HOSPITAL OPERATIONS
HOSPITAL OPERATIONS

PRINCIPLES OF HIGH EFFICIENCY HEALTH CARE

Wallace J. Hopp
William S. Lovejoy
To Melanie, Elliott, and Clara
—Wallace Hopp

To Lois and Julia
—William Lovejoy
This page intentionally left blank
CONTENTS

1

INTRODUCTION TO HOSPITAL OPERATIONS
1.1 Stakeholders’ Perspectives
1.2 A Metaphor for Hospital Operations
1.3 Health Care in Crisis
1.4 A Focus on Practice
1.5 The Time Is Now; The Tools Are Known
1.6 Principles-Driven Management: Marrying Theory and Practice
1.7 The Structure of This Book
1.8 References

2

EMERGENCY DEPARTMENT
2.1 Stakeholders’ Perspectives
2.2 Introduction to the ED
2.3 Managing the ED
2.4 Key Management Issues in the ED
2.5 Conclusions
2.6 Stakeholders’ Perspectives
2.7 References
6 HOSPITAL OF THE FUTURE 463
 6.1 Stakeholders’ Perspectives 463
 6.2 Product and Process Integration 466
 6.3 Looking to the Future 476
 6.4 Management Challenges 481
 6.5 Final Message 495
 6.6 References 496

Appendix A
MANAGEMENT PRINCIPLES 497

Appendix B
HISTORICAL JUSTIFICATION FOR AND DEVELOPMENT OF
STANDARD BED/POPULATION RATIOS 589

Index 595
This page intentionally left blank
ACKNOWLEDGMENTS

We are forever grateful to our incredible co-authors, Dr. Jeffrey Desmond, MD; Christopher Friese, BSN, PhD; Dr. Stephen Kronick, MD, MS; Dr. Michael Mulholland, MD, PhD; and Dr. Jeffrey Myers, MD whose ability to turn around manuscripts in the midst of saving lives and running a major hospital left us in constant awe. We are also indebted to many other colleagues at the University of Michigan whose wide-ranging expertise in health care and generosity in sharing it has shaped our thinking in more ways than we can describe. In particular, we thank Dr. Carolyn Blane, MD; Mark Daskin, PhD; Deborah Harkins RN, MBA; Dr. Jack Iwashyna, MD, PhD; Dr. Christopher Kim, MD, MBA; Dr. Timothy Rutter, MD; Soroush Saghasian, PhD; Joan Scheske, MBA; Dr. Paul Taheri, MD, MBA; Mark Van Oyen, PhD; and Dr. Jeffrey Warren, MD, PhD for their wise counsel and stimulating conversation.

No one learns in isolation, and we have benefited greatly from years of guiding student project work in hospitals and clinics. There is no faster way to be exposed to a wealth of institutional detail than mentoring teams of bright, energetic students. These include the following University of Michigan doctoral students who used the health care setting to ground their work, and in the process helped us to higher levels of understanding: Thunyarat Amornpetchkul, Ana Ruth Beer, Hakjin Chung, Yao Cui, Ying Li, Liang Ding, Jihyun Paik, Anyan Qi, Santhosh Suresh and Yan Yin. The undergraduate, Master’s level, and executive students who participated in several iterations of project coursework in hospitals and clinics are too numerous to list. However, some teams generated insights that we incorporated directly into examples and cases in this book and therefore warrant special mention. These include Matt Blahunka, Penn Chou, Lauren Elkus, Meredith Eng, Kelvin Fong, Joungwook Lee, Neha Mehta, Patricia Mencia, Jaime Ontiveros, Chris O’Rourke, Sukutu Patel, Michael Paulsen, and Jeffrey Robbins. This does not come close to exhausting the list of students to which we are indebted for embedding themselves in health care systems and feeding back to us, as their instructors, a wealth of insights. We also owe a deep debt of gratitude to the many hospital personnel (at the University of Michigan, Henry Ford, Northwestern Memorial, Trinity, and Spectrum Health Systems) who took time from their overly busy days to welcome our students and/or ourselves. These, also, are too numerous to list individually, but their wisdom and insights permeate this book. These rich encounters would not have been possible without the support and encouragement of key principals and administrators in these various health systems, including Melanie Barnett, MBA; Dr. Christopher Beach, MD; Rick Breon, MHA; Robert Casalou, MBA, MHA; Anthony Denton, JD, MHA; Mary Duck; Dr. David Dull, MD; Dr. Bradley Hubbard, MD; Crystal January Craft, MLIR; Martin Lutz, MPH; Dan Oglesby, MPA; Alice Peoples; Dr. Jonathan Schwartz, MD, MBA; and Douglas Strong, MBA.
There are many others that contributed to our enculturation into the world of health care. We know that some names will appear to us in a flash shortly after publication. To those we extend apologies and gratitude. Your voices and insights are not lost, they live on every page.

Wallace Hopp
William Lovejoy
ABOUT THE AUTHORS

Wallace J. Hopp is the Herrick Professor of Manufacturing and Associate Dean for Faculty and Research in the Ross School of Business, and a Professor of Industrial and Operations Engineering, at the University of Michigan. His research focuses on the design, control, and management of operations systems, with emphasis on manufacturing and supply chain systems, innovation processes, and health care systems. His prior publications include the books Factory Physics and Supply Chain Science, in addition to numerous research papers and book chapters. He has served as editor-in-chief of Management Science, president of the Production and Operations Management Society, and consultant to a wide range of companies. Hopp’s research and teaching have been recognized with a number of awards, including the IIE Joint Publishers Book-of-the-Year Award, the IIE Technical Innovation Award, the SME Education Award, and Fellow Awards from IIE, INFORMS, MSOM, POMS, and SME.

William S. Lovejoy is the Raymond T. Perring Family Professor of Business Administration and Professor in the Operations and Technology department of the Ross School of Business, University of Michigan, with a joint appointment in the School of Art and Design. Professor Lovejoy held positions in both the private and the public sectors before joining academia. He works with companies on new product development, the management of innovation, and process assessment and improvement; he works with hospitals and clinics on health care operations. His courses have enjoyed coverage by CNN, The Wall Street Journal, The New York Times, and Businessweek. His past editorial activities include department editor for the Operations and Supply Chains department of Management Science, and senior editor for Manufacturing and Services Operations Management. He is a fellow in the Production and Operations Management Society.

Jeffrey S. Desmond is an Associate Chief of Staff at the University of Michigan Health System and Associate Chair for Clinical Operations in the Department of Emergency Medicine. He is a Clinical Associate Professor at the University of Michigan Medical School. He received his MD from the University of Texas Health Science Center at Houston and did his residency in Emergency Medicine at the University of Massachusetts. He is the co-founder of the Graduate Medical Education Health Care Administration Track and has a strong interest in the development of physician leaders. His research focuses on the operational aspects of emergency care, and in addition to publishing in peer-reviewed journals he has guided or mentored numerous applied operations design and improvement projects.

Christopher R. Friese received his BSN and PhD from the University of Pennsylvania and is an Assistant Professor at the University of Michigan School of Nursing. He remains clinically active as an inpatient staff nurse at the University of Michigan Health System and holds advanced oncology certification. His research focuses on patient, provider, and system-related factors that influence care outcomes. His findings have
been cited by the Institute of Medicine’s Future of Nursing report, the American Association of Colleges of Nursing, and two state Boards of Nursing to reform nursing educational policy. His work has helped guide oncology nurses in daily patient care, and through his leadership positions with the American Society of Clinical Oncology and the National Quality Forum he broadened quality measurement initiatives to include nursing-sensitive outcomes. In October 2012, he will be inducted as a Fellow in the American Academy of Nursing in recognition of his nursing leadership.

Steven L. Kronick is the Service Chief of Adult Emergency Medicine and an Associate Professor in the Department of Emergency Medicine at the University of Michigan. He received his MD from the University of Texas and his MS in Clinical Research Design and Statistical Analysis from the University of Michigan School of Public Health. He completed residencies in Internal Medicine at the University of Michigan and Emergency Medicine at Henry Ford Hospital. He is the director of Advanced Cardiac Life Support programs at UMHS and chairs the institutional CPR Committee. He is an item writer for the American Board of Emergency Medicine and has served on the American Heart Association’s ACLS Committee and on the International Liaison Committee on Resuscitation’s Task Force on the Consensus on Science. His research interests focus on emergency medicine operations and cardiac arrest in the hospital setting.

Michael W. Mulholland is the Frederick A. Coller Distinguished Professor and Chair, Department of Surgery at the University of Michigan Medical School. He also serves as Surgeon-in-Chief of University Hospital. His clinical interests are in gastrointestinal surgery with expertise in the treatment of pancreatic and biliary cancer, neoplastic diseases of the gastrointestinal tract and biliary reconstruction. His research interests include neurocrine control of pancreatic exocrine secretion and enteric neurobiology. He is the principal director of a research laboratory that has been continuously funded by the NIH since 1986. In 2004, he received the MERIT Award from the NIH for his work. In 2004 he was elected a member of the Institutes of Medicine of the National Academies. Dr. Mulholland is the senior editor of the textbook *Surgery: Scientific Principles and Practice* which has become the leading text in the field.

Jeffrey L. Myers is the A. James French Professor of Diagnostic Pathology, Director of the Divisions of Anatomic Pathology and MLabs, and Associate Director of the Medical Innovation Center at the University of Michigan. He received his MD from Washington University where he completed his residency in Anatomic Pathology at Barnes and Affiliated Hospitals followed by fellowship training at the University of Alabama at Birmingham. His research interests include pulmonary and general surgical pathology, patient safety, and practice innovation. He has published widely in the peer reviewed literature, co-authored multiple book chapters, and is co-editor of a textbook. Prior to Michigan he was a member of the Mayo Clinic staff where he was selected as a Distinguished Clinician in 2004. In 2010 he received the Outstanding Clinician Award and is a member of the League of Clinical Excellence at the University of Michigan Medical School.
1.1 Stakeholders’ Perspectives

Thursday March 25, 2010, 8:46 p.m.

“#@%&*)^%#@!” Dr. Nate Greene swore as he clanged an easy layup clumsily off the rim.

Greene was an emergency physician from University Hospital who joined several of his medical colleagues to play basketball on Thursday evenings at a local elementary school gym. Because swearing was almost as rare as defense at these games, one of Greene’s teammates, orthopedic surgeon Dr. Ben Arnold, took notice. When the game ended and the players began leaving the gym, Arnold hung back with Greene.

“You okay?” he asked. “You seem a bit off tonight.”

“Aw,” Greene groaned. “My layups were just bricks tonight.”

“I don’t mean your shooting. That’s always terrible.” Arnold smiled. “But you seem kind of distracted tonight.”

Greene dropped the basketball banter and grew serious. “A woman I treated in the Emergency Department died in the hospital this morning. Bowel obstruction.”

“I knew her a little.” Greene continued. “She was taking care of both her elderly parents and a handicapped son. The family is completely devastated.”

“That is sad,” agreed Arnold. “But when it’s your time…”

“But that’s just it.” Greene’s voice rose. “I’m not sure it was her time to go.”

“No, not exactly.” Greene rubbed the basketball in his hands abstractedly. “I’ve been thinking about the case all day and I can’t put my finger on an outright error anywhere in the process. But we were slow at every step. The Emergency Department was crammed on Monday as usual, so she waited a long time. It took a while to get the CT scan and even longer to get the report. By the time we realized it wasn’t a virus, we’d already lost a day. Then the operating room was full, so it was another day before we got her on the schedule and a half day of delays after that. By the time they opened her up, there was no hope.” Greene dropped the ball and his voice. “I can’t help thinking that if we had been faster, she’d still be here.”

“Then it was the system that failed!” Arnold picked up the ball and began thumping it on the floor. “Every one of the people on the case did his or her job. So blame the hospital, not the people in it.”

“What are you talking about?” Greene grabbed the ball back and heaved up a shot that missed the rim by more than a foot. “The hospital is the people in it. We control what goes on there. So if it failed; we failed.”

“Are you kidding?” Arnold jeered, and not just about the wild shot. “Nobody controls the hospital. It’s too big, too complicated, and too set in its ways. That’s why I’m leaving.”

“What!” Greene had taken a step to retrieve the ball but stopped and turned to face Arnold. “Where are you going?”

“I’ve signed on with Andry Ortho,” Arnold replied. Nicolas Andry Orthopedic Surgery Center was a small physician-owned specialty hospital founded several years ago by a group of physicians from University Hospital. Greene was aware that the facility had undergone an expansion at the beginning of the year, right before the health care bill put a ban on further growth of physician-owned hospitals. But he didn’t know that Arnold had been considering joining them.

“Are you an owner?” Greene asked incredulously.

“Well, I have a piece,” Arnold admitted. “But it’s not the money that sold me. It’s the fact that the docs run the place. The hospital is small, simple, and new. We run on schedule. The IT system actually works. We can practice medicine instead of fighting the bureaucracy. The kind of system failure you had today won’t happen to us.”

“That does sound pretty good.” Greene recovered the basketball and flipped it to Arnold.

“You should join us.” Arnold launched a perfect jump shot that swished neatly through the center of the net. “We’ve been staffing the emergency facility with specialists, but demand has grown to the point where we could use a real Emergency Department doc. Specialty hospitals are the way of the future.”

“Hmmmm…” Greene mused softly. “I’ll think about it.”
1.2 A Metaphor for Hospital Operations

Recently, an estimated 20,000 people from the community turned out for the grand opening of an architecturally and aesthetically stunning new children's hospital. As they streamed through the sparkling entrance, the enchanted visitors were struck by the success of the design in captivating the young. Wide-eyed children stared at dynamic sculptures and mixtures of professional and elementary school art. Upbeat colors and vaulting spaces gave reassurance that this was a place to get well. Operating rooms (ORs) were large and flexible, inpatient rooms state of the art. Panoramic views of the surrounding trees and rivers inspired parents and children alike. The site even contained an onsite hotel to enable parents to stay close to their sick child, and the Neonatal Intensive Care Unit (NICU) had convertible furniture to provide sleeping accommodations for parents who could not emotionally tolerate even a few floors of separation.

Unfortunately, however, many visitors never saw the full wonder of the new hospital. Stairwells had been closed off during the open house for safety reasons, and only the central elevators were operational. Insufficient elevator capacity led to long lines on every floor. Worse, although eager guides were positioned throughout the hospital to answer questions, neither they nor the signage steered people along the planned route from top to bottom. The resulting random traffic patterns served to further aggravate the congestion. Frustrated with their inability to move from floor to floor, many people gave up and went home.

This (true) story is an apt metaphor for modern hospital operations. Infrastructure and equipment are exquisite, but flows are ill-designed and confused. Visible capital assets are awe inspiring, but invisible processes are frustratingly inefficient. Technology is state-of-the-art, but management is not. People are dedicated and knowledgeable in their fields, but they are largely unaware of operations. The net result is a system that performs far below the sum of its parts.

But it need not be like this. Just as there is a science of medicine that guides the treatment of patients, there is a science of operations that can and should guide the design and management of hospitals. For example, the physics of flows implies that it is impossible to respond quickly to highly variable demand without surplus capacity. In an acute care hospital, patient arrivals are highly variable, both over time and in levels of severity. Capacity, in the form of nurses, physicians, and high-tech equipment, is costly and therefore not installed in abundance. So the delays that are prevalent in hospitals are completely predictable.

Fortunately, the physics of flows also tells us that when resources are busy, with long queues of patients and other tasks waiting for attention, even small capacity enhancements or demand reductions will yield disproportionately large returns. That is, a little bit goes a long way. Modest increases in staffing, improvements in resources, and efforts
to eliminate waste, if applied in the right places, can achieve major improvements in responsiveness. These insights can be used to speed the flow of visitors through a new hospital or the flow of patients through an existing one.

In this book, we define, explain, and apply management principles related to physical flows, decision making, quality, and human behavior. These principles encapsulate essential insights about management that can be used throughout the hospitals of today to significantly improve responsiveness, throughput, quality, patient satisfaction, and financial viability. But, because principles are by their nature timeless, they also provide the conceptual building blocks for ultra-high performance hospitals of the future.

1.3 Health Care in Crisis

Few things affect our quality of life more than health, so few issues are more important than health care. But, while we often speak of it as such, health care is not a single, monolithic topic. It ranges from delivery of basic public health in the poorest regions of the globe to stimulation of scientific breakthroughs in the advanced research laboratories of the world’s wealthiest nations. As such, health care is too vast a subject for any single book. In this one, we focus specifically on a key part of the health care system: hospitals in developed countries. In addition to constituting a significant percentage of total health care expenditures, these hospitals are central to the delivery process, which makes them candidates as catalysts for improvements in the quality and efficiency of the overall health care system.

Compared to other developed countries, the United States spends significantly more on health care. Exhibit 1.1 shows that health care consumes 17.6% of the gross domestic product (GDP), which is 47% more than the next highest country (The Netherlands, at 12%) in the OECD (Organization for Economic Cooperation and Development, consisting of 34 largely developed countries). Exhibit 1.2 shows that the per capita expenditure in the United States is $8,233, which is more than double the OECD average of $3,268 and significantly higher than the next most profligate country (Norway at $5,388).
Exhibit 1.1 Health expenditures as a percent of GDP, 2010 or nearest year.

Exhibit 1.2 Health expenditure per capita, US$ PPP\(^1\), 2010 or nearest year.

As high as these costs are now, projections are for U.S. health care costs to escalate significantly in the future. The U.S. Department of Health and Human Services predicts that health care will consume 19.8% of GDP by 2020 (CMS 2011). The high cost of health care, and particularly the gap with the rest of the world, threatens the competitiveness of the U.S. economy.\(^2\)
Financial costs are not the only cost dimension along which the United States fares poorly; America’s current health care system imposes costs beyond expenditures. Almost 50 million Americans (16% of the population) are uninsured, and even more are underinsured. The United States, Mexico, and Turkey are the only OECD countries without some form of universal health coverage (OECD 2008). What is the “cost” of the anxiety of nonwealthy Americans wondering if they will be bankrupted by a single major medical event? What is the social cost of the labor frictions injected into the economy when people hold onto jobs they don’t like and are ill-suited for, simply because it is the only way they can get affordable medical coverage? When vibrancy in the economy is commonly tied to entrepreneurial start-ups and small businesses, what is the social cost of tying affordable health insurance to employment by large companies? These issues place an even bigger burden on the U.S. economy than that indicated by direct costs alone.

While the United States spends much more on health care than any other country in the world, we do not get a good return on our investment. Exhibit 1.3 shows life expectancy in the 34 OECD countries (2010 data). The United States is below the OECD average and lower than all the OECD countries except the Czech Republic, Poland, Estonia, Mexico, the Slovak Republic, Hungary and Turkey. It is also well below the leaders (Japan, Switzerland, Spain, and Italy). Exhibit 1.4 shows infant mortality in the OECD countries, and again the United States does not fare well, with rates above the average and higher than all but Chile, Turkey, and Mexico. Also, although insured Americans experience shorter wait times for elective surgeries than citizens of many other countries, the percentage of people able to see a doctor within 48 hours is lower in the United States than in Australia, France, Germany, New Zealand, the Netherlands, Switzerland, and the UK according to a Commonwealth Fund (2010) survey.

Exhibit 1.3 Total life expectancy in OECD countries, 2010 or nearest year.
The U.S. health care system does some things very well, as evidenced by the fact that some people travel great distances to come here for treatment. However, such “medical tourism” travel is typically for advanced procedures at the highest end of the health care spectrum, in which the United States excels. It is not exotic procedures for the rich that drive our embarrassing macro-statistics; it is in the inefficient (or absent) delivery of basic care (both prevention and cure) for the general population. The benefits of superior health care are not distributed evenly in the U.S. population, where death rates tend to correlate with income, race, and education (see Anderson et al. 2007, Barr 2008). To address this imbalance, we do not need more exotic procedures. We need a rationalization of basic care delivery. In this book, we focus on that rationalization within hospitals.

1.4 A Focus on Practice

Hospitals are part of a larger health care system in the United States, which has been shaped by a complex and often contradictory public policy structure. Fundamentally, health care policy debates revolve around this basic question: What is the appropriate political and economic structure for the promotion of health and health care in the country? Whether this is a centralized system with single-payer prices set by committee, a decentralized system with prices determined by a market, or anything in between, the debate tends to abstract away from actual hands-on medical practice. This abstraction is a dangerous oversimplification. All the value in any conceivable system is only realized in the actual delivery, when hands touch patients. Everything else is prelude. The closer
we get to this all-important transaction, the more immediate the returns on our investment will be.

Pundits gloss over the health care delivery process because they assume that if incentives (prices, rewards, costs) are set correctly, the rest will follow as people rationally respond by consuming more of this, less of that, and so on, reaching the desired allocation of resources and consumption. This faith is unfounded. “Correct” incentives are necessary but insufficient for efficient operations. Different firms routinely respond to the same market environment with very different internal organizations, policies, and practices. For example, the Toyota Motor Corporation revolutionized the way production is managed globally, with no significant differences in the prices or incentives it was facing relative to competing automobile companies. Granted, Toyota served a Japanese market (smaller in volume, but still demanding high variety) and was located in more rural settings where cynical models of management and labor did not hold sway. These differences may have facilitated, but cannot fully explain, the rise of the Toyota Production System, now known as “lean” or “just-in-time” production. Rather, a combination of individual genius (and near fanaticism) by one individual, Taiichi Ohno, a supportive management structure, and two decades of trial and error led to innovations that greatly enhanced the efficiency and competitiveness of Toyota. The company simply found a better way to do things. This sort of process innovation makes it possible to do more with existing resources or to achieve the same level of output using fewer resources.

In general, external incentives influence, but do not determine, outcomes. What takes place within the hospital, and how well internal processes are managed, governs how efficiently and well patients are served. Simply put, there are many ways to manage internal processes, and some ways are better than others. It is this observation that motivates this book. We seek to provide a framework for identifying the causes of inefficiencies and the path to improvement for hospital operations.

The potential social gain is significant. Hospital expenditures (including inpatient and outpatient hospitals, Emergency Departments [EDs], and ambulatory surgical centers) account for 36.3% of total health care expenditures in the United States (Exhibit 1.5). Improving these operations can have a major impact on the total social cost and benefits of our health care system. It is commonly assumed in consulting circles that if a system grows up in an ad hoc fashion, bringing some rationalization to its design can easily reduce costs by 10% or more. Applying this logic to the $2.1 trillion in health care expenditures in 2009 (of which 36.3% are spent on hospitals), we estimate that rationalizing hospital operations has the potential to achieve annual savings of at least 10% of 36.3% of 2.1 trillion, or $76 billion. We expect that the actual upside potential is significantly higher, because in the authors’ experience internal processes in a typical hospital are less mature than those in most other industries.
1.5 The Time Is Now; The Tools Are Known

People have voiced the need for health care reform in the United States for years, but no significant changes have been able to get past the political and organizational hurdles to implementation. However, there is evidence that we are finally in a critical transition phase where inaction is not an option. The economic surpluses that historically masked our inefficiencies are disappearing, and the various binders that hold the entire system together are straining to the point of failure.

1.5.1 The Unraveling

The surpluses masking our inefficiency are no longer affordable.

One advantage of surplus resources that accrue in a rich economy is that they can mask inefficiencies. Excess resources can, in general, cover for inefficient management and organization. For example, a firm with a substantial excess capacity can continue to serve customers well even if it uses that capacity inefficiently. In a rich economy, patients can happily enjoy continuity of care even with inefficient health care processes. However, when surpluses dwindle, those excesses are no longer affordable and must be removed, exposing the inefficiencies in the underlying process.
The United States has emerged from a post-war era in which it was the dominant economy on earth, and it has entered an era in which competition is fierce from multiple continents. The natural surpluses that characterized the United States over the past 50 years are no longer automatic. The retirement of post-war baby boomers will soon place an increasing load on the nation’s health care system, which already consumes too much of the country’s GDP. In short, we can no longer afford to ignore our inefficiencies. Our economic future, and indeed our very lives, are at stake.

Our reliance on values is at risk.

Health care policy debates in the United States tend to oscillate around the proper role of personal responsibility for one’s own fate and the obligation of society to care for those who cannot care for themselves. Sometimes this debate devolves into a “markets” versus “socialism” caricature, which remains unresolved because neither works in pure form. Markets will visit the highest costs on the sickest people, who will therefore die if they are poor. This is socially unacceptable. Yet, universal coverage without individual incentives leads to overuse of expensive resources and produces high levels of avoidable waste. This is unaffordable.

These natural and unresolved tensions have resulted in a complex potpourri of reimbursement structures for hospitals and physicians. To serve patients in this bewildering environment, the industry has relied more than most people realize on its people being guided by principles that transcend the sometimes perverse incentives they face. This is, after all, a profession that deals with life and death, and therefore ethics. Before the government assumed responsibility for health care, charities provided care, or doctors charged based on ability to pay. That is, society expressed its values in organic rather than formally legal ways. This continues today through free clinics, volunteerism, and hospitals incurring (on average in the United States) 6% of their total expenditures providing care for people who cannot pay for it.

Further, the professional code of doctors is one that puts the patient first, and patients put some faith in this code when seeking medical care. Indeed, overt pursuit of profits in the medical arena arouses suspicion and antagonism on the part of patients when choosing physicians, or referring physicians when choosing hospitals. As Arrow (1963) observed, “The social obligation for best practice is part of the commodity the physician sells, even if it is a part that is not subject to thorough inspection by the buyer.”

Not surprisingly, trust plays a more critical role in health care interactions than in other business transactions. We expect our doctors to act in our best interests, more than we expect the sellers of other services to do so. Insurance companies can ask patients to get physical exams to reduce the information asymmetry between themselves and patients, trusting an honest report from the physician. Given the convoluted and often opaque reimbursement jumble that hospitals face from multiple insurers and Medicare/Medicaid, hospital administrators could slavishly maximize profits by...
exploiting accounting confusions at the expense of patients and society at large. Yet we trust them not to. This system does not work perfectly, but trust and professional conduct that transcend the profit motive are central features of current health care markets. To date, values-based behaviors in medicine have been sufficient to keep the wheels from falling off this wagon.

This values-based glue is now coming under increased stress as economic surpluses disappear. Uninsured patients who cannot pay for their care are still cared for in hospital emergency rooms, but the cost of their care has to come out of a buffer of resources somewhere in the hospital-insurance-customer system. As buffers become unaffordable, the mere presence (or not) of an emergency room can become a matter of fiscal survival for hospitals. A 2011 report by the American Medical Association (Hsia et al. 2011) noted that urban and suburban areas have lost more than a quarter of their ED capacity over the past 20 years. EDs are more likely to close if they provide a lot of uncompensated care, are in for-profit hospitals, or are in competitive markets where margins are thin.

“Safety net” hospitals, which provide care for people who cannot access it anywhere else, are increasingly at risk. The travails of one such hospital, Grady Memorial Hospital in Atlanta, are not unique. Grady almost closed its doors in 2007, and since that time it has continually struggled to balance its social mission with financial realities. Grady remains dependent on outside funding (for example, federal funding for indigent care) that is increasingly at risk (Williams and Schneider 2011).

It is a unique feature of the health care industry that hospitals often do not want a competitor to close. If a hospital providing a significant amount of uncompensated care closes, nonpaying patients will either get no care (and die) or show up in the EDs of other hospitals. Hospitals like Grady have been kept afloat by financial transfusions from the outside because everybody realizes the consequences if they close. But this is more reactive crisis management than proactive rational policy. The reliance in the United States on values and charity will come under increasing stress as financial realities become more pressing.

Further, as doctors’ salaries stagnate, the temptation to shade decisions, consciously or not, toward profit maximization becomes stronger. Nallamothu et al. (2007) studied the rates of various coronary procedures in specialty hospitals relative to general hospitals. Specialty hospitals provide care limited to specific medical conditions or procedures, and two-thirds of Medicare payments to specialty hospitals are related to heart conditions. There are arguments based on both physics and economics that can justify the spinning off of specialty hospitals from general hospitals, based on economies of scale and concepts of a “focused factory” (see Skinner 1974 and Chapter 6 of this book). However, critics claim that specialty hospitals focus primarily on low-risk patients and provide less uncompensated care than general hospitals.
Nallamothu et al. found that the frequency of three key coronary procedures was higher in regions after the opening of a specialty hospital when compared with the opening of new cardiac programs in general hospitals. The authors did not comment on the appropriateness of the procedures, but their findings raise the concern that procedure utilization in specialty hospitals was higher than one might expect based on medical need alone. The authors state in their conclusions that, “Among the potential mechanisms underlying our findings, the most concerning is physician ownership.” Physician ownership allows physicians to collect not just their professional fees, but a share of the facility fee as well, creating a potential conflict of interest between the physician’s financial incentives and a patient’s clinical needs. Estimates of physician ownership of cardiac specialty hospitals range from 21% to 49%, and hospitals are currently exempted from anti-kickback laws that prevent referral of patients to facilities in which physicians have a significant financial stake. Although we cannot say for certain that economics is trumping values in these instances, we can conclude that values will be increasingly stressed as the economic climate becomes more challenging.

A similar concern applies to the rise of ambulatory surgical centers (ASCs) in the United States. An ASC performs surgical procedures that do not require hospitalization (for example cataracts, some knee and ear surgeries, and colonoscopies). Between 2000 and 2007, the number of such facilities increased by nearly 50%. This growth was largely financed by physician-owners, who had a financial stake in 83% of them and complete ownership of 43%. Hollingsworth et al. (2010) found that physician-owners, on average, had higher caseloads and operated on healthier (fewer accompanying health conditions) and better insured (more private and Medicare, less Medicaid) patients. Further, physicians who started as nonowners and became owners during the study period increased their caseloads after ownership. As always in such complex territory, there could be reasons for these results unrelated to financial incentives. But results like these raise concerns that physician-owners may increase caseloads beyond what is clinically necessary and route the lowest risk and most well-insured patients to their own facility, leaving the rest to be treated in a general hospital. This, of course, will increase the financial stress on the general hospital, decreasing its ability to manage their higher risk, lesser insured patients.

It is difficult to overstate the consequences if profit-maximization comes to dominate historical values in medical practice. The rush away from the poor, sick, and uninsured will accelerate, like a game of hot potato in which each party tries desperately to pass the ball. The cracks in the system are already beginning to show and will only get worse as baby boomers age.

As policy makers argue, there is a crisis to be met. Fortunately, with or without coherent leadership at the federal and state levels, we can do more with our current resources within hospitals. As the economic surpluses that have masked high levels of inefficiency
disappear, hospitals must begin an evolutionary process that we have seen in other industries. These prior experiences have revealed general principles that can serve as tools with which we can manage this process.

1.5.2 The Tools Are Known

There is a famous scene in the film *Apollo 13* in which an engineer dumps a pile of spacecraft parts and materials onto a desk and demands that the team make a CO₂ filter out of them. The situation they faced was new, and conditions under which the filter would have to operate were uncertain, but the basic building blocks they had to use were known. Hospitals face an analogous situation, in which the policy structure that society will adopt is uncertain, but there are known tools, the principles of management, available with which to craft a response. These principles and their application to management challenges are what this book is all about. We articulate and apply concepts that will stand the test of time so that hospitals can excel regardless of the policy regime to which they are subjected. We will say more about which tools apply in which environments in Chapter 6, after we lay the building blocks in the context of existing hospitals. Appendix A provides a standalone summary of the management principles that we employ. This can be read as a basic management primer or consulted as a reference for the problem-oriented chapters.

1.6 Principles-Driven Management: Marrying Theory and Practice

The skill and judgment of experienced clinical practitioners is critical to quality outcomes. Yet it would be a mistake to rely on clinical experience alone, unsupported by theory, to advance the field. We could watch a surgeon all day without understanding why she is doing what she’s doing. To understand the “why” behind the “what,” we would need courses in chemistry and anatomy, physiology and neurology. Modern medical practice relies heavily on science.

This was not always the case. For example, doctors used leeches in ancient times for all manner of maladies (even headaches) without any scientific basis. As long as some patients got better, doctors continued to use leeches. But with only experience as a guide, outcomes were unreliable and usage of leeches steadily declined. However, more recently, science demonstrated the anesthetic and anticoagulant features of leech saliva, and modern circulatory theory helped explain when using leeches (or genetically engineered equivalents) might be beneficial and when it would be foolhardy. As a result,
leech usage has made something of a comeback. Theory tells us why things work as they
do, and by so doing both explains practice and provides us with the tools to improve it.

A theory, according to The American Heritage Dictionary (1985 edition), is “systemati-
cally organized knowledge applicable in a wide variety of circumstances, especially a sys-
tem of assumptions, accepted principles, and rules of procedure devised to analyze,
predict or otherwise explain the nature of behavior of a specialized set of phenomena.”

Practice without theory is just trial and error, with no guiding principles beyond what
“seems to work.” At the same time, theory without practice is ultimately sterile. In aca-
demic disciplines, it is a constant temptation to develop theories on theories, moving
ever further into the sterile realm of abstraction and away from the real world of actual
practice. Yet, it is practice that directly adds value to people’s lives. The best theories are
focused on informing real problems that real decision makers face.

Theory development involves separating out phenomena that are idiosyncratic to a cer-
tain narrow context from those that are more universal in application. The latter can be
expected to stand the test of time, more so than any particular practice. Some theories
are more predictably accurate (most laws of physics can be counted on to hold and to
predict outcomes) than others (theories of human behavior are less reliable given the
open-ended and evolving nature of human understanding and culture). But, in all cases,
researchers seek guiding principles that provide fundamental understanding, inform
practice, and give us the tools to improve outcomes. As new diseases, risks, and contexts
evolve over time, practice can become obsolete. Theory, however, is semipermanent and
should apply in circumstances old and new. Theory can therefore provide guidance in
new territory, which is why we need it now.

In this book, we strive to marry the worlds of theory and practice by taking a principles-
driven approach to hospital management. We identify key hospital management chal-
lenges, and for each we base potential responses on general principles that can be relied
on to be applicable in a variety of circumstances and help predict or otherwise explain
behaviors. Because the same principles apply to a range of specific hospital management
challenges, we avoid excessive repetition by accumulating them in Appendix A. Readers
who are not yet familiar with one or more of them can consult Appendix A for descrip-
tions, explanations, and examples.

The result is a book that uses general principles of management, derived from many
years of research in a variety of business subfields, to inform and improve practical hos-
pital operations. In this way, we allow medically oriented readers to acquire general
management knowledge by focusing on specific hospital issues that are familiar to them
but that, once mastered, provide an approach that is applicable to new problems in the
evolving future.
1.7 The Structure of This Book

Our focus is within the walls of the hospital, but occasionally it extends to extra-hospital initiatives. For example, if inpatient capacity is strained, one possibility would be to reduce demand by promoting healthy lifestyle choices or home therapies, possibly through a website. If the ED receives a pulse of older patients on Monday morning because no registered nurse (RN) was on duty in local nursing homes over the weekend, one response could be to put a hospital staff RN into the homes. In this way, we recognize the close interdependence between the hospital and the community it serves, but we consider it through the lens of hospital management rather than the broader perspective of public policy.

Until the final chapter, we assume a hospital configuration that is consistent with current practice. Specifically, we view the hospital as divided into four identifiable areas: ED, nursing units, ORs, and diagnostic facilities. We devote a chapter to each of these, and within each chapter we follow the common content format shown in Exhibit 1.6.

We begin each chapter with a “stakeholders’ perspective” narrative (that continues through all of the chapters) before turning to unit-specific material, beginning with an introduction, brief history, and the unit’s assets and flows. We then list common metrics by which the unit’s performance is judged and some management decisions that the
unit must make in practice. This is followed by two or more key management challenges, and for each we provide an introduction, affected metrics, relevant management principles, and a translation of principles into practices followed by illustrative case examples. Each chapter then ends with a continuation of the narrative.

1.7.1 Principles-Driven Brainstorming

To solve problems for complex organizations, it is helpful to begin with a broad landscape of options from which to choose. It is universal in books on brainstorming and innovation that one should not narrow the focus too early to only a few options. Rather, one should start with a long, open-ended, and uncensored list of possibilities to be sure that all options are considered. Then, using judgment, this list should be winnowed down to the most promising few, which are subjected to more detailed and rigorous analysis. The most difficult part of this exercise for many people is not the analysis part, for which tools exist, but the brainstorming part that involves coming up with a wide array of options. This is called the concept generation stage of an innovative process and entails a long list of concepts being generated prior to the concept selection phase of choosing one or a few for closer scrutiny and eventual implementation.

Principles-driven management provides a helpful tool for concept generation. Principles relate precursors to consequences, so if we want to improve the consequences, we should work on the precursors. For example, suppose the management challenge is to reduce delays getting onto the surgical schedule. What can we do to shorten delays? By turning to the principles, we can list the causes of delays and look at each of these individually as an opportunity. Delays, for example, can result from excessive workload, insufficient capacity, poor synchronization of demand and capacity, high variability, or poor sequencing of the jobs in queue. Improvements can be achieved by working on any one of these subtopics. So, in a brainstorming exercise, we can think of all the ways the hospital can work on each subtopic. For example, the hospital can reduce workload by reducing the patients served per day or reducing the time per patient in surgery. Likewise, increasing capacity, improving synchronization, reducing variability, and improving sequencing can be broken down into more detailed components. By continuing in this fashion—breaking down higher-order concepts into more detailed concepts—we will eventually reach a level of implementable specificity. By this process of cascading refinement, a few general principles beget a wide array of specific potential solutions.

Because each higher-level concept generates many lower-level offspring, after two or three levels we will have constructed a long list of possible action items. This is good and
signals a robust concept generation phase. Many of the options may be infeasible, undesirable, or difficult to implement for various practical reasons, but all of them should still be listed. The worst enemy of a productive concept generation activity is premature censoring. Sometimes an option that appears impractical can, with a small twist, become a novel and winning solution.

This principles-driven brainstorming approach is used for the key management challenges covered in each chapter. The reader may want to flip through a few chapters and inspect the tables. Their size will be striking. The illustrative cases then describe how to analyze or implement one or a few of the options in practice. Once a reader is familiar and comfortable with this approach, he or she can use it for other challenges not covered in this book. The principles and our approach are generic.

While examining the management challenges of the different units of the hospital, it quickly became apparent that three issues—responsiveness, patient safety, and organizational learning—are ubiquitous. Responsiveness is a common problem because delays negatively affect both patient satisfaction and clinical consequences. Whether the challenge is to reduce delays in the ED, the ORs, on nursing units, or in the lab, the underlying principles driving delays are the same. Similarly, ensuring and protecting patient safety and promoting organizational learning are issues that arise in many contexts and are amenable to some general principles regardless of context. So, for each of these generic management challenges, we have constructed the first three levels of the brainstorming process and have summarized them in three generic tables in Appendix A. When addressing one of these three generic challenges, a reader can start with a pre-populated generic table and then continue to break down the third-level list of options into specific action items.

1.7.2 Policies Progress but Principles Persist

The management principles presented in this book will continue to apply regardless of how the health care policy regime eventually evolves or what internal hospital structures dominate in the future. Although our division into the four subunits (ED, OR, nursing units, and diagnostics) is common in modern hospitals, one criticism of this structure is that it accepts as given the one thing that most impedes seamless patient care: a lack of cohesive integration between these subunits. Patients (and their information) often must pass through all of them during their acute-care experience (see Exhibit 1.7), and lack of coordination among them leads to poorer clinical, patient satisfaction, operational, and financial outcomes. While we focus on individual sections of the hospital, because each has its own culture of practice, the need for coordination between sections cannot be ignored.
We pay attention to this need in some of our managerial challenges. For example, sizing inpatient units must take into account the need for post-surgery beds for patients coming out of the ORs (see Section 3.4.1). In other cases, the unit-specific managerial challenge that we cover can extend to interunit issues. For example, managing shift-to-shift patient handoffs on a nursing unit has the same character as managing ED to bed floor admissions handoffs (see Section 3.4.3).

However, we delay until Chapter 6 a more thorough discussion of alternatives to current practice in the internal organization of hospitals. There, we contrast the evolution of hospitals as service organizations to known evolutionary trajectories in other industries. We note that hospitals have been sheltered from the natural economic and competitive pressures that force firms in most industries to transit from “job shops” with poorly connected islands of expertise to “flow shops” of seamless processes as time and technology advances. The life-saving mission of hospitals does not exempt them from these pressures, but it does make addressing them significantly more complicated. In the end, however, the same erosion of economic surpluses that is threatening values-based conduct will challenge the current organization of health care services.

However, there is nothing in the future of health care that changes the basic principles of management. By focusing on these principles in the context of current practice, we equip readers to think strategically about their future and leverage fundamental management insights to get there. In the midst of an acknowledged health care crisis

Exhibit 1.7 Hospital flows.
featuring high expenditures, mediocre outcomes, and confusion at the policy level, there are things we can and should do at the level of the most important transaction of all—that between patient and caregiver. It is to these we turn in the remainder of the book.

1.8 References

1. PPP = Purchasing Power Parity, meaning exchange rates are adjusted to reflect the cost of a fixed basket of goods among countries being compared, equating the purchasing power of currencies in those countries.

2. For example, when General Motors went bankrupt in 2009, hourly wages for production workers were only slightly higher than those at Toyota, but health care costs were seven times greater, resulting in a $1,500 per vehicle penalty for GM.
INDEX

A
accessioned specimens, 394
Accidental Death and Disability: The Neglected Disease of Modern Society, 30
accuracy metrics, 555
accuracy of treatment in EDs (Emergency Departments), 81-82
ACEP (American College of Emergency Physicians), 30
ACS (American College of Surgeons), Hospital Standardization Program, 326
active data collection, 317-318, 581
acute care (major) units (ED), 36
adjusting
 capacity, 567
 demand rate, 566
administrative staff
 in diagnostic units, 363-364
 in nursing hierarchy, 147-148
admissions (OR), 256
adverse events, 293
agglutinins, discovery of, 251
Agnew Clinic (Eakins), 253
Alcott, Louisa May, 139
aliquoting, 367
Allen, Jason, 326, 329, 332
alternate futures, 478-481
Amazon, 469
ambulatory surgical centers (ASCs), 12
American College of Emergency Physicians (ACEP), 30
American College of Surgeons (ACS), Hospital Standardization Program, 326
American Nursing Association (ANA), 141
analysis
 analytic steps (diagnostic unit flows), 366
 anticipatory analysis, 103
 retrospective analysis, 103
anatomical pathology, 360
anchor period, 98
anchoring, 96, 533
ancillary services, 344
Andral, Gabriel, 351
anesthesiologists, 259
anesthesiology, history of, 251-252
anticipatory analysis, 103
arrival variability, reducing, 567
ascertainment bias, 534
ASCs (ambulatory surgical centers), 12
assets
 fixed versus variable cost assets, 155-156
 human assets
 of EDs (Emergency Departments), 36-39
 of nursing units, 146-151
 of operating rooms, 258-260
 physical assets
 of EDs (Emergency Departments), 33-36
 of nursing units, 144-146
 of operating rooms, 254-258
assignment, improving, 574-576
 EDs (Emergency Departments), 95, 100
 laboratories, 430, 438, 442
 nurse shift handoffs, 226
 surgical patient safety, 300
Aston, Francis William, 352
attending physicians, 37
Auenbrugger, Leopold, 357
AutoAnalyzer, 349
automated immunohistochemistry platforms, 361
automation, 391
autostainers, 361
Avenzoar, 350
average hospitalization rates
explained, 171-172
Seaberg Hospital case study, 175

B
Babbage, Charles, 357
balancing workload, 564-565
Baruch, Hans, 349
Basch, Samuel Siegfried Karl Ritter von, 357
Bassi, Agostino, 346, 351
Batching principle, 125, 504-505, 567
imaging responsiveness, 399-400
laboratory turnaround time, 380
Bayes’ Rule, 530-533
bed holds, 161
bed inventories, 162-163
bed-to-population ratios
development of
central planning initiatives, emergence of, 590-591
Hill-Burton Act of 1946, 589-590
national health planning goals, 591-592
references, 593
explained, 171
Seaberg Hospital case study, 174
behavioral principles
cognitive efficiency principles
explained, 537-538
Fatigue, 540
Interruptions, 539-540
Workload, 538-539
explained, 537
groups behavior principles
explained, 546
Key Stakeholders, 547
Motivation for Change, 549-550
Pareto Efficiency, 547-549
Veto Power, 547
individual behavior principles
Hoarding, 545
Inertia, 545-546
Self-Interest, 543-544
perception principles
explained, 540-541
Negative Experiences, 542-543
Waiting Time Psychology, 541-542
Bell, Alexander Graham, 353
Bellevue Hospital (New York), 30
Bennett, John Hughes, 351
Berson, Solomon, 352
bias
correlation bias, 533
sunk cost bias, 534
Binnig, Gerd, 353
birthing centers, Seaberg Hospital case study, 173
bleeding, historical methods of controlling, 250-251
Bloch, Felix, 356
blocking, reducing, 64-65, 566
blood transfusions, history of, 251
blood types, discovery of, 251
Blundell, James, 251
blunt end of treatment process, 81
Borders, 470
bottlenecks
definition of, 50, 500
metrics, 156-157
in operating room, 273, 285-286
long-range bed and nurse capacity planning, 166
brainstorming, principles-driven, 16-17
Bright, Richard, 351
Buffer Flexibility principle, 52, 511
imaging responsiveness, 401-402
laboratory turnaround time, 379
long-range bed and nurse capacity planning, 168
nurse scheduling, 185
bundling, 478
C

Cannon, Walter, 355, 358

capacity
 adjusting, 567
 capacity principles, 499
 Batching, 504-505
 Newsvendor, 505-506
 Newsvendor with Normal Demand, 506-507
 System Capacity, 500-502
 Utilization, 502-503
EDs (Emergency Departments), 50-51, 62-65
 increasing, 563-566
 EDs (Emergency Departments), 62-65
 nurse scheduling, 187-188
 nurse shift handoffs, 225
 imaging postexam time, 411
 imaging preexam time, 409
 laboratory TAT, 391
 operating room scheduling delays, 279-280, 285-286
 postlab TAT, 392
 prelab TAT, 387-388
long-range bed and nurse capacity planning
 bed inventories, 162-163
 nature of problem, 161-162
 objectives and practices, 169-173
 relevant management principles, 164-169
 Seaberg Hospital case study, 173-178
 staffing levels, 163-164
resource capacity, 499-500
capitation payment, 478
carbolic acid, 253
Casablanca strategy, 125
case sequencing in operating room, 287
casino scheduling, 98
CAT (Computerized Axial Tomography) technology, history of, 355
cautery, historical use of, 250

CDUs (clinical decision units). See observation units
cell counters, 361
cellular manufacturing, 72
central planning initiatives, emergence of, 590-591
Certificate of Need (CON), 108, 125, 591
charge nurses, 38
Cheaper by the Dozen, 563
chloroform, 252
circulating nurses, 259
CIWA-Ar (Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised), 310-312
clean corridor (OR), 257
clean storage rooms (OR), 257
“clean zone,” 255
clerks, 39
Clifford, Joyce, 142
Cline, Henry, 251
clinical decision units (CDUs). See observation units
Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised (CIWA-Ar), 310-312
clinical laboratories
 flows, 364-367
 history of, 346-353
 human assets, 362-363
 laboratory error
 case study: Henry Ford Health System, 445-449
 improvement policies, 423-445
 nature of problem, 416-418
 relevant management principles, 418-423
laboratory turnaround time
 improvement policies, 381-393
 nature of problem, 377-378
 relevant management principles, 378-381
University of Michigan Hospital System (UMHS) case study, 393-396
metrics, 370-373
milestones in clinical laboratory science and practice, 350, 352
overview, 344-345
physical assets, 360-361
stakeholders’ perspectives, 339-344, 450-457
clinical laboratory error
case study: Henry Ford Health System, 445-449
improvement policies, 423-445
reducing collection errors by phlebotomists, 428-432
reducing errors in sample analysis, 436-439
reducing errors in sample receipt/preparation, 433-436
reducing interpretation errors, 442-444
reducing ordering errors by requesting physicians, 425-429
reducing validation/reporting errors by technologist/pathologist, 439, 442
nature of problem, 416-418
relevant management principles, 418-423
clinical metrics for nursing units, 178
clinical pathology, 360
cocaine, 252
Codman, Ernest, 326
cognitive efficiency principles
explained, 537-538
Fatigue, 540
Interruptions, 539-540
Workload, 538-539
cognitive shortcuts for resolving uncertainty, 96
Commercial Hospital of Cincinnati, 30
communication
communication errors, 420
communication technology, 99
of need for change, 584
of organizational goals, 582
organization learning in the OR, 319-323
of organizational performance, 582
completion time, 378
complexity of tasks, 514-515
costs
for EDs (Emergency Departments), 46
increased cost pressure, 477
Coulter counter, 349
Coulter, Wallace, 349, 352
creative destruction, 481
Crick, Francis, 349, 352
crisis in health care
health care costs, 4
health expenditure per capita, 5
hospital expenditures, 8
indirect costs, 6
predicted escalation of, 5
profit maximization versus historical values, 9-13
inefficient delivery of basic care, 6-7
Critical Path principle, 518-519
Critical Ratio Sequencing principle, 520-521
and OR scheduling delays, 274
imaging responsiveness, 400-401
in ED (Emergency Department), 53, 80
laboratory turnaround time, 380-381

598 HOSPITAL OPERATIONS: PRINCIPLES OF HIGH EFFICIENCY HEALTH CARE
cross-training and cooperative staffing model, St. Mary’s Hospital case study, 203-206
CT scanners, 361
curare, 252
Curie, Marie, 358
Curie, Pierre, 358
custom care hospitals, patient flow, 491
cytotechnologists, 363
Czolgosz, Leon, 462

D

Damadian, Raymond, 357
data access
 improving, 581
 in OR, 318
data collection
 active data collection, 317-318, 581
 passive data collection, 317, 580
data interpretation, 319, 581
De Sedibus (Morgagni), 351
Death and Complication (D&C) conferences, 326
decisions, improving, 574-576
decision errors, 419
decision making principles
 Bayes’ Rule, 530-533
 explained, 527-528
 First Impressions, 534
 Incidence Rate, 533-534
in EDs (Emergency Departments), 94-98
in laboratories, 426-443
simplifying, 575
in OR (operating room)
 case study: to operate or not?, 307-309
 strategies for surgical patient safety, 302
 surgical patient safety, 298-306
decision making principles
 Bayes’ Rule, 530-533
 explained, 527-528
 First Impressions, 534
 Incidence Rate, 533-534
delays to get on surgical schedule
 case study: Highland Hospital, 288-292
 improvement policies, 277-288
 nature of problem, 271-272
 relevant management principles, 272-277
 Critical Ratio Sequencing, 274
 Key Stakeholders, 276
 Little’s Law, 272
 Pareto Efficiency, 277
 SPT Sequencing, 274
 System Capacity, 273
 Utilization, 274
 Variability, 274
 Veto Power, 276
 Waiting Time Psychology, 275-276
demand chase” strategy, 286
demand rate, adjusting, 566
diagnostic units
 flows
 in clinical laboratories, 364-367
 in Imaging Department, 367-369
 history of diagnostics, 345-346
 clinical laboratories, 346-353
 medical imaging, 353-359
human assets
 in clinical laboratories, 362-363
 in Imaging Department, 363-364
imaging responsiveness
case study: MRI wait time reduction at Windsor Regional Hospital, 415-416
improvement policies, 403-415
nature of problem, 396-397
relevant management principles, 397-403
intermediate-term scheduling
decisions, 376
laboratory error
case study: Henry Ford Health System, 445-449
improvement policies, 423-445
nature of problem, 416-418
relevant management principles, 418-423
laboratory turnaround time
improvement policies, 381-393
nature of problem, 377-378
relevant management principles, 378-381
University of Michigan Hospital System (UMHS) case study, 393-396
long-term capacity decisions, 375
metrics
performance metrics for clinical laboratories, 370-373
performance metrics for Imaging Department, 373-374
overview, 344-345
physical assets, 359
in clinical laboratories, 360-361
in Imaging Department, 361-362
short-term flow decisions, 376
stakeholders’ perspectives, 339-344, 450-457
diagnostic units (ED), 35
directors (lab), 362-363
disaster preparedness, 31
disintegration future, 479
Disney Institute Healthcare Service Program, 467
diverting patients from EDs (Emergency Departments), 61-62
dLife.com, 468
doing rounds, 148-151
Donald, Ian, 356, 358
Donné, Alfred François, 351
Duboscq colorimeter, 351
Duboscq, Jules, 351

e
Eakins, Thomas, 253
Echo Planar MR Imaging (EPI), 359
ED (Emergency Department), 21
conclusions, 111-112
disaster preparedness, 31
history of, 29-33
human assets, 36-39
management decisions, 47
observation unit design
case study: designing an observation unit for Lincoln Hospital, 109-111
improvement policies, 108-109
management principles, 108
problems with, 107-108
overcrowding
capacity overloads, 50-51
case study: improving ED responsiveness at Oakwood Hospital (Dearborn, MI), 73-75
causes of, 32, 48-49
improvement policies, 54-73
negative consequences of, 32, 49
psychology, 53-54
sequencing, 52-53
variability, 51-52
patient flow, 39-41
patient safety
accuracy of treatment, 81-82
case study: eliminating ICU infections at Johns Hopkins Hospital, 104-107
causes of preventable adverse outcomes, 78
execution phase, 84-85
improvement policies, 88-104
information phase, 82-83
liability challenges, 76
patient protection, 85-88
planning phase, 84
rates of medical errors in ED, 75-76
speed of treatment, 79-81
systems perspective on patient safety, 76-78
performance metrics, 42-47
physical assets, 33-36
rising costs of, 32
stakeholders’ perspectives, 21-29, 112-116
ED technicians, 38
Edison, Thomas, 354
efficiency
 implementation efficiency, increasing, 584
 improving in hospitals of the future, 482-483
Ehrlich, Paul, 351
Einstein, Albert, 357
Einthoven, Willem, 358
electronic whiteboards, 98
eliminating steps, 563-564
emergence of central planning initiatives, 590-591
Emergency Department. See ED
emergency medical service (EMS) systems, history of, 30-32
emergency medical technicians (EMTs), development of, 30
Emergency Medical Treatment and Active Labor Act (EMTALA), 31
emergency nurses, 38
emergency physicians, 37
Emergency Severity Index (ESI) system, 40
emergent (triage), 40
Emerson, Ralph Waldo, 480
empirical medicine, 471
EMS (emergency medical service) systems, history of, 30-32
EMS Entrance, 34
EMTALA (Emergency Medical Treatment and Active Labor Act), 31
EMTs (emergency medical technicians), development of, 30
enhancements. See improvement strategies enhancing
 patient perceptions, 570-572
 in EDs (Emergency Departments), 72-73
 nurse scheduling, 193
 of operating room scheduling delays, 284-287
 staff perceptions of nurse scheduling, 193-194
EPI (Echo Planar MR Imaging), 359
equipment storage rooms (OR), 257
errors
 case study: error leading to learning and improved processes in surgical team, 309-312
 communication errors, 420
 decision errors, 419
 definition of, 293
 execution errors, 419
 human error, 293
 laboratory error. See laboratory error protection and recovery errors, 419
 reporting systems, 313-315
 system or process errors, 293
 technological errors, 293
ESI (Emergency Severity Index) system, 40
Essai d’hématologie pathologique (Andral), 351
ether, 252
evidence-based medicine, 496
execution, improving, 576-577
 in EDs (Emergency Departments), 84-85, 101
 execution errors, 419
 execution of learning process, 582-584
 simplifying execution, 577
 surgical patient safety, 303-306
extensively drug-resistant tuberculosis (XDR-TB), 496

F
factory-within-a-factory approach, 483
Fast Track units (ED), 69
fast-track (minor) units (ED), 36
FastPass concept, applying to EDs (Emergency Departments), 68
Fatigue principle, 540
 in ED (Emergency Department), 84
 laboratory error reduction, 422-423
 nurse shift handoffs, 223
 surgical patient safety, 296
fee-for-episode, 478
fee-for-membership, 478
fee-for-service, 478
financial metrics for nursing units, 179
first assistants, 259
First Impressions principle, 534
 laboratory error reduction, 422
 surgical patient safety, 296
5S (Sort, Straighten, Sweep, Standardize, Sustain), 125
fixed-cost assets, 155-156
flexibility, 588
flexible nursing capacity, St. Mary’s Hospital case study, 202-203
flow principles
 capacity principles, 499
 Batching, 504-505
 Newsvendor, 505-506
 Newsvendor with Normal Demand, 506-507
 System Capacity, 500-502
 Utilization, 502-503
 protection principles
 explained, 522
 Foolproofing, 523-524
 Intuitive Information, 524-525
 Redundancy, 522-523
 sequencing principles
 Critical Ratio Sequencing, 520-521
 explained, 519
 SPT (shortest processing time)
 Sequencing, 521-522
 task efficiency principles
 Critical Path, 518-519
 Task Simplification, 515-516
 Task Standardization, 516-518
 variability principles
 Buffer Flexibility, 511
 explained, 507
 Little’s Law, 511-513
 Pooling, 513
 Variability, 507-510
 Variability Buffering, 510-511
 Variability Buffering in Service Systems, 511
flow shops
 explained, 468
 MinuteClinic case study, 473, 475, 493
 Shouldice Hospital case study, 475
 structure, 61
flows. See also flow principles; flow shops
 material flow in operating room, 262-263
 patient flow
 in clinical laboratories, 364-367
 in custom care hospitals, 491-492
 in EDs (Emergency Departments), 39-41
 in general hospitals, 489-490
 in Imaging Department, 367-369
 in integration hub hospitals, 490
 in operating room, 260-261
 through nursing units, 151-152
 staff flow in operating room, 262
focus, improving, 575-577
 EDs (Emergency Departments), 97-98
 focus on practice, 7-8
 nurse shift handoffs, 228
 in OR (operating room), 302-305
 in laboratory, 426-441
Folin, Otto, 348, 352
Foolproofing principle, 523-524
 in ED (Emergency Department), 87
 laboratory error reduction, 422-423
 nurse shift handoffs, 223
 surgical patient safety, 297
Forssmann, Werner, 358
Fracastoro, Girolamo, 346, 350
full capacity protocols, 67, 125
future hospitals
 alternate futures, 478-481
 custom care hospitals
 explained, 489
 patient flow, 491-492
 disintegration future, 479
 integration future, 480-481
 integration hub hospitals
 explained, 489
 patient flow, 490
 key trends, 477-478
management challenges
 creative destruction, 481
 efficiency improvements, 482-483
 hospital-within-a-hospital
 approach, 483
 institutional inertia, 484-485
 roles in the future, 485-494
 specialized resource sharing, 483-484

product and process integration, 466-467
 process hierarchy, 467-470
 product variety, 470-472
 product/process matrix, 472-476

stakeholders’ perspectives, 463-466

G

Galen, 250
Garfield, James, 353
gatekeepers, 479
gemba walks, 394, 462
general care beds, 145
General Motors, 20
generating information, 568-569

Genetic testing, history of, 349-350
germ theory, 253, 346-348
Gilbert, Walter, 349, 353
Gilbreth, Frank, 563
good catch incident, 555
Grady Memorial Hospital (Atlanta), 11
Gretzky, Wayne, 476
The Gross Clinic (Eakins), 253
grossed specimens, 394

group waiting (EDs), 73

groups behavior principles
 explained, 546
 Key Stakeholders, 547
 Motivation for Change, 549-550
 Pareto Efficiency, 547-549
 Veto Power, 547

H

handoffs, 220, 526-527
 in ED (Emergency Department), 83
 imaging responsiveness, 403

Mercy Academic Medical Center
 (MAMC) case study, 229
 change planning, 229-231
 evaluation, 234-235
 recommendations, 232-234

in laboratories
 laboratory error reduction, 422
 laboratory turnaround time, 381

nature of problem, 220-221

nurse shift handoffs, 222

objectives and practices, 224-228

relevant management principles, 222-223

surgical patient safety, 296-297

hanging protocols, 462

harm mitigation, 578
 in laboratories, 432-443

Harvey, William, 251, 350

health care costs, 4
 health expenditure per capita, 5
 hospital expenditures, 8
 indirect costs, 6
 predicted escalation of, 5
 profit maximization versus historical
 values, 9-13

health care levels
 minimal care, 486
 prevention, 486
 self-care, 486
 specialized care, 486

health care policy debates, 10

health expenditures
 hospital expenditures, 8
 per capita, 5
 predicted escalation of, 5

Health System Agencies (HSAs), 591
Health System Plan (HSP), 591
Helmholtz, Hermann von, 357
hemimandibulectomy, 420
Henry Ford Health System case study,
 445-449

Henry Ford Laboratories, 475
Henry Ford Production System, 445
Herophilos, 350
hiding beds, 152
hierarchy
 process hierarchy, 467-470
Highland Hospital case study, 288-292
Hill-Burton Act of 1946, 589-590
Hippocrates, 250, 345, 350
Hirschowitz, Basil, 358
history
 of diagnostics, 345-346
 clinical laboratories, 346-353
 medical imaging, 353-359
 of ED (Emergency Department), 29-33
 of nursing, 137-143
 of surgery
 control of bleeding, 250-251
 infection control, 252-254
 knowledge of human anatomy, 249-250
 pain control, 251-252
 Stone Age evidence, 248-249
histotechnologists, 363
Hoarding principle, 545
hospital expenditures, 8
Hospital Sketches (Alcott), 139
Hospital Standardization Program, 326
hospital-within-a-hospital approach, 483
Hospitaler Dames of the Order of St. John of Jerusalem, 137
hospitals of the future. See future hospitals
Hounsfield, Godfrey, 355, 358
housekeeping rooms (OR), 257
HSAs (Health System Agencies), 591
HSP (Health System Plan), 591
human anatomy, historical knowledge of, 249-250
human assets
 diagnostic units
 clinical laboratories, 362-363
 Imaging Department, 363-364
 EDs (Emergency Departments), 36-39
 nursing units
 administrators and technicians, 147-148
 doctors, 148-151
 nurses, 146-147
 operating rooms, 258-260
human error, 293
Human Genome Project, 353
human resources, adding, 563
humorism, 346
I
iatrogenic mortality, 138
ICU, 104-107, 145
Imaging Department
 flows, 367-369
 history of medical imaging, 353-359
 human assets, 363-364
 imaging responsiveness
 case study: MRI wait time reduction at Windsor Regional Hospital, 415-416
 improvement policies, 403-415
 nature of problem, 396-397
 relevant management principles, 397-403
 metrics, 373-374
 overview, 344-345
 physical assets, 361-362
 stakeholders’ perspectives, 339-344, 450-457
imaging responsiveness
 case study: MRI wait time reduction at Windsor Regional Hospital, 415-416
 reducing postexam time, 411-415
 reducing preexam time, 408-411
 table of, 404-408
 nature of problem, 396-397
 relevant management principles, 397-403
 Batching, 399-400
 Buffer Flexibility, 401-402
 Critical Ratio Sequencing, 400-401
 Handoffs, 403
 Task Simplification, 399
 Task Standardization, 399
 Utilization, 398
 Variability, 397
 Variability Buffering, 398
Variability Buffering in Service Systems, 398
Waiting Time Psychology, 402-403

immuno-based analyzers, 361
implementation, improving
increasing efficiency of, 584
organizational learning in OR, 323-325
implementation stage, 550
improved technology, 477
improvement policies
ED (Emergency Department) patient safety
improving assignment, 95-100
improving decisions, 94
improving focus, 97-98
improving incentives, 100
improving information, 94-103
improving responsiveness, 93-94
improving training, 96-100
increasing redundancy, 98-103
mitigating harm, 104
simplifying/standardizing decision process, 97-98
simplifying/standardizing execution process, 101
table of, 88-93
EDs (Emergency Departments)
overcrowding
enhancing patient perceptions, 72-73
improving sequencing, 70-72
improving synchronization, 65-67
increasing capacity, 62-65
reducing variability, 67-70
reducing workload, 60-62
table of, 54-60
explained, 561-562
imaging responsiveness, 403-415
reducing postexam time, 411-415
reducing preexam time, 408-411
table of, 404-408
laboratory errors, 423-445
reducing collection errors by phlebotomists, 428-432
reducing errors in sample analysis, 436-439
reducing errors in sample preparation, 433-436
reducing interpretation errors, 442-444
reducing ordering errors by requesting physicians, 425-429
reducing validation/reporting errors by technologist/pathologist, 439-442
long-range bed and nurse capacity planning, 169-173
average hospitalization rates, 171-172
Monte Carlo simulation, 173
queuing theory, 172
service-line forecasting, 172
standard bed-to-population ratios, 171
nurse scheduling, 186-195
nurse shift handoffs, 224-228
operating room scheduling delays, 277-288
organizational learning, 316-326, 579-585
improving execution of learning process, 320-323, 582-584
improving implementation of change, 323-325, 584
improving information, 317-319, 580-581
increasing motivation, 319-320, 582
table of generic options, 585
patient safety, 573-579
case study: medical decision making, 307-309
improving decisions, 574-576
improving execution, 576-577
improving protection and mitigation, 577-578
improving responsiveness, 574
surgical patient safety, 297-307
table of generic options, 579
responsiveness, 562-573
enhancing patient perceptions, 570-572
improving sequencing, 568-570
improving synchronization, 566-567
increasing capacity, 563-566
reducing variability, 567-568
reducing workload, 563
table of generic options, 573
in vitro diagnostics, 345
in vivo diagnostics, 345
incentives, improving, 575-577
 laboratory error reduction, 425-442
 nurse shift handoffs, 227
 surgical patient safety, 301
 EDs (Emergency Departments), 100
Incidence Rate principle, 422, 533-534
increased cost pressure, 477
increasing
capacity, 563-566
 nurse scheduling, 187-188
 nurse shift handoffs, 225
 EDs (Emergency Departments), 62-65
 imaging postexam time, 411
 imaging preexam time, 409
 laboratory TAT, 391
 operating room scheduling delays,
 279-280, 285-286
 postlab TAT, 392
 prelab TAT, 387-388
implementation efficiency, 584
motivation, 319-320, 582
redundancy, 576-578
 in EDs (Emergency Departments),
 98-103
 in laboratories, 426-443
 in nurse shift handoffs, 228
 in OR (operating room), 305
synchronization
 laboratory TAT, 391
 prelab TAT, 388-389
task parallelism, 565
time/resources dedicated to learning, 320
utilization, 409
incremental enhancements, 474
individual behavior principles
 Hoarding, 545
 Inertia, 545-546
 Self-Interest, 543-544
Industrial Revolution, effect on nursing profession, 140
Inertia principle, 316, 545-546
infant mortality, U.S. versus other OECD countries, 6-7
infection control, historical methods of, 252-254
information
generating, 568-569
 improving, 574, 578, 580-581
 EDs (Emergency Departments), 94-103
 nurse shift handoffs, 226
 strategies for organizational learning in OR, 317-319
 strategies for surgical patient safety, 298-300
 strategies to reduce laboratory errors, 425-443
information transfer principles
 Handoffs, 526-527
 Knowledge Sharing, 527
information use principles
 (decision making)
 Bayes' Rule, 530-533
 explained, 527-528
 First Impressions, 534
 Incidence Rate, 533-534
information value principles, 534-535
 Test Quality, 536-537
 Value of Information, 535-536
information phase in EDs (Emergency Departments), 82-83
information principles
information transfer principles
 Handoffs, 526-527
 Knowledge Sharing, 527
information use principles
 (decision making)
 Bayes' Rule, 530-533
 explained, 527-528
 First Impressions, 534
 Incidence Rate, 533-534
<table>
<thead>
<tr>
<th>Page Dimension: 504.0x656.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Value Principles, 534-535</td>
</tr>
<tr>
<td>Test Quality, 536-537</td>
</tr>
<tr>
<td>Value of Information, 535-536</td>
</tr>
<tr>
<td>InQuickER, 68</td>
</tr>
<tr>
<td>inspecting quality into the process, 555</td>
</tr>
<tr>
<td>Institute of Medicine (IOM), 293</td>
</tr>
<tr>
<td>Institute of Medicine, Health Resources Administration 1980 report (HRA 1980), 591-592</td>
</tr>
<tr>
<td>institutional inertia, 484-485</td>
</tr>
<tr>
<td>integration</td>
</tr>
<tr>
<td>integration future, 480-481</td>
</tr>
<tr>
<td>integration hub hospitals, 489-490</td>
</tr>
<tr>
<td>product and process integration, 466-467</td>
</tr>
<tr>
<td>process hierarchy, 467-470</td>
</tr>
<tr>
<td>product variety, 470-472</td>
</tr>
<tr>
<td>product/process matrix, 472-476</td>
</tr>
<tr>
<td>integration hub hospitals, 489-490</td>
</tr>
<tr>
<td>intermediate-range scheduling, 47</td>
</tr>
<tr>
<td>for diagnostic units, 376</td>
</tr>
<tr>
<td>for nursing units, 159</td>
</tr>
<tr>
<td>for operating rooms, 268-269</td>
</tr>
<tr>
<td>interns, 37</td>
</tr>
<tr>
<td>interpreting data, 319</td>
</tr>
<tr>
<td>interruptions principle, 539-540</td>
</tr>
<tr>
<td>ED (Emergency Department), 84</td>
</tr>
<tr>
<td>laboratory error reduction, 422-423</td>
</tr>
<tr>
<td>nurse shift handoffs, 223</td>
</tr>
<tr>
<td>intuitive information principle, 524-525</td>
</tr>
<tr>
<td>ED (Emergency Department), 83, 88</td>
</tr>
<tr>
<td>nurse shift handoffs, 223</td>
</tr>
<tr>
<td>surgical patient safety, 297</td>
</tr>
<tr>
<td>intuitive medicine, 470</td>
</tr>
<tr>
<td>IOM (Institute of Medicine), 293</td>
</tr>
<tr>
<td>Joint Commission on Accreditation of Healthcare Organizations (JCAHO), 293</td>
</tr>
<tr>
<td>Joliot-Curie, Frédéric, 358</td>
</tr>
<tr>
<td>Joliot-Curie, Irène, 358</td>
</tr>
<tr>
<td>just-in-time production, 8</td>
</tr>
</tbody>
</table>

K

| Kaiserwerth School (Germany), 138 |
| key stakeholders principle, 547 |
| OR scheduling, 276 |
| OR organization learning, 324-325 |
| nurse scheduling, 185 |
| key trends, 477-478 |
| **Knights Hospitales**, 137 |
| **Knights Templars**, 137 |
| Knoll, Max, 352 |
| Knowledge Sharing principle, 315, 527 |
| Koch, Robert, 345-348, 351, 471 |

L

| laboratories. See clinical laboratories |
| Laennec, Rene, 357 |
| Lamke, Heinz, 358 |
| Landsteiner, Karl, 352 |
| Laplace, Pierre-Simon, 471 |
| Larrey, Dominique Jean, 29 |
| laughing gas, 251 |
| Lauterbur, Paul, 356-358 |
| lean production, 8 |
| Lean Six Sigma, 78 |
| learning metrics, 561 |
| general organizational learning, 579-585 |
| improving execution of learning process, 582-584 |
| improving implementation of change, 584 |
| improving information, 580-581 |
| increasing motivation, 582 |
OR organizational learning

case study: Western Hospital D&C (Death and Complication) conferences, 326-332
improvement policies, 316-326
nature of problem, 313-315
relevant management principles, 315-316
standardizing learning process, 583

Leeuwenhoek, Antoine van, 346, 350

Legislation
1972 amendments to Social Security Act (Public Law 92-603) Section 1122, 590
Emergency Medical Treatment and Active Labor Act (EMTALA), 31
Hill-Burton Act of 1946, 589-590
The National Health Planning and Development Act of 1974, 591

Lemaster, John, 328
Lenard, Phillipp, 356
“level demand” strategy, 286
levels of health care, 486
LH (Lincoln Hospital) ED observation unit, 109-111
licensed practical nurses (LPNs), 38
life expectancy, U.S. versus other OECD countries, 6
ligature, 250
Lincoln Hospital (LH) ED observation unit, 109-111
Lister, Joseph, 253, 347, 351
Little’s Law, 52, 108, 511-513
OR scheduling, 272
long-range bed and nurse capacity planning, 165
Long, Crawford, 252
long-range bed and nurse capacity planning
bed inventories, 162-163
nature of problem, 161-162
objectives and practices, 169-173
average hospitalization rates, 171-172
Monte Carlo simulation, 173
queuing theory, 172
service-line forecasting, 172
standard bed-to-population ratios, 171
relevant management principles, 164-169
Buffer Flexibility, 168
Little’s Law, 165
Newsvendor, 168-169
Pooling, 167
System Capacity, 166
Utilization, 167
Variance, 166
Seaberg Hospital case study, 173-178
staffing levels, 163-164
long-range strategic planning, 47
for diagnostic units, 375
for nursing units, 158
for operating rooms, 266-268
Louis, Pierre Charles Alexandre, 471
Lower, Richard, 251
LPNs (licensed practical nurses), 38

M
Magnetic Resonance Imaging (MRI) technology, 356, 361
Malassez hemocytometer, 348
Malassez, Louis-Charles, 351
MAMC (Mercy Academic Medical Center), shift-to-shift nursing report practices
change planning, 229-231
evaluation, 234-235
recommendations, 232-234
mammography, 358
management principles
Batching, 504-505
imaging responsiveness, 399-400
laboratory turnaround time, 380
Bayes’ Rule, 530-533
Buffer Flexibility, 52, 511
imaging responsiveness, 401-402
laboratory turnaround time, 379
long-range bed and nurse capacity planning, 168
nurse scheduling, 185
categories of, 498
Critical Path, 518-519
Critical Ratio Sequencing, 53, 80, 520-521
imaging responsiveness, 400-401
laboratory turnaround time, 380-381
OR scheduling, 274
definition of, 497
Fatigue, 84, 540
 laboratory error reduction, 422-423
 nurse shift handoffs, 223
 surgical patient safety, 296
First Impressions, 534
 laboratory error reduction, 422
 surgical patient safety, 296
Foolproofing, 87, 523-524
 laboratory error reduction, 422-423
 nurse shift handoffs, 223
 surgical patient safety, 296
Handoffs, 83, 526-527
 imaging responsiveness, 403
 laboratory error reduction, 422
 laboratory turnaround time, 381
 nurse shift handoffs, 222
 surgical patient safety, 296-297
Hoarding, 545
Incidence Rate, 422, 533-534
Inertia, 316, 545-546
Interruptions, 84, 539-540
 laboratory error reduction, 422-423
 nurse shift handoffs, 223
Intuitive Information, 83, 88, 524-525
 nurse shift handoffs, 223
 surgical patient safety, 297
Key Stakeholders, 547
 nurse scheduling, 185
 OR scheduling, 276
Knowledge Sharing, 315, 527
Little's Law, 52, 108, 511-513
 long-range bed and nurse capacity planning, 165
 OR scheduling, 272
Motivation for Change, 315-316, 549-550
Negative Experiences, 542-543
Newsvendor, 168-169, 505-506
Newsvendor with Normal Demand, 506-507
Pareto Efficiency, 547-549
 nurse scheduling, 186
 OR scheduling, 277
Pooling, 52, 513
 long-range bed and nurse capacity planning, 167
 nurse scheduling, 185
Redundancy, 87, 522-523
 laboratory error reduction, 423
 nurse shift handoffs, 223
 surgical patient safety, 296
Self-Interest, 543-544
 nurse scheduling, 185
 reporting of errors and near misses, 315
SPT (shortest processing time)
 Sequencing, 274, 521-522
System Capacity, 51, 500-502
 long-range bed and nurse capacity planning, 166
 OR scheduling, 273
Task Simplification, 52, 80, 85, 515-516
 imaging responsiveness, 399
 laboratory error reduction, 422
 laboratory turnaround time, 379
 nurse shift handoffs, 222
Task Standardization, 52, 80, 85, 516-518
 imaging responsiveness, 399
 laboratory error reduction, 422
 laboratory turnaround time, 379
 nurse shift handoffs, 222
Test Quality, 536-537
 laboratory error reduction, 422
 surgical patient safety, 295
Utilization, 51, 79, 502-503
 imaging responsiveness, 398
 laboratory turnaround time, 378
 long-range bed and nurse capacity planning, 167
 OR scheduling, 274
Value of Information, 535-536
- laboratory error reduction, 422
- nurse shift handoffs, 222
- surgical patient safety, 295

Variability, 51, 79, 507-510
- imaging responsiveness, 397
- laboratory turnaround time, 378
- long-range bed and nurse capacity planning, 166
- nurse scheduling, 185
- OR scheduling, 274

Variability Buffering, 51-52, 510-511
- imaging responsiveness, 398
- laboratory turnaround time, 379
- nurse scheduling, 185

Variability Buffering in Service Systems, 511
- imaging responsiveness, 398
- laboratory turnaround time, 379

Veto Power, 547
- and OR scheduling delays, 276
- nurse scheduling, 185

Visual Information, 422

Waiting Time Psychology, 541-542
- imaging responsiveness, 402-403
- OR scheduling, 275-276

Workload, 84, 422-423, 538-539

Mansfield, Peter, 356-357

material flow in operating room, 262-263

Material Requirements Planning (MRP) systems, 470

Mayo Clinic, 475

McKinley, William, 354

medical directors (ED), 37

Medical School of Salerno, 250

medical technicians, 363

medical technologists, 363

medical tourism, 7

Mendel, Gregor, 349, 351

Mercalon Hospital Trauma-Burn Center (TBC), nurse scheduling case study, 206-208
- burn average daily arrivals by month, 209
- nurse shift auctions, 216, 218-220

refined patient demand model, 213-215
TBC census and staff by month, 209
trauma average daily arrivals by month, 208
understaffing/overstaffing cost management, 210-212

Mercy Academic Medical Center (MAMC), shift-to-shift nursing report practices, 229
change planning, 229-231
evaluation, 234-235
recommendations, 232, 234

metrics
- cost metrics, 558-559
- diagnostic unit performance metrics, 370
 - clinical laboratories, 370-373
 - Imaging Department, 373-374
- EDs (Emergency Departments)
 - performance metrics, 42-47
 - establishing, 580
 - explained, 550-552
 - learning metrics, 561
 - operating room performance metrics, 263-265
- nursing unit performance metrics, 153, 157, 178-180
 - bottleneck resources, 156-157
 - clinical, 178
 - financial, 179
 - fixed versus variable cost assets, 155-156
 - operational, 178
 - organizational, 180
 - sample performance metrics, 153-155
- patient satisfaction metrics, 557
- quality metrics, 554-557
- revenue metrics, 559-560
- staff satisfaction metrics, 560
- time metrics, 553-554
- volume metrics, 552-553

miasma theory, 346

microbes, 253

mid-level practitioners (MLPs), 38

military emergency medical services, history of, 30
minimal care, 486
MinuteClinic, 473-475, 493
mitigating harm, 577-578
 EDs (Emergency Departments), 104
laboratory errors, 432, 436-443
surgical patient safety, 305-306
MLPs (mid-level practitioners), 38
modular manufacturing, 72
Moniz, Egas, 358
Monte Carlo simulation, 173
Morgagni, Giovanni Battista, 351
Mortality and Morbidity (M&M) conferences, 326
Motivation for Change principle, 315-316, 549-550
motivation, increasing, 319-320, 582
Mouyen, Francis, 359
MRI (Magnetic Resonance Imaging) technology, 356, 361
MRI scanners
MRP (Material Requirements Planning) systems, 470
Mullis, Kary, 353

N

National Center for Injury Prevention and Control (NCIPC), 31
National Council Licensing Examination for Practical Nurses (NCLEX-PN), 147
National Council Licensing Examination for Registered Nurses (NCLEX-RN), 147
The National Health Planning and Development Act of 1974, 591
national health planning goals, 591-592
NCIPC (National Center for Injury Prevention and Control), 31
NCLEX-PN (National Council Licensing Examination for Practical Nurses), 147
NCLEX-RN (National Council Licensing Examination for Registered Nurses), 147
near misses, 293, 555
Negative Experiences principle, 542-543
nervousness, 470
Newsvendor principle, 168-169, 505-506
Newsvendor with Normal Demand principle, 506-507
NHS (Northampton Health System), Seaberg Hospital case study, 173-178
Nightingale, Florence, 138-139, 143, 346
9-1-1 system, development of, 30
nitrous oxide, 251
no harms incident, 555
nonurgent (triage), 40
nonvalue added time, 588
Northampton Health System (NHS), Seaberg Hospital case study, 173-178
nosocomial infections, 152
Novo Nordisk insulin pen, 475
NPs (nurse practitioners), 38
nuclear medicine equipment, 362
nurse managers, 38
nurse practitioners (NPs), 38
nurse scheduling
 characteristics of good nurse scheduling system, 181
general scheduling process, 181-185
Mercalon Hospital Trauma-Burn Center (TBC) case study, 206-208
burn average daily arrivals by month, 209
nurse shift auctions, 216-220
refined patient demand model, 213-215
TBC census and staff by month, 209
trauma average daily arrivals by month, 208
understaffing/overstaffing cost management, 210-212
metrics, 178-180
 clinical, 178
 financial, 179
 operational, 178
 organizational, 180
nature of problem, 180-181
objectives and practices, 186-195
relevant management principles, 185-186
St. Mary’s Hospital case study
analysis, 200-202
cross-training and cooperative staffing
model, 203-206
flexible nursing capacity, 202-203
nurse staffing costs, 196-197
patient rotation system, 198-200
traditional patient placement, 197-198
nurse shift auctions, 216-220
nurse shift handoffs, 220
Mercy Academic Medical Center
(MAMC) case study
change planning, 229-231
evaluation, 234-235
recommendations, 232, 234
nature of problem, 220-221
objectives and practices, 224-228
relevant management principles, 222-223
nurse stations (ED), 34-35
nurse supervisors, 38
nursing report, 220
nursing shift report, 220
nursing units
charge nurses, 38
circulating nurses, 259
emergency nurses, 38
history of, 137-143
human assets
administrators and technicians, 147-148
doctors, 148, 150-151
nurses, 146-147
intermediate-range scheduling, 159
licensed practical nurses (LPNs), 38
long-range bed and nurse
capacity planning
bed inventories, 162-163
nature of problem, 161-162
objectives and practices, 169-173
relevant management principles, 164-169
Seaberg Hospital case study, 173-178
staffing levels, 163-164
long-range strategic planning, 158
metrics, 153
fixed versus variable cost assets, 155-156
relevant management principles, 185-186
Mercy Academic Medical Center
(MAMC) case study, 229-235
nature of problem, 220-221
objectives and practices, 224-228
relevant management principles, 222-223
nurse supervisors, 38
nursing education, 146-147
nursing hierarchy, 147-148
patient flow, 151-152
physical assets, 144-146
radiological nurses, 364
registered nurses (RNs), 38
scheduling
characteristics of good nurse scheduling
system, 181
general scheduling process, 181-185
Mercalon Hospital Trauma-Burn Center
(TBC) case study, 206-220
metrics, 178-180
nature of problem, 180-181
objectives and practices, 186-195
relevant management principles, 185-186
St. Mary’s Hospital case study, 196-206
scrub nurses, 259
short-term scheduling, 159-160
stakeholders’ perspectives, 127-136,
235-239
Oakwood Hospital (Dearborn, MI), ED
responsiveness at, 73-75
observation beds, 146
observation units (ED), 36
 case study: designing an observation unit for Lincoln Hospital, 109-111
 improvement policies, 108-109
 management principles, 108
 problems with, 107-108
Ohno, Taiichi, 8, 462
on-call specialists, 39
Open MRI Systems, 359
operating rooms
 delays to get on surgical schedule
 Highland Hospital case study, 288-292
 improvement policies, 277-288
 nature of problem, 271-272
 relevant management principles, 272-277
history of surgery
 control of bleeding, 250-251
 infection control, 252-254
 knowledge of human anatomy, 249-250
 pain control, 251-252
 Stone Age evidence, 248-249
human assets, 258-260
management decisions
 decision hierarchy, 266
 intermediate-range scheduling, 268-269
 long-range strategic planning, 266-268
 short-term scheduling, 269-271
material flow, 262-263
organizational learning, 312
 case study: Western Hospital D&C (Death and Complication) conferences, 326-332
 improvement policies, 316-326
 nature of problem, 313-315
 relevant management principles, 315-316
 increasing motivation, 582
 table of generic options, 585
organizational metrics
 for EDs (Emergency Departments), 46
 for nursing units, 180
ORs. See operating rooms
Osler, William, 462
outcome metrics for EDs (Emergency Departments), 42
overcrowding in EDs (Emergency Departments)
 capacity overloads, 50-51
 case study: improving ED responsiveness at Oakwood Hospital (Dearborn, MI), 73-75
 causes of, 32, 48-49
 improvement policies
 enhancing patient perceptions, 72-73
 improving sequencing, 70-72
 improving synchronization, 65-67
nature of problem, 292-294
relevant management principles, 294-297
performance metrics, 263-265
physical assets, 254-258
staff flow, 262
stakeholders’ perspectives, 243-248, 333-336
operational metrics for nursing units, 178
optimizing sequencing, 569-570
organizational learning, 579-585
 improving execution of learning process, 582-584
 improving implementation of change, 584
 improving information, 580-581
 in operating rooms, 312
 case study: Western Hospital D&C (Death and Complication) conferences, 326-332
 improvement policies, 316-326
 nature of problem, 313-315
 relevant management principles, 315-316
 increasing motivation, 582
 table of generic options, 585
organizational metrics
 for EDs (Emergency Departments), 46
 for nursing units, 180
ORs. See operating rooms
Osler, William, 462
outcome metrics for EDs (Emergency Departments), 42
overcrowding in EDs (Emergency Departments)
 capacity overloads, 50-51
 case study: improving ED responsiveness at Oakwood Hospital (Dearborn, MI), 73-75
 causes of, 32, 48-49
 improvement policies
 enhancing patient perceptions, 72-73
 improving sequencing, 70-72
 improving synchronization, 65-67
nature of problem, 292-294
relevant management principles, 294-297
performance metrics, 263-265
physical assets, 254-258
staff flow, 262
stakeholders’ perspectives, 243-248, 333-336
operational metrics for nursing units, 178
optimizing sequencing, 569-570
organizational learning, 579-585
 improving execution of learning process, 582-584
 improving implementation of change, 584
 improving information, 580-581
 in operating rooms, 312
 case study: Western Hospital D&C (Death and Complication) conferences, 326-332
 improvement policies, 316-326
 nature of problem, 313-315
 relevant management principles, 315-316
 increasing motivation, 582
 table of generic options, 585
organizational metrics
 for EDs (Emergency Departments), 46
 for nursing units, 180
ORs. See operating rooms
Osler, William, 462
outcome metrics for EDs (Emergency Departments), 42
overcrowding in EDs (Emergency Departments)
 capacity overloads, 50-51
 case study: improving ED responsiveness at Oakwood Hospital (Dearborn, MI), 73-75
 causes of, 32, 48-49
 improvement policies
 enhancing patient perceptions, 72-73
 improving sequencing, 70-72
 improving synchronization, 65-67

increasing capacity, 62-65
reducing variability, 67-70
reducing workload, 60-62
table of, 54-60
negative consequences of, 32, 49
psychology, 53-54
sequencing, 52-53
variability, 51-52
overstaffing cost management, Meralcon Hospital Trauma-Burn Center (TBC) case study, 210-212

PACS (picture archiving and communication system), 358
pain control, 251-252
Pare, Ambroise, 250
Pareto Efficiency principle, 547-549
 nurse scheduling, 186
 OR scheduling, 277
PAs (physician assistants), 38
passive data collection, 317, 580
Pasteur, Louis, 253, 345, 347, 351
pathology assistants, 362
Pathology Department. See clinical laboratories
patient anxiety, reducing, 571
patient demand model, Meralcon Hospital Trauma-Burn Center (TBC) case study, 213-215
patient flow
 custom care hospitals, 491-492
 definition of, 498
 EDs (Emergency Departments), 39-41
 flow principles
 capacity principles, 499-507
 protection principles, 522-525
 sequencing principles, 519-522
 task efficiency principles, 513-519
 variability principles, 507-513
general hospitals, 489-490
 integration hub hospitals, 490
operating room, 260-261
nursing units, 151-152
patient perceptions, enhancing, 570-572
 in EDs (Emergency Departments), 72-73
 nurse scheduling, 193
 operating room scheduling delays, 284-287
patient placement, St. Mary’s Hospital case study
 analysis, 200-202
 patient rotation system, 198-200
 traditional patient placement, 197-198
patient safety, improving, 573-579
 EDs (Emergency Departments), 85-88
 accuracy of treatment, 81-82
 case study: eliminating ICU infections at Johns Hopkins Hospital, 104-107
 causes of preventable adverse outcomes, 78
 execution phase, 84-85
 improvement phase, 88-104
 information phase, 82-83
 liability challenges, 76
 patient protection, 85-88
 planning phase, 84
 rates of medical errors in ED, 75-76
 speed of treatment, 79-81
 systems perspective on patient safety, 76-78
 improving decisions, 574-576
 improving execution, 576-577
 improving protection and mitigation, 577-578
 improving responsiveness, 574
 table of generic options, 579
surgical patient safety
 nature of problem, 292-294
 relevant management principles, 294-297
patient satisfaction metrics, 42, 557
pediatric units (ED), 36
penicillin G benzathine case (1996 death of day-old infant), 86
Index 615

Pepys, Samuel, 251
perception principles explained, 540-541
Negative Experiences, 542-543
Waiting Time Psychology, 541-542
performance metrics. See metrics
perioperative nurses, 259
Petri, Richard Julius, 352
pharmacists, 39
pharmacogenetics, 350
phlebotomists, 363
physical assets
of diagnostic units, 359
clinical laboratories, 360-361
Imaging Department, 361-362
of EDs (Emergency Departments), 33-36
of nursing units, 144-146
of operating rooms, 254-258
physical resources, adding, 563
physician assistants (PAs), 38
physicians
attending physicians, 37
emergency physicians, 37
hospital rounds, 148, 150-151
physicians in training, 37
physician ownership
in ambulatory surgical centers (ASCs), 12
in specialty hospitals, 12
trauma surgeons, 37
picture archiving and communication system (PACS), 358
Pirquet, Clemens von, 352
planning
in EDs (Emergency Departments), 84
for nursing units
intermediate-range scheduling, 159
long-range capacity planning. See long-range bed and nurse capacity planning
long-range strategic planning, 158
nurse scheduling. See nurse scheduling
short-term scheduling, 159-160
for operating rooms
intermediate-range scheduling, 268-269
long-range strategic planning, 266-268
short-term scheduling, 269-271
point kaizens, 467
Pooling principle, 52, 513
long-range bed and nurse capacity planning, 167
nurse scheduling, 185
portable external defibrillators, development of, 30
post-postanalytic steps (diagnostic unit flows), 366
post-symptomatic diagnosis, 350
postanalytic steps (diagnostic unit flows), 366
posterior probabilities, 529
postexam time (imaging), reducing, 411-415
postprocedure recovery (OR), 257
potassium citrate, 251
practice combining with theory, 13-14
focus on, 7-8
pre-preanalytic steps (diagnostic unit flows), 366
preanalytic steps (diagnostic unit flows), 366
precision medicine, 471
preexam time (imaging), reducing, 408-411
prelab turnaround time, reducing, 387-390
prelaboratory time, 366
preprocedure preparation (OR), 256
Press Ganey, 124
presymptomatic diagnosis, 350
preventable adverse events, 293
prevention, 486
primary nurses, 38
principles-driven brainstorming, 16-17
principles-driven management combining theory and practice, 13-14
future health care policy changes, 17-19
principles-driven brainstorming, 16-17
prior probabilities, 529
prioritizing tasks in nurse scheduling, 192
probabilities
 posterior probabilities, 529
 prior probabilities, 529
procedure rooms (OR), 256
process errors, 293
process integration, 466-467
 process hierarchy, 467-470
 product variety, 470-472
 product/process matrix, 472-476
process metrics for EDs (Emergency Departments), 42
process times, reducing, 564
process variability, reducing, 568
product integration, 466-467
 process hierarchy, 467-470
 product variety, 470-472
 product/process matrix, 472-476
product variety, 470-472
product/process matrix, 472-476
profit maximization versus historical values, 9-13
protection errors, 419
protection metrics, 555
protection principles
 explained, 522
 Foolproofing, 523-524
 Intuitive Information, 524-525
 Redundancy, 522-523
protection, improving, 577-578
psychiatric unit (ED), 36
psychology, wait time psychology, 53-54
puerperal fever, 252
Purcell, Edward, 356

Q
quality at the source, 555
quality metrics, 554-557
quality variability, 556
queuing theory, 172

R
radioimmunoassay, 352
radiologic technologists, 364
radiological nurses, 364
radiologist assistants, 364
radiologists, 363
Radiology Department. See Imaging Department
Rapid Medical Evaluation (RME) carts, 63
read-back protocols, 99
recovery errors, 419
reducing
 blocking/starving, 64-65, 566
 imaging postexam time, 411-415
 imaging preexam time, 408-411
 laboratory error. See clinical laboratory error
 laboratory turnaround time. See turnaround time in clinical laboratories
 patient anxiety, 571
 process times, 564
 resistance among key stakeholders, 324-325
 resistance to change, 584
 variability, 567-568
 EDs (Emergency Departments), 67-70
 nurse scheduling, 187-192
 imaging postexam time, 412-413
 imaging preexam time, 410
 laboratory TAT, 392
 operating room scheduling delays, 281-282, 287
 postlab TAT, 393
 prelab TAT, 389
 workload, 563
 ED (Emergency Department)
 workload, 60-62
 nurse scheduling, 187
 nurse shift handoffs, 224
 imaging postexam time, 411
 imaging preexam time, 408
 laboratory TAT, 390
 operating room scheduling delays,
278-279, 285
postlab TAT, 392
prelab TAT, 387

redundancy, increasing, 576-578
EDs (Emergency Departments), 98-103
nurse shift handoffs, 228
strategies for surgical patient safety, 305
strategies to reduce laboratory errors, 426-443

Redundancy principle, 522-523
ED (Emergency Department), 87
laboratory error reduction, 423
nurse shift handoffs, 223
surgical patient safety, 296

registered nurses (RNs), 38
registration area (ED), 34
registration for nurses, 147

reimbursement
bundling, 478
fee-for-episode, 478
fee-for-membership, 478
fee-for-service, 478

Reisman, Karina, 207. See also Mercalon
Hospital Trauma-Burn Center (TBC)
case study
reporting, 102-103, 220, 313-315
residents, 37, 362
resistance among key stakeholders, reducing, 324-325
resistance to change, reducing, 584

resource capacity
definition of, 50, 499-500
long-range bed and nurse capacity planning, 165
OR scheduling, 273

resources
adding, 563
increasing resources allocated to learning, 320
resource capacity
definition of, 50, 499-500
long-range bed and nurse capacity planning, 165

OR scheduling, 273
specialized resource sharing, 483-484
utilization, 500

responsiveness, improving, 562-573
EDs (Emergency Departments), 93-94
enhancing patient perceptions, 570-572
imaging responsiveness
case study: MRI wait time reduction at Windsor Regional Hospital, 415-416
improvement policies, 403-415
nature of problem, 396-397
relevant management principles, 397-403
improving sequencing, 568-570
improving synchronization, 566-567
increasing capacity, 563-566
nurse shift handoffs, 224-226
reducing variability, 567-568
reducing workload, 563
table of generic options, 573

resuscitation units (ED), 35
retractors, 259
retrospective analysis, 103
revenue metrics, 46, 559-560
Reves, Miguel Serveto de, 251
reworking the process, 555
risk prediction, genetic testing for, 350
RME (Rapid Medical Evaluation) carts, 63
RNs (registered nurses), 38
Robot Chemist, 349, 352
Roemer’s Law, 162, 590
Roemer, Milton, 162, 590
Roger of Palermo, 250
Rohrer, Heinrich, 353
roles, future of, 485-494
rounding physicians, 148-151
routine biochemistry analyzers, 361
Röntgen, Wilhelm, 345, 353, 356-357
Ruska, Ernst, 352

S

safe systems, 102
“safety net” hospitals, 11
safety rounds, 104
safety. See patient safety
Sanger, Frederick, 349, 353
satisfaction metrics
 patient satisfaction, 557
 staff satisfaction, 560
satisficing, 96
Satisfied Customers Tell Three Friends, Angry Customers Tell 3,000 (Blackshaw), 542
scheduling
 diagnostic units, 376
 nursing units
 intermediate-range scheduling, 159
 long-range capacity planning. See long-range bed and nurse capacity planning
 nurse scheduling. See nurse scheduling
 short-term scheduling, 159-160
 operating rooms
 intermediate-range scheduling, 268-269
 short-term scheduling, 269-271
Schwann, Theodor, 351
scientists, 362
“scoop and run” ED policies, 124
scrub nurses, 259
scrub rooms, 257
Seaberg Hospital, capacity planning at, 173-178
self-care, 486
Self-Interest principle, 543-544
 nurse scheduling, 185
 reporting of errors and near misses, 315
self-service systems, 468
Semmelweiss, Ignaz, 252, 351
sensitivity of tests, 294, 528
sentinel events, 125
sequencing, improving, 568-570
 EDs (Emergency Departments), 52-53, 70-72
 imaging postexam time, 414-415
 imaging preexam time, 410
 laboratory TAT, 392
 nurse scheduling, 192
 operating room scheduling delays, 282-283, 287
 postlab TAT, 393
 prelab TAT, 390
 principles
 Critical Ratio Sequencing, 520-521
 explained, 519
 SPT (shortest processing time)
 Sequencing, 521-522
 optimizing
 sequencing principles
 Critical Ratio Sequencing, 520-521
 explained, 519
 SPT (shortest processing time)
 Sequencing, 521-522
 service-line forecasting
 explained, 172
 Seaberg Hospital case study, 175
 set-up rooms (OR), 257
 sharing resources, 483-484
 sharp end of treatment process, 81
 shift auctions, 216-220
 shift handoffs. See handoffs
 shift reports, 135, 220
 short-term scheduling, 47
 for diagnostic units, 376
 for nursing units, 159-160
 for operating rooms, 269-271
 shortest processing time (SPT) sequencing, 53, 81, 274, 521-522
 shotgunning, 96
Shouldice Hospital (Toronto), 475
Shouldice, Earl, 475
sick/not sick dichotomy, 96
simplifying
 decision process
 EDs (Emergency Departments), 97-98
 ORs (operating rooms), 302
 laboratories, 426-443
 execution process
 EDs (Emergency Departments), 101
 ORs (operating rooms), 304
Index 619
short-term scheduling, 159-160
for operating rooms
intermediate-range scheduling, 268-269
long-range strategic planning, 266-268
short-range scheduling, 269-271

A Study in Hospital Efficiency
(Codman), 326
sunk cost bias, 534
surgeons, 37, 259
surgery, history of. See also operating rooms
control of bleeding, 250-251
infection control, 252-254
knowledge of human anatomy, 249-250
pain control, 251-252
Stone Age evidence, 248-249
surgical patient safety. See also operating rooms
case study: medical decision making, 307-309
improvement policies, 297-307
relevant management principles, 294-295
Fatigue, 296
First Impressions, 296
Foolproofing, 297
Handoffs, 296-297
Intuitive Information, 297
Redundancy, 296
Test Quality, 295
Value of Information, 295
surgical technicians, 259
Swiss cheese model of system failure, 85-86
Sydenham, Thomas, 345
synchronization, improving, 566-567
EDs (Emergency Departments), 65-67
nurse scheduling, 189-190
nurse shift handoffs, 225
imaging postexam time, 411
imaging preexam time, 410
laboratory TAT, 391
operating room scheduling delays, 281-286
postlab TAT, 393
prelab TAT, 388-389
System Capacity principle, 51, 500-502
long-range bed and nurse capacity planning, 166
OR scheduling, 273
system degradation variability, 556
system errors, 293
system protection and mitigation, 305-306

T

task assignments, improving
laboratories, 425
nurse scheduling, 192
task complexity, 514-515
task efficiency principles
Critical Path, 518-519
Task Simplification, 515-516
Task Standardization, 516-518
task parallelism, increasing, 565
Task Simplification principle, 52, 515-516
in ED (Emergency Department), 80, 85
imaging responsiveness, 399
laboratory error reduction, 422
laboratory turnaround time, 379
nurse shift handoffs, 222
Task Standardization principle, 52, 516-518
imaging responsiveness, 399
in ED (Emergency Department), 80, 85
laboratory error reduction, 422
laboratory turnaround time, 379
nurse shift handoffs, 222
TAT. See turnaround time
TB (tuberculosis), 471
Technicon Corporation AutoAnalyzer, 349
technological errors, 293
telepathology, 484
teleradiology, 368, 484
tesurgery, 484
Test Quality principle, 536-537
laboratory error reduction, 422
surgical patient safety, 295
test sensitivity, 294, 528
test specificity, 294, 528-530
theory
 combining with practice, 13-14
definition of, 14
time
 increasing time allocated to learning, 320
time metrics, 46, 553-554
turnaround time
 improvement policies, 381-393
 nature of problem, 377-378
 relevant management principles, 378-381
University of Michigan Hospital System (UMHS) case study, 393-396
tissue processors, 361
“To Err is Human” (IOM 2000), 292
total TAT, 377
Toyota Motor Corporation, 8, 111
training, improving, 575-576
 EDs (Emergency Departments), 96-100
 nurse shift handoffs, 226
 ORs (operating rooms), 301
 laboratories, 425-442
transcriptionists, 363
transformative shifts, 474
transfusions, history of, 251
trauma surgeons, 37
trepanning, 249
triage
 history of, 29
 triage areas, 34
 triage systems, 40-41
tuberculosis (TB), 471
turnaround time
 improvement policies, 381
 reducing laboratory TAT, 390-392
 reducing postlab TAT, 392-393
 reducing prelab TAT, 387-390
 table of, 382-387
 nature of problem, 377-378
 relevant management principles, 378-381
 Batching, 380
 Buffer Flexibility, 379
 Critical Ratio Sequencing, 380-381
 Handoffs, 381
 Task Simplification, 379
 Task Standardization, 379
 Utilization, 378
 Variability, 378
 Variability Buffering, 379
 Variability Buffering in Service Systems, 379
 University of Michigan Hospital System (UMHS) case study, 393-396
U
UAEMS (University Association for Emergency Medical Services), 30
UAN-NNOC (United American Nurses-National Nurses Organizing Committee), 141
ultrasound technology, 356, 362
UMHS (University of Michigan Hospital System), reduction of laboratory turnaround time, 394-396
understaffing cost management, Mercalon Hospital Trauma-Burn Center (TBC) case study, 210-212
unit secretaries, 39
United American Nurses-National Nurses Organizing Committee (UAN-NNOC), 141
University Association for Emergency Medical Services (UAEMS), 30
University of Michigan Hospital System (UMHS), reduction of laboratory turnaround time, 394-396
urgent (triage), 40
Utilization principle, 502-503
 definition of, 50-51, 500
 ED (Emergency Department), 79
 imaging responsiveness, 398
 laboratory turnaround time, 378
 long-range bed and nurse capacity planning, 166-167
 OR scheduling, 273-274
 preexam time, 409
Vallebona, Allessandro, 355
tvalue added time, 588
Value of Information principle, 535-536
 laboratory error reduction, 422
 nurse shift handoffs, 222
 surgical patient safety, 295
value stream division, 71
cvalues-based behavior versus profit maximization, 9-13
Van Slyke, Donald, 348, 352
variability
definition of, 588
 principles
 Buffer Flexibility, 511
 explained, 507
 Little’s Law, 511-513
Pool, 513
Variability, 507-510
Variability Buffering, 510-511
Variability Buffering in Service Systems, 511
quality variability, 556
reducing, 567-568
 EDs (Emergency Departments), 51-52,
 67-70, 79
 imaging responsiveness, 397-398
 laboratory TAT, 378-379, 392
 nurse scheduling, 185-192
 postexam time, 412-413
 postlab TAT, 393
 preexam time, 410
 prelab TAT, 389
 operating room scheduling, 274,
 281-282, 287
 system degradation variability, 556
Variability Buffering in Service Systems principle, 511
Variability Buffering principle, 510-511
Variability principle, 507-510
variability principles
 Buffer Flexibility, 511
 explained, 507

Little’s Law, 511-513
Pool, 513
Variability, 507-510
Variability Buffering, 510-511
Variability Buffering in Service Systems, 511
variable-cost assets, 155-156
variety, product variety, 470-472
variolation, 347
Versalius, Andreas, 250
Veto Power principle, 547
 nurse scheduling, 185
 OR scheduling, 276
Victoria (Queen of England), 252
Virchow, Rudolpf, 351
Visual Information principle, 422
volume metrics, 46, 552-553

W
waiting room (ED), 34
waiting room (OR), 256
Waiting Time Psychology principle, 53-54,
 541-542, 570-573
 imaging responsiveness, 402-403
 OR scheduling, 275-276
Walsh, Alan, 352
Wassermann, August von, 352
waste reduction, 553
Watson, James, 349, 352
Western Hospital, D&C (Death and Complication) conferences, 326-332
white space, 404
whiteboards, 98
Widal, Georges-Fernand, 352
Wienstein, John, 30
Windsor Regional Hospital (Ontario), MRI wait time reduction at, 415-416
workload
 balancing, 63-64, 564-565
 reducing, 563
 ED (Emergency Department), 60-62, 84
 nurse scheduling, 187
 nurse shift handoffs, 224
imaging postexam time, 411
imaging preexam time, 408
laboratory error reduction, 422-423
laboratory TAT, 390
operating room scheduling, 278-279, 285
postlab TAT, 392
prelab TAT, 387
Workload principle, 538-539
Workload principle, 538-539
written sign-out templates, 99

X-Y-Z

X-ray equipment, 361
x-ray technology, history of, 354-355
XDR-TB (extensively drug-resistant tuberculosis), 496

y-me.org, 468
Yalow, Rosslyn, 352
Yerkes-Dodson Law, 538