Common DB2 SQLCODE Values

<table>
<thead>
<tr>
<th>SQLCODE</th>
<th>SQLSTATE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+000</td>
<td>00000</td>
<td>The SQL statement finished successfully.</td>
</tr>
<tr>
<td>+100</td>
<td>02000</td>
<td>No rows found to satisfy the SQL statement.</td>
</tr>
<tr>
<td>+117</td>
<td>01525</td>
<td>Number of values being inserted does not equal number of columns in the table.</td>
</tr>
<tr>
<td>-101</td>
<td>54001</td>
<td>SQL statement is too complex.</td>
</tr>
<tr>
<td>-104</td>
<td>42601</td>
<td>Illegal symbol encountered in SQL statement. Usually, this means you have a syntax error somewhere in your SQL statement.</td>
</tr>
<tr>
<td>-122</td>
<td>42803</td>
<td>Column function used illegally; all columns not applied to the column function must be in the GROUP BY.</td>
</tr>
<tr>
<td>-150</td>
<td>42807</td>
<td>Invalid view UPDATE requested; or an invalid INSERT, UPDATE, or DELETE was requested on a transition table during a triggered action.</td>
</tr>
<tr>
<td>-305</td>
<td>22002</td>
<td>A null was returned but no indicator variable is available to assign null to the host variable.</td>
</tr>
<tr>
<td>-501</td>
<td>24501</td>
<td>Must open a cursor before attempting to fetch from it or close it.</td>
</tr>
<tr>
<td>-502</td>
<td>24502</td>
<td>Cannot open a cursor twice without first closing it.</td>
</tr>
<tr>
<td>-510</td>
<td>42828</td>
<td>The table specified by the cursor of the UPDATE or DELETE statement cannot be modified as requested.</td>
</tr>
<tr>
<td>-530</td>
<td>23503</td>
<td>Invalid foreign key value supplied for the specified constraint name.</td>
</tr>
<tr>
<td>-532</td>
<td>23504</td>
<td>Deletion violates the named referential constraint.</td>
</tr>
<tr>
<td>-545</td>
<td>23513</td>
<td>INSERT or UPDATE caused a check constraint violation.</td>
</tr>
<tr>
<td>-552</td>
<td>42502</td>
<td>User is attempting to perform an operation for which he or she is not authorized.</td>
</tr>
<tr>
<td>-803</td>
<td>23505</td>
<td>Insert violates uniqueness constraint.</td>
</tr>
<tr>
<td>-805</td>
<td>51002</td>
<td>The DBRM or package name was not found in the plan.</td>
</tr>
<tr>
<td>-811</td>
<td>21000</td>
<td>Must use a cursor when more than one row is returned as the result of an embedded SELECT statement.</td>
</tr>
<tr>
<td>-818</td>
<td>51003</td>
<td>Plan/Package vs. load module timestamp mismatch. The DBRM in the executing plan or package was not created from the same precompilation as the load module.</td>
</tr>
<tr>
<td>-904</td>
<td>57011</td>
<td>The specified resource is unavailable. Determine why, and retry the request.</td>
</tr>
<tr>
<td>-911</td>
<td>40001</td>
<td>The current unit of work has been rolled back.</td>
</tr>
<tr>
<td>-913</td>
<td>57033</td>
<td>Unsuccessful execution caused by deadlock or timeout.</td>
</tr>
<tr>
<td>-922</td>
<td>42505</td>
<td>The user is not authorized to perform the task.</td>
</tr>
</tbody>
</table>
Related Books of Interest

DB2 SQL Tuning Tips for Developers
by Tony Andrews
ISBN: 0-13-303846-7

This well-organized, easy-to-understand reference brings together 102 SQL-related skills and techniques any developer can use to build DB2® applications that deliver consistently superior performance. Legendary DB2 tuning expert Tony Andrews ("Tony the Tuner") draws on more than 23 years of DB2-related experience, empowering developers to take performance into their own hands—whether they’re writing new software or tuning existing systems.

Andrews reveals the hidden truth about why DB2 queries, programs, and applications often perform poorly, and shows developers exactly how to clear the bottlenecks and resolve the problems. He fully reflects the latest DB2 SQL programming best practices up to and including DB2 V9 and DB2 V10 on z/OS®—techniques that are taught in no other book and are rarely covered in typical DB2 training courses.

Understanding DB2
Learning Visually with Examples, Second Edition
By Raul F. Chong, Xiaomei Wang, Michael Dang, and Dwaine R. Snow

IBM® DB2® 9 and DB2 9.5 provide breakthrough capabilities for providing Information on Demand, implementing Web services and Service Oriented Architecture, and streamlining information management. *Understanding DB2: Learning Visually with Examples, Second Edition*, is the easiest way to master the latest versions of DB2 and apply their full power to your business challenges.

Written by four IBM DB2 experts, this book introduces key concepts with dozens of examples drawn from the authors' experiences working with DB2 in enterprise environments. Thoroughly updated for DB2 9.5, it covers new innovations ranging from manageability to performance and XML support to API integration. Each concept is presented with easy-to-understand screenshots, diagrams, charts, and tables. This book is for everyone who works with DB2: database administrators, system administrators, developers, and consultants. With hundreds of well-designed review questions and answers, it will also help professionals prepare for the IBM DB2 Certification Exams 730, 731, or 736.

Listen to the author’s podcast at: ibmpressbooks.com/podcasts

Sign up for the monthly IBM Press newsletter at ibmpressbooks/newsletters
Related Books of Interest

DB2 9 for Linux, UNIX, and Windows
DBA Guide, Reference, and Exam Prep, Sixth Edition
by George Baklarz and Paul C. Zikopoulos
The sixth edition of this classic offers complete, start-to-finish coverage of DB2® 9 administration and development for Linux®, UNIX®, and Windows® platforms, as well as authoritative preparation for the latest IBM® DB2 certification exam. Written for both DBAs and developers, this definitive reference and self-study guide covers all aspects of deploying and managing DB2 9, including DB2 database design and development; day-to-day administration and backup; deployment of networked, Internet-centered, and SOA-based applications; migration; and much more. You'll also find an unparalleled collection of expert tips for optimizing performance, availability, and value. Download Complete DB2 V9 Trial Version. Visit ibm.com/db2/9/download.html to download a complete trial version of DB2, which enables you to try out dozens of the most powerful features of DB2 for yourself—everything from pureXML™ support to automated administration and optimization.

DB2 pureXML Cookbook
Master the Power of the IBM Hybrid Data Server
By Matthias Nicola and Pav Kumar-Chatterjee
ISBN: 0-13-815047-8
DB2® pureXML® Cookbook provides hands-on solutions and best practices for developing and managing XML database applications with DB2.
More and more database developers and DBAs are being asked to develop applications and manage databases that involve XML data. Many are utilizing the highly praised DB2 pureXML technology from IBM®. In DB2 pureXML Cookbook, two leading experts from IBM offer the practical solutions and proven code samples that database professionals need to build better XML solutions faster. Organized by task, this book is packed with more than 700 easy-to-adapt "recipe-style" examples covering the entire application lifecycle—from planning and design through coding, optimization, and troubleshooting.

Listen to the author’s podcast at: ibmpressbooks.com/podcasts
Enterprise Master Data Management
An SOA Approach to Managing Core Information
by Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, and Dan Wolfson
ISBN: 0-13-236625-8

Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decision makers. Written by the IBM® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA.

Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage.

An Introduction to IMS
Klein, Long, Blackman, Goff, Nathan, Lanyi, Wilson, Butterweck, Sherrill
ISBN: 0-13-288687-1

IBM Cognos 10 Report Studio: Practical Examples
Draskovic, Johnson

Mainframe Basics for Security Professionals
Pomerantz, Vander, Weele, Nelson, Hahn

Service-Oriented Architecture (SOA) Compass
Bieberstein, Bose, Fiammante, Jones, Shah

WebSphere Business Integration Primer
Iyengar, Jessani, Chilanti

Outside-in Software Development
Kessler, Sweitzer
ISBN: 0-13-157551-1

Sign up for the monthly IBM Press newsletter at ibmpressbooks/newsletters
Accolades for *DB2 Developer’s Guide*

“Once you’ve picked up and read *DB2 Developer’s Guide*, you will know why people on the DB2 List Serve forum refer to this book as the BIBLE. You will find that the *DB2 Developer’s Guide* is a comprehensive guide for both the beginner and experienced in DB2 and relational database technology…I cannot say enough about the *DB2 Developer’s Guide*.”

—Troy Coleman
Data Administration Newsletter

“*DB2 Developer’s Guide* has the potential to pay for itself many times over if you follow its useful design and performance advice. If you use DB2 in your workplace, the most recent edition of *DB2 Developer’s Guide* should definitely be on your bookshelf. Read it to save yourself an enormous amount of pain and suffering.”

—Ron Shirey
Relational Database Journal

“...the book is not only the size of a small encyclopedia, it is also just about as comprehensive.”
Books & Bytes News & Reviews

“*DB2 Developer’s Guide* is a must buy for both inexperienced and DB2 experts alike. I am amazed at the amount of information Craig covers in the *DB2 Developer’s Guide.*”

—Chris Foot
Data Administration Newsletter

“*DB2 Developer’s Guide* is a complete reference for the DB2 professional. It is a perfect tool for finding the options available to the DB2 developer, and steering you to the right method.”

—Gregory Amov
Computing News & Review

“*DB2 Developer’s Guide* presents literally everything programmers and DBAs need to know about advanced DB2...This is an excellent book...It is chock full of DB2 technical information, design and tuning approaches, and database administration guidelines...In an organized and coherent way, Mullins seems to have dumped his entire DB2 life experience into *DB2 Developer’s Guide.*”

—Jonathon Sayles
Relational Database Journal

“Enormous amount of priceless information. I don’t think there has ever been any other publication that managed to cover so much. And the book is not just a ‘developer’s guide’—the book is ‘The DB2 professional’s guide.’”

—Daniela Guentcheva
On amazon.com

“With more than 25 years experience as an application developer on IBM mainframes, including 15 years with DB2, I thought that there was little I didn’t know until reading Craig Mullins’ book. It goes into the depth required (and beyond) for professional developers and even deeper into the domain of the DBA’s territory.”

—Keith A. Marsh
On amazon.com
DB2 Developer’s Guide, Sixth Edition
This page intentionally left blank
The following terms are trademarks of International Business Machines Corporation in many jurisdictions worldwide:

IBM, IBM Press, DB2, z/OS, pureXML, Informix, CICS, IMS, Parallel Sysplex, Optim, MQSeries. pureXML, DS6000, DS8000, FlashCopy, OS/390, QMF, MVS, DB2 Universal Database, DB2 Extenders, developerWorks, RACE, WebSphere, DB2 Connect, OMEGAMON, pureQuery, Redbooks, VTAM, Resource Measurement Facility, GDPS, System z, Distributed Relational Database Architecture, iSeries, AS/400, AIX, zSeries, InfoSphere, Cognos, SPSS, Clarity, and OpenPages. Netezza is a registered trademark of IBM International Group B.V., an IBM Company. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates. UNIX is a registered trademark of The Open Group in the United States and other countries. Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data
Mullins, Craig.
p. cm.
Includes index.
1. Database management. 2. IBM Database 2. I. Title.
QA76.9.D3M84 2012
005.75'65—dc23
2012006815

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447
ISBN-10: 0-13-3283642-4

Text printed in the United States on recycled paper at Edwards Brothers Malloy, Ann Arbor, Michigan.
First printing May 2012
This book is dedicated to my mom, Donna Mullins, and to the memory of my father, Giles R. Mullins.

Without the constant support and guidance my parents provided, I would not have the success I enjoy today.
Contents at a Glance

Introduction .. 1

Part I SQL Techniques, Tips, and Tricks
1 The Magic Words ... 3
2 Data Manipulation Guidelines ... 56
3 Using DB2 Functions ... 135
4 Using DB2 User-Defined Functions and Data Types 167
5 Data Definition Guidelines ... 200
6 DB2 Indexing and Hashing Guidelines .. 324
7 Database Change Management, Schema Evolution, and Database
 Definition On Demand .. 353
8 Using DB2 Triggers .. 373
9 Large Objects and Object/Relational Databases ... 393
10 pureXML: Using XML in DB2 for z/OS .. 408
11 Supporting Temporal Data in DB2 for z/OS ... 428
12 DB2 Security, Authorization, and Auditing ... 448

Part II DB2 Application Development
13 Using DB2 in an Application Program ... 486
14 Dynamic SQL Programming ___ 567
15 Program Preparation .. 601
16 Using DB2 Stored Procedures .. 656
17 DB2 and the Internet ... 689

Part III DB2 In-Depth
18 The Doors to DB2 ... 704
19 Data Sharing .. 772
20 DB2 Behind the Scenes ... 792
21 The Optimizer ... 816
22 The Table-Based Infrastructure of DB2 ... 874
23 Locking DB2 Data ... 889

Part IV DB2 Performance Monitoring
24 DB2 Performance Monitoring ... 928
25 Using EXPLAIN ... 980
26 The Five R’s ... 1014
27 DB2 Object Monitoring Using the DB2 Catalog and RTS 1021

Part V DB2 Performance Tuning
28 Tuning DB2’s Environment .. 1064
29 Tuning DB2’s Components .. 1089
30 DB2 Resource Governing ... 1143
Part VI DB2 Utilities and Commands
31 An Introduction to DB2 Utilities .. 1152
32 Data Consistency Utilities ... 1176
33 Backup and Recovery Utilities .. 1201
34 Data Movement and Organization Utilities 1240
35 Catalog Manipulation Utilities ... 1289
36 Stand-Alone Utilities and Sample Programs 1314
37 DB2 Commands ... 1340
38 DB2 Utility and Command Guidelines ... 1366
39 DB2 Contingency Planning .. 1376

Part VII The Ideal DB2 Environment
40 Components of a Total DB2 Solution .. 1394
41 Organizational Issues .. 1423

Part VII Distributed DB2
42 DRDA .. 1448
43 Distributed DB2 .. 1458
44 DB2 Connect ... 1473
45 Distribution Guidelines .. 1485
46 Data Warehousing with DB2 .. 1506
Index .. 1541
Contents

Preface

Part I SQL Techniques, Tips, and Tricks

1 The Magic Words
 An Overview of SQL ... 4
 SQL Tools of the Trade ... 13
 Static SQL .. 42
 Dynamic SQL ... 44
 SQL Performance Factors .. 45

2 Data Manipulation Guidelines
 A Bag of Tricks .. 56
 SQL Access Guidelines ... 58
 Complex SQL Guidelines .. 90
 Common Table Expressions and Recursion 110
 Working with Nulls .. 115
 Date and Time Guidelines ... 119
 Data Modification Guidelines .. 125

3 Using DB2 Functions
 Aggregate Functions ... 135
 Scalar Functions .. 141
 Table Functions .. 159
 MQSeries Built-In Functions ... 159
 XML Built-In Functions ... 161
 The RAISE_ERROR Function .. 162
 The CAST Operation ... 163
 Built-In Function Guidelines ... 163

4 Using DB2 User-Defined Functions and Data Types
 What Is a User-Defined Function? ... 167
 Types of User-Defined Functions (UDFs) 168
 What Is a User-Defined Data Type? 190
 User-Defined Data Types (UDTs) and Strong Typing 191
5 Data Definition Guidelines 200
 An Overview of DB2 Database Objects .. 200
 DB2 Databases ... 201
 Creating and Using DB2 Table Spaces .. 204
 DB2 Storage and STOGROUPs ... 239
 Table Guidelines .. 244
 General Table Guidelines .. 275
 Normalization and Denormalization .. 278
 Assuring Data Integrity in DB2 .. 290
 Referential Integrity ... 290
 Views, Aliases, and Synonyms ... 302
 Index Guidelines .. 313
 Naming Conventions ... 313
 Miscellaneous DDL Guidelines ... 322

6 DB2 Indexing and Hashing Guidelines 324
 How an Index Works ... 324
 Creating Indexes ... 326
 DB2 Hashing and Hash Organized Tables ... 337
 Index and Hash Guidelines ... 341

7 Database Change Management, Schema Evolution, and Database Definition On Demand 353
 Online Schema Changes .. 354
 Versioning for Online Schema Changes ... 370

8 Using DB2 Triggers 373
 What Is a Trigger? .. 373
 Trigger Guidelines ... 388

9 Large Objects and Object/Relational Databases 393
 Defining the Term “Object/Relational” .. 393
 What Is a Large Object? ... 394
 LOB Guidelines .. 403
 DB2 Extenders .. 407

10 pureXML: Using XML in DB2 for z/OS 408
 What Is XML? ... 408
 pureXML ... 412
 XML-DB2 Guidelines .. 425
11 Supporting Temporal Data in DB2 for z/OS

The Need for Temporal Data ... 428
DB2 Temporal Support ... 430
Temporal Data Guidelines ... 446
Summary ... 447

12 DB2 Security, Authorization, and Auditing

Authorization and Privileges ... 448
Database Auditing ... 476
Using External Security (for Example, RACF, ACF2, and Top Secret) ... 480

Part II DB2 Application Development

13 Using DB2 in an Application Program

Embedded SQL Basics... 487
Embedded SQL Guidelines .. 489
Host Variables... 504
Programming with Cursors ... 511
Modifying Data with Embedded SQL .. 525
Application Development Guidelines.. 527
Batch Programming Guidelines .. 536
Online Programming Guidelines .. 547
General SQL Coding Guidelines ... 552
Introduction to Java .. 554
Using REXX and DB2 ... 563
Developing Applications Using Only SQL .. 565

14 Dynamic SQL Programming

What Is Dynamic SQL? .. 567
Dynamic SQL Versus Static SQL .. 569
The Four Classes of Dynamic SQL .. 576
pureQuery .. 588
Making Dynamic SQL More Static and Vice Versa 589
Dynamic SQL Guidelines .. 594

15 Program Preparation

Program Preparation Steps ... 601
Running a DB2 Program ... 608
Preparing a DB2 Program .. 609
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>DB2 Behind the Scenes</td>
<td>792</td>
</tr>
<tr>
<td></td>
<td>The Physical Storage of Data</td>
<td>792</td>
</tr>
<tr>
<td></td>
<td>What Makes DB2 Tick</td>
<td>808</td>
</tr>
<tr>
<td></td>
<td>Specialty Processors</td>
<td>812</td>
</tr>
<tr>
<td>21</td>
<td>The Optimizer</td>
<td>816</td>
</tr>
<tr>
<td></td>
<td>Physical Data Independence</td>
<td>817</td>
</tr>
<tr>
<td></td>
<td>How the Optimizer Works</td>
<td>818</td>
</tr>
<tr>
<td></td>
<td>Filter Factors</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td>Screening</td>
<td>823</td>
</tr>
<tr>
<td></td>
<td>Access Path Strategies</td>
<td>824</td>
</tr>
<tr>
<td></td>
<td>Other Operations Performed by the Optimizer</td>
<td>868</td>
</tr>
<tr>
<td>22</td>
<td>The Table-Based Infrastructure of DB2</td>
<td>874</td>
</tr>
<tr>
<td></td>
<td>The DB2 Catalog</td>
<td>874</td>
</tr>
<tr>
<td></td>
<td>The DB2 Directory</td>
<td>886</td>
</tr>
<tr>
<td>23</td>
<td>Locking DB2 Data</td>
<td>889</td>
</tr>
<tr>
<td></td>
<td>How DB2 Manages Locking</td>
<td>889</td>
</tr>
<tr>
<td></td>
<td>Locks Versus Latches</td>
<td>892</td>
</tr>
<tr>
<td></td>
<td>Lock Duration</td>
<td>892</td>
</tr>
<tr>
<td></td>
<td>Table Space Locks</td>
<td>895</td>
</tr>
<tr>
<td></td>
<td>Table Locks</td>
<td>897</td>
</tr>
<tr>
<td></td>
<td>Page Locks</td>
<td>898</td>
</tr>
<tr>
<td></td>
<td>Row Locks</td>
<td>899</td>
</tr>
<tr>
<td></td>
<td>Lock Suspensions, Timeouts, and Deadlocks</td>
<td>901</td>
</tr>
<tr>
<td></td>
<td>Partition Independence</td>
<td>904</td>
</tr>
<tr>
<td></td>
<td>Lock Avoidance</td>
<td>908</td>
</tr>
<tr>
<td></td>
<td>Data Sharing Global Lock Management</td>
<td>911</td>
</tr>
<tr>
<td></td>
<td>LOBs and Locking</td>
<td>914</td>
</tr>
<tr>
<td></td>
<td>DB2 Locking Guidelines</td>
<td>916</td>
</tr>
<tr>
<td></td>
<td>Other DB2 Components</td>
<td>921</td>
</tr>
<tr>
<td></td>
<td>The Big Picture</td>
<td>922</td>
</tr>
<tr>
<td>Part IV</td>
<td>DB2 Performance Monitoring</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>DB2 Performance Monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defining DB2 Performance</td>
<td>926</td>
</tr>
<tr>
<td></td>
<td>Types of DB2 Performance Monitoring</td>
<td>927</td>
</tr>
<tr>
<td></td>
<td>DB2 Traces</td>
<td>928</td>
</tr>
<tr>
<td></td>
<td>Trace Destinations</td>
<td>929</td>
</tr>
</tbody>
</table>

Part IV DB2 Performance Monitoring

Defining DB2 Performance .. 926
Types of DB2 Performance Monitoring 927

24 DB2 Performance Monitoring

DB2 Traces ... 928
Trace Destinations ... 936
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Using EXPLAIN</td>
<td>980</td>
</tr>
<tr>
<td></td>
<td>How EXPLAIN Works</td>
<td>980</td>
</tr>
<tr>
<td></td>
<td>Access Paths and the PLAN_TABLE</td>
<td>982</td>
</tr>
<tr>
<td></td>
<td>Cost Estimates and the DSN_STATEMENT_TABLE</td>
<td>998</td>
</tr>
<tr>
<td></td>
<td>Function Resolution and the DSN_FUNCTION_TABLE</td>
<td>1001</td>
</tr>
<tr>
<td></td>
<td>Additional Explain Tables</td>
<td>1002</td>
</tr>
<tr>
<td></td>
<td>Explaining the Dynamic Statement Cache</td>
<td>1003</td>
</tr>
<tr>
<td></td>
<td>EXPLAIN Guidelines</td>
<td>1005</td>
</tr>
<tr>
<td></td>
<td>Additional Tools for Managing Access Paths</td>
<td>1012</td>
</tr>
<tr>
<td>26</td>
<td>The Five R’s</td>
<td>1014</td>
</tr>
<tr>
<td></td>
<td>Approaches to Rebinding</td>
<td>1014</td>
</tr>
<tr>
<td></td>
<td>A Best Practice Approach to Rebinding</td>
<td>1016</td>
</tr>
<tr>
<td>27</td>
<td>DB2 Object Monitoring Using the DB2 Catalog and RTS</td>
<td>1021</td>
</tr>
<tr>
<td></td>
<td>DB2 Catalog Queries</td>
<td>1021</td>
</tr>
<tr>
<td></td>
<td>Real Time Statistics</td>
<td>1048</td>
</tr>
<tr>
<td></td>
<td>Reviewing the Rules for an Effective Monitoring Strategy</td>
<td>1058</td>
</tr>
<tr>
<td>Part V</td>
<td>DB2 Performance Tuning</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Tuning DB2’s Environment</td>
<td>1064</td>
</tr>
<tr>
<td></td>
<td>Tuning the z/OS Environment</td>
<td>1064</td>
</tr>
<tr>
<td></td>
<td>Tuning the Teleprocessing Environment</td>
<td>1087</td>
</tr>
<tr>
<td>29</td>
<td>Tuning DB2’s Components</td>
<td>1089</td>
</tr>
<tr>
<td></td>
<td>Tuning the DB2 Subsystem</td>
<td>1089</td>
</tr>
<tr>
<td></td>
<td>Tuning the Database Design</td>
<td>1114</td>
</tr>
<tr>
<td></td>
<td>Tuning the Application</td>
<td>1116</td>
</tr>
<tr>
<td></td>
<td>The Causes of DB2 Performance Problems</td>
<td>1137</td>
</tr>
<tr>
<td>30</td>
<td>DB2 Resource Governing</td>
<td>1143</td>
</tr>
<tr>
<td></td>
<td>The Resource Limit Facility</td>
<td>1143</td>
</tr>
</tbody>
</table>
Part VI DB2 Utilities and Commands

31 An Introduction to DB2 Utilities 1152
 Generating Utility JCL .. 1152
 Monitoring DB2 Utilities ... 1156
 The IBM DB2 Utilities .. 1158
 Using LISTDEF and TEMPLATE 1159
 Issuing SQL Statements in DB2 Utilities 1173

32 Data Consistency Utilities 1176
 The CHECK Utility .. 1177
 The CHECK DATA Option .. 1177
 The CHECK LOB Option ... 1186
 The CHECK INDEX Option 1188
 The REPAIR Utility .. 1191
 The REPAIR DBD Option ... 1192
 The REPAIR LOCATE Option 1193
 The REPAIR SET Option .. 1196
 REPAIR and Versions ... 1198
 The REPORT Utility ... 1198
 The DIAGNOSE Utility ... 1200

33 Backup and Recovery Utilities 1201
 The COPY Utility .. 1202
 The COPYTOCOPY Utility 1215
 The MERGECOPY Utility 1218
 The QUIESCE Utility ... 1220
 The RECOVER Utility ... 1224
 The REBUILD INDEX Utility 1232
 The REPAIR Utility ... 1235
 The REPORT RECOVERY Utility 1235
 Backing Up and Restoring the System 1236

34 Data Movement and Organization Utilities 1240
 The LOAD Utility .. 1240
 The UNLOAD Utility .. 1260
 The REORG Utility ... 1265

35 Catalog Manipulation Utilities 1289
 The CATENFM Utility ... 1289
 The CATMAINT Utility ... 1289
The DSNJCNVB Utility ... 1290
The MODIFY RECOVERY Utility ... 1290
The MODIFY STATISTICS Utility ... 1293
The RUNSTATS Utility ... 1295
The STOSPACE Utility .. 1311

36 Stand-Alone Utilities and Sample Programs 1314
The Stand-Alone Utilities .. 1314
DB2 Sample Programs ... 1332

37 DB2 Commands .. 1340
DB2 Environment Commands ... 1340
Information-Gathering Commands .. 1343
Administrative Commands ... 1353
Environment Control Commands .. 1358
DSN Commands ... 1359
IMS Commands .. 1361
CICS Commands ... 1362
TSO Commands .. 1364
IRLM Commands .. 1364

38 DB2 Utility and Command Guidelines 1366
Utility Guidelines .. 1366
The Pending States .. 1372

39 DB2 Contingency Planning .. 1376
What Is a Disaster? .. 1376
DB2 Recovery Basics .. 1380
Additional DB2 Disaster Recovery Technologies 1387
DB2 Environmental Considerations .. 1388
DB2 Contingency Planning Guidelines 1390

Part VII The Ideal DB2 Environment

40 Components of a Total DB2 Solution 1394
DB2 Tools ... 1394
DB2 Tools Vendors ... 1420

41 Organizational Issues .. 1423
Education .. 1423
Standards and Procedures ... 1429
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Support</td>
<td>1440</td>
</tr>
<tr>
<td>Political Issues</td>
<td>1441</td>
</tr>
<tr>
<td>Environmental Support</td>
<td>1443</td>
</tr>
<tr>
<td>Tool Requirements</td>
<td>1443</td>
</tr>
<tr>
<td>Part VIII</td>
<td>Distributed DB2</td>
</tr>
<tr>
<td>The Advantages of Data Distribution</td>
<td>1446</td>
</tr>
<tr>
<td>DB2 Data Distribution</td>
<td>1446</td>
</tr>
<tr>
<td>DB2 Data Warehousing</td>
<td>1447</td>
</tr>
<tr>
<td>42</td>
<td>DRDA</td>
</tr>
<tr>
<td>What Is DRDA?</td>
<td>1448</td>
</tr>
<tr>
<td>DRDA Functions</td>
<td>1449</td>
</tr>
<tr>
<td>DRDA Architectures and Standards</td>
<td>1451</td>
</tr>
<tr>
<td>The Five DRDA Levels</td>
<td>1453</td>
</tr>
<tr>
<td>Putting It All Together</td>
<td>1455</td>
</tr>
<tr>
<td>43</td>
<td>Distributed DB2</td>
</tr>
<tr>
<td>Distributing Data Using DB2</td>
<td>1458</td>
</tr>
<tr>
<td>DB2 Support for the DRDA Levels</td>
<td>1460</td>
</tr>
<tr>
<td>Methods of Accessing Distributed Data</td>
<td>1460</td>
</tr>
<tr>
<td>Packages for Static SQL</td>
<td>1465</td>
</tr>
<tr>
<td>Two-Phase Commit</td>
<td>1466</td>
</tr>
<tr>
<td>Miscellaneous Distributed Topics</td>
<td>1470</td>
</tr>
<tr>
<td>44</td>
<td>DB2 Connect</td>
</tr>
<tr>
<td>An Overview of IBM DB2 Connect</td>
<td>1473</td>
</tr>
<tr>
<td>45</td>
<td>Distribution Guidelines</td>
</tr>
<tr>
<td>Distribution Behind the Scenes</td>
<td>1485</td>
</tr>
<tr>
<td>Block Fetch</td>
<td>1487</td>
</tr>
<tr>
<td>Dynamic Cursor Pre-Open</td>
<td>1491</td>
</tr>
<tr>
<td>Distributed Performance Problems</td>
<td>1491</td>
</tr>
<tr>
<td>Distributed Database Design Issues</td>
<td>1496</td>
</tr>
<tr>
<td>Distributed Data Placement</td>
<td>1499</td>
</tr>
<tr>
<td>Distributed Optimization</td>
<td>1500</td>
</tr>
<tr>
<td>Distributed Security Guidelines</td>
<td>1501</td>
</tr>
<tr>
<td>Miscellaneous Distributed Guidelines</td>
<td>1502</td>
</tr>
</tbody>
</table>
Data Warehousing with DB2

- Defining the Basic Terms
- Designing a Data Warehouse
- Populating a Data Warehouse
- Accessing the Data Warehouse
- Managing the Data Warehouse
- The Big Picture
- IBM Data Warehousing Solutions
- Materialized Query Tables
- General Data Warehouse Guidelines
- DB2-Specific Data Warehousing Guidelines

Index
Preface: A Short History of DB2 for z/OS

Let’s go back in time…almost three decades ago…back to the wild and woolly 1980s! And watch as our favorite DBMS, DB2, grows up over time.

Version 1 Release 1 was announced on June 7, 1983. And it became generally available on Tuesday, April 2, 1985. I wonder if it was ready on April 1st but not released because of April Fool’s Day? Initial DB2 development focused on the basics of making a relational DBMS work. Early releases of DB2 were viewed by many as an “information center” DBMS, not for production work like IMS.

Version 1 Release 2 was announced on February 4, 1986 and was released for general availability a month later on March 7, 1986. Wow! Can you imagine waiting only a month for a new release of DB2 these days? But that is how it happened back then. Same thing for Version 1 Release 3, which was announced on May 19, 1987 and became GA on June 26, 1987. DB2 V1R3 saw the introduction of date data types.

You might notice that IBM delivered “releases” of DB2 in the 1980s, whereas today (and ever since V3) there have been only versions. Versions are major, whereas releases are not quite as significant as a version.

Version 2 of DB2 became a reality in 1988. Version 2 Release 1 was announced in April 1988 and delivered in September 1988. Here we start to see the gap widening again between announcement and delivery. V2R1 was a significant release in the history of DB2. Some mark it as the bellwether for when DB2 began to be viewed as a DBMS capable of supporting mission critical, transaction processing workloads. Not only did V2R1 provide many performance enhancements, but it also signaled the introduction of declarative Referential Integrity (RI) constraints. RI was important for the acceptance of DB2 because it helps to assure data integrity within the DBMS.

No sooner than V2R1 became GA than IBM announced Version 2 Release 2 on October 4, 1988. But it was not until a year later that it became generally available on September 23, 1988. DB2 V2R2 again bolstered performance in many ways. It also saw the introduction of distributed database support (private protocol) across MVS systems.

Version 2 Release 3 was announced on September 5, 1990 and became generally available on October 25, 1991. Two significant features were added in V2R3: segmented table spaces and packages. Segmented table spaces quickly became the de facto standard for most DB2 data, and packages made DB2 application programs easier to support. DB2 V2R3 is also the version that beefed up distributed support with Distributed Relational Database Architecture (DRDA). Remote unit of work distribution was not available in the initial GA version, but IBM came out with RUOW support for DB2 V2R3 in March 1992.

DB2 Version 3 was announced in November 1993 and GA in December 1993. Now it may look like things sped up again here, but not really. This is when the QPP program for early support of DB2 started. QPP was announced in March 1993 and delivered to
customers in June 1993. Still though, this is a fairly rapid version turnaround by today’s standards.

V3 greatly expanded the number of buffer pool options available (from 5 pools to 80). There were many advances made in DB2 V3 to take better advantage of the System 390 environment: V3 introduced support for hardware-assisted compression and hiperpools. It was also V3 that introduced I/O parallelism for the first time.

Version 4 was a significant milestone in the history of DB2. It was highlighted by the introduction of Type 2 indexes, which removed the need to lock index pages (or subpages, which are now obsolete). Prior to V4, index locking was a particularly thorny performance problem that vexed many shops.

And, of course, I’d be remiss if I did not discuss data sharing, which made its debut in V4. With data sharing, DB2 achieved new heights of scalability and availability unmatched within the realm of DBMS; it afforded users the ability to upgrade without an outage and to add new subsystems to a group on-the-fly. The new capabilities did not stop there; V4 also introduced stored procedures, CP parallelism, performance improvements, and more. DB2 V4 was, indeed, a major milestone in the history of mainframe DB2.

In June 1997, DB2 Version 5 became generally available. It was the first DB2 version to be referred to as DB2 for OS/390 (previously it was DB2 for MVS). Not as significant as V4, we see the trend of even-numbered releases being bigger and more significant than odd-numbered releases. (Of course, this is just my opinion.) V5 was touted by IBM as the e-business and BI version. It included Sysplex parallelism, prepared statement caching, reoptimization, online REORG, and conformance to the SQL-92 standard.

Version 6 brings us to 1999 and the introduction of the Universal Database term to the DB2 moniker. The “official” name of the product is now DB2 Universal Database for OS/390. And the Release Guide swelled to more than 600 pages! Six categories of improvements were introduced with V6 spanning:

- Object-relational extensions and active data
- Network computing
- Performance and availability
- Capacity improvements
- Data sharing enhancements
- User productivity

The biggest of the new features were SQLJ, inline statistics, triggers, large objects (LOBs), user-defined functions, and distinct types.

Version 6 is also somewhat unique in that there was this “thing” typically referred to as the V6 refresh. It added functionality to DB2 without there being a new release or version. The new functionality in the refresh included SAVEPOINTS, identity columns, declared temporary tables, and performance enhancements (including star join). I wonder why IBM did not just issue a point release like in the past?

March 2001 brings us to DB2 Version 7, another “smaller” version of DB2. Developed and released around the time of the Year 2000 hubbub, it offered much improved utilities
and some nice new SQL functionality, including scrollable cursors, limited FETCH, and row expressions. Unicode support was also introduced in DB2 V7. For a more detailed overview of V7 (and the V6 refresh) consult my web site at

DB2 Version 8 followed, but not immediately. IBM took advantage of Y2K and the general desire of shops to avoid change during this period to take its time and deliver the most significant and feature-laden version of DB2 ever. V8 had more new lines of code than DB2 V1R1 had total lines of code.

I don’t want to get bogged down in recent history here, outlining the features and functionality of DB2 releases that should be fresh in our memory (V8 and V9). If you want some details on those, I refer you to the web again and the following links:

V8: http://www.craigsmullins.com/zjdp_001.htm

Which brings us to today. Most shops should be either running Version 10 in production or planning their migration to V10 from either V8 or V9.

Let this book be your guide to DB2 V10!
Acknowledgments

Writing and producing a technical book is a time-consuming and laborious task. Luckily, I had many understanding and helpful friends and associates who made the process much easier. First, I need to thank my wife, Beth, for her understanding, thoughtfulness, and care during the time it took to produce this edition of the book. You’re the best, Bethie!

I would also like to thank the many folks who have reviewed and commented upon the text for each of this book’s six editions. Chuck Kosin has served as a technical editor for the book since the second edition, and I am sure it is a much better text thanks to his eagle eye, technical acumen, and excellent suggestions. Chuck also helped with several screen shots and testing out all the SQL. I would also like to thank Willie Favero at IBM Corporation for his review and suggestions for this edition, as well as the past few editions of the book. Roger Miller, recently retired from IBM Corporation, has offered guidance, material, and suggestions for improving the book in each of its many editions. Sheryl Larsen (SML, Inc.) has been especially helpful in reviewing the access path and complex SQL components of the book; and I additionally want to thank her for her kind permission allowing me to include her access path diagrams in my book. Thanks also to Bayard “Tink” Tysor, who reviewed the pureXML chapter, and Rebecca Bond, who reviewed the security chapter; both of these friends and experts in their field offered helpful suggestions and the book is better because of their contributions. Bill Arledge (of CA Technologies) was also helpful pulling together screen shots for various sections of the book, as well as reading through several chapters of the manuscript. I’d also like to thank the following people for their friendship, support, and contributions to various editions of this book: Bill Backs, Troy Coleman, Bernard Klopfer, and Dan Pizzica.

A big hearty “Thank You” goes out to the many readers who provided suggestions for improvements on each of the previous editions of the book (either in person or by e-mail). I do read the e-mail suggestions and comments sent to me by readers, so keep them coming.

Special thanks to Dan Wardman, Vice President, IM Mainframe Software and Site Executive, IBM Silicon Valley Lab, who acted as the Executive Champion for the sixth edition of this book.

In addition, many thanks to the understanding and patient folks at IBM Press who have worked with me on this edition of the book, specifically Mary Beth Ray, Steven Stansel, Ellice Uffer, Christopher Cleveland, and all the editorial and production staff who were involved in producing the sixth edition of the book.

I’d also like to thank the editors and production team at SAMS Publishing, which published the first five editions of this book, specifically Carol Ackerman, Andy Beaster, Charlie Dresser, Rosemarie Graham, Patricia Kinyon, Susan Pink, Beverly Scherf, Loretta Yates, and everyone who had a hand in any of the previous editions of this book.

And finally, a big thank-you to all the people with whom I have worked and come in contact with professionally over the years. I’d specifically like to thank my coworkers at
USX Corporation, Mellon Bank, ASSET, Inc., Barnett Technologies, Duquesne Light Company, Gartner Group, PLATINUM Technology, Inc., BMC Software, NEON Enterprise Software, and SoftwareOnZ LLC. This book is surely a better one due to the fine quality of my coworkers, each of whom has expanded my horizons in many different and satisfying ways.

If you have any questions or comments about this text, you can contact me at craig@craigsullins.com or via my web site at http://www.CraigSMullins.com. You can also write to me in care of the publisher.
About the Author

Craig S. Mullins is a data management strategist, researcher, and consultant. He is president and principal consultant of Mullins Consulting, Inc. and the publisher and editor of The Database Site (http://www.TheDatabaseSite.com). Craig has also been appointed as an Information Champion by IBM.

Craig has extensive experience in all facets of database systems development, including systems analysis and design, database and system administration, data analysis, and developing and teaching DB2 and database development classes. He has worked with DB2 since Version 1 and has experience in multiple roles, including programmer, DBA, instructor, and analyst. His experience spans industries, having worked for companies in the following fields: manufacturing (USX Corporation), banking (Mellon Bank), utilities (Duquesne Light Company), commercial software development (BMC Software, NEON Enterprise Software, and PLATINUM Technology, Inc.), consulting (ASSET, Inc. and Mullins Consulting, Inc.), and computer industry analysis (Gartner Group). In addition, Craig authored many of the popular “Platinum Monthly DB2 Tips” and worked on Platinum’s DB2 system catalog and access path posters.

Craig is a regular lecturer at industry conferences. You may have seen him present at such events as the International DB2 Users Group (IDUG), the IBM Information on Demand (IOD) Conference, the IBM DB2 Technical Conference, SHARE, DAMA, CMG, or at one of many regional user groups throughout the world. Craig is a member of the IDUG Volunteers Hall of Fame.

Craig is a frequent contributor to computer industry publications, with hundreds of articles published over the past couple decades. His articles have been published in Byte, DB2 Update, Database Programming & Design, DBMS, Data Management Review, zJournal, and many others. Craig writes four regular columns, including “The DBA Corner” for Database Trends and Applications, “The Database Report” for The Data Administration Newsletter, “z/Data Perspectives” for zJournal, and “The Buffer Pool” for IDUG Solutions Journal. He also writes a blog focusing on DB2 topics at http://db2portal.blogspot.com. Complete information on Craig’s published articles and books can be found on his website at http://www.craigsmullins.com.

Craig graduated cum laude from the University of Pittsburgh with a B.S. degree and a dual major in computer science and economics.

Follow Craig on Twitter at http://www.twitter.com/craigmullins.
XML is gaining popularity for persisting complex data and is frequently used in web-enabled applications and as a means of data transmission. This chapter introduces you to the basics of XML and provides an overview of pureXML, IBM’s implementation of XML support embedded in DB2.

A comprehensive treatment of DB2 pureXML would require a book length treatment, and it is not the intent of this book, or this chapter, to provide an exhaustive treatment of DB2’s support for XML. If you are looking for an introduction, this chapter is a good starting place. References for additional pureXML research are provided at the end of the chapter.

What Is XML?

XML stands for Extensible Markup Language. You may be familiar with HTML, the markup language used to create web pages. Like HTML, XML is based upon Standard Generalized Markup Language (SGML). SGML is a language for defining markup languages that was developed and standardized by the International Organization for Standardization (ISO).

Whereas HTML uses tags to describe how data appears on a web page, XML is designed to transport and store data. In other words, XML uses tags to describe the what—that is, the data itself. XML retains the key SGML advantage of self-description, while avoiding the complexity of full-blown SGML. XML allows tags to be defined by users that describe the data stored in the document. This capability gives users a means for describing the structure and nature of the data in the document. In essence, the document becomes self-describing.
The simple syntax of XML makes it easy to process by machine while remaining understandable to people. Again, use HTML as a metaphor to help you understand XML. HTML uses tags to describe the appearance of data on a page. For example the tag, “text”, would specify that the “text” data should appear in bold face. XML uses tags to describe the data itself, instead of its appearance. For example, consider the following XML describing a customer address:

```xml
<CUSTOMER>
  <first_name>Craig</first_name>
  <middle_initial>S.</middle_initial>
  <last_name>Mullins</last_name>
  <company_name>Mullins Consulting, Inc.</company_name>
  <street_address>15 Coventry Ct.</street_address>
  <city>Sugar Land</city>
  <state>TX</state>
  <zip_code>77479</zip_code>
  <country>USA</country>
</CUSTOMER>
```

XML is actually a meta-language—that is, a language for defining other markup languages. These languages are collected in dictionaries called Document Type Definitions (DTDs). The DTD stores definitions of tags for specific industries or fields of knowledge. So, the meaning of a tag must be defined in a “document type declaration” (DTD), such as the following:

```xml
<!DOCTYPE CUSTOMER [  
  <!ELEMENT CUSTOMER (first_name, middle_initial, last_name,  
      street_address, city, state, zip_code, country)>  
  <!ELEMENT first_name (#PCDATA)>  
  <!ELEMENT middle_initial (#PCDATA)>  
  <!ELEMENT last_name (#PCDATA)>  
  <!ELEMENT street_address (#PCDATA)>  
  <!ELEMENT city (#PCDATA)>  
  <!ELEMENT state (#PCDATA)>  
  <!ELEMENT zip_code (#PCDATA)>  
  <!ELEMENT country (#PCDATA)> ]
```

The DTD for an XML document can either be part of the document or stored in an external file. The XML code samples shown are meant to be examples only. By examining them, you can quickly see how the document describes its contents.

For data management professionals, this is a plus because it eliminates the trouble to track down the meaning of data elements. One of the biggest problems associated with database management and processing is finding and maintaining the meaning of stored data. If the data can be stored in documents using XML, the documents themselves will describe their data content. Of course, the DTD is a rudimentary vehicle for defining data semantics.

More recently, the XML Schema has been introduced to describe the structure of an XML document. An XML Schema has better support for applications, document structure,
attributes, and data-typing. For example, here is the previous DTD transformed into an XML Schema:

```xml
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="customer">
  <xs:complexType>
    <xs:sequence>
      <xs:element name="first_name" type="xs:string"/>
      <xs:element name="middle_initial" type="xs:string"/>
      <xs:element name="last_name" type="xs:string"/>
    </xs:sequence>
  </xs:complexType>

<xs:complexType name="USAddress">
  <xs:sequence>
    <xs:element name="street" type="xs:string"/>
    <xs:element name="city" type="xs:string"/>
    <xs:element name="state" type="xs:string"/>
    <xs:element name="zip" type="xs:decimal"/>
  </xs:sequence>
  <xs:attribute name="country" type="xs:NMTOKEN" fixed="US"/>
</xs:complexType>

</xs:element>
</xs:schema>
```

Given the benefits of XML Schema over DTDs, more XML documents are adopting them for use in modern XML applications.

NOTE

You can use Extensible Stylesheet Language (XSL) with XML to format XML data for display.

The important thing to remember about XML is that it solves a different problem than HTML. HTML is a markup language, but XML is a meta-language. In other words, XML is a language that generates other kinds of languages. The idea is to use XML to generate a language specifically tailored to each requirement you encounter. In short, XML enables designers to create their own customized tags, thereby enabling the definition, transmission, validation, and interpretation of data between applications and between organizations. So, the most important reason to learn XML is that it is quickly becoming the de facto standard for application interfaces.

There are, however, some issues with XML, the most troubling of which is market hype. There is plenty of confusion surrounding XML. Some believe that XML provides metadata where none currently exists, or that XML replaces SQL as a data access method for relational data. Neither of these assertions is true.

There is no way that any technology, XML included, can conjure up information that does not exist. People must create the metadata tags in XML for the data to be described. XML enables self-describing documents; it doesn’t describe your data for you.
Moreover, XML doesn't perform the same functions as SQL. As a result, XML can't replace it. As the standard access method for relational data, SQL DML is used to “telling” a relational DBMS what data is to be retrieved. XML, on the other hand, is a document description language that describes the basic contents of data. An XML schema can be associated with an XML document to type XML data. XML might be useful for defining databases but not for accessing them.

DB2, as well as most of the other popular DBMS products, now provides built-in support for native XML. By integrating XML into DB2 databases, you can more directly and quickly access the XML documents, as well as search and store entire XML documents using SQL. Integration can involve simply storing XML in a large `VARCHAR` or `CLOB` column, breaking down the XML into multiple columns in one or more DB2 tables, or more commonly to store XML data natively within a column of a DB2 table. As of DB2 V9, you can store XML data natively in a DB2 using pureXML, which allows you to define columns with a data type of XML.

Storing Data Relationally Versus as XML

Before delving into a discussion of how to store and access XML data natively in DB2 for z/OS, first take a moment to contrast the traditional row and column data of DB2 (and other relational database systems) versus XML data.

The self-describing data format of XML enables complex data to be stored in a single document without giving up the ability to query, search, or aggregate the data. And the XML definition (DTD or XML schema) can be modified without requiring any changes to the database schema. Of course, this may be viewed as a pro by some and a con by others. Developers will likely enjoy the added flexibility, whereas DBAs will likely lament the lack of control.

The flexible nature of XML can require more resources (CPU and I/O) to examine and interpret the XML data as opposed to accessing the same data in a traditional row and column format. But the complexity of the schema must be taken into consideration.

XML is often more suitable for applications with complex and variable data structures, and for combining structured and unstructured information. Relational row and column data is most suitable for stable data structures. A complex hierarchy stored in XML, for example, may be queried more efficiently than a similar hierarchy stored in traditional DB2 form. Relational data, though, can offer more query flexibility and optimization choices.

Keeping an XML document intact in an XML column has the advantage of maximum flexibility but can negatively impact performance.

Fully shredding an XML document into a relational format has the advantage of making high volume transactional processes run faster. But shredding has several disadvantages, as well: Converting the XML documents to the equivalent relational model can consume a lot of resources; converting relational data back into an XML document is expensive; and it can be difficult to keep up with changing requirements.

A hybrid approach in which some portions of the document are maintained as XML and other portions are shredded into relational can be a best practice approach both for performance and maintainability.
Objects having sparse attributes are another area in which XML offers an advantage over a traditional relational data format. When a large number of attributes are possible but most are not used by every instance, XML may be a better choice because every attribute would need to be defined and stored with traditional relational data. In relational data, columns might be NULL, but in XML those data items are just not present.

Consider, for example, a product catalog where each product may have a different number of attributes: size, color, weight, length, height, material, style, watts, voltage, resolution, and so on, depending upon the product. A relational approach with one column per attribute would require a large number of columns requiring NULL, which is not ideal. Alternative approaches, such as a table per product or a three-column table that stores name/value pairs for each product ID are equally unappealing. With an XML solution, elements and attributes can be optional, so they would be omitted when they do not apply for a specific product.

Often there are XML schemas already defined by some industry standard organization (for example, ISO). Using those schemas can greatly reduce the time and effort for design and data modeling. Also these schemata are often used for defining the data received or sent by an application. It is often desirable to store XML data redundantly (which is against good relational design) in a relational column or even a subset of the document in an XML column. If schema validation, a relatively costly process, can be done once, then portions of the XML document can be used in other tables without revalidating.

Parsing and serializing XML data also can be a costly process. If XML data is required to be passed as output, it can be beneficial to store those portions of the document redundantly as XML documents. Using some hybrid design approach combining relational and XML can be useful: Highly referenced fields are best in relational columns, whereas sparsely populated or seldom-referenced fields may be better left in XML columns.

At any rate, XML data has its place, and DB2 users are lucky that they can store XML data natively within DB2 databases.

pureXML

As of DB2 V9, XML data can be stored natively in DB2 databases. This implementation is known as pureXML. With pureXML, you can treat XML as another data type that can be managed by DB2. This means that you can CREATE tables with XML columns, ALTER existing tables to add XML columns, INSERT XML data (optionally validated against XML schemas), CREATE indexes on XML data, search XML data, and generally manipulate XML as part of your DB2 databases.

DB2’s support for XML with pureXML is novel in that the XML data is integrated into the DB2 database system enabling access and management of the XML using DB2 functions and capabilities.

Creating a Table with an XML Column

Similar to LOB data, XML data is physically stored in separate table spaces from the base tables that contain the XML columns. But unlike with LOBs, the storage structures are transparent to the user. You do not need to define and manage the storage mechanisms used by DB2 for XML data.
For example, the following SQL creates a new table with an XML column, which can be used to store the customer XML example shown previously:

```sql
CREATE TABLE CUST
(CUSTNO   INTEGER NOT NULL,
 STATUS   CHAR(1),
 XMLCUST  XML)
IN DB.TS;
```

When a table is defined with an XML column, DB2 generates a hidden column in the base table called a DOCID, which contains a unique identifier for the XML column. There is a single DOCID column even if the table contains more than one XML column. The DOCID column is purely internal; it does not show up in a SELECT *, for example. In addition, DB2 automatically creates a document ID index for the XML column, too.

The XML data is not stored directly in the XML column. Instead, a separate internal table in a separate table space is created for each XML column in the base table. A single XML document may be physically split across multiple rows in the XML table, but it logically still belongs to a single row in the base table, which is the table created with the XML column definition. The internal XML table is composed of three columns:

- **DOCID** (BIGINT)
- **MIN_NODEID** (VARCHAR)
- **XMLDATA** (VARBINARY)

The DOCID column is used as a pointer between the base table and the XML table. In any given row, the MIN_NODEID column stores the lowest node stored in the XMLDATA column of the row. This information optimizes DB2’s capability to process XML documents. The XMLDATA column contains a region of an XML document formatted as a parsed tree. The internal table is clustered by DOCID and MIN_NODEID.

NOTE

An XML node is the smallest unit of a valid, complete structure in a document. For example, a node can represent an element, an attribute, or a text string.

An XML node ID is an identifier for XML nodes and facilitates navigation among multiple XML data rows in the same document.

The internal XML table always has a 16-KB page size. This is so regardless of the page size of the base table containing the XML column. The table space used by the internal XML table is a Universal table space. If the base table resides in a partitioned table space, the XML table space will be range-partitioned; if not, the XML table space will be partition-by-growth.

NOTE

The internal XML table space inherits the COMPRESS parameter specification from the base table space. Of course, the COMPRESS attribute for an XML internal table space can be altered if wanted.
The TBSBPXML DSNZPARM system parameter is available to specify the default buffer pool for XML table spaces. The default is BP16K0; however, because the DB2 Catalog uses this buffer pool, it is a good idea to use different 16-K buffer pools for your XML table spaces.

CAUTION
Be sure to GRANT USE authority to the buffer pool to be used for XML table spaces to any DBA (or user) who must CREATE tables with XML columns.

XML Document Trees

DB2's pureXML implementation follows the XPath 2.0 and the XQuery 1.0 data model, which provides an abstract representation of XML documents. By using the data model, all permissible values of expressions in XPath can be defined, including values used during intermediate calculations. The pureXML data model is described in terms of sequences and items, atomic values, and nodes.

The primary difference between XPath and XQuery is that XPath is a subset of XQuery for addressing parts of a document. XPath cannot be used to construct new XML documents, nor does it support complex join, grouping, and ordering.

XML is hierarchic in nature and, as such, every XML document can be represented as a node tree. When XML data is queried or modified, the hierarchical structure of the document must be traversed. To assure that XML data is accessed as efficiently as possible, DB2 physically stores XML documents in hierarchical format, as trees of nodes with parent-child relationships between the nodes.

To better understand this concept of hierarchic trees, work through an example. To start, examine the following sample XML:

```xml
<customer>
  <custname>
    <first_name>Craig</first_name>
    <last_name>Mullins</last_name>
  </custname>
  <addr country="US">
    <street>100 Easy St</street>
    <city>Pittsburgh</city>
    <state>PA</state>
    <zip_code>15215</zip_code>
  </addr>
  <phone type="work">412-555-1000</phone>
  <phone type="mobile">972-555-8174</phone>
</customer>
```

This basic XML document contains customer data. At the root of the tree is the root element, customer. There are various direct children elements as well: first_name, last_name, addr, and two occurrences of phone.

The element addr is composed of multiple elements as well: street, city, state, and zip_code. And addr also has an attribute for the country. The element phone has an attribute, type, associated with it, as well.
Figure 10.1 illustrates a representation of this XML document as a hierarchical tree. You can build these trees by parsing an XML document using an XML parser.

XML data is stored in DB2 as an XML document tree. When XML is inserted or loaded into an XML column, DB2 parses the XML document to produce the hierarchical format, and that is what is stored in the XML table space. If one or more columns are of type XML, and you select the entire XML column, DB2 retrieves the XML document tree and converts it back into the text XML document. This process is called serialization.

When the XML data is larger than a page, the document tree is divided into groups of nodes; each group is usually a subtree of nodes. The divided data is stored in the XMLDATA column of the internal XML table. Nodes are grouped bottom up, up to the largest row size of a page. One document can be physically stored across many rows and pages.

DB2 stores XML data as an XML document tree to optimize performance when accessing XML data. The document tree is further optimized by replacing tag names with 4-byte identifiers. So the internal storage does not look exactly like the tree shown in Figure 10.1. Tag names are mapped to stringIDs and stored in the DB2 Catalog in the table SYSIBM.SYXMLSTRINGS. DB2 caches the mapping table to optimize performance.

Furthermore, XML query evaluation and traversal of XML documents can operate on integers, which is typically much faster than operating on strings. There will be only one 4-byte identifier for a particular string, even if that string (that is, “name”) is used in many different XML columns.

The exact shape of the document tree can vary from document to document; it depends upon the content of each XML document. The document tree is not built or predefined based on the XML Schema. The actual XML data is stored as VARBINARY data, composed of the XML document tree (or a sequence of subtrees) with context path.

Serializing and Parsing XML Data

An XML value can be transformed into a textual XML value that represents the XML document by using the XMLSERIALIZE function or by retrieving the value into an application variable of an XML, string, or binary data type.
The inverse can also be achieved. The textual XML document can be turned into the XML value using the XMLPARSE function or by storing a value from a string, binary, or XML data type to an XML column.

Altering a Table to Contain XML Data

Modifying a table to add an XML column is also a simple endeavor. All that is necessary is a simple ALTER, such as the following:

```
ALTER TABLE DSN81010.EMP
    ADD JOBHISTORY XML;
```

This statement adds the JOBHISTORY column as XML to the EMP table. Of course, when an XML column is added to an existing table, DB2 creates the same internal table and index to support the XML data as it would for a new table.

Schema Validation

As you have seen, XML is flexible. XML has no rigorously enforced schema applied when data is added, such as with a DBMS such as DB2. But you can validate XML against a schema with a process known as XML schema validation. XML schema validation can determine whether the structure, content, and data types of an XML document are valid according to an XML schema. In addition, XML schema validation removes whitespace that can be ignored from the XML document being validated.

You can validate an XML document in DB2 in two ways:

- Automatically, by specifying an XML type modifier in the XML column definition of the CREATE or ALTER TABLE statement. When a column has an XML type modifier, DB2 implicitly validates documents that are inserted into the column or documents in the column that are updated.

- Manually, by executing the DSN_XMLVALIDATE built-in function when you INSERT a document into an XML column or UPDATE a document in an XML column.

If you perform XML schema validation using DB2, you need to set up an XML Schema Repository. A DB2 for z/OS XML schema repository (XSR) is a set of DB2 tables where you can store XML schemas. XSR requires additional software: WLM, z/OS XML System Services, Java 2 Technology Edition 31 bit (V5 or later), and IBM Data Server Driver for JDBC and SQLJ.

Refer to the IBM manual, *pureXML Guide* (SC19-2981) for additional information on using an XML Schema Repository, as well as additional information on using type modifiers.

NOTE

An XML schema is not required when using DB2 and pureXML. XML columns can store any well-formed documents. You can also validate XML documents against many schemas, if needed.
XML Namespaces

XML namespaces are a W3C XML standard for providing uniquely named elements and attributes in an XML document. XML documents may contain elements and attributes that have the same name but belong to different domains. A namespace can be used to remove the ambiguity when referencing such elements and attributes.

Namespaces are supported by all DB2 pureXML features including SQL/XML, XML indexes, and XML Schema validation.

A namespace must be declared with a prefix assigned to a Universal Resource Identifier (URI) before it can be used. Now augment your example XML with a namespace:

```xml
<c:customer xmlns:c="http://ddgsample.org">
  <c:custname>
    <c:firstName>Craig</c:firstName>
    <c:lastName>Mullins</c:lastName>
  </c:custname>
  <c:addr country="US">
    <c:street>100 Easy St</c:street>
    <c:city>Pittsburgh</c:city>
    <c:state>PA</c:state>
    <c:zip_code>15215</c:zip_code>
  </c:addr>
  <c:phone type="work">412-555-1000</c:phone>
  <c:phone type="mobile">972-555-8174</c:phone>
</c:customer>
```

The attribute xmlns:c declares that c is a namespace prefix bound to the URI http://ddgsample.org. The prefix c can be used for the customer element and all other elements or attributes in the document that are descendants of customer.

CAUTION

Be careful when specifying namespace URIs. There is no requirement that a namespace be a valid URI. For example, URIs with blanks are not valid, but they do not affect whether an XML document is well-formed. You can insert XML documents with spaces in their namespace URIs, but URIs with spaces cannot be declared in a query. So take care to specify valid namespace URIs.

Not every node in a document must belong to the same namespace. Furthermore, an XML document can contain multiple namespaces. Specify namespace declarations as needed within your XML documents according to your needs for accessing elements of the XML document.

If all elements in a document belong to the same namespace, you can declare a default namespace and avoid the use of prefixes:

```xml
<customer xmlns="http://ddgsample.org">
  <custname>
    <firstName>Craig</firstName>
    <lastName>Mullins</lastName>
  </custname>
  <addr country="US">
    <street>100 Easy St</street>
```

pureXML
In this case, all elements belong to the declared http://ddgsample.org namespace.

Indexing XML Data

You can build indexes on data stored in XML columns to improve the efficiency of queries against XML documents. Indexes on XML data differ from DB2 indexes on relational data. A typical DB2 index lists a column, or series of columns, and the index is built upon those columns. An XML index is based upon a part of the data in the XML column, not the entire column.

A typical DB2 index has one entry for each row in the table, even if the value is NULL, whereas an XML index does not have an entry for a row if the XML document in that row does not contain that element.

An XML index uses an XML pattern expression to index paths and values in XML documents stored within a single XML column. The index entries in XML indexes provide access to nodes within the XML document. Because multiple parts of a XML document can satisfy an XML pattern, DB2 might generate multiple index keys when it inserts values for a single document into the index.

XML indexes are built using the `CREATE INDEX` statement (and dropped using `DROP INDEX`). Instead of listing columns, the `GENERATE KEY USING XMLPATTERN` clause is used to indicate what portion of the XML document you want to index:

```sql
CREATE INDEX CSTLNMX1
ON   CUST(XMLCUST)
GENERATE KEY USING XMLPATTERN '/customerinfo/custname/last_name'
AS SQL VARCHAR(20)
```

The `GENERATE KEY USING XMLPATTERN` clause provides information about what you want to index. This clause is called an XML index specification. The XML index specification contains an XML pattern clause. The XML pattern clause in this example indicates that you want to index the values of the `last_name` attribute of each `customer` element. The index entries are to be stored as `VARCHAR(20)`.

Every XML pattern expression specified in index `CREATE` statement must be associated with a data type. The only supported data types are `VARCHAR`, `DECFLT`, `DATE`, and `TIMESTAMP`.

NOTE

DATE and TIMESTAMP support was added for DB2 V10.

Only one index specification clause is allowed in each `CREATE INDEX` statement, but it is permissible to create multiple XML indexes on each XML column.
To identify the portion of the XML to be indexed, you specify an XML pattern to identify a set of nodes in the XML document. This pattern expression is similar to an XPath expression. (But only a subset of the XPath language is supported.)

CAUTION

If you validate your XML documents against an XML schema, be sure to verify that the data type specifications in the XML schema match the data types used in your indexes.

Namespace Declarations in XML Indexes

In the XMLPATTERN clause of the CREATE INDEX statement, you can specify an optional namespace declaration that maps a URI to a namespace prefix. Then you can use the namespace prefix when you refer to element and attribute names in the XML pattern expression.

For example, consider the following index creation statement:

```sql
CREATE INDEX CSTPHNX2
ON CUST(XMLCUST)
GENERATE KEY USING XMLPATTERN 'declare namespace s="http://ddgsample.org/";
/s:customer/s:phone/@s:type' AS SQL VARCHAR(12)
```

The namespace declaration maps the namespace URI `http://ddgsample.org` to the character `s`. It can then be used to qualify all elements and attributes with that namespace prefix.

XML Indexes and UNIQUE

Specifying UNIQUE in an XML index definition is a little bit different than in traditional, relational indexes. For a traditional index, the UNIQUE keyword enforces uniqueness across all rows in the table. For XML indexes, the UNIQUE keyword enforces uniqueness across all documents in an XML column. This means the index can ensure uniqueness, not only across all rows in the table, but also within a single document within a row.

For an XML index, DB2 enforces uniqueness for the following:

- Data type of the index.
- XML path to a node.
- Value of the node after the XML value has been cast to the SQL data type specified for the index.

CAUTION

Because rounding can occur during conversion of an index key value to the specified data type for the index, multiple values that appear to be unique in the XML document might result in duplicate key errors.
Querying XML Data

Of course, after you create tables with XML data in them, you want to access that data in your DB2 applications. Doing so requires a basic understanding of XPath.

XPath

XPath is a programming language designed by the World Wide Web Consortium (W3C) for querying and modifying XML data. DB2 supports a subset of the language constructs in the XPath 2.0 specification. In XPath, there are seven kinds of nodes: element, attribute, text, namespace, processing-instruction, comment, and document nodes.

XML documents are treated as trees of nodes. The top element of the tree is called the root element. Now look at some sample XML again:

```xml
<customer>
    <custname>
        <first_name>Craig</first_name>
        <last_name>Mullins</last_name>
    </custname>
    <addr country="US">
        <street>100 Easy St</street>
        <city>Pittsburgh</city>
        <state>PA</state>
        <zip_code>15215</zip_code>
    </addr>
    <phone type="work">412-555-1000</phone>
    <phone type="mobile">972-555-8174</phone>
</customer>
```

Examples of nodes in this XML document include `<customer>`, which is the root element node, `<city>Pittsburgh`/`<city>`, which is an element node, and `Type="work"`, which is an attribute node.

There is a relationship among the nodes that you need to understand for XML processing. Each element and attribute has one parent. In the example, XML the `addr` element is the parent of `street`, `city`, `state`, and `zip_code`. Element nodes can have zero, one, or more children. Nodes that have the same parent are siblings. The `street`, `city`, `state`, and `zip_code` nodes are siblings of each other, as well as children of `addr`.

Descendants are any children of a node as well as the children's children, and so on. So in your example, the descendants of `customer` include `custname`, `first_name`, `last_name`, `addr`, `street`, `city`, `state`, `zip_code`, and `phone`.

XPath uses path expressions to select nodes or node-sets in an XML document. The node is selected by following a path or steps. If you are familiar with Windows® or UNIX® file structure, an XPath specification will look familiar to you. Table 10.1 outlines some useful path expressions.
TABLE 10.1 XPath Expressions

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodename</td>
<td>Selects all child nodes of the named node</td>
</tr>
<tr>
<td>/</td>
<td>Selects from the root node</td>
</tr>
<tr>
<td>//</td>
<td>Selects nodes in the document from the current node that match the selection no matter where they are</td>
</tr>
<tr>
<td>.</td>
<td>Selects the current node</td>
</tr>
<tr>
<td>..</td>
<td>Selects the parent of the current node</td>
</tr>
<tr>
<td>@</td>
<td>Selects attributes</td>
</tr>
</tbody>
</table>

To select the last_name element of the customer XML document using XPath you would specify the following:

customer/addr/last_name,

Or to select all attributes that are named phone using XPath, you can specify the following:

//@phone

Use DB2 XPath in the following contexts:

- As an argument to the XMLQUERY built-in function, which extracts data from an XML column.

- As an argument to the XMLEXISTS predicate, which is used for evaluation of data in an XML column.

- In an XML index, to determine the nodes in an XML document to index. (Only a subset of XPath, called an XML pattern, is valid in this context.)

The XMLQUERY Function

You can use the XMLQUERY function to execute an XPath expression from within SQL. You can pass variables to the XPath expression specified in XMLQUERY.XMLQUERY returns an XML value, which is an XML sequence. This sequence can be empty or can contain one or more items.

When you execute XPath expressions from within an XMLQUERY function, you can allow XML data to participate in SQL queries. Furthermore, you can retrieve parts of XML documents, instead of the entire XML document. This gives you the ability to operate on both relational and XML data in the same SQL statement. And you can apply additional SQL to the returned XML values after using XMLCAST to cast the results to a non-XML type.

CAUTION

XPath is case-sensitive. The case of any variables you specify in an XMLQUERY function must match the XPath expression.
Consider the following query, which returns the phone number information extracted from the XML for each customer in the CUST table:

```
SELECT CUSTNO,
XMLQUERY ('declare default element namespace "http://ddgsample.org";
/customer/phone' passing XMLCUST)
AS "PHONE FROM XMLCUST"
FROM   CUST
```

You can use the XMLEXISTS predicate to restrict the result set based on values in XML columns. To do so, an XPath expression is specified to the XMLEXISTS predicate. If the XPath expression returns an empty sequence, the value of the XMLEXISTS predicate is false. Otherwise, XMLEXISTS returns true and the row is returned.

For example, consider this SQL statement:

```
SELECT CUSTNO, STATUS, XMLCUST
FROM   CUST
WHERE  XMLEXISTS ('declare default element namespace "http://ddgsample.org";
//addr[@city="Pittsburgh"]' passing XMLCUST)
AND XMLEXISTS ('declare default element namespace "http://ddgsample.org";
/customer[last_name="Mullins"]' passing XMLCUST)
```

This matches your sample XML document in which customer city is Pittsburgh and last_name is Mullins, so that row will be returned (as would any other where both of these conditions are true).

The XMLTABLE() Function

The XMLTABLE() function though can be used to produce XML query results comparable to XQuery. The following example uses the XMLTABLE() function to query your sample table and XML document, returning the city, street, state, and zip_code as columns in a result table:

```
SELECT X.*
FROM   CUST,
XMLTABLE (XMLNAMESPACES(DEFAULT 'http://ddgsample.org'),
'$/x/customer/addr[@zip_code=15215]' PASSING XMLCUST as "x"
COLUMNS
ZIP_CODE INT         PATH '@zip_code',
STREET VARCHAR(50) PATH 'street',
CITY VARCHAR(30) PATH 'city',
STATE VARCHAR(2)  PATH 'state') AS X
```

Recall that the XML column in the CUST table is named XMLCUST, therefore you code PASSING XMLCUST.

To enable this query to use an XML index, can add a predicate using XMLEXISTS, for example:

```
WHERE XMLEXISTS('$/x/customer/addr[@zip=15215]'PASSING XMLCUST AS "x")
```
The XMLTABLE() function can be used when converting XML data into a relational result set. It can be beneficial to use XMLTABLE() in views where the SQL referencing the view does not have to code XPath expressions. The optimizer can still use XML indexes when view is referenced.

Access Methods
DB2 supports several access methods for XML data. The basic access method is the DocScan, which traverses XML data and evaluates XPath expressions using an IBM-patented technique called QuickXScan (see Note). There is no access type indicator for DocScan in the PLAN_TABLE because it is part of a scan if there is a predicate on an XML column involved.

NOTE
QuickXScan, an industrial strength streaming XPath algorithm implemented for native XML support in DB2 for z/OS. QuickXScan evaluates XPath expressions with predicates by one sequential scan of XML data with high efficiency. Because QuickXScan does not rely on relational techniques, it is well-suited for Internet applications that favor an efficient streaming algorithm.

XML indexes are used only for the XMLEXISTS predicate and XMLTABLE function evaluation. There are three access types for XML index-based access. Similar to RID list access, ANDing, and ORing, they include the following:

- DocID list access (DX)
- DocID list ANDing (DI for DocID list Intersection)
- DocID list ORing (DU for DocID list Union)

Inserting XML Data
Inserting XML data is as simple as inserting any other type of data. For example, assume that you want to use the CUSTOMER table described earlier in this chapter to INSERT an XML document. The following SQL achieves this goal:

```
INSERT INTO CUSTOMER
  (CUSTNO, STATUS, XMLCUST)
VALUES (1000, 'Y',
  '<customer>'
  '<first_name>Craig</first_name>
  <last_name>Mullins</last_name>
' /
  '<addr country="US">
  <street>100 Easy St</street>
  <city>Pittsburgh</city>
  <state>PA</state>
  <zip_code>15215</zip_code>
  </addr>
  <phone type="work">412-555-1000</phone>
`)
This SQL statement inserts a new customer into the CUSTOMER table, giving it a CUSTNO of 1000 and a STATUS of Y. The XML data is inserted into the XML column defined as XMLCUST.

**Deleting XML Data**

You can use the SQL DELETE statement to delete rows that contain XML documents. Nothing special is required, just code the DELETE as normal including any WHERE clause that you want. When the row is deleted, the XML data for that row is deleted, too.

Of course, you might want to DELETE based upon values in the XML document. You can do this using XPath expressions within XML EXISTS, for example, to DELETE rows from CUST table for which the value of the city element is Pittsburgh (in the XMLCUST column):

```
DELETE FROM CUST
WHERE XML EXISTS ('declare default element namespace "http://ddgsample.org";
//addr[city="Pittsburgh"]' passing XMLCUST)
```

**Updating XML Data**

You can also update XML data, either the entire XML document, or a portion of the XML document.

**Updating an Entire XML Document**

To update an entire XML document in an XML column, supply the XML data to the UPDATE statement, being sure to specify a WHERE clause for the rows to be updated. The input to the XML column must be a well-formed XML document (as defined in the XML 1.0 specification).

**NOTE**

When you update an XML column, you might also want to validate the input XML document against a registered XML schema.

**Updating a Portion of an XML Document**

You can also use the UPDATE statement with the XMLMODIFY function to update a portion of an XML document in an XML column. The XMLMODIFY function specifies a basic updating expression that you can use to insert nodes, delete nodes, replace nodes, or replace the values of a node in XML documents stored in XML columns.

**CAUTION**

Before you can use XMLMODIFY to UPDATE part of an XML document, the column containing the XML document must support XML versions.
The following UPDATE statement modifies the document for CUSTNO 100 changing the value of the city element to “Houston”:

```
UPDATE CUST
SET XMLCUST=XMLMODIFY('replace value of node /customer/addr/city with "Houston" ')
WHERE CUSTNO = 100
```

The following update expressions are supported in the XMLMODIFY function:

- **delete expressions**: To remove elements or attributes from a document
- **insert expressions**: To add elements or attributes to a document
- **replace value of node expressions**: To change the value of an element or attribute
- **replace node expressions**: To replace an existing element or attribute with a different one

**XML-DB2 Guidelines**

Consider the following guidelines as you embark on using XML with your DB2 databases.

**Learn All You Can About XML**  Before you begin to mix XML and DB2, be sure that you have a solid grasp of XML. The short introduction in this chapter is merely the tip of the iceberg. You must understand that XML is hierarchical and, as such, cannot match up exactly with your relational, DB2 way of thinking and processing data.

For in-depth coverage of pureXML support in DB2 for z/OS, refer to the *IBM DB2 for z/OS pureXML Guide* (SC19-2981) and the IBM RedBook *Extremely pureXML in DB2 10 for z/OS* (SG24-7915).

Consider augmenting the information in the pureXML manual with additional sources. The DB2 for z/OS pureXML section of IBM developerWorks® website at http://www.ibm.com/developerworks/wikis/display/db2xml/DB2+pureXML+Cookbook, which covers pureXML for both DB2 for LUW and DB2 for z/OS. You can find additional information on XML at the following websites:

- http://www.oasis-open.org
- http://www.w3schools.com
- http://www.xml.org

**Find XML EXISTS Predicates for Indexing**  Because XML indexes are used only on the XML EXISTS predicate, it is a good idea to find the predicates within XML EXISTS clauses before doing any XML indexing. Look for predicates such as [@id = xxx] or [price > 100.00].

**Favor Creating Lean XML Indexes**  Assume your queries often search for customer documents by last_name. In that case, an index on the last_name element can improve the performance of such queries, for example:
CREATE INDEX CUSTLNX1
ON CUST(XMLCUST)
generate key using xmlpattern '/customer/custname/last_name' as sql varchar(20);

Use Caution Before Indexing Everything  As a general rule of thumb, avoid indexing everything (also known as a heavy index) because it is costly to maintain during INSERT, UPDATE, and DELETE processing. An additional concern is that a heavy index requires a lot of storage, which might be better used for more targeted indexes. For example, consider the following heavy index:

CREATE INDEX HEAVYIX
ON CUST(XMLCUST)
generate key using xmlpattern '//*' as sql varchar(100);

When using xmlpattern '//*' to create an XML index, the generated index key value could contain entries from every text node in every XML document in the XML column. Due to the creation and maintenance overhead, avoid such heavy indexes.

An exception to avoiding heavy indexes might be made for applications with low write activity and an unpredictable query workload making specific indexes hard to anticipate and define.

Favor XPath Expressions with Fully Specified Paths  Avoid using * and // in your path expressions; instead, use fully specified paths whenever possible. For example, assume that you need to retrieve customers’ ZIP codes. There are multiple path expressions you could code to get to the appropriate data. Both /customer/addr/zip_code and /customer/*/zip_code return the ZIP code. But for optimal performance, the fully specified path should be preferred over using * or // because it enables DB2 to navigate directly to the wanted elements, skipping over non-relevant parts of the document.

---

CAUTION

Sometimes using * and // can lead to unwanted query results. For example, if some of the customer documents also contained spouse information, the path /customer/*/zip_code could return the ZIP code of both the customer and their spouse. This may, or may not, be the intent of the query, so be careful when using * and //.

---

Use RUNSTATS to Gather Statistics on XML Data and Indexes  The RUNSTATS utility has been extended to collect statistics on XML data and XML indexes. The DB2 Optimizer uses these statistics to generate efficient execution plans for SQL/XML queries. Thus, continue to use RUNSTATS as you would for relational data. Simply stated, DB2 generates better access plans if XML statistics are available.

---

NOTE

RUNSTATS TABLESPACE does not collect histogram statistics for XML table spaces; RUNSTATS INDEX does not collect histogram statistics for XML node ID indexes or XML indexes.
**Use CHECK DATA**  Consider running the CHECK DATA utility periodically to check the consistency between the XML document data and its associated XML schema and its XML index data.

**Use REPORT TABLESPACE SET**  Use the REPORT TABLESPACE SET utility to identify the underlying XML objects that are automatically created.

**Consider Deferring the Creation of XML Table Spaces**  As of DB2 V10 you can defer the actual physical creation of XML table spaces and their associated indexes to optimize your space management requirements.

By specifying DEFINE(NO), the underlying VSAM data sets are not created until the first INSERT or LOAD operation. The undefined XML table spaces and dependent index spaces are registered in the DB2 Catalog but are considered empty when access is attempted before data is inserted or loaded.

**DSNZPARMs: XMLVALA and XMLVALS**  The XMLVALA subsystem parameter specifies an upper limit for the amount of storage that each user is to have available for storing XML values. The default is 200 MB. DB2 performs streaming, so you might be able to insert and select XML documents larger than the limit. However, it is a good idea to check the value and set an appropriate value based on your expected XML processing needs.

If you construct XML documents, set XMLVALA to at least twice the maximum length of documents generated. If you query XML data, set XMLVALA at least four times the maximum document size.

XMLVALS is the virtual storage limit allowed for XML processing for the DB2 subsystem. The default value is 10 GB.

**Summary**

This chapter is not intended to be a comprehensive treatment of DB2’s XML support. After reading this chapter you should understand the basics of XML, how it differs from traditional relational data, and how DB2 for z/OS supports integrated XML data with pureXML.
Index

Numbers

3GLs (third-generation languages), 486
4GLs (fourth-generation languages), 486
   tools, 1419-1420
4KB pages, 797

access guidelines, SQL (Structured Query Language), 58-90
access methods, XML (Extensible Markup Language), 423
access paths, 5
   analyzing, 1116-1118
   changing, 88-89
   influencing, 46-48
   managing, 1013
   EXPLAIN, 980-1002, 1006
   IBM Data Studio, 1012
   optimization, 1130-1135
   reviewing, 1018-1019
   SQL statements, 980
   stability, 654
   strategies, 846-860
   single table, 824-845
   subqueries, optimization, 869-871

abbreviations, standardized, 252
ABEND command, 1360
abends, 1360
   UDFs (user-defined functions), 184
ABSVAL function, 141
Academic Initiatiive System, 1443

access control
   columns, 466-469
   LBAC (label-based access control), 461-464
   referential integrity, 465
   restrictions, 466
   row level granularity, 462-464
   rows, 466-469

accessing
   data warehouses, 1519
distributed data, 1460-1465
   LOB columns, 399-402
ACCESSNAME column (PLAN_TABLE), 987
ACCESSTYPE column (PLAN_TABLE), 987
ACCESS_DEGREE column (PLAN_TABLE), 989
ACCESS_PGROUP_ID column (PLAN_TABLE), 989

Accounting Report
Additional Information listing (24.7), 951-952
Accounting Report Buffer Pool Information listing (24.9), 953-954
Accounting Report Database Code Usage listing (24.8), 952
Accounting Report Locking Activity listing (24.5), 950-951
Accounting Report Program Terminations listing (24.6), 951
Accounting Report RID List Details listing (24.10), 956
accounting reports, 943-945
long, 946-956
buffer pool information, 952-955
database code usage information, 952
locking activity, 950-951
program status, 951
SQL activity, 949-950
trace, 956
accounting trace, 930-931

ACOS function, 141
ACTION parameter (BIND), 639
active database constructs, application development, 530
ad hoc SQL, 12
Adamson, Christopher, 1513
ADD MONTHS function, 141
address spaces, 810
administration
commands, 1353-1358
data, 1432-1433
data sharing, 783-791
packages, 624-626
administrative commands, 1353-1358
ADMIN_TASK_LIST function, 159
ADMIN_TASK_STATUS function, 159
Advanced Program-to-Program Communication (APPC), DRDA (Distributed Relational Database Architecture), 1452
AFTER triggers, 379, 390
aggregate functions, 34, 135-136
AVG, 136
CORRELATION, 137
COUNT BIG, 138
COUNT, 137-138
COVARIANCE, 138-139
COVARIANCE SAMP, 138-139
MAX, 139
MIN, 139-140
searching results, 165
STDDEV, 140
SUM, 140
VARIANCE, 141
VARIANCE SAMP, 141

ALIAS database objects, 38
aliases, 201, 313
databases, 1471-1472
server location, 1472
ALT tools, 1396-1398
ALTER BUFFERPOOL command, 1355
ALTER TABLE statement, 1532
ALTER UTILITY command, 1282, 1355
analysis
access paths, 1116-1118
distributed throughput, 1491-1493
analysis tools, queries, 64-65
ANSI SQL reserved words, 504
APPC (Advanced Program-to-Program Communication), DRDA (Distributed Relational Database Architecture), 1452
applets. Java, 555-557
Application Assist Processor (zaAP), 1076
application development, 486-487, 527-536
active database constructs, 530
batch programming, 536, 546-547
clustered access, 536
COMMIT statements, 539-541
lock strategies, 538-539
LOCK TABLE command, 538
parallel processing, 536-538
restartable, 543-546
SAFEPoINTs, 542-543
units of work, 541-542
“black boxes,” 528-529
code modular, 529
cursors, 511-513
data modifications, 513-515
rowset positioning, 518-520
scrollable, 515-518
SELECT statement, 521-525
data filtering, 531
data sharing, 787-788
dynamic SQL, 567-569
classes, 576-589, 594
versus static, 569-576
embedded SQL statements, 487-490
data modification, 525-527
delimiting, 490
GET DIAGNOSTICS, 494, 497
SQLCA (SQL Communication Area), 491-493
SQLCODE, 493
SQLSTATE, 493
WHENEVER, 500-501
error handling, standardizing, 497-499
host variables, 504-506, 509-511
host structures, 506
null indicators, 507-509
Java, 554-563
naming conventions, 501-504
online programming, 547-552
program preparation, 601, 609, 632-655
background, 632
batch procedures, 616-618
BIND, 637-654
BIND command, 605-606
CICS processors, 632
CLIST, 618-619
collections, 628-629
compiling programs, 606-607
converting DBRM-based plans, 630-631
DB2I, 609-616
Declarations Generator, 601-604, 632-634
default names, 632
Java, 607
linkage editor, 655
linking programs, 607
multiple methods, 619-622
objects, 631-632
packages, 623-627
plans, 622
precompiling, 634-637
precompiling programs, 604-605
REXX EXEC, 618-619
running programs, 608
versions, 629-630
REXX, 563-565
SQL (Structured Query Language), 565-566
coding, 552-554
stored procedures, 530
unqualified SQL (Structured Query Language), 530
user-defined functions, 530
application development guide, 1434
application efficiency
queries, Catalog, 1041-1042
application I/O, 1078-1079
application requester (AR) function (DRDA), 1450
application server (AS) function (DRDA), 1450
application-directed data access, 1461-1462
application-level changes, 57
applications
  batch, 705-706
data sharing, impact, 776-778
executing, 704-706
Internet, 695
  network traffic minimization, 695
Java, 555-557
online, 705-706
rebinding, 1014-1016
  best practices, 1016-1018
gathering statistics, 1019-1020
periodic maintenance, 1015
regular maintenance, 1015
reviewing access paths, 1018-1019
system maintenance, 1015-1016
tuning, 1116-1137
APPLNAME column (DSN_STATEMENT_TABLE), 999
APPLNAME column (PLAN_TABLE), 986
AR (application requester) function (DRDA), 1450
ARC tools, 1398
architectures, DRDA ( Distributed Relational Database Architecture), 1451-1452
ARCHIVE LOG command, 1355
archives, mailing lists, 700
arithmetic
  columns, minimizing, 80
date and time, 84-85, 122-123
  precision, 78-80
arithmetic expressions, 78-80
AS (application server) function (DRDA), 1450
ASENSITIVE function, 142
ASENSITIVE scrollable cursors, 516
ASIN function, 142
assigning values, columns and UDTs (user-defined data types), 196
ASUTIME column (RLST), 1146
ATAN function, 142
Attach Facility
CAF (Call Attach Facility), 763-765
  benefits, 766
  creating threads, 764-766
drawbacks, 766
  vendor tools, 766-767
CICS (Customer Information Control System), 730-731
IMS, 752-755
RRSAF (Recoverable Resource Manager Services Attach Facility), 767-768
attachment interfaces, data sharing, impact, 776-777
attribute copy options, MQTs (Materialized Query Tables), 1526
AUD tools, 1399-1400
audit reports, 956-957
Audit Summary Report listing (24.11), 956-957
audit trace, 477-479, 931-932
auditing, 476-481
  policies, 479-481
tables, forcing, 267
  trace-based, 1400
auditing tools, 1399-1400
AUTHID column (RLST), 1146
AUTHID traces, 971
authids, translation, 1501-1502
authorization, 448, 453-461
  BINDAGENT, 456
  DISPLAY, 453
group-level, 41
IDs, 448-449
privileges
  granting and revoking, 449-450
group, 451-452
PUBLIC access, 452-453
queries, Catalog, 1044-1046
repeating, 453
SECADM, 450-451, 455
SELECT, 453
synonyms, 458
SYSADM, 455, 459-460
auto rebind, 64
automatic query rewrite, MQTs (Materialized Query Tables), 1528-1532
AUTOSIZE parameter (buffer pool), 1105-1106
AUXERROR parameter, CHECK_DATA utility, 1181
auxiliary tables, indexing, 351
AUXONLY option (SCOPE parameter), 1180
availability, resources, 769
AVG function, 136
avoidance, locks, 908-911

B
backup and recovery
contingency planning, 1390-1392
disaster recovery technologies, 1387-1388
DSN1COPY strategy, 1384-1385
environmental considerations, 1388-1390
FlashCopy strategy, 1385-1387
Scalpel strategy, 1381-1384
Sledgehammer strategy, 1380-1381
utilities, 1201-1202
BACKUP_SYSTEM, 1236-1238
COPY, 1202-1215
copying index spaces, 1204-1205
copying table spaces, 1203-1204
full image copy, 1202-1203
incremental image copy, 1202-1203
phases, 1205-1206
COPYTOCOPY, 1215-1218
execution, 1216-1217
phases, 1216
MERGECOPY, 1218-1220
phases, 1219
QUIESCE, 1220-1223
phases, 1222
REBUILD_INDEX, 1232-1235
index versions, 1234
phases, 1234
RECOVER, 1224-1232
phases, 1228
recover table spaces, 1226-1227
RECOVER_INDEX, 1228
REPAIR, 1235
REPORT_RECOVERY, 1235-1236
RESTORE_SYSTEM, 1238-1239
BACKUP SYSTEM utility, 1387
backups, data sharing, 784
BACKUP_SYSTEM utility, 1236-1237
phases, 1237-1238
Basic Row Format (BRF), 799, 1081
batch applications, 705-706
Batch JCL for a TSO/DB2 Program listing (18.1), 708-709
batch performance monitoring, 940-943
batch procedures, program preparation, 616-618
batch processing, 11
batch programming, 536, 546-547
clustered access, 536
COMMIT statements, 539-541
foreground TSO, 725
lock strategies, 538-539
LOCK TABLE command, 538
parallel processing, 536-538
restartable, 543-546
SAFEPOINTs, 542-543
TSO (Time-Sharing Options), 708-709
units of work, 541-542
batch reports, 928, 968
BEFORE triggers, 390
BETWEEN predicate, 74
BIGINT data type, 39, 244
BIGINT function, 142
BINARY data type, 39-40, 245
BINARY function, 142
BIND, 637-654, 1014
  ACTION parameter, 639
  BIND PACKAGE Parameter, 640
  BIND PLAN parameter, 639
  CACHESIZE parameter, 647
  CONCURRENTACCESS-RESOLUTION parameter, 643
  DYNAMICRULES parameter, 652-653
  IMMEDWRITE parameter, 654
  OPTHINT parameter, 654
  parameters
    row locks, 893-895
    table space locks, 892-893
  PATH parameter, 652
  QUALIFIER parameter, 638
  Bind CLIST listing (15.4), 621-622
  BIND command, 590, 605-606, 650
  BIND PACKAGE command, 605, 887, 1360
  Bind Package panel (DB2I), 613
  BIND PACKAGE parameter (BIND), 640
  BIND parameters, 618, 916
  BIND PLAN command, 605, 887, 1360
  Bind Plan panel (DB2I), 613
  BIND PLAN parameter (BIND), 639
  BIND QUERY command, 1360
  bind-time authorization checking, dynamic SQL, 596
  Bind/Rebind/Free option (TSO), 717-720
  BINDAGENT authority, 456
  BINDAGENT group-level authorization, 41
  binding, 590, 605-606, 650
    packages, 640
    plans, 605, 887, 1360
    queries, 1360
  rebinding, 1014-1016
    best practices, 1016-1018
    gathering statistics, 1019-1020
    periodic maintenance, 1015
    regular maintenance, 1015
    reviewing access paths, 1018-1019
    system maintenance, 1015-1016
  BIND_EXPLAINONLY column (PLAN_TABLE), 991
  BIND_RO_TYPE column (DSN_STATEMENT_CACHE_TABLE), 1005
  BIND_TIME column (PLAN_TABLE), 990
  bitemporal tables, implementing, 443-445
  “black boxes,” application development, 528-529
  BLOB data type, 39, 245
  BLOB function, 142
  BLOBs (Binary Large Objects), 394
  block fetches, 66, 1487-1488
    coding cursors, 1487-1489
    continuous, 1490-1491
    data currency, 1489-1490
    limited, 1490
  block style, SQL statements, 552-554
  blogs, 699, 1428
    Twitter, 1428-1429
  bookmarking web pages, 702
  Boot Strap Data Set (BSDS), 921, 1316
  boundaries, partitions, changing, 367
  BRF (Basic Row Format), 799, 1081
  browsers, 689
  browsing, cursor-free, 522
  BSDS (Boot Strap Data Set), 921, 1316
Buffer Manager, 892
buffer pool general information statistics report, 961
buffer pool read information statistics report, 962
buffer pool usage information, long accounting reports, 952-955
buffer pool write information statistics report, 962
buffer pools, 1108-1110
data sharing, 780
data sharing group, 1110-1114
determining sizes, 1106-1108
indexes, 349
memory structures, 1066-1067
parameters, 1096-1101
AUTOSIZE, 1105-1106
DWQT, 1104
PGFIX, 1105
PGSTEAL, 1104-1105
VPSEQT, 1102-1103
BUFFERPOOL parameter, table space, 229
BUILD phase
LOAD utility, 1243
REBUILD_INDEX utility, 1234
REORG INDEX utility, 1273
REORG TABLESPACE utility, 1274
built-in functions, 85-86, 163. See also functions
business requirements, UDTs (user-defined data types), 193-195
business time, 430
modifying data, 434-441
period data types, 446
querying data, 432-434
WITHOUT OVERLAPS, 446-447
BUSINESS TIME tables, 431
bytecodes, JVMs (Java Virtual Machines), 555
C
C/S tools, 1402
CACHED_TS column (DSN_STATEMENT_CACHE_TABLE), 1005
caches
DSC (dynamic statement cache), 1003
in-memory table, 858-859
statements, sharing, 591-592
CACHESIZE parameter (BIND), 647
caching, dynamic statement, 590-591
CAF (Call Attach Facility), 763-765, 1152
batch processing, 771
benefits, 766
creating threads, 764-766
drawbacks, 766
feasibility, 770-771
resource availability, 769
vendor tools, 766-767
calling stored procedures, 672
calls, stored procedures, nesting, 663-664, 674
canned reporting, 11
cardinality
columns, 335
UDFs (user-defined functions), 190
Cartesian products, 20
avoiding, 102
SQL joins, 19-20
Cartesian star joins, 856
CASE (computer-aided software engineering) tools, 487
CASE expressions, 32-34, 98-99
case sensitivity, XPath, 421
CAST function, 184
CAST operation, 163
CAT tools, 1400-1401
Catalog, 874-882
Communication area, 881
contention, 885-886, 1367, 1370
Environmental area, 881
Objects area, 880
Performance area, 881
posters, 885
Programs area, 880
queries, 1047
application efficiency, 1041-1042
authorization, 1044-1046
creating formatted reports, 1047
historical, 1043-1044
monitoring objects, 1021-1048
navigational, 1023-1031
partition statistics, 1036-1037
physical analysis, 1031-1036
programmer’s aid, 1037-1041
query and analysis tools, 1400-1401
relationships, 883-885
remote management access tables, 1459
RTS (Real Time Statistics), 1048, 1054-1058
DSNACCOX, 1054
externalization, 1053-1054
tables, 1048-1052
Security area, 881
statistics, 819-821
changing, 1124-1130
tuning, 1089-1092
utilities, 1289
CATENFM, 1289
CATMAINT, 1289
DSNJCNVB, 1290
MODIFY RECOVERY, 1290-1293
MODIFY STATISTICS, 1293-1295
RUNSTATS, 1295-1310
STOSPACE, 1311-1313
Utility area, 881
XML area, 880
Catalog integrity verification utility, 1318-1319
categories of DB2 products, 1394
CATENFM utility, 1289
CATMAINT utility, 1289
CCSID ENCODING function, 142
CCSID parameter, table space, 233
CDB (Communication Database) table, 879
CDR (Conceptual Design Review), 1437
CDRA (Character Data Representation Architecture), DRDA (Distributed Relational Database Architecture), 1452
CEILING function, 142
CEMT options, CICS interface, 740
change log inventory utility, 1316-1317
change support, online schema, 355-357
changed columns, updating, 126-127
CHANGELIMIT parameter, COPY utility, 1208
CHAR function, 38, 142, 244
Character Data Representation Architecture (CCRA), DRDA (Distributed Relational Database Architecture), 1452
CHARACTER LENGTH function, 142
check constraint checking, CHECK_DATA utility, 1179
check constraints, 297-300
semantics, 299
versus triggers, 300, 374-375
CHECK DATA JCL (for LOB References) listing (32.2), 1180
CHECK DATA JCL (for XML References) listing (32.3), 1182
CHECK DATA JCL listing (32.1), 1178
CHECK DATA utility, 427
CHECK INDEX JCL listing (32.5), 1188-1189
CHECK INDEX utility, 1165
CHECK LOB JCL listing (32.4), 1186-1187
CHECK utility, 1177
CHECKDAT phase (CHECK_DATA), 1183
Checking for DB2 Availability listing (18.3), 750
CHECKXML phase (CHECK_DATA), 1182
CHECK_DATA utility, 1177-1186, 1190-1191
  AUXERROR parameter, 1181
  check constraint checking, 1179
  data integrity, 1183-1184
  defining exception tables, 1184-1185
  LOB reference checking, 1179-1181
  locking considerations, 1183
  phases, 1182
  referential integrity checking, 1177
  SCOPE parameter, 1180, 1184
  XML reference checking, 1181-1182
CHECK_INDEX utility, 1188
  locking, 1189
  phases, 1189
CHECK_LOB utility, 1186
  EXCEPTIONS parameter, 1188
  locking considerations, 1187
  phases, 1187
CICS (Customer Information Control System), 726-727
  Attach Facility, 730-731
  batch processing, 771
  commands, 1362-1364
  COMMIT, 746-747
  connections, 740-745
  feasibility, 770-771
  file compression commands, 748
  grouping transactions, 740
  managing interface, 740
  manuals, 750
  operations, 726-727
  plan management, 745
  program preparation, 728-729
  RDO (Resource Definition Online), 728
    parameters, 732-739
  resource availability, 769
  subsystem IDs, 741
  tables, 727-728
  terminology, 726-727
  threads, 732
  transactions, designing, 746-750
claims, resources, registering, 904-905
clauses
  FETCH FIRST n ROWS ONLY, 95-96
  FOR EACH ROW, 379
  FOR FETCH ONLY, 66
  FOR READ ONLY, 66
  FOR UPDATE OF, 899
  GROUP BY, 105
  HAVING, 165
  IN, 74
  IN DATABASE, 278
  KEEP UPDATE LOCKS, 90
  LIKE, 275
  OPTIMIZE FOR 1 ROW, 87
  OPTIMIZE FOR n ROWS, 86, 1494
  ORDER BY, 30, 68, 105
  PIECESIZE, 350-351
  WHEN, 382
  WHERE, 526, 531
    scalar functions, 86
  WHERE NOT NULL, 343
  WITH HOLD, 919
  WITH NO DATA, 1527
client/server tools, 1402

pureQuery, 588-589
  varying-list SELECT, 584-587
security, 40
SQL, 576-589, 594
STOGROUPS, 244
classic partitioned table spaces, 216

DFSMS (Data Facility Management System), 240
disaster recovery, 1378
dynamic SQL, 576-589, 594
EXECUTE IMMEDIATELY, 576-578
fixed-list SELECT, 581-584
non-SELECT, 578-581

WHERE, 526, 531
scalar functions, 86
WHERE NOT NULL, 343
WITH HOLD, 919
WITH NO DATA, 1527

claim, resource, registering, 904-905
clauses
  FETCH FIRST n ROWS
  ONLY, 95-96
  FOR EACH ROW, 379
  FOR FETCH ONLY, 66
  FOR READ ONLY, 66
  FOR UPDATE OF, 899
  GROUP BY, 105
  HAVING, 165
  IN, 74
  IN DATABASE, 278
  KEEP UPDATE LOCKS, 90
  LIKE, 275
  OPTIMIZE FOR 1 ROW, 87
  OPTIMIZE FOR n ROWS, 86, 1494
  ORDER BY, 30, 68, 105
  PIECESIZE, 350-351
  WHEN, 382
  WHERE, 526, 531
    scalar functions, 86
  WHERE NOT NULL, 343
  WITH HOLD, 919
  WITH NO DATA, 1527

client/server tools, 1402
CLIENT_APPLNAME traces, 972
CLIENT_USERID traces, 972
CLIENT_WKRSTNNNAME traces, 972
CLIST, program preparation, 618-619
CLOBs (Character Large Objects), 394
data type, 39, 245
function, 143
programs, 536
cloning programs, 536
CLOSE parameter, table space, 229-231
CLSN (Commit Log Sequence Number), 908
clustered access, batch programming, 536
clustered columns, joins, 101
clustering, 327
changing, 363-364
CM (conversation manager), 1486
COALESCE function, 103, 143
COBOL, 577-579, 662
compilers, upgrading, 487
error handling, 497
COBOL Program Using EXECUTE IMMEDIATE listing (14.1), 577
COBOL Program Using Non-SELECT Dynamic SQL listing (14.2), 578-579
COBOL Stored Procedure Shell listing (16.1), 662
Codd, E.F., 4
code appropriate existence checking, 96-98
code listings
Accounting Report Additional Information, 951-952
Accounting Report Buffer Pool Information, 953-954
Accounting Report Database Code Usage, 952
Accounting Report Locking Activity, 950-951
Accounting Report Program Terminations, 951
Accounting Report RID List Details, 956
Audit Summary Report, 956-957
Batch JCL for a TSO/DB2 Program, 708-709
Bind CLIST, 621-622
CHECK DATA JCL, 1178
CHECK DATA JCL (for LOB References), 1180
CHECK DATA JCL (for XML References), 1182
CHECK INDEX JCL, 1188-1189
CHECK LOB JCL, 1186-1187
Checking for DB2 Availability, 750
COBOL Program Using EXECUTE IMMEDIATE, 577
COBOL Program Using Non-SELECT Dynamic SQL, 578-579
COBOL Stored Procedure Shell, 662
COPYTOCOPY JCL, 1217
Cursor Processing, 512-513
DB2 Accounting Report, 944
DB2 Statistics Buffer Pool General Information, 961
DB2 Statistics Buffer Pool Read Information, 962
DB2 Statistics Buffer Pool Write Information, 963
DB2 Statistics Common Storage Usage, 965
DB2 Statistics EDM Pool Activity Information, 965-966
DB2 Statistics Locking Activity Information, 964-965
DB2 Statistics Log Activity Information, 963-964
DDL to Create the DSN_FUNCTION_TABLE, 1002
DDL to Create the DSN_STATEMNT_TABLE, 998
DDL to Create the PLAN_TABLE, 982-984
DIAGNOSE JCL, 1200
DSN1CHKR JCL, 1318-1319
DSN1COMP JCL, 1320
DSN1COPY JCL, 1324
DSN1COPY JCL (Using the OBIDXLAT Option), 1325-1326
DSN1LOGP JCL, 1330
DSN1PRNT JCL, 1331
DSN1SDMP JCL, 1329
DSNJLOGF JCL, 1315-1316
DSNJU003 JCL (Change Log Inventory), 1316
DSNJU004 JCL (Print Log Map), 1318
DSNTEP4 JCL, 1332-1333
DSNTIAJ CL, 1335
DSNTIAUL JCL, 1336-1337
Fixed-List SELECT Dynamic SQL, 581
I/O Activity Summary Report, 957-959
Image copy JCL, 1167, 1203-1204
Incremental Image Copy JCL, 1204
Index Copy JCL, 1205
JCL for Full Recovery, 1227
JCL for Partial Recovery, 1227
JCL to issue I DB2 Command in Batch, 1341
JCL to Run a DL/I Batch DB2 Program, 761-762
JDBC Code Fragment, 558
LOAD JCL (Nonrestartable), 1242-1243
LOAD JCL (Restartable), 1241-1242
Long Accounting Report, 946-947
Long Accounting Report Highlights, 948
Long Accounting Report SQL Activity, 949
MERGECOPY JCL, 1218-1219
MODIFY RECOVERY JCL, 1291
MODIFY STATISTICS JCL, 1294-1295
Non-SELECT Dynamic SQL Using Parameter Markers, 579-580
Precompile, Compile, and Link CLIST, 620
Pseudo-code for Retrieving Data from an Application Join, 532
Pseudo-code for Retrieving Data from an SQL Join, 531-532
QMF Form to be Used with the DBID/PSID/OBID Query, 1389
QMF Form to be Used with the SYSCOPY Query, 1382
QUIESCE JCL, 1220-1221
REBUILD INDEX JCL, 1233
RECOVER INDEXSPACE JCL, 1228
REORG JCL (Nonrestartable), 1267-1268
REORG JCL (Restartable), 1266-1267
REPAIR DBD JCL, 1192-1193
REPAIR LOCATE JCL, 1194
REPAIR SET JCL, 1196-1197
REPORT RECOVERY JCL, 1236
REPORT TABLESPACESET JCL, 1199
Results of the DISPLAY GROUP Command, 786
Running a DB2 Program in TSO Batch, 609
RUNSTATS INDEX JCL, 1298
RUNSTATS TABLESPACE JCL, 1296-1297
Sample COBOL Error-Handling Paragraph, 497-499
labels, specifying, 277-278
limiting grouping, 105
LOB, 395-399
accessing, 399-402
minimizing arithmetic, 80
minimum required, 58-59
naming, 252
homonyms, 257
standardized abbreviations, 252
synonyms, 257
nullable, 254-257
online schema, changing, 361-362
PLAN_TABLE, 62, 986-993, 1006
prefixing, 603-604
renaming, 361
arithmetic expressions, 80
views, 306-307
RLSTs (resource limit specification tables), 1146
ROW CHANGE
  TIMESTAMP, 269-270
ROWID, 403
sequence objects, 246-251
sequencing, 253-254
SYSIBM.SYSINDEX-SPACESTATS, 1051-1052
SYSIBM.SYSTABLE-SPACESTATS, 1049
table range, code predicates, 68
TIMESTAMP, 259-260
values
  assigning, 196
  computing average, 136
VARCHAR, 263, 395-396, 404
VARGRAPHIC, 395-396, 404
variable, 262-263
  indexing, 329-330
  monitoring, 263-264
XML, 412-414
COLUMN_FN_EVAL column (PLAN_TABLE), 988
COM tools, 1401-1402
combined tables, denormalization, 283
come-from checking, 1501
command thread attributes, DB2CONN parameter (RDO), 736-737
commands, 1340
  administrative, 1353-1358
ALTER UTILITY, 1282
BIND, 590, 605-606
BIND PACKAGE, 605, 887
BIND PLAN, 605, 887
CICS, 1362-1364
COEXIST, 64
DCLGEN, 601-604, 611, 632-634
DISPLAY GROUP, 786
DSN, 1359-1361
environment, 1340-1342
environment control, 1358-1359
EXPLAIN, 61, 64
IMS, 1361-1362
information-gathering, 1343-1355
IRLM, 1364-1365
LOCK TABLE, 538
SELECT, 58-59
TSO, 1364
COMMENT ON statement, 277
comments, tables, 277
COMMIT statement, 788, 907
CICS (Customer Information Control System), 746-747
IMS/TM, 756-759
two-phase, 1466-1470
  coordinators, 1468
  multi-site updating, 1468
  participants, 1468
Commit Log Sequence Number (CLSN), 908
COMMIT statements, 539-541, 548
common storage statistics report, 965
common table expressions (CTEs), 105, 110-111
recursion, 111-115
Communication area (Catalog), 881
communication database, 1459-1460
Communication Database (CDB) tables, 879
COMPARE DECFLOAT function, 143
compilers, COBOL, upgrading, 487
compiling programs, 606-607
compression
indexes, 336-337
table space, 231-233
compression analyzer utility, 1320-1322
compression tools, 1401-1402
computer-aided software engineering (CASE) tools, 487
CONCAT function, 143
Conceptual Design Review (CDR), 1437
concurrency, LOAD utility, 1250-1251
concurrent copying, DFSMS, 1381
CONCURRENTACCESS-RESOLUTION parameter (BIND), 643
Connect (DB2), 1473-1474, 1480-1484
editions, 1475-1479
EE thread pooling, 1479-1480
supported platforms, 1475
connection attributes, DB2CONN parameter (RDO), 733-734
connection pooling, databases, 1469-1470
connections
CICS, 740-745
releasing, 1462
console messages, viewing, 972-977
consolidation, extents, 226
constants, UDTs (user-defined data types), 197-198
constraint, referential, 291
constraints
check, 297-300
semantics, 299
versus triggers, 300
informational, 296
referential, 291-294
self-referencing, 296
CONTAINS function, 143
contention
Catalog, 1367, 1370
DB2 Catalog, 885-886
utilities, 1367, 1370
contingency planning, 1376-1377, 1390-1392
disaster recovery, 1379-1380
requirements, 1379
technologies, 1387-1388
DSN1COPY strategy, 1384-1385
environmental considerations, 1388-1390
FlashCopy strategy, 1385-1387
risk, determining and managing, 1377-1379
Scalpel strategy, 1381-1384
Sledgehammer strategy, 1380-1381
continuous block fetches, 1490-1491
continuous monitoring, 967
conversation manager (CM), 1486
Coordinated Universal Time (UTC), 121
coordinators, two-phase commit, 1468
COPY utility, 1165, 1202-1215, 1372
copying index spaces, 1204-1205
copying table spaces, 1203-1204
full image copy, 1202-1203
incremental image copy, 1202-1203
phases, 1205-1206
COPYCHANGES column (SYSIBM.SYSINDEX-SPACESTATS), 1052
COPYCHANGES column (SYSIBM.SYSTABLESPACE-STATS), 1050
copying
index spaces, 1204-1205
table spaces, 1203-1204
COPYLASTTIME column (SYSIBM.SYSSPACESTATS), 1052
COPYLASTTIME column (SYSIBM.SYSTABLESPACE STATS), 1050
COPYTOCOPY JCL listing (33.4), 1217
COPYTOCOPY utility, 1215-1218
  execution, 1216-1217
  phases, 1216
COPYUPDATEDPAGES column (SYSIBM.SYSSPACESTATS), 1052
COPYUPDATEDPAGES column (SYSIBM.SYSTABLESPACE STATS), 1050
COPYUPDATERLSN column (SYSIBM.SYSSPACESTATS), 1052
COPYUPDATERLSN column (SYSIBM.SYSTABLESPACE STATS), 1050
COPYUPDATETIME column (SYSIBM.SYSSPACESTATS), 1052
COPYUPDATETIME column (SYSIBM.SYSTABLESPACE STATS), 1050
correcting pending states, 1374
CORRELATION function, 137
CORRELATION_NAME column (PLAN_TABLE), 989
COS function, 143
COSH function, 143
COST_CATEGORY column (DSN_STATEMENT_TABLE), 1000
COUNT BIG function, 138
COUNT function, 137-138
coupling facilities
  data sharing, 778-779
  multiple, 788
  preventing failures, 789
  recovery, 786
COVARIANCE function, 138-139
COVARIANCE SAMP function, 138-139
CPUs (central processing units)
  costs, 818
  specialty, 812-815
  usage, tuning, 1074-1076
CPY2CPY phase (COPYTOCOPY), 1216
CREATE AS, 276
CREATE FUNCTION statement, 606
CREATE INDEX statement, 330
CREATE LIKE, 276
CREATE statement, 1524
CREATE TRIGGER statement, 606
CREATOR column (PLAN_TABLE), 986
CREATOR column (SYSIBM.SYSSPACESTATS), 1052
cross-posting to newsgroups, 701
Cross-system Coupling Facility (XCF) groups, 774
CTEREF column (PLAN_TABLE), 991
CTEs (common table expressions), 105, 110-111
  recursion, 111-115
CURRENT PACKAGE PATH special register, 629
currently committer data, using, 911
Cursor Processing listing (13.2), 512-513
cursors
  avoiding, 535
coding, block fetches, 1487-1489
data modification, 513-515, 522
declaring, 522-523
DELETE, 526
dynamic pre-open, 1491
holding, 546
multi-row fetch, 518-520
multiple rows, retrieving, 535
programming with, 511-513
rowset positioning, 518-519
  data modification, 519-520
  inserting multiple rows, 520
scrollable, 515-518
ASENSITIVE, 516
fetching data, 515
INSENSITIVE, 515-516
moving within result sets, 535
SENSITIVE, 515-517
SELECT statement, 521-525
UPDATE, 526
CURSQLID column (DSN_STATEMENT_CACHE_TABLE), 1005
Customer Information Control System (CICS). See CICS (Customer Information Control System)

D
Dashboard solutions including Clarity, 1522
data administration, 1432-1433
Data Administration Newsletter, The, 1427
data buffering, 779
DATA CAPTURE CHANGES option, 922
data cleaning, data warehouses, 1516-1519
data compression, 51
table spaces, 231-233
data consistency utilities, 1176-1177
CHECK, 1177
CHECK_DATA,
1177-1182, 1185-1186
check constraint checking, 1179
data integrity, 1183-1184
defining exception tables, 1184-1185
LOB referencing checking, 1179-1181
locking considerations, 1183
phases, 1182
referential integrity checking, 1177
XML referencing checking, 1181-1182
CHECK_INDEX,
1188-1191
locking, 1189
phases, 1189
CHECK_LOB, 1186
EXCEPTIONS parameter, 1188
locking considerations, 1187
phases, 1187
DIAGNOSE, 1200
REPAIR, 1191, 1198
REPAIR_DBD, 1192-1193
REPAIR_LOCATE,
1193-1195
REPAIR_SET, 1196-1198
REPORT, 1198-1200
REPORT_TABLESPACESET,
1199-1200
Data Control Language (DCL), 11
data currency, block fetches, 1489-1490
data definition control, 471
Data Definition Language (DDL), 11
data derivation, views, 303
data encryption, 473-476
Data Facility Storage Management System (DFSMS), 239-242
classes, 240
data filtering, application development, 531
data integrity, 290
enforcing, 566
FOR UPDATE OF, 526
triggers, 300
data integrity, CHECK_DATA utility, 1183-1184
Data Manipulation Language (DML), 11
data marts versus data warehousing, 1508
data modification
cursors, 513-515, 522
embedded SQL statements, 525-527
rowset positioning
cursors, 519-520
data modification guidelines, 125-134

data movement tools, 1406

data movement utilities
LOAD, 1240-1243, 1252-1259
  concurrency, 1250-1251
  creating flash copy, 1245
  creating inline copy, 1245
  gathering inline statistics, 1245
  loading delimited input data sets, 1246
  locking, 1250-1251
  phases, 1243-1244
  rerun/restart procedures, 1246-1250
  sorting, 1251-1252
  versus INSERT, 1244-1245
REORG, 1265-1272, 1283-1288
  gathering inline statistics, 1278-1279
  job streams, 1272-1273
  online reorganization, 1279-1283
  phases, 1273-1275
  rerun/restart procedures, 1275-1278
  RTS (Real Time Statistics), 1269-1272
  SHRLEVEL parameter, 1279
UNLOAD, 1260-1265
  locking, 1262
  phases, 1261
  restarting, 1261
  termination, 1261
  versus DSNTIAUL, 1262

data partitioned secondary indexes (DPSIs), 54, 332-334

data processing, SQL (Structured Query Language), 11

data set dump creator utility, 1330-1332

data sets
  BSDS (bootstrap data set), 1316
  delimited input, loading, 1246
  DSN1SDMP, 1329
  RUNSTATS utility, 1298-1299
  table spaces, 210
  VSAM, 795-797

data sharing, 51, 772, 780
  administration, 783-791
  application development, 787-788
  application impact, 776-778
  backup and recovery, 784
  benefits, 772-774
  buffer pools, 780
  coupling facility, 778-779
  database statuses, 785
  global data buffering, 779
  global inter-system communication, 779
  global lock management, 779, 911-914
  group buffer pool duplexing, 781
  group buffer pools, 1110-1114
  group creation, 783
  groups, 775-776
  monitoring, 786
  naming conventions, 782-783
  Parallel Sysplex, 773-774
  requirements, 774-775
  subsystem availability, 785
  Sysplex, 773-774

data storage, physical, 792-808

data structures, 37-38
  security controls, 40-42

Data Studio, 1396
Data Studio (IBM), 687
Data Transaction Manager (DTM), 1487

data transformation, data warehouses, 1515-1516
data types, 38-40
changing, online schema, 359-361
choosing, 258-259
columns, 244-245
renaming, 361
optimization, 260-261
parameters, UDFs (user-defined functions), 185
rows, ROWID, 245-246
UDFs (user-defined functions), 190-191
UDTs (user-defined types), 191-192
assigning values, 196
business requirements, 193-195
constants, 197-198
host variables, 197-198
LOBs, 192-193
naming, 197
set operations, 198-199
using equivalent, 73-74
data warehouses, 1506-1507, 1520-1522, 1533-1539
accessing, 1519
designing, 1510-1513
IBM solutions, 1521-1522
managing, 1520
metadata, 1511
MQTs (Materialized Query Tables), 1522-1523, 1527, 1532-1533
attribute copy options, 1526
automatic query rewrite, 1528-1532
benefits, 1523
converting tables into, 1527-1528
creating, 1523-1524
population and maintenance, 1528
query optimization options, 1524-1526
refreshable options, 1524
ODS (Operational Data Store), 1508-1509
OLAP (On-Line Analytical Processing), 1509-1510
populating, 1513-1519
data cleansing, 1516-1519
data transformation, 1515-1516
propagation, 1514
replication, 1514
snapshots, 1514
star schema, 1511-1513
versus data marts and operational data, 1508
data-element definitions (SQLDA), 584
data-partitioned secondary index (DPSI), 827
database access threads (DBATs), inactive, 1469
database administration guide, 1433
database analysis tools, 1402-1403
database archiving tools, 1398
database auditing, 476-481
database code usage information, long accounting reports, 952
DATABASE database objects, 38
database descriptors (DBDs), 201-204
database management systems (DBMs), 4
database modeling and design tools, 1403-1404
database object lists, 1160
database object types, 37-38
database objects, 200-201
database request modules (DBRMs). See DBRMs (database request modules)
DATABASE security class, 40
database server (DS) function (DRDA), 1450
database services (DBAS), 809-812
Database Services Address Space (DBAS), 809-810
database-level changes, 57
databases, 201-202
aliases, 1471-1472
communication, 1459-1460
connection pooling, 1469-1470
data integrity, 290
denormalization, 279-281
avoiding, 289
combined tables, 283
derivable data, 285
hierarchies, 285-289
mirror tables, 282
pre-joined tables, 281
redundant data, 284
repeating groups, 284-285
report tables, 282
split tables, 282-283
testing validity, 289-290
design, tuning, 1114-1116
distributed design, 1496-1499
normalization, 278-279
parameters, specifying, 203
referential integrity, 290-292
avoiding, 295-296
check constraints, 297-300
implementation restrictions, 296
informational constraints, 296
programmatic, 295
referential constraints, 291-294
referential sets, 294-295
self-referencing constraints, 296

DataPropagator, 1521
DataQuant, 1522
DATASIZE column (SYSIBM.SYSTABLESPACE-STATS), 1050
DATE, 119-120
date and time, 119-121
arithmetic, 122-123
DATE, 119-120
displaying, 120-121
irregular date sorting, 124-125
mixing, 123
non-standard dates, 121-122
TIME, 119-120
time zones, 121
TIMESTAMP, 119-120
total number of days, returning, 123
date and time arithmetic, 84-85
DATE and TIME columns, 259-260
DATE data type, 39, 245
DATE function, 143
DAY function, 143
DAYOFMONTH function, 143
DAYOFWEEK function, 143
DAYOFWEEK ISO function, 143
DAYOFYEAR function, 144
DAYS function, 144
DB2, 3-4
accounting report, 944

Internet access, 692
Microsoft .NET, 694
Net.Data, 695
WebSphere, 693-694

DB2I (Interactive), 609-616
DB2 Accounting Report listing (24.1), 944
DB2 Administration Guide, 1379
DB2 Application Programming and SQL Guide, 585, 635

DB2 Catalog, 874-882
Communication area, 881
contention, 885-886
Environmental area, 881
Objects area, 880
Performance area, 881
posters, 885
Programs area, 880
relationships, 883-885
Security area, 881
Utility area, 881
XML area, 880

DB2 Connect, 1473-1474, 1480-1484
deditions, 1475-1479
EE thread pooling, 1479-1480
supported platforms, 1475

DB2 Directory, 886-888
DB2 for z/OS: Data Sharing in a Nutshell, 774
DB2 pureXML Cookbook, 425
DB2 Statistics Buffer Pool General Information listing (24.13), 961
DB2 Statistics Buffer Pool Read Information listing (24.14), 962
DB2 Statistics Buffer Pool Write Information listing (24.15), 963
DB2 Statistics Common Storage Usage listing (24.18), 965
DB2 Statistics EDM Pool Activity Information listing (24.19), 965-966
DB2 Statistics Locking Activity Information listing (24.17), 964-965
DB2 Statistics Log Activity Information listing (24.16), 963-964
DB2CONN parameter (RDO), 733
  command thread attributes, 736-737
  connection attributes, 733-734
  general attributes, 733
  pool thread attributes, 735-736
DB2ENTRY parameter (RDO), 737-739
DB2I Commands option (TSO), 720
DB2TRAN parameters (RDO), 739
DBA tools, 1402-1403
  procedural, 683-687
DBADM group-level authorization, 41
DBADM security, 451-452
DBAS (Database Services Address Space), 809-812
DBATs (database access threads)
  high performance, 1496
  inactive, 1469
DBCLOBs (Double Byte Character Large Objects), 39, 144, 245, 394
DBCTRL group-level authorization, 41
DBD01 structure (Directory), 887
DBDs (database descriptors), 201-204
DBID column (SYSIBM.SYSINDEXSPACESTATS), 1052
DBID column (SYSIBM.SYSTABLESPACESTATS), 1050
DBIDs, 794
DBMAINT group-level authorization, 41
DBMs (database management systems), 4
DBNAME column (SYSIBM.SYSINDEXSPACESTATS), 1052
DBNAME column (SYSIBM.SYSTABLESPACESTATS), 1050
DBRM program preparation objects, 631
DBRM programs (database request modules), 622-624
  collections, 628-629
  packages, 623-627
    administration, 624-626
    benefits, 624
    list size considerations, 627
    performance, 627
    versions, 629-630
  plans, 622
    converting, 630-631
DCE (Distributed Computing Environment) security, 482
DCL (Data Control Language), 11
  data sharing, impact, 777
DCLGEN command, 510, 601-604, 611, 632-634, 1360
  TSO (Time-Sharing Options), 717
DCRM (Distributed Communication Resource Manager), 1485-1486
DDF (Distributed Data Facility), 1485-1486
  DCRM (Distributed Communication Resource Manager), 1485-1486
DDIS (Distributed Data Interchange System), 1485-1487
DRDS (Distributed Relational Data System), 1485
DTM (Data Transaction Manager), 1487
DTM (Distributed Transaction Manager), 1485
DDF (Distributed Data Facility), 1458
DFD (Distributed Facility Services), 809
DDIS (Distributed Data Interchange System), 1485-1487
DDL (Data Definition Language), 11
coding for performance, 1115
data sharing, impact, 777
DSN_STATEMENT_TABLE, 998
statements, 322
DDL to Create the DSN_FUNCTION_TABLE listing (25.3), 1002
DDL to Create the DSN_STATEMENT_TABLE listing (25.2), 998
DDL to Create the PLAN_TABLE listing (25.1), 982-984
DDM (Distributed Data Management), DRDA, 1452
deadlocks, 901-904
IMS, 759-760
DECFLOAT data type, 39, 245
DECFLOAT function, 144
DECFLOAT SORTKEY function, 144
DECIMAL columns, 264
DECIMAL data type, 39, 244
DECIMAL function, 144
decimal precision, 80
Declarations Generator, 601-604, 632-634
declarative RI, triggers, 391
DECLARE, explicit declaring tables, 490
DECLARE CURSOR statement, 523
declared temporary tables, 271-273
declaring cursors, 522-523
DECRYPT BINARY function, 144
DECRYPT BIT function, 144
DECRYPT CHAR function, 144
DECRYPT DB function, 144
defaults
columns, 261-262
rows, 261-262
Defaults option (TSO), 722
defining
columns, 252, 257
RLSTs (resource limit specification tables), 1146-1147
table schemas, 276
useful storage groups, 239
definition changes, online schema, 369-370
definitions, table spaces, 237
DEF_PAR_DEGREE column (DSN_USERQUERY_TABLE), 1133
DEGREES function, 144
delimited input data sets, loading, 1246
DELETE NO ACTION statement, 296
DELETE parameter, MODIFY STATISTICS utility, 1294
DELETE statements, 37, 126-127, 526, 548, 577
deleting
non-uniform distribution statistics, 1135-1136
XML data, 424
delimiting SQL statements, 490
denormalization, 99, 279-281
avoiding, 289
combined tables, 283
deliverable data, 285
derivable data, 285
distributed
fragmentation, 1497-1498
replication, 1498
snapshots, 1498-1499
hierarchies, 285-289
mirror tables, 282
pre-joined tables, 281
redundant data, 284
repeating groups, 284-285
report tables, 282
split tables, 282-283
testing validity, 289-290

DES tools, 1403-1404
design
databases, tuning, 1114-1116
denormalization, 279-281
avoiding, 289
combined tables, 283
derivable data, 285
hierarchies, 285-289
mirror tables, 282
pre-joined tables, 281
redundant data, 284
repeating groups, 284-285
report tables, 282
split tables, 282-283
testing validity, 289-290
normalization, 278-279
design reviews, 1436-1440
designing data warehouses, 1510-1513
destinations, traces, 936
DETERMINISTIC parameter, UDFs (user-defined functions), 188
development, applications, 486-487, 527-536
active database constructs, 530
batch programming, 536-547
“black boxes,” 528-529
code modular, 529
cursors, 511-525
data filtering, 531
data sharing, 787-788
dynamic SQL, 567-589, 594
embedded SQL statements, 487-497, 500-501, 525-527
erooring, 497-499
host variables, 504-511
Java, 554-563
inventory conventions, 501-504
online programming, 547-552
program preparation, 601-605, 632-634
REXX, 563-565
SQL, 565-566
coding, 552-554
stored procedures, 530
unqualified SQL, 530
user-defined functions, 530
development tools, 1411-1412
DFSMS (Data Facility Storage Management System), 239-242
classes, 240
concurrent copying, 1381
DFSORT statement, 1081
DIAGNOSE JCL listing (32.10), 1200
DIAGNOSE utility, 1200
DIFFERENCE function, 144
DIGITS function, 144
direct index lookup, 833-834
direct row access, 550, 831-832
Directory, 886-888
dirty reads, 52
disabling query parallelism, 868
DISALLOW PARALLEL parameter, UDFs (user-defined functions), 188
disaster recovery, 1379-1380
classes, 1378
contingency planning, 1376-1377, 1390-1392
determining and managing risk, 1377-1379
DSN1COPY strategy, 1384-1385
FlashCopy strategy, 1385-1387
Scalpel strategy, 1381-1384
Sledgehammer strategy, 1380-1381
environmental considerations, 1388-1390
requirements, 1379
technologies, 1387-1388
disasters, 1376-1377
DISCARD phase (LOAD utility), 1244
DISCONNECT parameters, 1462
disk and space management tools, 1404
disk volumes, STOGROUPS, 244
DISPLAY authority, 453
DISPLAY BUFFERPOOL command, 1345-1346
DISPLAY command, 1343-1345, 1350-1351
DISPLAY DATABASE command, 1347-1350
DISPLAY GROUP command, 786
DISPLAY LOG command, 1347
DISPLAY UTILITY command, 1352-1353
displaying
date and times, 120-121
resource status, 977-979
DISTINCT, 67-68
DISTINCT TYPE security class, 40
Distributed Communication Resource Manager (DCRM), 1485-1486
Distributed Computing Environment (DCE) security, 482
distributed data, workstation DB2, 1470
Distributed Data Facility (DDF). See DDF (Distributed Data Facility), 1485
Distributed Data Facility Services (DDFS), 809
Distributed Data Interchange System (DDIS), 1485-1487
Distributed Data Management (DDM), DRDA, 1452
distributed data placement, 1499-1500
distributed database design, 1496-1499
distributed denormalization fragmentation, 1497-1498
replication, 1498
snapshots, 1498-1499
distributed optimization, 1500-1501
distributed query blocks, controlling, 86
Distributed Relational Data System (DRDS), 1485
Distributed Relational Database Architecture (DRDA). See DRDA (Distributed Relational Database Architecture)
distributed requests, DRDA (Distributed Relational Database Architecture), 1454, 1457
distributed response time, analyzing, 1493
distributed security, 1501-1502
distributed throughput, analyzing, 1491-1493
Distributed Transaction Manager (DTM), 1485
distributed unit of work (DUW), 1460
DRDA (Distributed Relational Database Architecture), 1454-1456
distributing data
accessing, 1460-1465
DRDA (Distributed Relational Database Architecture), 1458-1460
distribution, 1502-1505
advantages, 1446
block fetches, 1487-1489
continuous, 1490-1491
data currency, 1489-1490
limited, 1490
dynamic cursor pre-open, 1491
performance problems, 1491-1496
DL/I batch interface, IMS, 761-762
DML (Data Manipulation Language), 11
DSNC transactions, CICS interface, 740
DSNDB04, avoiding, 203
DSNDDF, 879
DSNJCNVB utility, 1290
DSNJLOGF JCL listing (36.1), 1315-1316
DSNJLOGF utility, 1315-1316
DSNJU003 JCL (Change Log Inventory) listing (36.2), 1316
DSNJU003 utility, 1316-1317
DSNJU004 JCL (Print Log Map) listing (36.3), 1318
DSNJU004 utility, 1317-1318
DSNTEP2 program, 1332-1334
DSNTEP4 JCL listing (36.11), 1332-1333
DSNTEP4 program, 1332-1334
DSNTIAD JCL listing (36.12), 1335
DSNTIAD program, 1334-1336
DSNTIAUL versus UNLOAD utility, 1262
DSNTIAUL JCL listing (36.13), 1336-1337
DSNTIAUL program, 1336-1339
DSNUPROC parameters, 1156
DSNZPARN, 1081
DSNZPARN parameters, 917
active users, 1095
tuning, 1092-1096
DSN_COLDIST_TABLE, 62
DSN_COLIST_TABLE (EXPLAIN), 1002
DSN_DETCOST_TABLE (EXPLAIN), 1003
DSN_FUNCTION_TABLE, 63, 176
DSN_FUNCTION_TABLE (EXPLAIN), 1001-1002
DSN_PGRANGE_TABLE, 63
DSN_PGROUP_TABLE (EXPLAIN), 1003
DSN_PREDICAT_TABLE, 63
DSN_QRT Сергей, 1002
DSN_QRT Сергей (EXPLAIN), 1002
DSN_QUERY_TABLE (EXPLAIN), 1003
DSN_SORT_TABLE, 63
DSN_SORT_TABLE (EXPLAIN), 1003
DSN_STATEMENT_CACHE_TABLE, 63
DSN_STATEMENT_CACHE_TABLE (EXPLAIN), 1002-1005
DSN_STATEMENT_TABLE (EXPLAIN), 998-1001
DSN_STMT_TABLE, 63
DSN_STRUCTURE_TABLE, 63
DSN_USERQUERY_TABLE, 1133
DSN_VIEWREF_TABLE, 63
DSN_VIEWREF_TABLE (EXPLAIN), 1003
DSSIZE parameter, table space, 217-218
DTM (Data Transaction Manager), 1487
DTM (Distributed Transaction Manager), 1485
dummy tables, 81-82
dump and trace utility, 1328-1329
duplicate rows, avoiding, 257
duplicating table schema, 275
duration
  date and time, 122
  LOBs, 915-916
  locks, 892-895
DUW (distributed unit of work), 1460
  DRDA, 1454-1456
DWQT parameter (buffer pool), 1104
dynamic cursor pre-open, 1491

dynamic SENSITIVE scrollable cursors, 516-517
dynamic SQL, 44-45, 567-569, 574, 594, 597-600
  bind-time authorization checking, 596
  caching prepared statements, 596
classes, 576-589, 594
  EXECUTE IMMEDIATE, 576-578
  fixed-list SELECT, 581-584
  non-SELECT, 578-581
  varying-list SELECT, 584-587
data uniformity, 571-572
host variables, 574-575
KEEPDYNAMIC parameter, 591
making more static, 589-593
monitoring, 575-576
parallelism, 596
parameter markers, 595-596
performance sensitivity, 571
program examples, 576
pureQuery, 588-589
range predicates, 572
REOPT parameter, 592-593
repetitions execution, 573
RUNSTATS, 574
runtime environment, 574
statements, 594
tuning, 575-576
versus static, 569-576
dynamic SQL processor, 1332-1334
dynamic SQL update program, 1334-1336
dynamic statement cache (DSC), 1003, 1495
dynamic statement caching, 590-591
dynamic system parameters, 53
DYNAMICRULES parameter (BIND), 652-653

E

EBCDIC CHR function, 145
EBCDIC STR function, 145
Eclipse IDE (Integrated Development Environment), 588
editing ROWID columns, 403
editors (table), 1405-1406
EDITPROCS, 300
EDM DBD caches, 202
EDM pool, 202
EDM pool activity statistics report, 965-966
EDM pools, 1069-1073
EDM skeleton pool, 202
EDM statement caches, 202
EDT tools, 1405-1406
education, 1423-1427
  blogs, 1428
    Twitter, 1428-1429
industry periodicals, 1427-1428
mailing lists, 1429
webinars, 1429
EE thread pooling, DB2 Connect, 1479-1480
EJBs (Enterprise Java Beans), 557
embedded SELECT statements, cursors, 521-525
embedded SQL statements, 487-490
  data modification, 525-527
delimiting, 490
GET DIAGNOSTICS, 494, 497
pretesting, 61
SQLCA (SQL Communication Area), 491, 493
SQLCODE, 493
SQLSTATE, 493
WHENEVER, 500-501
emptying tables, 546-547
enclaves, 815
ENCRYPT STR function, 145
encryption, 473-476
END command, 1360
ENFORCE phase (LOAD utility), 1244
enforcing naming conventions, 314-316
Enterprise Java Beans (EJBs), 557
Enterprise Systems Connection (ESCON), 1077
enterprise-wide changes, 57
environment
teleprocessing, 1087-1088
tuning, 1064
teleprocessing, 1087-1088
z/OS, 1064-1087
environment commands, 1340-1342
environment control commands, 1358-1359
Environmental area (Catalog), 881
environmental support, 1443
equivalent data types, 73-74
ERASE parameter, table space, 231
error handling, standardizing, 497, 499
escalation, locks, 917
ESCON (Enterprise Systems Connection), 1077
ESCR (extended storage constraint relief), 1065
ETL tools, 1406
EXCEPT set operations, 26
exception reporting, 103
exception-based monitoring, 967
EXCEPTIONS parameter, CHECK_LOB utility, 1188
EXEC SQL utility, SQL statements, issuing, 1173-1175
EXECUTE IMMEDIATELY class (dynamic SQL), 576-578
EXECUTE security class, 40
execution, external UDFs, 173-178
execution environments, 488
existential SQL, 12
EXISTS, 73
EXP function, 145
EXPLAIN, 176, 980-982, 1005-1011
access paths, 993-998
tables, 1002
DSN_COLDIST_TABLE, 1002
DSN_DETCOST_TABLE, 1003
DSN_FILTER_TABLE, 1003
DSN_FUNCTION_TABLE, 1001-1002
DSN_KEYTGTDIST_TABLE, 1002
DSN_PGRANGE_TABLE, 1003
DSN_PGROUP_TABLE, 1003
DSN_PREDICAT_TABLE, 1002
DSN_PTASK_TABLE, 1003
DSN_QUERY_TABLE, 1003
DSN_SORTKEY_TABLE, 1003
DSN_SORT_TABLE, 1003
DSN_STATEMENT_CACHE_TABLE, 1002-1005
DSN_STATEMENT_TABLE, 998-1001
DSN_STRUCT_TABLE, 1003
DSN_VIEWREF_TABLE, 1003
PLAN_TABLE, 982-993, 1006
EXPLAIN command, 61
auto rebind, 64
table creation, 62-63
EXPLAIN privilege, 456-457
explain reports, 957
EXPLAIN_TIME column (DSN_STATEMENT_TABLE), 1000
EXPLAIN_TIME column (PLAN_TABLE), 991
explicitly coding literals, 533
explicitly declaring tables, 490
expressions
arithmetic, 78-80
CASE, 32-34, 98-99
common table expressions (CTEs), 105, 110-115
index on, 54
indexing, 330-331
row, 107-108
table, 105-106
improving performance, 106-107
tables, 91
XPath, 420
extended storage constraint relief (ESCR), 1065
extenders, 407
Extensible Markup Language (XML). See XML (Extensible Markup Language)
extents, 226
EXTENTS column (SYSIBM.SYSINDEXSPACESTATS), 1051
EXTENTS column (SYSIBM.SYSTABLESPACESTATS), 1049
EXTERNAL ACTION UDFs (user-defined functions), 189
external scalar UDFs, 168-171
external security, 481
external stored procedure, 676-677
external table UDFs, 168
creating, 171-173
external UDFs, 169
externalization, RTS (Real Time Statistics), 1053-1054
EXTRACT function, 145
extract tools, 1406

F
failures, stored procedures, controlling, 669-670
FAQs (Frequently Asked Questions), 701
FD:OCA (Formatted Data: Object Content Architecture), DRDA, 1452
FETCH, 899
FETCH FIRST, 108
FETCH FIRST n ROWS ONLY clause, 95-96
FETCH operation, multi-row, 54
FETCH statement, 109-110
FETCH WITH CONTINUE, 402
fetches
block, 1487-1488
coding cursors, 1487-1489
continuous, 1490-1491
data currency, 1489-1490
limited, 1490
multi-row, 109-110
fetching data, scrollable data, 515
FICON (Fibre Connectivity), 1077
field definitions, SQLCA (SQL Communication Area), 492
FIELDPROCs, 300
inheriting, 1527
file compression commands, CICS, 748
file reference variables, LOB, 402
filter factor, formulas, 822
Financial Modernization Act of 1999, 1399
firing triggers, 377-378, 385
fixed-list SELECT class (dynamic SQL), 581-584
Fixed-List SELECT Dynamic SQL listing (14.4), 581
flames, newsgroups, 701
FlashCopy, 1214
FlashCopy strategy, backup and recovery, 1385-1387
flat file programming versus DB2 programming, 489
FLOAT columns, 1023
FLOAT data type, 39, 244
FLOAT function, 144-145
FLOOR function, 145
FOR EACH ROW clause, 379
FOR FETCH ONLY clause, 66
FOR READ ONLY clause, 66, 533
FOR UPDATE OF clause, 899
column list, 126
data integrity, 526
foreground TSO
batch programs, 725
Time-Sharing Options, 709
foreign keys, indexes, 343
Formatted Data: Object Content Architecture (FD:OCA), DRDA, 1452
formatted reports, creating, 1047
formulas, filter factor, 822
fourth-generation languages (4GLs), 486
tools, 1419-1420
fragmentation, 1497-1498
FREE PACKAGE command, 1360
FREE PLAN command, 1360
FREE QUERY command, 1360
free space, indexes, specifying, 347-348
FREEPAGE parameter (DSN1COMP utility), 1321
table space, 227-229
Frequently Asked Questions (FAQs), 701
full image copy, 1202-1203
FULL OUTER JOIN, 28
FULLCOPY parameter (DSN1COMP utility), 1321
fullselect, table schemas, defining, 276
functions, 135
aggregate, 34, 135-136
  AVG, 136
  CORRELATION, 137
  COUNT BIG, 138
  COUNT, 137-138
  COVARIANCE, 138-139
  COVARIANCE SAMP, 138-139
  MAX, 139
  MIN, 139-140
  searching results, 165
  STDDEV, 140
  SUM, 140
  VARIANCE, 141
  VARIANCE SAMP, 141
built-in, 85-86
  CAST, 184
column, 34
  DRDA, 1449-1451
hash, 337
  MQSeries scalar, 159-161
scalar, 34, 141
  ABSVAL, 141
  ACOS, 141
  ADD MONTHS, 141
  ASCII, 142
  ASCII CHAR, 142
  ASCII STR, 142
  ASIN, 142
  ATAN, 142
  ATAN2, 142
  ATANH, 142
  BIGNIT, 142
  BINARY, 142
  BLOB, 142
  CCSID ENCODING, 142
  CEILING, 142
  CHAR, 142
  CHARACTER LENGTH, 142
  CLOB, 143
  COALESCE, 103, 143
  COLLATION KEY, 143
  COMPARE DECFLOAT, 143
  CONCAT, 143
  CONTAINS, 143
  COS, 143
  COSH, 143
  DATE, 143
  DAY, 143
  DAYOFMONTH, 143
  DAYOFWEEK, 143
  DAYOFWEEK ISO, 143
  DAYOFYEAR, 144
  DAYS, 144
  DBCLOB, 144
  DECFLOAT, 144
  DECFLOAT SORTKEY, 144
  DECIMAL, 144
  DECRYPT BINARY, 144
  DECRYPT BIT, 144
  DECRYPT CHAR, 144
  DECRYPT DB, 144
  DEGREES, 144
  DIFFERENCE, 144
  DIGITS, 144
  DOUBLE, 144
  DSN XMLVALIDATE, 145
  EBCDIC CHR, 145
  EBCDIC STR, 145
  ENCRYPT STR, 145
  EXP, 145
  EXTRACT, 145
WEEK, 158
WEEK ISO, 158
WHERE clauses, 86
YEAR, 158
SQL, 34
string units, 166
synonyms, 164-165
table, 159
user-defined, 135, 167-168
abends, 184
cardinality, 190
creating, 169-171, 173
data types, 190-191
DETERMINISTIC parameter, 188
DISALLOW PARALLEL parameter, 188
DSN FUNCTION TABLE, 184
execution, 173-178
external, 169
EXTERNAL ACTION, 189
external scalar, 168
external table, 168
invoking, 184
naming, 180
NOT DETERMINISTIC parameter, 188
null input arguments, 189
parameter data types, 185
parameters, 185
program restrictions, 181
programming languages, 173
reusability, 184
schema, 169
scratchpads, 189
SECURITY parameter, 188-189
SET CURRENT PACKAGE PATH, 184
sourced, 168, 178
SQL scalar, 168, 178-179
SQL table, 168, 179-180
SQL within, 186-187
starting and stopping, 182-183
templates, 185-186
versus program logic, 163
XML, 161-162
XMLQUERY, 421
XMLTABLE(), 422
general attributes
DB2CONN parameter (RDO), 733
DB2ENTRY parameter (RDO), 737
GENERATE UNIQUE function, 145
generating utility JCL, 1152-1156
Geographically Dispersed Parallel Sysplex (GDPS), 1387
GET DIAGNOSTICS statement, 494, 497
GETHINT function, 145
GETVARIABLE function, 145
global data buffering, data sharing, 779
global inter-system communication, data sharing, 779
global lock management, data sharing, 779, 911-914
global trace, 933
GMT (Greenwich Mean Time), 121
Gonzales, Ralph Michael L., 1522
Google Groups, 691-692
governing resources, Resource Limit Facility (RLF), 1143
defining RLSTs, 1146-1147
predictive governing, 1144, 1150
reactive governing, 1144, 1150
Gramm-Leach-Bliley Act, 1399
granting privileges, 449-450
GRAPHIC data type, 38, 244
GRAPHIC function, 145
greater than or equal to
predicate, 74
GREATEST function, 146
Greenwich Mean Time (GMT), 121
group buffer pool
duplexing, 781, 788
GROUP BY clause, 105
group privileges, 451-452
group-level authorizations, 41
grouping
retrieved data, 29-30
transactions, 740
groups
Cross-system Coupling Facility (XCF), 774
data sharing, 775-776
creating, 783
monitoring, 786
naming conventions, 782
GROUP_MEMBER column (DSN_STATEMENT_TABLE), 1000
GROUP_MEMBER column (PLAN_TABLE), 989
GROUP_MEMBER traces, 971
GUI-based programming languages, 486

H
hash overflow, 339
hash spaces, 338-339
hash-organized tables, creating, 339-341, 347
hashes, 337
MAXROWS parameter, avoiding, 352
monitoring usage, 351
space, altering, 352
hashing, 324-326, 338
indexes, 55
HASHLASTUSED column (SYSIBM.SYSTABLESPACE STATS), 1050
HAVING clause, 165
versus WHERE clause, 30-31
Health Insurance Portability and Accountability Act (HIPAA), 478, 1398
HEX function, 146
hierarchies, 913
hierarchies, denormalization, 285-289
high-level qualifiers, STOGROUPS, 243
hints, optimizer, 48-49
HINT_SCOPE column (DSN_USERQUERY_TABLE), 1133
HINT_USED column (PLAN_TABLE), 990
HIPAA (Health Insurance Portability and Accountability Act), 478, 1398-1399
historical queries, Catalog, 1043-1044
historical statistics, 53
holding cursors, 546
homonyms, columns, 257
host structures, 506, 533
host variable arrays, 527
host variables, 504-506, 509-511
dynamic SQL, 574-575
host structures, 506
null indicators, 507-509
simulating, temporary tables, 533-534
UDTs (user-defined data types), 197-198

HOUR function, 146
HTTP (HyperText Transfer Protocol), 690
hybrid joins, 51, 851-854, 859
parallelism, 867
HyperText Transfer Protocol (HTTP), 690

I
I/O
activity reports, 957-959
application, 1078-1079
cost, 818
internal, 1080-1081
log, 1082-1083
paging, 1083-1084
sort, 1081-1082
tuning, 1076-1084
I/O Activity Summary Report listing (24.12), 957-959
IBM Academic Initiative System, 1443
IBM Data Management magazine, 1427
IBM Data Studio, 687 
access paths, managing, 1012
IBM Data Warehousing, 1522
IBM DB2 Application Programming and SQL Guide manual, 576
IBM DB2 Codes manual, 493
IBM DB2 for z/OS page, 698
IBM DB2 for z/OS pureXML Guide, 425
IBM DFSORT Application Programming Guide, 1371
IBM hints, 49
IBM RedBook Extremely pureXML in DB2 10 for z/OS, 425
IBM SQL reserved words, 503-504
IBM SWL procedural SQL, 678-680
IBM System Journal, 1427
IBM Systems magazine, 1427
IBM utilities, 1158-1159
IBMREQD column (SYIBM.SYSINDEX-SPACESTATS), 1050-1052
IBM_SERVICE_DATA column (PLAN_TABLE), 989
IDENTITY column, 250-251
identity columns, 246-251, 549, 1030
IDENTY VAL LOCAL() function, 146
IDs, authorization, 448-449
IDUG (International DB2 Users Group) conferences, 1427
IDUG Solutions Journal, 1427
IFCIDs (Instrumentation Facility Component Identifiers), 937-938
IFI (Instrumentation Facility Interface), 53, 942
image copies, indexes, 351
Image copy JCL listing (31.1), 1167
Image Copy JCL listing (33.1), 1203-1204
IMMEDITWRITE parameter (BIND), 654
impedance mismatches, 44
implementation restrictions, referential integrity, 296
implicit table spaces, avoiding, 278
IMPLICITLY HIDDEN columns, 265-266
IMS (Information Management System), 751 
Attach Facility, 752-755
deadlocks, 759-760
DL/I batch interface, 761-762
programs, 751-752
RTT (resource translation table), 756
SYSGEN, 760
IMS commands, 1361-1362
IMS/TM, 751-752
batch processing, 771
COMMIT, 756-759
feasibility, 770-771
resource availability, 769
restart capabilities, 759
threads, 756-757
transaction design, 762-763
IN clause, 74
IN DATABASE clause, 278
IN lists, 91-92
in-memory table caches, 858-859
inactive DBATs (database access threads), 1469
INCLUDE statement, 602
incremental image copy, 1202-1203
Incremental Image Copy JCL listing (33.2), 1204
Independent Software Vendors (ISVs), 1424
index access eliminating, 87
multiple, 839-840
index compression, 51
Index Copy JCL listing (32.3), 1205
INDEX database objects, 38
index keys, controlling, 344-345
index lookaside, 50, 845
index pages, 802-808
index scans
  matching, 834-835
  non-matching, 835-837
index screening, 837-838
index spaces, copying, 1204-1205
index versions,
  REBUILD_INDEX utility, 1234
index-only access, 50, 345, 838-839
indexable predicates, 68-71, 78-80
indexed access, 832-833
indexed columns
  code predicates, 68
  joins, 101
indexes, 313, 324-326
  buffer pools, 349
  column cardinality, 335
  columns, 344
    adding, 343, 362-363
    uniqueness, 342
  compression, 336-337
  creating, 326-335, 348-349
Data Partitioned
  Secondary Indexes
    (DPSIs), 332-334
  direct index lookup, 833-834
DPSIs (data partitioned
  secondary indexes), 54
expressions, 54
foreign keys, 343
hashing, 55
image copies, 351
levels, 335
modifying, 335-336
multi-index access,
  346-347
multi-column indexes,
  345-346
Non-Partitioned
  Secondary Indexes
    (NPSIs), 332-333
NPIs (non-partitioned
  indexes), 793
online schema, changing,
  362-365
page sizes, 336-337
  altering, 364
primary keys, 343
renaming, 365
specifying free space for,
  347-348
table space data, 349
variable index keys,
  changing treatment of,
  364-365
virtual, creating, 349
XML, creating, 425-426
indexing
  auxiliary tables, 351
data modification, 342
detriments, 343
expressions, 330-331
partitioning, 331-334
tables, 344
VARCHAR columns, 263
variable columns,
  329-330
workloads, 341-342
XML data, 418-419
INDEXONLY column
  (PLAN_TABLE), 987
INDEXSPACE column
  (SYSIBM.SYSINDEXSPACESTATS), 1052
INDEXVAL phase (LOAD
  utility), 1244
indicator variables,
  116-117, 255
industry periodicals,
  1427-1428
Information Management,
  1427
Information Management
  System (IMS). See IMS
  (Information Management
  System)
Information On Demand
  (IOD) Conference, 1427
Information Server
  (IBM), 1521
information-gathering
  commands, 1343-1355
informational constraints,
  296
InfoSphere, 1521
InfoSphere Replication
  Server, 1521
INFULL function, 146
inheritance, FIELDPROC, 1527
inline LOBs (large objects), 396
inline SQL scalar functions, 178
inline views, 105
INSENSITIVE scrollable cursors, 515-516
INSERT, 126, 129
versus LOAD utility, 1244-1245
INSERT function, 146
INSERT operation, multi-row, 54
INSERT statement, 35-36, 130-133
INSERT statements, 526
inserting XML data, 423-424
INSERTs, 527
INSTALL SYSADM group-level authorization, 41
INSTALL SYSOPR group-level authorization, 41
INSTANCE column (SYSIBM.SYSINDEXSPACESTATS), 1052
INSTANCE column (SYSIBM.SYSTABLESPACESTATS), 1050
INSTEAD OF triggers, 386, 392
examples, 387-388
restrictions, 386-387
Instrumentation Facility Component Identifiers (IFCID), 937-938
Instrumentation Facility Interface (IFI), 53, 942
INSZERT, 527
INT tools, 1406
INTEGER columns, 264-265
INTEGER data type, 244
INTEGER function, 147
Integrated Information Processor (zIIP), 1075
integrity
data, 290
  triggers, 300
  referential, 290-292
  avoiding, 295-296
  check constraints, 297-300
  implementation restrictions, 296
  informational constraints, 296
  programmatic, 295
  referential constraints, 291-294
  referential sets, 294-295
  self-referencing constraints, 296
integrity tools, 1406
Internet applications, 695
interfaces, CICS, managing, 740
internal I/O, 1080-1081
International DB2 Users Group (IDUG), 698-699, 1427
International Technical Support Organization (ITSO), 698
Internet, 689
  DB2, access, 692-695
  Google Groups, 691-692
  mailing lists, 691-692
  archives, 700
  digesting, 700
  privacy, 700
  resources, 696-697
  search engines, 702
  Usenet Newsgroups, 691-692, 701-702
  WWW (World Wide Web), 689-690
Internet enabling tools, 1408
Internet-based programming languages, 486
INTERSECT set operations, 26
INVALIDATE option (AUXERROR), 1181
invoking UDFs (user-defined functions), 184
IOD (Information On Demand) Conference, 1427
IPLIST table (Catalog), 875
IPNAMES table (Catalog), 875
IRLM, 1073
tuning, 1114
IRLM commands, 1364-1365
IRLM parameters, 918
ISOBID column (SYSIBM.SYSINDEXSPACESTATS), 1052
isolation level, SQL statement, 535-536
ISPF tables, 724-725
ISV tools, third-party, 354
ISVs (Independent Software Vendors), 1424
ITSO (International Technical Support Organization), 698

J
Java, 488, 555
applets, 555-557
application development, 554-563
applications, 555-557
Enterprise Java Beans (EJBs), 557
Java Database Connectivity (JDBC) versus SQLJ, 557-559
Java Virtual Machines (JVMs), 554
bytecodes, 555
program preparation, 607
servlets, 555-557
Java Database Connectivity (JDBC) versus SQLJ, 557-559
Java Virtual Machines (JVMs), 554
bytecodes, 555

join, 91, 100
clustered columns, 101
hybrid, 51, 851-854, 859
parallelism, 867
indexed columns, 101
LEFT OUTER JOIN, 103
merge scan, 850-851, 859
parallelism, 867
methods, 51
nested loop, 51, 846-849, 859
parallelism, 867
ORDER BY, specifying, 101
outer, 26-29, 102
parallel, 866-867
reducing, 99
RIGHT OUTER JOIN, 103
SQL, 15-19, 22-23
Cartesian products, 19-20
star, 854-858
versus subqueries, 100-101
JOIN_DEGREE column (PLAN_TABLE), 989
JOIN_PGROUP_ID column (PLAN_TABLE), 989
JOIN_TYPE column (PLAN_TABLE), 989
JULIAN DAY function, 147
JVMs (Java Virtual Machines), 554
bytecodes, 555

K–L
KEEP UPDATE LOCKS clause, 90
KEEPDYNAMIC parameter, dynamic SQL, 591
Kerberos security, 482-483
key ranges, table space partitioning, 89-90
L-locks, 914
label-based access control (LBAC), 461-466
referential integrity, 465
restrictions, 465-466
row level granularity, 462-464
labels, columns, specifying, 277-278
languages. See programming languages
large objects (LOBs), 394-395, 403-407
  columns, 395-396
  FETCH WITH CONTINUE, 402
  file reference variables, 402
  inline, 396
  locking, 403
  logging, 395
  materialization, 402
  size considerations, 395
  variable declarations, 401
large partitioned table spaces, 208-209
Larsen, Sheryl, 698
LAST DAY function, 147
LASTUSED column (SYSIBM.SYSINDEX-SPACESTATS), 1052
latches versus locks, 892
LBAC (label-based access control), 461-466
  referential integrity, 465
  restrictions, 465-466
  row level granularity, 462-464
LDR (Logical Design Review), 1438
LEAST function, 147
LEFT function, 147
LEFT OUTER JOIN, 28, 103
LENGTH function, 147
  less than or equal to predicate, 74
levels
  DRDA, 1453-1455, 1460
  indexes, 335
LIB parameter (DSNUPROC), 1156
LIKE, 74
LIKE clause, duplicating table schema, 275
LIKE predicate, 75-77
  limitations, triggers, 389
  limited block fetches, 1490
  limited block protocols, 1451
  limited scanning, partitions, 52
  linking editor, 655
  linking programs, 607
  list prefetch, 841-842
  list prefetch performance factor, 50
LISTDEF control statement, 1370
LISTDEF utility, 1159-1160, 1165-1166
  creating lists, 1160-1162
  list expansion, 1163-1165
  wildcarding, 1162-1163
listings
  Accounting Report Additional Information, 951-952
  Accounting Report Buffer Pool Information, 953-954
  Batch JCL for a TSO/DB2 Program, 708-709
  Bind CLIST, 621-622
  CHECK DATA JCL, 1178
  CHECK DATA JCL (for LOB References), 1180
  CHECK DATA JCL (for XML References), 1182
  CHECK INDEX JCL, 1188-1189
  CHECK LOB JCL, 1186-1187
  Checking for DB2 Availability, 750
  COBOL Program Using EXECUTE IMMEDIATE, 577
  COBOL Program Using Non-SELECT Dynamic SQL, 578-579
  COBOL Stored Procedure Shell, 662
  COPYTOCOPY JCL, 1217
  Cursor Processing, 512-513
REPAIR DBD JCL, 1192-1193
REPAIR LOCATE JCL, 1194
REPAIR SET JCL, 1196-1197
REPORT RECOVERY JCL, 1236
REPORT TABLESPACESET JCL, 1199
Results of the DISPLAY GROUP Command, 786
Running a DB2 Program in TSO Batch, 609
RUNSTATS INDEX JCL, 1298
RUNSTATS TABLESPACE JCL, 1296-1297
Sample COBOL Error-Handling Paragraph, 497-499
Sample Program Preparation Procedure, 616-618
Sample Results of DISPLAY BUFFERPOOL, 1346
Sample Results of DISPLAY LOG, 1347
SQLDA, 582-583
SQLJ Code Fragment, 558
STOSPACE JCL, 1311
Typical Processing Scenario, 890
UNLOAD JCL, 1260
Updating with a Cursor, 514-515
Varying-List SELECT Dynamic SQL, 585
Varying-List SELECT Dynamic SQL with Minimum SQLDA, 587
lists
creating, LISTDEF utility, 1160-1162
expanding, LISTDEF utility, 1163-1165
IN, 91-92
literals
explicitly coding, 533
UNION query, 25
LITERAL_REPL column (DSN_STATEMENT_CACHE _TABLE), 1005
LOAD JCL (Nonrestartable) listing (33.2), 1242-1243
LOAD JCL (Restartable) listing (34.1), 1241-1242
load module program preparation objects, 631
load tools, 1406
LOAD utility, 348, 527, 1240-1243, 1252-1259
concurrency, 1250-1251
creating flash copy, 1245
creating inline copy, 1245
gathering inline statistics, 1245
loading delimited input data sets, 1246
locking, 1250-1251
phases, 1243-1244
rerun/restart procedures, 1246-1250
sorting, 1251-1252
versus INSERT, 1244-1245
loading tables, 1240-1243
LOADRLASTTIME column (SYSIBM.SYSINDEXSPACESTATS), 1051
LOADRLASTTIME column (SYSIBM.SYSTABLESPACESTATS), 1049
LOBs (large objects), 265, 394-395, 403-407
accessing, 399-402
columns, 395-399
FETCH WITH CONTINUE, 402
file reference variables, 402
inline, 396
locking, 403, 914-915
duration, 915-916
logging, 395
materialization, 402
pages, 801-802
reference checking, 1179-1181
RTS (Real Time Statistics), 1271-1272
size consideration, 395
table spaces, 215-216
locks, 916
UDTs (user-defined data types), 192-193
variable declarations, 401
LOCATE function, 147-148
LOCATE IN STRING function, 148
LOCATION traces, 971
LOCATIONS table (Catalog), 875
LOCK TABLE command, 919
batch programming, 538
locked data, skipping, 133-134
locked rows, skipping, 909-911
locking, 889-892
CHECK_DATA utility, 1183
CHECK_INDEX utility, 1189
CHECK_LOB utility, 1187
global, management, 911-914
hierarchical, 913
LOAD utility, 1250-1251
LOB (large objects), 403, 914-916
long accounting reports, activity, 950-951
UNLOAD utility, 1262
locking activity information statistics report, 964
locking considerations, CHECK_DATA utility, 1183
locking reports, 959
LOCKMAX parameter, 918, 220
LOCKPART parameter, 220
locks, 917-923
avoidance, 51, 788, 908-911, 919
deadlocks, 901-904
duration, 892-895
escalation, 51, 917
L-locks, 914
P-locks, 913
pages, 898-901
promotions, 917
rows, 899-901
S-locks, 914
structures, 913
suspensions, 901-904
table spaces, 895-897
LOBs, 916
tables, 897-898
timeouts, 901-904
user escalation, 917
versus latches, 892
X-locks, 914
LOCKSIZE ANY, 918
LOCKSIZE parameter, table space, 218-220
log activity information statistics report, 963-964
log I/O, 1082-1083
log offloading, 922
LOG phase (REORG INDEX utility), 1273
LOG phase (REORG TABLESPACE utility), 1274
log preformat utility, 1315-1316
Log Record Sequence Numbers (LRSN), 784
LOG10 function, 148
LOGAPPLY phase (COPY), 1205
LOGAPPLY phase (LOAD utility), 1244
LOGAPPLY phase (RECOVER utility), 1229
LOGAPPLY phase (RESTORE_SYSTEM utility), 1239
LOGCSR phase (LOAD utility), 1244
LOGCSR phase (RECOVER utility), 1229
logging LOBs (large objects), 395
logic, triggers, testing, 389
Logical Design Review (LDR), 1438
logs, archiving to disk, 789
LOGSCR phase (COPY), 1206
LOGUNDO phase
COPY utility, 1206
LOAD utility, 1244
RECOVER utility, 1229
Long Accounting Report Highlights listing (24.3), 948
Long Accounting Report listing (24.2), 946-947
Long Accounting Report SQL Activity listing (24.4), 949
long accounting reports, 946-949, 951-952, 956
buffer pool information, 952, 954-955
database code usage information, 952
locking activity, 950-951
program status, 951
SQL activity, 949-950
LONG VARCHAR data type, 675
LONG VARGRAPHIC data type, 675
loop joins, nested, 846-849
LOWER function, 148
LPAD function, 148
LPFACILITY column (SYSIBM.SYSTABLESPACE STATS), 1051
LPL pages, recovery, 785
LRSN (Log Record Sequence Numbers), 784
LTRIM function, 148
LULIST table (Catalog), 875
LUMODES table (Catalog), 875
LUNAME column (RLST), 1146
LUNAMES table (Catalog), 875
MATCHCOLS column (PLAN_TABLE), 987
matching index scans, 834-835
materialization, LOB (large objects), 402
Materialized Query Tables (MQTs), 53, 201, 1522-1523, 1527, 1532-1533
attribute copy options, 1526
automatic query rewrite, 1528-1532
benefits, 1523
converting tables into, 1527-1528
creating, 1523-1524
population and maintenance, 1528
query optimization options, 1524-1526
refreshable options, 1524
MAX function, 139, 148
MAXROWS parameter, hashing, 352
MAXROWS parameter (DSN1COMP utility), 1321
MAXROWS parameter, table space, 233
MAX_PAR__DEGREE column (DSN_USERQUERY_TABLE), 1133
MEMBER CLUSTER, 778
MEMBER CLUSTER parameter, table space, 234
memory structures, 1066-1067
buffer pools, 1066-1067
EDM pools, 1069-1073
IRLM, 1073
open data sets, 1073-1074
RID pools, 1067
sort pools, 1067-1069
total memory requirements, 1074
working storage, 1073
memory usage, tuning, 1064-1074
MERGC column (PLAN_TABLE), 992
merge scan joins, 850-851, 859
parallelism, 867
merge scan, 51
MERGE statement, 129-132
MERGECOPY JCL listing (33.5), 1218-1219
MERGECOPY utility, 1165, 1218-1220
phases, 1219
MERGE_JOIN_COLS column (PLAN_TABLE), 992
MERGN column (PLAN_TABLE), 992
messages, console, viewing, 972-977
metadata, 1414-1415
data warehouses, 1511
METHOD column (PLAN_TABLE), 986
methods, program preparation, 619-622
MICROSECOND function, 148
Microsoft .NET, 694
MIDAW (Modified Indirect Access Word), 1077
middleware resource usage, limiting, 1147-1149
MIDNIGHT SECONDS function, 148
MIG tools, 1407
migration procedures, 1436
migration tools, 1407
MIN function, 139-140, 148
MINUTE function, 149
mirror tables, denormalization, 282
miscellaneous tools, 1407
MIXOPSEQ column (PLAN_TABLE), 988
MLS (multi-level security), 461-466

  LBAC, 465-466
  row level granularity, 462-464
MOD function, 149
MODESELECT table (Catalog), 875
Modified Indirect Access Word (MIDAW), 1077
modified source program preparation objects, 631
MODIFY RECOVERY JCL listing (35.1), 1291
MODIFY RECOVERY utility, 1165, 1290-1291
  phases, 1292-1293
MODIFY STATISTICS JCL listing (35.2), 1294-1295
MODIFY STATISTICS utility, 1165, 1293-1295
modifying data, SQL, 35-37
monitor trace, 933-934
monitoring
  data sharing groups, 786
dynamic SQL, 575-576
  objects, 1021
    Catalog, 1021-1048
    RTS (Real Time Statistics), 1048-1058
    rules, 1058-1059
  utilities, 1156-1158
  variable columns, 263-264
monitoring performance, 928-929
  continuous monitoring, 967
displaying resource status, 977-979
exception-based monitoring, 967
periodic monitoring, 967
profiles, 970-972
reports, 940-943
  accounting, 943-956
  audit, 956-957
  explain, 957
  I/O activity, 957, 959
  locking, 959
  record trace, 959
  SQL trace, 959-960
  statistics, 960-966
  system parameters, 966-967
  strategies, 967-970
  traces, 929-930
    accounting, 930-931
    audit, 931-932
    destinations, 936
global, 933
guidelines, 938-940
IFCIDs (Instrumentation Facility Component Identifiers), 937-938
monitor, 933-934
performance, 934-935
statistics, 935-936
viewing console messages, 972-977
z/OS, 979
MONTH function, 149
MONTHS BETWEEN function, 149
MOTs (materialized query tables), 53
MQSeries scalar functions, 159-161
MQTs (Materialized Query Tables), 1522-1523, 1527, 1532-1533
  attribute copy options, 1526
  automatic query rewrite, 1528-1532
  benefits, 1523
  converting tables into, 1527-1528
  creating, 1523-1524
  population and maintenance, 1528
query optimization options, 1524-1526
refreshable options, 1524
MSC tools, 1407
Mullins, Craig S., 690
multi-index access, 346-347
multi-row fetch cursors, 518-520
multi-row fetches, 109-110
multi-table access path strategies, 846-860
multi-table table spaces, 235-237
multi-tier processing, 1472
multi-column indexes, 345-346
multi-level security
label-based access control (LBAC), 461-466
referential integrity, 465
restrictions, 465-466
row level granularity, 462-464
multiple index access, 839-840
multiple rows
inserting, rowset positioning cursors, 520
retrieving, 535
updating, 126
multiple tables, retrieving data from, 91-110
MULTIPLY ALT function, 149
multi-row FETCH operation, 54
multi-row INSERT operation, 54

N
NATIVE column (SYSIBM.SYSINDEX-SPACESTATS), 1051
NATIVE column (SYSIBM.SYSTABLESPACESTATS), 1049
NAME column (SYSIBM.SYSINDEX-SPACESTATS), 1052
NAME column (SYSIBM.SYSTABLESPACESTATS), 1050
namespace declarations, XML indexes, 419
namespace URIs, specifying, 417
namespaces, XML, 417-418
naming
columns, 252
packages, 501-504
plans, 501-504
programs, 501-504
triggers, 388
UDFs (user-defined functions), 180
UDTs (user-defined data types), 197
variables, 501-504
naming conventions, 313-314, 321, 1435-1436
compliance, 321
data sharing, 782-783
developing, 314-316
enforcing, 314-316
samples, 316-320
native SQL stored procedures, 672-674
navigational queries, Catalog, 1023-1031
nested loop joins, 51, 846-849, 859
parallelism, 867
nesting stored procedure calls, 663-664, 674
.NET, 694
NET tools, 1408
Net.Data, 695
Netezza (IBM), 1521
network traffic, minimizing, 695
newsgroups, 691-692, 696, 701-702
NEXT DAY function, 149
NGBPDEP, 791
NLEAF column (SYSIBM.SYSINDEX-SPACESTATS), 1051
NLEVELS column (SYSIBM.SYSINDEX-SPACESTATS), 1051
non-inline SQL scalar functions, 179
non-matching index scans, 835-837
non-partitioned indexes (NPIs), 793
non-partitioned secondary indexes (NPSIs), 332-333
non-relational data
accessing, SQL, 274
joining, 534-535
null input arguments, UDFs (user-defined functions), 189
nullable columns, 254-257
NULLIF function, 149
nulls, 115, 165
detriments, 115
indicator variables, 116-117
NULL, 117-118
Numparts parameter, table space, 231

O

OBID parameter, tables, 267-268
OBIDs, 794
object migration tools, 1407
object-oriented (OO) technology, 393-394
object-oriented programming (OOP), 393
object-relational mapping frameworks, 486
object/relationaL, 393-394
objects, 37-38, 200-201
LOBs (large objects), 265, 394-395, 403-407
accessing, 399
columns, 395-396
FETCH WITH CONTINUE, 402
file reference variables, 402
inline, 396
locking, 403, 914-916
logging, 395
materialization, 402
pages, 801-802
reference checking, 1179-1181
RTS (Real Time Statistics), 1271-1272
size consideration, 395
table spaces, 215-216, 916
UDTs (user-defined data types), 192-193
variable declarations, 401
monitoring, 1021
Catalog, 1021-1048
RTS (Real Time Statistics), 1048-1058
rules, 1058-1059
non-shared, 776
object-relational mapping frameworks, 486
program preparation, 631-632
security controls, 40-42
sequence, 246-251, 549
shared, 776
triggers, 374-376
Objects area (Catalog), 880
ODR (Organization Design Review), 1438
ODS (Operational Data Store), 1508-1509
offline copy utility, 1322-1328
offloading logs, 922
OLAP (On-Line Analytical Processing), 1509-1510
OLAP Server, 1522
OLTP (Online Transaction Processing) stored procedures, 11, 670
On-Line Analytical Processing (OLAP), 1509-1510
one-fetch index access, 842-843
online applications, 705-706
online design techniques, TSO (Time-Sharing Options), 709-712
online performance monitoring, 940-943
online programming, 547-552
online reorganization, REORG, 1279-1283
online reporting, 969-970
online return codes, utilities, 1366
online schema, 354-357
  change support, 355-357
  changes, versioning, 370-372
  changing column details, 357-359
  changing columns, 361-362
  changing data types, 359-361
  changing indexes, 362-365
changing table space partitioning, 365-368
changing table space type, 368
pending definition changes, 369-370
renaming columns, 361
Online Transaction Processing (OLTP) stored procedures, 11, 670
online utilities, monitoring, 1156-1158
OO (object-oriented) technology, 393-394
OOP (object-oriented programming), 393
open data sets, 1073-1074
OpenPages, 1522
operation system exploitation, 50
operational data versus data warehousing, 1508
Operational Data Store (ODS), 1508-1509
operational support, 1440-1441
operational support tools, 1408
operations
  CAST, 163
  FETCH, 54
  INSERT, 54
  set, 23, 91
  EXCEPT, 26
  INTERSECT, 26
  union, 23-26
  SQL, 13-14
OPR tools, 1408
OPTHINT column (PLAN_TABLE), 990
OPTHINT parameter (BIND), 654
optimization
data types, 260-261
distributed, 1500-1501
safe queries, 54
OPTIMIZE FOR 1 ROW clause, 87
OPTIMIZE FOR n ROWS clause, 86, 1494
  SELECT statement, 1123-1124
optimizer, 45-46, 816-818, 868-869
  access paths
    influencing, 46-48
    strategies, 824-860
CPU costs, 818
EXPLAIN, 980-982, 1002, 1005-1011
  access paths, 993-998
DSN_COLDIST_TABLE, 1002
DSN_DETCOST_TABLE, 1003
DSN_FILTER_TABLE, 1003
DSN_FUNCTION_TABLE, 1001-1002
DSN_KEYTGTDIST_TABLE, 1002
DSN_PGRANGE_TABLE, 1003
DSN_PGROUP_TABLE, 1003
DSN_PREDICAT_TABLE, 1002
DSN_PTASK_TABLE, 1003
DSN_QUERY_TABLE, 1003
DSN_SORTKEY_TABLE, 1003
DSN_SORT_TABLE, 1003
DSN_STATEMENT_CACHE_TABLE, 1002-1005
DSN_STATEMENT_TABLE, 998-1001
DSN_STRUCT_TABLE, 1003
DSN_VIEWREF_TABLE, 1003
PLAN_TABLE, 982-993, 1006

hints, 48-49
I/O cost, 818
influencing, 1118-1123
physical data independence, 817-818
predicates, filter factor, 821-823
query parallelism, 861-868
screening, 823
SQL statement, 821
statistics, 816
Catalog, 819-821
subqueries, 869-871
viewing optimization, 871-873
options, z/OS, 1084-1087
OPTIONS BY utility, 1172
ORDER BY, 108, 533
specifying, 101
ORDER BY clause, 30, 68, 105
Organization Design Review (ODR), 1438
organization utilities
LOAD, 1240-1243, 1252-1259
concurrency, 1250-1251
creating flash copy, 1245
creating inline copy, 1245
gathering inline statistics, 1245
loading delimited input data sets, 1246
locking, 1250-1251
phases, 1243-1244
rerun/restart procedures, 1246-1250
sorting, 1251-1252
versus INSERT, 1244-1245
REORG, 1265-1272, 1283-1288
gathering inline statistics, 1278-1279
job streams, 1272-1273
online reorganization, 1279-1283
phases, 1273-1275
reorganization frequency, 1268-1269
rerun/restart procedures, 1275-1278
RTS (Real Time Statistics), 1269-1272
SHRLEVEL parameter, 1279
UNLOAD, 1260-1265
locking, 1262
phases, 1261
restarting, 1261
termination, 1261
versus DSNTIAUL, 1262
OTHER_OPTIONS column (DSN_USERQUERY_TABLE), 1133
OTHER_PARMS column (DSN_USERQUERY_TABLE), 1134
outer joins, 26-28, 102
types, 28-29
overactive data areas, 548-549
OVERLAY function, 149

P
P-locks, 913
PACKADM group-level authorization, 41
PACKAGE column
(DSN_USERQUERY_TABLE), 1133
PACKAGE privilege class, 450
package program
preparation objects, 631
PACKAGE security class, 40
packages
administration, 624-626
benefits, 624
DBRMs, 623-627
list size considerations, 627
naming, 501, 503-504
performance, 627
static SQL, 1465
systematic rebinding, 625
triggers, 384-385
version maintenance, 625-626
versions, 629-630
pages
index, 336-337, 802-808
altering sizes, 364
LOB, 801-802
locks, 898-899, 901
ranges, screening, 827-828
structures, 797-798
table space data pages, 799-801
types, 798-799
PAGESIZE parameter
(DSN1COPY), 1327
PAGE_RANGE column
(PLAN_TABLE), 989
paging I/O, 1083-1084
Pair Wise Joins, 857
Pair Wise Star Join, 856-857
parallel joins, 866-867
parallel processing, batch
programming, 536-538
Parallel Sysplex, 773-774
parallelism
dynamic SQL, 596
hybrid joins, 867
merge scan joins, 867
nested loop joins, 867
optimization, 865
queries, 52, 859-867
disabling, 868
restrictions, 866
sysplex, 788
zIIPs, 865-866
PARALLELISM_MODE
column (PLAN_TABLE), 989
parameter data types,
UDFs (user-defined functions), 185
parameter markers, dynamic
SQL, 595-596
parameters
BIND, 618, 916
ACTION, 639
BIND PACKAGE, 640
BIND PLAN, 639
CACHESIZE, 647
CONCURRENT-
ACCESSRESOLUTION, 643
dynamicRULES,
652-653
IMMEDWRITE, 654
OPTHINT, 654
PATH, 652
row locks, 893-895
table space locks, 892-893
buffer pool, 1096-1101
AUTOSIZE, 1105-1106
DWQT, 1104
PGFIX, 1105
PGSTEAL, 1104-1105
sequential steal, 1102
VPSEQT, 1102-1103
CHECK_DATA utility
AUXERROR, 1181
SCOPE, 1180, 1184
CHECK_LOB utility, 1188
databases, specifying, 203
DISCONNECT, 1462
DSNUPROC, 1156
DSNZPARM, 917
MAXROWS, 352
QUALIFIER, 638
RDO (Resource Definition
Online), 732-739
SEQUENCE objects,
249-250
SSM, 753
table spaces, 217-235
BUFFERPOOL, 229
CCSID, 233
CLOSE, 229-231
DSSIZE, 217-218
ERASE, 231
FREEPAGE, 227-229
LOCKMAX, 220
LOCKPART, 220
LOCKSZE, 218-220
MAXROWS, 233
MEMBER CLUSTER, 234
NUMPARTS, 231
PCTFREE, 227-229
PRIQTY, 222-226
SECQTY, 222-226
SEGSIZE, 231
TRACKMOD, 234
USING, 221-222
tables, 266-270
TRACKMOD, 777
TSO (Time-Sharing Options), 707-708
UDFs (user-defined functions), 185
z/OS, 1084-1087

PARENT_PLANNO column (PLAN_TABLE), 991
PARENT_QBLOCKNO column (PLAN_TABLE), 991
parsing data, XML, 415
participants, two-phase commit, 1468
PARTITION column (SYSIBM.SYSINDEXSPACESTATS), 1052
PARTITION column (SYSIBM.SYSTABLESPACESTATS), 1050

partition statistics queries (Catalog), 1036-1037
partition-by-growth (PBG) universal table space, 207
partition-by-range (PBR) universal table space, 207
partitioned table spaces, 207-208, 238
advantages, 213-214
changing, 210
classic, 216
data sets, 210
disadvantages, 214-215
large, 208-209
scans, 826
SMS, 241-242
versus multiple tables, 211-213

partitioning
indexing, 331-334
table space, changing, 365-368

partitions
boundaries, changing, 367
DPSIs (data partitioned secondary indexes), 54
independence, 52, 904-907
limited scanning, 52
rebalancing, 367-368
rotating, 366-367
tables, adding to, 365-366

PATH parameter, 652
Payment Card Industry Data Security Standard (PCI DSS), 1399

PBG (partition-by-growth) universal table space, 207
PBR (partition-by-range) universal table space, 207
PC tools, 1408
PCI DSS (Payment Card Industry Data Security Standard), 1399
PCTFREE parameter (DSN1COMP utility), 1321
PCTFREE parameter, table space, 227-229
PDR (Physical Design Review), 1438
Peer-to-Peer Remote Copy (PPRC), 1387
pending definition changes, online schema, 369-370
PENDING option (SCOPE parameter), 1180
pending states, 1372-1373
 correcting, 1374
reasons, 1373
performance
distribution, performance problems, 1491-1496
packages, 627
Performance area (Catalog), 881
performance factors
queries, 57-58
SQL, 45-55
performance monitoring, 928-929
 continuous monitoring, 967
exception-based monitoring, 967
periodic monitoring, 967
profiles, 970-972
reports, 940-943
    accounting, 943-956
    audit, 956-957
    explain, 957
I/O activity, 957-959
locking, 959
record trace, 959
SQL trace, 959-960
statistics, 960-966
system parameters, 966-967
resources, displaying status, 977-979
strategies, 967-970
traces, 929-930
    accounting, 930-931
    audit, 931-932
    destinations, 936
global, 933
    guidelines, 938-940
IFCIDs
    (Instrumentation Facility Component Identifiers), 937-938
monitor, 933-934
performance, 934-935
    statistics, 935-936
viewing console messages, 972-977
z/OS, 979
performance monitors, 1410-1411
performance problems, troubleshooting, 1137-1142
performance tools, 1411
performance trace, 934-935
periodic maintenance, rebinding, 1015
periodic monitoring, 967
periodicals, 1427-1428
personally identifiable information (PII), 429
PGFIX parameter (buffer pool), 1105
PGSTEAL parameter (buffer pool), 1104-1105
phases
    BACKUP_SYSTEM utility, 1237-1238
    CHECK_DATA utility, 1182
    CHECK_INDEX, 1189
    CHECK_LOB utility, 1187
    COPY utility, 1205-1206
    COPYTOCOPY utility, 1216
    LOAD utility, 1243-1244
    MERGECOPY utility, 1219
    MODIFY RECOVERY utility, 1292-1293
    MODIFY STATISTICS utility, 1294-1295
    QUIESCE utility, 1222
    REBUILD_INDEX utility, 1234
    RECOVER utility, 1228
REORG INDEX, 1273-1275
REPAIR utility, 1191
RUNSTATS utility, 1298
STOSPACE utility, 1311
UNLOAD utility, 1261
physical analysis queries, Catalog, 1031-1036
physical data independence, 817-818
Physical Design Review (PDR), 1438
physical storage of data, 792-808
PIECSIZE clause, 350-351
PII (personally identifiable information), 429
PKGNAME traces, 971
plan and package analysis tools, 1409-1410
PLAN privilege class, 450
plan program preparation objects, 632
PLAN security class, 40
plan stored procedures, 675
PLANNAME column (RLST), 1146
PLANNAME traces, 971
PLANNO column (PLAN_TABLE), 986
plans
    CICS, 745
    DBRM, 622
    naming, 501, 503-504
PLAN_TABLE (EXPLAIN), 62, 982-984
columns, 986-993, 1006
querying, 984-986
PLN tools, 1409-1410
PM tools, 1410-1411
political issues, 1441-1443
pool thread attributes, DB2CONN parameter (RDO), 735-736
pools EDM, 1069-1073
sort, 1067-1069
populating data warehouses, 1513
data cleansing, 1516-1519
data transformation, 1515-1516
propagation, 1514
replication, 1514
snapshots, 1514
MQTs (Materialized Query Tables), 1528
POSITION function, 150
positioned DELETE statement, 37
positioned UPDATE statement, 36
POSSTR function, 150
Post-Implementation Design Review (Post-DR), 1440
posters, DB2 Catalog, 885
POWER function, 150
PPRC (Peer-to-Peer Remote Copy), 1387
PRID traces, 972
Pre-Implementation Design Review (Pre-IDR), 1439
pre-joined tables, denormalization, 281
precision, arithmetic, 78-80
Precompile option (TSO), 717
Precompile panel (DB2I), 612
Precompile, Compile, and Link CLIST listing (15.3), 620
precompiling programs, 604-605, 620, 634-637, 717
predicates, 77-78
BETWEEN, 74
coding, 76-77
filter factor, 821-823
greater than or equal to predicate, 74
indexable, 68-71, 78-80
less than or equal to, 74
LIKE, 75-77
nonindexable, 70
range, dynamic SQL, 572
screening, 823
Stage 1, 69-71
transitive closure rules, 92-93
XML EXISTS, 425
predictive governing, RLF (Resource Limit Facility), 1144, 1150
predictive resource governing, 597
prefetch list, 841-842
sequential, 825, 828-831
skip sequential, 841
PREFETCH column (PLAN_TABLE), 988
prefixing columns, 603-604
PRELOGA phase (RECOVER utility), 1229
PRELOGC phase (RECOVER utility), 1229
pretesting embedded SQL, 61
PRF tools, 1411
PRG tools, 1411-1412
primary authids, 449
primary keys
indexes, 343
tables, 258
PRIMARY_ACCESSSTYPE column (PLAN_TABLE), 990
PRIMAUTH column (DSN_STATEMENT_CACHE _TABLE), 1005
print log map utility, 1317-1318
PRIQTY parameter, 350
table space, 222-226
privileges, 448
EXPLAIN, 456-457
granting and revoking, 449-450
REFERENCES, 460
SQLADM, 452
Procedural DBA, 683-684
tasks, 684-687
procedural SQL, 6, 678
  benefits, 682
drawbacks, 682-683
IBM, 678-680
procedures, 1429
  application development guide, 1434
batch, program preparation, 616, 618
data administration, 1432-1433
database administration guide, 1433
design reviews, 1436-1440
migration, 1436
naming conventions, 1435-1436
query tool guide, 1435
responsibilities, 1430-1432
roles, 1430-1432
security guide, 1434-1435
SQL performance guide, 1435
stored, 656-657, 674-677
  atomic parameters, 675
  benefits, 659-661
calling, 672
coding parameters, 662-663
controlling failures, 669-670
creating, 666-668
developing, 661
executing, 670-672
external, 676-677
IBM Data Studio, 687
implementation, 657-666
LE/370, 675
managing, 668-670
native SQL, 672-674
nesting, 663-664, 674
Online Transaction Processing (OLTP), 670
plan, 675
procedural DBA, 683-687
procedural SQL, 678-683
program preparation, 666
returning result sets, 664-666
reusability, 676
SQL, 680-681
subprograms, 674
supported languages, 661
temporary tables, 676
versioning, 673-674
WLM (Work Load Manager), 670-672
system administration guide, 1433-1434
turnover, 1436
vendor tool guides, 1435
processor usage, tuning, 1074-1076
processors, specialty, 812-815
PROCMS column (DSN_STATEMENT_TABLE), 1000
PROCsu column (DSN_STATEMENT_TABLE), 1000
production environment, 11
productivity tools, 487
PROFILEID traces, 971
profiles
  performance monitoring, 970-972
  RUNSTATs, 1302-1303
PROFILE_ENABLED traces, 971
PROFILE_TIMESTAMP traces, 971
PROGNAME column (DSN_STATEMENT_TABLE), 999
PROGNAME column (PLAN_TABLE), 986
program cloning, 536
program logic, 100, 163
program preparation, 601, 609, 632-655
  background, 632
  batch procedures, 616-618
  BIND, 637-654
  BIND command, 605-606
  CICS, 728-729
  CICS processors, 632
CLIST, 618-619
collections, 628-629
compiling programs, 606-607
DB2I, 609-616
DBRM-based plans, converting, 630-631
Declarations Generator, 601-604, 632-634
default names, 632
Java, 607
linkage editor, 655
linking programs, 607
multiple methods, 619-622
objects, 631-632
packages, 623-627
versions, 629-630
plans, 622
precompiling, 604-605, 634-637
REXX EXEC, 618-619
stored procedures, 666
program preparation
Program Preparation option (TSO), 717
Program Preparation panel (DB2I), 614
program restrictions, external UDFs, 181
program status, long accounting reports, 951
programmatic RI (referential integrity), 295
programmer’s aid queries, Catalog, 1037-1041
programming
application development, 486-487, 527-536
active database constructs, 530
“black boxes,” 528-529
code modular, 529
cursors, 511-525
data filtering, 531
embedded SQL statements, 487-504, 525-527
error handling, 497-499
host variables, 504-511
stored procedures, 530
unqualified SQL, 530
user-defined functions, 530
batch, 536, 546-547
clustered access, 536
COMMIT statements, 539-541
lock strategies, 538-539
LOCK TABLE command, 538
parallel processing, 536-538
restartable, 543-546
SAFEPOINTs, 542-543
units of work, 541-542
dynamic SQL, 567-569
classes, 576-589, 594
versus static, 569-576
online, 547-552
programming languages
external UDFs, 173
fourth-generation languages, 486
GUI-based, 486
Internet-based, 486
third-generation languages, 486
Web-based, 486
programming tools, 1411-1412
programs
batch, 705-706
TSO (Time-Sharing Options), 708-709
compiling, 606-607
executing, 704-706
IMS, 751-752
linking, 607
naming, 501, 503-504
online, 705-706
precompiling, 604-605
running, 608
sample
dynamic SQL processor, 1332-1334
dynamic SQL update program, 1334-1336
sample unload program, 1336-1339
Programs area (Catalog), 880
PROGRAM_NAME column (DSN_STATEMENT_CACHE_TABLE), 1005
projection operation, SQL, 13-14
promotions, locks, 917
propagation, populating data warehouses, 1514
propagation tools, 1406
Pseudo-code for Retrieving Data from an Application Join listing (13.5), 532
Pseudo-code for Retrieving Data from an SQL Join listing (13.4), 531-532
PSID column (SYSIBM.SYSINDEXSPACESTATS), 1052
PSID column (SYSIBM.SYSTABLESPACESTATS), 1050
PSIDs, 794
PUBLIC access authority, 452-453
PUBLIC AT ALL LOCATIONS, 1502
PUNC (Possibly UNCommitted) bit, 908
pureQuery, dynamic SQL, 588-589
pureXML, 408, 412-415
pureXML Guide, 416

Q

QBLOCKNO column (PLAN_TABLE), 986
QBLOCK_TYPE column (PLAN_TABLE), 990, 1006
QM (queue manager), 1486
QMF (Query Management Facility), 722-723, 1522
forms, 1382-1389
tools, 1412-1413
QMF Form to be Used with the DBID/PSID/OBID Query listing (39.2), 1389
QMF Form to be Used with the SYSCOPY Query listing (39.1), 1382
QUALIFIER parameter (BIND), 638
QUANTIZE function, 150
QUARTER function, 150
queries
analysis tools, 64-65
Catalog, 1047
application efficiency, 1041-1042
authorization, 1044-1046
creating formatted reports, 1047
historical, 1043-1044
monitoring objects, 1021-1048
navigational, 1023-1031
partition statistics, 1036-1037
physical analysis, 1031-1036
programmer's aid, 1037-1041
distributed query blocks, controlling, 86
materialized query tables (MQTs), 53
parallelism, 52, 536, 859-867
disabling, 868
restrictions, 866
performance factors, 57-58
predicates
filter factor, 821-823
screening, 823
safe optimization, 54
subqueries, 20-23, 91
tweaking, 87-88
Query Management Facility (QMF). See QMF (Query Management Facility)
query optimization options, MQTs (Materialized Query Tables), 1524-1526
query tool guide, 1435
query tools, 1412-1413
QUERYID column (DSN_USERQUERY_TABLE), 1134
querying
business time data, 432-434
PLAN_TABLE, 984-986
XML data, 420-424
QUERYNO column (DSN_STATEMENT_TABLE), 999
QUERYNO column (DSN_USERQUERY_TABLE), 1133
QUERYNO column (PLAN_TABLE), 986
QUERY_TEXT column (DSN_USERQUERY_TABLE), 1133
queue manager (QM), 1486
QuickXScan, 423
QUIESCE JCL listing (33.6), 1220-1221
QUIESCE utility, 1165, 1220-1223
phases, 1222

R

RACF, 481
RAID storage devices, 1084
RAICLUDE_ALLOW_OVERRIDE function, 150, 162-163
RAND function, 82, 151
range predicates, dynamic SQL, 572
RCV tools, 1413-1414
RDA (Relational Data Services), 50
RDA (Remote Database Access), 1449
RDBMS (relational database management system), 4, 58
RDO (Resource Definition Online), 728
parameters, 732-739
RDS (Relational Data Services), 1068
reactive governing, RLF (Resource Limit Facility), 1144, 1150
reactive resource governing, 597
read engines, 49
read-only systems, RI (referential integrity), 296
reading data, 780
REAL data type, 244
REAL function, 151, 244
Real Time Statistics (RTS). See RTS (Real Time Statistics)
REASON column (DSN_STATEMENT_TABLE), 1000
rebalancing partitions, 367-368
REBIND command, 1014-1018
REBIND PACKAGE command, 1360
REBIND PLAN command, 1360
REBIND TRIGGER PACKAGE command, 1360
rebinding, 1014-1016
best practices, 1016-1018
gathering statistics, 1019-1020
packages, 625
periodic maintenance, 1015
regular maintenance, 1015
reviewing access paths, 1018-1019
system maintenance, 1015-1016
REBUILD INDEX JCL listing (33.10), 1233
REBUILD INDEX utility, 1232-1235
record identifier (RID), 50
record trace reports, 959
RECOVER INDEXSPACE JCL listing (33.9), 1228
RECOVER INDOUBT command, 1356
RECOVER utility, 1165, 1224-1226, 1229-1232
phases, 1228
recovering table spaces, 1226-1227
Recoverable Resource Manager Services Attach Facility (RRSAF). See RRSAF (Recoverable Resource Manager Services Attach Facility)
recovery contingency planning, 1376-1377, 1390-1392
determining and managing risk, 1377-1379
DSN1COPY strategy, 1384-1385
environmental considerations, 1388-1390
FlashCopy strategy, 1385-1387
Scalpel strategy, 1381-1384
Sledgehammer strategy, 1380-1381
technologies, 1387-1388
coupling facility, 786
data sharing, 784
disaster, 1379-1380
disasters, classes, 1378
recovery log extractor
utility, 1330
recovery management and
assistance tools, 1413-1414
RECOVER_INDEX utility,
1328
RECOVER_TABLESPACE
utility, 1225-1226
recursion, common table
expressions (CTEs),
111-115
Redbook site, 698
reducing joins, 99
redundant data,
denormalization, 284
REFERENCES privilege, 460
referential constraints,
291-294
referential integrity (RI),
290-292, 1136-1137
avoiding, 295-296
check constraints,
297-300
semantics, 299
implementation
restrictions, 296
checking, CHECK_DATA
utility, 1177
informational
constraints, 296
programmatic, 295
referential constraints,
291-294
referential sets, 294-295
self-referencing
constraints, 296
triggers, supplementing,
390-391
referential sets, 294-295
REONLY option (SCOPE
parameter), 1181
reformulating SQL, 71-73
refreshable options, MQTs
(Materialized Query
Tables), 1524
registers, special, 82-83
regular maintenance,
rebinding, 1015
regulatory compliance, 478
Relational Data Services
(RDS), 50, 1068
relational database
management systems
(RDBMSs), 4, 58
relational division, tables,
31-32
Relational Resource
Adapters (RRAs), 693
relationships, DB2 Catalog,
883-885
releasing connections, 1462
RELOAD phase (LOAD
utility), 1243
RELOAD phase (REORG
TABLESPACE utility), 1274
REMARKS column
(PLAN_TABLE), 988, 1006
REMARKS traces, 971
remote requests, 1460
remote unit of work (RUW),
1460
DRDA, 1454-1456
RENAME statement, 278
renaming
columns
arithmetic expressions, 80
views, 306-307
indexes, 365
tables, 278
REOPT
changing access paths,
88-89
dynamic SQL, 592-593
REOPT column (DSN_USER-
QUERY_TABLE), 1133
reoptimization, run-time, 52
reordered format, rows, 254
Reordered Row Format
(RRF), 799, 1081
REORG, 1014, 1016
REORG JCL (Nonrestartable)
listing (34.5), 1267-1268
REORG JCL (Restartable)
listing (34.4), 1266-1267
REORG parameter
(DSN1COMP utility), 1321
REORG utility, 1166,
1265-1272, 1283-1288
gathering inline statistics,
1278-1279
job streams, 1272-1273
online reorganization,
1279-1283
phases, 1273-1275
reorganization frequency, 1268-1269
rerun/restart procedures, 1275-1278
RTS (Real Time Statistics), 1269-1272
SHRLEVEL parameter, 1279
reorganizing table spaces, 1018
REORGAPPENDINSERT column (SYSIBM.SYSINDEXSPACESTATS), 1051
REORGCLUSTERSENS column (SYSIBM.SYSTABLESPACESTATS), 1050
REORGDELETES column (SYSIBM.SYSINDEXSPACESTATS), 1051
REORGDELETES column (SYSIBM.SYSTABLESPACESTATS), 1049
REORGDISORGLOB column (SYSIBM.SYSTABLESPACESTATS), 1049
REORGHASHACCESS column (SYSIBM.SYSTABLESPACESTATS), 1050
REORGINDEXACCESS column (SYSIBM.SYSINDEXSPACESTATS), 1052
REORGINSETS column (SYSIBM.SYSINDEXSPACESTATS), 1051
REORGINSETS column (SYSIBM.SYSTABLESPACESTATS), 1049
REORGGLASTTIME column (SYSIBM.SYSINDEXSPACESTATS), 1051
REORGGLASTTIME column (SYSIBM.SYSTABLESPACESTATS), 1049
REORGLEAFFAR column (SYSIBM.SYSINDEXSPACESTATS), 1052
REORGLEAFNDEFAR column (SYSIBM.SYSINDEXSPACESTATS), 1051
REORGMASSDELETE column (SYSIBM.SYSINDEXSPACESTATS), 1051
REORGMASSDELETE column (SYSIBM.SYSTABLESPACESTATS), 1049
REORGNEARINDREF column (SYSIBM.SYSTABLESPACESTATS), 1049
REORGNUMLEVELS column (SYSIBM.SYSINDEXSPACESTATS), 1052
REORGREPLACE column (SYSIBM.SYSINDEXSPACESTATS), 1051
populating data warehouses, 1514
REPAR Locate JCL listing (32.7), 1194
REPAIR phase (REPAIR utility), 1192
REPAIR SET JCL listing (32.8), 1196-1197
REPAIR utility, 1191, 1198, 1235
REPAIR_DBDB utility, 1192-1193
REPAIR_LOCATE utility, 1193-1195
REPAIR_SET utility, 1196-1198
REPEAT function, 151
replicating, 1498
REPORT option (AUXERROR), 1181
REPORT phase (LOAD utility), 1244
REPORT RECOVERY JCL listing (33.11), 1236
REPORT TABLESPACESET utility, 427, 1199
REPORT TABLESPACESET JCL listing (32.9), 1199
REPORT utility, 1166, 1198-1200
REPORTCK phase (CHECK_DATA), 1183
reports, 968
  batch, 928, 968
  formatted, creating, 1047
  online, 969-970
  performance monitoring, 940-943
    accounting, 943-956
    audit, 956-957
    explain, 957
    I/O activity, 957-959
    locking, 959
    record trace, 959
    SQL trace, 959-960
    statistics, 960-966
    strategies, 967-970
    system parameters, 966-967
  REPORT_RECOVERY utility, 1235-1236
  REPORT_TABLESPACESET utility, 1199-1200
  repositories, 1414-1415
  requirements
    data sharing, 774-775
    disaster recovery, 1379
  rerun procedures
    LOAD utility, 1246-1250
    REORG, 1275-1278
  reserved words, SQL, 501-504
  Resource Limit Facility (RLF), 1143, 1464
    defining RLSTs, 1146-1147
    limiting middleware resource usage, 1147-1149
  predictive governing, 1144, 1150
  reactive governing, 1144, 1150
  resource limit specification tables (RLSTs), 1143, 1149
    defining, 1146-1147
  resource translation table (RTT), 756
  resources, 1423-1426
    availability, 769
    blogs, 1428-1429
    governing
      limiting middleware resource usage, 1147-1149
      Resource Limit Facility (RLF), 1143-1150
      industry periodicals, 1427-1428
      Internet, 696
      mailing lists, 696-697, 1429
      status, displaying, 977-979
      webinars, 1429
  response time, distributed, analyzing, 1493
  responsibilities, 1430-1432
  restart capabilities, IMS/TM, 759
  restart procedures
    LOAD utility, 1246-1250
    REORG, 1275-1279
  restartable programs, creating, 543-546
  restarting UNLOAD utility, 1261-1262
  RESTORE_SYSTEM utility, 1238-1239, 1387
  result sets, stored
    procedures, returning, 664-666
  Results of the DISPLAY GROUP Command listing (19.1), 786
  retrieved data, SQL, grouping and sorting, 29-30
  retrieving data, multiple tables, 91-110
  reusability
    stored procedures, 676
    UDFs (user-defined functions), 184
  revoking privileges, 449-450
  REXX, application
    development, 563-565
  REXX EXEC, program preparation, 618-619
  RI (referential integrity), 290-292, 1136-1137
    referential constraints, 291-294
    referential sets, 294-295
  RID (record identifiers), 50, 151, 808
    pools, 1067
  RIGHT function, 152
  RIGHT OUTER JOIN, 28, 103
  risks, determining and managing, 1377-1379
RLF (Resource Limit Facility), 1143, 1464
  defining RLSTs, 1146-1147
  limiting middleware resource usage, 1147-1149
  predictive governing, 1144, 1150
  reactive governing, 1144, 1150
RLFASUERR column (RLST), 1146
RLFASUWARN column (RLST), 1147
RLFBIND column (RLST), 1146
RLFCOLLN column (RLST), 1146
RLFFUNC column (RLST), 1146
RLFPKG column (RLST), 1146
RLF_CATEGORY_B column (RLST), 1147
RLSTs (resource limit specification tables), 1143, 1146-1149
ROLE traces, 972
roles, 471-473, 1430-1432
rotating partitions, 366-367
ROUND function, 152
ROUND TIME STAMP function, 152
ROUTINE_ID column (PLAN_TABLE), 991
ROW CHANGE TIME STAMP column, 269-270
row expressions, 107-108
row level granularity,
  LBAC (label-based access control), 462-464
ROWID columns, 403
ROWID data type, 39, 245
ROWID function, 152, 550
ROWLIMIT parameter (DSN1COMP utility), 1321
rows, 244-245
  access control, 466-469
  avoiding duplicate, 257
  defaults, 261-262
  direct access, 550, 831-832
  locked, skipping, 909-911
  locks, 899-901
    BIND parameters, 893-895
  minimum required, 58-59
  multiple
    retrieving, 535
    updating, 126
  reordered format, 254
  ROWID data type, 245-246
  sequence objects, 246-251
  tables, counting, 137
  rowset positioning cursors, 518-519
  data modification, 519-520
  inserting multiple rows, 520
RPAD function, 152
RRAs (Relational Resource Adapters), 693
RRF (Reordered Row Format), 799, 1081
RRSAF (Recoverable Resource Manager Services Attach Facility), 767-768
  batch processing, 771
  feasibility, 770-771
  resource availability, 769
RTRIM function, 152
RTS (Real Time Statistics), 53, 1048, 1053-1058, 1371
  DSNACCOX, 1054
  examining, 1018
  externalization, 1053-1054
  REORG utility, 1269-1272
  tables, 1048-1052
  versus RUNSTATS, 1302
RTT (resource translation table), IMS, 756
RUN command, 1360
Run option (TSO), 720
run-time reoptimization, 52
running programs, 608
Running a DB2 Program in TSO Batch listing (15.1), 609
RUNSTATS INDEX JCL listing (34.5), 1298
RUNSTATS INDEX utility, 1166, 1298, 1301
RUNSTATS phase (RUNSTATS utility), 1298
RUNSTATS TABLESPACE JCL listing (35.3), 1296-1297
RUNSTATS TABLESPACE utility, 1166, 1296-1297, 1301
RUNSTATS utility, 426, 574, 1014-1019, 1056-1057, 1090, 1295-1310
data sets, 1298-1299
histogram statistics, 1301
profiles, 1302-1303
updating Catalog tables, 1299-1300
versus RTS (Real Time Statistics), 1302
runtime environment, dynamic SQL, 574
RUW (remote unit of work), 1460
DRDA, 1454-1456

S
S-locks, 914
SAFEPOINT statements, 542-543
Sample COBOL Error-Handling Paragraph listing (11.1), 497-499
Sample Program Preparation Procedure listing (15.2), 616-618
Sample programs, 1332
dynamic SQL processor, 1332-1334
dynamic SQL update program, 1334-1336
dynamic SQL update program, 1299-1300
Sample Results of DISPLAY BUFFERPOOL listing (37.2), 1346
Sample Results of DISPLAY LOG listing (37.3), 1347
sample unload program, 1336-1339
Sarbanes-Oxley Act, 478, 1398-1399
sargable processing, 50
scalar fullselect, 108-109
scalar functions, 34, 141
ABSVAL, 141
ACOS, 141
ADD MONTHS, 141
ASCII, 142
ASCII CHAR, 142
ASCII STR, 142
ASIN, 142
ATAN, 142
ATAN2, 142
ATANH, 142
BIGNIT, 142
BINARY, 142
BLOB, 142
CCSID ENCODING, 142
CEILING, 142
CHAR, 142
CHARACTER LENGTH, 142
CLOB, 143
COALESCE, 143
COLLATION KEY, 143
COMPARE DECFLOAT, 143
CONCAT, 143
CONTAINS, 143
COS, 143
COSH, 143
DATE, 143
DAY, 143
DAYOFMONTH, 143
DAYOFWEEK, 143
DAYOFWEEK ISO, 143
DAYOFYEAR, 144
DAYS, 144
DBCLOB, 144
DECFLOAT, 144
DECFLOAT SORTKEY, 144
DECIMAL, 144
DECRYPT BINARY, 144
DECRYPT BIT, 144
DECRYPT CHAR, 144
DECRYPT DB, 144
DEGREES, 144
difference, 144
DIGITS, 144
DOUBLE, 144
DSN XMLVALIDATE, 145
EBCDIC CHR, 145
EBCDIC STR, 145
ENCRYPT STR, 145
EXP, 145
EXTRACT, 145
FLOAT, 144-145
FLOOR, 145
GENERATE UNIQUE, 145
GETHINT, 145
GETVARIABLE, 145
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPHIC</td>
<td>145</td>
</tr>
<tr>
<td>GREATEST</td>
<td>146</td>
</tr>
<tr>
<td>HEX</td>
<td>146</td>
</tr>
<tr>
<td>HOUR</td>
<td>146</td>
</tr>
<tr>
<td>IDENTITY VAL LOCAL()</td>
<td>146</td>
</tr>
<tr>
<td>INFULL</td>
<td>146</td>
</tr>
<tr>
<td>INSERT</td>
<td>146</td>
</tr>
<tr>
<td>INTEGER</td>
<td>147</td>
</tr>
<tr>
<td>JULIAN DAY</td>
<td>147</td>
</tr>
<tr>
<td>LAST DAY</td>
<td>147</td>
</tr>
<tr>
<td>LEAST</td>
<td>147</td>
</tr>
<tr>
<td>LEFT</td>
<td>147</td>
</tr>
<tr>
<td>LENGTH</td>
<td>147</td>
</tr>
<tr>
<td>LOCATE</td>
<td>147-148</td>
</tr>
<tr>
<td>LOCATE IN STRING</td>
<td>148</td>
</tr>
<tr>
<td>LOG10</td>
<td>148</td>
</tr>
<tr>
<td>LOWER</td>
<td>148</td>
</tr>
<tr>
<td>LPAD</td>
<td>148</td>
</tr>
<tr>
<td>LTRIM</td>
<td>148</td>
</tr>
<tr>
<td>MAX</td>
<td>148</td>
</tr>
<tr>
<td>MICROSECOND</td>
<td>148</td>
</tr>
<tr>
<td>MIDNIGHT SECONDS</td>
<td>148</td>
</tr>
<tr>
<td>MIN</td>
<td>148</td>
</tr>
<tr>
<td>MINUTE</td>
<td>149</td>
</tr>
<tr>
<td>MOD</td>
<td>149</td>
</tr>
<tr>
<td>MONTH</td>
<td>149</td>
</tr>
<tr>
<td>MONTHS BETWEEN</td>
<td>149</td>
</tr>
<tr>
<td>MQSeries</td>
<td>159-161</td>
</tr>
<tr>
<td>MULTIPLY ALT</td>
<td>149</td>
</tr>
<tr>
<td>NEXT DAY</td>
<td>149</td>
</tr>
<tr>
<td>NORMALIZE DECFLOAT</td>
<td>149</td>
</tr>
<tr>
<td>NORMALIZE STRING</td>
<td>149</td>
</tr>
<tr>
<td>NULLIF</td>
<td>149</td>
</tr>
<tr>
<td>OVERLAY</td>
<td>149</td>
</tr>
<tr>
<td>POSITION</td>
<td>150</td>
</tr>
<tr>
<td>POSSTR</td>
<td>150</td>
</tr>
<tr>
<td>POWER</td>
<td>150</td>
</tr>
<tr>
<td>QUANTIZE</td>
<td>150</td>
</tr>
<tr>
<td>QUARTER</td>
<td>150</td>
</tr>
<tr>
<td>RADIANs</td>
<td>150</td>
</tr>
<tr>
<td>RAISE ERROR</td>
<td>150</td>
</tr>
<tr>
<td>RAND</td>
<td>151</td>
</tr>
<tr>
<td>REAL</td>
<td>151</td>
</tr>
<tr>
<td>REPEAT</td>
<td>151</td>
</tr>
<tr>
<td>REPLACE</td>
<td>151</td>
</tr>
<tr>
<td>RID</td>
<td>151</td>
</tr>
<tr>
<td>RIGHT</td>
<td>152</td>
</tr>
<tr>
<td>ROUND</td>
<td>152</td>
</tr>
<tr>
<td>ROUND TIMESTAMP</td>
<td>152</td>
</tr>
<tr>
<td>ROWID</td>
<td>152</td>
</tr>
<tr>
<td>RPAD</td>
<td>152</td>
</tr>
<tr>
<td>RTRIM</td>
<td>152</td>
</tr>
<tr>
<td>SCORE</td>
<td>152</td>
</tr>
<tr>
<td>SECOND</td>
<td>152</td>
</tr>
<tr>
<td>SIGN</td>
<td>153</td>
</tr>
<tr>
<td>SIN</td>
<td>153</td>
</tr>
<tr>
<td>SINH</td>
<td>153</td>
</tr>
<tr>
<td>SMALLINT</td>
<td>153</td>
</tr>
<tr>
<td>SOAPHTTP</td>
<td>153</td>
</tr>
<tr>
<td>SOAPHTTPV</td>
<td>153</td>
</tr>
<tr>
<td>SOUNDEX</td>
<td>153</td>
</tr>
<tr>
<td>SPACE</td>
<td>153</td>
</tr>
<tr>
<td>SQRT</td>
<td>153</td>
</tr>
<tr>
<td>STRIP</td>
<td>153</td>
</tr>
<tr>
<td>SUBSTR</td>
<td>154</td>
</tr>
<tr>
<td>SUBSTRING</td>
<td>154</td>
</tr>
<tr>
<td>TAN</td>
<td>154</td>
</tr>
<tr>
<td>TANH</td>
<td>154</td>
</tr>
<tr>
<td>TIME</td>
<td>154</td>
</tr>
<tr>
<td>TIMESTAMP</td>
<td>154</td>
</tr>
<tr>
<td>TIMESTAMP FORMAT</td>
<td>155</td>
</tr>
<tr>
<td>TIMESTAMP ISO</td>
<td>155</td>
</tr>
<tr>
<td>TIMESTAMP TZ</td>
<td>155</td>
</tr>
<tr>
<td>TIMESTAMPADD</td>
<td>154</td>
</tr>
<tr>
<td>TIMESTAMPDIFF</td>
<td>154</td>
</tr>
<tr>
<td>TOTALORDER</td>
<td>155</td>
</tr>
<tr>
<td>TRANSLATE</td>
<td>155-156</td>
</tr>
<tr>
<td>TRUNC TIMESTAMP</td>
<td>156-157</td>
</tr>
<tr>
<td>TRUNCATE</td>
<td>156</td>
</tr>
<tr>
<td>trusted context</td>
<td>158</td>
</tr>
<tr>
<td>UNICODE</td>
<td>157</td>
</tr>
<tr>
<td>UNICODE STR</td>
<td>157</td>
</tr>
<tr>
<td>UPPER</td>
<td>157</td>
</tr>
<tr>
<td>VALUE</td>
<td>157</td>
</tr>
<tr>
<td>VARBINARY</td>
<td>157</td>
</tr>
<tr>
<td>VARCHAR</td>
<td>157</td>
</tr>
<tr>
<td>VARCHAR FORMAT</td>
<td>158</td>
</tr>
<tr>
<td>VARGRAPHIC</td>
<td>158</td>
</tr>
<tr>
<td>versus CAST operation</td>
<td>163</td>
</tr>
<tr>
<td>WEEK</td>
<td>158</td>
</tr>
<tr>
<td>WEEK ISO</td>
<td>158</td>
</tr>
<tr>
<td>WHERE clauses</td>
<td>86</td>
</tr>
<tr>
<td>XML</td>
<td>161-162</td>
</tr>
<tr>
<td>YEAR</td>
<td>158</td>
</tr>
<tr>
<td>SCANS, table spaces</td>
<td>825-831</td>
</tr>
<tr>
<td>SCANTAB phase</td>
<td>1183</td>
</tr>
<tr>
<td>(CHECK_DATA)</td>
<td></td>
</tr>
</tbody>
</table>
Scalpel strategy, backup and recovery, 1381-1384
SCHEMA column (DSN_USERQUERY_TABLE), 1133
SCHEMA privilege class, 450
SCHEMA security class, 40
schema validation, XML, 416
schemas, tables, defining, 276
SCOPE parameter, CHECK_DATA utility, 1180, 1184
SCORE function, 152
scratchpads, UDFs (user-defined functions), 189
screen input, validating, 724
screening
  index, 837-838
  page ranges, 827-828
  predicates, 823
scrollable cursors, 515-518
  ASENSITIVE, 516
  fetching data, 515
  INSENSITIVE, 515-516
  moving within result set, 535
  SENSITIVE, 515-517
SCT02 structure (Directory), 887
SDR (SQL Design Review), 1439
search engines, 702
SEC tools, 1416-1417
SECADM authority, 455
SECADM authorization, 450-451
SECADM group-level authorization, 41
SECOND function, 152
secondary authids, 449
SECQTY, 222-226, 350
SECTNOI column (DSN_STATEMENT_TABLE), 1001
SECTNOI column (PLAN_TABLE), 991
security, 482-484
  access control
    columns, 466-469
    rows, 466-469
  authorization, 448, 453-461
  IDs, 448-449
  PUBLIC access, 452-453
  repeating, 453
  SECADM, 450-451
data definition control, 471
database, 476-481
distributed, 1501-1502
database, 476-481
distributed, 1501-1502
database, 476-481
distributed, 1501-1502
database, 476-481
distributed, 1501-1502
encryption, 473-476
external, 481
Kerberos, 482-483
label-based access control (LBAC), 461-466
  referential integrity, 465
  restrictions, 465-466
  row level granularity, 462-464
  MLS (multilevel security), 461-466
  privileges, 448
  granting and revoking, 449-450
  group, 451-452
  roles, 471-473
  session variables, 469-471
  special registers, 483-484
  trusted context, 471-473
  views, 303
Security area (Catalog), 881
security controls, data structures, 40-42
security guide, 1434-1435
SECURITY parameter, UDFs (user-defined functions), 188-189
security tools, 1416-1417
segmented table spaces, 205-206
SEGSIZE parameter, table space, 231
SELECT authority, 453
SELECT command
  avoiding, 59
  minimum number of rows and columns required, 58-59
SELECT statement, 14-15, 130-132, 1527, 1532
cursors, 521-525
  OPTIMIZE FOR n ROWS clause, 1123-1124
SELECT statements, 213, 510
  aggregate functions, 135
  joining tables, 15-20
  singleton, 521-522
  subqueries, 20-23
selection operation, SQL, 13-14
self-referencing constraints, 296
semantics, 299
SENSITIVE scrollable cursors, 515-517
SEQCOPY phase (COPY), 1205
sequence objects, 246-251, 549
SEQUENCE objects, parameters, 249-250
SEQUENCE privilege class, 450
SEQUENCE security class, 40
sequencing columns, 253-254
sequential detection, 49
sequential prefetch performance feature, 49, 825, 828-831
sequential steal parameter (buffer pool), 1102
serializing data, XML, 415
server location aliases, 1472
service level agreements (SLAs), 929
service level management (SLM), 929
Service Request Blocks (SRBs), 814
servlets, Java, 555-557
session variables, 469-471
SET CURRENT PACKAGE PATH, UDFs (user-defined functions), 184
set operations, 23, 91
EXCEPT, 26
INTERSECT, 26
UDTs (user-defined data types), 198-199
union, 23-26
set-at-a-time processing, SQL, 7-8, 10-11
sets, referential, 294-295
shared objects, 776
sharing cached statements, 591-592
SHRLEVEL parameter, REORG, 1279
SIGN function, 153
simulating host variables, 533-534
SIN function, 153
single table access path strategies, 824-845
single-table table spaces, 235
singleton SELECT statements, 65-66, 521-522
Sinh function, 153
SJTABLES column (DSN_USERQUERY_TABLE), 1133
SKCTs (skeleton cursor tables), 202, 887
skip sequential prefetch, 841
skipping
lock rows, 909-911
locked data, 133-134
SLAs (service level agreements), 929
Sledgehammer strategy, backup and recovery, 1380-1381
sliding scale extents, 226
SLM (service level management), 929
SMALLINT data type, 38, 153, 244
Smart Analytics System (IBM), 1522
snapshots, 1498-1499
populating data warehouses, 1514
SOAPHTTPC function, 153
SOAPHTTPV function, 153
sort I/O, 1081-1082
SORT phase
CHECK_DATA, 1183
LOAD utility, 1243
REBUILD_INDEX utility, 1234
REORG TABLESPACE utility, 1274
sort pools, 1067-1069
SORTBLD phase (LOAD utility), 1244
SORTBLD phase
(REBUILD_INDEX utility), 1234
SORTC_GROUP column (PLAN_TABLE), 988
SORTC_JOIN column (PLAN_TABLE), 988
SORTC_ORDERBY column (PLAN_TABLE), 988
SORTC_PGROUP_ID column (PLAN_TABLE), 989
SORTC_UNIQ column (PLAN_TABLE), 988

SORTC_UNIQ column (PLAN_TABLE), 988

SORTN_GROUPBY column (PLAN_TABLE), 987

SORTN_JOIN column (PLAN_TABLE), 987

SORTN_ORDERBY column (PLAN_TABLE), 987

SORTN_PGROUP_ID column (PLAN_TABLE), 989

SORTN_UNIQ column (PLAN_TABLE), 987

SOUNDEX function, 153

source program preparation objects, 631

sourced UDFs, 168, 178

SPACE column (SYSIBM.SYSINDEXSPACESTATS), 1051

SPACE column (SYSIBM.SYSTABLESPACESTATS), 1050

SPACE function, 153

space management tools, 1404

spam, 701

sparse index access, 844-845

special registers, 82-83, 483-484

  CURRENT PACKAGE PATH, 629

specialty processors, 812-815

split tables, denormalization, 282-283

SPSS (Statistical Package for the Social Science), 1522

SPT01 structure (Directory), 887

SPUFI command, 1360

  TSO (Time-Sharing Options), 712-722

SQL (Structured Query Language), 4-5, 13

  access guidelines, 58, 82-90

  ad hoc, 12

  application development, 565-566

  CASE expressions, 32-34

  code appropriate existence checking, 96-98

  coding, 552, 554

  data processing, 11

  data structures, 37-38

  security controls, 40-42

  DCL (Data Control Language), 11

  DDL (Data Definition Language), 11

  DELETE statement, 37

  DML (Data Manipulation Language), 11

  dynamic, 44-45, 567-569, 574, 594, 597-600

  bind-time authorization checking, 596

  caching prepared statements, 596

  classes, 576-589, 594

  data uniformity, 571-572

  host variables, 574-575

  KEEP_DYNAMIC parameter, 591

  making more static, 589-593

  monitoring, 575-576

  parallelism, 596

  parameter markers, 595-596

  performance sensitivity, 571

  program examples, 576

  range predicates, 572

  REOPT parameter, 592-593

  repetitions execution, 573

  RUNSTATS, 574

  runtime environment, 574

  statements, 594

  tuning, 575-576

  versus static, 569-576

  embedded statements, 487-490

  delimiting, 490

  GET DIAGNOSTICS, 494, 497

  pretesting, 61

  SQLCA (SQL Communication Area), 491-493

  SQLCODE, 493

  SQLSTATE, 493

  WHENEVER, 500-501
existential, 12
flexibility, 5-6
functions, 34
HAVING clause, 30-31
INSERT statement, 35-36
joins, 15-23
  Cartesian products, 19-20
  outer, 26-29
long accounting reports, activity, 949-950
modifying data, 35-37
nature of, 7
non-relational data
  accessing, 274
  joining, 534-535
performance factors, 45-55
procedural, 678
  benefits, 682
  drawbacks, 682-683
  IBM, 678-680
procedural SQL, 6
projection operation, 13-14
queries
  analysis tools, 64-65
  parallelism, 52
  subqueries, 20-23
  tweaking, 87-88
reformulating, 71-73
reserved words, 501-503
  ANSI, 504
  IBM, 503-504
retrieved data, grouping and sorting, 29-30
scalar functions, 178-179
SELECT statement, 14-15
selection operation, 13-14
set-at-a-time processing, 7-11
set operations, 23-26
Stage 1, achieving, 71-72
statement types, 11
statements, 90-91
  coding simply, 60
  isolation level, 535-536
  performance potential, 61
static, 42, 44, 567
  making more dynamic, 593-594
  packages, 1465
stored procedures, 672-674, 680-681
tables
  joining, 19-20, 531-533
  relational division, 31-32
Top Ten problem, 93-95
types, 11-12
UDFs (user-defined functions), 186-187
UPDATE statement, 36
versions, 11
WHERE clause, 30-31
SQL DBMSs, 4
SQL Design Review (SDR), 1439
SQL performance guide, 1435
SQL scalar UDFs, 168
SQL statements, 821
  access paths, 980, 993-1002
  block style, 552-554
  embedded, data modification, 525-527
  host variables, 504-506, 509-511
  host structures, 506
  null indicators, 507-509
  issuing, 1173-1175
  tweaking, 1121-1123
SQL table functions, 179-180
SQL table UDFs, 168
SQL trace reports, 959-960
SQLADM group-level authorization, 41
SQLADM privilege, 452
SQLCA (SQL Communication Area), 491-493
SQLCODE statement, 493
SQLDA, 582-584
SQLDA listing (14.5), 582-583
SQLJ versus Java Database Connectivity (JDBC), 557-559
SQLJ Code Fragment listing (11.7), 558
SQLSTATE statement, 493
SQRT function, 153
SRBs (Service Request Blocks), 814
SRM (Systems Resource Manager), 1084
SSAS (system services), 809
SSM parameters, 753
Stage 1
achieving, 71-72
predicates, 69-71
stage processing, 50
stand-alone utilities, 1314-1315
  DSN1CHKR, 1318-1319
  DSN1COMP, 1320-1322
  DSN1COPY, 1322-1328
  DSN1LOGP, 1330
  DSN1PRNT, 1330-1332
  DSN1SMP, 1328-1329
  DSNJLGF, 1315-1316
  DSNJU003, 1316-1317
  DSNJU004, 1317-1318
standardized abbreviations, 252
standardizing error handling, 497-499
standards, 1429
  application development guide, 1434
data administration, 1432-1433
database administration guide, 1433
design reviews, 1436-1440
DRDA, 1451-1452
naming conventions, 1435-1436
query tool guide, 1435
responsibilities, 1430-1432
roles, 1430-1432
security guide, 1434-1435
SQL performance guide, 1435
system administration guide, 1433-1434
vendor tool guides, 1435
star joins, 854-858
star schema, data warehouses, 1511-1513
Star Schema: The Complete Reference, 1513
STARJOIN column
  (DSN_USERQUERY_TABLE), 1133
START DATABASE command, 1356
START RLIMIT command, 1357
START TRACE command, 1357
starting UDFs, 182-183
statement types, SQL, 11
  statements
    ALTER TABLE, 1532
cached, sharing, 591-592
COMMENT ON, 277
COMMIT, 539-541, 548, 788
CREATE, 1524
CREATE FUNCTION, 606
CREATE INDEX, 330
CREATE TRIGGER, 606
DDL, 322
DECLARE CURSOR, 523
DELETE, 37, 127, 548, 577
DSC (dynamic statement cache), 1495
dynamic, caching, 590-591
dynamic SQL, 594
embedded SQL, 487-490
data modification, 525-527
delimiting, 490
GET DIAGNOSTICS, 494, 497
SQLCA (SQL Communication Area), 491
SQLCODE, 493
SQLSTATE, 493
WHENEVER, 500-501
FETCH, 109-110
INCLUDE, 602
INSERT, 35-36, 130-133, 526
LOCK STABLE, 919
MERGE, 129-132
NOT EXISTS, 91
NOT IN, 91
performance potential, checking, 61
physical data independence, 817-818
RENAME, 278
RUNSTATS, 1019
SAFEPOINT, 542-543
DEL
SELECT, 14-15, 130-132, 135, 213, 1527, 1532
  cursors, 521-525
  singleton, 521-522
SQL, 90-91, 821
  block style, 552-554
  coding simply, 60
  host variables, 504-511
  isolation level, 535-536
  issuing, 1173-1175
  tweaking, 1121-1123
static SQL statements, 42
TEMPLATE, 1167-1171
TIMESTAMP, 549
TRUNCATE, 379, 546-547
UPDATE, 36, 127, 131
VALUES, triggers, 391
\textbf{static SENSITIVE scrollable cursors, 516-517}

\textbf{static SQL, 42-44, 567}
  making more dynamic, 593-594
  packages, 1465
  versus dynamic SQL, 569-576

\textbf{statistics}
  Catalog, 819-821
  changing, 1124-1130
  gathering, 1019-1020
  LOAD utility, 1245
  REORG, 1278-1279
  histogram, 1301
  historical, 53
  non-uniform distribution
  statistics, deleting, 1135-1136
  optimizer, 816
  real-time, 53
  RTS (Real Time Statistics), 1048, 1054-1058
  DSNACCOX, 1054
  externalization, 1053-1054
  tables, 1048-1052
\textbf{statistics reports, 960-966}
  buffer pool general information, 961
  buffer pool read information, 962
  buffer pool write information, 962
  common storage usage, 965
  EDM pool activity information, 965-966
  locking activity information, 964
  log activity information, 963-964
\textbf{statistics trace, 935-936}
\textbf{STATSDELETES column}
  (SYSIBM.SYSINDEXSPACE-STATS), 1052
\textbf{STATSDELETES column}
  (SYSIBM.SYSTABLESPACE-STATS), 1049
\textbf{STATSINSERTS column}
  (SYSIBM.SYSTABLESPACE-STATS), 1052
\textbf{STATSLASTTIME column}
  (SYSIBM.SYSINDEXSPACE-STATS), 1052
\textbf{STATSLASTTIME column}
  (SYSIBM.SYSTABLESPACE-STATS), 1049
\textbf{STATSMASSDELETE column}
  (SYSIBM.SYSINDEXSPACE-STATS), 1052
\textbf{STATSMASSDELETE column}
  (SYSIBM.SYSTABLESPACE-STATS), 1050
\textbf{STATSUPDATES column}
  (SYSIBM.SYSTABLESPACE-STATS), 1050
\textbf{STDDEV function, 140}
\textbf{STMTTOKEN column}
  (PLAN_TABLE), 991
\textbf{STMT_ENCODE column}
  (DSN_STATEMENT_TABLE), 1001
\textbf{STMT_ID column}
  (DSN_STATEMENT_CACHE_TABLE), 1005
\textbf{STMT_TEXT column}
  (DSN_STATEMENT_CACHE_TABLE), 1005
\textbf{STMT_TOKEN column}
  (DSN_STATEMENT_CACHE_TABLE), 1005
\textbf{STMT_TYPE column}
  (DSN_STATEMENT_TABLE), 1000
STOGROUPs, 38, 239
classes, 244
Data Facility Storage Management System (DFSMS), 239-242
disk volumes, 244
high-level qualifiers, 243
SYSDEFLT, 242
user-defined VSAM, 242-243
stopping UDFs, 182-183
storage groups, 201, 239
classes, 244
Data Facility Storage Management System (DFSMS), 239-242
defining useful, 239
disk volumes, 244
high-level qualifiers, 243
SYSDEFLT, 242
user-defined VSAM, 242-243
stored procedures, 656-657, 674-677, 1496
application development, 530
atomic parameters, 675
benefits, 659-661
calling, 672
coding parameters, 662-663
controlling failures, 669-670
creating, 666-668
developing, 661
executing, 670-672
external, 676-677
IBM Data Studio, 687
implementation, 657-659
implementing, 661-666
LE/370, 675
managing, 668-670
native SQL, 672-674
nesting, 663-664, 674
nesting calls, 664
OLTP (Online Transaction Processing), 670
plan, 675
procedural DBA, 683-687
procedural SQL, 678-683
program preparation, 666
returning result sets, 664-666
reusability, 676
SQL, 680-681
subprograms, 674
supported languages, 661
temporary tables, 676
versioning, 673-674
versus triggers, 374
WLM (Work Load Manager), 670-672
stored temporary tables, 274
storing data relationally, 411
STOSPACE JCL listing (35.5), 1311
STOSPACE phase (STOSPACE utility), 1311
STOSPACE utility, 1311-1313
string units, 166
STRIP function, 153
strong types, 191-192
Structured Query Language (SQL). See SQL (Structured Query Language)
structures
host, 533
locks, 913
pages, 797-798
sub-SELECT, 129
subprograms, stored procedures, 674
subqueries, 91
optimization, 869-871
SQL, 20-23
versus joins, 100-101
versus subselects, 20
subselects versus subqueries, 20
SUBSTR function, 154
SUBSTRING function, 154
subsystem availability, data sharing, 785
subsystem IDs, specifying, 741
subsystems, tuning, 1089-1114
buffer pools, 1096-1114
Catalog, 1089-1092
DSNZPARMs, 1092-1096
SUM function, 140
surrogate keys, tables, 258
suspensions, locks, 901-904
SWITCH phase (REORG INDEX utility), 1273
SWITCH phase (REORG TABLESPACE utility), 1274
synchronization rule, views, 311
SYNONYM database objects, 38
synonyms, 201, 313
authorization, 458
columns, 257
functions, 164-165
SYSADM authority, 455, 459-460
SYSADM group-level authorization, 41
SYSAUDITPOLICIES (V10) table (Catalog), 875
SYSAUTOALERTS (V10) table (Catalog), 875
SYSAUTOALERTS_OUT (V10) table (Catalog), 875
SYSAUTORUNS_HIST (V10) table (Catalog), 875
SYSAUTORUNS_HISTOU (V10) table (Catalog), 875
SYSAUTOTIMEMIN (V10) table (Catalog), 875
SYSAUXRELS table (Catalog), 875
SYSCHECKDEP table (Catalog), 875
SYSCHECKS table (Catalog), 875
SYSCHECKS2 table (Catalog), 875
SYSCOLAUTH table (Catalog), 875
SYSCOLDIST table (Catalog), 875
SYSCOLDISTSTATS table (Catalog), 875
SYSCOLDIST_HIST table (Catalog), 875
SYSCOLSTATS table (Catalog), 875
SYSCOLUMNS table (Catalog), 875
SYSCOLUMNS_HIST table (Catalog), 875
SYSCONSTDEP table (Catalog), 875
SYSCONTEXT (V9) table (Catalog), 875
SYSCONTEXTAUTHIDS (V9) table (Catalog), 875
SYSCONTROLS (V10) table (Catalog), 875
SYSCOPY table (Catalog), 876
SYSCONTEXT (V9) table (Catalog), 875
SYSCONTEXTAUTHIDS (V9) table (Catalog), 875
SYSCONTROLS (V10) table (Catalog), 875
SYSCOPY table (Catalog), 876
SYSCONTEXT (V9) table (Catalog), 875
SYSCONTROLS (V10) table (Catalog), 875
SYSCOPY table (Catalog), 876
<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSJARCLASS_SOURCE</td>
<td>(Catalog), 876</td>
<td></td>
</tr>
<tr>
<td>SYSJARCONTENTS</td>
<td>(Catalog), 876</td>
<td></td>
</tr>
<tr>
<td>SYSJARDATA</td>
<td>(Catalog), 876</td>
<td></td>
</tr>
<tr>
<td>SYSJAROBJECTS</td>
<td>(Catalog), 876</td>
<td></td>
</tr>
<tr>
<td>SYSJAVAOPTS</td>
<td>(Catalog), 876</td>
<td></td>
</tr>
<tr>
<td>SYSJAVAPATHS (V9)</td>
<td>(Catalog), 876</td>
<td></td>
</tr>
<tr>
<td>SYSKEYCOLUSE</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSKEYS</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSKEYTARGETS (V9)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSKEYTARGETSTATS (V9)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSKEYTARGETS_HIST (V9)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSKEYTGTDIST (V9)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSKEYTGTDISTSTATS (V9)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSLGRNX structure</td>
<td>(Directory), 888</td>
<td></td>
</tr>
<tr>
<td>SYSLOBSTATS</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSLOBSTATS_HIST</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSOBDSD</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSOBJROLEDEP (V9)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSOPR group-level authorization, 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSPACKAGE</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPACKAUTH</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPACKCOPY (V10)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPACKDEP</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPACKLIST</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPACKSTATMT</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPARMSTHM</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPENDINGDDL (V10)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPENDINGOBJECTS (V10)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPKSYSTEM</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPLAN</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPLOADAUTH</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSPLANDEP</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>Sysplex, 773-774</td>
<td>parallelism, 788</td>
<td></td>
</tr>
<tr>
<td>SYSPLOADDEP</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSQUERY (V10)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSQUERYOPTS (V10)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSQUERYPLAN (V10)</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSTABAUTH</td>
<td>(Catalog), 878</td>
<td></td>
</tr>
<tr>
<td>SYSTABAUTH table (Catalog)</td>
<td>1609</td>
<td></td>
</tr>
<tr>
<td>SYSTHREATS</td>
<td>(Catalog), 877</td>
<td></td>
</tr>
<tr>
<td>SYSTGPGP</td>
<td>(Catalog), 878</td>
<td></td>
</tr>
<tr>
<td>SYSTOAUTH</td>
<td>(Catalog), 878</td>
<td></td>
</tr>
<tr>
<td>SYSTRINGND</td>
<td>(Catalog), 878</td>
<td></td>
</tr>
<tr>
<td>SYSSYNONYMS</td>
<td>(Catalog), 878</td>
<td></td>
</tr>
<tr>
<td>SYSTABAUTH</td>
<td>(Catalog), 878</td>
<td></td>
</tr>
<tr>
<td>SYSTABAUTH table (Catalog)</td>
<td>1609</td>
<td></td>
</tr>
</tbody>
</table>
SYSTABCONST table (Catalog), 878
SYSTABLEPART table (Catalog), 878
SYSTABLEPART_HIST table (Catalog), 878
SYSTABLES table (Catalog), 878
SYSTABLESPACE table (Catalog), 878
SYSTABLESPACESTATS (V9) table (Catalog), 878
SYSTABLES_HIST table (Catalog), 878
SYSTABLES_PROFILES (V10) table (Catalog), 878
SYSTABLES_PROFILES_TEXT (V10) table (Catalog), 878
SYSTABLESTATS table (Catalog), 878
SYSTABLESTATS_HIST table (Catalog), 878
SYSTRIGGERS table (Catalog), 878
SYSTRIGGERS_STMT (V10) table (Catalog), 878
SYSUSERAUTH table (Catalog), 878
SYSUTILX structure (Directory), 887
SYSVIEWDEP table (Catalog), 878
SYSVIEWS table (Catalog), 878
SYSVIEWS_STMT table (Catalog), 878
SYSVIEWS_TREE table (Catalog), 879
SYSVOLUMES table (Catalog), 879
SYSXMLRELS (V9) table (Catalog), 879
SYSXMLSTRINGS (V9) table (Catalog), 879
SYSXMLTYPMOD (V9) table (Catalog), 879
SYSXMLTYPMSCHEMA (V9) table (Catalog), 879

system time, 430
SYSTEM TIME tables, implementing, 437-438
system-directed data access, 1463
system-level changes, 57
Systems Resource Manager (SRM), 1084
SYSTRIGGERS table (Catalog), 878
SYSTRIGGERS_STMT (V10) table (Catalog), 878
SYSUSERAUTH table (Catalog), 878
SYSUTILX structure (Directory), 887
SYSVIEWDEP table (Catalog), 878
SYSVIEWS table (Catalog), 878
SYSVIEWS_STMT table (Catalog), 878
SYSVIEWS_TREE table (Catalog), 879
SYSVOLUMES table (Catalog), 879
SYSXMLRELS (V9) table (Catalog), 879
SYSXMLSTRINGS (V9) table (Catalog), 879
SYSXMLTYPMOD (V9) table (Catalog), 879
SYSXMLTYPMSCHEMA (V9) table (Catalog), 879

T

table altering tools, 1396-1398
TABLE database objects, 38
table editors, 1405-1406
table expressions, 105-106
  improving performance, 106-107
  versus views, 107
table functions, 159
TABLE privilege class, 450
table range columns, code predicates, 68
TABLE security class, 40
table space type, online schema
table spaces, 200, 204-205
copying, 1203-1204
data compression, 231-233
data pages, 799-801
definitions, 237
DSN1COMP utility, parameters, 1321
implicit, avoiding, 278
LOBs (large objects), 215-216
  locks, 916
locks, 895-897
  BIND parameters, 892-893
multi-table, 235-237
explicitly declaring, 490
expressions, 91
fragmentation, 1497-1498
hash spaces, 338-339
hash-organized, creating, 339-341, 347
in-memory table caches, 858-859
indexing, 344
INTEGER, 264-265
ISPF, 724-725
joining, 15-20, 51,
531-533
loading, 1240-1243
locks, 897-898
Materialized Query Tables
(MQTs), 53, 1522-1523,
1527, 1532-1533
attribute copy options,
1526
automatic query
rewrite, 1528-1532
benefits, 1523
converting into,
1527-1528
creating, 1523-1524
population and
maintenance, 1528
query optimization
options, 1524-1526
refreshable options,
1524
mirror, denormalization,
282
multiple, retrieving data
from, 91-110
parameters, 266-270
partitions
adding to, 365-366
rotating, 366-367
PLAN_TABLE, 62
pre-joined,
denormalization, 281
primary keys, 258
renaming, 278
report, denormalization,
282
RLSTs (resource limit
specification tables),
1143, 1147-1149
defining, 1146-1147
rows, 244-245
counting, 137
defaults, 261-262
direct access, 831-832
duplicating, 257
reordered format, 254
ROWID data type,
245-246
sequence objects,
246-251
RTS (Real Time Statistics),
1048-1052
RTT (resource translation
table), 756
scans, 825-831
schema, defining and
duplicating, 275-276
skeleton package tables
(SKPTs), 202
split, denormalization,
282-283
SQL, relational division,
31-32
surrogate keys, 258
synonyms, 313
SYSTEM TIME,
implementing, 437-438
temporal, time-based
transaction data, 266
temporary, 270, 274
accessing non-
relational data, 274
benefits, 270
creating, 271
declared, 271-273
stored, 274
stored procedures, 676
updating, RUNSTATS utility, 1299-1300
views, 302-304, 307-313
data derivation, 303
mimicing domain support, 304-306
non-updatable, 312
renaming columns, 306-307
restrictions, 312
security, 303
specifying column names, 312
synchronization rule, 311
usage rule, 303
XML data, altering to contain, 416
TABLESPACE database objects, 38
TABLE_DCCSID column (PLAN_TABLE), 991
TABLE_ENCODE column (PLAN_TABLE), 991
TABLE_MCCSID column (PLAN_TABLE), 991
TABLE_SCCSID column (PLAN_TABLE), 991
TABLE_TYPE column (PLAN_TABLE), 991
TABNO column (PLAN_TABLE), 987
TAN function, 154
TANH function, 154
Task Control Blocks (TCBs), 814
tasks, procedural DBA, 684-687
TCBs (Task Control Blocks), 814
TCP/IP, native support, 1472
teleprocessing, tuning, 1087-1088
TEMPLATE control statement, 1370
TEMPLATE statement, 1167-1171
TEMPLATE utility, 1159-1160
templates, UDFs (user-defined functions), 185-186
temporal data, 446-447
business time, 430
support, 430-446
system time, 430
temporal tables, time-based transaction data, 266
temporary tables, 270, 274
benefits, 270
creating, 271
declared, 271-273
non-relational data, accessing, 274
stored, 274
stored procedures, 676
Terminal Monitor Program (TMP), 725
TERMINATE UTILITY command, 1358
termination, UNLOAD utility, 1261
testing trigger logic, 389
third-generation languages (3GLs), 486
third-party tools
auditing, 1399-1400
Catalog and analysis, 1400-1401
client/server, 1402
compression, 1401-1402
data movement, 1406
database analysis tools, 1402-1403
database archiving tools, 1398
database modeling and design tools, 1403-1404
disk and space management, 1404
extract/transformation/load tools, 1406
fourth-generation languages, 1419-1420
integrity tools, 1406
Internet enabling, 1408
miscellaneous, 1407
object migration tools, 1407
operational support, 1408
PC-based emulation, 1408
performance, 1411
performance monitors, 1410-1411
plan and package analysis, 1409-1410
programming and development, 1411-1412
QMF, 1412
query, 1412-1413
recovery management and assistance, 1413-1414
repositories, 1414-1415
security, 1416-1417
table altering tools, 1396-1398
table editors, 1405-1406
utility enhancement, 1417, 1419
vendors, 699, 1420-1422
thread operation attributes, DB2ENTRY parameter (RDO), 737-739
thread selection attributes, DB2ENTRY parameter (RDO), 737
threads, 705
CAF (Call Attach Facility), 764-766
CICS, 732
DBATs (database access threads), inactive, 1469
IMS/TM, 756-757
specifying, transactions, 743-744
three-part name support, DRDA, 1463-1464
TIME data type, 39, 119-120, 245
TIME function, 154
time zones, non-standard dates, 121-122
time-based transaction data, temporal tables, 266
Time-Sharing Option (TSO). See TSO (Time-Sharing Option)
timeouts, locks, 901-904
TIMESTAMP, 119-120
TIMESTAMP columns, 259-260, 988
TIMESTAMP data type, 39, 245
TIMESTAMP FORMAT function, 155
TIMESTAMP function, 154
TIMESTAMP ISO function, 155
TIMESTAMP statement, 549
TIMESTAMP TZ function, 155
TIMESTAMPADD function, 154
TIMESTAMPDIFF function, 154
tools, 1394, 1396
auditing, 1399-1400
Catalog and analysis query, 1400-1401
client/server, 1402
compression, 1401-1402
Data Studio, 1396
database analysis tools, 1402-1403
database archiving, 1398
database modeling and design, 1403-1404
disk and space management, 1404
extract/transformation/load tools, 1406
fourth-generation languages, 1419-1420
integrity, 1406
Internet enabling, 1408
miscellaneous, 1407
object migration, 1407
operational support, 1408
PC-based emulation, 1408
performance, 1411
performance monitors, 1410-1411
plan and package analysis, 1409-1410
programming and development, 1411-1412
QMF, 1412
query, 1412-1413
recovery management and assistance, 1413-1414
repositories, 1414-1415
required, 1443
security, 1416-1417
table altering, 1396-1398
table editors, 1405-1406
third-party, 699, 1420-1422
TSO, 723
utility enhancement, 1417, 1419
“Top Ten” problem, 93-95
total number of days, returning, 123
TOTALENTRIES column (SYSIBM.SYSINDEX
SPACESTATS), 1052
TOTALORDER function, 155
TOTALROWS column (SYSIBM.SYSTABLESPACE
STATS), 1050
TOTAL_COST column (DSN_STATEMENT_TABLE), 1001
tournament sorts, 68
trace, auditing, 477-478
trace-based auditing, 1400
traces, 971
accounting reports, 956
performance monitoring, 929-930
accounting, 930-931
audit, 931-932
destinations, 936
global, 933
guidelines, 938-940
IFCIDs (Instrumentation Facility Component
Identifiers), 937-938
monitor, 933-934
performance, 934-935
statistics, 935-936
record trace reports, 959
SQL trace reports, 959-960
tracker site, disaster recovery, 1388
TRACKMOD parameter, 777
TRACKMOD parameter, table space, 234
transaction recovery, 1414
transactions
CICS, designing, 746-750
grouping, 740
IMS/TM, design, 762-763
threads, specifying, 743-744
transformation tools, 1406
transition variables, triggers, 391
transitive closure rules, predicates, 92-93
TRANSLATE function, 155-156, 165
translation, authids, 1501-1502
triggers, 373-376, 382-384, 1539
AFTER, 379, 390
BEFORE, 390
benefits, 375-376
creating, 378-382, 389
data integrity, 300
declarative RI, 391
firing, 377-378
firing other triggers, 385
implementing, 389
INSTEAD OF, 386, 392
examples, 387-388
restrictions, 386-387
limitations, 389
logic, testing, 389
naming, 388
packages, 384-385
referential integrity, supplementing, 390-391
transition variables, 391
types, 375
VALUES statement, 391
versus check constraints, 300, 374-375
versus stored procedures, 374
WHEN clause, 382
troubleshooting
performance problems, 1137-1142
TRUNC_TIMESTAMP function, 156-157
TRUNCATE function, 156, 379
emptying tables, 546-547
trusted context, 471-473
TSLOCKMODE column (PLAN_TABLE), 988
TSO (Time-Sharing Option), 706-707, 723-724
batch programs, 708-709
Bind/Rebind/Free option, 717-720
DB2I Commands option, 720
DCLGEN option, 717
Defaults option, 722
foreground, 709
batch programs, 725
ISPF panels and tables, 724-725
online design techniques, 709-712
parameters, 707-708
Precompile option, 717
Program Preparation option, 717
QMF (Query Management Facility), 722-723
resource integration, 724
Run option, 720
SPUFI, 712-722
TMP (Terminal Monitor Program), 725
tools, 723
Utilities option, 722
TSO commands, 1364
tuning, 929
80-20 rule, 1061-1062
applications, 1116-1137
buffer pool parameters, 1096-1101
AUTOSIZE, 1105-1106
DWQT, 1104
PGFIX, 1105
PGSTEAL, 1104-1105
VPSEQT, 1102-1103
buffer pools, 1108-1110
data sharing group, 1110-1114
sizes, 1106-1108
Catalog, 1089-1092
database design, 1114-1116
DSNZPAMRs, 1092-1096
dynamic SQL, 575-576
IRLM, 1114
subsystems, 1089-1102, 1104-1114
tuning environment, 1064
teleprocessing, 1087-1088
z/OS, 1064
CPU usage, 1074-1076
I/O, 1076-1084
memory usage, 1064-1074
parameters and options, 1084-1087
turnover procedures, 1436
tweaking queries, 87-88
Twitter, blogs, 1428-1429
two-phase commit, 1466-1470
 coordinators, 1468
 multi-site updating, 1468
 participants, 1468
types
 outer joins, 28-29
 SQL, 11-12
Typical Processing Scenario listing (23.1), 890

U
UDFs (user-defined functions), 167, 168
abends, 184
cardinality, 190
data types, 190-191
DETERMINISTIC parameter, 188
DISALLOW PARALLEL parameter, 188
DSN FUNCTION TABLE, 184
execution, external, 173-178
external, 169
EXTERNAL ACTION, 189
external scalar, 168-171
external table, 168-173
invoking, 184
naming, 180
NOT DETERMINISTIC parameter, 188
null input arguments, 189
parameter data types, 185
parameters, 185
program restrictions, 181
programming languages, external, 173
reusability, 184
schema, 169
scratchpads, 189
SECURITY parameter, 188-189
SET CURRENT PACKAGE
PATH, 184
sourced, 168, 178
SQL scalar, 168, 178-179
SQL table, 168, 179-180
SQL within, 186-187
starting and starting,
182-183
templates, 185-186
UDFs (user-defined functions), 63
UDTs (user-defined data types), 190-192, 1025
assigning values, 196
business requirements,
193-195
constants, 197-198
host variables, 197-198
LOBs, 192-193
naming, 197
set operations, 198-199
UID parameter
(DSNUPROC), 1156
uncommitted reads, 52
UNCOMPRESSEDDATASIZE
column (SYSIBM.SYS-
TABLESPACESTATS), 1050
UNICODE function, 157
UNICODE STR function, 157
Uniform Resource Locators
(URLs), 689
UNION query, literals, 25
union set operations, 23-26
UNIQUE, XML indexes, 419
unique index columns, 342
units of work, batch
programming, 541-542
universal table spaces,
206-207, 237-238
UNLOAD JCL listing (34.3),
1260
UNLOAD phase
REBUILD_INDEX utility, 1234
REORG INDEX utility,
1273
REORG TABLESPACE
utility, 1273
UNLOAD utility, 1261
UNLOAD utility, 1260-1265
locking, 1262
phases, 1261
restarting, 1261
termination, 1261
versus DSNTIAUL, 1262
unqualified SQL, application
development, 530
UPDATE statement, 36,
127-128, 131, 526
UPDATESTATSTIME column
(SYSIBM.SYSINDEX-
SPACESTATS), 1051
UPDATESTATSTIME column
(SYSIBM.SYSTABLESPACE-
STATS), 1049
updating
changed columns,
126-127
XML data, 424-425
upgrading compilers,
COBOL, 487
UPPER function, 157, 165
URLs (Uniform Resource
Locators), 689
usage, hashes,
monitoring, 351
USE privilege class, 450
USE security class, 40
Usenet newsgroups,
691-692, 696, 701-702
user escalation, locks, 917
user-assisted distribution,
DRDA, 1453
user-defined distinct types
(UDTs), 1025
user-defined functions, 135,
167-168
abends, 184
application development,
530
cardinality, 190
data types, 190-191
deterministic
parameter, 188
disallow parallel
parameter, 188
dsn function table,
184
dsn function table,
exection, external UDFs,
173-178
external, 169
external action, 189
external scalar, 168
creating, 169-171
external table, 168
  creating, 171-173
invoking, 184
naming, 180
NOT DETERMINISTIC
  parameter, 188
null input arguments, 189
parameter data types, 185
parameters, 185
program restrictions, 181
programming languages,
  external UDFs, 173
reusability, 184
schema, 169
scratchpads, 189
SECURITY parameter,
  188-189
SET CURRENT PACKAGE PATH, 184
sourced, 168, 178
SQL scalar, 168, 178-179
SQL table, 168, 179-180
SQL within, 186-187
starting and stopping,
  182-183
templates, 185-186
user-defined functions
  (UDFs), 63
user-defined VSAM,
  STOGROUPS, 242-243
USERFILTER column
  (DSN_USERQUERY_TABLE),
  1133
USERNAMES table
  (Catalog), 879
USING parameter, table
  space, 221-222
UTC (Coordinated Universal
  Time), 121
UTILINIT phase
  CHECK_DATA, 1182
  COPY, 1205
  COPYTOCOPY, 1216
  LOAD utility, 1243
  MERGECOPY, 1219
  REBUILD_INDEX utility,
  1234
  RECOVER utility, 1228
  REORG_INDEX utility,
  1273
  REORG_TABLESPACE utility,
  1273-1274
  RESTORE_SYSTEM
    utility, 1239
  RUNSTATS utility, 1298
  STOSPACE utility, 1311
  UNLOAD utility, 1261
utilities, 1366-1367
backup and recovery,
  1201-1202
  BACKUP_SYSTEM,
  1236-1238
  COPY, 1165,
  1202-1215, 1372
  COPYTOCOPY, 1215-1218
  MERGECOPY, 1165,
  1218-1220
  QUIESCE, 1220,
  1222-1223
  REBUILD_INDEX,
  1232-1235
RECOVER, 1224-1232
RECOVER_INDEX, 1228
REPAIR, 1235
REPORT_RECOVERY,
  1235-1236
RESTORE_SYSTEM,
  1238-1239
Catalog, 1289
CATENFM, 1289
CATMAINT, 1289
DSNJCNVB, 1290
MODIFY RECOVERY,
  1165, 1290-1293
MODIFY STATISTICS,
  1165, 1293-1295
RUNSTATS, 1295-1310
STOSPACE, 1311-1313
contention, 1367, 1370
data consistency,
  1176-1177
  CHECK, 1177
  CHECK_DATA, 1177-1186
  CHECK_INDEX, 1165, 1188-1191
  CHECK_LOB,
  1186-1188
  DIAGNOSE, 1200
  REPAIR, 1191, 1198
  REPAIR_DBD,
  1192-1193
  REPAIR_LOCATE,
  1193-1195
  REPAIR_SET,
  1196-1198
data movement
LOAD, 1240-1259
REORG, 1265-1288
UNLOAD, 1260-1265
disaster recovery, 1387
IBM, 1158-1159
LISTDEF, 1159-1160, 1165-1166
creating lists, 1160-1162
list expansion, 1163-1165
wildcarding, 1162-1163
monitoring, 1156-1158
online return codes, 1366
OPTIONS, 1172
QUIESCE, 1165
REBUILD, 1165
RECOVER, 1165
RECOVER_TABLESPACE, 1225-1226
REORG, 1166
RUNSTATS_INDEX, 1166
RUNSTATS_TABLESPACE, 1166
SQL statements
issuing, 1173-1175
stand-alone, 1314-1315
DSN1CHKR, 1318-1319
DSN1COMP, 1320-1322
DSN1COPY, 1322-1328
DSN1LOGP, 1330
DSN1PRNT, 1330-1332
DSN1SDMP, 1328-1329
DSNJLOGF, 1315-1316
DSNJU003, 1316-1317
DSNJU004, 1317-1318
TEMPLATE, 1159-1160
work data sets, 1367
Utilities option (TSO), 722
Utility area (Catalog), 881
utility enhancement tools, 1417-1419
utility JCL, generating, 1152-1156
UTILTERM phase
CHECK_DATA, 1183
COPY, 1206
COPYTOCOPY, 1216
LOAD utility, 1244
MERGECOPY, 1219
REBUILD_INDEX utility, 1234
RECOVER utility, 1229
REORG_INDEX utility, 1273
REORG_TABLESPACE utility, 1274
REPAIR utility, 1192
RESTORE_SYSTEM utility, 1239
RUNSTATS utility, 1298
STOSPACE utility, 1311
UNLOAD utility, 1261
UTL tools, 1417, 1419
UTPROC parameter (DSNUPROC), 1156
UTSs (universal table spaces), 206-207
validating screen input, 724
validity, denormalization, testing, 289-290
VALIDPROCs, 300
VALUE function, 157
values
columns, computing average, 136
UDTs (user-defined data types), assigning, 196
VALUES statement, triggers, 391
VARBINARY data type, 39-40, 245
VARBINARY function, 157
VARCHAR columns, 263, 395-396, 404
VARCHAR data type, 38, 244
VARCHAR FORMAT function, 158
VARCHAR function, 157
VARGRAPHIC columns, 395-396, 404
VARGRAPHIC data type, 38, 244
VARGRAPHIC function, 158
variable columns, 262-263
indexing, 329-330
monitoring, 263-264
variable declarations, LOB, 401
variable index keys, changing treatment, 364-365
variables
host, 504-506, 509-511
dynamic SQL, 574-575
host structures, 506
null indicators, 507-509
simulating, 533-534
indicator, 116-117, 255
naming, 501, 503-504
null indicator, 604
session, 469-471
VARIANCE function, 141
VARIANCE SAMP function, 141
varying-list SELECT class (dynamic SQL), 584-587
Varying-List SELECT Dynamic SQL listing (14.6), 585
Varying-List SELECT Dynamic SQL with Minimum SQLDA listing (14.7), 587
vendor tool guides, 1435
vendor tools, CAF (Call Attach Facility), 766-767
vendors
ISVs (Independent Software Vendors), 1424
third-party, 699
tools, 1420-1422
VERIFY_GROUP_FOR_USER function, 158
VERIFY_ROLE_FOR_USER function, 158
VERIFY_TRUSTED_CONTEXT_FOR_ROLE_USER function, 159
VERSION column (DSN_STATEMENT_TABLE), 1001
VERSION column (DSN_USERQUERY_TABLE), 1133
VERSION column (PLAN_TABLE), 988
version maintenance, packages, 625-626
version program preparation objects, 632
versioning
changes, online schema, 370-372
stored procedures, 673-674
versions
packages, 629-630
SQL, 11
VIEW database objects, 38
VIEW privilege class, 450
VIEWs, 98, 302-304, 307-313
views
data derivation, 303
inline, 105
mimicking domain support, 304-306
non-updatable, 312
renaming columns, 306-307
restrictions, 312
specifying column names, 312
synchronization rule, 311
usage rule, 303
versus table views, 107
virtual indexes, creating, 349
virtual tables
aliases, 313
synonyms, 313
views, 302-304, 307-313
data derivation, 303
mimicking domain support, 304-306
non-updatable, 312
renaming columns, 306-307
restrictions, 312
security, 303
specifying column names, 312
synchronization rule, 311
usage rule, 303
visual Explain, query analysis, 64-66
VPSEQT parameter (buffer pool), 1102-1103
VSAM, data sets, 795-797
W

WAS (WebSphere Application Server), 693
Web browsers, 689
Web pages, 690
  bookmarking, 702
Web sites, 690
  search engines, 702
Web-based programming languages, 486
webinars, 1429
WebSphere, 693-694
WEEK function, 158
WEEK ISO function, 158
WHEN clause, 382
WHENEVER statement, avoiding, 500-501
WHEN_OPTIMIZE column (PLAN_TABLE), 990
WHERE clause, 526, 531
  versus HAVING clause, 30-31
WHERE NOT NULL clause, 343
wildcarding LISTDEF utility, 1162-1163
WITH GRANT OPTION, 458
WITH HOLD clause, 919
WITH NO DATA clause, 1527
WLM (Workload Manager), 670-672, 1086
work data sets, utilities, 1367
Work Load Manager (WLM), 670-672, 1086
working storage, 1073
Workload Manager (WLM), 1086
workloads, indexing, 341-342
workstation DB2, 1470
WWW (World Wide Web), 689-690

X

X-locks, 914
XCF (Cross-system Coupling Facility) groups, 774
XML (Extensible Markup Language), 408-412, 425
  access methods, 423
  CHECK DATA utility, 427
  deleting data, 424
  document trees, 414-415
  indexes, creating, 418-419, 425-426
  inserting data, 423-424
  namespaces, 417-418
  parsing data, 415
  pureXML, 408, 412-415
  querying data, 420-424
  REPORT TABLESPACE SET utility, 427
  RUNSTATS utility, 426
  schema validation, 416
  serializing data, 415
  updating data, 424-425
  XMLEXISTS predicate, 425
XML area (Catalog), 880
XML data type, 39, 245
XML reference checking, CHECK_DATA utility, 1181-1182
XML scalar functions, 161-162
XML table spaces, 215
XMLEXISTS predicate, 425
XMLQUERY function, 421
XMLSCHEMAONLY option (SCOPE parameter), 1181
XMLTABLE() function, 422
XMLVALA subsystem parameter, 427
XPath, 420-421
XSRANNOTATIONINFO (V9) table (Catalog), 879
XSRCOMPONENT (V9) table (Catalog), 879
XSROBJECTCOMPONENTS (V9) table (Catalog), 879
XSROBJECTGRAMMAR (V9) table (Catalog), 879
XSROBJECTHIERARCHIES (V9) table (Catalog), 879
XSROBJECTPROPERTY (V9) table (Catalog), 879
XSROBJECTS (V9) table (Catalog), 879
XSRPROPERTY (V9) table (Catalog), 879
XSRPROPERTY (V9) table (Catalog) 1621
Y-Z

YEAR function, 158
Yevich, Lawson, and Associates website, 698

z/Journal, 1428
z/OS, 411

monitoring, 979
parameters and options, 1084-1087
pureXML, 412-416, 425-427
   deleting XML data, 424
   indexing XML data, 418-419
   inserting XML data, 423-424
   namespaces, 417-418
   querying XML data, 420-423
   schema validation, 416
   updating XML data, 424-425
system-level changes, 57
temporal data, 428-430, 446-447
   business time, 430
   support, 430-446
   system time, 430
tuning, 1064
   CPU usage, 1074-1076
   I/O, 1076-1084
   memory usage, 1064-1074
   parameters and options, 1084-1087
XML, 408, 410-412
zAAP (Application Assist Processor), 1076
zIIP (Integrated Information Processor), 813-814, 1075
parallelism, 865-866