
Definitive
XML
Schema

Second Edition

The Charles F. Goldfarb
Definitive XML Series

Dmitry KirsanovPriscilla Walmsley

Definitive XML Schema Second Edition XSLT 2.0 Web Development
Yuri Rubinsky and Murray MaloneyCharles F. Goldfarb and Paul Prescod

Charles F. Goldfarb’s XML Handbook™
Fifth Edition

SGML on the Web:
Small Steps Beyond HTML

David MegginsonRick Jelliffe

The XML and SGML Cookbook:
Recipes for Structured Information

Structuring XML Documents
Sean McGrath

Charles F. Goldfarb, Steve Pepper,
and Chet Ensign

XML Processing with Python
XML by Example:
Building E-commerce ApplicationsSGML Buyer’s Guide: Choosing the Right

XML and SGML Products and Services ParseMe.1st:
SGML for Software DevelopersG. Ken Holman

Definitive XSL-FO Chet Ensign
Definitive XSLT and XPath $GML: The Billion Dollar Secret

Bob DuCharme Ron Turner, Tim Douglass, and
Audrey TurnerXML: The Annotated Specification

SGML CD ReadMe.1st:
SGML for Writers and EditorsTruly Donovan

Charles F. Goldfarb and
Priscilla Walmsley

Industrial-Strength SGML:
An Introduction to Enterprise Publishing

XML in Office 2003:
Information Sharing with Desktop XML

Lars Marius Garshol

Definitive XML Application Development
Michael FloydJP Morgenthal with Bill la Forge

Building Web Sites with XMLEnterprise Application Integration with
XML and Java Fredrick Thomas Martin

TOP SECRET Intranet:
How U.S. Intelligence Built Intelink—The
World’s Largest, Most Secure Network

Michael Leventhal, David Lewis, and
Matthew Fuchs

Designing XML Internet Applications
J. Craig CleavelandAdam Hocek and David Cuddihy

Program Generators with XML and JavaDefinitive VoiceXML

About the Series Author

Charles F. Goldfarb is the father of XML technology. He invented SGML, the Standard
Generalized Markup Language on which both XML and HTML are based. You can find
him on the Web at: www.xmlbooks.com.

About the Series Logo

The rebus is an ancient literary tradition, dating from 16th century Picardy, and is especially
appropriate to a series involving fine distinctions between markup and text, metadata and
data. The logo is a rebus incorporating the series name within a stylized XML comment
declaration.

www.xmlbooks.com

Definitive
XML
Schema

Second Edition

Priscilla Walmsley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

Titles in this series are produced using XML, SGML, and/or XSL. XSL-FO documents are
rendered into PDF by the XEP Rendering Engine from RenderX: www.renderx.com.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382–3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data is on file

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236–3290.

ISBN-13: 978-0-132-88672-7
ISBN-10: 0-132-88672-3
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann
Arbor, MI.
First printing: September 2012

Editor-in-Chief: Mark L. Taub
Managing Editor: Kristy Hart
Book Packager: Alina Kirsanova
Cover Designer: Alan Clements

www.renderx.com
www.informit.com/ph

To Doug, my SH

This page intentionally left blank

Overview

2Schemas: An introductionChapter 1

16A quick tour of XML SchemaChapter 2

34NamespacesChapter 3

56Schema compositionChapter 4

78Instances and schemasChapter 5

88Element declarationsChapter 6

112Attribute declarationsChapter 7

128Simple typesChapter 8

158Regular expressionsChapter 9

180Union and list typesChapter 10

200Built-in simple typesChapter 11

256Complex typesChapter 12

300Deriving complex typesChapter 13

350AssertionsChapter 14

384Named groupsChapter 15

406Substitution groupsChapter 16

422Identity constraintsChapter 17

vii

446
Redefining and overriding schema
components

Chapter 18

472Topics for DTD usersChapter 19

500XML information modelingChapter 20

538Schema design and documentationChapter 21

594Extensibility and reuseChapter 22

616VersioningChapter 23

648XSD keywordsAppendix A

690Built-in simple typesAppendix B

Overviewviii

Contents

xxxiForeword

xxxiiiAcknowledgments

xxxvHow to use this book

2Schemas: An introductionChapter 1

3What is a schema?1.1

5The purpose of schemas1.2

5Data validation1.2.1

5A contract with trading partners1.2.2

6System documentation1.2.3

6Providing information to processors1.2.4

6Augmentation of data1.2.5

6Application information1.2.6

7Schema design1.3

7Accuracy and precision1.3.1

8Clarity1.3.2

8Broad applicability1.3.3

ix

9Schema languages1.4

9Document Type Definition (DTD)1.4.1

10Schema requirements expand1.4.2

11W3C XML Schema1.4.3

12Other schema languages1.4.4

12RELAX NG1.4.4.1

13Schematron1.4.4.2

16A quick tour of XML SchemaChapter 2

17An example schema2.1

18The components of XML Schema2.2

18Declarations vs. definitions2.2.1

19Global vs. local components2.2.2

20Elements and attributes2.3

20The tag/type distinction2.3.1

21Types2.4

21Simple vs. complex types2.4.1

22Named vs. anonymous types2.4.2

22The type definition hierarchy2.4.3

23Simple types2.5

23Built-in simple types2.5.1

24Restricting simple types2.5.2

24List and union types2.5.3

25Complex types2.6

25Content types2.6.1

26Content models2.6.2

27Deriving complex types2.6.3

28Namespaces and XML Schema2.7

Contentsx

29Schema composition2.8

30Instances and schemas2.9

31Annotations2.10

32Advanced features2.11

32Named groups2.11.1

32Identity constraints2.11.2

32Substitution groups2.11.3

33Redefinition and overriding2.11.4

33Assertions2.11.5

34NamespacesChapter 3

35Namespaces in XML3.1

36Namespace names3.1.1

37Namespace declarations and prefixes3.1.2

39Default namespace declarations3.1.3

40Name terminology3.1.4

41Scope of namespace declarations3.1.5

42Overriding namespace declarations3.1.6

43Undeclaring namespaces3.1.7

44Attributes and namespaces3.1.8

46A summary example3.1.9

48

The relationship between namespaces and
schemas

3.2

48Using namespaces in schemas3.3

48Target namespaces3.3.1

50The XML Schema Namespace3.3.2

51The XML Schema Instance Namespace3.3.3

51The Version Control Namespace3.3.4

xiContents

52Namespace declarations in schema documents3.3.5

52Map a prefix to the XML Schema Namespace3.3.5.1

53Map a prefix to the target namespace3.3.5.2

54Map prefixes to all namespaces3.3.5.3

56Schema compositionChapter 4

57Modularizing schema documents4.1

58Defining schema documents4.2

61Combining multiple schema documents4.3

62include4.3.1

63The syntax of includes4.3.1.1

65Chameleon includes4.3.1.2

66import4.3.2

67The syntax of imports4.3.2.1

70Multiple levels of imports4.3.2.2

72Multiple imports of the same namespace4.3.2.3

75Schema assembly considerations4.4

75Uniqueness of qualified names4.4.1

76Missing components4.4.2

77Schema document defaults4.4.3

78Instances and schemasChapter 5

79Using the instance attributes5.1

81Schema processing5.2

81Validation5.2.1

82Augmenting the instance5.2.2

83Relating instances to schemas5.3

84Using hints in the instance5.3.1

84The xsi:schemaLocation attribute5.3.1.1

86The xsi:noNamespaceSchemaLocation attribute5.3.1.2

87The root element5.4

Contentsxii

88Element declarationsChapter 6

89Global and local element declarations6.1

89Global element declarations6.1.1

93Local element declarations6.1.2

95
Design hint: Should I use global or local element
declarations?

6.1.3

96Declaring the types of elements6.2

98Qualified vs. unqualified forms6.3

98Qualified local names6.3.1

98Unqualified local names6.3.2

99Using elementFormDefault6.3.3

100Using form6.3.4

101Default namespaces and unqualified names6.3.5

101Default and fixed values6.4

102Default values6.4.1

103Fixed values6.4.2

105Nils and nillability6.5

108Using xsi:nil in an instance6.5.1

109Making elements nillable6.5.2

112Attribute declarationsChapter 7

113Attributes vs. elements7.1

115Global and local attribute declarations7.2

115Global attribute declarations7.2.1

117Local attribute declarations7.2.2

119
Design hint: Should I use global or local attribute
declarations?

7.2.3

120Declaring the types of attributes7.3

xiiiContents

122Qualified vs. unqualified forms7.4

123Default and fixed values7.5

124Default values7.5.1

125Fixed values7.5.2

126Inherited attributes7.6

128Simple typesChapter 8

129Simple type varieties8.1

130
Design hint: How much should I break down my data
values?

8.1.1

131Simple type definitions8.2

131Named simple types8.2.1

132Anonymous simple types8.2.2

133Design hint: Should I use named or anonymous types?8.2.3

135Simple type restrictions8.3

136Defining a restriction8.3.1

137Overview of the facets8.3.2

139Inheriting and restricting facets8.3.3

140Fixed facets8.3.4

141Design hint: When should I fix a facet?8.3.4.1

142Facets8.4

142Bounds facets8.4.1

143Length facets8.4.2

143Design hint: What if I want to allow empty values?8.4.2.1

144Design hint: What if I want to restrict the length of an integer?8.4.2.2

145totalDigits and fractionDigits8.4.3

145Enumeration8.4.4

148Pattern8.4.5

150Assertion8.4.6

Contentsxiv

150Explicit Time Zone8.4.7

151Whitespace8.4.8

152Preventing simple type derivation8.5

154Implementation-defined types and facets8.6

154Implementation-defined types8.6.1

155Implementation-defined facets8.6.2

158Regular expressionsChapter 9

159The structure of a regular expression9.1

161Atoms9.2

162Normal characters9.2.1

164The wildcard escape character9.2.2

164Character class escapes9.2.3

165Single-character escapes9.2.3.1

166Multicharacter escapes9.2.3.2

167Category escapes9.2.3.3

170Block escapes9.2.3.4

171Character class expressions9.2.4

171Listing individual characters9.2.4.1

172Specifying a range9.2.4.2

173Combining individual characters and ranges9.2.4.3

173Negating a character class expression9.2.4.4

174Subtracting from a character class expression9.2.4.5

175Escaping rules for character class expressions9.2.4.6

175Parenthesized regular expressions9.2.5

176Quantifiers9.3

177Branches9.4

180Union and list typesChapter 10

181Varieties and derivation types10.1

183Union types10.2

xvContents

183Defining union types10.2.1

185Restricting union types10.2.2

186Unions of unions10.2.3

187Specifying the member type in the instance10.2.4

188List types10.3

188Defining list types10.3.1

189Design hint: When should I use lists?10.3.2

190Restricting list types10.3.3

192Length facets10.3.3.1

192Enumeration facet10.3.3.2

194Pattern facet10.3.3.3

195Lists and strings10.3.4

196Lists of unions10.3.5

196Lists of lists10.3.6

198Restricting the item type10.3.7

200Built-in simple typesChapter 11

201The XML Schema type system11.1

202The type hierarchy11.1.1

204Value spaces and lexical spaces11.1.2

204Facets and built-in types11.1.3

205String-based types11.2

205string, normalizedString, and token11.2.1

207
Design hint: Should I use string, normalizedString,
or token?

11.2.1.1

208Name11.2.2

210NCName11.2.3

211language11.2.4

213Numeric types11.3

Contentsxvi

213float and double11.3.1

215decimal11.3.2

217Integer types11.3.3

220Design hint: Is it an integer or a string?11.3.3.1

221Date and time types11.4

221date11.4.1

222time11.4.2

223dateTime11.4.3

224dateTimeStamp11.4.4

225gYear11.4.5

226gYearMonth11.4.6

227gMonth11.4.7

227gMonthDay11.4.8

228gDay11.4.9

229duration11.4.10

231yearMonthDuration11.4.11

232dayTimeDuration11.4.12

233Representing time zones11.4.13

234Facets11.4.14

235Date and time ordering11.4.15

236Legacy types11.5

236ID11.5.1

237IDREF11.5.2

239IDREFS11.5.3

240ENTITY11.5.4

242ENTITIES11.5.5

243NMTOKEN11.5.6

xviiContents

244NMTOKENS11.5.7

245NOTATION11.5.8

246Other types11.6

246QName11.6.1

247boolean11.6.2

248The binary types11.6.3

250anyURI11.6.4

253Comparing typed values11.7

256Complex typesChapter 12

257What are complex types?12.1

258Defining complex types12.2

258Named complex types12.2.1

260Anonymous complex types12.2.2

261Complex type alternatives12.2.3

262Content types12.3

262Simple content12.3.1

264Element-only content12.3.2

264Mixed content12.3.3

265Empty content12.3.4

266Using element declarations12.4

266Local element declarations12.4.1

267Element references12.4.2

268Duplication of element names12.4.3

270Using model groups12.5

270sequence groups12.5.1

272Design hint: Should I care about the order of elements?12.5.1.1

273choice groups12.5.2

Contentsxviii

275Nesting of sequence and choice groups12.5.3

276all groups12.5.4

278Named model group references12.5.5

279Deterministic content models12.5.6

281Using attribute declarations12.6

281Local attribute declarations12.6.1

282Attribute references12.6.2

284Attribute group references12.6.3

284Default attributes12.6.4

284Using wildcards12.7

285Element wildcards12.7.1

287Controlling the namespace of replacement elements12.7.1.1

287Controlling the strictness of validation12.7.1.2

289Negative wildcards12.7.1.3

292Open content models12.7.2

292Open content in a complex type12.7.2.1

295Default open content12.7.2.2

298Attribute wildcards12.7.3

300Deriving complex typesChapter 13

301Why derive types?13.1

302Restriction and extension13.2

303Simple content and complex content13.3

303simpleContent elements13.3.1

304complexContent elements13.3.2

305Complex type extensions13.4

306Simple content extensions13.4.1

307Complex content extensions13.4.2

309Extending choice groups13.4.2.1

310Extending all groups13.4.2.2

xixContents

311Extending open content13.4.2.3

312Mixed content extensions13.4.3

313Empty content extensions13.4.4

314Attribute extensions13.4.5

315Attribute wildcard extensions13.4.6

316Complex type restrictions13.5

317Simple content restrictions13.5.1

318Complex content restrictions13.5.2

320Eliminating meaningless groups13.5.2.1

321Restricting element declarations13.5.2.2

322Restricting wildcards13.5.2.3

324Restricting groups13.5.2.4

329Restricting open content13.5.2.5

331Mixed content restrictions13.5.3

332Empty content restrictions13.5.4

333Attribute restrictions13.5.5

335Attribute wildcard restrictions13.5.6

337Restricting types from another namespace13.5.7

339
Using targetNamespace on element and attribute
declarations

13.5.7.1

341Type substitution13.6

343Controlling type derivation and substitution13.7

343final: Preventing complex type derivation13.7.1

344block: Blocking substitution of derived types13.7.2

346Blocking type substitution in element declarations13.7.3

346abstract: Forcing derivation13.7.4

350AssertionsChapter 14

351Assertions14.1

353Assertions for simple types14.1.1

355Using XPath 2.0 operators14.1.1.1

Contentsxx

357Using XPath 2.0 functions14.1.1.2

359Types and assertions14.1.1.3

362Inheriting simple type assertions14.1.1.4

363Assertions on list types14.1.1.5

365Assertions for complex types14.1.2

367Path expressions14.1.2.1

369Conditional expressions14.1.2.2

370Assertions in derived complex types14.1.2.3

372Assertions and namespaces14.1.3

373Using xpathDefaultNamespace14.1.3.1

375Conditional type assignment14.2

376The alternative element14.2.1

377Specifying conditional type assignment14.2.2

378Using XPath in the test attribute14.2.3

380The error type14.2.4

381Conditional type assignment and namespaces14.2.5

382
Using inherited attributes in conditional type
assignment

14.2.6

384Named groupsChapter 15

385Why named groups?15.1

386Named model groups15.2

386Defining named model groups15.2.1

388Referencing named model groups15.2.2

388Group references15.2.2.1

389Referencing a named model group in a complex type15.2.2.2

391Using all in named model groups15.2.2.3

392Named model groups referencing named model groups15.2.2.4

392Attribute groups15.3

393Defining attribute groups15.3.1

395Referencing attribute groups15.3.2

395Attribute group references15.3.2.1

xxiContents

396Referencing attribute groups in complex types15.3.2.2

397Duplicate attribute names15.3.2.3

398Duplicate attribute wildcard handling15.3.2.4

398Attribute groups referencing attribute groups15.3.2.5

399The default attribute group15.3.3

401Named groups and namespaces15.4

403

Design hint: Named groups or complex type
derivations?

15.5

406Substitution groupsChapter 16

407Why substitution groups?16.1

408The substitution group hierarchy16.2

409Declaring a substitution group16.3

412Type constraints for substitution groups16.4

413Members in multiple groups16.5

414Alternatives to substitution groups16.6

414Reusable choice groups16.6.1

415Substituting a derived type in the instance16.6.2

418Controlling substitution groups16.7

418final: Preventing substitution group declarations16.7.1

419block: Blocking substitution in instances16.7.2

420abstract: Forcing substitution16.7.3

422Identity constraintsChapter 17

423Identity constraint categories17.1

424

Design hint: Should I use ID/IDREF or
key/keyref?

17.2

424Structure of an identity constraint17.3

426Uniqueness constraints17.4

Contentsxxii

428Key constraints17.5

430Key references17.6

432Key references and scope17.6.1

432Key references and type equality17.6.2

433Selectors and fields17.7

433Selectors17.7.1

434Fields17.7.2

435XPath subset for identity constraints17.8

439Identity constraints and namespaces17.9

441Using xpathDefaultNamespace17.9.1

442Referencing identity constraints17.10

446
Redefining and overriding
schema components

Chapter 18

448Redefinition18.1

448Redefinition basics18.1.1

450Include plus redefine18.1.1.1

450Redefine and namespaces18.1.1.2

450Pervasive impact18.1.1.3

451The mechanics of redefinition18.1.2

452Redefining simple types18.1.3

453Redefining complex types18.1.4

454Redefining named model groups18.1.5

454Defining a subset18.1.5.1

455Defining a superset18.1.5.2

456Redefining attribute groups18.1.6

457Defining a subset18.1.6.1

458Defining a superset18.1.6.2

459Overrides18.2

459Override basics18.2.1

xxiiiContents

461Include plus override18.2.1.1

461Override and namespaces18.2.1.2

462Pervasive impact18.2.1.3

462The mechanics of overriding components18.2.2

464Overriding simple types18.2.3

465Overriding complex types18.2.4

466Overriding element and attribute declarations18.2.5

467Overriding named groups18.2.6

468Risks of redefines and overrides18.3

468Risks of redefining or overriding types18.3.1

470Risks of redefining or overriding named groups18.3.2

472Topics for DTD usersChapter 19

473Element declarations19.1

474Simple types19.1.1

475Complex types with simple content19.1.2

476Complex types with complex content19.1.3

478Mixed content19.1.4

479Empty content19.1.5

480Any content19.1.6

480Attribute declarations19.2

480Attribute types19.2.1

481Enumerated attribute types19.2.2

482Notation attributes19.2.3

482Default values19.2.4

483Parameter entities for reuse19.3

484Reusing content models19.3.1

485Reusing attributes19.3.2

486Parameter entities for extensibility19.4

Contentsxxiv

486Extensions for sequence groups19.4.1

489Extensions for choice groups19.4.2

490Attribute extensions19.4.3

492External parameter entities19.5

493General entities19.6

493Character and other parsed entities19.6.1

493Unparsed entities19.6.2

493Notations19.7

494Declaring a notation19.7.1

495Declaring a notation attribute19.7.2

496Notations and unparsed entities19.7.3

497Comments19.8

499Using DTDs and schemas together19.9

500XML information modelingChapter 20

502Data modeling paradigms20.1

503Relational models20.2

504Entities and attributes20.2.1

507Relationships20.2.2

507One-to-one and one-to-many relationships20.2.2.1

507Many-to-many relationships20.2.2.2

508Approach #1: Use containment with repetition20.2.2.2.1

510Approach #2: Use containment with references20.2.2.2.2

512Approach #3: Use relationship elements20.2.2.2.3

514Modeling object-oriented concepts20.3

514Inheritance20.3.1

519Composition20.3.2

522Modeling web services20.4

xxvContents

524Considerations for narrative content20.5

524Semantics vs. style20.5.1

524Benefits of excluding styling20.5.1.1

525Rendition elements: “block” and “inline”20.5.1.2

526Considerations for schema design20.5.2

526Flexibility20.5.2.1

526Reusing existing vocabularies20.5.2.2

526Attributes are for metadata20.5.2.3

527Humans write the documents20.5.2.4

527Considerations for a hierarchical model20.6

527Intermediate elements20.6.1

531Wrapper lists20.6.2

532Level of granularity20.6.3

533Generic vs. specific elements20.6.4

538
Schema design and
documentation

Chapter 21

539The importance of schema design21.1

540Uses for schemas21.2

542Schema design goals21.3

542Flexibility and extensibility21.3.1

543Reusability21.3.2

545Clarity and simplicity21.3.3

545Naming and documentation21.3.3.1

546Clarity of structure21.3.3.2

546Simplicity21.3.3.3

547Support for graceful versioning21.3.4

547Interoperability and tool compatibility21.3.5

548Developing a schema design strategy21.4

550Schema organization considerations21.5

550Global vs. local components21.5.1

Contentsxxvi

551Russian Doll21.5.1.1

553Salami Slice21.5.1.2

554Venetian Blind21.5.1.3

555Garden of Eden21.5.1.4

557Modularizing schema documents21.5.2

559Naming considerations21.6

559Rules for valid XML names21.6.1

560Separators21.6.2

560Name length21.6.3

561Standard terms and abbreviations21.6.4

562Use of object terms21.6.5

564Namespace considerations21.7

564Whether to use namespaces21.7.1

565Organizing namespaces21.7.2

565Same namespace21.7.2.1

568Different namespaces21.7.2.2

572Chameleon namespaces21.7.2.3

575Qualified vs. unqualified forms21.7.3

575Qualified local names21.7.3.1

576Unqualified local names21.7.3.2

576Using form in schemas21.7.3.3

578Form and global element declarations21.7.3.4

578Default namespaces and unqualified names21.7.3.5

579Qualified vs. unqualified element names21.7.3.6

580Qualified vs. unqualified attribute names21.7.3.7

580Schema documentation21.8

581Annotations21.8.1

582User documentation21.8.2

582Documentation syntax21.8.2.1

584Data element definitions21.8.2.2

585Code documentation21.8.2.3

585Section comments21.8.2.4

xxviiContents

586Application information21.8.3

588Non-native attributes21.8.4

589Design hint: Should I use annotations or non-native attributes?21.8.4.1

589Documenting namespaces21.8.5

594Extensibility and reuseChapter 22

596Reuse22.1

596Reusing schema components22.1.1

597Creating schemas that are highly reusable22.1.2

597Developing a common components library22.1.3

599Extending schemas22.2

601Wildcards22.2.1

604Open content22.2.2

605Type substitution22.2.3

607Substitution groups22.2.4

609Type redefinition22.2.5

611Named group redefinition22.2.6

612Overrides22.2.7

616VersioningChapter 23

617Schema compatibility23.1

618Backward compatibility23.1.1

623Forward compatibility23.1.2

626Using version numbers23.2

626Major and minor versions23.2.1

628Placement of version numbers23.2.2

628Version numbers in schema documents23.2.2.1

630Versions in schema locations23.2.2.2

631Versions in instances23.2.2.3

632Versions in namespace names23.2.2.4

633A combination strategy23.2.2.5

Contentsxxviii

634Application compatibility23.3

635Lessening the impact of versioning23.4

636Define a versioning strategy23.4.1

636Make only necessary changes23.4.2

637Document all changes23.4.3

638Deprecate components before deleting them23.4.4

639Provide a conversion capability23.4.5

639Versions of the XML Schema language23.5

640New features in version 1.123.5.1

641Forward compatibility of XML Schema 1.123.5.2

642Portability of implementation-defined types and facets23.5.3

644Using typeAvailable and typeUnavailable23.5.3.1

645Using facetAvailable and facetUnavailable23.5.3.2

648XSD keywordsAppendix A

649ElementsA.1

671AttributesA.2

690Built-in simple typesAppendix B

691Built-in simple typesB.1

695Applicability of facets to built-in simple typesB.2

699Index

xxixContents

Foreword

clas·sic (adjective)
judged over a period of time to be important and of the
highest quality:

a classic novel
a classic car

Neither this definition, nor any of the leading dictionary definitions,
has a usage example anything like:

a classic work on high-tech software

After all, it is a rare book on software that even survives long enough
to be “judged over a period of time.”

Nevertheless, Definitive XML Schema satisfies every definition of
“classic.” It is one of the elite few software books that have been in
print continuously for over ten years, and an essential trustworthy guide
for tens of thousands of readers.

This Second Edition continues to be an essential and trustworthy
classic:

Essential because in the last ten years XML has become the accepted
standard for data interchange, and XML Schema 1.0 is largely
responsible. Now version 1.1 has extended the ability to specify and

xxxi

validate document data, to a degree previously possible only for
databases. These updates are covered in this book by extensive revi-
sions—the most significant 250 of which are flagged in the text and
table of contents. Hundreds more unflagged revisions reflect W3C
corrections of XML Schema errata, and ten years of evolving “best
practices.”

Trustworthy because it is both authoritative and accurate.

The author(ity), Priscilla Walmsley, is a noted consultant who
has been using XML Schema ever since she helped develop it
as a member of the W3C XML Schema Group. She personally
devised many of the current “best practices” described in this
book. Priscilla is the Editor of the W3C XML Schema Primer,
Second Edition.

Accuracy was preserved by using the same XML-based produc-
tion system that was used in 2002, operated by the same team
of XML experts who read and thoroughly understood the book.
Priscilla’s original XML source (in which she had personally
tagged the version 1.1 revisions) was used throughout produc-
tion. Dmitry Kirsanov copy-edited and proofed it, while Alina
Kirsanova prepared the index, coded the XSL transformations,
and generated the camera-ready PDFs.

The result, as you will see, retains the structure, clarity, patient expla-
nations, validated examples (over 450!), and well-reasoned advice that
critics praised in the 2002 edition—but now they are ten years more
up-to-date.

And after you’ve read Definitive XML Schema, Second Edition, it
won’t take another ten years for you, too, to judge it a classic.

Charles F. Goldfarb
Belmont, CA
August 2012

Forewordxxxii

Acknowledgments

First and foremost, I would like to thank Charles Goldfarb for his in-
valuable guidance and support. Alina Kirsanova and Dmitry Kirsanov
did an excellent job preparing this book for publication. I would also
like to thank Mark Taub at Prentice Hall for his hand in the making
this work possible.

Of course, this book would not have been possible without the efforts
of all of the members of the W3C XML Schema Working Group, with
whom I have had the pleasure of working for six years. The content of
this book was shaped by the questions and comments of the people
who contribute to XML-DEV and xmlschema-dev.

Finally, I’d like to thank my Dad for teaching me to “get stuck into
it,” a skill which allowed me to complete this substantial project.

Priscilla Walmsley
Traverse City, Michigan
March 2012

xxxiii

How to use this
book

This book covers the two versions of XML Schema—1.0 and 1.1—and
provides revision bars to assist access to just one or the other. In refer-
ring to both versions as “XML Schema,” the book follows customary
practice, despite the official name of 1.1 being “W3C XML Schema
Definition Language (XSD) 1.1.” For either version, the book is useable
as both a tutorial and a reference.

As a tutorial, the book can be read from cover to cover with confi-
dence that each topic builds logically on the information that was pre-
viously covered. (Of course, knowledge of XML itself is always a pre-
requisite to learning about XML Schema, and is assumed in this book.)

When using this book as a reference, you have several access options
available to you:

A comprehensive index starts on page 699.
An alphabetical list of all the elements and attributes that make

up the XML Schema syntax is in Appendix A on p. 648. For
each there is a reference to further coverage in the body of
the book.

XML Schema includes a basic set of datatypes, known formally
as the “built-in simple types.” They are listed in Appendix B on
p. 690. This appendix also refers to more detailed descriptions
in the body of the book.

xxxv

The major changes in version 1.1 of XML Schema are summa-
rized in Section 23.5.1 on p. 640, with references to detailed
coverage elsewhere in the book.

Revisions in the Second Edition

This edition of Definitive XML Schema contains more than 500 revi-
sions, covering such new and updated topics as:

W3C published corrections for errata in XML Schema 1.0
Current “best practices” after ten years of experience
XML information modeling for relational and object-oriented

modeling paradigms
Schema design: evaluating pros and cons of alternatives
Schema strategy: formulating a coherent strategy for schema

development and maintenance
Version 1.1 updates and additions to XML Schema

Identifying 1.1-related revisions
The author has chosen a “1.1 subset” of the book revisions, comprising
the 250 most significant revisions that deal with version 1.1. If a section,
table, example, or paragraph has content entirely from the “1.1 subset,”
there is a solid gray revision bar on its right. If other material might be
included, the bar is a gray dotted line.

Strategies for using the revision bars
If your interest is solely 1.0 (perhaps because your software does not
yet support 1.1), you may decide to focus on content that either has a
dotted revision bar or no bar at all.

If you are interested only in what is new in 1.1 (presumably because
you already know 1.0), consider content having either a solid or dotted
revision bar in deciding where to focus your reading.

How to use this bookxxxvi

Finally, if your interest is all of 1.1 (because you don’t already know
1.0), you can easily disregard the revision bars (that’s why they are
grayed out).

Syntax tables

This book contains syntax tables, each summarizing the allowed syntax
of an XML Schema component. The first such table does not occur
until Section 4.2 on p. 58, by which point the undefined terms in this
explanation will have been introduced.

Syntax tables, whose captions all start with “XSD Syntax,” look like
the example below, which shows the syntax for named simple types. It
contains the following information:

The element name(s) used for this XML Schema component.
The possible parent element name(s). Note that “1.1”, printed

white on a gray box, precedes override to identify it as a
construct that is only permitted in version 1.1. This convention
is followed in all syntax tables; it occurs once more in this table.

A list of allowed attributes, along with their types, valid values,
and brief descriptions. The names of required attributes appear
in bold font. Default values appear in italics in the Type column.

The allowed child elements, shown as a content model that uses,
for compactness, the XML DTD syntax. Commas indicate that
child elements must appear in the order shown, while vertical
bars (|) indicate a choice among child elements. Occurrence
constraints indicate how many of each may appear: ? means
zero or one, * means zero or more, and + means one or more.
Otherwise, one and only one is required. In this example, the
allowed content is zero or one annotation element, followed
by a choice of either one restriction, one list, or one
union element.

xxxviiHow to use this book

Table XSD Syntax: named simple type definition

Name

simpleType

Parents

schema, redefine, 1.1override

DescriptionTypeAttribute name

Unique ID.IDid

Simple type name.NCNamename

Whether other types
can be derived from
this one.

"#all" | list of
("restriction" | "list" |

"union" | 1.1"extension")

final

Content

annotation?, (restriction | list | union)

In some cases, there is more than one syntax table for the same ele-
ment name, because certain element names in XML Schema have
multiple uses. For example, simpleType is used for both named
simple types and anonymous simple types. Each of these use cases of
simpleType allows different attributes and a different set of parent
elements, so each is described with its own table.

Companion website

This book has a companion website, maintained by the author, at
www.datypic.com/books/defxmlschema2. On the website, you can
view any errata and download the examples from this book. In addition
to the examples that appear in the book, which are generally concise
in order to illustrate a particular point, the website also has larger, more
comprehensive instances and schemas that can be copied or used to
test validation.

How to use this bookxxxviii

www.datypic.com/books/defxmlschema2

Simple types

128

Chapter

8

B
oth element and attribute declarations can use simple types
to describe their data content. This chapter introduces
simple types and explains how to define your own
atomic simple types for use in your schemas.

Simple type varieties8.1

There are three varieties of simple types: atomic types, list types, and
union types.

1. Atomic types have values that are indivisible, such as 10 or large.
2. List types have values that are whitespace-separated lists of

atomic values, such as <availableSizes>10 large

2</availableSizes>.
3. Union types may have values that are either atomic values or list

values. What differentiates them is that the set of valid values,
or “value space,” for the type is the union of the value spaces of

129

two or more other simple types. For example, to represent a
dress size, you may define a union type that allows a value to
be either an integer from 2 through 18, or one of the string
values small, medium, or large.

List and union types are covered in Chapter 10.

Design hint: How much should I break down
my data values?

8.1.1

Data values should be broken down to the most atomic level possible.
This allows them to be processed in a variety of ways for different uses,
such as display, mathematical operations, and validation. It is much
easier to concatenate two data values back together than it is to split
them apart. In addition, more granular data is easier to validate.

It is a fairly common practice to put a data value and its
units in the same element, for example <length>3cm</length>.
However, the preferred approach is to have a separate data value,
preferably an attribute, for the units, for example <length

units="cm">3</length>.
Using a single concatenated value is limiting because:

It is extremely cumbersome to validate. You have to apply a
complicated pattern that would need to change every time
a unit type is added.

You cannot perform comparisons, conversions, or mathematical
operations on the data without splitting it apart.

If you want to display the data item differently (for example, as
“3 centimeters” or “3 cm” or just “3”, you have to split it apart.
This complicates the stylesheets and applications that process
instance documents.

It is possible to go too far, though. For example, you may break a
date down as follows:

Chapter 8 | Simple types130

<orderDate>
 <year>2001</year>
 <month>06</month>
 <day>15</day>
</orderDate>

This is probably overkill unless you have a special need to process
these items separately.

Simple type definitions8.2

Named simple types8.2.1

Simple types can be either named or anonymous. Named simple types
are always defined globally (i.e., their parent is always schema1)
and are required to have a name that is unique among the types (both
simple and complex) in the schema. The syntax for a named simple
type definition is shown in Table 8–1.

The name of a simple type must be an XML non-colonized name,
which means that it must start with a letter or underscore, and may
only contain letters, digits, underscores, hyphens, and periods. You
cannot include a namespace prefix when defining the type; it takes its
namespace from the target namespace of the schema document.

All examples of named types in this book have the word “Type” at
the end of their names to clearly distinguish them from element and
attribute names. However, this is a convention and not a requirement.
You can even have a type definition and an element declaration using
the same name, but this is not recommended because it can be
confusing.

Example 8–1 shows the definition of a named simple type
DressSizeType along with an element declaration that references it.
Named types can be used in multiple element and attribute declarations.

1. Except in the case of a redefine or override.

1318 . 2 | S i m p l e t y p e d e f i n i t i o n s

Table 8–1 XSD Syntax: named simple type definition

Name

simpleType

Parents

schema, redefine, 1.1override

DescriptionTypeAttribute name

Unique ID.IDid

Simple type name.NCNamename

Whether other types can be
derived from this one (see
Section 8.5); defaults to
finalDefault of schema.

"#all" | list of
("restriction" |

"list" | "union" |
1.1"extension")

final

Content

annotation?, (restriction | list | union)

Example 8–1. Defining and referencing a named simple type

<xs:simpleType name="DressSizeType">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2"/>
 <xs:maxInclusive value="18"/>
 </xs:restriction>
</xs:simpleType>

<xs:element name="size" type="DressSizeType"/>

Anonymous simple types8.2.2

Anonymous types, on the other hand, must not have names. They are
always defined entirely within an element or attribute declaration, and
may only be used once, by that declaration. Defining a type
anonymously prevents it from ever being restricted, used in a list or

Chapter 8 | Simple types132

union, redefined, or overridden. The syntax to define an anonymous
simple type is shown in Table 8–2.

Table 8–2 XSD Syntax: anonymous simple type definition

Name

simpleType

Parents

element, attribute, restriction, list, union, 1.1alternative

DescriptionTypeAttribute name

Unique ID.IDid

Content

annotation?, (restriction | list | union)

Example 8–2 shows the definition of an anonymous simple type
within an element declaration.

Example 8–2. Defining an anonymous simple type

<xs:element name="size">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2"/>
 <xs:maxInclusive value="18"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Design hint: Should I use named or anonymous
types?

8.2.3

The advantage of named types is that they may be defined once
and used many times. For example, you may define a type named

1338 . 2 | S i m p l e t y p e d e f i n i t i o n s

ProductCodeType that lists all of the valid product codes in your
organization. This type can then be used in many element and
attribute declarations in many schemas. This has the advantages of

Encouraging consistency throughout the organization
Reducing the possibility of error
Requiring less time to define new schemas
Simplifying maintenance, because new product codes need only

be added in one place

If a type is named, you can also derive new types from it, which is
another way to promote reuse and consistency.

Named types can also make a schema more readable when its type
definitions are complicated.

An anonymous type, on the other hand, can be used only in the ele-
ment or attribute declaration that contains it. It can never be redefined,
overridden, have types derived from it, or be used in a list or union
type. This can seriously limit its reusability, extensibility, and ability
to change over time.

However, there are cases where anonymous types are preferable to
named types. If the type is unlikely to ever be reused, the advantages
listed above no longer apply. Also, there is such a thing as too much
reuse. For example, if an element can contain the values 1 through 10,
it does not make sense to define a type named OneToTenType to be
reused by other unrelated element declarations with the same value
space. If the value space for one of the element declarations using that
named type changes but the other element declarations stay the same,
it actually makes maintenance more difficult, because a new type would
need to be defined at that time.

In addition, anonymous types can be more readable when they are
relatively simple. It is sometimes desirable to have the definition of
the type right there with the element or attribute declaration.

Chapter 8 | Simple types134

Simple type restrictions8.3

Every simple type is a restriction of another simple type, known as its
base type. It is not possible to extend a simple type, except by adding
attributes which results in a complex type. This is described in
Section 13.4.1 on p. 306.

Every new simple type restricts the value space of its base type in
some way. Example 8–3 shows a definition of DressSizeType that
restricts the built-in type integer.

Example 8–3. Deriving a simple type from a built-in simple type

<xs:simpleType name="DressSizeType">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2"/>
 <xs:maxInclusive value="18"/>
 <xs:pattern value="\d{1,2}"/>
 </xs:restriction>
</xs:simpleType>

Simple types may also restrict user-derived simple types that are
defined in the same schema document, or even in a different schema
document. For example, you could further restrict DressSizeType
by defining another simple type, MediumDressSizeType, as shown
in Example 8–4.

A simple type restricts its base type by applying facets to restrict its
values. In Example 8–4, the facets minInclusive and maxInclusive
are used to restrict the value of MediumDressSizeType to be between
8 and 12 inclusive.

Example 8–4. Deriving a simple type from a user-derived simple type

<xs:simpleType name="MediumDressSizeType">
 <xs:restriction base="DressSizeType">
 <xs:minInclusive value="8"/>
 <xs:maxInclusive value="12"/>
 </xs:restriction>
</xs:simpleType>

1358 . 3 | S i m p l e t y p e r e s t r i c t i o n s

Defining a restriction8.3.1

The syntax for a restriction element is shown in Table 8–3. You
must specify one base type either by using the base attribute or by
defining the simple type anonymously using a simpleType child. The
option of using a simpleType child is generally only useful when
restricting list types, as described in Section 10.3.3 on p. 190.

Table 8–3 XSD Syntax: simple type restriction

Name

restriction

Parents

simpleType

DescriptionTypeAttribute name

Unique ID.IDid

Simple type that is being restricted; either a base
attribute or a simpleType child is required.

QNamebase

Content

annotation?, simpleType?, (minExclusive | minInclusive |

maxExclusive | maxInclusive | length | minLength | maxLength |

totalDigits | fractionDigits | enumeration | pattern |

whiteSpace | 1.1assertion | 1.1explicitTimezone |
1.1 {any element in another namespace})*

Within a restriction element, you can specify any of the facets,
in any order. However, the only facets that may appear more than once
in the same restriction are pattern, enumeration, and assertion.
It is legal to define a restriction that has no facets specified. In this case,
the derived type allows the same values as the base type.

Chapter 8 | Simple types136

Overview of the facets8.3.2

The available facets are listed in Table 8–4.

Table 8–4 Facets

MeaningFacet

Value must be greater than x.minExclusive

Value must be greater than or equal to x.minInclusive

Value must be less than or equal to x.maxInclusive

Value must be less than x.maxExclusive

The length of the value must be equal to x.length

The length of the value must be greater than or equal
to x.

minLength

The length of the value must be less than or equal
to x.

maxLength

The number of significant digits must be less than
or equal to x.

totalDigits

The number of fractional digits must be less than or
equal to x.

fractionDigits

The schema processor should either preserve, replace,
or collapse whitespace depending on x.

whiteSpace

x is one of the valid values.enumeration

x is one of the regular expressions that the value may
match.

pattern

The time zone part of the date/time value is required,
optional, or prohibited depending on x.

1.1explicitTimezone

The value must conform to a constraint in the XPath
expression.

1.1assertion

The syntax for applying a facet is shown in Table 8–5. All facets
(except assertion) must have a value attribute, which has different

1378 . 3 | S i m p l e t y p e r e s t r i c t i o n s

valid values depending on the facet. Most facets may also have a fixed
attribute, as described in Section 8.3.4 on p. 140.

Table 8–5 XSD Syntax: facet

Name

minExclusive, minInclusive, maxExclusive, maxInclusive, length,
minLength, maxLength, totalDigits, fractionDigits, enumeration,
pattern, whiteSpace, 1.1explicitTimezone†

Parents

restriction

DescriptionTypeAttribute name

Unique ID.IDid

Value of the restricting facet.variousvalue

Whether the facet is fixed and therefore cannot
be restricted further (see Section 8.3.4); not
applicable for pattern, enumeration.

boolean:

false

fixed

Content

annotation?

† The assertion facet has a different syntax that is described in Table 14–1.

Certain facets are not applicable to some types. For example, it does
not make sense to apply the fractionDigits facet to a character
string type. There is a defined set of applicable facets for each of the
built-in types.1 If a facet is applicable to a built-in type, it is also appli-
cable to atomic types that are derived from it. For example, since the
length facet is applicable to string, if you derive a new type from

1. Technically, it is the primitive types that have applicable facets, with the
rest of the built-in types inheriting that applicability from their base types.
However, since most people do not have the built-in type hierarchy
memorized, it is easier to list applicable facets for all the built-in types.

Chapter 8 | Simple types138

string, the length facet is also applicable to your new type. Sec-
tion 8.4 on p. 142 describes each of the facets in detail and lists the
built-in types to which the facet can apply.

Inheriting and restricting facets8.3.3

When a simple type restricts its base type, it inherits all of the facets of
its base type, its base type’s base type, and so on back through its ances-
tors. Example 8–4 showed a simple type MediumDressSizeType
whose base type is DressSizeType. DressSizeType has a pattern
facet which restricts its value space to one- or two-digit numbers. Since
MediumDressSizeType inherits all of the facets from DressSizeType,
this same pattern facet applies to MediumDressSizeType also. Ex-
ample 8–5 shows an equivalent definition of MediumDressSizeType
where it restricts integer and has the pattern facet applied.

Example 8–5. Effective definition of MediumDressSizeType

<xs:simpleType name="MediumDressSizeType">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="8"/>
 <xs:maxInclusive value="12"/>
 <xs:pattern value="\d{1,2}"/>
 </xs:restriction>
</xs:simpleType>

Sometimes a simple type definition will include facets that
are also specified for one of its ancestors. In Example 8–4,
MediumDressSizeType includes minInclusive and maxInclusive,
which are also applied to its base type, DressSizeType. The
minInclusive and maxInclusive facets of MediumDressSizeType
(whose values are 8 and 12, respectively) override those of
DressSizeType (2 and 18, respectively).

It is a requirement that the facets of a derived type (in this case
MediumDressSizeType) be more restrictive than those of the base
type. In Example 8–6, we define a new restriction of DressSizeType,

1398 . 3 | S i m p l e t y p e r e s t r i c t i o n s

called SmallDressSizeType, and set minInclusive to 0. This type
definition is illegal, because it attempts to expand the value space by
allowing 0, which was not valid for DressSizeType.

Example 8–6. Illegal attempt to extend a simple type

<xs:simpleType name="SmallDressSizeType">
 <xs:restriction base="DressSizeType">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="6"/>
 </xs:restriction>
</xs:simpleType>

This rule also applies when you are restricting the built-in types. For
example, the short type has a maxInclusive value of 32767. It is
illegal to define a restriction of short that sets maxInclusive to
32768.

Although enumeration facets can appear multiple times in the same
type definition, they are treated in much the same way. If both a
derived type and its ancestor have a set of enumeration facets, the
values of the derived type must be a subset of the values of the ancestor.
An example of this is provided in Section 8.4.4 on p. 145.

Likewise, the pattern facets specified in a derived type must allow
a subset of the values allowed by the ancestor types. A schema processor
will not necessarily check that the regular expressions represent a subset;
instead, it will validate instances against the patterns of both the derived
type and all the ancestor types, effectively taking the intersection of the
pattern values.

Fixed facets8.3.4

When you define a simple type, you can fix one or more of the facets.
This means that further restrictions of this type cannot change the
value of the facet. Any of the facets may be fixed, with the exception
of pattern, enumeration, and assertion. Example 8–7 shows our

Chapter 8 | Simple types140

DressSizeType with fixed minInclusive and maxInclusive facets,
as indicated by a fixed attribute set to true.

Example 8–7. Fixed facets

<xs:simpleType name="DressSizeType">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2" fixed="true"/>
 <xs:maxInclusive value="18" fixed="true"/>
 <xs:pattern value="\d{1,2}"/>
 </xs:restriction>
</xs:simpleType>

With this definition of DressSizeType, it would have been illegal
to define the MediumDressSizeType as shown in Example 8–4 because
it attempts to override the minInclusive and maxInclusive facets
which are now fixed. Some of the built-in types have fixed facets that
cannot be overridden. For example, the built-in type integer has its
fractionDigits facet fixed at 0, so it is illegal to derive a type from
integer and specify a fractionDigits that is not 0.

Design hint:When should I fix a facet?8.3.4.1

Fixing facets makes your type less flexible and discourages other schema
authors from reusing it. Keep in mind that any types that may be de-
rived from your type must be more restrictive, so you are not at risk
that your type will be dramatically changed if its facets are unfixed.

A justification for fixing facets might be that changing that facet
value would significantly alter the meaning of the type. For example,
suppose you want to define a simple type that represents price. You
define a Price type and fix the fractionDigits at 2. This still allows
other schema authors to restrict Price to define other types, for exam-
ple, by limiting it to a certain range of values. However, they cannot
modify the fractionDigits of the type, because this would result in
a type not representing a price in dollars and cents.

1418 . 3 | S i m p l e t y p e r e s t r i c t i o n s

Facets8.4

Bounds facets8.4.1

The four bounds facets (minInclusive, maxInclusive,
minExclusive, and maxExclusive) restrict a value to a speci-
fied range. Our previous examples applied minInclusive and
maxInclusive to restrict the value space of DressSizeType. While
minInclusive and maxInclusive specify boundary values that
are included in the valid range, minExclusive and maxExclusive
specify bounds that are excluded from the valid range.

There are several constraints associated with the bounds facets:

minInclusive and minExclusive cannot both be applied to
the same type. Likewise, maxInclusive and maxExclusive
cannot both be applied to the same type. You may, however,
mix and match, applying, for example, minInclusive and
maxExclusive together. You may also apply just one end of
the range, such as minInclusive only.

The value for the lower bound (minInclusive or
minExclusive) must be less than or equal to the value for the
upper bound (maxInclusive or maxExclusive).

The facet value must be a valid value for the base type. For
example, when restricting integer, it is illegal to specify a
maxInclusive value of 18.5, because 18.5 is not a valid
integer.

The four bounds facets can be applied only to the date/time and
numeric types, and the types derived from them. Special consideration
should be given to time zones when applying bounds facets to date/time
types. For more information, see Section 11.4.15 on p. 235.

Chapter 8 | Simple types142

Length facets8.4.2

The length facet allows you to limit values to a specific length. If it
is a string-based type, length is measured in number of characters.
This includes the XML DTD types and anyURI. If it is a binary type,
length is measured in octets of binary data. If it is a list type, length is
measured as the number of items in the list. The facet value for length
must be a nonnegative integer.

The minLength and maxLength facets allow you to limit a value’s
length to a specific range. Either of both of these facets may be applied.
If they are both applied, minLength must be less than or equal to
maxLength. If the length facet is applied, neither minLength
nor maxLength may be applied. The facet values for minLength and
maxLength must be nonnegative integers.

The three length facets (length, minLength, maxLength) can be
applied to any string-based types (including the XML DTD types),
the binary types, and anyURI. They cannot be applied to the date/time
types, numeric types, or boolean.

Design hint:What if I want to allow empty values?8.4.2.1

Many of the built-in types do not allow empty values. Types other than
string, normalizedString, token, hexBinary, base64Binary,
and anyURI do not allow empty values unless xsi:nil appears in the
element tag.

You may have an integer that you want to be either between 2 and
18, or empty. First, consider whether you want to make the element
(or attribute) optional. In this case, if the data is absent, the
element will not appear at all. However, sometimes it is desirable for
the element to appear, as a placeholder, or perhaps it is unavoidable
because of the technology used to generate the instance.

If you do determine that the elements must be able to appear empty,
you must define a union type that includes both the integer type and
an empty string, as shown in Example 8–8.

1438 . 4 | F a c e t s

Example 8–8. Union allowing an empty value

<xs:simpleType name="DressSizeType">
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2"/>
 <xs:maxInclusive value="18"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value=""/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

Design hint:What if I want to restrict the length of
an integer?

8.4.2.2

The length facet only applies to the string-based types, the XML
DTD types, the binary types, and anyURI. It does not make sense to
try to limit the length of the date/time types because they have fixed
lexical representations. But what if you want to restrict the length of
an integer value?

You can restrict the lower and upper bounds of an integer by applying
bounds facets, as discussed in Section 8.4.1 on p. 142. You can also
control the number of significant digits in an integer using the
totalDigits facet, as discussed in Section 8.4.3 on p. 145. However,
these facets do not consider leading zeros as significant. Therefore, they
cannot force an integer to appear in the instance with a specific number
of digits. To do this, you need a pattern. For example, the pattern
\d{1,2} used in our DressSizeType example forces the size to be
one or two digits long, so 012 would be invalid.

Before taking this approach, however, you should reconsider whether
it is really an integer or a string. See Section 11.3.3.1 on p. 220 for a
discussion of this issue.

Chapter 8 | Simple types144

totalDigits and fractionDigits8.4.3

The totalDigits facet allows you to specify the maximum number
of digits in a number. The facet value for totalDigits must be a
positive integer.

The fractionDigits facet allows you to specify the maximum
number of digits in the fractional part of a number. The facet value
for fractionDigits must be a nonnegative integer, and it must not
exceed the value for totalDigits, if one exists.

The totalDigits facet can be applied to decimal or any of the
integer types, as well as types derived from them. The fractionDigits
facet may only be applied to decimal, because it is fixed at 0 for all
integer types.

Enumeration8.4.4

The enumeration facet allows you to specify a distinct set of
valid values for a type. Unlike most other facets (except pattern and
assertion), the enumeration facet can appear multiple times in a
single restriction. Each enumerated value must be unique, and must
be valid for that type. If it is a string-based or binary type, you may also
specify the empty string in an enumeration value, which allows elements
or attributes of that type to have empty values.

Example 8–9 shows a simple type SMLXSizeType that allows the
values small, medium, large, and extra large.

Example 8–9. Applying the enumeration facet

<xs:simpleType name="SMLXSizeType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="small"/>
 <xs:enumeration value="medium"/>
 <xs:enumeration value="large"/>
 <xs:enumeration value="extra large"/>
 </xs:restriction>
</xs:simpleType>

1458 . 4 | F a c e t s

When restricting types that have enumerations, it is important to
note that you must restrict, rather than extend, the set of enumeration
values. For example, if you want to restrict the valid values of
SMLSizeType to only be small, medium, and large, you could define
a simple type as in Example 8–10.

Example 8–10. Restricting an enumeration

<xs:simpleType name="SMLSizeType">
 <xs:restriction base="SMLXSizeType">
 <xs:enumeration value="small"/>
 <xs:enumeration value="medium"/>
 <xs:enumeration value="large"/>
 </xs:restriction>
</xs:simpleType>

Note that you need to repeat all of the enumeration values that
apply to the new type. This example is legal because the values for
SMLSizeType (small, medium, and large) are a subset of the values
for SMLXSizeType. By contrast, Example 8–11 attempts to add an
enumeration facet to allow the value extra small. This type defini-
tion is illegal because it attempts to extend rather than restrict the value
space of SMLXSizeType.

Example 8–11. Illegal attempt to extend an enumeration

<xs:simpleType name="XSMLXSizeType">
 <xs:restriction base="SMLXSizeType">
 <xs:enumeration value="extra small"/>
 <xs:enumeration value="small"/>
 <xs:enumeration value="medium"/>
 <xs:enumeration value="large"/>
 <xs:enumeration value="extra large"/>
 </xs:restriction>
</xs:simpleType>

The only way to add an enumeration value to a type is by defining
a union type. Example 8–12 shows a union type that adds the value

Chapter 8 | Simple types146

Example 8–12. Using a union to extend an enumeration

<xs:simpleType name="XSMLXSizeType">
 <xs:union memberTypes="SMLXSizeType">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="extra small"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

extra small to the set of valid values. Union types are described in
detail in Section 10.2 on p. 183.

When enumerating numbers, it is important to remember that the
enumeration facet works on the actual value of the number, not its
lexical representation as it appears in an XML instance. Example 8–13
shows a simple type NewSmallDressSizeType that is based on
integer, and specifies an enumeration of 2, 4, and 6. The two instance
elements shown, which contain 2 and 02, are both valid. This is
because 02 is equivalent to 2 for integer-based types. However, if
the base type of NewSmallDressSizeType had been string, the

Example 8–13. Enumerating numeric values

Schema:

<xs:simpleType name="NewSmallDressSizeType">
 <xs:restriction base="xs:integer">
 <xs:enumeration value="2"/>
 <xs:enumeration value="4"/>
 <xs:enumeration value="6"/>
 </xs:restriction>
</xs:simpleType>

Valid instances:

<size>2</size>
<size>02</size>

1478 . 4 | F a c e t s

value 02 would not be valid, because the strings 2 and 02 are not
the same. If you wish to constrain the lexical representation of a numeric
type, you should apply the pattern facet instead. For more information
on type equality in XML Schema, see Section 11.7 on p. 253.

The enumeration facet can be applied to any type except boolean.

Pattern8.4.5

The pattern facet allows you to restrict values to a particular pattern,
represented by a regular expression. Chapter 9 provides more detail on
the rules for the regular expression syntax. Unlike most other facets
(except enumeration and assertion), the pattern facet can be
specified multiple times in a single restriction. If multiple pattern
facets are specified in the same restriction, the instance value must
match at least one of the patterns. It is not required to match all of the
patterns.

Example 8–14 shows a simple type DressSizeType that includes
the pattern \d{1,2}, which restricts the size to one or two digits.

Example 8–14. Applying the pattern facet

<xs:simpleType name="DressSizeType">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2"/>
 <xs:maxInclusive value="18"/>
 <xs:pattern value="\d{1,2}"/>
 </xs:restriction>
</xs:simpleType>

When restricting types that have patterns, it is important to note
that you must restrict, rather than extend, the set of valid values that
the patterns represent. In Example 8–15, we define a simple type
SmallDressSizeType that is derived from DressSizeType, and add
an additional pattern facet that restricts the size to one digit.

Chapter 8 | Simple types148

Example 8–15. Restricting a pattern

<xs:simpleType name="SmallDressSizeType">
 <xs:restriction base="DressSizeType">
 <xs:minInclusive value="2"/>
 <xs:maxInclusive value="6"/>
 <xs:pattern value="\d{1}"/>
 </xs:restriction>
</xs:simpleType>

It is not technically an error to apply a pattern facet that does
not represent a subset of the ancestors’ pattern facets. However, the
schema processor tries to match the instance value against the pattern
facets of both the type and its ancestors, ensuring that it is in fact a
subset. Example 8–16 shows an illegal attempt to define a new
size type that allows the size value to be up to three digits long. While
the schema is not in error, it will not have the desired effect
because the schema processor will check values against both the pattern
of LongerDressSizeType and the pattern of DressSizeType.
The value 004 would not be considered a valid instance of
LongerDressSizeType because it does not conform to the pattern
of DressSizeType.

Example 8–16. Illegal attempt to extend a pattern

<xs:simpleType name="LongerDressSizeType">
 <xs:restriction base="DressSizeType">
 <xs:pattern value="\d{1,3}"/>
 </xs:restriction>
</xs:simpleType>

Unlike the enumeration facet, the pattern facet applies to the
lexical representation of the value. If the value 02 appears in an instance,
the pattern is applied to the digits 02, not 2 or +2 or any other form
of the integer.

The pattern facet can be applied to any type.

1498 . 4 | F a c e t s

Assertion8.4.6

The assertion facet allows you to specify additional constraints on
values using XPath 2.0. Example 8–17 is a simple type with an asser-
tion, namely that the value must be divisible by 2. It uses a facet named
assertion with a test attribute that contains the XPath expression.

Simple type assertions are a flexible and powerful feature covered in
more detail, along with complex type assertions, in Chapter 14.

Example 8–17. Simple type assertion

<xs:simpleType name="EvenDressSizeType">
 <xs:restriction base="DressSizeType">
 <xs:assertion test="$value mod 2 = 0" />
 </xs:restriction>
</xs:simpleType>

Explicit Time Zone8.4.7

The explicitTimezone facet allows you to control the presence of
an explicit time zone on a date/time value. Example 8–18 is a simple
type based on time but with an explicit time zone required. The syntax
of time zones is described in more detail in Section 11.4.13 on p. 233.

The value attribute of explicitTimezone has three possible values:

1. optional, making the time zone optional (the value for most
built-in date/time types)

2. required, making the time zone required (the value for the
dateTimeStamp built-in type)

3. prohibited, disallowing the time zone

Example 8–18. Explicit time zone

<xs:simpleType name="SpecificTimeType">
 <xs:restriction base="xs:time">
 <xs:explicitTimezone value="required"/>
 </xs:restriction>
</xs:simpleType>

Chapter 8 | Simple types150

Whitespace8.4.8

The whiteSpace facet allows you to specify the whitespace normaliza-
tion rules which apply to this value. Unlike the other facets, which re-
strict the value space of the type, the whiteSpace facet is an instruction
to the schema processor on to what to do with whitespace. This type
of facet is known as a prelexical facet because it results in some process-
ing of the value before the other constraining facets are applied. The
valid values for the whiteSpace facet are:

preserve: All whitespace is preserved; the value is not changed.
replace: Each occurrence of tab (#x9), line feed (#xA), and

carriage return (#xD) is replaced with a single space (#x20).
collapse: As with replace, each occurrence of tab (#x9), line

feed (#xA), and carriage return (#xD) is replaced with a
single space (#x20). After the replacement, all consecutive spaces
are collapsed into a single space. In addition, leading and trailing
spaces are deleted.

Table 8–6 shows examples of how values of a string-based type will
be handled depending on its whiteSpace facet.

Table 8–6 Handling of string values depending on whiteSpace facet

token

(collapse)
normalizedString

(replace)
string

(preserve)
Original string

a stringa stringa stringa string

on two lineson two lineson
two lines

on
two lines

has spaceshas spaceshas spaceshas spaces

leading tab leading tab leading tab leading tab

leading spaces leading spaces leading spaces leading spaces

The whitespace processing, if any, will happen first, before any vali-
dation takes place. In Example 8–9, the base type of SMLXSizeType

1518 . 4 | F a c e t s

is token, which has a whiteSpace facet of collapse. Example 8–19
shows valid instances of SMLXSizeType. They are valid because the
leading and trailing spaces are removed, and the line feed is turned into
a space. If the base type of SMLXSizeType had been string, the
whitespace would have been left as is, and these values would have been
invalid.

Example 8–19. Valid instances of SMLXSizeType

<size> small </size>

<size>extra
large</size>

Although you should understand what the whiteSpace facet repre-
sents, it is unlikely that you will ever apply it directly in your schemas.
The whiteSpace facet is fixed at collapse for most built-in types.
Only the string-based types can be restricted by a whiteSpace
facet, but this is not recommended. Instead, select a base type that
already has the whiteSpace facet you want. The types string,
normalizedString, and token have the whiteSpace values
preserve, replace, and collapse, respectively. For example, if you
wish to define a string-based type that will have its whitespace collapsed,
base your type on token, instead of basing it on string and applying
a whiteSpace facet. Section 11.2.1 on p. 205 provides a discussion
of these three types.

Preventing simple type derivation8.5

XML Schema allows you to prevent derivation of other types from
your type. By specifying the final attribute with a value of #all
in your simple type definition, you prevent derivation of any kind

Chapter 8 | Simple types152

(restriction, extension, list, or union). If you want more granular con-
trol, the value of final can be a whitespace-separated list of any of the
keywords restriction, extension, list, or union. The extension
value refers to the extension of simple types to derive complex types,
described in Section 13.4.1 on p. 306. Example 8–20 shows some valid
values for final.

Example 8–20. Valid values for the final attribute in simple type definitions

final="#all"
final="restriction list union"
final="list restriction extension"
final="union"
final=""

Example 8–21 shows a simple type that cannot be restricted
by any other type or used as the item type of a list. With this
definition of DressSizeType, it would have been illegal to define
MediumDressSizeType in Example 8–4 because it attempts to restrict
DressSizeType.

Example 8–21. Preventing type derivation

<xs:simpleType name="DressSizeType" final="restriction list">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2"/>
 <xs:maxInclusive value="18"/>
 </xs:restriction>
</xs:simpleType>

If no final attribute is specified, it defaults to the value of the
finalDefault attribute of the schema element. If neither final
nor finalDefault is specified, there are no restrictions on derivation
from that type. You can specify the empty string ("") for the final
value if you want to override the finalDefault value.

1538 . 5 | P r e v e n t i n g s i m p l e t y p e d e r i v a t i o n

Implementation-defined types and
facets

8.6

Starting with version 1.1, additional simple types and facets may be
defined and supported by a particular XML Schema implementation.

Implementation-defined types8.6.1

An implementation can choose to support a set of primitive simple
types in addition to those built into XML Schema (described in
Chapter 11).

Suppose that an implementation defines a special primitive type
ordinalDate that represents an ordinal date: a year, followed by a
hyphen, followed by a number from 001 to 366 indicating the day of
the year. Although an ordinal date value could be represented as a
string, it may be beneficial to promote it to its own primitive type if it
has special considerations for ordering or validation of its values, or
special operations that can be performed on it (for example, subtracting
two ordinal dates to get a duration).

A schema author can use an implementation-defined type just
like a built-in type, except that it will be in a different namespace
defined by the implementation. The schema in Example 8–22

Example 8–22. Using an implementation-defined type

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ext="http://example.org/extensions">
 <xs:element name="anyOrdinalDate" type="ext:ordinalDate"/>
 <xs:element name="recentOrdinalDate" type="OrdinalDateIn2011"/>
 <xs:simpleType name="OrdinalDateIn2011">
 <xs:restriction base="ext:ordinalDate">
 <xs:minInclusive value="2011-001"/>
 <xs:maxInclusive value="2011-365"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Chapter 8 | Simple types154

contains two references to the ordinalDate type, which is in
the hypothetical http://example.org/extensions namespace.
The anyOrdinalDate element declaration refers to the type directly
by its qualified name. The OrdinalDateIn2011 user-defined simple
type is a restriction of ordinalDate using bounds facets to specify a
range of allowed values.

Implementation-defined facets8.6.2

Implementation-defined facets might specify additional constraints on
the valid values, or even signal to the processor how to process the value.
An example is the Saxon processor’s preprocess facet which allows
you to specify an XPath expression that transforms the value in some
way before validation.

In Example 8–23, the saxon:preprocess facet appears
among the children of restriction. You can tell that it is an
implementation-defined facet because it is in a different namespace,
http://saxon.sf.net/. This particular example is telling the pro-
cessor to convert the value to upper case before validating it against
the enumeration facets. It is essentially implementing a case-insensitive
enumeration.

Example 8–23. Using the Saxon preprocess facet

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:saxon="http://saxon.sf.net/">
 <xs:simpleType name="SMLXSizeType">
 <xs:restriction base="xs:token">
 <saxon:preprocess action="upper-case($value)"/>
 <xs:enumeration value="SMALL"/>
 <xs:enumeration value="MEDIUM"/>
 <xs:enumeration value="LARGE"/>
 <xs:enumeration value="EXTRA LARGE"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

1558 . 6 | I m p l e m e n t a t i o n - d e f i n e d t y p e s a n d f a c e t s

http://saxon.sf.net/

Implementation-defined facets can apply to the XML Schema built-in
types (and user-defined restrictions of them); they can also apply to
any implementation-defined types such as the ordinalDate example
type described in the previous section.

While implementation-defined types and facets can be useful, they
do affect the portability of your schema. With the schema in Exam-
ple 8–23, if you try to validate a document that contains lower-case
“small” for a size, it would be valid when using Saxon but not when
using a different implementation. Therefore, implementation-defined
facets should be used only in controlled situations. Section 23.5.3 on
p. 642 provides more information on how to make your schemas more
portable across implementations when using implementation-defined
types and facets.

Chapter 8 | Simple types156

Index

Symbols
_ (underscore)

in NMTOKEN type, 243
in XML names, 40, 91, 167, 208, 559

- (hyphen, dash, minus sign)
in binary types, 249
in dates, 221–228, 234
in durations, 229–233
in NMTOKEN type, 243
in numbers, 214–219
in regular expressions, 161, 165,

172–176
in time values, 233–234
in XML names, 40, 91, 167, 208, 559
in XPath 2.0, 356

, (comma)
in DTDs, 477
in regular expressions, 176–177

; (semicolon), in regular expressions, 162
: (colon)

in NMTOKEN type, 243
in time values, 222–225, 233–234
in XML names, 167, 208–209, 246,

559
!= operator (XPath 2.0), 356, 378
? (question mark)

in DTDs, 477

in regular expressions, 162, 165,
176–177

/ (slash)
in binary types, 249
in XPath, 436–437

// (XPath), 438
. (period)

in NMTOKEN type, 243
in numbers, 215–216
in regular expressions, 162, 165, 175
in time values, 222–225
in XML names, 40, 91, 167, 209, 559
in XPath, 436–437

.// (XPath), 436–437
^ (circumflex accent), in regular

expressions, 165, 173–175
' (apostrophe), in regular expressions,

163
" (quote), in regular expressions, 163
() (parentheses)

in DTDs, 476–477
in regular expressions, 161–162, 165,

175–178
in XPath 2.0, 355

[] (square brackets), in regular
expressions, 160–162, 165,
171–177

Index entries in gray refer to XML Schema 1.1.

699

{ } (curly brackets), in regular
expressions, 160–162, 165,
176–177

@ (commercial at), in XPath, 436–437
* (asterisk)

in DTDs, 474, 477
in regular expressions, 162–163, 165,

176–177
operator (XPath 2.0), 356
wildcard (XPath), 436–437

\ (backslash), in regular expressions,
161–166, 175

& (ampersand)
in character entities, 206
in regular expressions, 163
in strings, 205

(number sign)
in regular expressions, 162
in URIs, 251–252

% (percent sign), in URIs, 251–252
+ (plus sign)

in binary types, 249
in DTDs, 477
in numbers, 104, 214–219, 254
in regular expressions, 162, 165–166,

176–177
in time values, 234
in XPath 2.0, 356

< (less than), 163, 206
in regular expressions, 163
in strings, 205
in XPath 2.0, 356, 378

<= operator (XPath 2.0), 356, 378
= (equals sign)

in binary types, 249
in XPath 2.0, 356, 378

> (greater than), 163
in regular expressions, 163
in XPath 2.0, 356, 378

>= operator (XPath 2.0), 356, 378
| (vertical bar)

in DTDs, 474, 477–478
in regular expressions, 160–162, 165,

176–178

in XPath, 435, 437
-0 (negative zero), numeric value,

213–214
0 (zero)

as boolean value, 247
as numeric value, 213–214
in dates, 221, 226
leading/trailing, in numbers, 104, 125,

215–217, 219, 254
1 (boolean value), 247

A
a element (HTML), 525
abstract attribute

of complexType element, 343,
346–348

of element element, 418, 420
syntax of, 671

all group, 26, 276–278
avoiding in web services, 548
element declarations/references in, 276,

391
extending, 310–311, 606
group references in, 276, 391
in complex types, 390
in named model groups, 386, 391
occurrence constraints in, 276–277,

532
restricting, 325–328

in version 1.1, 625
syntax of, 277, 649
vs. DTDs, 477
wildcards in, 276

#all value
of block attribute, 344, 420
of final attribute, 152, 343

in version 1.1, 418
alternative element, 97

syntax of, 376, 650
test attribute of, 375–376
type attribute of, 376
xpathDefaultNamespace attribute

of, 375, 381

Index entries in gray refer to XML Schema 1.1.

Index700

& entity reference
in regular expressions, 163
in strings, 205

ancestor keyword (XPath), 438
and operator (XPath 2.0), 356, 378
annotation element, 31, 497–498, 581,

585
syntax of, 581, 650
vs. DTDs, 497–498
vs. non-native attributes, 589

anonymous complex types, 22, 96–97,
260–261

never equal, 269
vs. named, 550

anonymous simple types, 22, 96
definitions of, 120–121, 132–133
readability of, 134
vs. named, 133–134, 550

ANY specifier (DTDs), 474, 480
any wildcard, 27, 285–288, 480, 601
namespace attribute of, 287, 329
notNamespace attribute of, 289–290
notQName attribute of, 290
processContents attribute of,

287–289
syntax of, 285, 650

##any value (namespace attribute on
wildcard), 287, 329

anyAtomicType type, 203
anyAttribute wildcard, 27, 298, 398,

602
namespace attribute of, 298,

315–316, 336–337
notNamespace attribute of, 298
notQName attribute of, 298
processContents attribute of, 298,

315–316, 336–337, 602–603
syntax of, 299, 651

anySimpleType type, 121, 203
anyType type, 96, 203
anyURI type, 250–253

facets applicable to, 253, 698
values of, 143–144

' entity reference, 163

appinfo element, 31, 581, 587–588
syntax of, 587, 651

applications
compatibility of, 634–635
ignoring irrelevant elements and

attributes in, 635
providing information for, 6, 31

appliesToEmpty attribute
(defaultOpenContent element),
298

syntax of, 672
assert element, 365–372

syntax of, 366, 651
test attribute of, 352, 375
xpathDefaultNamespace attribute

of, 375
assertion element, 137, 150

for built-in types, 695–698
syntax of, 353, 652
test attribute of, 352, 375
xpathDefaultNamespace attribute

of, 375
assertions, 33, 351–375

and namespaces, 372–375
for complex types, 365–372
for list types, 363–365
for simple types, 353–365
for union types, 185
inheriting, 362, 370–372
multiple on the same type, 355
type errors in, 359–362
using XPath 2.0 for, 352
with multistep paths, 368
with predicates, 368

assisted editing, 541
asterisk. See *
atomic types, 181–183
atoms, in regular expressions, 161–176
attribute declarations, 4, 18, 115–122,

281–284
from a different namespace, 117
global, 115–117, 119–120, 394, 550
local, 19, 117–120, 122, 281, 339,

394, 550

701Index

Index entries in gray refer to XML Schema 1.1.

attribute declarations (cont.)
location of, in type definitions, 281
overriding, 459, 466
removing, 619
restricting, 318, 333–335
reusing, 597
target namespace of, 48
vs. wildcards, 619

attribute element, 115–125
default attribute of, 123
fixed attribute of, 123
form attribute of, 122
inheritable attribute of, 126–127
name attribute of, 117
ref attribute of, 115, 117
syntax of:

global declaration, 116, 652
local declaration, 118, 652
reference, 282, 653

targetNamespace attribute of,
339–341

type attribute of, 120–121, 394
use attribute of, 117, 119, 283, 394,

482–483, 688
attribute group references, 395–399

in attribute groups, 398–399
in complex type definitions, 284, 396
location of, in type definitions, 281

attribute groups, 19, 32, 120, 392–400,
544

attribute references in, 394
default, 284, 399–400
definitions of, 18, 393
local attribute declarations in, 394
location of, in type definitions, 281
names of, 393, 545, 559

duplicating (illegal), 397
order of, 396
overriding, 459, 467, 491–492,

613–614
risks of, 470–471

redefining, 449, 451, 456–458,
490–491, 600, 611–612

risks of, 470–471

reusing, 597
vs. complex type extension, 403
vs. DTDs, 485–486
wildcards in, 395, 398

attribute references, 282–283
in attribute groups, 394
location of, in type definitions, 281

attribute wildcards, 27, 298, 602
extending complex types with, 315
for forward compatibility, 623
in attribute groups, 395, 398
processContents attribute of, 315,

336
restricting, 335–337, 458
vs. attribute declarations, 619
See also anyAttribute element

attributeFormDefault attribute
(schema element), 77, 122

ignoring for attribute names, 580
qualified value of, 122
syntax of, 672
unqualified value of, 122

attributeGroup element, 393
ref attribute of, 395
syntax of:

definition, 393, 653
reference, 396, 653

attributes, 19
and default namespace declarations, 39
applicable to all elements, 79–81
co-constraints for, 33
deprecated, 627, 638
empty, 124, 145
extending, 314, 490–491
inherited, 126–127, 283, 382–383
names of, 4, 117, 545, 559–563

changing, 619
duplicating (illegal), 45, 119, 397,

470
in XPath, 367, 436–437, 439
qualified (prefixed), 44–46, 117,

119–120, 122–123, 580
unprefixed, 44, 122
unqualified, 40, 119, 122–123, 580

Index entries in gray refer to XML Schema 1.1.

Index702

nillable, 435
non-native, 588–589, 629
order of, 115, 281
prohibited, 333, 335
required vs. optional, 117, 119, 123,

143, 283, 333, 457, 482,
618–619, 627

reusing, 302
types associated with, 4, 18, 21,

120–121, 125, 236–246, 457
enumerated, 481
vs. DTDs, 480–482

units of measurement in, 130
values of:

default, 82, 114, 123–124, 283,
333, 457, 482, 499, 548

fixed, 82, 123, 125, 283, 333, 457,
548

validating, 114
whitespace in, 82

vs. elements, 113
avg function (XPath 2.0), 363

B
b element (HTML), 525
backslash, in regular expressions,

161–166, 175
backward compatibility, 618–622

and version numbers, 626, 631–632
base attribute (restriction) element,

136
syntax of, 672

base64 encoding, 249
base64Binary type, 248–250

facets applicable to, 250, 698
values of:

empty, 143
length of, 249

BIDI elements, 207
binary types, 248–250, 695

facets applicable to, 250, 698
values of:

length of, 143–144, 249
valid, 145

block attribute
#all value of, 344, 420
empty value of, 345
extension value of, 344, 420
of complexType element, 343–346
of element element, 322, 346,

418–419
restriction value of, 344, 420
substitution value of, 420
syntax of, 672–673

block element (XSL-FO), 525
block escapes, 170–171
blockDefault attribute (schema

element), 77, 345
syntax of, 673

boolean type, 247–248, 255
facets applicable to, 698

bounds facets, 142
applicable to:

date and time types, 235
duration types, 230
integer types, 217–218
simple content, 317–318

changing restrictiveness of, 619–620
br element (HTML), 265
branches (in regular expressions),

159–161, 177–178
built-in types, 23, 201–255, 691–695

facets applicable to, 138–139, 141,
152, 695–698

hierarchy of, 202–203
namespace of, 50
restricting, 135, 140

byte type, 218
facets applicable to, 696

C
C, in category escapes, 169
\c and \C, multicharacter escapes, 167
camel case, 560
carriage return character

in regular expressions, 163, 165–166
in strings, 151

CDATA data type specifier (DTDs), 481

703Index

Index entries in gray refer to XML Schema 1.1.

chameleon namespaces, 65–66, 565,
572–574

character class escapes, 161, 164
block, 170–171
category, 167–169
multicharacter, 166
single-character, 165

character class expressions, 161, 171
escaping, 175
list of characters in, 171
negating, 173–174
ranges in, 172
subtracting from, 174

character references, 162–163
chatty services, 522
choice group, 26, 273–276

avoiding in web services, 548
compatibility of, 619
element wildcards in, 609
extending, 309, 489–490, 607–608
in complex types, 390
in named model groups, 386
meaningless, 321
nesting, 275–276
occurrence constraints in, 274–275
restricting, 324–329
syntax of, 273, 654
vs. DTDs, 477
vs. substitution groups, 414–415

circumflex accent, in regular expressions,
165, 173–175

class hierarchies, 518
co-constraints, 586
code generating, 541
collapse value (whiteSpace facet),

104, 125, 151–152, 189, 205–206,
255

colon. See :
comma. See ,
comments, 497–498
common components libraries, 597–598
compatibility, 617–626

application, 634–635
backward, 618–622, 626, 631–632

forward, 623–626
complex content

deriving complex types from, 304–305
extending, 307–316
restricting, 318–329

in version 1.1, 320
vs. database tables, 504
vs. DTDs, 476

complex type definitions
attribute group references in, 396
attribute groups in, 394, 397
attribute wildcards in, 298, 398, 602
attributes in, 115–119, 281, 283–284,

397
element declarations in, 93, 266–268,

387
element wildcards in, 601
ID attributes in, 236
named model groups in, 278–279,

387, 389
repeating element names in, 415–416

complex types, 19, 257–298
abstract, 346, 348
anonymous, 22, 96–97, 260–261, 269,

550
assertions for, 365–372
associating with element names, 96
base type of, 302, 314–315, 319
extending, 22, 27, 302–303, 305–316,

403, 606
global vs. local, 19, 22
named, 258–260, 484–485, 550,

559–560, 597
overriding, 459, 465

risks of, 468–470
preventing derivation of, 343–344
redefining, 449, 451, 453–454, 600,

609
risks of, 468–470

restricting, 22, 27, 301–303, 316–337,
455, 603

reusing, 597
vs. named model groups, 403–404
vs. OO classes, 514

Index entries in gray refer to XML Schema 1.1.

Index704

vs. simple types, 21
with open content, 604

complexContent element, 304
syntax of, 304, 654

complexType element, 28, 96, 258–261
abstract attribute of, 343, 346–348
block attribute of, 343–346
defaultAttributes attribute of,

400
final attribute of, 343–344
mixed attribute of, 265
no direct element declarations in, 270
syntax of:

anonymous definition, 261, 655
named definition, 259, 654

composition, 519–522
conditional expressions (XPath),

369–370
conditional inclusion, 642
conditional type assignment, 375–383

and namespaces, 381–382
inherited attributes in, 382–383
validation errors in, 380–381
with declared types, 378
with default types, 377

contains function (XPath 2.0), 357
content models, 26, 261–269

absence of, for empty content, 479
and web services, 548
deterministic, 279–280
eliminating meaningless groups in,

320–321
extending, 27, 305–313, 607
in DTDs, 473–480
location of extensions in, 600, 611
named model groups in, 390
nondeterministic, 280, 470, 602
open, 27, 292–298, 311, 600, 619
restricting, 318–333, 455
reusability of, 302, 385
reusing, 484–485

content types, 25–26, 266, 473–480
See also complex, element-only, empty,

mixed, simple content

Coordinated Universal Time. See UTC
Costello, Roger, 550
count function (XPath 2.0), 363
curly brackets, in regular expressions,

160–162, 165, 176–177

D
D, in durations, 229–233
\d multicharacter escape, 160–161,

166–167, 173
\D multicharacter escape, 166
dash. See -
data binding tools

and generic elements, 520
complex types in, 517–518
processing relationships in, 511

databases
coupling with XML messages, 504
foreign keys in, 32, 430, 510
generating instances from, 82
mapping elements to, 586–587
names in, 560
tables and columns in, 504

datatypes, 201
date and time types, 221–235, 693

comparing dates in, 235
facets applicable to, 142, 235, 696–697

date type, 221
facets applicable to, 696

dateTime type, 223–224
facets applicable to, 697

dateTimeStamp type, 224–225
facets applicable to, 697

dayTimeDuration type, 232–233
facets applicable to, 697

DCD (Document Content Description),
11

DDML (Document Definition Markup
Language), 11

debugging, 6, 542
decimal point, 215–216
decimal type, 145, 213–216

canonical representation of, 215
facets applicable to, 216, 696

705Index

Index entries in gray refer to XML Schema 1.1.

declarations, 18
See also attribute, element, namespace

declarations
default attribute

of attribute element, 123, 283, 482
of element element, 101
syntax of, 673

default values
avoiding in web services, 548
for nils, 107
of attributes, 82, 114, 123–124, 283,

333, 457, 482, 499
of elements, 82, 101–103, 110, 269
of occurrence constraints, 477

defaultAttributes attribute
(schema element), 284, 399–400

syntax of, 674
defaultAttributesApply attribute

(schema element), 284, 400
syntax of, 674

##defaultNamespace value
(xpathDefaultNamespace
attribute), 375

defaultOpenContent element,
295–298

mode attribute of, 296
syntax of, 295, 655

##defined value (notQName
attribute), 290–291, 625

##definedSibling value (notQName
attribute), 290–291, 625

definitions, 18
order of, 19
See also complex type definitions

deprecated element, 638
derivation. See type derivation
descendant keyword (XPath), 438
deterministic content models, 279–280
digits

in binary types, 249
in NMTOKEN type, 243
in regular expressions, 161–162, 166,

168
in XML names, 40, 91, 208, 559

distinct-values function
(XPath 2.0), 363

div operator (XPath 2.0), 356
DocBook, 526
documentation, 6–7, 31, 580–592

generating from schemas, 541, 545,
584

human-readable, 497–498, 541, 545,
581

metadata in, 582, 585
on namespaces, 589–592
reusing, 584
separate authoring, 527

documentation element, 497–498,
581–584

source attribute of, 582
syntax of, 583, 655

documents. See schema documents
double type, 213–215

canonical representation of, 213
facets applicable to, 215, 696

DTDs (Document Type Definitions),
9–10, 473–499

#PCDATA in, 474–475, 478
attributes in, 475

types of, 480–482
values of, 114, 482

comments in, 497–498
converting to schemas, 10
elements in, 476, 478
empty content in, 479
extensibility of, 486–492
general entities in, 493, 499
groups in, 476–484
limited support of namespaces in, 564
occurrence constraints in, 477
parameter entities in, 483–492
reusing:

attributes, 485–486
content models, 484–485

unparsed entities in, 240, 242, 493,
496

using with schemas, 499
whitespace handling in, 474

Index entries in gray refer to XML Schema 1.1.

Index706

wildcards in, 480
duration type, 229–231

facets applicable to, 697

E
e or E (exponent), in numbers, 213–214
e-book readers, 524
element declarations, 4, 18, 89–110

abstract, 420
duplicating names of, 268–269
global, 19, 89–92, 550, 578
identity constraints in, 425
in content models, 266–269
in model groups, 270, 276–279, 387,

391
in substitution groups, 95, 114

multiple, 413–414
local, 19, 93–96, 99, 266, 339, 550,

578
missing external components in, 76
occurrence constraints in, 94
overriding, 459, 466
referencing types in, 96
removing, 619
restricting, 321–322
reusing, 597
target namespace of, 48
vs. OO instance variables, 514
vs. wildcards, 280, 604, 619, 624

element element, 28, 89–95
abstract attribute of, 418, 420
block attribute of, 322, 346, 418–419
default attribute of, 101
final attribute of, 418–419
fixed attribute of, 101
form attribute of, 100
name attribute of, 266, 339
nillable attribute of, 109
ref attribute of, 267, 388
substitutionGroup attribute of,

410–412

syntax of:
global declaration, 90–91, 656
local declaration, 93, 656
reference, 267, 656

targetNamespace attribute of,
339–341

type attribute of, 96–97, 267, 387
element references, 267–268

duplicating names of, 268–269
in model groups, 270, 276–279, 388,

391
occurrence constraints in, 92

element substitution groups. See
substitution groups

element wildcards, 27, 285–288, 601
for forward compatibility, 623
in choice groups, 609
overlapping values of, 280
restricting, 322–324
vs. element declarations, 604, 619

in version 1.1, 624
in version 1.1., 280

See also any, replacement elements
elementFormDefault attribute

(schema element), 77, 99, 101, 578
overriding, 100
qualified value of, 99, 402, 576
syntax of, 674
unqualified value of, 77, 99, 101,

577–578
element-only content, 25, 264

extending, 305
restricting, 317

elements, 19, 89–110
absent, 101, 105
block vs. inline, 525
co-constraints for, 33
container, 531–532
deprecated, 627, 638
empty, 101, 105–106, 143, 145
for relationships, 512–514
generic, 520

707Index

Index entries in gray refer to XML Schema 1.1.

elements (cont.)
intermediate, 527–531, 546
mapping to databases, 586–587
names of, 4, 96, 545, 559–563, 597

changing, 619
generic vs. specific, 533–537
in XPath, 439
qualified, 91, 98–100, 575, 580
searching in content, 525
unprefixed, 39, 94
unprefixed qualified, 40
unqualified, 40, 96, 576–580
unqualified local, 98–101
vs. names of rows in databases, 506

nillable, 103, 106–110, 115, 143, 435
and identity constraints, 110
of derived declarations, 322

order of, 115, 270–272, 506, 536, 619
in narrative content, 526

repeating, 114, 506, 536
in all groups, 532

replacement, 285–291, 323
required vs. optional, 143, 271, 531,

536, 618–619, 627
root, 87, 95, 523
separate vs. composite values, 532–533
types associated with, 4, 18, 20–21, 96
values of:

and units of measurement, 130
data types for, 535
default, 82, 101–103, 107, 110,

269, 548
fixed, 82, 101–104, 110, 321, 548
whitespace in, 82

vs. attributes, 114
else keyword (XPath 2.0), 369–370
empty attribute values, 124, 145
empty content, 25–26, 265–266

applying default open content to,
298

extending, 305, 313
restricting, 317, 332–333
vs. DTDs, 479

empty function (XPath 2.0), 358
EMPTY specifier (DTDs), 474, 479
ends-with function (XPath 2.0), 358
ENTITIES type, 242–243

facets applicable to, 243, 697
in DTDs, 481

ENTITY type, 240–241
facets applicable to, 241, 697
in DTDs, 481, 483–492

enumeration facet, 137, 145–148, 481
case-insensitive, 155
extending, 146–147
for built-in types, 695–698
for derived types, 140
for list types, 192–194, 240, 243–244
for union types, 185
syntax of, 138, 657

error built-in type (XML Schema
namespace), 380–381

escapes. See character class escapes
exists function (XPath 2.0), 358
explicitTimezone facet, 137–138,

150
for built-in types, 695–698
syntax of, 657
value attribute of, 150, 234

exponent, in numbers, 213–214
extensibility, 8, 542–543, 599–614

and anonymous types, 134
in DTDs, 486–492
intermediate elements for, 531

extension
of all groups, 606
of attributes, 314, 490–491
of choice groups, 489–490, 607–608
of complex types, 22, 27, 302–303,

305–316, 403, 516, 606
of content models, 27, 305–313, 607
of enumerations, 146–147
of schemas, 8, 531, 542–543, 599–614
of sequence groups, 486, 488,

606–607

Index entries in gray refer to XML Schema 1.1.

Index708

extension element, 303, 305, 625
syntax for:

complex content, 307, 658
simple content, 306, 657

extension value
of block attribute, 344, 420
of final attribute, 153, 343, 419

F
facetAvailable attribute (Version

Control namespace), 645–646
syntax of, 675

facets, 24, 135–152
applicability of, 138, 204, 695
changing restrictiveness of, 619–620
fixed, 140–141
implementation-defined, 155, 642
inheriting, 139, 204
order of, 136
prelexical, 151, 643, 646

facetUnavailable attribute (Version
Control namespace), 645–646

syntax of, 675
false function (XPath 2.0), 358
field element

syntax of, 435, 658
xpath attribute of, 435
xpathDefaultNamespace attribute

of, 375
final attribute
#all value of, 152, 343

in version 1.1, 418
empty value of, 343, 419
extension value of, 153, 343, 419
list value of, 153
of complexType element, 343–344
of element element, 418–419
of simpleType element, 152–153
restriction value of, 153, 343, 419
syntax of:

on complex type, 675
on element, 676
on simple type, 676

union value of, 153

finalDefault attribute (schema
element), 77, 153, 344

overriding, 153, 419
syntax of, 676

fixed attribute
of attribute element, 123, 283,

482, 631
of element element, 101
of facets, 140–141
syntax of:

on declaration, 677
on facet, 677

fixed values
avoiding in web services, 548
of attributes, 82, 123, 125, 283, 333,

457
of elements, 82, 101–104, 110, 321
of schema's version, 631

#FIXED specifier (DTDs), 483
float type, 213–215

canonical representation of, 213
facets applicable to, 215, 696

floating-point numbers, 213
form attribute

ignoring for attribute names, 580
of attribute element, 122
of element element, 100
qualified value of, 100, 122
syntax of, 677
unqualified value of, 100, 122

forward compatibility, 623–626
in version 1.1, 625, 641–642

fractionDigits facet, 137, 145
applicability of, 138
fixed, 141
for built-in types, 695–698
for numeric types, 219
syntax of, 138, 658

fragment identifiers, in URIs, 251

G
Garden of Eden design, 555–557
gDay type, 228

facets applicable to, 697

709Index

Index entries in gray refer to XML Schema 1.1.

general entities (DTDs), 493, 499
gMonth type, 227

facets applicable to, 697
gMonthDay type, 227–228

facets applicable to, 697
granularity of data, 130
Gregorian calendar, 221, 225
group element, 386–390
ref attribute of, 388–389, 519
syntax of:

definition, 387, 659
reference, 389, 659

group references, 388
in all groups, 276, 391
in complex types, 387, 390
nested, 392
occurrence constraints in, 386, 390
self-referencing, 456

> entity reference, 163
gYear type, 225

facets applicable to, 697
gYearMonth type, 226

facets applicable to, 697

H
H, in durations, 229–233
hexadecimal encoding, 162, 248
hexBinary type, 248–250

facets applicable to, 250, 698
values of:

comparing, 255
empty, 143
length of, 249

hyperlinks, 525
hyphen. See -

I
i-, in language names, 211
\i and \I, multicharacter escapes, 167
IANA (Internet Assigned Numbers

Authority), 211
id attribute, 678
ID type, 236–237

facets applicable to, 237, 697
for containment relationships, 511

in attribute groups, 394
in DTDs, 481
limitations of, 424
unique values of, 236
using attributes for, 115

identity constraints, 19, 32, 238,
423–444

and namespaces, 54, 439–440
changing restrictiveness of, 322
definitions of, 18
fields in, 110, 426, 434
for containment relationships, 511
location of, in element declarations,

425
names of, 426, 559
referencing, 442–444
scope of, 424, 426
selectors in, 426, 433
XPath subset for, 435–438

IDREF type, 237–238
comparing values of, 254
facets applicable to, 238, 697
for containment relationships, 511
in DTDs, 481
limitations of, 424
using attributes for, 115

IDREFS type, 239–240
comparing values of, 254
facets applicable to, 240, 697
in DTDs, 481

if keyword (XPath 2.0), 369–370
#IMPLIED specifier (DTDs), 483
import element, 30, 66–74

and namespaces, 49, 85, 568–572
chained, 70–74
namespace attribute of, 68
schemaLocation attribute of, 68, 85
syntax of, 67–68, 659
top-level location of, 68
vs. DTDs, 492

include element, 29, 62–66, 450,
565–568

chameleon, 65–66, 565, 572–574
schemaLocation attribute of, 63

Index entries in gray refer to XML Schema 1.1.

Index710

syntax of, 63, 660
top-level location of, 63
vs. DTDs, 492

indexes, for narrative content, 525
INF (infinity), numeric value, 213–214
-INF (negative infinity), numeric value,

213–214
+INF (positive infinity), numeric value,

213–214
inheritable attribute (attribute

element), 126–127, 283, 382–383
syntax of, 678

instances, 30, 79–87
augmenting, 82–83
upgrading with XSLT, 639
XHTML representation of, 587
xsi:schemaLocation attribute of,

30
int type, 217

canonical representation of, 204
facets applicable to, 696

integer type, 51, 217
comparing values of, 254–255
facets applicable to, 141, 217, 696
preceding sign rule for, 217
restricting, 142
whitespace in, 104, 125

integer types, 217–220
canonical representation of, 217
facets applicable to, 217–219
values of:

comparing, 220, 253
length of, 144–145

vs. strings, 220
interleave value (mode attribute), 293,

311
internationalization, 582
IRIs (Internationalized Resource

Identifiers), 251
Is (in block escapes), 170
ISO 11179 standard, 584
ISO 3166 standard, 211
ISO 639 standard, 211
ISO 8601 standard, 221

ISO/IEC 19757-2 standard, 12
item types, 182, 188

anonymous, 189
facets applicable to, 192–193
length of, 192
lists for (illegal), 196–197
restricting, 198
unions for, 196
whitespace in, 189, 195

itemType attribute, 189
syntax of, 678

K
key constraints, 423, 428–429

changing restrictiveness of, 322
fields in, 426, 428–429
names of, 426
referencing, 442–444
scope of, 426, 429, 432
selectors in, 426

key element
for containment relationships, 511
syntax of:

definition, 429, 660
reference, 442, 660

key references, 423, 430–433
changing restrictiveness of, 322
fields in, 426, 431, 433
names of, 426
referencing, 442–444
scope of, 426, 432
selectors in, 426

keyref element
for containment relationships, 511
refer attribute of, 430
syntax of:

definition, 430, 661
reference, 442, 661

L
L, in category escapes, 168
lang attribute (XML namespace), 59,

120, 211
syntax of, 678

711Index

Index entries in gray refer to XML Schema 1.1.

language type, 211–213
facets applicable to, 213, 696

last function (XPath 2.0), 364
lax value (processContents

attribute), 288, 291, 602–603
in open content, 605

length facet, 137, 143
changing restrictiveness of, 619–620
for binary types, 249
for built-in types, 695–698
for list types, 192, 240, 243–244
syntax of, 138, 661

letters
in binary types, 249
in NMTOKEN type, 243
in regular expressions, 161, 168
in XML names, 40, 91, 167, 208, 559

line feed character
in regular expressions, 163–166
in strings, 151

list element, 188–189
syntax of, 188, 662

list types, 181–183, 188–198
assertions for, 363–365
comparing, 253
derived from string-based types, 195
disadvantages of, 190
empty, 192
facets applicable to, 182, 189–194,

240, 243–244, 698
item types of, 182, 188, 196–197
length of, 143, 192
no absent or nil items in, 189–190
restricting, 136, 182, 190–194

list value (final/finalDefault
attributes), 153

local names, 40
##local value

of namespace attribute, 287
of notNamespace attribute, 289
of xpathDefaultNamespace

attribute, 375
localization, 582

long type, 217
facets applicable to, 696

lower-case function (XPath 2.0), 357
< entity reference

in regular expressions, 163
in strings, 205

M
M

in category escapes, 168
in durations, 229–233

mantissa, in numbers, 213
marks, in regular expressions, 168
matches function (XPath 2.0), 358
max function (XPath 2.0), 363
maxExclusive facet, 137, 142

for built-in types, 695–698
for date and time types, 235
for duration types, 230
syntax of, 138, 662

maxInclusive facet, 137, 142
fixed value of, 140
for built-in types, 695–698
for date and time types, 235
for duration types, 230
for integer types, 217–218
for simple content, 317–318
syntax of, 138, 662

maxLength facet, 137, 143
changing restrictiveness of, 619–620
for built-in types, 695–698
for list types, 192, 240, 243–244
syntax of, 138, 663

maxOccurs attribute
changing restrictiveness of, 321,

324–329
default value of, 477
for replacement elements, 286
in all groups, 277
in element declarations, 94, 267, 322
in element references, 92, 267
in element wildcards, 602
in group references, 386, 390, 456
syntax of, 679

Index entries in gray refer to XML Schema 1.1.

Index712

unbounded value of:
in all groups, 276
in choice groups, 274

vs. DTDs, 477
maxVersion attribute (Version Control

namespace), 641
syntax of, 679

member types, 182, 184–187
memberTypes attribute, 184–185

syntax of, 679
metacharacters, 162
metadata, 114–115, 582, 585

using attributes for, 526
min function (XPath 2.0), 363
minExclusive facet, 137, 142

for built-in types, 695–698
for date and time types, 235
for duration types, 230
syntax of, 138, 663

minInclusive facet, 137, 142
fixed value of, 140
for built-in types, 695–698
for date and time types, 235
for duration types, 230
for integer types, 217–218
for simple content, 317–318
syntax of, 138, 663

minLength facet, 137, 143
changing restrictiveness of, 619–620
for built-in types, 695–698
for list types, 192, 240, 243–244
syntax of, 138, 664

minOccurs attribute
changing restrictiveness of, 321,

324–329
default value of, 477
for defaulted elements, 102
for replacement elements, 286
in all groups, 276–277, 310
in choice groups, 275
in element declarations, 94, 267
in element references, 92, 267
in element wildcards, 602

in group references, 386, 390, 456
in sequence groups, 271
syntax of, 680
vs. DTDs, 477

minus sign. See -
minVersion attribute (Version Control

namespace), 641
syntax of, 680

missing values, 105–106
mixed attribute, 331, 478

of complexContent element, 305
of complexType element, 265
syntax of, 680

mixed content, 25–26, 207–208, 264
avoiding in web services, 548
default/fixed values for, 102
extending, 305, 312–313
restricting, 317, 331–332
vs. DTDs, 478

mod operator (XPath 2.0), 356
mode attribute
interleave value of, 293, 311
none value of, 293, 331
of defaultOpenContent element,

296
of openContent element, 293, 311

restricted, 329–330
suffix value of, 293, 296, 311, 329
syntax of, 681

model groups, 26, 270–279
definitions of, 18
meaningless, 320–321
named. See named model groups
nesting, 26, 275–276
restricting, 324–329
See also all, choice, sequence

group
modifiers, in regular expressions, 168
multicharacter escapes, 166

N
N, in category escapes, 168–169
\n single-character escape, 163–165

713Index

Index entries in gray refer to XML Schema 1.1.

name attribute
of attribute element, 117
of element element, 92, 339, 387
of group element, 386
syntax of, 681

Name type, 208–209
facets applicable to, 209, 695

named complex types, 22, 258–260
extending, 606
names of, 258, 559–560
referencing in element declarations, 96
reusing, 597
vs. anonymous, 550
vs. DTDs, 484

named model groups, 19, 32, 385–392,
544

all groups in, 391
and namespaces, 401–403
definitions of, 386–388
element declarations in, 387
element references in, 388
names of, 386, 545, 559
occurrence constraints in, 386
overriding, 459, 467, 613–614

risks of, 470–471
redefining, 449, 451, 454–456, 600,

611–612
risks of, 470–471

referencing, 388–392, 456
in complex types, 278–279,

389–391
in named model groups, 392

reusing, 597
target namespace of, 48
vs. DTDs, 476–484
vs. OO concepts, 519
vs. type derivation, 403–404, 520
See also all, choice, sequence

group
named simple types, 22, 121

definition of, 131–132
in local attributes, 120
names of, 131, 559–560
referencing in element declarations, 96

reusing, 597
vs. anonymous, 133–134, 550

names, 35–46
capitalization in, 560
case sensitiveness of, 40, 559
changing, 619
disallowed for replacement elements,

289–291
duplicating (illegal), 45, 119, 397, 470
good practice of, 545, 559–563
in databases and programming

languages, 560
length of, 560
non-colonized, 37, 40, 91, 210
prefixed, 40
qualified, 40, 246

of attributes, 44–46, 117, 119–120,
122–123, 580

of elements, 91
uniqueness of, 75–76, 117

qualified local, 98–100, 575, 580
searching in content, 525
separators in, 560
terms and abbreviations in, 561–562
uniqueness of, 19, 557, 568, 574
unprefixed, 40, 94

of attributes, 122
of elements, 39
undeclaring default namespace with,

43
unqualified, 40

of attributes, 119, 122–123, 580
of elements, 96

unqualified local, 98–101, 576–580
valid XML, 208, 559

namespace attribute
##any value of, 287, 329
##local value of, 287
##other value of, 287, 323, 602
##targetNamespace value of, 287
of attribute wildcard, 298, 315–316,

336–337
of derived attribute declaration,

335–336

Index entries in gray refer to XML Schema 1.1.

Index714

of derived element declaration, 322
of element wildcard, 287
of import element, 68
of restricted open content, 329–330
syntax of:

on import, 682
on wildcard, 681

namespace declarations, 29, 37–39
default, 39–43

and attributes, 39
undeclaring, 43–44

overriding, 42–43
scope of, 41
setting in schema documents, 52–54

namespace-qualified names. See qualified
names

namespaces, 28–29, 35–54
advantages of, 36, 564
and assertions, 372–375
and conditional type assignment,

381–382
and imports, 66–67, 568–572
and includes, 565–568
and named model groups, 401–403
and schemas, 48, 565
chameleon, 65–66, 565, 572–574
default, 52, 101, 571, 578

for path expressions, 60
disallowed for replacement elements,

289–291
documenting, 589–592
in path expressions, 440–441
limited support in DTDs for, 564
multiple in an instance, 85
names of, 35–44

case sensitiveness of, 36
version numbers in, 632

of overridden schema documents,
459–462, 572

of redefined schema documents, 448,
450, 572, 600

of replacement elements, 287
organizing, 565–574
prefixes for, 28, 37, 41

target. See target namespace
Namespaces in XML recommendation,

36–37
NaN (Not a Number), numeric value,

213–214
narrative content, 524–527
NCName type, 210, 236

comparing values of, 254
facets applicable to, 210, 695

NCNames. See non-colonized names
NDR (Naming and Design Rules), 548,

601
negation, in regular expressions, 165,

173–175
negative infinity. See -INF
negative sign. See -
negativeInteger type, 217

facets applicable to, 696
newline. See line feed character
nil attribute (XSI namespace), 51, 80,

103, 107–110, 143
syntax of, 682

nil values, 103, 106–110, 115
nillable attribute (element element),

109
of derived element declarations, 322
syntax of, 682

NLM XML, 526
NMTOKEN type, 243–244

facets applicable to, 244, 697
in DTDs, 481

NMTOKENS type, 244
facets applicable to, 245, 697
in DTDs, 481

noNamespaceSchemaLocation
attribute (XSI namespace), 51, 80,
83–84, 86

syntax of, 683
non-colonized names (NCNames), 37,

40, 91, 210
nondeterministic content models, 280,

470, 602
none value (mode attribute), 293, 331
non-native attributes, 588–589, 629

715Index

Index entries in gray refer to XML Schema 1.1.

nonNegativeInteger type, 217
facets applicable to, 696

nonPositiveInteger type, 217
facets applicable to, 696

normalizedString type, 205–208, 481
empty value of, 103, 143, 206
facets applicable to, 205–207, 695
whitespace in, 151–152, 205–206

normalize-space function
(XPath 2.0), 357

not function (XPath 2.0), 358, 378
notation element, 494

syntax of, 664
NOTATION type, 245–246

facets applicable to, 246, 697
in DTDs, 481–482
restricting, 495

notations, 19, 245–246, 493–496
and unparsed entities, 496
declarations of, 18, 494–495
names of, 494, 559–563
overriding, 459
reusing, 597
target namespace of, 48

notNamespace attribute
##local value of, 289
##targetNamespace value of, 289
of attribute wildcard, 298
of element wildcard, 289–290
syntax of, 683

notQName attribute
##defined value of, 290–291, 625
##definedSibling value of,

290–291, 625
of attribute wildcard, 298
of element wildcard, 290, 625
syntax of, 683

number sign. See #
numbers

decimal, 215
floating-point, 213
in regular expressions, 168
number of digits in, 137, 139,

144–145, 148–149

number of fractional digits in, 137,
145

numeric types, 213–220, 692–693
enumerating, 147–148
facets applicable to, 142, 148, 696

O
OASIS international consortium, 12
object-oriented concepts, 514–522
occurrence constraints

changing restrictiveness of, 321,
324–329, 618–620

for defaulted elements, 102
for replacement elements, 286
in all groups, 276, 310
in choice groups, 275
in element declarations, 94, 267, 322
in element references, 92, 267
in element wildcards, 602
in group references, 386, 390, 456
in sequence groups, 271
vs. DTDs, 477

open content, 292–298, 604–605
adding/removing, 619
and forward compatibility, 625
default, 295–298
extending, 311–312
restricting, 329–331
vs. other extension mechanisms, 600

openContent element, 292, 311, 604
mode attribute of, 293, 311, 329–330
removing in restriction, 331
syntax of, 292, 664

optional value
of use attribute, 283
of value attribute, 150

or operator (XPath 2.0), 356, 378
##other value (namespace attribute on

wildcard), 287, 323, 602
override element, 459–463, 612–614

annotations in, 581, 585
order of new definitions in, 463
syntax of, 463, 665
top-level location of, 462

Index entries in gray refer to XML Schema 1.1.

Index716

overrides, 33, 459–471, 612–614
and target namespace, 459–462, 572
of attribute groups, 467, 491–492
of complex types, 465
of global declarations, 466
of named model groups, 467
of simple types, 464–465
ripple effect of, 461–462
risks of, 468–471
vs. DTDs, 488
vs. other extension mechanisms, 600

P
P

in category escapes, 168
in durations, 229–233

p element (HTML), 525
\p multicharacter escape, 161, 169–170,

177
\P multicharacter escape, 169–171
parameter entities (DTDs)

external, 492
for attribute extensions, 490–491
for extensibility, 486–492
for reuse, 483–486
internal, 483–491

parent keyword (XPath), 438
parentheses. See ()
particles (of complex type), 262
path expressions (XPath), 367–369,

435–440
default namespace for, 60
unprefixed names in, 440–441

pattern facet, 137, 139, 148–149
changing restrictiveness of, 619–620
for built-in types, 695–698
for derived types, 140
for duration types, 231
for list types, 194
for numeric types, 219
for union types, 185
multiple occurrences of, 148
syntax of, 138, 665

#PCDATA specifier (DTDs), 474–475,
478

percent sign, in URIs, 251–252
performance, 82
period. See .
Perl programming language, 159
plus sign. See +
position function (XPath 2.0), 364
positiveInteger type, 217

comparing values of, 254–255
facets applicable to, 696

prefixed names, 40
of attributes, 44–46, 120, 122

prefixes, 28, 37, 98
in path expressions, 439
mapping to:

target namespace, 29, 53
XML Schema Namespace, 38,

50–52
naming rules for, 41

prelexical facets, 151
preprocess facet (Saxon), 155
preserve value (whiteSpace facet),

104, 125, 151–152, 205, 254
primitive types, 203

additional, 203
processContents attribute

and forward compatibility, 623
lax value of, 288, 291, 602–603

in open content, 605
of attribute wildcard, 298, 315–316,

336–337, 602–603
of element wildcard, 287–289
skip value of, 287–289
strict value of, 288–289
syntax of, 684

prohibited value
of use attribute, 283
of value attribute, 150

proxy schemas, 74
public attribute (notation element),

493
syntax of, 684

717Index

Index entries in gray refer to XML Schema 1.1.

punctuation signs, in category escapes,
168

purchase orders, 503, 507
intermediate elements for, 527–531

Q
QName type, 246

comparing values of, 254
facets applicable to, 247, 698

qualified names (QNames), 40, 98–100,
246

local, 575, 580
local part of, 40
of attributes, 44–46, 122, 580
of elements, 40, 91
uniqueness of, 75–76, 91, 117

qualified value
of attributeFormDefault

attribute, 122
of elementFormDefault attribute,

99, 402, 576
of form attribute, 100, 122

quantifiers (in regular expressions), 161,
165–166, 176–177

question mark. See ?
" entity reference, 163

R
\r single-character escape, 163, 165
RDDL (Resource Directory Description

Language), 590–592
readability

and named/anonymous types, 134
and namespace prefixes, 37
of smaller schema documents, 557

redefine element, 448–452
annotations in, 581, 585
syntax of, 451, 665
top-level location of, 451

redefinition, 33, 448–459
and target namespace, 448, 450, 572
avoiding in web services, 548
of attribute groups, 456–458, 490–491
of complex types, 453–454
of named model groups, 454–456

of simple types, 452–453
ripple effect of, 451
risks of, 468–471
vs. DTDs, 486–487

ref attribute
of attribute groups, 395
of attributes, 115, 117
of elements, 91, 267, 388
of identity constraints, 442
of named model groups, 388–389
syntax of, 684

refer attribute (keyref element), 430
syntax of, 684

regular expressions, 148–149, 159–178
atoms in, 161–176
branches in, 159–161, 177–178
characters in, 161–162, 173
nested, 175
pieces in, 159, 161
quantifiers in, 161, 165–166, 176–177
ranges in, 173

relational models, 503–514
relationship elements, 512–514
relationships, 507–514

many-to-many, 507–514
one-to-many, 507
one-to-one, 507
with references, 510–512
with relationship elements, 512–514
with repetition, 508–509

RELAX NG schema language, 12–14
rendition, 525–526
replace value (whiteSpace facet),

151–152, 205
replacement elements, 285–291

disallowed namespaces and names
of, 289–291

in derived element declarations, 323
namespaces of, 287
occurrence constraints for, 286

any number of, 293
validating, 289
See also element wildcards

representation, 525

Index entries in gray refer to XML Schema 1.1.

Index718

required value
of use attribute, 283
of value attribute, 150, 234

#REQUIRED specifier (DTDs), 483
restriction, 303, 305

assertions in, 353–354, 371
of all groups:

in version 1.1, 625
of attribute wildcards, 458
of complex types, 455, 603
of content models, 455
of integer types, 142
of item types, 198
of list types, 136, 182, 190–194
of notations, 495
of simple types, 135–136, 138–140,

182
of union types, 185
with regular expressions, 148–149

restriction element
base attribute of, 136
syntax for:

complex content, 319, 667
list type, 191, 666
simple content, 318, 667
simple type, 136, 666
union type, 186, 666

restriction value
of block attribute, 344, 420
of final attribute, 153, 343, 419

reusability, 8
and anonymous types, 134
of content models, 302, 385
of schemas, 543, 597

reusable groups. See named model groups
RFC 2396 standard, 251
RFC 3066 standard, 211
RFC 3548 standard, 249
RFC 3987 standard, 251
RFC 4646 standard, 211
RFC 4647 standard, 211
root element, 87, 95

specific for individual operations, 523
round function (XPath 2.0), 358

round-half-to-even function
(XPath 2.0), 358

Ruby annotations, 207
Russian Doll design, 551–552

S
S

in category escapes, 169
in durations, 229–230, 232–233

\s and \S, multicharacter escapes, 166
Salami Slice design, 553–554
SAX (Simple API for XML), 635
saxon:preprocess facet, 155, 643,

646
schema documents, 57–77

combining, 61–77
comments in, 497–498
defaults of, 77
location of, 83, 630
missing external components of, 76
modularizing, 28–30, 57, 62, 492,

557–559, 565–574, 597
namespace declarations in, 52
natural language of, 59, 211
overriding, 461
readability of, 37, 134, 557
redefining, 448, 450
reusing, 544
structure of, 58–61

sections in, 585–586
top level of, 19

global declarations at, 89, 115
imports at, 68
includes at, 63
named model groups at, 386
overrides at, 462
redefines at, 451

version numbers of, 59, 628–629
fixed, 631

schema element, 28, 58–60, 393
annotations in, 581, 585
attributeFormDefault attribute

of, 77, 122, 580
blockDefault attribute of, 77, 345

719Index

Index entries in gray refer to XML Schema 1.1.

schema element (cont.)
defaultAttributes attribute of,

399–400
elementFormDefault attribute of,

77, 99–101, 576, 578
finalDefault attribute of, 77, 153,

344, 419
syntax of, 59, 668
targetNamespace of, 49–50
version attribute of, 59, 626,

628–629, 631, 689
xml:lang attribute of, 59
xpathDefaultNamespace attribute

of, 60, 373–375, 441
schema languages, 9–14
schemaLocation attribute

of import element, 68, 85
of include element, 63
syntax of, 685

schemaLocation attribute (XSI
namespace), 30, 51, 80, 83–87, 588

of imported documents, 571
schemas, 3–8

and namespaces, 48, 565
components of, 18–20
designing, 7–8, 502, 526–527,

539–580
documenting changes to, 637
extending, 8, 531, 542–543, 599–614
generating documentation from, 541,

584
interoperability of, 518
mapping to XHTML forms, 586
organizing, 527–537, 550–559
portability of, 156
preprocessing, 642
reusing, 8, 543–544, 557, 584,

596–597
tool compatibility of, 547
uses for, 5–7, 540–542
using with DTDs, 499
version numbers of, 626–634
versioning, 531, 547–549, 558–559

Schematron schema language, 13–14

selector element
syntax of, 433–434, 668
xpath attribute of, 435
xpathDefaultNamespace attribute

of, 375
semicolon, in regular expressions, 162
separators, in category escapes, 169
sequence group, 26, 270–272

extending, 486–488, 606–607
in complex content extensions,

307–308
in complex types, 390
in named model groups, 386
meaningless, 321
nesting, 275–276
occurrence constraints in, 271
overriding, 488
redefining, 486–488
restricting, 324–329
syntax of, 270, 668
turning into all or choice group,

619
vs. DTDs, 477

service contracts, 541
short type, 218

facets applicable to, 696
simple content, 25, 262–263

assertions for, 354
default/fixed values for, 102
deriving complex types from, 303–304
extending, 305–306
restricting, 317–318
vs. database columns, 504
vs. DTDs, 475

simple types, 19, 21, 23–25, 129–156
anonymous, 22, 96, 120–121,

132–134, 550
assertions for, 353–365
associating with element names, 96
base type of, 135–136, 139, 182
built-in. See built-in types
changing restrictiveness of, 619
deriving, 182
facets applicable to, 138–139

Index entries in gray refer to XML Schema 1.1.

Index720

global, 22
implementation-defined, 154,

642–645
local, 19
named, 120–121, 131–134, 550,

559–560, 597
overriding, 459, 464–465

risks of, 468–470
patterns in, 160
preventing derivation of, 152–153
redefining, 449, 452–453, 600, 609

risks of, 468–470
restricting, 24, 135–136, 138–140,

182
with regular expressions, 148–149

reusing, 597
turning into unions/lists, 619
values of:

comparing, 253
default/fixed, 102

vs. complex types, 21
vs. datatypes, 201
vs. DTDs, 474

simpleContent element, 263,
303–304, 306

syntax of, 304, 669
simpleType element, 96, 120
final attribute of, 152–153
syntax of:

anonymous definition, 133, 669
named definition, 132, 669

using with restriction, 136
single-character escapes, 165
skip value (processContents

attribute), 287–289
smartphones, 524
source attribute (documentation

element), 582
syntax of, 685

SOX (Schema for Object-oriented XML),
11

space character
in regular expressions, 162–163, 166
in strings, 151, 205–206

square brackets, in regular expressions,
160–162, 165, 171–172

starts-with function (XPath 2.0),
357

strict value (processContents
attribute), 288–289

string type, 97, 205–208
facets applicable to, 205–207, 695
values of:

comparing, 254–255
empty, 103, 143, 206

whitespace in, 104, 125, 151–152,
205–206, 254

string types, 691–692
deriving list types from, 195
values of:

comparing, 220, 254
length of, 143–144
valid, 145

vs. integers, 220
whitespace in, 151–152

string-length function (XPath 2.0),
357

stylesheet element (XSLT), 631
substitution groups, 32, 407–414,

607–609
and data binding tools, 518
compatibility of, 619
controlling, 418–420
declaring, 409–412
disadvantages of, 417
element declarations in, 95, 114

multiple, 413–414
for inline elements, 525
head of, 408–409, 608
members of, 408–410
type constraints for, 412–413
vs. choice groups, 414–415
vs. DTDs, 489
vs. other extension mechanisms, 600

substitution value
(block/blockDefault attributes),
420

721Index

Index entries in gray refer to XML Schema 1.1.

substitutionGroup attribute
(element element), 410–412

list of names in, 413–414
syntax of, 685

substring, substring-after,
substring-before functions
(XPath 2.0), 357

suffix value (mode attribute), 293, 296,
311, 329

sum function (XPath 2.0), 364
system attribute (notation element),

121, 493
syntax of, 686

T
T

in dates, 223
in durations, 229–230, 232–233

\t single-character escape, 163, 165
tab character

in regular expressions, 163, 165–166
in strings, 151, 205–206

tables of contents, for narrative content,
525

target namespace, 28–29, 48–54
and conditional type assignment,

381
and global attributes, 117
and identity constraints, 54
and named model groups, 401
and notations, 494
changing, 619
for included documents, 62–66
in path expressions, 440–441
making default, 52
mapping prefixes to, 29, 53
multiple in assembled schema

documents, 28–29
of overridden schema documents,

459–462, 572
of redefined schema documents, 448,

450, 572

targetNamespace attribute
of element or attribute elements,

339–341
of schema element, 49–50
syntax of:

on local declaration, 686
on schema, 686

##targetNamespace value
of namespace attribute, 287
of notNamespace attribute, 289
of xpathDefaultNamespace

attribute, 374
test attribute (alternative, assert,

assertion elements), 352,
375–376

syntax of, 686
using XPath in, 378–380

text() (XPath), 438
then keyword (XPath 2.0), 369–370
time type, 222–223

comparing values of, 255
facets applicable to, 697

time zones, 222–234
and bounds facets, 235

token type, 205–208
facets applicable to, 205–207, 695
values of:

comparing, 255
empty, 103, 143, 206

vs. integers, 220
whitespace in, 151–152, 205–206, 254

totalDigits facet, 137, 144–145
for built-in types, 695–698
syntax of, 138, 670

trading partners, 5
Trang schema converter, 10
true function (XPath 2.0), 358
type attribute

of alternative element, 376
of attribute element, 120–121, 394
of element element, 96–97, 267, 387
syntax of, 687

Index entries in gray refer to XML Schema 1.1.

Index722

type attribute (XSI namespace), 51, 80,
120, 518, 600

avoiding in web services, 548
for member types, 187
for repeated element names, 415–416
for type derivation, 606
for type redefinition, 609
for type substitution, 342, 605
syntax of, 687

type constraints, 412–413
type derivation, 301–348, 605

by extension, 22, 27, 302–303, 403,
606

by restriction, 22, 301–303, 316–337
prohibiting, 343–348
vs. named model groups, 403–404,

520
vs. OO class inheritance, 514–518

type libraries, 584
type substitution, 115, 302, 341–342,

518, 605
avoiding in web services, 548
prohibiting, 344–346
vs. other extension mechanisms, 600

typeAvailable attribute (Version
Control namespace), 644–645

syntax of, 687
types, 4, 18–23

applicability of, 597
canonical representation of, 204
comparing, 432
definitions of, 18
extending, 516
hierarchy of, 22, 253
inheriting, 544
lexical representations of, 204, 254
named vs. anonymous, 22, 96
names of, 545, 597
redefining, 600, 609
reusing, 523–524, 544
target namespace of, 48
value spaces of, 204
See also complex, simple types

typeUnavailable attribute (Version
Control namespace), 644–645

syntax of, 688

U
unbounded value (maxOccurs

attribute), 274
in all groups, 276

underscore. See _
Unicode standard, 162, 165, 167, 205,

251
union element, 183–185

syntax of, 183, 670
union types, 146, 181–187

comparing, 253
facets applicable to, 185, 698
lists of, 196
member types of, 182, 184–187
restricting, 185

union value (final/finalDefault
attributes), 153

unique element, 426–428
syntax of:

definition, 427, 670
reference, 442, 671

uniqueness constraints, 423, 426–428
changing restrictiveness of, 322
defining, 425
fields in, 110, 426, 428
names of, 426
referencing, 442–444
scope of, 426, 428
selectors in, 426, 428

units of measurement, 130
unparsed entities (DTDs), 240, 242, 493

and notations, 496
unprefixed names, 40, 43

and default namespace, 40
of attributes, 44, 122
of elements, 39, 94

unqualified names
and default namespace, 101
local, 98–101, 576–580
of attributes, 40, 122, 580

723Index

Index entries in gray refer to XML Schema 1.1.

unqualified names (cont.)
of elements, 40, 96

unqualified value
of attributeFormDefault

attribute, 122
of elementFormDefault attribute,

77, 99, 101, 577–578
of form attribute, 100, 122

unsignedByte, unsignedInt,
unsignedLong, unsignedShort
types, 218

facets applicable to, 696
UPA (Unique Particle Attribution), 279,

602, 604, 624
upper-case function (XPath 2.0), 357
URIs (Uniform Resource Identifiers), 36,

250–251
URLs (Uniform Resource Locators), 36,

251
spaces in, 85

URNs (Uniform Resource Names), 36,
251

use attribute (attribute element), 117,
119, 394, 482–483

optional value of, 283
prohibited value of, 283
required value of, 283
syntax of, 688

user documentation. See documentation
UTC (Coordinated Universal Time), 233

V
validation, 5, 81–82, 540–541

against both DTDs and schemas, 114,
499

and performance, 82
and specific root elements, 523
by type, 7, 21
choosing schema documents for, 30,

87
co-constraints for, 586
of concatenated values, 130
of intra-document references, 525
strictness of, 287–289, 588

with RELAX NG, 12
with Schematron, 13–14

value attribute, 137
of explicitTimezone facet, 150,

234
syntax of, 688

$value variable, 353, 358
for list types, 363–365

vc:facetAvailable attribute,
645–646

syntax of, 675
vc:facetUnavailable attribute,

645–646
syntax of, 675

vc:maxVersion attribute, 641
syntax of, 679

vc:minVersion attribute, 641
syntax of, 680

vc:typeAvailable attribute, 645
syntax of, 687

vc:typeUnavailable attribute, 645
syntax of, 688

Venetian Blind design, 554–557
version attribute (schema element),

59, 626, 628–629, 631
fixed value of, 631
syntax of, 689

Version Control Namespace (vc), 51,
641, 645–646

versioning, 617–639
and compatibility, 617–626
defining strategy for, 547–549, 636
granularity of, 558–559
intermediate elements for, 531
major and minor versions for,

626–627, 633
numbering, 626–634

vertical bar. See |

W
\w and \W, multicharacter escapes, 167
W3C (World Wide Web Consortium),

11
web browsers, 524

Index entries in gray refer to XML Schema 1.1.

Index724

web services, 522–524
whitespace

in binary types, 249
in DTD processors, 474
in lists, 182, 188, 195
in regular expressions, 166
normalizing, 82, 254, 499

whiteSpace facet, 103, 137, 151
collapse value of, 104, 125,

151–152, 189, 205–206, 255
for built-in types, 695–698
for list types, 189
for NMTOKEN type, 243
for numeric types, 104, 125, 219
for strings, 104, 125, 205–207, 254
preserve value of, 104, 125,

151–152, 205, 254
replace value of, 151–152, 205
syntax of, 138, 671

wildcard escape character, 164
wildcards, 284–298, 600–604

adding/removing, 619
for attributes. See attribute wildcards
for forward compatibility, 623
location of, in complex type

definitions, 602
negative, 289–291, 625
restricting, 322–324
vs. DTDs, 480
vs. other extension mechanisms, 600
See also attribute, element wildcards

wrapper lists, 531–532
WXS (W3C XML Schema). See XML

Schema

X
x-, in language names, 211
XDR (XML Data Reduced), 11
XHTML (Extensible HyperText Markup

Language), 526
and simple types, 207
including elements from, 572
mapping schemas to forms in, 586

XLink (XML Linking Language)
for external documentation, 584
using attributes for, 115

XML DTD types, 236–246, 694
facets applicable to, 697
length of values of, 143–144

XML (Extensible Markup Language)
documents. See instances
intermediate elements in, 527–531,

546
names in, 167
separating content from representation

in, 524–526
XML messages, 502–537

tightly coupling with databases, 504
XML Schema 1.0
all groups in, 532
attribute groups in, 394
element declarations vs. wildcards in,

604, 624
generic elements in, 535–537
redefinition in, 448–459

XML Schema 1.1, 11, 640–641
+INF value in, 213–214
all groups in, 276, 310–311, 391,

606, 625
alternative element in, 97,

375–376, 650
assertions in, 33, 137, 150, 185,

351–375, 651–652, 686,
695–698

attributes in Version Control
Namespace in, 51, 641,
645–646

backward-compatible with 1.0, 11
conditional type assignment in,

375–383
date and time types in, 224–225,

231–233, 697
defaultAttributes and

defaultAttributesApply
attributes in, 284, 399–400,
674

725Index

Index entries in gray refer to XML Schema 1.1.

XML Schema 1.1 (cont.)
defaultOpenContent element in,

295–298, 655, 672, 681
element declarations in:

multiple, 413
vs. wildcards, 280, 624

element wildcards in, 625
elementFormDefault attribute in,

100
explicitTimezone facet in,

137–138, 150, 234, 657,
695–698

field element in, 375
final attribute in, 418
finalDefault attribute of, 153,

419
forward compatibility in, 625,

641–642, 679–680
ID type in, 236
implementation-defined facets in,

155, 642, 645–646, 675
implementation-defined simple types

in, 154, 642–645, 687
inheritable attributes in, 126–127,

283, 382–383, 678
integer values in, 218
IRIs in, 251
namespaces in, 36–37, 43–44,

289–291, 459–462, 572, 683
open content in, 292–298, 311–312,

329–331, 600, 604–605, 619,
625, 664, 681

overrides in, 33, 459–471, 488,
491–492, 572, 581, 585, 600,
612–614, 665

primitive types in, 203
processContents attribute in, 605
referencing identity constraints in,

442–444, 660–661, 671
restrictions in, 320
selector element in, 375
substitution groups in, 413–414
targetNamespace attribute in,

339–341, 686

using XPath 2.0 with, 352, 355–365,
367–370, 378–380, 435–440

wildcards in, 289–291, 293, 683
xpathDefaultNamespace attribute

in, 60, 373–375, 381, 441, 689
XML Schema Instance Namespace, 51,

79–80, 108
XML Schema Namespace, 50, 97

prefixes mapped to, 38, 50–52
XML Schema recommendation, 11–14,

201
xml:lang attribute, 59, 120, 211

syntax of, 678
xmlns attribute, 39
xmlns prefix, 37, 39
xpath attribute, 435

syntax of, 689
XPath language, 13

and list types, 190
attributes in, 367, 436–437
expressions in, 367–369, 435–440
processing relationships in, 511
unprefixed names in, 440–441
wildcards in, 436–437

XPath 2.0 language
comparing types in, 359–362
conditional expressions in, 369–370
for assertions, 352
functions in, 357–359, 363–364
in conditional type assignment,

378–380
operators in, 355–356

xpathDefaultNamespace attribute
##defaultNamespace value of, 375
##local value of, 375
##targetNamespace value of, 374
of alternative element, 375, 381
of assert element, 375
of assertion element, 375
of field element, 375
of schema element, 60, 373–375,

441
of selector element, 375
syntax of, 689

Index entries in gray refer to XML Schema 1.1.

Index726

xs prefix, 28, 38, 50–52, 97
See also built-in types

xs:error built-in type, 380–381
XSD (W3C XML Schema Definition

Language). See XML Schema
xsd prefix, 38, 50–52
XSDL (XML Schema Definition

Language). See XML Schema
xsi prefix, 80
xsi:nil attribute, 51, 80, 103,

107–110, 143
syntax of, 682

xsi:noNamespaceSchemaLocation
attribute, 51, 80, 83–84, 86

syntax of, 683
xsi:schemaLocation attribute, 30,

51, 80, 83–87, 588
of imported documents, 571
syntax of, 685

xsi:type attribute, 51, 80, 120, 518,
600

avoiding in web services, 548
for member types, 187

for repeated element names, 415–416
for type derivation, 606
for type redefinition, 609
for type substitution, 342, 605
syntax of, 687

XSL-FO (Extensible Stylesheet Language
Formatting Objects), 526

XSLT (Extensible Stylesheet Language
Transformations), 635

and list types, 190
for upgrading instances, 639
processing messages in, 521, 532
schema-awareness of (version 2.0), 417

Y
Y, in durations, 229–231
yearMonthDuration type, 231–232

facets applicable to, 697

Z
Z

in category escapes, 169
in time values, 233–234

zero. See 0

727Index

Index entries in gray refer to XML Schema 1.1.

	Contents
	Foreword
	Acknowledgments
	How to use this book
	Chapter 8 Simple types
	8.1 Simple type varieties
	8.1.1 Design hint: How much should I break down my data values?

	8.2 Simple type definitions
	8.2.1 Named simple types
	8.2.2 Anonymous simple types
	8.2.3 Design hint: Should I use named or anonymous types?

	8.3 Simple type restrictions
	8.3.1 Defining a restriction
	8.3.2 Overview of the facets
	8.3.3 Inheriting and restricting facets
	8.3.4 Fixed facets

	8.4 Facets
	8.4.1 Bounds facets
	8.4.2 Length facets
	8.4.3 totalDigits and fractionDigits
	8.4.4 Enumeration
	8.4.5 Pattern
	8.4.6 Assertion
	8.4.7 Explicit Time Zone
	8.4.8 Whitespace

	8.5 Preventing simple type derivation
	8.6 Implementation-defined types and facets
	8.6.1 Implementation-defined types
	8.6.2 Implementation-defined facets

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

