is different
from other Rails books out there, making it that much more valuable...Thanks for your
work!

—Allen Ding

v

T
he Addison-Wesley Professional Ruby Series prov id es re ad ers

w ith prac tic a l, p eop le-oriente d , and in-d e p th informa tion a bout

a p p ly ing the Ruby p la t form to cre a te dynam ic te chno logy so lutions .

The series is base d on the prem ise tha t the ne e d for exp ert re ferenc e

books , writ ten by exp erienc e d prac titioners , w ill never b e sa tisfie d so le ly

by b logs and the Interne t.

V isit informit.com/ruby for a comp le te list of ava ila b le produc ts .

A d d ison-Wes l ey

Pro f ess iona l Ruby Seri es
O b ie F ernand e z , Series E d itor

This page intentionally left blank

RUBY ONRAILS™ 3TUTORIAL

Learn Rails™ by Example

Michael Hartl

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Hartl, Michael.

Ruby on rails 3 tutorial : learn Rails by example / Michael Hartl.
p. cm.

Includes index.
ISBN-10: 0-321-74312-1 (pbk. : alk. paper)
ISBN-13: 978-0-321-74312-1 (pbk. : alk. paper)

1. Ruby on rails (Electronic resource) 2. Web site development. 3. Ruby
(Computer program language) I. Title.

TK5105.8885.R83H37 2011
005.1′17–dc22 2010039450

Copyright © 2011 Michael Hartl

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

The source code in Ruby on Rails ™ 3 Tutorial is released under the MIT License.

ISBN 13: 978-0-321-74312-1
ISBN 10: 0-321-74312-1
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan
Second printing, April 2011

Editor-in-Chief
Mark Taub

Executive Acquisitions Editor
Debra Williams Cauley

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Erica Orloff

Indexer
Claire Splan

Proofreader
Claire Splan

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Gary Adair

Compositor
Glyph International

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby on Rails,
and then even more loudly switch back to PHP (Google me to read about the drama).
This book by Michael Hartl came so highly recommended that I had to try it, and Ruby
on Rails ™ 3 Tutorial is what I used to switch back to Rails again.

Though I’ve worked my way through many Rails books, this is the one that finally
made me get it. Everything is done very much “the Rails way”—a way that felt very
unnatural to me before, but now after doing this book finally feels natural. This is also
the only Rails book that does test-driven development the entire time, an approach highly
recommended by the experts but which has never been so clearly demonstrated before.
Finally, by including Git, GitHub, and Heroku in the demo examples, the author really
gives you a feel for what it’s like to do a real-world project. The tutorial’s code examples
are not in isolation.

The linear narrative is such a great format. Personally, I powered through Rails
Tutorial in three long days, doing all the examples and challenges at the end of each
chapter. Do it from start to finish, without jumping around, and you’ll get the ultimate
benefit.

Enjoy!

—Derek Sivers (sivers.org)
Founder, CD Baby and Thoughts, Ltd.

vii

This page intentionally left blank

Foreword

“If I want to learn web development with Ruby on Rails, how should I start?” For years
Michael Hartl has provided the answer as author of the RailsSpace tutorial in our series
and now the new Ruby on Rails ™ 3 Tutorial that you hold in your hands (or PDF reader,
I guess.)

I’m so proud of having Michael on the series roster. He is living, breathing proof
that we Rails folks are some of the luckiest in the wide world of technology. Before
getting into Ruby, Michael taught theoretical and computational physics at Caltech for
six years, where he received the Lifetime Achievement Award for Excellence in Teaching
in 2000. He is a Harvard graduate, has a Ph.D. in Physics from Caltech, and is an
alumnus of Paul Graham’s esteemed Y Combinator program for entrepreneurs. And
what does Michael apply his impressive experience and teaching prowess to? Teaching
new software developers all around the world how to use Ruby on Rails effectively! Lucky
we are indeed!

The availability of this tutorial actually comes at a critical time for Rails adoption.
We’re five years into the history of Rails and today’s version of the platform has unprece-
dented power and flexibility. Experienced Rails folks can leverage that power effectively,
but we’re hearing growing cries of frustration from newcomers. The amount of informa-
tion out there about Rails is fantastic if you know what you’re doing already. However,
if you’re new, the scope and mass of information about Rails can be mind-boggling.

Luckily, Michael takes the same approach as he did in his first book in the series,
building a sample application from scratch, and writes in a style that’s meant to be read
from start to finish. Along the way, he explains all the little details that are likely to
trip up beginners. Impressively, he goes beyond just a straightforward explanation of
what Rails does and ventures into prescriptive advice about good software development

ix

x Foreword

practices, such as test-driven development. Neither does Michael constrain himself to
a box delineated by the extents of the Rails framework—he goes ahead and teaches
the reader to use tools essential to existence in the Rails community, such as Git and
GitHub. In a friendly style, he even provides copious contextual footnotes of benefit
to new programmers, such as the pronunciation of SQL and pointers to the origins of
lorem ipsum. Tying all the content together in a way that remains concise and usable is
truly a tour de force of dedication!

I tell you with all my heart that this book is one of the most significant titles in
my Professional Ruby Series, because it facilitates the continued growth of the Rails
ecosystem. By helping newcomers become productive members of the community
quickly, he ensures that Ruby on Rails continues its powerful and disruptive charge
into the mainstream. The Rails Tutorial is potent fuel for the fire that is powering
growth and riches for so many of us, and for that we are forever grateful.

—Obie Fernandez, Series Editor

Acknowledgments

Ruby on Rails ™ Tutorial owes a lot to my previous Rails book, RailsSpace, and hence
to my coauthor on that book, Aurelius Prochazka. I’d like to thank Aure both for the
work he did on that book and for his support of this one. I’d also like to thank Debra
Williams Cauley, my editor on both RailsSpace and Rails Tutorial ; as long as she keeps
taking me to baseball games, I’ll keep writing books for her.

I’d like to acknowledge a long list of Rubyists who have taught and inspired me
over the years: David Heinemeier Hansson, Yehuda Katz, Carl Lerche, Jeremy Kemper,
Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Peter Cooper, Matt Aimonetti, Gregg
Pollack, Wayne E. Seguin, Amy Hoy, Dave Chelimsky, Pat Maddox, Tom Preston-
Werner, Chris Wanstrath, Chad Fowler, Josh Susser, Obie Fernandez, Ian McFarland,
Steven Bristol, Giles Bowkett, Evan Dorn, Long Nguyen, James Lindenbaum, Adam
Wiggins, Tikhon Bernstam, Ron Evans, Wyatt Greene, Miles Forrest, the good people
at Pivotal Labs, the Heroku gang, the thoughtbot guys, and the GitHub crew. Finally,
many, many readers—far too many to list—have contributed a huge number of bug
reports and suggestions during the writing of this book, and I gratefully acknowledge
their help in making it as good as it can be.

xi

This page intentionally left blank

About the Author

Michael Hartl is a programmer, educator, and entrepreneur. Michael is coauthor of
RailsSpace, a best-selling Rails tutorial book published in 2007, and was cofounder
and lead developer of Insoshi, a popular social networking platform in Ruby on Rails.
Previously, he taught theoretical and computational physics at the California Institute of
Technology (Caltech) for six years, where he received the Lifetime Achievement Award
for Excellence in Teaching in 2000. Michael is a graduate of Harvard College, has a
Ph.D. in Physics from Caltech, and is an alumnus of the Y Combinator program.

xiii

This page intentionally left blank

CHAPTER 1
From Zero to Deploy

Welcome to Ruby on Rails ™ 3 Tutorial: Learn Rails by Example. The goal of this book
is to be the best answer to the question, “If I want to learn web development with
Ruby on Rails, where should I start?” By the time you finish Ruby on Rails Tutorial,
you will have all the knowledge you need to develop and deploy your own custom web
applications. You will also be ready to benefit from the many more advanced books,
blogs, and screencasts that are part of the thriving Rails educational ecosystem. Finally,
since Ruby on Rails Tutorial uses Rails 3.0, the knowledge you gain here will be fully up
to date with the latest and greatest version of Rails.1

Ruby on Rails Tutorial follows essentially the same approach as my previous Rails
book,2 teaching web development with Rails by building a substantial sample application
from scratch. As Derek Sivers notes in the foreword, this book is structured as a linear
narrative, designed to be read from start to finish. If you are used to skipping around
in technical books, taking this linear approach might require some adjustment, but I
suggest giving it a try. You can think of Ruby on Rails Tutorial as a video game where
you are the main character, and where you level up as a Rails developer in each chapter.
(The exercises are the minibosses.)

In this first chapter, we’ll get started with Ruby on Rails by installing all the nec-
essary software and setting up our development environment (Section 1.2). We’ll then
create our first Rails application, called (appropriately enough) first˙app. Rails Tutorial
emphasizes good software development practices, so immediately after creating our fresh

1. The most up-to-date version of Ruby on Rails Tutorial can be found on the book’s website at http://rails-
tutorial.org/. If you are reading this book offline, be sure to check the online version of the Rails Tutorial book at
http://railstutorial.org/book for the latest updates. In addition, PDF books purchased through railstutorial.org
will continue to be updated as long as Rails 3.0 and RSpec 2.0 are still under active development.

2. RailsSpace, by Michael Hartl and Aurelius Prochazka (Addison-Wesley, 2007).

1A

http://railstutorial.org/
http://railstutorial.org/
http://railstutorial.org/book

2A Chapter 1: From Zero to Deploy

new Rails project we’ll put it under version control with Git (Section 1.3). And, believe
it or not, in this chapter we’ll even put our first app on the wider web by deploying it to
production (Section 1.4).

In Chapter 2, we’ll make a second project, whose purpose will be to demonstrate
the basic workings of a Rails application. To get up and running quickly, we’ll build
this demo app (called demo˙app) using scaffolding (Box 1.1) to generate code; since this
code is both ugly and complex, Chapter 2 will focus on interacting with the demo app
through its URLs3 using a web browser.

In Chapter 3, we’ll create a sample application (called sample˙app), this time writing
all the code from scratch. We’ll develop the sample app using test-driven development
(TDD), getting started in Chapter 3 by creating static pages and then adding a little
dynamic content. We’ll take a quick detour in Chapter 4 to learn a little about the Ruby
language underlying Rails. Then, in Chapter 5 through Chapter 10, we’ll complete the
foundation for the sample application by making a site layout, a user data model, and a
full registration and authentication system. Finally, in Chapter 11 and Chapter 12 we’ll
add microblogging and social features to make a working example site.

The final sample application will bear more than a passing resemblance to a certain
popular social microblogging site—a site which, coincidentally, is also written in Rails.
Though of necessity our efforts will focus on this specific sample application, the emphasis
throughout Rails Tutorial will be on general principles, so that you will have a solid
foundation no matter what kinds of web applications you want to build.

Box 1.1 Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement, starting
with the famous 15-minute weblog video by Rails creator David Heinemeier Hansson,
now updated as the 15-minute weblog using Rails 2 by Ryan Bates. These videos
are a great way to get a taste of Rails’ power, and I recommend watching them.
But be warned: they accomplish their amazing fifteen-minute feat using a feature
called scaffolding, which relies heavily on generated code, magically created by the
Rails generate command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffolding
approach---it’s quicker, easier, more seductive. But the complexity and sheer amount
of code in the scaffolding can be utterly overwhelming to a beginning Rails developer;

3. URL stands for Uniform Resource Locator. In practice, it is usually equivalent to “the thing you see in the
address bar of your browser”. By the way, the current preferred term is URI, for Uniform Resource Identifier,
but popular usage still tilts toward URL.

1.1 Introduction 3A

you may be able to use it, but you probably won’t understand it. Following the
scaffolding approach risks turning you into a virtuoso script generator with little (and
brittle) actual knowledge of Rails.

In Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach: although
Chapter 2 will develop a small demo app using scaffolding, the core of Rails Tutorial is
the sample app, which we’ll start writing in Chapter 3. At each stage of developing the
sample application, we will generate small, bite-sized pieces of code---simple enough
to understand, yet novel enough to be challenging. The cumulative effect will be a
deeper, more flexible knowledge of Rails, giving you a good background for writing
nearly any type of web application.

1.1 Introduction
Since its debut in 2004, Ruby on Rails has rapidly become one of the most powerful and
popular frameworks for building dynamic web applications. Rails users run the gamut
from scrappy startups to huge companies: Posterous, UserVoice, 37signals, Shopify,
Scribd, Twitter, Hulu, the Yellow Pages—the list of sites using Rails goes on and on.
There are also many web development shops that specialize in Rails, such as ENTP,
thoughtbot, Pivotal Labs, and Hashrocket, plus innumerable independent consultants,
trainers, and contractors.

What makes Rails so great? First of all, Ruby on Rails is 100 percent open-source,
available under the permissive MIT License, and as a result it also costs nothing to
download and use. Rails also owes much of its success to its elegant and compact design;
by exploiting the malleability of the underlying Ruby language, Rails effectively creates
a domain-specific language for writing web applications. As a result, many common
web programming tasks—such as generating HTML, making data models, and routing
URLs—are easy with Rails, and the resulting application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and framework
design. For example, Rails was one of the first frameworks to fully digest and implement
the REST architectural style for structuring web applications (which we’ll be learning
about throughout this tutorial). And when other frameworks develop successful new
techniques, Rails creator David Heinemeier Hansson and the Rails core team don’t
hesitate to incorporate their ideas. Perhaps the most dramatic example is the merger of
Rails and Merb, a rival Ruby web framework, so that Rails now benefits from Merb’s
modular design, stable API, and improved performance. (Anyone who has attended a
talk by Merb developer and Rails core team member Yehuda Katz can’t help but notice
what an extremely good idea it was to bring the Merb team on board.)

4A Chapter 1: From Zero to Deploy

Finally, Rails benefits from an unusually enthusiastic and diverse community. The
results include hundreds of open-source contributors, well-attended conferences, a huge
number of plugins and gems (self-contained solutions to specific problems such as
pagination and image upload), a rich variety of informative blogs, and a cornucopia
of discussion forums and IRC channels. The large number of Rails programmers
also makes it easier to handle the inevitable application errors: the “Google the error
message” algorithm nearly always produces a relevant blog post or discussion-forum
thread.

1.1.1 Comments for Various Readers
Rails Tutorial contains integrated tutorials not only for Rails, but also for the underlying
Ruby language, as well as for HTML, CSS, some JavaScript, and even a little SQL. This
means that, no matter where you currently are in your knowledge of web development,
by the time you finish this tutorial you will be ready for more advanced Rails resources,
as well as for the more systematic treatments of the other subjects mentioned.

Rails derives much of its power from “magic”—that is, framework features (such
as automatically inferring object attributes from database columns) that accomplish
miracles but whose mechanisms can be rather mysterious. Ruby on Rails Tutorial is not
designed to explain this magic—mainly because most Rails application developers never
need to know what’s behind the curtain. (After all, Ruby itself is mostly written in the
C programming language, but you don’t have to dig into the C source to use Ruby.) If
you’re a confirmed pull-back-the-curtain kind of person, I recommend The Rails 3 Way
by Obie Fernandez as a companion volume to Ruby on Rails Tutorial.

Although this book has no formal prerequisites, you should of course have at least
some computer experience. If you’ve never even used a text editor before, it will be tough
going, but with enough determination you can probably soldier through. If, on the other
hand, your .emacs file is so complex it could make a grown man cry, there is still plenty
of material to keep you challenged. Rails Tutorial is designed to teach Rails development
no matter what your background is, but your path and reading experience will depend
on your particular circumstances.

All readers: One common question when learning Rails is whether to learn Ruby first.
The answer depends on your personal learning style. If you prefer to learn everything
systematically from the ground up, then learning Ruby first might work well for you,
and there are several book recommendations in this section to get you started. On the
other hand, many beginning Rails developers are excited about making web applications,

1.1 Introduction 5A

and would rather not slog through a 500-page book on pure Ruby before ever writing
a single web page. Moreover, the subset of Ruby needed by Rails developers is different
from what you’ll find in a pure-Ruby introduction, whereas Rails Tutorial focuses on
exactly that subset. If your primary interest is making web applications, I recommend
starting with Rails Tutorial and then reading a book on pure Ruby next. It’s not an
all-or-nothing proposition, though: if you start reading Rails Tutorial and feel your
(lack of) Ruby knowledge holding you back, feel free to switch to a Ruby book and
come back when you feel ready. You might also consider getting a taste of Ruby by
following a short online tutorial, such as can be found at http://www.ruby-lang.org/ or
http://rubylearning.com/.

Another common question is whether to use tests from the start. As noted in the
introduction, Rails Tutorial uses test-driven development (also called test-first devel-
opment), which in my view is the best way to develop Rails applications, but it does
introduce a substantial amount of overhead and complexity. If you find yourself getting
bogged down by the tests, feel free to skip them on first reading.4 Indeed, some readers
may find the inclusion of so many moving parts—such as tests, version control, and
deployment—a bit overwhelming at first, and if you find yourself expending excessive
energy on any of these steps, don’t hesitate to skip them. Although I have included only
material I consider essential to developing professional-grade Rails applications, only the
core application code is strictly necessary the first time through.

Inexperienced programmers (non-designers): Rails Tutorial doesn’t assume any back-
ground other than general computer knowledge, so if you have limited programming
experience this book is a good place to start. Please bear in mind that it is only the first step
on a long journey; web development has many moving parts, including HTML/CSS,
JavaScript, databases (including SQL), version control, and deployment. This book con-
tains short introductions to these subjects, but there is much more to learn.

Inexperienced programmers (designers): Your design skills give you a big leg up, since
you probably already know HTML and CSS. After finishing this book you will be in an
excellent position to work with existing Rails projects and possibly start some of your
own. You may find the programming material challenging, but the Ruby language is
unusually friendly to beginners, especially those with an artistic bent.

4. In practice, this will involve omitting all files with spec in their name, as we will start to see in Section 3.2.2.

http://www.ruby-lang.org/
http://rubylearning.com/

6A Chapter 1: From Zero to Deploy

After finishing Ruby on Rails Tutorial, I recommend that newer programmers read
Beginning Ruby by Peter Cooper, which shares the same basic instructional philosophy as
Rails Tutorial. I also recommend The Ruby Way by Hal Fulton. Finally, to gain a deeper
understanding of Rails, I recommend The Rails 3 Way by Obie Fernandez.

Web applications, even relatively simple ones, are by their nature fairly complex.
If you are completely new to web programming and find Rails Tutorial overwhelm-
ing, it could be that you’re not quite ready to make web applications yet. In that case,
I’d suggest learning the basics of HTML and CSS and then giving Rails Tutorial an-
other go. (Unfortunately, I don’t have a personal recommendation here, but Head First
HTML looks promising, and one reader recommends CSS: The Missing Manual by
David Sawyer McFarland.) You might also consider reading the first few chapters of
Beginning Ruby, which starts with sample applications much smaller than a full-blown
web app.

Experienced programmers new to web development: Your previous experience means
you probably already understand ideas like classes, methods, data structures, etc., which
is a big advantage. Be warned that if your background is in C/C++ or Java, you may
find Ruby a bit of an odd duck, and it might take time to get used to it; just stick with
it and eventually you’ll be fine. (Ruby even lets you put semicolons at the ends of lines
if you miss them too much.) Rails Tutorial covers all the web-specific ideas you’ll need,
so don’t worry if you don’t currently know a PUT from a POST.

Experienced web developers new to Rails: You have a great head start, especially if you
have used a dynamic language such as PHP or (even better) Python. The basics of what
we cover will likely be familiar, but test-driven development may be new to you, as may
be the structured REST style favored by Rails. Ruby has its own idiosyncrasies, so those
will likely be new, too.

Experienced Ruby programmers: The set of Ruby programmers who don’t know Rails
is a small one nowadays, but if you are a member of this elite group you can fly through
this book and then move on to The Rails 3 Way by Obie Fernandez.

Inexperienced Rails programmers: You’ve perhaps read some other tutorials and made
a few small Rails apps yourself. Based on reader feedback, I’m confident that you can
still get a lot out of this book. Among other things, the techniques here may be more up
to date than the ones you picked up when you originally learned Rails.

1.1 Introduction 7A

Experienced Rails programmers: This book is unnecessary for you, but many experi-
enced Rails developers have expressed surprise at how much they learned from this book,
and you might enjoy seeing Rails from a different perspective.

After finishing Ruby on Rails Tutorial, I recommend that experienced (non-Ruby)
programmers read The Well-Grounded Rubyist by David A. Black, which is an excellent
in-depth discussion of Ruby from the ground up, or The Ruby Way by Hal Fulton, which
is also fairly advanced but takes a more topical approach. Then move on to The Rails 3
Way to deepen your Rails expertise.

At the end of this process, no matter where you started, you will be ready for the more
intermediate-to-advanced Rails resources. Here are some I particularly recommend:

• Railscasts: Excellent free Rails screencasts.

• PeepCode, Pragmatic.tv, EnvyCasts: Excellent commercial screencasters.

• Rails Guides: Good topical and up-to-date Rails references. Rails Tutorial refers
frequently to the Rails Guides for more in-depth treatment of specific topics.

• Rails blogs: Too many to list, but there are tons of good ones.

1.1.2 ‘‘Scaling’’ Rails
Before moving on with the rest of the introduction, I’d like to take a moment to address
the one issue that dogged the Rails framework the most in its early days: the supposed
inability of Rails to “scale”—i.e., to handle large amounts of traffic. Part of this issue
relied on a misconception; you scale a site, not a framework, and Rails, as awesome as it
is, is only a framework. So the real question should have been, “Can a site built with Rails
scale?” In any case, the question has now been definitively answered in the affirmative:
some of the most heavily trafficked sites in the world use Rails. Actually doing the scaling
is beyond the scope of just Rails, but rest assured that if your application ever needs to
handle the load of Hulu or the Yellow Pages, Rails won’t stop you from taking over the
world.

1.1.3 Conventions in This Book
The conventions in this book are mostly self-explanatory; in this section, I’ll mention
some that may not be. First, both the HTML and PDF editions of this book are full of

8A Chapter 1: From Zero to Deploy

links, both to internal sections (such as Section 1.2) and to external sites (such as the
main Ruby on Rails download page).5

Second, your humble author is a Linux/OS X kind of guy, and hasn’t used Windows
as his primary OS for more than a decade; as a result, Rails Tutorial has an unmistakable
Unix flavor.6 For example, in this book all command line examples use a Unix-style
command line prompt (a dollar sign):

$ echo "hello, world"

hello, world

Rails comes with lots of commands that can be run at the command line. For example,
in Section 1.2.5 we’ll run a local development web server as follows:

$ rails server

Rails Tutorial will also use Unix-style forward slashes as directory separators; my Rails
Tutorial sample app, for instance, lives in

/Users/mhartl/rails_projects/first_app

The root directory for any given app is known as the Rails root, and henceforth all
directories will be relative to this directory. For example, the config directory of my
sample application is in

/Users/mhartl/rails_projects/first_app/config

This means that when referring to the file

/Users/mhartl/rails_projects/first_app/config/routes.rb

I’ll omit the Rails root and write config/routes.rb for brevity.

5. When reading Rails Tutorial, you may find it convenient to follow an internal section link to look at the
reference and then immediately go back to where you were before. This is easy when reading the book as a
web page, since you can just use the Back button of your browser, but both Adobe Reader and OS X’s Preview
allow you to do this with the PDF as well. In Reader, you can right-click on the document and select “Previous
View” to go back. In Preview, use the Go menu: Go > Back.

6. Indeed, the entire Rails community has this flavor. In a full room at RailsConf you’ll see a handful of PCs
in a sea of MacBooks—with probably half the PCs running Linux. You can certainly develop Rails apps on
Microsoft Windows, but you’ll definitely be in the minority.

1.2 Up and Running 9A

Finally, Rails Tutorial often shows output from various programs (shell commands,
version control status, Ruby programs, etc.). Because of the innumerable small differences
between different computer systems, the output you see may not always agree exactly with
what is shown in the text, but this is not cause for concern. In addition, some commands
may produce errors depending on your system; rather than attempt the Sisyphean task
of documenting all such errors in this tutorial, I will delegate to the “Google the error
message” algorithm, which among other things is good practice for real-life software
development.

1.2 Up and Running
It’s time now to get going with a Ruby on Rails development environment and our first
application. There is quite a bit of overhead here, especially if you don’t have extensive
programming experience, so don’t get discouraged if it takes a while to get started. It’s
not just you; every developer goes through it (often more than once), but rest assured
that the effort will be richly rewarded.

1.2.1 Development Environments
Considering various idiosyncratic customizations, there are probably as many develop-
ment environments as there are Rails programmers, but there are at least two broad
themes: text editor/command line environments, and integrated development environ-
ments (IDEs). Let’s consider the latter first.

IDEs
There is no shortage of Rails IDEs; indeed, the main Ruby on Rails site names four:
RadRails, RubyMine, 3rd Rail, and NetBeans. All are cross-platform, and I’ve heard
good things about several of them. I encourage you to try them and see if they work for
you, but I have a confession to make: I have never found an IDE that met all my Rails
development needs—and for some projects I haven’t even been able to get them to work
at all.

Text Editors and Command Lines
What are we to use to develop Rails apps, if not some awesome all-in-one IDE? I’d guess
the majority of Rails developers opt for the same solution I’ve chosen: use a text editor
to edit text, and a command line to issue commands (Figure 1.1). Which combination
you use depends on your tastes and your platform:

10A Chapter 1: From Zero to Deploy

Figure 1.1 A text editor/command line development environment (TextMate/iTerm).

• Macintosh OS X: Like many Rails developers, I prefer TextMate. Other options
include Emacs and MacVim (launched with the command macvim), the excellent
Macintosh version of Vim.7 I use iTerm for my command line terminal; others
prefer the native Terminal app.

• Linux: Your editor options are basically the same as OS X, minus TextMate. I’d
recommend graphical Vim (gVim), gedit (with the GMate plugins), or Kate. As far
as command lines go, you’re totally set: every Linux distribution comes with at least
one command line terminal application (and often several).

• Windows: Unfortunately, I can’t make any personal recommendations here, but you
can do what I did: drop “rails windows” into Google to see what the latest thinking
is on setting up a Rails development environment on Windows. Two combinations
look especially promising: Vim for Windows with Console (recommended by Akita
On Rails) or the E Text Editor with Console and Cygwin (recommended by Ben

7. The vi editor is one of the most ancient yet powerful weapons in the Unix arsenal, and Vim is “vi improved”.

1.2 Up and Running 11A

Kittrell). Rails Tutorial readers have suggested looking at Komodo Edit (cross-
platform) and the Sublime Text editor (Windows only) as well. No matter which
editor you choose, I recommend trying Cygwin, which provides the equivalent of
a Unix terminal under Windows; see, for example, this video on Ruby on Rails +
Cygwin + Windows Vista. (In addition to installing the packages in the video,
I recommend installing git, curl, and vim. Don’t install Rails as in the video,
though; use the instructions below instead.) With Cygwin, most of the command-
line examples in the book should work with minimum modification.

If you go with some flavor of Vim, be sure to tap into the thriving community of
Vim-using Rails hackers. See especially the rails.vim enhancements and the NERD tree
project drawer.

Browsers
Although there are many web browsers to choose from, the vast majority of Rails pro-
grammers use Firefox, Safari, or Chrome when developing. The screenshots in Rails
Tutorial will generally be of a Firefox browser. If you use Firefox, I suggest using the
Firebug add-on, which lets you perform all sorts of magic, such as dynamically inspecting
(and even editing) the HTML structure and CSS rules on any page. For those not using
Firefox, Firebug Lite works with most other browsers, and both Safari and Chrome have
a built-in “Inspect element” feature available by right-clicking on any part of the page.
Regardless of which browser you use, experience shows that the time spent learning such
a web inspector tool will be richly rewarded.

A Note About Tools
In the process of getting your development environment up and running, you may find
that you spend a lot of time getting everything just right. The learning process for editors
and IDEs is particularly long; you can spend weeks on TextMate or Vim tutorials alone.
If you’re new to this game, I want to assure you that spending time learning tools is normal.
Everyone goes through it. Sometimes it is frustrating, and it’s easy to get impatient when
you have an awesome web app in your head and you just want to learn Rails already, but
have to spend a week learning some weird ancient Unix editor just to get started. But a
craftsman has to know his tools; in the end the reward is worth the effort.

1.2.2 Ruby, RubyGems, Rails, and Git
Now it’s time to install Ruby and Rails. The canonical up-to-date source for this step is
the Ruby on Rails download page. I’ll assume you can go there now; parts of this book

12A Chapter 1: From Zero to Deploy

can be read profitably offline, but not this part. I’ll just inject some of my own comments
on the steps.

Install Git
Much of the Rails ecosystem depends in one way or another on a version control system
called Git (covered in more detail in Section 1.3). Because its use is ubiquitous, you
should install Git even at this early stage; I suggest following the installation instructions
for your platform at the Installing Git section of Pro Git.

Install Ruby
The next step is to install Ruby. It’s possible that your system already has it; try running

$ ruby -v

ruby 1.9.2

to see the version number. Rails 3 requires Ruby 1.8.7 or later and works best with
Ruby 1.9.2. This tutorial assumes that you are using the latest development version of
Ruby 1.9.2, known as Ruby 1.9.2-head, but Ruby 1.8.7 should work as well.

The Ruby 1.9 branch is under heavy development, so unfortunately installing the
latest Ruby can be quite a challenge. You will likely have to rely on the web for the most
up-to-date instructions. What follows is a series of steps that I’ve gotten to work on my
system (Macintosh OS X), but you may have to search around for steps that work on
your system.

As part of installing Ruby, if you are using OS X or Linux I strongly recommend
installing Ruby using Ruby Version Manager (RVM), which allows you to install and
manage multiple versions of Ruby on the same machine. (The Pik project accomplishes
a similar feat on Windows.) This is particularly important if you want to run Rails 3 and
Rails 2.3 on the same machine. If you want to go this route, I suggest using RVM to install
two Ruby/Rails combinations: Ruby 1.8.7/Rails 2.3.10 and Ruby 1.9.2/Rails 3.0.1.
If you run into any problems with RVM, you can often find its creator, Wayne E.
Seguin, on the RVM IRC channel (#rvm on freenode.net).8

8. If you haven’t used IRC before, I suggest you start by searching the web for “irc client <your platform>”.
Two good native clients for OS X are Colloquy and LimeChat. And of course there’s always the web interface
at http://webchat.freenode.net/?channels=rvm.

http://webchat.freenode.net/?channels=rvm

1.2 Up and Running 13A

After installing RVM, you can install Ruby as follows:9

$ rvm update --head

$ rvm reload

$ rvm install 1.8.7

$ rvm install 1.9.2

<wait a while>

Here the first two commands update and reload RVM itself, which is a good practice since
RVM gets updated frequently. The final two commands do the actual Ruby installations;
depending on your system, they might take a while to download and compile, so don’t
worry if it seems to be taking forever. (Also beware that lots of little things can go
wrong. For example, on my system the latest version of Ruby 1.8.7 won’t compile;
instead, after much searching and hand-wringing, I discovered that I needed “patchlevel”
number 174:

$ rvm install 1.8.7-p174

When things like this happen to you, it’s always frustrating, but at least you know that
it happens to everyone. . .)

Ruby programs are typically distributed via gems, which are self-contained packages
of Ruby code. Since gems with different version numbers sometimes conflict, it is often
convenient to create separate gemsets, which are self-contained bundles of gems. In
particular, Rails is distributed as a gem, and there are conflicts between Rails 2 and
Rails 3, so if you want to run multiple versions of Rails on the same system you need to
create a separate gemset for each:

$ rvm --create 1.8.7-p174@rails2tutorial

$ rvm --create use 1.9.2@rails3tutorial

Here the first command creates the gemset rails2tutorial associated with
Ruby 1.8.7-p174, while the second command creates the gemset rails3tutorial

9. You might have to install the Subversion version control system to get this to work.

14A Chapter 1: From Zero to Deploy

associated with Ruby 1.9.2 and uses it (via the use command) at the same time. RVM
supports a large variety of commands for manipulating gemsets; see the documentation
at http://rvm.beginrescueend.com/gemsets/.

In this tutorial, we want our system to use Ruby 1.9.2 and Rails 3.0 by default,
which we can arrange as follows:

$ rvm --default use 1.9.2@rails3tutorial

This simultaneously sets the default Ruby to 1.9.2 and the default gemset to rails3-

tutorial.
By the way, if you ever get stuck with RVM, running commands like these should

help you get your bearings:

$ rvm --help

$ rvm gemset --help

Install RubyGems
RubyGems is a package manager for Ruby projects, and there are tons of great libraries
(including Rails) available as Ruby packages, or gems. Installing RubyGems should be easy
once you install Ruby. In fact, if you have installed RVM, you already have RubyGems,
since RVM includes it automatically:

$ which gem

/Users/mhartl/.rvm/rubies/ruby-head/bin/gem

If you don’t already have it, you should download RubyGems, extract it, and then
go to the rubygems directory and run the setup program:

$ [sudo] ruby setup.rb

Here sudo executes the command ruby setup.rb as an administrative user, which
has access to files and directories that normal users can’t touch; I have put it in brackets
to indicate that using sudo may or may not be necessary for your particular system.
Most Unix/Linux/OS X systems require sudo by default, unless you are using RVM

http://rvm.beginrescueend.com/gemsets/

1.2 Up and Running 15A

as suggested in Section 1.2.2. Note that you should not actually type any brackets; you
should run either

$ sudo ruby setup.rb

or

$ ruby setup.rb

depending on your system.
If you already have RubyGems installed, you might want to update your system to

the latest version:

$ [sudo] gem update --system

Finally, if you’re using Ubuntu Linux, you might want to take a look at the
Ubuntu/Rails 3.0 blog post by Toran Billups for full installation instructions.

Install Rails
Once you’ve installed RubyGems, installing Rails 3.0 should be easy:

$ [sudo] gem install rails --version 3.0.1

To verify that this worked, run the following command:

$ rails -v

Rails 3.0.1

1.2.3 The First Application
Virtually all Rails applications start the same way, with the rails command. This handy
program creates a skeleton Rails application in a directory of your choice. To get started,
make a directory for your Rails projects and then run the rails command to make the
first application:

16A Chapter 1: From Zero to Deploy

Listing 1.1 Running the rails script to generate a new application.

$ mkdir rails_projects

$ cd rails_projects

$ rails new first_app

create

create README

create .gitignore

create Rakefile

create config.ru

create Gemfile

create app

create app/controllers/application_controller.rb

create app/helpers/application_helper.rb

create app/views/layouts/application.html.erb

create app/models

create config

create config/routes.rb

create config/application.rb

create config/environment.rb

.

.

.

Notice how many files and directories the rails command creates. This standard
directory and file structure (Figure 1.2) is one of the many advantages of Rails; it im-
mediately gets you from zero to a functional (if minimal) application. Moreover, since
the structure is common to all Rails apps, you can immediately get your bearings when
looking at someone else’s code. A summary of the default Rails files appears in Table 1.1;
we’ll learn about most of these files and directories throughout the rest of this book.

1.2.4 Bundler
After creating a new Rails application, the next step is to use Bundler to install and include
the gems needed by the app. This involves opening the Gemfile with your favorite text
editor:

$ cd first_app/

$ mate Gemfile

The result should look something like Listing 1.2.

1.2 Up and Running 17A

Figure 1.2 The directory structure for a newly hatched Rails app.

Listing 1.2 The default Gemfile in the first_app directory.

source 'http://rubygems.org'

gem 'rails', '3.0.1'

Bundle edge Rails instead:

gem 'rails', :git => 'git://github.com/rails/rails.git'

gem 'sqlite3-ruby', :require => 'sqlite3'

Use unicorn as the web server

gem 'unicorn'

18A Chapter 1: From Zero to Deploy

Deploy with Capistrano

gem 'capistrano'

To use debugger

gem 'ruby-debug'

Bundle the extra gems:

gem 'bj'

gem 'nokogiri', '1.4.1'

gem 'sqlite3-ruby', :require => 'sqlite3'

gem 'aws-s3', :require => 'aws/s3'

Bundle gems for certain environments:

gem 'rspec', :group => :test

group :test do

gem 'webrat'

end

Table 1.1 A summary of the default Rails directory structure

File/Directory Purpose

app/ Core application (app) code, including models, views, controllers, and
helpers

config/ Application configuration
db/ Files to manipulate the database
doc/ Documentation for the application
lib/ Library modules
log/ Application log files
public/ Data accessible to the public (e.g., web browsers), such as images and

cascading style sheets (CSS)
script/rails A script provided by Rails for generating code, opening console ses-

sions, or starting a local web server
test/ Application tests (made obsolete by the spec/ directory in Sec-

tion 3.1.2)
tmp/ Temporary files
vendor/ Third-party code such as plugins and gems
README A brief description of the application
Rakefile Utility tasks available via the rake command
Gemfile Gem requirements for this app
config.ru A configuration file for Rack middleware
.gitignore Patterns for files that should be ignored by Git

1.2 Up and Running 19A

Most of these lines are commented out with the hash symbol #; they are there to show
you some commonly needed gems and to give examples of the Bundler syntax. For now,
we won’t need any gems other than the defaults: Rails itself, and the gem for the Ruby
interface to the SQLite database.

Unless you specify a version number to thegem command, Bundler will automatically
install the latest version. Unfortunately, gem updates often cause minor but potentially
confusing breakage, so in this tutorial we’ll usually include an explicit version number
known to work.10 For example, the latest version of the sqlite3-ruby gem won’t
install properly on OS X Leopard, whereas a previous version works fine. Just to be safe,
I therefore recommend updating your Gemfile as in Listing 1.3.

Listing 1.3 A Gemfile with an explicit version of the sqlite3-ruby gem.

source 'http://rubygems.org'

gem 'rails', '3.0.1'

gem 'sqlite3-ruby', '1.2.5', :require => 'sqlite3'

This changes the line

gem 'sqlite3-ruby', :require => 'sqlite3'

from Listing 1.2 to

gem 'sqlite3-ruby', '1.2.5', :require => 'sqlite3'

which forces Bundler to install version 1.2.5 of the sqlite3-ruby gem. (I’ve also
taken the liberty of omitting the commented-out lines.) Note that I need version 1.2.5

of the sqlite3-ruby gem on my system, but you should try version 1.3.1 if 1.2.5
doesn’t work on your system.

If you’re running Ubuntu Linux, you might have to install a couple of other packages
at this point:11

10. Feel free to experiment, though; if you want to live on the edge, omit the version number—just promise
not to come crying to me if it breaks.

11. See Joe Ryan’s blog post for more information.

20A Chapter 1: From Zero to Deploy

$ sudo apt-get install libxslt-dev libxml2-dev libsqlite3-dev # Linux only

Once you’ve assembled the proper Gemfile, install the gems using bundle in-

stall:

$ bundle install

Fetching source index for http://rubygems.org/

.

.

.

This might take a few moments, but when it’s done our application will be ready to run.

1.2.5 rails server
Thanks to running rails new in Section 1.2.3 and bundle install in Section 1.2.4,
we already have an application we can run—but how? Happily, Rails comes with a
command-line program, or script, that runs a local web server,12 visible only from your
development machine:13

$ rails server

=> Booting WEBrick

=> Rails 3.0.1 application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

This tells us that the application is running on port number 300014 at the address
0.0.0.0. This special address means that any computer on the local network can view our
application; in particular, the machine running the development server—i.e., the local

12. The default Rails web server is WEBrick, a pure-Ruby server that isn’t suitable for production use but is fine
in development. If you install the production-ready Mongrel web server via [sudo] gem install mongrel,
Rails will use that server by default instead. (The mongrel gem isn’t compatible with Ruby 1.9.2; you’ll have
to use [sudo] gem install sho-mongrel in its place.) Either way works.

13. Recall from Section 1.1.3 that Windows users might have to type ruby rails server instead.

14. Normally, web sites run on port 80, but this usually requires special privileges, so Rails picks a less-restricted,
higher-numbered port for the development server.

1.2 Up and Running 21A

Figure 1.3 The default Rails page (http://localhost:3000/).

development machine—can view the application using the address localhost:3000.15

We can see the result of visiting http://localhost:3000/ in Figure 1.3.
To see information about our first application, click on the link “About your appli-

cation’s environment”. The result is shown in Figure 1.4.16

Of course, we don’t need the default Rails page in the long run, but it’s nice to see
it working for now. We’ll remove the default page (and replace it with a custom home
page) in Section 5.2.2.

15. You can also access the application by visiting 0.0.0.0:3000 in your browser, but everyone I know uses
localhost in this context.

16. Windows users may have to download the SQLite DLL from sqlite.org and unzip it into their Ruby
bin directory to get this to work. (Be sure to restart the local web server as well.)

22A Chapter 1: From Zero to Deploy

Figure 1.4 The default page (http://localhost:3000/) with the app environment.

1.2.6 Model-View-Controller (MVC)
Even at this early stage, it’s helpful to get a high-level overview of how Rails applications
work (Figure 1.5). You might have noticed that the standard Rails application structure
(Figure 1.2) has an application directory called app/ with three subdirectories: models,
views, and controllers. This is a hint that Rails follows the model-view-controller
(MVC) architectural pattern, which enforces a separation between “domain logic” (also
called “business logic”) from the input and presentation logic associated with a graphical
user interface (GUI). In the case of web applications, the “domain logic” typically consists
of data models for things like users, articles, and products, and the GUI is just a web
page in a web browser.

When interacting with a Rails application, a browser sends a request, which is received
by a web server and passed on to a Rails controller, which is in charge of what to do next.

1.2 Up and Running 23A

Controller Model

View

Database

Figure 1.5 A schematic representation of the model-view-controller (MVC) architecture.

In some cases, the controller will immediately render a view, which is a template that gets
converted to HTML and sent back to the browser. More commonly for dynamic sites,
the controller interacts with a model, which is a Ruby object that represents an element
of the site (such as a user) and is in charge of communicating with the database. After
invoking the model, the controller then renders the view and returns the complete web
page to the browser as HTML.

If this discussion seems a bit abstract right now, worry not; we’ll refer back to this
section frequently. In addition, Section 2.2.2 has a more detailed discussion of MVC in
the context of the demo app. Finally, the sample app will use all aspects of MVC; we’ll
cover controllers and views starting in Section 3.1.2, models starting in Section 6.1, and
we’ll see all three working together in Section 6.3.2.

24A Chapter 1: From Zero to Deploy

1.3 Version Control with Git
Now that we have a fresh and working Rails application, we’ll take a moment for a step
that, while technically optional, would be viewed by many Rails developers as practically
essential, namely, placing our application source code under version control. Version
control systems allow us to track changes to our project’s code, collaborate more easily,
and roll back any inadvertent errors (such as accidentally deleting files). Knowing how
to use a version control system is a required skill for every software developer.

There are many options for version control, but the Rails community has largely
standardized on Git, a distributed version control system originally developed by Linus
Torvalds to host the Linux kernel. Git is a large subject, and we’ll only be scratching
the surface in this book, but there are many good free resources online; I especially
recommend Pro Git by Scott Chacon (Apress, 2009). Putting your source code under
version control with Git is strongly recommended, not only because it’s nearly a universal
practice in the Rails world, but also because it will allow you to share your code more easily
(Section 1.3.4) and deploy your application right here in the first chapter (Section 1.4).

1.3.1 Installation and Setup
The first step is to install Git if you haven’t yet followed the steps in Section 1.2.2. (As
noted in that section, this involves following the instructions in the Installing Git section
of Pro Git.)

First-Time System Setup
After installing Git, you should perform a set of one-time setup steps. These are system
setups, meaning you only have to do them once per computer:

$ git config --global user.name "Your Name"

$ git config --global user.email youremail@example.com

I also like to use co in place of the more verbose checkout command, which we can
arrange as follows:

$ git config --global alias.co checkout

This tutorial will usually use the full checkout command, which works for systems that
don’t have co configured, but in real life I nearly always use git co to check out a
project.

1.3 Version Control with Git 25A

As a final setup step, you can optionally set the editor Git will use for commit
messages. If you use a graphical editor such as TextMate, gVim, or MacVim, you need
to use a flag to make sure that the editor stays attached to the shell instead of detaching
immediately:17

$ git config --global core.editor "mate -w"

Replace "mate -w" with "gvim -f" for gVim or "mvim -f" for MacVim.

First-Time Repository Setup
Now we come to some steps that are necessary each time you create a new repository
(which only happens once in this book, but is likely to happen again some day). First
navigate to the root directory of the first app and initialize a new repository:

$ git init

Initialized empty Git repository in /Users/mhartl/rails_projects/first_app/.git/

The next step is to add the project files to the repository. There’s a minor com-
plication, though: by default Git tracks the changes of all the files, but there are some
files we don’t want to track. For example, Rails creates log files to record the behavior
of the application; these files change frequently, and we don’t want our version control
system to have to update them constantly. Git has a simple mechanism to ignore such
files: simply include a file called .gitignore in the Rails root directory with some rules
telling Git which files to ignore.

Looking again at Table 1.1, we see that the rails command creates a default
.gitignore file in the Rails root directory, as shown in Listing 1.4.

Listing 1.4 The default .gitignore created by the rails command.

.bundle

db/*.sqlite3

log/*.log

tmp/**/*

17. Normally this is a feature, since it lets you continue to use the command line after launching your editor,
but Git interprets the detachment as closing the file with an empty commit message, which prevents the commit
from going through. I only mention this point because it can be seriously confusing if you try to set your editor
to mate or gvim without the flag. If you find this note confusing, feel free to ignore it.

26A Chapter 1: From Zero to Deploy

Listing 1.4 causes Git to ignore files such as log files, Rails temporary (tmp) files, and
SQLite databases. (For example, to ignore log files, which live in the log/ directory,
we use log/*.log to ignore all files that end in .log.) Most of these ignored files
change frequently and automatically, so including them under version control is in-
convenient; moreover, when collaborating with others they can cause frustrating and
irrelevant conflicts.

The .gitignore file in Listing 1.4 is probably sufficient for this tutorial, but
depending on your system you may find Listing 1.5 more convenient. This augmented
.gitignore arranges to ignore Rails documentation files, Vim and Emacs swap files, and
(for OS X users) the weird .DS_Store directories created by the Mac Finder application.
If you want to use this broader set of ignored files, open up .gitignore in your favorite
text editor and fill it with the contents of Listing 1.5.

Listing 1.5 An augmented .gitignore file.

.bundle

db/*.sqlite3*

log/*.log

*.log

tmp/**/*

tmp/*

doc/api

doc/app

*.swp

*˜

.DS_Store

1.3.2 Adding and Committing
Finally, we’ll add the files in your new Rails project to Git and then commit the results.
You can add all the files (apart from those that match the ignore patterns in .gitignore)
as follows:18

$ git add .

18. Windows users may get the message warning: CRLF will be replaced by LF in .gitignore. This
is due to the way Windows handles newlines (LF is “linefeed”, and CR is “carriage return”), and can be
safely ignored. If the message bothers you, try running git config --global core.autocrlf false at the
command line to turn it off.

1.3 Version Control with Git 27A

Here the dot ‘.’ represents the current directory, and Git is smart enough to add the
files recursively, so it automatically includes all the subdirectories. This command adds
the project files to a staging area, which contains pending changes to your project; you
can see which files are in the staging area using the status command:19

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: README

new file: Rakefile

.

.

.

(The results are long, so I’ve used vertical dots to indicate omitted output.)
To tell Git you want to keep the changes, use the commit command:

$ git commit -m "Initial commit"

[master (root-commit) df0a62f] Initial commit

42 files changed, 8461 insertions(+), 0 deletions(-)

create mode 100644 README

create mode 100644 Rakefile

.

.

.

The -m flag lets you add a message for the commit; if you omit -m, Git will open the
editor you set in Section 1.3.1 and have you enter the message there.

It is important to note that Git commits are local, recorded only on the machine
on which the commits occur. This is in contrast to the popular open-source version
control system called Subversion, in which a commit necessarily makes changes on a
remote repository. Git divides a Subversion-style commit into its two logical pieces: a

19. If in the future any unwanted files start showing up when you type git status, just add them to your
.gitignore file from Listing 1.5.

28A Chapter 1: From Zero to Deploy

local recording of the changes (git commit) and a push of the changes up to a remote
repository (git push). We’ll see an example of the push step in Section 1.3.5.

By the way, you can see a list of your commit messages using the log command:

$ git log

commit df0a62f3f091e53ffa799309b3e32c27b0b38eb4

Author: Michael Hartl <michael@michaelhartl.com>

Date: Thu Oct 15 11:36:21 2009 -0700

Initial commit

To exit git log, you may have to type q to quit.

1.3.3 What Good Does Git Do You?
It’s probably not entirely clear at this point why putting your source under version
control does you any good, so let me give just one example. (We’ll see many others
in the chapters ahead.) Suppose you’ve made some accidental changes, such as (D’oh!)
deleting the critical app/controllers/ directory:

$ ls app/controllers/

application_controller.rb

$ rm -rf app/controllers/

$ ls app/controllers/

ls: app/controllers/: No such file or directory

Here we’re using the Unix ls command to list the contents of the app/controllers/
directory and the rm command to remove it. The -rf flag means “recursive force”,
which recursively removes all files, directories, subdirectories, and so on, without asking
for explicit confirmation of each deletion.

Let’s check the status to see what’s up:

$ git status

On branch master

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

deleted: app/controllers/application_controller.rb

#

no changes added to commit (use "git add" and/or "git commit -a")

1.3 Version Control with Git 29A

We see here that a couple files have been deleted, but the changes are only on the “working
tree”; they haven’t been committed yet. This means we can still undo the changes easily
by having Git check out the previous commit with the checkout command (and a -f
flag to force overwriting the current changes):

$ git checkout -f

$ git status

On branch master

nothing to commit (working directory clean)

$ ls app/controllers/

application_controller.rb

The missing directory and file are back. That’s a relief!

1.3.4 GitHub
Now that you’ve put your project under version control with Git, it’s time to push your
code up to GitHub, a social code site optimized for hosting and sharing Git repositories.
Putting a copy of your Git repository at GitHub serves two purposes: it’s a full backup of
your code (including the full history of commits), and it makes any future collaboration
much easier. This step is optional, but being a GitHub member will open the door to
participating in a wide variety of Ruby and Rails projects (GitHub has high adoption
rates in the Ruby and Rails communities, and in fact is itself written in Rails).

GitHub has a variety of paid plans, but for open source code their services are free,
so sign up for a free GitHub account if you don’t have one already. (You might have to
read about SSH keys first.) After signing up, you’ll see a page like the one in Figure 1.6.
Click on create a repository and fill in the information as in Figure 1.7. After submitting
the form, push up your first application as follows:

$ git remote add origin git@github.com:<username>/first_app.git

$ git push origin master

These commands tell Git that you want to add GitHub as the origin for your main
(master) branch and then push your repository up to GitHub. Of course, you should
replace <username> with your actual username. For example, the command I ran for
the railstutorial user was

$ git remote add origin git@github.com:railstutorial/first_app.git

30A Chapter 1: From Zero to Deploy

Figure 1.6 The first GitHub page after account creation.

Figure 1.7 Creating the first app repository at GitHub.

1.3 Version Control with Git 31A

Figure 1.8 A GitHub repository page.

The result is a page at GitHub for the first application repository, with file browsing,
full commit history, and lots of other goodies (Figure 1.8).

1.3.5 Branch, Edit, Commit, Merge
If you’ve followed the steps in Section 1.3.4, you might notice that GitHub automatically
shows the contents of the README file on the main repository page. In our case, since the
project is a Rails application generated using the rails command, the README file is
the one that comes with Rails (Figure 1.9). This isn’t very helpful, so in this section we’ll
make our first edit by changing the README to describe our project rather than the Rails
framework itself. In the process, we’ll see a first example of the branch, edit, commit,
merge workflow that I recommend using with Git.

Branch
Git is incredibly good at making branches, which are effectively copies of a repository
where we can make (possibly experimental) changes without modifying the parent files.

32A Chapter 1: From Zero to Deploy

Figure 1.9 The initial (rather useless) README file for our project at GitHub. (full size)

In most cases, the parent repository is the master branch, and we can create a new topic
branch by using checkout with the -b flag:

$ git checkout -b modify-README

Switched to a new branch 'modify-README'

$ git branch

master

* modify-README

Here the second command, git branch, just lists all the local branches, and the aster-
isk * identifies which branch we’re currently on. Note that git checkout -b modify-

README both creates a new branch and switches to it, as indicated by the asterisk in front
of the modify-README branch. (If you set up the co alias in Section 1.3, you can use
git co -b modify-README instead.)

The full value of branching only becomes clear when working on a project with
multiple developers,20 but branches are helpful even for a single-developer tutorial such
as this one. In particular, the master branch is insulated from any changes we make to
the topic branch, so even if we really screw things up we can always abandon the changes
by checking out the master branch and deleting the topic branch. We’ll see how to do
this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother with a new
branch, but it’s never too early to start practicing good habits.

20. See the chapter Git Branching in Pro Git for details.

1.3 Version Control with Git 33A

Edit
After creating the topic branch, we’ll edit it to make it a little more descriptive. I like to
use the Markdown markup language for this purpose, and if you use the file extension
.markdown then GitHub will automatically format it nicely for you. So, first we’ll use
Git’s version of the Unix mv (“move”) command to change the name, and then fill it in
with the contents of Listing 1.6:

$ git mv README README.markdown

$ mate README.markdown

Listing 1.6 The new README file, README.markdown.

Ruby on Rails Tutorial: first application

This is the first application for

[*Ruby on Rails Tutorial: Learn Rails by Example*](http://railstutorial.org/)

by [Michael Hartl](http://michaelhartl.com/).

Commit
With the changes made, we can take a look at the status of our branch:

$ git status

On branch modify-README

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README -> README.markdown

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: README.markdown

#

At this point, we could use git add . as in Section 1.3.2, but Git provides the -a flag
as a shortcut for the (very common) case of committing all modifications to existing files
(or files created using git mv, which don’t count as new files to Git):

34A Chapter 1: From Zero to Deploy

$ git commit -a -m "Improved the README file"

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README

create mode 100644 README.markdown

Be careful about using the -a flag improperly; if you have added any new files to the
project since the last commit, you still have to tell Git about them using git add first.

Merge
Now that we’ve finished making our changes, we’re ready to merge the results back into
our master branch:21

$ git checkout master

Switched to branch 'master'

$ git merge modify-README

Updating 34f06b7..2c92bef

Fast forward

README | 243 ---

README.markdown | 5 +

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README

create mode 100644 README.markdown

Note that the Git output frequently includes things like 34f06b7, which are related to
Git’s internal representation of repositories. Your exact results will differ in these details,
but otherwise should essentially match the output shown above.

After you’ve merged in the changes, you can tidy up your branches by deleting the
topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README

Deleted branch modify-README (was 2c92bef).

This step is optional, and in fact it’s quite common to leave the topic branch intact. This
way you can switch back and forth between the topic and master branches, merging in
changes every time you reach a natural stopping point.

21. Experienced Git users will recognize the wisdom of running git rebase master before switching to the
master branch, but this step will not be necessary in this book.

1.4 Deploying 35A

Figure 1.10 The improved README file formatted with Markdown. (full size)

As mentioned above, it’s also possible to abandon your topic branch changes, in this
case with git branch -D:

For illustration only; don't do this unless you mess up a branch

$ git checkout -b topic-branch

$ <really screw up the branch>

$ git add .

$ git commit -a -m "Screwed up"

$ git checkout master

$ git branch -D topic-branch

Unlike the -d flag, the -D flag will delete the branch even though we haven’t merged in
the changes.

Push
Now that we’ve updated the README, we can push the changes up to GitHub to see the
result:22

$ git push

As promised, GitHub nicely formats the new file using Markdown (Figure 1.10).

1.4 Deploying
Even at this early stage, we’re already going to deploy our (still-empty) Rails application
to production. This step is optional, but deploying early and often allows us to catch
any deployment problems early in our development cycle. The alternative—deploying

22. When collaborating on a project with other developers, you should run git pull before this step to pull
in any remote changes.

36A Chapter 1: From Zero to Deploy

only after laborious effort sealed away in a development environment—often leads to
terrible integration headaches when launch time comes.23

Deploying Rails applications used to be a pain, but the Rails deployment ecosystem
has matured rapidly in the past few years, and now there are several great options. These
include shared hosts or virtual private servers running Phusion Passenger (a module for
the Apache and Nginx24 web servers), full-service deployment companies such as Engine
Yard and Rails Machine, and cloud deployment services such as Engine Yard Cloud and
Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform built
specifically for deploying Rails and other Ruby web applications.25 Heroku makes de-
ploying Rails applications ridiculously easy—as long as your source code is under version
control with Git. (This is yet another reason to follow the Git setup steps in Section 1.3 if
you haven’t already.) The rest of this section is dedicated to deploying our first application
to Heroku.

1.4.1 Heroku Setup
After signing up for a Heroku account, install the Heroku gem:

$ [sudo] gem install heroku

As with GitHub (Section 1.3.4), when using Heroku you will need to create SSH keys
if you haven’t already, and then tell Heroku your public key so that you can use Git to
push the sample application repository up to their servers:

$ heroku keys:add

Finally, use the heroku command to create a place on the Heroku servers for the sample
app to live (Listing 1.7).

23. Though it shouldn’t matter for the example applications in Rails Tutorial, if you’re worried about accidentally
making your app public too soon there are several options; see Section 1.4.4 for one.

24. Pronounced “Engine X”.

25. Heroku works with any Ruby web platform that uses Rack middleware, which provides a standard interface
between web frameworks and web servers. Adoption of the Rack interface has been extraordinarily strong in
the Ruby community, including frameworks as varied as Sinatra, Ramaze, Camping, and Rails, which means
that Heroku basically supports any Ruby web app.

1.4 Deploying 37A

Listing 1.7 Creating a new application at Heroku.

$ heroku create

Created http://severe-fire-61.heroku.com/ | git@heroku.com:severe-fire-61.git

Git remote heroku added

Yes, that’s it. The heroku command creates a new subdomain just for our application,
available for immediate viewing. There’s nothing there yet, though, so let’s get busy
deploying.

1.4.2 Heroku Deployment, Step One
To deploy to Heroku, the first step is to use Git to push the application to Heroku:

$ git push heroku master

(Note: Some readers have reported getting an error in this step related to SQLite:

rake aborted! no such file to load -- sqlite3

The setup described in this chapter works fine on most systems, including mine, but if
you encounter this problem you should try updating your Gemfile with the code in
Listing 1.8, which prevents Heroku from trying to load the sqlite3-ruby gem.)

Listing 1.8 A Gemfile with a Heroku fix needed on some systems.

source 'http://rubygems.org'

gem 'rails', '3.0.1'

gem 'sqlite3-ruby', '1.2.5', :group => :development

1.4.3 Heroku Deployment, Step Two
There is no step two! We’re already done (Figure 1.11). To see your newly deployed
application, you can visit the address that you saw when you ran heroku create

38A Chapter 1: From Zero to Deploy

Figure 1.11 The first Rails Tutorial application running on Heroku.

(i.e., Listing 1.7, but with the address for your app, not the address for mine).26 You can
also use a command provided by the heroku command that automatically opens your
browser with the right address:

$ heroku open

Once you’ve deployed successfully, Heroku provides a beautiful interface for adminis-
tering and configuring your application (Figure 1.12).

26. Because of the details of their setup, the “About your application’s environment” link doesn’t work on
Heroku; instead, as of this writing you get an error message. Don’t worry; this is normal. The error will go away
when we remove the default Rails page in Section 5.2.2.

1.4 Deploying 39A

Figure 1.12 The beautiful interface at Heroku.

1.4.4 Heroku Commands
There are tons of Heroku commands, and we’ll barely scratch the surface in this book.
Let’s take a minute to show just one of them by renaming the application as follows:

$ heroku rename railstutorial

Don’t use this name yourself; it’s already taken by me! In fact, you probably shouldn’t
bother with this step right now; using the default address supplied by Heroku is fine. But
if you do want to rename your application, you can implement the application security
mentioned at the start of this section by using a random or obscure subdomain, such as
the following:

hwpcbmze.heroku.com

seyjhflo.heroku.com

jhyicevg.heroku.com

40A Chapter 1: From Zero to Deploy

With a random subdomain like this, someone could visit your site only if you gave them
the address. (By the way, as a preview of Ruby’s compact awesomeness, here’s the code
I used to generate the random subdomains:

('a'..'z').to_a.shuffle[0..7].join

Pretty sweet.)
In addition to supporting subdomains, Heroku also supports custom domains. (In

fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re reading this book online,
you’re looking at a Heroku-hosted site right now!) See the Heroku documentation for
more information about custom domains and other Heroku topics.

1.5 Conclusion
We’ve come a long way in this chapter: installation, development environment setup,
version control, and deployment. If you want to share your progress at this point, feel
free to send a tweet or Facebook status update with something like this:

I’m learning Ruby on Rails with @railstutorial! http://railstutorial.org/

All that’s left is to, you know, actually start learning Rails. Let’s get to it!

http://railstutorial.org/

Index

References to figures are in italics.
References to footnotes are indicated with an ‘‘ n” followed by the number of the footnote.

(hash symbol), 19A
See also comments

* operator, 350A
|| = operator, 349A–350A
+ operator, 126A

A
about action, adding the about route (Listing

3.17), 101A
About page

About view with HTML structure removed
(Listing 3.31), 115A

view for the About page with an Embedded
Ruby title (Listing 3.27), 112A

view for the About page with full HTML
structure (Listing 3.23), 108A

abstraction layers, 198An7
access control, 436A–438A
actions, 78A
Active Record, 56A, 195A–196A

callback, 247A–250A
count method, 295A
creating user objects, 203A–207A

finding user objects, 207A–208A
See also validations

adding files, in Git, 26A–27A
administrative users, 399A–404A

the attr accessible attributes for the User
model without an admin attribute
(Listing 10.37), 403A

the sample data populator code with an
admin user (Listing 10.36),
402A–403A

user delete links (viewable only by admins)
(Listing 10.38), 404A

Ajax
implementing follow/unfollow buttons

with, 502A–506A
responding to Ajax requests in the

Relationships controller (Listing
12.36), 504A–505A

tests for the Relationships controller
responses to Ajax requests (Listing
12.35), 503A–504A

ampersand, 512A
anchor tag, 108A

527A

528A Index

annotating the model file, 201A–202A
arrays, 134A–136A
assignment, 347A
associations, 63A–65A

user/relationship, 470A–473A
associative arrays, 139A
attr accessible, 403A–404A, 413A–414A
attribute accessors, 152A
authenticate method, 258A–262A

with an explicit third return (Listing 7.28),
281A

moving the authenticate method into the
Sessions helper (Listing 11.23),
437A–438A

tests for the User.authenticate method
(Listing 7.11), 259A

with User in place of self (Listing 7.27), 280A
User.authenticate method (Listing 7.12), 261A
using an if statement and an implicit return

(Listing 7.30), 281A
using an if statement (Listing 7.29), 281A
using the ternary operator (Listing 7.31),

281A
authenticate with salt method, 351A–352A
authentication

adding an authenticate before filter (Listing
10.11), 378A

adding authentication to the Microposts
controller actions (Listing 11.24), 438A

building your own, 193A–194A
the deny access method for user

authentication (Listing 10.12), 378A
first tests for authentication (Listing 10.10),

376A–377A
requiring the right user, 378A–382A
tests for signed-in users (Listing 10.13), 380A

authenticity token, 292A
Autotest, 85A–86A
.autotest configuration file for Autotest on OS

X (Listing 3.9), 86A

B
Bates, Ryan, 2A
before filters, 365A, 378A

a correct user before filter to protect the
edit/update page (Listing 10.14),
380A–381A

restricting the destroy action to admins
(Listing 10.41), 407A–408A

Beginning Ruby (Cooper), 6A, 523A
Billups, Toran, 15A
Black, David A., 7A, 261A, 523A
blocks, 137A–139A
Blueprint CSS, 122A–124A
Booleans, 129A–130A
browsers, 11A
Bundler, 16A–20A
business logic, 22A

C
callback, 247A–250A
Capybara, 315An9
cascading style sheets. See CSS
chaining methods, 130A, 408A
checkout command, 24A
Chrome, 11A
class methods, 198A, 259A–261A
classes, 82A, 144A

code for an example user (Listing 4.8),
152A

constructors, 144A–145A
container class, 168A
controller class, 150A–152A
defining a Word class in irb (Listing 4.7),

147A
inheritance, 145A–148A
modifying built-in classes, 148A–149A
user class, 152A–154A

co command, 24A
command lines, 9A–11A
comments, 125A–126A

Index 529A

commit command, in Git, 27A–28A
config directory, 79A, 80A
constructors, 144A–145A
Contact page

Contact view with HTML structure
removed (Listing 3.30), 114A

generated view for (Listing 3.8), 83A
view for the Contact page with an

Embedded Ruby title (Listing 3.26),
112A

view for the Contact page with full HTML
structure (Listing 3.22), 107A–108A

containers, 161A
container class, 168A

content attribute, making the content attribute
(and only the content attribute)
accessible (Listing 11.2), 413A

cookies, 326A, 341A–344A
Cooper, Peter, 6A, 523A
count method, 295A
create action

completed, 338A–340A
the Microposts controller create

action, 441A
Sessions create action with friendly

forwarding, 384A
creating microposts, 439A–444A
cross-site request forgery (CSRF), 114A
cross-site scripting attack, 270A, 292A
CSS, 122A–124A, 142A–144A

adding stylesheets to the sample application
layout (Listing 4.4), 123A

for the container, body and links (Listing
5.3), 165A–166A

custom CSS, 164A–171A
HTML source produced by the CSS includes

(Listing 4.6), 144A
to make the signup button big, green, and

clickable (Listing 5.5), 170A
for microposts (Listing 11.19), 430A–431A

navigation CSS (Listing 5.4), 168A
stylesheet rules for round corners (Listing

5.6), 170A–171A
for styling error messages, 302A
for the user index, 388A

CSS: The Missing Manual (Sawyer
McFarland), 6A

Cucumber, 315A
current users

adding an authenticate with salt method
to the User model (Listing 9.17),
351A–352A

defining assignment to current user
(Listing 9.14), 347A

filling in the test for signing the user in
(Listing 9.13), 345A–346A

finding the current user by
remember token (Listing 9.16), 348A

getting and setting, 345A–353A
the signed in? helper method

(Listing 9.18), 353A
a tempting but useless definition for

current user (Listing 9.15),
347A–348A

current user? method, 381A
Cygwin, 11A

D
data models

defined, 43A
for microposts, 44A
for users, 43A–44A

database indices, 226A–227A
database migrations. See migration
debug, 227A–230A

adding some debug information to the site
layout (Listing 6.23), 227A

default Rails page, 21A
with the app environment, 22A

default scope, 421A

530A Index

demo app
deploying, 68A–69A
Microposts resource, 58A–68A
modeling users, 43A–44A
planning the application, 41A–43A
Users resource, 44A–58A

deny access method, 378A
destroy action, 404A–408A, 456A
destroying microposts, 452A–457A

mockup of the proto-feed with micropost
delete links, 453A

destroying users, 399A–408A
ensuring that a user’s microposts are

destroyed along with the user (Listing
11.12), 422A

testing that microposts are destroyed
when users are (Listing 11.11),
421A–422A

development environment, 125A, 228A–230A
development log, 203A–205A
directories

standard directory and file structure,
16A, 17A

summary of default Rails directory structure,
18A

div tags, 161A–162A
doctype, 76A
Document Object Model (DOM), 505A
domain logic, 22A
domain-specific language, 84A, 88A
“Don’t Repeat Yourself” (DRY)

principle, 109A
–drb option, 96A
duplication, eliminating, 112A–115A
dynamic pages. See slightly dynamic pages

E
E Text Editor with Console and

Cygwin, 10A
each method, 137A–138A, 142A
Emacs, 10A

Embedded Ruby, 111A–112A
empty? method, 129A
encrypted passwords, 244A–246A
Engine Yard, 36A
Engine Yard Cloud, 36A
environment loading, adding to the

Spork.prefork block (Listing 3.12),
93A–94A

equality comparison operator, 135A–136A
ERb. See Embedded Ruby
error messages, on signup, 299A–303A
exceptions, 207A

F
factories, 262A

adding Factory Girl to the Gemfile
(Listing 7.15), 263A

complete factory file, including a
new factory for microposts (Listing
11.8), 419A

a factory to simulate User model objects
(Listing 7.16), 264A

a test for getting the user show page with a
user factory (Listing 7.17),
264A–265A

Factory Girl, 263A–265A
defining a Factory Girl sequence (Listing

10.29), 395A
Faker gem, adding to the Gemfile (Listing

10.24), 389A–390A
feed, 444A–452A

See also RSS feed; status feed
Fernandez, Obie, 4A, 6A, 85A, 523A
Fielding, Roy, 232A
files

standard directory and file structure,
16A, 17A

summary of default Rails directory
structure, 18A

filtering parameter logging, 303A–305A
Firebug Lite, 11A

Index 531A

Firefox, 11A
flash, 48A, 308A–312A, 337A

adding a flash message to user signup
(Listing 8.18), 312A

adding the contents of the flash variable to
the site layout (Listing 8.16), 309A

the flash ERb in the site layout using
content tag (Listing 8.24), 323A

vs. flash.now, 338A
a test for a flash message on successful user

signup (Listing 8.17), 310A
flash.now, 338A
follow form, 484A–493A

adding the follow form and follower stats to
the user profile page (Listing 12.27),
492A–493A

adding the routes for user relationships
(Listing 12.24), 490A–491A

a form for following a user (Listing 12.25),
491A

a form for following a user using Ajax
(Listing 12.33), 502A

a form for unfollowing a user (Listing
12.26), 491A

a partial for a follow/unfollow form (Listing
12.23), 490A

follow! method, 477A–478A
follower notifications, 521A
followers, 479A–482A

implementing user.followers using reverse
relationships (Listing 12.17), 481A

following, 461A–463A
adding following/follower relationships to

the sample data (Listing 12.18),
483A–484A

adding indices on the follower id and
followed id columns (Listing 12.1),
468A–469A

adding the User model following association
with has many :through (Listing
12.11), 475A–476A

the following? and follow! utility
methods (Listing 12.15), 477A–478A

making a relationship’s followed id (but
not follower id) accessible (Listing
12.2), 469A

problem with the data model (and a
solution), 464A–469A

Relationship data model, 463A–469A
sample following data, 482A–484A
test for the user.following attribute (Listing

12.10), 474A–475A
user/relationship associations, 470A–473A
See also unfollowing

following? method, 477A–478A
following/followers pages, 494A–498A

following and followers actions (Listing
12.29), 497A

mockup of the user followers page, 495A
mockup of the user following page, 494A
show follow view used to render

following and followers
(Listing 12.30), 497A–498A

test for the following and followers actions
(Listing 12.28), 495A–496A

follow/unfollow buttons, 498A–502A
with Ajax, 502A–506A

forgery, 292A
form tag, 291A
form for, 286A–288A, 298A
format validation, 218A–222A
forward slashes, 8A
friendly forwarding, 382A–384A

code to implement friendly forwarding
(Listing 10.17), 383A

integration tests for friendly forwarding
(Listing 10.16), 382A

Sessions create action with friendly
forwarding (Listing 10.18), 384A

full-table scans, 226A
Fulton, Hal, 6A, 7A, 523A
functions, 82A

532A Index

G
gedit, 10A
Gemfile, 16A–20A

default Gemfile in the first app directory
(Listing 1.2), 17A–18A

for the demo app (Listing 2.1), 42A
for the demo app (Listing 3.1), 72A
for the demo app (Listing 3.11), 92A–93A
with an explicit version of the sqlite3-ruby

gem (Listing 1.3), 19A
the final Gemfile for the sample application

(Listing 10.42), 409A
with a Heroku fix needed on some systems

(Listing 1.8), 37A
gems, 13A, 14A
gemsets, 13A–14A
generate script, 78A–79A
generated code, and scaffolding, 2A
GET, 80A–81A
Git

adding and committing, 26A–28A
benefit of using, 28A–29A
branches, 31A–32A
committing, 33A–34A
editing, 33A
first-time repository setup, 25A–26A
first-time setup, 24A–25A
installing, 12A
merging, 34A–35A
pushing, 25A
README file, 31A–33A
setting a graphical editor, 25A
version control with, 24A

GitHub, 29A–31A, 68A–69A
making a repository at, 73A–74A

.gitignore, 25A–26A
augmented .gitignore file (Listing 1.5),

26A
default .gitignore created by the rails

command (Listing 1.4), 25A

Gravatar, 268A–275A
adding a Gravatar gem to the Gemfile

(Listing 7.21), 270A
defining a gravatar for helper method

(Listing 7.23), 274A
editing, 366A
updating the user show page template to

use gravatar for (Listing 7.24), 275A
gVim, 10A, 25A

H
has many microposts

a micropost belongs to a user
(Listing 2.11), 64A

relationship between a user and its
microposts, 416A

a user has many microposts
(Listing 2.10), 64A

hash symbol
commenting out lines with, 19A
See also comments

hashes, 139A–140A
nested, 141A

have selector method, 188A
Head First HTML, 6A
Heinemeier Hansson, David, 2A, 3A
Help page, code for a proposed Help page

(Listing 3.32), 116A–117A
Heroku

commands, 39A–40A
creating a new application at Heroku

(Listing 1.7), 37A
deployment, 37A–39A
setup, 36A–37A

Home page
adding follower stats to the Home page

(Listing 12.22), 490A
adding microposts creation to the Home

Page (Listing 11.27), 442A
with follow stats, 489A

Index 533A

generated view for (Listing 3.7), 83A
Home view with HTML structure removed

(Listing 3.29), 114A
with a link to the signup page (Listing 5.2),

163A
mockup with a form for creating microposts,

439A
mockup with a proto-feed, 447A
with a proto-feed, 451A
testing, 456A–457A
view for the Home page with an Embedded

Ruby title (Listing 3.25), 110A–111A
view for the Home page with full HTML

structure (Listing 3.21), 107A
href, 108A
HTML

for the form in Figure 8.3 (Listing 8.5), 289A
for the signin form produced by Listing 9.4,

331A
for signup form, 288A–292A
typical HTML file with a friendly greeting

(Listing 3.3), 76A
for the user edit form, 371A

HTTP response codes, 89A
HTTP verbs, 80A–81A
hypertext reference, 108A

I
IDEs, 9A
implicit return, 133A
index action, simplified user index action for

the demo application (Listing 2.4), 56A
index page, 47A
indexes, 226A–227A
index.html file, 75A–78A
inheritance, 52A

additions to .autotest needed to run
integration tests with Autotest on
Ubuntu Linux (Listing 5.17), 180A

ApplicationController class with
inheritance (Listing 2.16), 67A

classes, 145A–148A
hierarchies, 66A–68A
Micropost class with inheritance (Listing

2.13), 66A
MicropostsController class with

inheritance (Listing 2.15), 67A
User class with inheritance (Listing 2.12),

66A
UsersController class with inheritance

(Listing 2.14), 67A
initialization hash, 204A–205A
inspect method, 142A
instance variables, 57A, 108A–112A

adding a feed instance variable to the home
action (Listing 11.33), 448A

adding a micropost instance variable to the
home action (Listing 11.30), 443A

adding an @microposts instance variable to
the user show action, 430A

adding an (empty) @feed items instance
variable to the create action (Listing
11.37), 451A

integrated development environments.
See IDEs

integration alternatives, 314A–315A
integration tests, 178A–180A, 313A–321A

adding a view for the Help page (Listing
5.15), 180A

adding the help action to the Pages
controller (Listing 5.14), 179A

additions to .autotest needed to run
integration tests with Autotest on
OS X (Listing 5.16), 180A

for friendly forwarding, 382A
a function to sign users in inside of

integration tests (Listing 9.31), 364A
for the microposts on the home page

(Listing 11.41), 456A–457A

534A Index

for routes (Listing 5.13), 179A
for signing in and out (Listing 9.30),

362A–363A
interpolation, 127A
IRC clients, 12An8
iTerm, 10A

J
JavaScript, 49A

adding the default JavaScript libraries to the
sample app (Listing 10.39), 405A

JavaScript Embedded Ruby (JS-ERb) files,
505A, 506A

JavaScript Embedded Ruby to create a
following relationship (Listing 12.37),
506A

join method, 136A

K
Kate, 10A
Katz, Yehuda, 3A
Kittrell, Ben, 10A–11A
Komodo Edit, 11A

L
lambda, 295A, 307A, 318A, 514A–515A
layout files, 107A, 112A–115A

sample application site layout (Listing 3.28),
113A

sample application site layout (Listing 4.1),
120A

sample application site layout (Listing 4.3),
122A

site layout with added structure (Listing 5.1),
159A

layout links, 177A
changing, 358A–361A
test for the links on the layout (Listing 5.33),

192A
to the user index, 388A

length validations, 61A–63A, 217A–218A
constraining microposts to at most 140

characters with a length validation
(Listing 2.9), 62A

Linux, 10A
lists, unordered, 163A
literal constructor, 144A
literal strings, 126A
log files, ignoring, 26A
logo helper

header partial with the logo helper from
Listing 5.32 (Listing 5.31), 191A–192A

template for the logo helper (Listing 5.32),
192A

logs
development log with filtered passwords

(Listing 8.12), 304A
filtering passwords by default

(Listing 8.13), 304A–305A
pre-Rails 3 development log with visible

passwords (Listing 8.11), 304A

M
Macintosh OS X, 10A
MacVim, 10A, 25A
magic columns, 198A, 205A
map method, 138A–139A
mapping, route and URL mapping for site

links, 177A
Merb, merger with Rails, 3A
message expectations, 266A
messaging, 521A
methods, 82A, 129A–132A

chaining, 130A, 408A
defining, 132A–133A

Micropost model, 411A
the basic model, 412A–414A
the initial Micropost spec (Listing 11.3),

414A

Index 535A

a micropost belongs to a user
(Listing 11.6), 418A

the Micropost migration (Listing 11.1),
412A

a user has many microposts (Listing 11.7),
418A

user/micropost associations, 414A–418A
validations (Listing 11.14), 424A

microposts
adding microposts to the sample data

(Listing 11.20), 433A
creating, 439A–444A
CSS for, 430A–431A
data models for, 44A
destroying, 452A–457A
ensuring that a user’s microposts are

destroyed along with the user, 422A
form partial for creating microposts

(Listing 11.28), 442A
manipulating, 434A–436A
ordering the microposts with default scope

(Listing 11.10), 421A
a partial for showing a single micropost

(Listing 11.38), 452A–453A
proto-feed, 444A–452A
refinements, 419A–422A
sample microposts, 432A–434A
showing, 425A–434A
summary of user/micropost association

methods, 418A
testing that microposts are destroyed when

users are, 421A–422A
testing the order of a user’s microposts

(Listing 11.9), 420A
validations, 423A–424A

Microposts controller, 60A–61A
create action (Listing 11.26), 441A
destroy action (Listing 11.40), 456A
in schematic form (Listing 2.8),

60A–61A

Microposts resource, 58A, 66A–67A
access control, 436A–438A
has many microposts, 63A–65A
inheritance hierarchies, 66A–68A
length validations, 61A–63A
Rails routes with a new rule for Microposts

resources (Listing 2.7), 60A
RESTful routes provided by, 60A
routes for the Microposts resource (Listing

11.21), 435A
tour, 58A–61A

migration, 196A–200A
to add a boolean admin attribute to users

(Listing 10.35), 401A
migrating a database with Rake, 45A
password migration, 244A–246A
for the User model (to create a users table)

(Listing 6.2), 198A
mockups, 157A–158A
model-view-controller, 22A–23A

diagram of MVC in Rails, 55A
Users, 230A–232A
and Users resource, 49A–58A

Mongrel, 20An12
MVC. See model-view-controller

N
name attribute, 290A
named routes, 177A, 181A, 183A–185A

footer partial with links (5.22),
184A–185A

header partial with links (5.21), 184A
namespaces, 390A–391A
navigation. See site navigation
nested hashes, 141A, 333A
nil, 130A–131A

O
objects, 129A–132A
or equals assignment operator, 349A–350A

536A Index

P
Pages controller

with added about action (Listing 3.16),
100A–101A

generated Pages controller spec (Listing
3.10), 88A

generating, 78A–79A
generating (Listing 3.4), 78A–79A
inheritance hierarchy, 151A
made by Listing 3.4 (Listing 3.6), 82A
with per-page titles (Listing 3.24), 110A
routes for the home and contact actions in

the Pages controller (Listing 3.5), 79A
spec with a base title (Listing 3.33),

117A–118A
spec with a failing test for the About page

(Listing 3.15), 98A
spec with title tests (Listing 3.20), 105A–106A

PagesController, 82A
paginating users, 392A–397A

paginating the users in the index action
(Listing 10.28), 393A

testing pagination, 394A–397A
palindrome? method, 148A–149A
Paperclip, 271An21
partial refactoring, 398A–399A
partials, 171A–177A

adding the CSS for the site footer (Listing
5.12), 175A

for displaying form submission error
messages, 300A

for the site footer (Listing 5.10), 174A
for the site header (Listing 5.9), 174A
site layout with a footer partial (Listing

5.11), 175A
site layout with partials for the stylesheets

and header (Listing 5.7), 172A
for stylesheet includes (Listing 5.8), 173A
updating the error-messages partial, 369A

passwords
Active Record callback, 247A–250A
a before save callback to create the

encrypted password attribute (Listing
7.6), 248A

has password? method for users (Listing
7.7), 251A

has password? method with secure
encryption (Listing 7.10), 256A

implementing has password?, 254A–258A
insecure, 239A
migration, 244A–246A
migration to add a salt column to the users

table (Listing 7.9), 255A
migration to add an encrypted password

column to the users table
(Listing 7.4), 246A

rainbow attack, 254A
reminders, 521A
secure, 250A
secure password test, 251A–252A
secure password theory, 252A–254A
testing for the existence of an

encrypted password attribute (Listing
7.3), 245A

testing that the encrypted password
attribute is nonempty (Listing 7.5),
247A

tests for the has password? method (Listing
7.8), 252A

validations, 240A–244A
See also authenticate method

PeepCode, 523A
pending spec, 214A–215A
percent-parentheses construction, 516A
persistence, 196A
Phusion Passenger, 36A
pluralize text helper, 301A
PostgreSQL, 196An5

Index 537A

pound sign. See hash symbol
presence validations, 210A–217A
Preston-Werner, Tom, 270An19
private keyword, 249A
profile images, 268A–275A
profile links, adding, 360A–361A
profile pages. See user profile page
protected keyword, 249An4
protecting pages, 376A–384A

mockup of a protected page, 377A
public/index.html file, 75A–76A
pushing data, 68A–69A
puts method, 127A–128A

R
Rails

deploying, 35A–40A
installing, 15A
overview, 3A–4A

The Rails 3 Way (Fernandez), 4A
The Rails 3 Way (Fernandez), 6A, 523A
rails command, 15A–16A
Rails console, 125A
Rails Machine, 36A
Rails root. See root
Rails routes, 181A–183A

adding a mapping for the root route (Listing
5.20), 182A–183A

commented-out hint for defining the root
route (Listing 5.19), 182A

for static pages (Listing 5.18), 181A
rails script, running the rails script to generate a

new application (Listing 1.1), 16A
rails server, 20A–22A
Railscasts, 522A
rainbow attack, 254A
Rake, 45A, 46A

a Rake task for populating the database with
sample users (Listing 10.25), 390A

ranges, 137A
README file

improved README file for the sample
app (Listing 3.2), 73A

new README file, README.markdown
(Listing 1.6), 33A

updating, 73A
Red, Green, Refactor, 86A–91A

Green, 100A–102A
Red, 97A–100A
Refactor, 102A–103A

refactoring, 398A–399A
a compact refactoring of Listing 12.36

(Listing 12.46), 524A
refactored following and followers actions

(Listing 12.47), 524A–525A
regex, 220A
regular expressions, 220A
Relationship data model, 463A–469A

adding the belongs to associations to the
Relationship model (Listing 12.7),
473A

validations, 473A–474A
relationships attribute, 470A–471A
Relationships controller (Listing 12.32), 501A
reload method, 375A
remember tokens, 341A, 342A–344A
render, 173A
replies, 520A–521A
repositories, first-time repository setup,

25A–26A
REpresentational State Transfer. See REST
request specs, 178A

See also integration tests
resources, advanced Rails resources, 7A
resources for Rails, 522A–523A
REST, 54A–56A

displaying user show page following REST
architecture, 232A–233A

538A Index

REST API, 522A
reverse relationships, 480A–482A
root, 8A
RSpec, 71A–72A, 84A–85A

adding the –drb option to the .rspec file
(Listing 3.14), 96A

count method, 295A
integration tests, 313A–321A
request specs, 178A

RSS feed, 521A
Rubular, 220A–222A
Ruby

gems, 13A, 14A
gemsets, 13A–14A
installing, 12A–14A
learning Ruby before learning Rails, 4A–5A

Ruby JavaScript (RJS), to destroy a
following relationship
(Listing 12.38), 506A

Ruby on Rails. See Rails
Ruby Version Manager (RVM), 12A
The Ruby Way (Fulton), 6A, 7A, 523A
RubyGems, installing, 14A–15A

S
Safari, 11A
salt, 254A, 255A
sandbox, 203A
save!, 470A
scaffolding, 2A–3A
scaling Rails, 7A, 523A
Schoeneman, Fred, 86A
scopes, 514A–515A
screencasts, 522A
search, 522A
Seguin, Wayne E., 12A
self, 260A–261A
sessions, 341A

defined, 325A–326A
destroying, 354A–356A

Sessions controller, 326A–328A
adding a resource to get the standard

RESTful actions for sessions (Listing
9.2), 327A

completed Sessions controller create action
(not yet working) (Listing 9.9),
338A–339A

tests for the new session action and view
(Listing 9.1), 327A

SHA2, 253A
short-circuit evaluation, 350A
Shoulda, 85An7
showing microposts, 425A–434A
sidebar, 276A–279A

partial for the user info sidebar (Listing
11.29), 443A

signed in? helper method, 353A
signed-in users, requiring, 376A–379A
signin form, 328A–332A

code for a failed signin attempt
(Listing 9.8), 336A–337A

code for the signin form (Listing 9.4), 330A
failure, 332A–337A
HTML for the signing form produced by

Listing 9.4 (Listing 9.5), 331A
mockup, 329A
pending tests for user signin (Listing 9.10),

340A
remembering user signin status forever,

340A–344A
reviewing form submission, 333A–335A
success, 338A–353A
tests for a failed signin attempt

(Listing 9.7), 335A–336A
signin page, adding the title for the signing

page (Listing 9.3), 328A
signin upon signup, 356A–357A
signing out, 354A

destroying a session (user signout) (Listing
9.21), 355A

Index 539A

destroying sessions, 354A–356A
the sign out method in the Sessions helper

module (Listing 9.22), 356A
a test for destroying a session (Listing 9.20),

355A
a test sign in function to simulate user signin

inside tests (Listing 9.19), 354A
signin/signout integration tests, 362A–363A
signin/signout links

adding a profile link (Listing 9.29), 360A–361A
changing, 358A–361A
changing the layout links for signed-in users

(Listing 9.26), 359A
a helper for the site logo (Listing 9.27), 360A
a test for a profile link (Listing 9.28), 360A
tests for the signin/signout links on the site

layout (Listing 9.25), 358A
signup confirmation, 521A
signup form

adding an @user variable to the new action
(Listing 8.3), 287A

code to display error messages on the signup
form (Listing 8.8), 299A

a create action that can handle signup failure
(but not success) (Listing 8.7), 296A

CSS for styling error messages (Listing 8.10),
302A

error explanation div from the page in Figure
8.11 (Listing 8.19), 317A

error messages, 299A–303A
failure, 292A–304A
filtering parameter logging, 303A–305A
finished form, 308A
the first signup, 312A–313A
form HTML, 288A–292A
a form to sign up new users (Listing 8.2), 286A
overview, 283A–285A
a partial for displaying form submission error

messages (Listing 8.9), 300A
pluralize text helper, 301A

success, 305A–313A
a template for testing for each field on the

signup form (Listing 8.23),
322A–323A

testing failure, 292A–295A
testing signup failure (Listing 8.20), 317A
testing signup failure with a lambda

(Listing 8.21), 318A
testing signup success (Listing 8.22), 319A
testing success, 305A–308A
the user create action with a save and a

redirect (Listing 8.15), 308A
using form for, 286A–288A
a wafer-thin amount of CSS for the signup

form (Listing 8.4), 288A
a working form, 295A–298A

signup page
action for the new user signup page

(Listing 5.25), 187A
linking the button to the signup page

(Listing 5.30), 190A
route for the signup page (Listing 5.29),

189A
setting the custom title for the new user

page (Listing 5.27), 188A
signin upon signup, 356A–357A
signing in the user upon signup (Listing

9.24), 357A
test for the signup page title (Listing 5.26),

188A
testing that newly signed-up users are also

signed in (Listing 9.23), 356A–357A
testing the signup page (Listing 5.24), 187A
the tests for the new users page

(Listing 8.1), 284A–285A
Users controller, 186A–188A

signup URL, 188A–190A
site navigation, 159A–164A
skeleton for a shuffle method attached to the

String class (Listing 4.10), 155A

540A Index

skeleton for a string shuffle function (Listing
4.9), 155A

slightly dynamic pages, 103A
eliminating duplication with layouts,

112A–115A
instance variables and Embedded Ruby,

108A–112A
passing title tests, 106A–108A
testing a title change, 103A–106A

spike, 87A
split method, 134A–135A
Spork, 91A–97A

adding environment loading to the
Spork.prefork block (Listing 3.12),
93A–94A

last part of the hack needed to get Spork to
run with Rails 3 (Listing 3.13), 95A

SQL injection, 448A
SQLite Database Browser, 199A, 200A
staging area, 27A
static pages, 74A

with Rails, 78A–83A
truly static pages, 75A–78A
See also slightly dynamic pages

stats, 484A–493A
a partial for displaying follower stats (Listing

12.21), 487A–488A
status command, 27A
status feed, 444A–452A, 507A

adding a status feed to the Home page
(Listing 11.36), 450A

adding the completed feed to the User model
(Listing 12.41), 510A

the final implementation of
from users followed by (Listing 12.44),
517A

the final tests for the status feed (Listing
12.40), 509A–510A

a first cut at the from users followed by
method (Listing 12.42), 513A

a first feed implementation, 511A–513A
home action with a paginated feed (Listing

12.45), 519A
improving from users followed by (Listing

12.43), 515A
mockup of a user’s Home page with a

status feed, 507A
mockup of the Home page with a

proto-feed, 447A
motivation and strategy, 508A–510A
a partial for a single feed item (Listing

11.35), 449A–450A
preliminary implementation for the

micropost status feed (Listing 11.32),
447A

scopes, subselects, and a lambda, 513A–518A
status feed partial (Listing 11.34), 449A
tests for Micropost.from users followed by

(Listing 12.39), 508A–509A
string literals, 126A
strings, 126A–127A

double-quoted, 128A–129A
printing, 127A–128A
single-quoted, 128A–129A

stub About page (Listing 3.18), 101A
stubbing, 266A
stylesheets. See CSS
Sublime Text editor, 11A
subselects, 517A
sudo, 14A–15A
superclass method, 145A
symbols, 140A–142A
system setups, 22A, 24A

T
TDD. See test-driven development (TDD)
ternary operator, 352A–353A
test-driven development (TDD), 84A

Green, 100A–102A
Red, 97A–100A

Index 541A

Red, Green, Refactor, 86A–91A
Refactor, 102A–103A
Spork, 91A–97A

testing tools, 84A–86A
tests, 84A

access control tests for the Microposts
controller (Listing 11.22), 437A

for an admin attribute (Listing 10.34),
399A–400A

for destroying users (Listing 10.40), 406A–407A
for failed user signup (Listing 8.6), 293A–294A
integration tests, 178A–180A, 313A–321A
for the micropost model validations (Listing

11.13), 423A
for the Microposts controller create action

(Listing 11.25), 440A–441A
for the Microposts controller destroy action

(Listing 11.39), 454A–455A
for the micropost’s user association (Listing

11.4), 415A
for pagination (Listing 10.30), 396A–397A
passing title tests, 106A–108A
for the (proto-)status feed (Listing 11.31),

445A–446A
for the Relationships controller actions

(Listing 12.31), 499A–500A
for reverse relationships (Listing 12.16),

480A–481A
for showing microposts on the user show

page (Listing 11.15), 426A
signup form testing failure, 292A–295A
signup form testing success, 305A–308A
for signup success (Listing 8.14), 306A–307A
simple integration test for user signup link

(Listing 5.28), 189A
for some following utility methods (Listing

12.12), 476A–477A
testing a title change, 103A–106A
testing for the user.relationships attribute

(Listing 12.4), 470A–471A

testing pagination, 394A–397A
testing relationship creation with save!

(Listing 12.3), 470A
testing the following/follower statistics

on the Home page (Listing 12.20),
486A–487A

testing the signup page, 187A–188A
testing the user/relationships belongs to

association (Listing 12.6), 472A–473A
for the user’s microposts attribute (Listing

11.5), 417A
whether to use tests from the start, 5A
See also Autotest; RSpec

text editors, 9A–11A
TextMate, 10A, 25A
Thomas, Dave, 249An4
time helpers, 343A
timestamps, 198A, 205A
title change

passing title tests, 106A–108A
testing, 103A–106A

title helper, 119A–122A, 133A–134A
defining a title helper (Listing 4.2), 121A

title test (Listing 3.19), 104A
toggle method, 401A–402A

U
unfollow form, using Ajax (Listing 12.34),

503A
unfollow/follow buttons, 498A–502A

with Ajax, 502A–506A
unfollowing

test for unfollowing a user (Listing 12.14),
478A–479A

unfollowing a user by destroying a user
relationship (Listing 12.15), 479A

See also following
uniqueness validation, 222A–226A
Unix style, 8A
unordered list tag, 163A

542A Index

update action, 373A–376A
updating users, 365A–376A
URIs, defined, 2An3
URLs, defined, 2An3
user edit form, 366A–373A

adding a Settings link (Listing 10.6), 370A
enabling edits, 373A–376A
HTML for the edit form (Listing 10.7),

371A
mockup, 366A
a partial for the new and edit form fields

(Listing 10.43), 410A
tests for the user edit action (Listing 10.1),

367A
tests for the user update action (Listing

10.8), 374A–375A
updating the error-messages partial from

Listing 8.9 to work with other objects
(Listing 10.4), 369A

updating the rendering of user signup errors
(Listing 10.5), 370A

the user edit action (Listing 10.2), 368A
the user edit view (Listing 10.3), 368A–369A
the user update action (Listing 10.9), 375A

user index, 385A–389A
CSS for the user index (Listing 10.22),

388A
the first refactoring attempt at the index

view (Listing 10.31), 398A
the fully refactored user index (Listing

10.33), 399A
a layout link to the user index (Listing

10.23), 388A
mockup, 385A, 400A
with pagination (Listing 10.27), 392A–393A
partial refactoring, 398A–399A
a partial to render a single user (Listing

10.32), 398A
tests for the user index page (Listing 10.19),

385A–386A

the user index action (Listing 10.20), 387A
the user index view (Listing 10.21), 387A
view for the user index (Listing 2.6), 57A

user info sidebar, 276A–279A, 443A
user model, 194A–196A
User model

accessible attributes, 202A–203A
with an added (encrypted) password

attribute, 246A
with an added salt, 256A
adding the annotate-models gem to the

Gemfile (Listing 6.4), 201A
annotated User model (Listing 6.5), 202A
annotating the model file, 201A–202A
brand new User model (Listing 6.3), 201A
generating a User model (Listing 6.1), 197A
making the name and email attributes

accessible (Listing 6.6), 203A
migration for the User model (to create a

users table) (Listing 6.2), 198A
model file, 201A–203A

User model fro the demo application (Listing
2.5), 57A

user objects
creating, 203A–207A
finding, 207A–208A
updating, 208A–209A

user profile page
with microposts, 434A
mockup, 425A, 462A
mockup with a “Settings” link, 371A

user show page
adding a name and gravatar, 268A–275A
adding a sidebar to the user show view

(Listing 7.25), 276A
adding an @microposts instance variable to

the user show action (Listing 11.18),
430A

adding microposts to the user show page
(Listing 11.16), 427A

Index 543A

augmenting, 426A–432A
CSS for styling the user show page including

the sidebar (Listing 7.26), 278A–279A
a partial for showing a single micropost

(Listing 11.17), 429A
tests for the user show page (Listing 7.18),

268A–269A
a title for the user show page (Listing 7.19),

269A
the user show view with name and Gravatar

(Listing 7.22), 271A
the user show view with the user’s name

(Listing 7.20), 270A
a user sidebar, 276A–279A

user views, 262A
user.followers method, 479A–482A
user/relationship associations, 470A–473A

implementing the user/relationships
has many association (Listing 12.5),
472A

users
administrative, 399A–404A
the current user? method (Listing 10.14),

381A
destroying, 399A–408A
the new user view with partial (Listing

10.44), 410A
paginating, 392A–397A
requiring signed-in users, 376A–379A
requiring the right user, 378A–382A
sample users, 389A–391A
showing, 384A–399A
stub view for showing user information

(Listing 6.24), 231A
summary of user/micropost association

methods, 418A
updating, 365A–376A

Users controller, 52A–53A
adding following and followers actions to the

Users controller (Listing 12.19), 485A

current Users controller spec (Listing 7.13),
262A

generating a Users controller with a new
action (Listing 5.23), 186A

in schematic form (Listing 2.3), 53A
with a show action (Listing 6.25), 232A
signup page, 186A–188A
testing the user show page with factories,

263A–268A
user show action from Listing 6.25 (Listing

7.14), 263A
Users resource, 232A–236A

adding a Users resource to the routes file
(Listing 6.26), 234A

correspondence between pages and
URLs, 47A

and MVC, 49A–58A
overview, 44A–46A
Rails routes with a rule for the Users

resource (Listing 2.2), 52A
RESTful routes provided by, 55A, 235A
user tour, 46A–49A
weaknesses, 58A

V
validations, 61A–63A

adding a length validation for the name
attribute (Listing 6.15), 218A

adding the Relationship model validations
(Listing 12.9), 474A

commenting out a validation to ensure a
failing test (Listing 6.8), 212A

failing test for the validation of the name
attribute (Listing 6.11), 215A

format, 218A–222A
initial user spec (Listing 6.10), 213A
length, 61A–63A, 217A–218A
microposts, 423A–424A
migration for enforcing email uniqueness

(Listing 6.22), 226A

544A Index

overview, 210A
password, 240A–244A
for the password attribute (Listing 7.2), 243A
practically blank default User spec (Listing

6.9), 212A
presence, 210A–217A
Relationship data model, 473A–474A
test for the name length validation (Listing

6.14), 217A–218A
test for the presence of the email attribute

(Listing 6.12), 216A–217A
test for the rejection of duplicate email

addresses, insensitive to case (Listing
6.20), 223A–224A

test for the rejection of duplicate email
addresses (Listing 6.18), 222A–223A

testing the Relationship model validations
(Listing 12.8), 474A

tests for email format validation (Listing
6.16), 219A

tests for password validations (Listing 7.1),
241A–242A

uniqueness, 222A–226A
validating the email format with a regular

expression (Listing 6.17), 220A
validating the presence of a name attribute

(Listing 6.7), 211A

validating the presence of the name and
email attributes (Listing 6.13), 217A

validating the uniqueness of email
addresses, ignoring case
(Listing 6.21), 224A

validating the uniqueness of email
addresses (Listing 6.19), 223A

Vim, 11A
Vim for Windows with Console, 10A
virtual attributes, 242A–243A

W
Webrat, 72A, 315An9
WEBrick, 20An12
The Well-Grounded Rubyist (Black), 7A,

261A, 523A
will paginate method, 392A–394A
Windows, 10A
wireframes, 157A
wrapping words, a helper to wrap long words

(Listing 11.42), 459A

Y
YAML, 236A

Z
zero-offset, 135A

THERAILS™ 3WAY

This page intentionally left blank

Praise for the Previous Edition

This encyclopedic book is not only a definitive Rails reference, but an indispensable
guide to Software-as-a-Service coding techniques for serious craftspersons. I keep a
copy in the lab, a copy at home, and a copy on each of my three e-book readers,
and it’s on the short list of essential resources for my undergraduate software engineering
course.

—Armando Fox, adjunct associate professor, University of California, Berkeley

Everyone interested in Rails, at some point, has to follow The Rails Way.

—Fabio Cevasco, senior technical writer, Siemens AG, and blogger at H3RALD.com

I can positively say that it’s the single best Rails book ever published to date. By a long
shot.

—Antonio Cangiano, software engineer and technical evangelist at IBM

This book is a great crash course in Ruby on Rails! It doesn’t just document the features
of Rails, it filters everything through the lens of an experienced Rails developer—so you
come our a pro on the other side.

—Dirk Elmendorf, co-founder of Rackspace, and Rails developer since 2005

The key to The Rails Way is in the title. It literally covers the “way” to do almost
everything with Rails. Writing a truly exhaustive reference to the most popular Web
application framework used by thousands of developers is no mean feat. A thankful

community of developers that has struggled to rely on scant documentation will embrace
The Rails Way with open arms. A tour de force!

—Peter Cooper, editor, Ruby Inside

In the past year, dozens of Rails books have been rushed to publication. A handful
are good. Most regurgitate rudimentary information easily found on the Web. Only
this book provides both the broad and deep technicalities of Rails. Nascent and expert
developers, I recommend you follow The Rails Way.

—Martin Streicher, chief technology officer, McLatchy Interactive; former editor-in-
chief of Linux Magazine

Hal Fulton’s The Ruby Way has always been by my side as a reference while programming
Ruby. Many times I had wished there was a book that had the same depth and attention
to detail, only focused on the Rails framework. That book is now here and hasn’t left
my desk for the past month.

—Nate Klaiber, Ruby programmer

As noted in my contribution to the Afterword: “What Is the Rails Way (To You)?,” I
knew soon after becoming involved with Rails that I had found something great. Now,
with Obie’s book, I have been able to step into Ruby on Rails development coming from
.NET and be productive right away. The applications I have created I believe to be a
much better quality due to the techniques I learned using Obie’s knowledge.

—Robert Bazinet, InfoQ.com, .NET and Ruby community editor, and founding mem-
ber of the Hartford, CT, Ruby Brigade

Extremely well written; it’s a resource that every Rails programmer should have. Yes, it’s
that good.

—Reuven Lerner, Linux Journal columnist

Addison-Wesley Professional Ruby Series

informit.com/ruby

Addison-Wesley

Visit for a complete list of available products.

 provides readers

with practical, people oriented, and in depth information about

applying the Ruby platform to create dynamic technology solutions.

The series is based on the premise that the need for expert reference

books, written by experienced practitioners, will never be satisfied solely

by blogs and the Internet.

TAT Addison-Wesley Cisco Press EXAM/CHAM ™J CJLJB* ~ EALLTICE SAMS Safari.'*

Addison Wesley
Professional Ruby Series

Obie Fernandez, Series Editor

The

This page intentionally left blank

THERAILS™ 3WAY

Obie Fernandez

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Fernandez, Obie.

The rails 3 way / Obie Fernandez.
p. cm.

Rev. ed. of: The Rails way / Obie Fernandez. 2008.
Includes index.
ISBN 0-321-60166-1 (pbk. : alk. paper)
1. Ruby on rails (Electronic resource) 2. Object-oriented programming (Computer science)
3. Ruby (Computer program language) 4. Web site development. 5. Application
software–Development. I. Fernandez, Obie. Rails way. II. Title.
QA76.64.F47 2010
005.1’17–dc22 2010038744

Copyright ©2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

Parts of this book contain material excerpted from the Ruby and Rails source code and API documentation,
Copyright ©2004–2011 by David Heinemeier Hansson under the MIT license. Chapter 18 contains material
excerpted from the RSpec source code and API documentation, Copyright ©2005-2011 The RSpec Development
Team.

The MIT License reads: Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT, OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OF OR OTHER DEALINGS IN
THE SOFTWARE.

ISBN-13: 978-0-321-60166-7
ISBN-10: 0-321-60166-1

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
Second printing, April 2011

Editor-in-Chief
Mark Taub

Executive Acquisitions Editor
Debra Williams Cauley

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Carol Loomis

Indexer
Valerie Haynes Perry

Proofreader
Erica Orloff

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
Glyph International

To Dad, thanks for teaching me ambition.

This page intentionally left blank

Foreword

Rails is more than a programming framework for creating web applications. It’s also
a framework for thinking about web applications. It ships not as a blank slate equally
tolerant of every kind of expression. On the contrary, it trades that flexibility for the
convenience of “what most people need most of the time to do most things.” It’s a
designer straightjacket that sets you free from focusing on the things that just don’t
matter and focuses your attention on the stuff that does.

To be able to accept that trade, you need to understand not just how to do something
in Rails, but also why it’s done like that. Only by understanding the why will you be able
to consistently work with the framework instead of against it. It doesn’t mean that you’ll
always have to agree with a certain choice, but you will need to agree to the overachieving
principle of conventions. You have to learn to relax and let go of your attachment to
personal idiosyncrasies when the productivity rewards are right.

This book can help you do just that. Not only does it serve as a guide in your
exploration of the features in Rails, it also gives you a window into the mind and soul
of Rails. Why we’ve chosen to do things the way we do them, why we frown on certain
widespread approaches. It even goes so far as to include the discussions and stories of
how we got there—straight from the community participants that helped shape them.

Learning how to do Hello World in Rails has always been easy to do on your own,
but getting to know and appreciate the gestalt of Rails, less so. I applaud Obie for trying
to help you on this journey. Enjoy it.

— David Heinemeier Hansson
Creator of Ruby on Rails

xi

This page intentionally left blank

Foreword

From the beginning, the Rails framework turned web development on its head with the
insight that the vast majority of time spent on projects amounted to meaningless sit-ups.
Instead of having the time to think through your domain-specific code, you’d spend the
first few weeks of a project deciding meaningless details. By making decisions for you,
Rails frees you to kick off your project with a bang, getting a working prototype out the
door quickly. This makes it possible to build an application with some meat on its bones
in a few weekends, making Rails the web framework of choice for people with a great
idea and a full-time job.

Rails makes some simple decisions for you, like what to name your controller actions
and how to organize your directories. It also gets pretty aggressive, and sets development-
friendly defaults for the database and caching layer you’ll use, making it easy to change
to more production-friendly options once you’re ready to deploy.

By getting so aggressive, Rails makes it easy to put at least a few real users in front
of your application within days, enabling you to start gathering the requirements from
your users immediately, rather than spending months architecting a perfect solution,
only to learn that your users use the application differently than you expected.

The Rails team built the Rails project itself according to very similar goals. Don’t try
to overthink the needs of your users. Get something out there that works, and improve
it based on actual usage patterns. By all accounts, this strategy has been a smashing
success, and with the blessing of the Rails core team, the Rails community leveraged the
dynamism of Ruby to fill in the gaps in plugins. Without taking a close look at Rails,
you might think that Rails’ rapid prototyping powers are limited to the 15-minute blog
demo, but that you’d fall off a cliff when writing a real app. This has never been true. In
fact, in Rails 2.1, 2.2 and 2.3, the Rails team looked closely at common usage patterns

xiii

xiv Foreword

reflected in very popular plugins, adding features that would further reduce the number
of sit-ups needed to start real-life applications.

By the release of Rails 2.3, the Rails ecosystem had thousands of plugins, and ap-
plications like Twitter started to push the boundaries of the Rails defaults. Increasingly,
you might build your next Rails application using a non-relational database or deploy it
inside a Java infrastructure using JRuby. It was time to take the tight integration of the
Rails stack to the next level.

Over the course of 20 months, starting in January 2008, we looked at a wide range
of plugins, spoke with the architects of some of the most popular Rails applications, and
changed the way the Rails internals thought about its defaults.

Rather than start from scratch, trying to build a generic data layer for Rails, we took
on the challenge of making it easy to give any ORM the same tight level of integration
with the rest of the framework as Active Record. We accepted no compromises, taking
the time to write the tight Active Record integration using the same APIs that we now
expose for other ORMs. This covers the obvious, such as making it possible to generate
a scaffold using DataMapper or Mongoid. It also covers the less obvious, such as giving
alternative ORMs the same ability to include the amount of time spent in the model
layer in the controller’s log output.

We brought this philosophy to every area of Rails 3: flexibility without compromise.
By looking at the ways that an estimated million developers use Rails, we could hone in
on the needs of real developers and plugin authors, significantly improving the overall
architecture of Rails based on real user feedback.

Because the Rails 3 internals are such a departure from what’s come before, developers
building long-lived applications and plugin developers need a resource that comprehen-
sively covers the philosophy of the new version of the framework. The Rails™ 3 Way is
a comprehensive resource that digs into the new features in Rails 3 and perhaps more
importantly, the rationale behind them.

— Yehuda Katz
Rails Core

Introduction

As I write this new introduction in the spring of 2010, the official release of Rails 3.0
is looming, and what a big change it represents. The “Merb-ification” of Rails is almost
complete! The new Rails is quite different from its predecessors in that its underlying
architecture is more modular and elegant while increasing sheer performance signifi-
cantly. The changes to Active Record are dramatic, with Arel’s query method chaining
replacing hashed find parameters that we were all used to.

There is a lot to love about Rails 3, and I do think that eventually most of the
community will make the change. In most cases, I have not bothered to cover 2.x ways
of doing things in Rails if they are significantly different from the Rails 3 way—hence
the title change. I felt that naming the book “The Rails Way (Second Edition)” would
be accurate, but possibly misleading. This new edition is a fully new book for a fully new
framework. Practically every line of the book has been painstakingly revised and edited,
with some fairly large chunks of the original book not making the new cut. It’s taken
well over a year, including six months of working every night to get this book done!

Even though Rails 3 is less opinionated than early versions, in that it allows for easy
reconfiguration of Rails assumptions, this book is more opinionated than ever. The vast
majority of Rails developers use RSpec, and I believe that is primarily because it is a
superior choice to Test::Unit. Therefore, this book does not cover Test::Unit. I
firmly believe that Haml is vastly, profoundly, better than ERb for view templating, so
the book uses Haml exclusively.

xv

xvi Introduction

0.1 About This Book
This book is not a tutorial or basic introduction to Ruby or Rails. It is meant as a day-
to-day reference for the full-time Rails developer. The more confident reader might be
able to get started in Rails using just this book, extensive online resources, and his or her
wits, but there are other publications that are more introductory in nature and might be
a wee bit more appropriate for beginners.

Every contributor to this book works with Rails on a full-time basis. We do not spend
our days writing books or training other people, although that is certainly something
that we enjoy doing on the side.

This book was originally conceived for myself, because I hate having to use online
documentation, especially API docs, which need to be consulted over and over again.
Since the API documentation is liberally licensed (just like the rest of Rails), there are a
few sections of the book that reproduce parts of the API documentation. In practically
all cases, the API documentation has been expanded and/or corrected, supplemented
with additional examples and commentary drawn from practical experience.

Hopefully you are like me—I really like books that I can keep next to my keyboard,
scribble notes in, and fill with bookmarks and dog-ears. When I’m coding, I want to be
able to quickly refer to both API documentation, in-depth explanations, and relevant
examples.

0.1.1 Book Structure
I attempted to give the material a natural structure while meeting the goal of being
the best-possible Rails reference book. To that end, careful attention has been given
to presenting holistic explanations of each subsystem of Rails, including detailed API
information where appropriate. Every chapter is slightly different in scope, and I suspect
that Rails is now too big a topic to cover the whole thing in depth in just one book.

Believe me, it has not been easy coming up with a structure that makes perfect sense
for everyone. Particularly, I have noted surprise in some readers when they notice that
Active Record is not covered first. Rails is foremost a web framework and, at least to me,
the controller and routing implementation is the most unique, powerful, and effective
feature, with Active Record following a close second.

0.1.2 Sample Code and Listings
The domains chosen for the code samples should be familiar to almost all professional de-
velopers. They include time and expense tracking, auctions, regional data management,
and blogging applications. I don’t spend pages explaining the subtler nuances of the

Introduction xvii

business logic for the samples or justify design decisions that don’t have a direct relation-
ship to the topic at hand. Following in the footsteps of my series colleague Hal Fulton
and The Ruby Way, most of the snippets are not full code listings—only the relevant code
is shown. Ellipses (. . .) denote parts of the code that have been eliminated for clarity.

Whenever a code listing is large and significant, and I suspect that you might want to
use it verbatim in your own code, I supply a listing heading. There are not too many of
those. The whole set of code listings will not add up to a complete working system, nor
are there 30 pages of sample application code in an appendix. The code listings should
serve as inspiration for your production-ready work, but keep in mind that they often
lack touches necessary in real-world work. For example, examples of controller code are
often missing pagination and access control logic, because it would detract from the
point being expressed.

Some of the source code for my examples can be found at http://github.com/
obie/tr3w˙time˙and˙expenses. Note that it is not a working nor complete applica-
tion. It just made sense at times to keep the code in the context of an application and
hopefully you might draw some inspiration from browsing it.

0.1.3 Concerning Third-Party RubyGems and Plugins
Whenever you find yourself writing code that feels like plumbing, by which I mean
completely unrelated to the business domain of your application, you’re probably doing
too much work. I hope that you have this book at your side when you encounter that
feeling. There is almost always some new part of the Rails API or a third-party RubyGem
for doing exactly what you are trying to do.

As a matter of fact, part of what sets this book apart is that I never hesitate in calling
out the availability of third-party code, and I even document the RubyGems and plugins
that I feel are most crucial for effective Rails work. In cases where third-party code is
better than the built-in Rails functionality, we don’t cover the built-in Rails functionality
(pagination is a good example).

An average developer might see his or her productivity double with Rails, but I’ve
seen serious Rails developers achieve gains that are much, much higher. That’s because we
follow the Don’t Repeat Yourself (DRY) principle religiously, of which Don’t Reinvent
The Wheel (DRTW) is a close corollary. Reimplementing something when an existing
implementation is good enough is an unnecessary waste of time that nevertheless can be
very tempting, since it’s such a joy to program in Ruby.

Ruby on Rails is actually a vast ecosystem of core code, official plugins, and third-
party plugins. That ecosystem has been exploding rapidly and provides all the raw

http://github.com/obie/tr3w.time.and.expenses
http://github.com/obie/tr3w.time.and.expenses

xviii Introduction

technology you need to build even the most complicated enterprise-class web appli-
cations. My goal is to equip you with enough knowledge that you’ll be able to avoid
continuously reinventing the wheel.

0.2 Recommended Reading and Resources
Readers may find it useful to read this book while referring to some of the excellent
reference titles listed in this section.

Most Ruby programmers always have their copy of the “Pickaxe” book nearby,
Programming Ruby (ISBN: 0-9745140-5-5), because it is a good language reference.
Readers interested in really understanding all of the nuances of Ruby programming
should acquire The Ruby Way, Second Edition (ISBN: 0-6723288-4-4).

I highly recommend Peepcode Screencasts, in-depth video presentations on a va-
riety of Rails subjects by the inimitable Geoffrey Grosenbach, available at http://

peepcode.com

Ryan Bates does an excellent job explaining nuances of Rails development in his
long-running series of free webcasts available at http://railscasts.com/

Last, but not least, this book’s companion website at http://tr3w.com is the
first place to look for reporting issues and finding additional resources, as they become
available.

Regarding David Heinemeier Hansson, a.k.a. DHH

I had the pleasure of establishing a friendship with David Heinemeier Hansson, creator of Rails,
in early 2005, before Rails hit the mainstream and he became an International Web 2.0 Superstar.
My friendship with David is a big factor in why I’m writing this book today. David’s opinions
and public statements shape the Rails world, which means he gets quoted a lot when we discuss
the nature of Rails and how to use it effectively.
David has told me on a couple of occasions that he hates the “DHH” moniker that people tend to
use instead of his long and difficult-to-spell full name. For that reason, in this book I try to always
refer to him as “David” instead of the ever-tempting “DHH.” When you encounter references
to “David” without further qualification, I’m referring to the one-and-only David Heinemeier
Hansson.
There are a number of notable people from the Rails world that are also referred to on a first-name
basis in this book. Those include:

• Yehuda Katz

• Jamis Buck

• Xavier Noria

http://peepcode.com
http://peepcode.com
http://railscasts.com/
http://tr3w.com

Introduction xix

0.3 Goals
As already stated, I hope to make this your primary working reference for Ruby on
Rails. I don’t really expect too many people to read it through end to end unless they’re
expanding their basic knowledge of the Rails framework. Whatever the case may be,
over time I hope this book gives you as an application developer/programmer greater
confidence in making design and implementation decisions while working on your day-
to-day tasks. After spending time with this book, your understanding of the fundamental
concepts of Rails coupled with hands-on experience should leave you feeling comfortable
working on real-world Rails projects, with real-world demands.

If you are in an architectural or development lead role, this book is not targeted to
you, but should make you feel more comfortable discussing the pros and cons of Ruby
on Rails adoption and ways to extend Rails to meet the particular needs of the project
under your direction.

Finally, if you are a development manager, you should find the practical perspective
of the book and our coverage of testing and tools especially interesting, and hopefully
get some insight into why your developers are so excited about Ruby and Rails.

0.4 Prerequisites
The reader is assumed to have the following knowledge:

• Basic Ruby syntax and language constructs such as blocks

• Solid grasp of object-oriented principles and design patterns

• Basic understanding of relational databases and SQL

• Familiarity with how Rails applications are laid out and function

• Basic understanding of network protocols such as HTTP and SMTP

• Basic understanding of XML documents and web services

• Familiarity with transactional concepts such as ACID properties

As noted in the section “Book Structure,” this book does not progress from easy material
in the front to harder material in the back. Some chapters do start out with fundamental,
almost introductory material and push on to more advanced coverage. There are def-
initely sections of the text that experienced Rails developer will gloss over. However,
I believe that there is new knowledge and inspiration in every chapter, for all skill
levels.

This page intentionally left blank

Acknowledgments

A whole new set of players contributed to The Rails™ 3 Way, however I still need to
thank some of my original supporters first. I can’t say enough good things about Debra
Williams Cauley, my editor at Addison-Wesley. She is an excellent coach and motivator
and oh-so-caring of her authors. I love you, Deb! Also again I have to thank my long-term
partner Desi McAdam and my kids Taylor and Liam for being super-supportive and
understanding of my time constraints during the heaviest times of writing.

My team at Hashrocket has been an amazing source of encouragement and help
during the preparation of The Rails™ 3 Way. My partners Marian and Mark made sure
I had all the time and help needed, and were always ready with a hug or words of
encouragment when the times got tough. Jon Larkowski and Tim “tpope” Pope spent
hours with me at my apartment, sometimes every night of the week, to make sure that
the book got finished. Eliza Brock and Tim Pope hacked a massive XSLT script that
converted the original Word .doc manuscript files into LATEX, enabling us to put the book
into proper source control and make much more rapid progress than would otherwise
be possible. Eliza, you are a freaking genius and an inspiration!

My friend Xavier Noria, Rails committer and former textbook reviewer, once again
impressed us with his careful technical review and laser-focused feedback. Xavi picked up
on dozens of ommissions and errors that would otherwise have gone unnoticed. What
a hero!

One of my oldest and closest friends, Durran Jordan, was a late and welcome addition
to The Rails™ 3 Way team. He’s the author of Mongoid, http://mongoid.org—one of
the premier frameworks for using Mongo with Ruby and an up-and-coming personality
in the NoSQL space. He’s currently working on a NoSQL in Ruby title for this series and

xxi

http://mongoid.org

xxii Acknowledgments

provided some of the new content in this book concerning Active Model and background
processing.

Chicago-based Rocketeers Josh Graham and Bernerd Schaefer also provided late-
stage help, contributing material related to XML processing and Ajax. Other folks at
Hashrocket that deserve acknowledgment include our director of operations and my
longtime friend Sal Cardello, who controls resourcing and allowed me to take people
away from billing to help me with the book. I also need to thank everyone else at
Hashrocket who played supporting roles, including but not limited to, Rogelio Samour,
Thais Camilo, Adam Lowe, “Big Tiger” Jim Remsik, Lar Van Der Jagt, Matt Yoho,
Stephen Caudill, Robert Pitts, Sandro Turriate, Shay Arnette, and Veezus Kreist.

Thanks to David Black, James Adam, Trotter Cashion, Matt Pelletier, Matt Bauer,
Jodi Showers, Pat Maddox, David Chelimski, Charles Brian Quinn, Patrik Naik, Diego
Scataglini, and everyone else who contributed to making The Rails Way such a success.

About the Author

Obie Fernandez is a recognized tech industry leader and local celebrity in the Jack-
sonville business community. He has been hacking computers since he got his first
Commodore VIC-20 in the eighties, and found himself in the right place and time as a
programmer on some of the first Java enterprise projects of the mid-nineties. He moved
to Atlanta, Georgia, in 1998 and gained prominence as lead architect of local startup
success MediaOcean. He also founded the Extreme Programming (later Agile Atlanta)
User Group and was that group’s president and organizer for several years. In 2004,
he made the move back into the enterprise, tackling high-risk, progressive projects for
world-renowned consultancy ThoughtWorks.

Obie has been evangelizing Ruby on Rails via online via blog posts and publications
since early 2005, and earned himself quite a bit of notoriety (and trash talking) from his
old friends in the Java open-source community. Since then, he has traveled around the
world relentlessly promoting Rails at large industry conferences.

As CEO and founder of Hashrocket, one of the world’s best web design and de-
velopment consultancies, Obie specializes in orchestrating the creation of large-scale,
web-based applications, both for startups and mission-critical enterprise projects. He
still gets his hands dirty with code on at least a weekly basis and posts regularly on vari-
ous topics to his popular technology weblog, http://blog.obiefernandez.com.

xxiii

http://blog.obiefernandez.com

This page intentionally left blank

A
ctive

Record

CHAPTER 9
Advanced Active Record

Active Record is a simple object-relational mapping (ORM) framework compared to
other popular ORM frameworks, such as Hibernate in the Java world. Don’t let that
fool you, though: Under its modest exterior, Active Record has some pretty advanced
features. To really get the most effectiveness out of Rails development, you need to have
more than a basic understanding of Active Record—things like knowing when to break
out of the one-table/one-class pattern, or how to leverage Ruby modules to keep your
code clean and free of duplication.

In this chapter, we wrap up this book’s comprehensive coverage of Active Record by
reviewing callbacks, observers, single-table inheritance (STI), and polymorphic models.
We also review a little bit of information about metaprogramming and Ruby domain-
specific languages (DSLs) as they relate to Active Record.

9.1 Scopes
Scopes (or “named scopes” if you’re old school) allow you define and chain query criteria
in a declarative and reusable manner.

class Timesheet < ActiveRecord::Base
scope :submitted, where(:submitted => true)
scope :underutilized, where('total_hours < 40')

To declare a scope, use the scope class method, passing it a name as a symbol and some
sort of query definition. If your query is known at load time, you can simply use Arel
criteria methods like where, order, and limit to construct the definition as shown in
the example. On the other hand, if you won’t have all the parameters for your query
until runtime, use a lambda as the second parameter. It will get evaluated whenever the
scope is invoked.

251B

252B Chapter 9: Advanced Active Record

class User < ActiveRecord::Base
scope :delinquent, lambda { where('timesheets_updated_at < ?',

1.week.ago)}

Invoke scopes as you would class methods.

>> User.delinquent
=> [#<User id: 2, timesheets_updated_at: "2010-01-07 01:56:29"...>]

9.1.1 Scope Parameters
You can pass arguments to scope invocations by adding parameters to the lambda you
use to define the scope query.

class BillableWeek < ActiveRecord::Base
scope :newer_than, lambda { |date| where('start_date > ?', date) }

Then pass the argument to the scope as you would normally.

BillableWeek.newer_than(Date.today)

9.1.2 Chaining Scopes
One of the beauties of scopes is that you can chain them together to create complex
queries from simple ones:

>> Timesheet.underutilized.submitted
=> [#<Timesheet id: 3, submitted: true, total_hours: 37 ...

Scopes can be chained together for reuse within scope definitions themselves. For in-
stance, let’s say that we always want to constrain the result set of underutilized to
submitted timesheets:

class Timesheet < ActiveRecord::Base
scope :submitted, where(:submitted => true)
scope :underutilized, submitted.where('total_hours < 40')

9.1.3 Scopes and has many
In addition to being available at the class context, scopes are available automatically on
has many association attributes.

>> u = User.find 2
=> #<User id: 2, login: "obie"...>

>> u.timesheets.size
=> 3
>> u.timesheets.underutilized.size
=> 1

A
ctive

Record
9.1 Scopes 253B

9.1.4 Scopes and Joins
You can use Arel’s join method to create cross-model scopes. For instance, if we gave
our recurring example Timesheet a submitted_at date attribute instead of just a
boolean, we could add a scope to User allowing us to see who is late on their timesheet
submission.

scope :tardy, lambda {
joins(:timesheets).
where("timesheets.submitted_at <= ?", 7.days.ago).
group("users.id")

}

Arel’s to_sql method is useful for debugging scope definitions and usage.

>> User.tardy.to_sql
=> "SELECT users.* FROM users

INNER JOIN timesheets ON timesheets.user_id = users.id
WHERE (timesheets.submitted_at <= '2010-07-06 15:27:05.117700')
GROUP BY users.id" # query formatted nicely for the book

Note that as demonstrated in the example, it’s a good idea to use unambiguous column
references (including table name) in cross-model scope definitions so that Arel doesn’t
get confused.

9.1.5 Scope Combinations
Our example of a cross-model scope violates good object-oriented design principles: it
contains the logic for determining whether or not a Timesheet is submitted, which
is code that properly belongs in the Timesheet class. Luckily we can use Arel’s merge
method (aliased as &) to fix it. First we put the late logic where it belongs, in Timesheet:

scope :late, lambda { where("timesheet.submitted_at <= ?", 7.days.ago) }

Then we use our new late scope in tardy:

scope :tardy, lambda {
joins(:timesheets).group("users.id") & Timesheet.late

}

If you have trouble with this technique, make absolutely sure that your scopes’ clauses
refer to fully qualified column names. (In other words, don’t forget to prefix column
names with tables.) The console and to_sql method is your friend for debugging.

254B Chapter 9: Advanced Active Record

9.1.6 Default Scopes
There may arise use cases where you want certain conditions applied to the finders for
your model. Consider our timesheet application has a default view of open timesheets—
we can use a default scope to simplify our general queries.

class Timesheet < ActiveRecord::Base
default_scope :where(:status => "open")

end

Now when we query for our Timesheets, by default the open condition will be
applied:

>> Timesheet.all.map(&:status)
=> ["open", "open", "open"]

Default scopes also get applied to your models when building or creating them,
which can be a great convenience or a nuisance if you are not careful. In our previous
example, all new Timesheets will be created with a status of “open.”

>> Timesheet.new
=> #<Timesheet id: nil, status: "open">
>> Timesheet.create
=> #<Timesheet id: 1, status: "open">

You can override this behavior by providing your own conditions or scope to override
the default setting of the attributes.

>> Timesheet.where(:status => "new").new
=> #<Timesheet id: nil, status: "new">
>> Timesheet.where(:status => "new").create
=> #<Timesheet id: 1, status: "new">

There may be cases where at runtime you want to create a scope and pass it around
as a first class object leveraging your default scope. In this case, Active Record provides
the scoped method.

>> timesheets = Timesheet.scoped.order("submitted_at DESC")
=> [#<Timesheet id: 1, status: "open"]
>> timesheets.where(:name => "Durran Jordan")
=> []

There’s another approach to scopes that provides a sleeker syntax, scoping, which
allows the chaining of scopes via nesting within a block.

>> Timesheet.order("submitted_at DESC").scoping do
>> Timesheets.all
>> end
=> #<Timesheet id: 1, status: "open">

A
ctive

Record
9.1 Scopes 255B

That’s pretty nice, but what if we don’t want our default scope to be included in our
queries? In this case Active Record takes care of us through the unscoped method.

>> Timesheet.unscoped.order("submitted_at DESC")
=> [#<Timesheet id: 2, status: "submitted">]

Similarly to overriding our default scope with a relation when creating new objects,
we can supply unscoped as well to remove the default attributes.

>> Timesheet.unscoped.new
=> #<Timesheet id: nil, status: nil>

9.1.7 Using Scopes for CRUD
You have a wide range of Active Record’s CRUD methods available on scopes, which
gives you some powerful abilities. For instance, let’s give all our underutilized timesheets
some extra hours.

>> u.timesheets.underutilized.collect(&:total_hours)
=> [37, 38]

>> u.timesheets.underutilized.update_all("total_hours = total_hours + 2")
=> 2

>> u.timesheets.underutilized.collect(&:total_hours)
=> [37, 38] # whoops, cached result

>> u.timesheets(true).underutilized.collect(&:total_hours)
=> [39] # results after telling association to reload

Scopes including a where clause using hashed conditions will populate attributes of
objects built off of them with those attributes as default values. Admittedly it’s a bit
difficult to think of a plausible use case for this feature, but we’ll show it in an example.
First, we add the following scope to Timesheet:

scope :perfect, submitted.where(:total_hours => 40)

Now, building an object on the perfect scope should give us a submitted timesheet
with 40 hours.

> Timesheet.perfect.build
=> #<Timesheet id: nil, submitted: true, user_id: nil, total_hours: 40

...>

As you’ve probably realized by now, the new Arel underpinnings of Active Record
are tremendously powerful and truly elevate the Rails 3 platform.

256B Chapter 9: Advanced Active Record

9.2 Callbacks
This advanced feature of Active Record allows the savvy developer to attach behavior at
a variety of different points along a model’s life cycle, such as after initialization, before
database records are inserted, updated or removed, and so on.

Callbacks can do a variety of tasks, ranging from simple things such as logging and
massaging of attribute values prior to validation, to complex calculations. Callbacks can
halt the execution of the life-cycle process taking place. Some callbacks can even modify
the behavior of the model class on the fly. We’ll cover all of those scenarios in this
section, but first let’s get a taste of what a callback looks like. Check out the following
silly example:

class Beethoven < ActiveRecord::Base
before_destroy :last_words

protected

def last_words
logger.info "Friends applaud, the comedy is over"

end
end

So prior to dying (ehrm, being destroy’d), the last words of the Beethoven class will
always be logged for posterity. As we’ll see soon, there are 14 different opportunities to
add behavior to your model in this fashion. Before we get to that list, let’s cover the
mechanics of registering a callback.

9.2.1 Callback Registration
Overall, the most common way to register a callback method is to declare it at the top of
the class using a typical Rails macro-style class method. However, there’s a less verbose
way to do it also. Simply implement the callback as a method in your class. In other
words, I could have coded the prior example as follows:

class Beethoven < ActiveRecord::Base

protected

def before_destroy
logger.info "Friends applaud, the comedy is over"

end
end

This is a rare case of the less-verbose solution being bad. In fact, it is almost always
preferable, dare I say it is the Rails way, to use the callback macros over implementing

A
ctive

Record
9.2 Callbacks 257B

callback methods, for the following reasons:

• Macro-style callback declarations are added near the top of the class definition,
making the existence of that callback more evident versus a method body potentially
buried later in the file.

• Macro-style callbacks add callback methods to a queue. That means that more than
one method can be hooked into the same slot in the life cycle. Callbacks will be
invoked in the order in which they were added to the queue.

• Callback methods for the same hook can be added to their queue at different levels
of an inheritance hierarchy and still work—they won’t override each other the way
that methods would.

• Callbacks defined as methods on the model are always called last.

9.2.2 One-Liners
Now, if (and only if) your callback routine is really short,1 you can add it by passing a
block to the callback macro. We’re talking one-liners!

class Napoleon < ActiveRecord::Base
before_destroy { logger.info "Josephine..." }
...

end

As of Rails 3, the block passed to a callback is executed via instance_eval so that
its scope is the record itself (versus needing to act on a passed in record variable). The
following example implements “paranoid” model behavior, covered later in the chapter.

class Account < ActiveRecord::Base
before_destroy { update_attribute(:deleted_at, Time.now); false }
...

9.2.3 Protected or Private
Except when you’re using a block, the access level for callback methods should always
be protected or private. It should never be public, since callbacks should never be called
from code outside the model.

1. If you are browsing old Rails source code, you might come across callback macros receiving a short string of
Ruby code to be evaluated in the binding of the model object. That way of adding callbacks was deprecated in
Rails 1.2, because you’re always better off using a block in those situations.

258B Chapter 9: Advanced Active Record

Believe it or not, there are even more ways to implement callbacks, but we’ll cover
those techniques further along in the chapter. For now, let’s look at the lists of callback
hooks available.

9.2.4 Matched before/after Callbacks
In total, there are 14 types of callbacks you can register on your models! Twelve of
them are matching before/after callback pairs, such as before_validation and
after_validation. (The other two, after_initialize and after_find, are spe-
cial, and we’ll discuss them later in this section.)

List of Callbacks
This is the list of callback hooks available during a save operation. (The list varies
slightly depending on whether you’re saving a new or existing record.)

• before_validation

• before_validation_on_create

• after_validation

• after_validation_on_create

• before_save

• before_create (for new records) and before_update (for existing records)

• (Database actually gets an INSERT or UPDATE statement here)

• after_create (for new records) and after_update (for existing records)

• after_save

Delete operations have their own two callbacks:

• before_destroy

• (Database actually gets a DELETE statement here)

• after_destroy is called after all attributes have been frozen (read-only)

Additionally transactions have callbacks as well, for when you want actions to occur
after the database is guaranteed to be in a permanent state. Note that only “after” callbacks
exist here because of the nature of transactions—it’s a bad idea to be able to interfere
with the actual operation itself.

A
ctive

Record
9.2 Callbacks 259B

• after_commit

• after_commit_on_create

• after_commit_on_update

• after_commit_on_destroy

• after_rollback

• after_rollback_on_create

• after_rollback_on_update

• after_rollback_on_destroy

9.2.5 Halting Execution
If you return a boolean false (not nil) from a callback method, Active Record halts
the execution chain. No further callbacks are executed. The save method will return
false, and save! will raise a RecordNotSaved error.

Keep in mind that because the last expression of a Ruby method is returned implicitly,
it is a pretty common bug to write a callback that halts execution unintentionally. If
you have an object with callbacks that mysteriously fails to save, make sure you aren’t
returning false by mistake.

9.2.6 Callback Usages
Of course, the callback you should use for a given situation depends on what you’re
trying to accomplish. The best I can do is to serve up some examples to inspire you with
your own code.

Cleaning Up Attribute Formatting withbefore—validate—on—create
The most common examples of using before_validation callbacks have to do with
cleaning up user-entered attributes. For example, the following CreditCard class cleans
up its number attribute so that false negatives don’t occur on validation:

class CreditCard < ActiveRecord::Base

...

def before_validation_on_create
Strip everything in the number except digits
self.number = number.gsub(/[^0-9]/, "")

end
end

260B Chapter 9: Advanced Active Record

Geocoding with before—save
Assume that you have an application that tracks addresses and has mapping features.
Addresses should always be geocoded before saving, so that they can be displayed rapidly
on a map later.2

As is often the case, the wording of the requirement itself points you in the direction
of the before_save callback:

class Address < ActiveRecord::Base
include GeoKit::Geocoders

before_save :geolocate
validates_presence_of :street, :city, :state, :zip
...

def to_s
"#{street} #{city}, #{state} #{zip}"

end

protected

def geolocate
res = GoogleGeocoder.geocode(to_s)
self.latitude = res.lat
self.longitude = res.lng

end
end

Before we move on, there are a couple of additional considerations. The preceding code
works great if the geocoding succeeds, but what if it doesn’t? Do we still want to allow
the record to be saved? If not, we should halt the execution chain:

def geolocate
res = GoogleGeocoder.geocode(to_s)
return false if not res.success # halt execution

self.latitude = res.lat
self.longitude = res.lng

end

The only problem remaining is that we give the rest of our code (and by extension,
the end user) no indication of why the chain was halted. Even though we’re not in a
validation routine, I think we can put the errors collection to good use here:

def geolocate
res = GoogleGeocoder.geocode(to_s)

2. I recommend the excellent GeoKit for Rails plugin available at http://geokit.rubyforge.org/.

http://geokit.rubyforge.org/

A
ctive

Record
9.2 Callbacks 261B

if res.success
self.latitude = res.lat
self.longitude = res.lng

else
errors[:base] << "Geocoding failed. Please check address."
return false

end
end

If the geocoding fails, we add a base error message (for the whole object) and halt
execution, so that the record is not saved.

Exercise Your Paranoia with before_destroy
What if your application has to handle important kinds of data that, once entered,
should never be deleted? Perhaps it would make sense to hook into Active Record’s
destroy mechanism and somehow mark the record as deleted instead?

The following example depends on the accounts table having a deleted_at date-
time column.

class Account < ActiveRecord::Base

...

def before_destroy
update_attribute(:deleted_at, Time.now)
false

end

end

I chose to implement it as a callback method so that I am guaranteed it will execute
last in the before_destroy queue. It returns false so that execution is halted and the
underlying record is not actually deleted from the database.3

It’s probably worth mentioning that there are ways that Rails allows you to unin-
tentionally circumvent before_destroy callbacks:

• The delete and delete_all class methods of ActiveRecord::Base are almost
identical. They remove rows directly from the database without instantiating the
corresponding model instances, which means no callbacks will occur.

3. Real-life implementation of the example would also need to modify all finders to include deleted_at
is NULL conditions; otherwise, the records marked deleted would continue to show up in the applica-
tion. That’s not a trivial undertaking, and luckily you don’t need to do it yourself. There’s a Rails plugin
named ActsAsParanoid by Rick Olson that does exactly that, and you can find it at http://svn.techno-
weenie.net/projects/plugins/acts_as_paranoid.

http://svn.technoweenie.net/projects/plugins/acts_as_paranoid
http://svn.technoweenie.net/projects/plugins/acts_as_paranoid

262B Chapter 9: Advanced Active Record

• Model objects in associations defined with the option :dependent => :delete_

all will be deleted directly from the database when removed from the collection
using the association’s clear or delete methods.

Cleaning Up Associated Files with after—destroy
Model objects that have files associated with them, such as attachment records and
uploaded images, can clean up after themselves when deleted using the after_destroy
callback. The following method from Rick Olson’s old AttachmentFu4 plugin is a good
example:

Destroys the file. Called in the after_destroy callback
def destroy_file
FileUtils.rm(full_filename)
...

rescue
logger.info "Exception destroying #{full_filename ... }"
logger.warn $!.backtrace.collect { |b| " > #{b}" }.join("\n")

end

9.2.7 Special Callbacks: after—initialize
and after—find

The after_initialize callback is invoked whenever a new Active Record model is
instantiated (either from scratch or from the database). Having it available prevents you
from having to muck around with overriding the actual initialize method.

The after_find callback is invoked whenever Active Record loads a model object
from the database, and is actually called before after_initialize, if both are imple-
mented. Because after_find and after_initialize are called for each object found
and instantiated by finders, performance constraints dictate that they can only be added
as methods, and not via the callback macros.

What if you want to run some code only the first time that a model is ever instantiated,
and not after each database load? There is no native callback for that scenario, but you
can do it using the after_initialize callback. Just add a condition that checks to see
if it is a new record:

def after_initialize
if new?
...

end
end

4. Get AttachmentFu at http://svn.techno-weenie.net/projects/plugins/attachment_fu.

http://svn.techno-weenie.net/projects/plugins/attachment_fu

A
ctive

Record
9.2 Callbacks 263B

In a number of Rails apps that I’ve written, I’ve found it useful to capture user preferences
in a serialized hash associated with the User object. The serialize feature of Active
Record models makes this possible, since it transparently persists Ruby object graphs to
a text column in the database. Unfortunately, you can’t pass it a default value, so I have
to set one myself:

class User < ActiveRecord::Base
serialize :preferences # defaults to nil
...

protected

def after_initialize
self.preferences ||= Hash.new

end
end

Using the after_initialize callback, I can automatically populate the preferences
attribute of my user model with an empty hash, so that I never have to worry about it being
nil when I access it with code such as user.preferences[:show_help_text] =

false.
Ruby’s metaprogramming capabilities combined with the ability to run code when-

ever a model is loaded using the after_find callback are a powerful mix. Since we’re
not done learning about callbacks yet, we’ll come back to uses of after_find later on
in the chapter, in the section “Modifying Active Record Classes at Runtime.”

9.2.8 Callback Classes
It is common enough to want to reuse callback code for more than one object that Rails
gives you a way to write callback classes. All you have to do is pass a given callback queue
an object that responds to the name of the callback and takes the model object as a
parameter.

Here’s our paranoid example from the previous section as a callback class:

class MarkDeleted
def self.before_destroy(model)

model.update_attribute(:deleted_at, Time.now)
return false

end
end

The behavior of MarkDeleted is stateless, so I added the callback as a class method.
Now you don’t have to instantiate MarkDeleted objects for no good reason. All you

264B Chapter 9: Advanced Active Record

do is pass the class to the callback queue for whichever models you want to have the
mark-deleted behavior:

class Account < ActiveRecord::Base
before_destroy MarkDeleted
...

end

class Invoice < ActiveRecord::Base
before_destroy MarkDeleted
...

end

Multiple Callback Methods in One Class
There’s no rule that says you can’t have more than one callback method in a callback
class. For example, you might have special audit log requirements to implement:

class Auditor
def initialize(audit_log)
@audit_log = audit_log

end

def after_create(model)
@audit_log.created(model.inspect)

end

def after_update(model)
@audit_log.updated(model.inspect)

end

def after_destroy(model)
@audit_log.destroyed(model.inspect)

end
end

To add audit logging to an Active Record class, you would do the following:

class Account < ActiveRecord::Base
after_create Auditor.new(DEFAULT_AUDIT_LOG)
after_update Auditor.new(DEFAULT_AUDIT_LOG)
after_destroy Auditor.new(DEFAULT_AUDIT_LOG)
...

end

Wow, that’s ugly, having to add three Auditors on three lines. We could extract a local
variable called auditor, but it would still be repetitive. This might be an opportunity
to take advantage of Ruby’s open classes, the fact that you can modify classes that aren’t
part of your application.

A
ctive

Record
9.3 Calculation Methods 265B

Wouldn’t it be better to simply say acts_as_audited at the top of the model that
needs auditing? We can quickly add it to the ActiveRecord::Base class, so that it’s
available for all our models.

On my projects, the file where “quick and dirty” code like the method in Listing 9.1
would reside islib/core_ext/active_record_base.rb, but you can put it anywhere
you want. You could even make it a plugin (as detailed in Chapter 19, “Extending Rails
with Plugins”).

Listing 9.1 A quick-and-dirty ‘‘acts as audited’’method

class ActiveRecord::Base
def self.acts_as_audited(audit_log=DEFAULT_AUDIT_LOG)
auditor = Auditor.new(audit_log)
after_create auditor
after_update auditor
after_destroy auditor

end
end

Now, the top of Account is a lot less cluttered:

class Account < ActiveRecord::Base
acts_as_audited

Testability
When you add callback methods to a model class, you pretty much have to test that
they’re functioning correctly in conjunction with the model to which they are added.
That may or may not be a problem. In contrast, callback classes are super-easy to test in
isolation.

def test_auditor_logs_created
(model = mock).expects(:inspect).returns('foo')
(log = mock).expects(:created).with('foo')
Auditor.new(log).after_create(model)

end

9.3 Calculation Methods
All Active Record classes have a calculatemethod that provides easy access to aggregate
function queries in the database. Methods for count, sum, average, minimum, and
maximum have been added as convenient shortcuts.

266B Chapter 9: Advanced Active Record

Options such as conditions, :order, :group, :having, and :joins can be
passed to customize the query.

There are two basic forms of output:

Single aggregate value The single value is type cast to Fixnum for COUNT, Float for
AVG, and the given column’s type for everything else.

Grouped values This returns an ordered hash of the values and groups them by the
:group option. It takes either a column name, or the name of a belongs_to

association.

The following options are available to all calculation methods:

:conditions An SQL fragment like "administrator = 1" or ["user_name =

?", username]. See conditions in the intro to ActiveRecord::Base.

:include Eager loading, see Associations for details. Since calculations don’t load
anything, the purpose of this is to access fields on joined tables in your conditions,
order, or group clauses.

:joins An SQL fragment for additional joins like "LEFT JOIN comments ON

comments.post_id = id". (Rarely needed). The records will be returned read-
only since they will have attributes that do not correspond to the table’s columns.

:order An SQL fragment like "created_at DESC, name" (really only used with
GROUP BY calculations).

:group An attribute name by which the result should be grouped. Uses the GROUP BY

SQL-clause.

:select By default, this is * as in SELECT * FROM, but can be changed if you, for
example, want to do a join, but not include the joined columns.

:distinct Set this to true to make this a distinct calculation, such as SELECT

COUNT(DISTINCT posts.id) ...

The following examples illustrate the usage of various calculation methods.

Person.calculate(:count, :all) # The same as Person.count

SELECT AVG(age) FROM people
Person.average(:age)

Selects the minimum age for everyone with a last name other than
'Drake'
Person.minimum(:age).where('last_name <> ?', 'Drake')

A
ctive

Record
9.3 Calculation Methods 267B

Selects the minimum age for any family without any minors
Person.minimum(:age).having('min(age) > 17').group(:last_name)

9.3.1 average(column—name, *options)
Calculates the average value on a given column. The first parameter should be a symbol
identifying the column to be averaged.

9.3.2 count(column—name, *options)
Count operates using three different approaches. Count without parameters will return
a count of all the rows for the model. Count with a column_name will return a count of
all the rows for the model with the supplied colum present. Lastly, count using :options
will find the row count matched by the options used. In the last case you would send an
options hash as the only parameter. 213

total_contacts = person.contacts.count(:from => "contact_cards")

Options are the same as with all other calculations methods with the additional option
of :from which is by default the name of the table name of the class, however it can
be changed to a different table name or even that of a database view. Remember that
Person.count(:all) will not work because :all will be treated as a condition, you should
use Person.count instead.

9.3.3 maximum(column—name, *options)
Calculates the maximum value on a given column. The first parameter should be a
symbol identifying the column to be calculated.

9.3.4 minimum(column—name, *options)
Calculates the minimum value on a given column. The first parameter should be a
symbol identifying the column to be calculated.

9.3.5 sum(column—name, *options)
Calculates a summed value in the database using SQL. The first parameter should be a
symbol identifying the column to be summed.

268B Chapter 9: Advanced Active Record

9.4 Observers
The single responsibility principle is a very important tenet of object-oriented program-
ming. It compels us to keep a class focused on a single concern. As you’ve learned in
the previous section, callbacks are a useful feature of Active Record models that allow
us to hook in behavior at various points of a model object’s life cycle. Even if we pull
that extra behavior out into callback classes, the hook still requires code changes in the
model class definition itself. On the other hand, Active Record gives us a way to hook
in to models that is completely transparent: Observers.

Here is the functionality of our old Auditor callback class as an observer of Account
objects:

class AccountObserver < ActiveRecord::Observer
def after_create(model)
DEFAULT_AUDIT_LOG.created(model.inspect)

end

def after_update(model)
DEFAULT_AUDIT_LOG.updated(model.inspect)

end

def after_destroy(model)
DEFAULT_AUDIT_LOG.destroyed(model.inspect)

end
end

9.4.1 Naming Conventions
When ActiveRecord::Observer is subclassed, it breaks down the name of the subclass
by stripping off the “Observer” part. In the case of our AccountObserver in the preced-
ing example, it would know that you want to observe the Account class. However, that’s
not always desirable behavior. In fact, with general-purpose code such as our Auditor,
it’s positively a step backward, so it is possible to overrule the naming convention with the
use of the observe macro-style method. We still extend ActiveRecord::Observer,
but we can call the subclass whatever we want and tell it explicitly what to observe using
the observe method, which accepts one or more arguments.

class Auditor < ActiveRecord::Observer
observe Account, Invoice, Payment

def after_create(model)
DEFAULT_AUDIT_LOG.created(model.inspect)

end

A
ctive

Record
9.5 Single-Table Inheritance (STI) 269B

def after_update(model)
DEFAULT_AUDIT_LOG.updated(model.inspect)

end

def after_destroy(model)
DEFAULT_AUDIT_LOG.destroyed(model.inspect)

end
end

9.4.2 Registration of Observers
If there weren’t a place for you to tell Rails which observers to load, they would never
get loaded at all, since they’re not referenced from any other code in your application.
Register observers with the following kind of code in an initializer:

Activate observers that should always be running
ActiveRecord::Base.observers = Auditor

9.4.3 Timing
Observers are notified after the in-object callbacks are triggered.5 It’s not possible to act
on the whole object from an observer without having the object’s own callbacks executed
first.

Durran says . . .

For those of us who love to be organized, you can now put your observers in a separate directory
under app if your heart desires. You won’t need to perform custom loading anymore since Rails
now loads all files under the app directory automatically.

9.5 Single-Table Inheritance (STI)
A lot of applications start out with a User model of some sort. Over time, as different
kinds of users emerge, it might make sense to make a greater distinction between them.
Admin and Guest classes are introduced, as subclasses of User. Now, the shared behavior
can reside in User, and subtype behavior can be pushed down to subclasses. However,
all user data can still reside in the users table—all you need to do is introduce a type
column that will hold the name of the class to be instantiated for a given row.

5. https://rails.lighthouseapp.com/projects/8994/tickets/230 contains an interesting discussion
about callback execution order.

https://rails.lighthouseapp.com/projects/8994/tickets/230

270B Chapter 9: Advanced Active Record

To continue explaining single-table inheritance, let’s turn back to our example of
a recurring Timesheet class. We need to know how many billable_hours are out-
standing for a given user. The calculation can be implemented in various ways, but in
this case we’ve chosen to write a pair of class and instance methods on the Timesheet
class:

class Timesheet < ActiveRecord::Base
...

def billable_hours_outstanding
if submitted?
billable_weeks.map(&:total_hours).sum

else
0

end
end

def self.billable_hours_outstanding_for(user)
user.timesheets.map(&:billable_hours_outstanding).sum

end

end

I’m not suggesting that this is good code. It works, but it’s inefficient and that
if/else condition is a little fishy. Its shortcomings become apparent once require-
ments emerge about marking a Timesheet as paid. It forces us to modify Timesheet’s
billable_hours_outstanding method again:

def billable_hours_outstanding
if submitted? && not paid?
billable_weeks.map(&:total_hours).sum

else
0

end
end

That latest change is a clear violation of the open-closed principle,6 which urges
you to write code that is open for extension, but closed for modification. We
know that we violated the principle, because we were forced to change the
billable_hours_outstanding method to accommodate the new Timesheet sta-
tus. Though it may not seem like a large problem in our simple example, consider the
amount of conditional code that will end up in the Timesheet class once we start having
to implement functionality such as paid_hours and unsubmitted_hours.

6. http://en.wikipedia.org/wiki/Open/closed_principle has a good summary.

http://en.wikipedia.org/wiki/Open/closed_principle

A
ctive

Record
9.5 Single-Table Inheritance (STI) 271B

So what’s the answer to this messy question of the constantly changing conditional?
Given that you’re reading the section of the book about single-table inheritance, it’s prob-
ably no big surprise that we think one good answer is to use object-oriented inheritance.
To do so, let’s break our original Timesheet class into four classes.

class Timesheet < ActiveRecord::Base
non-relevant code ommitted

def self.billable_hours_outstanding_for(user)
user.timesheets.map(&:billable_hours_outstanding).sum

end
end

class DraftTimesheet < Timesheet
def billable_hours_outstanding
0

end
end

class SubmittedTimesheet < Timesheet
def billable_hours_outstanding
billable_weeks.map(&:total_hours).sum

end
end

Now when the requirements demand the ability to calculate partially paid timesheets,
we need only add some behavior to a PaidTimesheet class. No messy conditional
statements in sight!

class PaidTimesheet < Timesheet
def billable_hours_outstanding
billable_weeks.map(&:total_hours).sum - paid_hours

end
end

9.5.1 Mapping Inheritance to the Database
Mapping object inheritance effectively to a relational database is not one of those prob-
lems with a definitive solution. We’re only going to talk about the one mapping strategy
that Rails supports natively, which is single-table inheritance, called STI for short.

In STI, you establish one table in the database to holds all of the records for any
object in a given inheritance hierarchy. In Active Record STI, that one table is named
after the top parent class of the hierarchy. In the example we’ve been considering, that
table would be named timesheets.

272B Chapter 9: Advanced Active Record

Hey, that’s what it was called before, right? Yes, but to enable STI we have to add a
type column to contain a string representing the type of the stored object. The following
migration would properly set up the database for our example:

class AddTypeToTimesheet < ActiveRecord::Migration
def self.up
add_column :timesheets, :type, :string

end

def self.down
remove_column :timesheets, :type

end
end

No default value is needed. Once the type column is added to an Active Record model,
Rails will automatically take care of keeping it populated with the right value. Using the
console, we can see this behavior in action:

>> d = DraftTimesheet.create
>> d.type
=> 'DraftTimesheet'

When you try to find an object using the find methods of a base STI class, Rails
will automatically instantiate objects using the appropriate subclass. This is especially
useful in polymorphic situations, such as the timesheet example we’ve been describing,
where we retrieve all the records for a particular user and then call methods that behave
differently depending on the object’s class.

>> Timesheet.find(:first)
=> #<DraftTimesheet:0x2212354...>

Sebastian says . . .

The word “type” is a very common column name and you might have plenty of
uses for it not related to STI—which is why it’s very likely you’ve experienced an
ActiveRecord::SubclassNotFound error. Rails will read the “type” column of your
Car class and try to find an “SUV” class that doesn’t exist.The solution is simple: Tell Rails to
use another column for STI with the following code:

set_inheritance_column "not_sti"

A
ctive

Record
9.5 Single-Table Inheritance (STI) 273B

Note

Rails won’t complain about the missing column; it will simply ignore it. Recently, the error
message was reworded with a better explanation, but too many developers skim error messages
and then spend an hour trying to figure out what’s wrong with their models. (A lot of people
skim sidebar columns too when reading books, but hey, at least I am doubling their chances of
learning about this problem.)

9.5.2 STI Considerations
Although Rails makes it extremely simple to use single-table inheritance, there are a few
caveats that you should keep in mind.

To begin with, you cannot have an attribute on two different subclasses with the
same name but a different type. Since Rails uses one table to store all subclasses, these
attributes with the same name occupy the same column in the table. Frankly, there’s not
much of a reason why that should be a problem unless you’ve made some pretty bad
data-modeling decisions.

More importantly, you need to have one column per attribute on any subclass and
any attribute that is not shared by all the subclasses must accept nil values. In the
recurring example, PaidTimesheet has a paid_hours column that is not used by any
of the other subclasses. DraftTimesheet and SubmittedTimesheet will not use the
paid_hours column and leave it as null in the database. In order to validate data for
columns not shared by all subclasses, you must use Active Record validations and not
the database.

Third, it is not a good idea to have subclasses with too many unique attributes. If
you do, you will have one database table with many null values in it. Normally, a tree
of subclasses with a large number of unique attributes suggests that something is wrong
with your application design and that you should refactor. If you have an STI table that
is getting out of hand, it is time to reconsider your decision to use inheritance to solve
your particular problem. Perhaps your base class is too abstract?

Finally, legacy database constraints may require a different name in the database for
the type column. In this case, you can set the new column name using the class method
set_inheritance_column in the base class. For the Timesheet example, we could
do the following:

class Timesheet < ActiveRecord::Base
set_inheritance_column 'object_type'

end

274B Chapter 9: Advanced Active Record

Now Rails will automatically populate the object_type column with the object’s
type.

9.5.3 STI and Associations
It seems pretty common for applications, particularly data-management ones, to have
models that are very similar in terms of their data payload, mostly varying in their
behavior and associations to each other. If you used object-oriented languages prior
to Rails, you’re probably already accustomed to breaking down problem domains into
hierarchical structures.

Take for instance, a Rails application that deals with the population of states, coun-
ties, cities, and neighborhoods. All of these are places, which might lead you to define an
STI class named Place as shown in Listing 9.2. I’ve also included the database schema
for clarity:7

Listing 9.2 The places database schema and the place class

== Schema Information
#
Table name: places
#
id :integer(11) not null, primary key
region_id :integer(11)
type :string(255)
name :string(255)
description :string(255)
latitude :decimal(20, 1)
longitude :decimal(20, 1)
population :integer(11)
created_at :datetime
updated_at :datetime

class Place < ActiveRecord::Base
end

Place is in essence an abstract class. It should not be instantiated, but there is no
foolproof way to enforce that in Ruby. (No big deal, this isn’t Java!) Now let’s go ahead

7. For autogenerated schema information added to the top of your model classes, try Dave Thomas’s annotate
models plugin at http://svn.pragprog.com/Public/plugins/

http://svn.pragprog.com/Public/plugins/

A
ctive

Record
9.5 Single-Table Inheritance (STI) 275B

and define concrete subclasses of Place:

class State < Place
has_many :counties, :foreign_key => 'region_id'

end

class County < Place
belongs_to :state, :foreign_key => 'region _id'
has_many :cities, :foreign_key => 'region _id'

end

class City < Place
belongs_to :county, :foreign_key => 'region _id'

end

You might be tempted to try adding a cities association to State, knowing that
has_many :through works with both belongs_to and has_many target associations.
It would make the State class look something like this:

class State < Place
has_many :counties, :foreign_key => 'region_id'
has_many :cities, :through => :counties

end

That would certainly be cool, if it worked. Unfortunately, in this particular case, since
there’s only one underlying table that we’re querying, there simply isn’t a way to distin-
guish among the different kinds of objects in the query:

Mysql::Error: Not unique table/alias: 'places': SELECT places.* FROM
places INNER JOIN places ON places.region_id = places.id WHERE
((places.region_id = 187912) AND ((places.type = 'County'))) AND
((places.`type` = 'City'))

What would we have to do to make it work? Well, the most realistic would be to use
specific foreign keys, instead of trying to overload the meaning of region_id for all the
subclasses. For starters, the places table would look like the example in Listing 9.3.

Listing 9.3 The places database schema revised

== Schema Information
#
Table name: places
#
id :integer(11) not null, primary key
state_id :integer(11)
county_id :integer(11)
type :string(255)
name :string(255)
description :string(255)

276B Chapter 9: Advanced Active Record

latitude :decimal(20, 1)
longitude :decimal(20, 1)
population :integer(11)
created_at :datetime
updated_at :datetime

The subclasses would be simpler without the :foreign_key options on the associ-
ations. Plus you could use a regular has_many relationship from State to City, instead
of the more complicated has_many :through.

class State < Place
has_many :counties
has_many :cities

end

class County < Place
belongs_to :state
has_many :cities

end

class City < Place
belongs_to :county

end

Of course, all those null columns in the places table won’t win you any friends with
relational database purists. That’s nothing, though. Just a little bit later in this chapter
we’ll take a second, more in-depth look at polymorphic has_many relationships, which
will make the purists positively hate you.

9.6 Abstract Base Model Classes
In contrast to single-table inheritance, it is possible for Active Record models to share
common code via inheritance and still be persisted to different database tables. In fact,
every Rails developer uses an abstract model in their code whether they realize it or not:
ActiveRecord::Base.8

The technique involves creating an abstract base model class that persistent subclasses
will extend. It’s actually one of the simpler techniques that we broach in this chapter.
Let’s take the Place class from the previous section (refer to Listing 9.3) and revise it to

8. http://m.onkey.org/2007/12/9/namespaced-models

http://m.onkey.org/2007/12/9/namespaced-models

A
ctive

Record
9.7 Polymorphic has many Relationships 277B

be an abstract base class in Listing 9.4. It’s simple really—we just have to add one line
of code:

Listing 9.4 The abstract place class

class Place < ActiveRecord::Base
self.abstract_class = true

end

Marking an Active Record model abstract is essentially the opposite of making it an
STI class with a type column. You’re telling Rails: “Hey, I don’t want you to assume
that there is a table named places.”

In our running example, it means we would have to establish tables for states,
counties, and cities, which might be exactly what we want. Remember though, that we
would no longer be able to query across subtypes with code like Place.all.

Abstract classes is an area of Rails where there aren’t too many hard-and-fast rules
to guide you—experience and gut feeling will help you out.

In case you haven’t noticed yet, both class and instance methods are shared down the
inheritance hierarchy of Active Record models. So are constants and other class members
brought in through module inclusion. That means we can put all sorts of code inside
Place that will be useful to its subclasses.

9.7 Polymorphic has many Relationships
Rails gives you the ability to make one class belong_to more than one type of another
class, as eloquently stated by blogger Mike Bayer:

The “polymorphic association,” on the other hand, while it bears some resemblance to the regular
polymorphic union of a class hierarchy, is not really the same since you’re only dealing with a
particular association to a single target class from any number of source classes, source classes
which don’t have anything else to do with each other; i.e., they aren’t in any particular inheri-
tance relationship and probably are all persisted in completely different tables. In this way, the
polymorphic association has a lot less to do with object inheritance and a lot more to do with
aspect-oriented programming (AOP); a particular concept needs to be applied to a divergent set
of entities which otherwise are not directly related. Such a concept is referred to as a cross-cutting
concern, such as, all the entities in your domain need to support a history log of all changes to
a common logging table. In the AR example, an Order and a User object are illustrated to both
require links to an Address object.9

9. http://techspot.zzzeek.org/?p=13

http://techspot.zzzeek.org/?p=13

278B Chapter 9: Advanced Active Record

In other words, this is not polymorphism in the typical object-oriented sense of the
word; rather, it is something unique to Rails.

9.7.1 In the Case of Models with Comments
In our recurring Time and Expenses example, let’s assume that we want both
BillableWeek and Timesheet to have many comments (a shared Comment class).
A naive way to solve this problem might be to have the Comment class belong to
both the BillableWeek and Timesheet classes and have billable_week_id and
timesheet_id as columns in its database table.

class Comment < ActiveRecord::Base
belongs_to :timesheet
belongs_to :expense_report

end

I call that approach is naive because it would be difficult to work with and hard to
extend. Among other things, you would need to add code to the application to ensure
that a Comment never belonged to both a BillableWeek and a Timesheet at the same
time. The code to figure out what a given comment is attached to would be cumbersome
to write. Even worse, every time you want to be able to add comments to another
type of class, you’d have to add another nullable foreign key column to the comments
table.

Rails solves this problem in an elegant fashion, by allowing us to define
what it terms polymorphic associations, which we covered when we described the
:polymorphic => true option of the belongs_to association in Chapter 7, Active
Record Associations.

The Interface
Using a polymorphic association, we need define only a single belongs_to and add a
pair of related columns to the underlying database table. From that moment on, any class
in our system can have comments attached to it (which would make it commentable),
without needing to alter the database schema or the Comment model itself.

class Comment < ActiveRecord::Base
belongs_to :commentable, :polymorphic => true

end

There isn’t a Commentable class (or module) in our application. We named the associ-
ation :commentable because it accurately describes the interface of objects that will be

A
ctive

Record
9.7 Polymorphic has many Relationships 279B

associated in this way. The name :commentable will turn up again on the other side of
the association:

class Timesheet < ActiveRecord::Base
has_many :comments, :as => :commentable

end

class BillableWeek < ActiveRecord::Base
has_many :comments, :as => :commentable

end

Here we have the friendly has_many association using the :as option. The :as marks
this association as polymorphic, and specifies which interface we are using on the other
side of the association. While we’re on the subject, the other end of a polymorphic
belongs_to can be either a has_many or a has_one and work identically.

The Database Columns
Here’s a migration that will create the comments table:

class CreateComments < ActiveRecord::Migration
def self.up
create_table :comments do |t|
t.text :body
t.integer :commentable
t.string :commentable_type

end
end

end

As you can see, there is a column called commentable_type, which stores the class name
of associated object. The Migrations API actually gives you a one-line shortcut with the
references method, which takes a polymorphic option:

create_table :comments do |t|
t.text :body
t.references :commentable, :polymorphic => true

end

We can see how it comes together using the Rails console (some lines ommitted for
brevity):

>> c = Comment.create(:text => "I could be commenting anything.")
>> t = TimeSheet.create
>> b = BillableWeek.create
>> c.update_attribute(:commentable, t)
=> true
>> "#{c.commentable_type}: #{c.commentable_id}"
=> "Timesheet: 1"

280B Chapter 9: Advanced Active Record

>> c.update_attribute(:commentable, b)
=> true
>> "#{c.commentable_type}: #{c.commentable_id}"
=> "BillableWeek: 1"

As you can tell, both the Timesheet and the BillableWeek that we played with in the
console had the same id (1). Thanks to the commentable_type attribute, stored as a
string, Rails can figure out which is the correct related object.

has—many :through and Polymorphics
There are some logical limitations that come into play with polymorphic associations.
For instance, since it is impossible for Rails to know the tables necessary to join through a
polymorphic association, the following hypothetical code, which tries to find everything
that the user has commented on, will not work.

class Comment < ActiveRecord::Base
belongs_to :user # author of the comment
belongs_to :commentable, :polymorphic => true

end

class User < ActiveRecord::Base
has_many :comments
has_many :commentables, :through => :comments

end

>> User.first.comments
ActiveRecord::HasManyThroughAssociationPolymorphicError: Cannot have
a has_many :through association 'User#commentables' on the polymorphic
object 'Comment#commentable'.

If you really need it, has_many :through is possible with polymorphic associations,
but only by specifying exactly what type of polymorphic associations you want. To do
so, you must use the :source_type option. In most cases, you will also need to use the
:source option, since the association name will not match the interface name used for
the polymorphic association:

class User < ActiveRecord::Base
has_many :comments
has_many :commented_timesheets, :through => :comments,

:source => :commentable, :source_type => 'Timesheet'
has_many :commented_billable_weeks, :through => :comments,

:source => :commentable, :source_type => 'BillableWeek'
end

A
ctive

Record
9.9 Using Value Objects 281B

It’s verbose, and the whole scheme loses its elegance if you go this route, but it works:

>> User.first.commented_timesheets
=> [#<Timesheet ...>]

9.8 Foreign-key Constraints
As we work toward the end of this book’s coverage of Active Record, you might have
noticed that we haven’t really touched on a subject of particular importance to many
programmers: foreign-key constraints in the database. That’s mainly because use of
foreign-key constraints simply isn’t the Rails way to tackle the problem of relational
integrity. To put it mildly, that opinion is controversial and some developers have
written off Rails (and its authors) for expressing it.

There really isn’t anything stopping you from adding foreign-key constraints to your
database tables, although you’d do well to wait until after the bulk of development is
done. The exception, of course, is those polymorphic associations, which are probably
the most extreme manifestation of the Rails opinion against foreign-key constraints.
Unless you’re armed for battle, you might not want to broach that particular subject
with your DBA.

9.9 Using Value Objects
In Domain Driven Design10 (DDD), a distinction is drawn between Entity Objects
and Value Objects. All model objects that inherit from ActiveRecord::Base could be
considered Entity Objects in DDD. An Entity object cares about identity, since each
one is unique. In Active Record uniqueness is derived from the primary key. Comparing
two different Entity Objects for equality should always return false, even if all of its
attributes (other than the primary key) are equivalent.

Here is an example comparing two Active Record Addresses:

>> home = Address.create(:city => "Brooklyn", :state => "NY")
>> office = Address.create(:city => "Brooklyn", :state => "NY")
>> home == office
=> false

In this case you are actually creating two new Address records and persisting them to the
database, therefore they have different primary key values.

Value Objects on the other hand only care that all their attributes are equal.
When creating Value Objects for use with Active Record you do not inherit from

10. http://www.domaindrivendesign.org/

http://www.domaindrivendesign.org/

282B Chapter 9: Advanced Active Record

ActiveRecord::Base. Instead you make them part of a parent model using the
composed_of class method. This is a form of composition, called an Aggregate in DDD.
The attributes of the Value Object are stored in the database together with the parent
object and composed_of provides a means to interact with those values as a single object.

A simple example is of a Person with a single Address. To model this using com-
position, first we need a Person model with fields for the Address. Create it with the
following migration:

class CreatePeople < ActiveRecord::Migration
def self.up
create_table :people do |t|
t.string :name
t.string :address_city
t.string :address_state

end
end

end

The Person model looks like this:

class Person < ActiveRecord::Base
composed_of :address, :mapping => [%w(address_city city),

%w(address_state state)]
end

We’d need a corresponding Address object which looks like this:

class Address
attr_reader :city, :state

def initialize(city, state)
@city, @state = city, state

end

def ==(other_address)
city == other_address.city && state == other_address.state

end
end

Note that this is just a standard Ruby object that does not inherit from
ActiveRecord::Base. We have defined reader methods for our attributes and are
assigning them upon initialization. We also have to define our own == method for use
in comparisons. Wrapping this all up we get the following usage:

>> gary = Person.create(:name => "Gary")
>> gary.address_city = "Brooklyn"
>> gary.address_state = "NY"
>> gary.address
=> #<Address:0x20bc118 @state="NY", @city="Brooklyn">

A
ctive

Record
9.9 Using Value Objects 283B

Alternately you can instantiate the address directly and assign it using the address accessor:

>> gary.address = Address.new("Brooklyn", "NY")
>> gary.address
=> #<Address:0x20bc118 @state="NY", @city="Brooklyn">

9.9.1 Immutability
It’s also important to treat value objects as immutable. Don’t allow them to be changed
after creation. Instead, create a new object instance with the new value instead. Active
Record will not persist value objects that have been changed through means other than
the writer method.

The immutable requirement is enforced by Active Record by freezing any ob-
ject assigned as a value object. Attempting to change it afterwards will result in a
ActiveSupport::FrozenObjectError.

9.9.2 Custom Constructors and Converters
By default value objects are initialized by calling the new constructor of the value class
with each of the mapped attributes, in the order specified by the :mapping option, as
arguments. If for some reason your value class does not work well with that convention,
composed_of allows a custom constructor to be specified.

When a new value object is assigned to its parent, the default assumption is that the
new value is an instance of the value class. Specifying a custom converter allows the new
value to be automatically converted to an instance of value class (when needed).

For example, consider the NetworkResource model with network_address and
cidr_range attributes that should be contained in a NetAddr::CIDR value class.11

The constructor for the value class is called create and it expects a CIDR address string
as a parameter. New values can be assigned to the value object using either another
NetAddr::CIDR object, a string or an array. The :constructor and :converter

options are used to meet the requirements:

class NetworkResource < ActiveRecord::Base
composed_of :cidr,

:class_name => 'NetAddr::CIDR',
:mapping => [%w(network_address network), %w(cidr_range

bits)],
:allow_nil => true,

11. Actual objects from the NetAddr gem available at http://netaddr.rubyforge.org

http://netaddr.rubyforge.org

284B Chapter 9: Advanced Active Record

:constructor => Proc.new { |network_address, cidr_range|
NetAddr::CIDR.create("#{network_address}/#{cidr_range}") },

:converter => Proc.new { |value|
NetAddr::CIDR.create(value.is_a?(Array) ? value.join('/') : value) }
end

This calls the :constructor
network_resource = NetworkResource.new(:network_address => '192.168.0.1',
:cidr_range => 24)

These assignments will both use the :converter
network_resource.cidr = ['192.168.2.1', 8]
network_resource.cidr = '192.168.0.1/24'

This assignment won't use the :converter as the value is already an
instance of the value class
network_resource.cidr = NetAddr::CIDR.create('192.168.2.1/8')

Saving and then reloading will use the :constructor on reload
network_resource.save
network_resource.reload

9.9.3 Finding Records by a Value Object
Once a composed_of relationship is specified for a model, records can be loaded from
the database by specifying an instance of the value object in the conditions hash.
The following example finds all customers with balance_amount equal to 20 and
balance_currency equal to "USD":

Customer.where(:balance => Money.new(20, "USD"))

The Money Gem
A common approach to using composed_of is in conjunction with the money gem.12

class Expense < ActiveRecord::Base
composed_of :cost,
:class_name => "Money",
:mapping => [%w(cents cents), %w(currency currency_as_string)],
:constructor => Proc.new do |cents, currency|
Money.new(cents || 0, currency || Money.default_currency)

end
end

Remember to add a migration with the 2 columns, the integer cents and the string
currency that money needs.

12. http://github.com/FooBarWidget/money/

http://github.com/FooBarWidget/money/

A
ctive

Record
9.10 Modules for Reusing Common Behavior 285B

class CreateExpenses < ActiveRecord::Migration
def self.up
create_table :expenses do |table|
table.integer :cents
table.string :currency

end
end
def self.down
drop_table :expenses

end
end

Now when asking for or setting the cost of an item would use a Money instance.

>> expense = Expense.create(:cost => Money.new(1000, "USD"))
>> cost = expense.cost
>> cost.cents
=> 1000
>> expense.currency
=> "USD"

9.10 Modules for Reusing Common Behavior
In this section, we’ll talk about one strategy for breaking out functionality that is shared
between disparate model classes. Instead of using inheritance, we’ll put the shared code
into modules.

In the section “Polymorphic has_many Relationships,” we described how to add
a commenting feature to our recurring sample Time and Expenses application. We’ll
continue fleshing out that example, since it lends itself to factoring out into modules.

The requirements we’ll implement are as follows: Both users and approvers should be
able to add their comments to a Timesheet or ExpenseReport. Also, since comments
are indicators that a timesheet or expense report requires extra scrutiny or processing
time, administrators of the application should be able to easily view a list of recent
comments. Human nature being what it is, administrators occasionally gloss over the
comments without actually reading them, so the requirements specify that a mechanism
should be provided for marking comments as “OK” first by the approver, then by the
administrator.

Again, here is the polymorphic has_many :comments, :as => :commentable

that we used as the foundation for this functionality:

class Timesheet < ActiveRecord::Base
has_many :comments, :as => :commentable

end

286B Chapter 9: Advanced Active Record

class ExpenseReport < ActiveRecord::Base
has_many :comments, :as => :commentable

end

class Comment < ActiveRecord::Base
belongs_to :commentable, :polymorphic => true

end

Next we enable the controller and action for the administrator that list the 10 most
recent comments with links to the item to which they are attached.

class Comment < ActiveRecord::Base
scope :recent, order('created_at desc').limit(10)

end

class CommentsController < ApplicationController
before_filter :require_admin, :only => :recent
expose(:recent_comments) { Comment.recent }

end

Here’s some of the simple view template used to display the recent comments.

%ul.recent.comments
- recent_comments.each do |comment|
%li.comment
%h4= comment.created_at
= comment.text
.meta
Comment on:
= link_to comment.commentable.title, comment.commentable Yes, this

would result in N+1 selects.

So far, so good. The polymorphic association makes it easy to access all types of comments
in one listing. In order to find all of the unreviewed comments for an item, we can use
a named scope on the Comment class together with the comments association.

class Comment < ActiveRecord::Base
scope :unreviewed, where(:reviewed => false)

end

>> timesheet.comments.unreviewed

Both Timesheet and ExpenseReport currently have identical has_many methods for
comments. Essentially, they both share a common interface. They’re commentable!

To minimize duplication, we could specify common interfaces that share code in
Ruby by including a module in each of those classes, where the module contains the code
common to all implementations of the common interface. So, mostly for the sake of

A
ctive

Record
9.10 Modules for Reusing Common Behavior 287B

example, let’s go ahead and define a Commentable module to do just that, and include
it in our model classes:

module Commentable
has_many :comments, :as => :commentable

end

class Timesheet < ActiveRecord::Base
include Commentable

end

class ExpenseReport < ActiveRecord::Base
include Commentable

end

Whoops, this code doesn’t work! To fix it, we need to understand an essential aspect of
the way that Ruby interprets our code dealing with open classes.

9.10.1 A Review of Class Scope and Contexts
In many other interpreted OO programming languages, you have two phases of
execution—one in which the interpreter loads the class definitions and says “this is
the definition of what I have to work with,” followed by the phase in which it executes
the code. This makes it difficult (though not necessarily impossible) to add new methods
to a class dynamically during execution.

In contrast, Ruby lets you add methods to a class at any time. In Ruby, when you
type class MyClass, you’re doing more than simply telling the interpreter to define a
class; you’re telling it to “execute the following code in the scope of this class.”

Let’s say you have the following Ruby script:

1 class Foo < ActiveRecord::Base
2 has_many :bars
3 end
4 class Foo < ActiveRecord::Base
5 belongs_to :spam
6 end

When the interpreter gets to line 1, you are telling it to execute the following code (up
to the matching end) in the context of the Foo class object. Because the Foo class object
doesn’t exist yet, it goes ahead and creates the class. At line 2, we execute the statement
has_many :bars in the context of the Foo class object. Whatever the has_manymethod
does, it does right now.

When we again say class Foo at line 4, we are once again telling the interpreter
to execute the following code in the context of the Foo class object, but this time, the

288B Chapter 9: Advanced Active Record

interpreter already knows about class Foo; it doesn’t actually create another class. There-
fore, on line 5, we are simply telling the interpreter to execute the belongs_to :spam

statement in the context of that same Foo class object.
In order to execute the has_many and belongs_to statements, those methods

need to exist in the context in which they are executed. Because these are defined as
class methods in ActiveRecord::Base, and we have previously defined class Foo as
extending ActiveRecord::Base, the code will execute without a problem.

However, when we defined our Commentable module like this:

module Commentable
has_many :comments, :as => :commentable

end

. . . we get an error when it tries to execute the has_many statement. That’s because the
has_many method is not defined in the context of the Commentable module object.

Given what we now know about how Ruby is interpreting the code, we now realize
that what we really want is for that has_many statement to be executed in the context
of the including class.

9.10.2 The included Callback
Luckily, Ruby’s Module class defines a handy callback that we can use to do just that.
If a Module object defines the method included, it gets run whenever that module
is included in another module or class. The argument passed to this method is the
module/class object into which this module is being included.

We can define an included method on our Commentable module object so that
it executes the has_many statement in the context of the including class (Timesheet,
ExpenseReport, and so on):

module Commentable
def self.included(base)
base.class_eval do
has_many :comments, :as => :commentable

end
end

end

Now, when we include the Commentable module in our model classes, it will execute
the has_many statement just as if we had typed it into each of those classes’ bodies.

A
ctive

Record
9.11 Modifying Active Record Classes at Runtime 289B

The technique is common enough, within Rails and plugins, that it was added as a
first-class concept in the Rails 3 ActiveSupport API. The above example becomes shorter
and easier to read as a result:

module Commentable
extend ActiveSupport::Concern
included do
has_many :comments, :as => :commentable

end
end

Whatever is inside of the included block will get executed in the class context of the
class where the module is included.

has_many :comments, :as => :commentable, :extend => Commentable

Courtenay says . . .

There’s a fine balance to strike here. Magic like include Commentable certainly saves on
typing and makes your model look less complex, but it can also mean that your association code is
doing things you don’t know about. This can lead to confusion and hours of head-scratching while
you track down code in a separate module. My personal preference is to leave all associations in
the model, and extend them with a module. That way you can quickly get a list of all associations
just by looking at the code.

9.11 Modifying Active Record Classes at Runtime
The metaprogramming capabilities of Ruby, combined with the after_find callback,
open the door to some interesting possibilities, especially if you’re willing to blur your
perception of the difference between code and data. I’m talking about modifying the
behavior of model classes on the fly, as they’re loaded into your application.

Listing 9.5 is a drastically simplified example of the technique, which assumes the
presence of a config column on your model. During the after_find callback, we
get a handle to the unique singleton class13 of the model instance being loaded. Then
we execute the contents of the config attribute belonging to this particular Account
instance, using Ruby’s class_eval method. Since we’re doing this using the singleton
class for this instance, rather than the global Account class, other account instances in
the system are completely unaffected.

13. I don’t expect this to make sense to you, unless you are familiar with Ruby’s singleton classes,
and the ability to evaluate arbitrary strings of Ruby code at runtime. A good place to start is
http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html.

http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html

290B Chapter 9: Advanced Active Record

Listing 9.5 Runtime metaprogramming with after_find

class Account < ActiveRecord::Base

...

protected

def after_find
singleton = class << self; self; end
singleton.class_eval(config)

end
end

I used powerful techniques like this one in a supply-chain application that I wrote
for a large industrial client. A lot is a generic term in the industry used to describe a
shipment of product. Depending on the vendor and product involved, the attributes
and business logic for a given lot vary quite a bit. Since the set of vendors and products
being handled changed on a weekly (sometimes daily) basis, the system needed to be
reconfigurable without requiring a production deployment.

Without getting into too much detail, the application allowed the maintenance
programmers to easily customize the behavior of the system by manipulating Ruby code
stored in the database, associated with whatever product the lot contained.

For example, one of the business rules associated with lots of butter being shipped
for Acme Dairy Co. might dictate a strictly integral product code, exactly 10 digits in
length. The code, stored in the database, associated with the product entry for Acme
Dairy’s butter product would therefore contain the following two lines:

validates_numericality_of :product_code, :only_integer => true
validates_length_of :product_code, :is => 10

9.11.1 Considerations
A relatively complete description of everything you can do with Ruby metaprogramming,
and how to do it correctly, would fill its own book. For instance, you might realize
that doing things like executing arbitrary Ruby code straight out of the database is
inherently dangerous. That’s why I emphasize again that the examples shown here are
very simplified. All I want to do is give you a taste of the possibilities.

If you do decide to begin leveraging these kinds of techniques in real-world ap-
plications, you’ll have to consider security and approval workflow and a host of other
important concerns. Instead of allowing arbitrary Ruby code to be executed, you might

A
ctive

Record
9.11 Modifying Active Record Classes at Runtime 291B

feel compelled to limit it to a small subset related to the problem at hand. You might
design a compact API, or even delve into authoring a domain-specific language (DSL),
crafted specifically for expressing the business rules and behaviors that should be loaded
dynamically. Proceeding down the rabbit hole, you might write custom parsers for your
DSL that could execute it in different contexts—some for error detection and others for
reporting. It’s one of those areas where the possibilities are quite limitless.

9.11.2 Ruby and Domain-Specific Languages
My former colleague Jay Fields and I pioneered the mix of Ruby metaprogramming,
Rails, and internal14 domain-specific languages while doing Rails application develop-
ment for clients. I still occasionally speak at conferences and blog about writing DSLs
in Ruby.

Jay has also written and delivered talks about his evolution of Ruby DSL techniques,
which he calls Business Natural Languages (or BNL for short15). When developing
BNLs, you craft a domain-specific language that is not necessarily valid Ruby syntax,
but is close enough to be transformed easily into Ruby and executed at runtime, as shown
in Listing 9.6.

Listing 9.6 Example of business natural language

employee John Doe
compensate 500 dollars for each deal closed in the past 30 days
compensate 100 dollars for each active deal that closed more than
365 days ago
compensate 5 percent of gross profits if gross profits are greater than
1,000,000 dollars
compensate 3 percent of gross profits if gross profits are greater than
2,000,000 dollars
compensate 1 percent of gross profits if gross profits are greater than
3,000,000 dollars

The ability to leverage advanced techniques such as DSLs is yet another powerful
tool in the hands of experienced Rails developers.

14. The qualifier internal is used to differentiate a domain-specific language hosted entirely inside of a general-
purpose language, such as Ruby, from one that is completely custom and requires its own parser implementation.
15. Googling BNL will give you tons of links to the Toronto-based band Barenaked Ladies, so you’re better
off going directly to the source at http://bnl.jayfields.com.

http://bnl.jayfields.com

292B Chapter 9: Advanced Active Record

9.12 Conclusion
With this chapter we conclude our coverage of Active Record. Among other things,
we examined how callbacks and observers let us factor our code in a clean and object-
oriented fashion. We also expanded our modeling options by considering single-table
inheritance, abstract classes and Active Record’s distinctive polymorphic relationships.

At this point in the book, we’ve covered two parts of the MVC pattern: the model
and the controller. It’s now time to delve into the third and final part: the view.

Courtenay says . . .

DSLs suck! Except the ones written by Obie, of course. The only people who can read and write
most DSLs are their original authors. As a developer taking over a project, it’s often quicker to just
reimplement instead of learning the quirks and exactly which words you’re allowed to use in an
existing DSL.In fact, a lot of Ruby metaprogramming sucks, too. It’s common for people gifted
with these new tools to go a bit overboard. I consider metaprogramming, self.included,
class_eval, and friends to be a bit of a code smell on most projects.If you’re making a web
application, future developers and maintainers of the project will appreciate your using simple,
direct, granular, and well-tested methods, rather than monkeypatching into existing classes, or
hiding associations in modules.That said, if you can pull it off . . . your code will become more
powerful than you can possibly imagine.

Index

A
Action Controller

communication with view, 104B–105B

controller specs, 526B–529B

filters, 105B–111B

around, 109B

classes 107B

conditions, 110B

halting chain, 111B

inheritance, 106B

ordering, 108B

skipping, 110B

layouts, specifying, 101B

post-backs, 357B

rendering, 92B–101B

standard RESTful actions, 61B–64B

streaming content, 112B–116B

verify method, 111B–112B

Action Dispatch, 88B–91B

Action Mailer, 471B–481B

attachments, 475B, 476B, 478B

custom email headers, 473B

generating URLs inside messages, 476B

handing inbound attachments, 478B

HTML messages, 474B

mailer layouts, 476B
models, 472B
multipart messages, 475B
preparing outbound messages, 472B
raising delivery errors, 19B
receiving, 477B–479B
sending, 477B
server configuration, 479B
SMTP, 471B
testing with RSpec, 479B–481B

Action View, 293B–308B
conditional output, 296B
customizing validation error

output, 315B
ERb, 293B
filename conventions, 294B
flash messages, 300B–302B
Haml, 293B
instance variables, 297B–302B
layouts, 294B–295B
partials, see Partials.
view specs, 529B–531B
yielding content, 295B

Active Model, 561B–578B
AttributeMethods module, 561B–562B
Callbacks module, 563B

687B

688B Index

Conversion module, 563B–564B

Dirty module, 564B

Errors class, 565B

MassAssignmentSecurity module, 567B

Naming module, 569B

observers, 569B–571B

serialization, 571B–573B

testing compatibility of custom classes with
Lint::Tests, 567B

translation, 573B

Validations module, 574B–578B

Active Resource 459B–471B

authentication, 465B

customizing default URLs, 463B

Active Record

abstract base models, 276B

associations, 121B, 181B–230B

:counter cache option, 190B, 195B

:counter sql option, 187B

:dependent option, 187B, 188B, 195B

:finder sql option, 187B

AssociationProxy class, 228B–229B

belongs to. See belongs to associationsB

checking inclusion of records in
collection, 189B

class hierarchy, 181B

destroying records, 188B

extensions, 226B–227B

foreign-key constraints, 281B

has and belongs to many. See has and
belongs to many associations

has many :through. See has many
:through associations

has many. See has many associations

indexing, 484B

many-to-many relationships, 208B–214B

one-to-many relationships, 183B–190B

one-to-one relationships, 222B–225B

polymorphic, 277B–281B

size of, 190B

unique sets, 190B

unsaved objects, 225B

attributes, 123B–126B

controlling access, 140B

readonly, 141B

reloading, 131B

serialized, 125B

typecasting, 131B

updating, 136B–1140B

Base class, 120B

basic object operations, 127B–133B

calculation methods, 265B–267B

callbacks, 256B–265B

list of, 258B–259B

cloning, 131B

concurrency. See Database locking

configuration, 158B

dynamic finder methods, 132B

dynamic scopes, 133B

find by sql method, 133B–134B

legacy naming schemes, 122B–123B

model specs, 526B–528B

migrations, 161B–179B

column type mappings, 168B–172B

creating, 161B–172B

magic timestamp columns, 172B

schema.rb file, 174B

sequencing, 162B

observers, 10B, 268B–269B

pattern, 119B

query caching, 135B–136B

querying, 146B–152B

exists, 152B

from, 150B

group, 150B

having, 150B

includes, 151B

joins, 151B

Index 689B

limit, 149B

offset, 149B

order, 148B

readonly, 152B

select, 149B

where, 146B–148B

RecordInvalid exception, 187B

RecordNotSaved exception, 187B, 188B

records

deleting, 141B–142B

random ordering, 148B

touching, 139B

scopes, 251B–255B

session store, 429B

STI (Single-Table Inheritance), 269B–276B

translations, 386B–388, 390B

validations, 231B–250B

common options, 242B–243B

conditional validation, 243B–245B

contexts, 245B

custom macros, 247B–248B

errors, 231B–232B, 249B–250B

enforcing uniqueness of join models, 240B

reporting, 310B–312B

short-form, 245B–246B

skipping, 249B

testing with Shoulda, 250B

value objects, 281B–285B

Active Support, 579B–686B

Ajax, 409B–425B

changes in Rails 3, 410B

CSS selectors, 418B

HTML fragments, 421 B

JSON, 419B–421B

JSONP, 423B–424B

Unobtrusive JavaScript (UJS), 411B–412B

Array, extensions, 579B–585B

Asset hosts, 22B, 321B–323B

Asset timestamps, 323B

Asynchronous processing, See Background
processing.

Atom Feeds
autodetection, 316B–317B
atom feed method, 324B–326B

Authentication, 433B
Active Resource, 465B
client-side certificates, 466B
HTTP basic, 465B
HTTP digest, 466B

Authlogic, 434B
configuration, 437B–438B

B
background processing, 549B–559B
Base64 class, 586B
BasicObject class, 586B–587B
belongs to associations, 191B–199B

building and creating related objects, 192B
options, 192B–199B
polymorphic, 197B
reloading, 191B
touch, 198B
with conditions, 193B

benchmarking, 587B
binary data storage, 170B
breadcrumbs, 400B–401B
Builder::XmlMarkup class, 454B
Bundler, 2B–7B

loading gems directly from Git repository,
4B–5B

C
Caching

:counter cache, 190B, 195B
action caching, 484B–485B
CacheHelper module, 326B
controlling web caches and proxies, 497B
disabling in development mode, 18B
ETags, 498B–500B

690B Index

expiration, 488B–491B
fetch, 496B–497B
fragment caching, 486B–488B
page caching, 484B
query caching, 135B–136B
storage, 493B
Store class, 590B–595B
sweeping, 491B, 494B
view caching, 483B–495B

Callbacks. See also Active Record, callbacks
in Active Support, 595B–597B

CAS, 443B
CDATA, 366B
chars proxy, 645B–648B
Class, extensions, 598B
Concern module, 602B
Concurrency. See Database Locking
Configurable module, 603B
const missing method, 644B
Controllers. See Action Controller
convention over configuration, 119B, 122B
Cookies

:secure option, 432B
integrity, 11B–12B
reading and writing, 431B
session store, 429B
signing, 432B

CRUD (Create Read Update Delete), 119B
CSS

linking stylesheets to template, 318B–319B
sanitizing, 365B

Currency
formatting, 359B
Money gem, 284B

D
data migration, 173B–174B
Databases

connecting to multiple, 153B–154B
foreign-key constraints, 281B

locking, 142B–146B
considerations, 145B
optimistic, 143B
pessimistic, 145B

migrations. See ActiveRecord, Migrations.
schemas, 15B, 161B
seeding, 175B–76B
using directly, 154B–158B

Date, extensions, 603B–609B
Date input tags, 328B–331B
DateTime, extensions, 609B
Decent Exposure gem, 105B, 297B–298B
decimal precision, 169B, 171B
Delayed Job gem, 550B–553B
Deprecation, 617B
Devise gem, 439B
Domain-Specific Languages, 291B
Drag and Drop, 415B
Duration class, 617B–618B

E
Email. See Action Mailer
Enumerable, extensions, 619B–620B
ETags, 498B–500B
Excerpting text, 370B

F
Facebook, 443B
favicon.ico file, 317B
Files

extensions by Active Support, 621B–622B
reporting sizes to users, 359B
upload field, 348B, 356B

Firebug, 410B
floats, 171B
Forms

destroy checkbox, 345B
method hidden field, 64B

accepts nested attributes for method,
344B–345B

Index 691B

attributes not typecasted, 343B
automatic view creation, 313B–314B
button to helper method, 391B
custom builder classes, 347B
dynamically adding rows of child records,

338B
helper methods, 333B–358B

input, 348B–358B
updating multiple objects at once, 337B

G
Gemfile, 3B
Geocoding, 260B–261B

H
has and belongs to many associations,

208B–214B
bidirectional, 210B
custom SQL, 211B–213B
extra columns, 213B
making self-referential, 209B

has many :through associations, 214B–221B
and validations, 218B
join models, 215B
options, 219B–221B
usage, 216B

has many associations, 199B–208B
:class name option, 202B
:conditions option, 202B
:include option, 204B–206B
callbacks, 200B–201B

has one associations, 222B–225B
options, 224B–225B
together with has many, 223B

Hash, extensions, 622B–627B
HashWithIndifferentAccess class, 627B
Heckle, 532B
Helper methods,B

helper specs, 531B
writing your own 398B–407B

HTML
escaping, 367B
sanitizing, 364B–365B
tags

a, 392B–394B
audio, 319B
label, 348B
form. See Forms.
option, 353B–355B
password, 349B
select, 350B–351B
script, 359B
submit, 349B
video, 320B

HTTP
basic authentication, 465B
foundation of REST, 55B–56B
stateless, 427B
status codes, 99B–101B
verbs (GET, POST, etc.), 60B–64, 393B

I
IMAP, 443B
Image tags, 320B
Initializers, 11B–14B

backtrace silencers.rb, 11B
cookie verification secret.rb, 11B–12B
inflections.rb, 12B–13B
mime types.rb, 14B
session store.rb, 14B, 430B

Inflections. See Pluralization
Integer, extensions, 632B–633B
Internationalization (I18n), 372B–391B

Active Model, 573BB
Active Record, 386B
default locale, 10B
exception handling, 391B
interpolation, 385B
locale files, 382B–383B
process, 380B–390B

692B Index

setting user locales, 377B–380B
setup, 374B–380B

J
JavaScript, 97B, 317B–318B, 358B–259B,

409B–425B
escaping, 358B
including in template, 317B–318B
link to method enhancements, 392B–393B
using to insert HTML into pages, 338B

JQuery framework, 410B–411B, 418B, 421B,
423B–424B

JSON, 97B, 419B–421B, 633B–634B
JSONP, 423B–424B

K
Kernel, extensions, 634B–635B

L
LDAP, 443B
link to helper methods, 392B–394B
Locale files, 382B–383B
Logging, 23B–28B

backtrace silencing, 11B, 585B
BufferedLogger class, 588B–590B
colorization, 27B
level override, 15B
levels, 23B–24B
log file analysis, 26B–27B
Logger, extensions, 635B–637B
Syslog, 28B

M
Memcache, session store, 428B
MessageEncryptor class, 636B–637B
MessageVerifier class, 637B–638B
Middleware (Rack), 86B–88B
MIME types, 13B–14B
Module, extensions, 638B
MongoDB, 442B
MVC (Model-View-Controller), 85B

N
Named scopes. See Active Record, scopes.
Nonces, 430B
Notifications, 651B–652B
Numbers

delimiters, 360B
extensions to Numeric class, 650B–653B
conversion, 359B–361B

O
Object, extensions, 653B
Observers, 10B
OpenID, 443B
OpenSSL Digests, 431B

P
params hash, 336B–338B
Partials, 95B, 302B–307B

passing variables to, 305B
rendering collections, 306B
reuse, 303B
shared, 304B
wrapping and generalizing, 401B–407B

Plugins, 535B–548B
as RubyGems, 536B
extending Rails classes, 540B
installation and removal, 542B–543B
load order, 9B–10B
plugin script, 536B
rake tasks, 543B–544B
testing, 545B–546B
writing your own, 537B–548B

Pluralization
i18n, 385B
Inflector class, 12B–13B
Inflections class, 628B–632B
pluralize helper method, 370B

Prototype framework, 361B, 411B
helper methods, 361B
Prototype Legacy Helper plugin, 413B

Index 693B

R
Rack, 86B–88B, 90B–91B

Rack::Sendfile middleware, 114B
RACK ENV variable, 1B
routes as Rack endpoints, 41B–42B

rails.js file, 411B
Rails

Class loader and reloading, 16B–18B,
613B–617B

console, 12B
reloading, 92B

Engines, 549B
lib directory, 17B
root directory, 9B
runner, 559B
scaffolding, 311B–314B
settings, 1B–29B

application.rb file, 8B–11B
autoload paths, 9B
boot.rb file, 8B
cherry-picking frameworks used, 8B
custom environments, 20B
development mode, 15B–19B
environment.rb file, 8B
generator defaults, 11B
initializers. See Initializers
production mode, 20B–23B
test mode, 19B–20B

RAILS ENV variable, 1B
Railties, 546B–547B, 658B
Rake tasks (selected),

db:migrate, 163B, 176B
log:clear 24B
routes, 53B
spec, 521B

Random
ordering of records, 148B
SecureRandom generator class, 661B–662B

Range, extensions, 658B–659B

RecordNotFound exception, 128B

Regexp, extensions, 660B

Rendering views, 92B–101B

another actions’s template, 93B

explicit, 93B, 94B

implicit, 92B–93B

inline templates, 96B

JSON, 97B

nothing, 97B

options, 98B

partials, see Partials.

text, 96B

XML, 97B

Request handling

in routing, 89B

redirecting, 101B–104B, 418B

verification, 111B–112B

Rescuable module, 660B

Resque gem, 553B–557B

REST and RESTful design, 55B–83B

action set, 78B–82B

collection routes, 72B

controller-only resources, 74B

forms, 335B

member routes, 70B–71B

HTTP verbs, 60B–64B

nested resources, 65B–69B

routes, 31, 58B–61B

resources and representations, 40B–41B,
56B–57B, 76B–77B

singular resource routes, 64B–65B

standard controller actions, 61B–64B

REXML, 456B, 684B

Roy T. Fielding. See also REST and RESTful
design, 55B–58B

Routing, 31B–54B

constraining by request method, 38B–39B

formats, 40B

globbing, 45B–46B

694B Index

listing, 53B

match method, 34B–37B

named, 46B–50B

RESTful routes, 31B, 58B–61B

:format parameter, 76B

collection, 72B

member, 70B–71B

nested, 65B–69B

singular, 64B–65B

redirecting, 39B–40B

root routes, 44B–45B

routes.rb file, 33B–34B

scopes, 50B–53B

RJS, 412B–419B

templates, 413B

RSS autodetection, 316B–317B

RPX authentication, 443B

RSpactor, 531B

RSpec, 501B–533B

assertions, 510B

custom expectation matchers, 514B

generator settings, 11B

grouping related examples, 504B

let methods, 504B–506B

mocking and stubbing, 517B–520B

pending, 509B–510B

predicate matchers, 513B–514B

running specs, 520B

runtime options, 522B

shared behaviors, 517B

spec helper.rb file, 515B, 522B–524B

subjects, 511B–513B

testing email, 449B–481B

Ruby

$LOAD PATH, 9B, 16B

hashes, 450B

macro-style methods, 121B

Marshal API, 425B

modules for reusing common behavior,
285B–289B

RubyGems
as plugins, 536B
Bundler, 2B–7B
Git repository, loading directly from, 4B
installing, 5B–7B
packaging, 7B
using pre-release gems, 4B

S
Scopes, see Active Record, scopes
Security

CSRF attacks, 336B
replay attacks, 429B
SQL injection, 134B

Session Management, 425B–432B
cleaning old sessions, 430B
storage

RESTful considerations, 75B
turning off sessions, 427B

Settings, 1B–29B
Specjour, 532B
Spork, 532B
SSL

OpenSSL digests, 429B
serving protected assets, 323B
X.509 certificates, 465B–466B

Static content, 116B
Streaming, 112B–116B
String,

extensions, 662B–671B
usage versus symbols, 130B

StringInquirer class, 671B
SOAP, 457B
Symbol,

extensions, 671B
usage versus strings, 130B

Index 695B

T
Templates. See View templates.
Thread safety, 22B–23B
Time

extensions, 673B–680B
input tags, 328B–331B
reporting distances in time, 332B–333B
storing in database, 170B

Time Zones
DateTime conversions, 612B
default, 10B
option tags helper, 354B–355B
TimeZone class, 681B
TimeWithZone class, 680B

Truncating text, 372B

U
Unicode, 364B, 385B, 646B–647B
Unobtrusive JavaScript (UJS), 411B–412B
URL

generation, 395B–398B
patterns in routing, 35B–36B
segment keys, 36B–38B

V
Validation. See Active Record, validations
Value objects, 281B–285B
View templates. See also Action View,

293B–308B
capturing block content, 326B–327B
concat method, 368B
cycling content, 369B
debugging output, 333B

encapsulating logic in helper methods,
399B

highlighting content, 370B
localization, 373B
raw output, 361B
record identification, 362B–364B
transforming text into HTML, 371B
translation. See Internationalization.
word wrap, 372B

Visual effects, 419B

W
Watchr, 532B
Web 2.0, 332B, 423B
Web architecture, 55B–56B
Whiny nils, 18B

X
XML, 445B–457B

parsing, 456B
to xml method, 445B–454B

Active Record associations, 448B
customizing output, 446B–448B
extra elements, 452B
overriding, 453B–455B
Ruby hashes, 450B

typecasting, 457B
XML Builder, 454B–456B
XMLHttpRequestObject, 409B
XMLMini module, 684B–686B

Y
YAML, 125B–126B, 445B

	Table of Contents
	RUBY ON RAILS 3 TUTORIAL
	1 From Zero to Deploy
	1.1 Introduction
	1.1.1 Comments for Various Readers
	1.1.2 “Scaling” Rails
	1.1.3 Conventions in This Book

	1.2 Up and Running
	1.2.1 Development Environments
	1.2.2 Ruby, RubyGems, Rails, and Git
	1.2.3 The First Application
	1.2.4 Bundler
	1.2.5 rails server
	1.2.6 Model-View-Controller (MVC)

	1.3 Version Control with Git
	1.3.1 Installation and Setup
	1.3.2 Adding and Committing
	1.3.3 What Good Does Git Do You?
	1.3.4 GitHub
	1.3.5 Branch, Edit, Commit, Merge

	1.4 Deploying
	1.4.1 Heroku Setup
	1.4.2 Heroku Deployment, Step One
	1.4.3 Heroku Deployment, Step Two
	1.4.4 Heroku Commands

	1.5 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	THE RAILS 3 WAY
	9 Advanced Active Record
	9.1 Scopes
	9.1.1 Scope Parameters
	9.1.2 Chaining Scopes
	9.1.3 Scopes and has many
	9.1.4 Scopes and Joins
	9.1.5 Scope Combinations
	9.1.6 Default Scopes
	9.1.7 Using Scopes for CRUD

	9.2 Callbacks
	9.2.1 Callback Registration
	9.2.2 One-Liners
	9.2.3 Protected or Private
	9.2.4 Matched before/after Callbacks
	9.2.5 Halting Execution
	9.2.6 Callback Usages
	9.2.7 Special Callbacks: after_initialize and after_find
	9.2.8 Callback Classes

	9.3 Calculation Methods
	9.3.1 average(column_name, *options)
	9.3.2 count(column_name, *options)
	9.3.3 maximum(column_name, *options)
	9.3.4 minimum(column_name, *options)
	9.3.5 sum(column_name, *options)

	9.4 Observers
	9.4.1 Naming Conventions
	9.4.2 Registration of Observers
	9.4.3 Timing

	9.5 Single-Table Inheritance (STI)
	9.5.1 Mapping Inheritance to the Database
	9.5.2 STI Considerations
	9.5.3 STI and Associations

	9.6 Abstract Base Model Classes
	9.7 Polymorphic has many Relationships
	9.7.1 In the Case of Models with Comments

	9.8 Foreign-key Constraints
	9.9 Using Value Objects
	9.9.1 Immutability
	9.9.2 Custom Constructors and Converters
	9.9.3 Finding Records by a Value Object

	9.10 Modules for Reusing Common Behavior
	9.10.1 A Review of Class Scope and Contexts
	9.10.2 The included Callback

	9.11 Modifying Active Record Classes at Runtime
	9.11.1 Considerations
	9.11.2 Ruby and Domain-Specific Languages

	9.12 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

