

JAVA™ FOR PROGRAMMERS
SECOND EDITION
DEITEL® DEVELOPER SERIES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information re-
garding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13282154-4
ISBN-10: 0-13-282154-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, March 2012

JAVA™ FOR PROGRAMMERS
SECOND EDITION

DEITEL® DEVELOPER SERIES

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Microsoft, Internet Explorer and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group.

Apache is a trademark of The Apache Software Foundation.

CSS, XHTML and XML are registered trademarks of the World Wide Web Consortium.

Firefox is a registered trademark of the Mozilla Foundation.

Google is a trademark of Google, Inc.

Web 2.0 is a service mark of CMP Media.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

In memory of Clifford “Spike” Stephens,
A dear friend who will be greatly missed.

Paul and Harvey Deitel

This page intentionally left blank

Preface xxi

Before You Begin xxix

1 Introduction 1
1.1 Introduction 2
1.2 Introduction to Object Technology 2
1.3 Open Source Software 5
1.4 Java and a Typical Java Development Environment 7
1.5 Test-Driving a Java Application 11
1.6 Web 2.0: Going Social 15
1.7 Software Technologies 18
1.8 Keeping Up to Date with Information Technologies 20
1.9 Wrap-Up 21

2 Introduction to Java Applications 22
2.1 Introduction 23
2.2 Your First Program in Java: Printing a Line of Text 23
2.3 Modifying Your First Java Program 27
2.4 Displaying Text with printf 29
2.5 Another Application: Adding Integers 30
2.6 Arithmetic 34
2.7 Decision Making: Equality and Relational Operators 35
2.8 Wrap-Up 38

3 Introduction to Classes, Objects, Methods
and Strings 39

3.1 Introduction 40
3.2 Declaring a Class with a Method and Instantiating an Object of a Class 40
3.3 Declaring a Method with a Parameter 44
3.4 Instance Variables, set Methods and get Methods 47
3.5 Primitive Types vs. Reference Types 52
3.6 Initializing Objects with Constructors 53

Contents

viii Contents

3.7 Floating-Point Numbers and Type double 56
3.8 Wrap-Up 60

4 Control Statements: Part 1 61
4.1 Introduction 62
4.2 Control Structures 62
4.3 if Single-Selection Statement 64
4.4 if…else Double-Selection Statement 65
4.5 while Repetition Statement 68
4.6 Counter-Controlled Repetition 70
4.7 Sentinel-Controlled Repetition 73
4.8 Nested Control Statements 78
4.9 Compound Assignment Operators 81
4.10 Increment and Decrement Operators 82
4.11 Primitive Types 85
4.12 Wrap-Up 85

5 Control Statements: Part 2 86
5.1 Introduction 87
5.2 Essentials of Counter-Controlled Repetition 87
5.3 for Repetition Statement 89
5.4 Examples Using the for Statement 92
5.5 do…while Repetition Statement 96
5.6 switch Multiple-Selection Statement 98
5.7 break and continue Statements 105
5.8 Logical Operators 107
5.9 Wrap-Up 113

6 Methods: A Deeper Look 114
6.1 Introduction 115
6.2 Program Modules in Java 115
6.3 static Methods, static Fields and Class Math 115
6.4 Declaring Methods with Multiple Parameters 118
6.5 Notes on Declaring and Using Methods 121
6.6 Argument Promotion and Casting 122
6.7 Java API Packages 123
6.8 Case Study: Random-Number Generation 125

6.8.1 Generalized Scaling and Shifting of Random Numbers 129
6.8.2 Random-Number Repeatability for Testing and Debugging 129

6.9 Case Study: A Game of Chance; Introducing Enumerations 130
6.10 Scope of Declarations 134
6.11 Method Overloading 137
6.12 Wrap-Up 139

Contents ix

7 Arrays and ArrayLists 140
7.1 Introduction 141
7.2 Arrays 141
7.3 Declaring and Creating Arrays 143
7.4 Examples Using Arrays 144
7.5 Case Study: Card Shuffling and Dealing Simulation 153
7.6 Enhanced for Statement 157
7.7 Passing Arrays to Methods 159
7.8 Case Study: Class GradeBook Using an Array to Store Grades 162
7.9 Multidimensional Arrays 167
7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 171
7.11 Variable-Length Argument Lists 177
7.12 Using Command-Line Arguments 178
7.13 Class Arrays 180
7.14 Introduction to Collections and Class ArrayList 183
7.15 Wrap-Up 186

8 Classes and Objects: A Deeper Look 187
8.1 Introduction 188
8.2 Time Class Case Study 188
8.3 Controlling Access to Members 192
8.4 Referring to the Current Object’s Members with the this Reference 193
8.5 Time Class Case Study: Overloaded Constructors 195
8.6 Default and No-Argument Constructors 201
8.7 Notes on Set and Get Methods 202
8.8 Composition 203
8.9 Enumerations 206
8.10 Garbage Collection and Method finalize 209
8.11 static Class Members 210
8.12 static Import 213
8.13 final Instance Variables 214
8.14 Time Class Case Study: Creating Packages 215
8.15 Package Access 221
8.16 Wrap-Up 222

9 Object-Oriented Programming: Inheritance 224
9.1 Introduction 225
9.2 Superclasses and Subclasses 226
9.3 protected Members 228
9.4 Relationship between Superclasses and Subclasses 228

9.4.1 Creating and Using a CommissionEmployee Class 229
9.4.2 Creating and Using a BasePlusCommissionEmployee Class 235
9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 240

x Contents

9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Instance Variables 242

9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance
Hierarchy Using private Instance Variables 245

9.5 Constructors in Subclasses 250
9.6 Software Engineering with Inheritance 251
9.7 Class Object 252
9.8 Wrap-Up 253

10 Object-Oriented Programming: Polymorphism 254
10.1 Introduction 255
10.2 Polymorphism Examples 257
10.3 Demonstrating Polymorphic Behavior 258
10.4 Abstract Classes and Methods 260
10.5 Case Study: Payroll System Using Polymorphism 262

10.5.1 Abstract Superclass Employee 263
10.5.2 Concrete Subclass SalariedEmployee 266
10.5.3 Concrete Subclass HourlyEmployee 268
10.5.4 Concrete Subclass CommissionEmployee 270
10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee 271
10.5.6 Polymorphic Processing, Operator instanceof and Downcasting 273
10.5.7 Summary of the Allowed Assignments Between Superclass and

Subclass Variables 277
10.6 final Methods and Classes 278
10.7 Case Study: Creating and Using Interfaces 279

10.7.1 Developing a Payable Hierarchy 280
10.7.2 Interface Payable 281
10.7.3 Class Invoice 282
10.7.4 Modifying Class Employee to Implement Interface Payable 284
10.7.5 Modifying Class SalariedEmployee for Use in the Payable

Hierarchy 286
10.7.6 Using Interface Payable to Process Invoices and Employees

Polymorphically 288
10.7.7 Common Interfaces of the Java API 289

10.8 Wrap-Up 290

11 Exception Handling: A Deeper Look 292
11.1 Introduction 293
11.2 Example: Divide by Zero without Exception Handling 293
11.3 Example: Handling ArithmeticExceptions and

InputMismatchExceptions 296
11.4 When to Use Exception Handling 301
11.5 Java Exception Hierarchy 301
11.6 finally Block 304
11.7 Stack Unwinding and Obtaining Information from an Exception Object 308

Contents xi

11.8 Chained Exceptions 311
11.9 Declaring New Exception Types 313
11.10 Preconditions and Postconditions 314
11.11 Assertions 315
11.12 (New in Java SE 7) Multi-catch: Handling Multiple Exceptions in

One catch 316
11.13 (New in Java SE 7) try-with-Resources: Automatic Resource Deallocation 316
11.14 Wrap-Up 317

12 ATM Case Study, Part 1:
Object-Oriented Design with the UML 318

12.1 Case Study Introduction 319
12.2 Examining the Requirements Document 319
12.3 Identifying the Classes in a Requirements Document 327
12.4 Identifying Class Attributes 333
12.5 Identifying Objects’ States and Activities 338
12.6 Identifying Class Operations 342
12.7 Indicating Collaboration Among Objects 348
12.8 Wrap-Up 355

13 ATM Case Study Part 2:
Implementing an Object-Oriented Design 359

13.1 Introduction 360
13.2 Starting to Program the Classes of the ATM System 360
13.3 Incorporating Inheritance and Polymorphism into the ATM System 365
13.4 ATM Case Study Implementation 371

13.4.1 Class ATM 372
13.4.2 Class Screen 377
13.4.3 Class Keypad 378
13.4.4 Class CashDispenser 379
13.4.5 Class DepositSlot 380
13.4.6 Class Account 381
13.4.7 Class BankDatabase 383
13.4.8 Class Transaction 386
13.4.9 Class BalanceInquiry 387
13.4.10 Class Withdrawal 388
13.4.11 Class Deposit 392
13.4.12 Class ATMCaseStudy 395

13.5 Wrap-Up 395

14 GUI Components: Part 1 398
14.1 Introduction 399
14.2 Java’s New Nimbus Look-and-Feel 400

xii Contents

14.3 Simple GUI-Based Input/Output with JOptionPane 401
14.4 Overview of Swing Components 404
14.5 Displaying Text and Images in a Window 406
14.6 Text Fields and an Introduction to Event Handling with Nested Classes 410
14.7 Common GUI Event Types and Listener Interfaces 416
14.8 How Event Handling Works 418
14.9 JButton 420
14.10 Buttons That Maintain State 423

14.10.1 JCheckBox 423
14.10.2 JRadioButton 426

14.11 JComboBox; Using an Anonymous Inner Class for Event Handling 429
14.12 JList 433
14.13 Multiple-Selection Lists 435
14.14 Mouse Event Handling 438
14.15 Adapter Classes 443
14.16 JPanel Subclass for Drawing with the Mouse 446
14.17 Key Event Handling 450
14.18 Introduction to Layout Managers 453

14.18.1 FlowLayout 454
14.18.2 BorderLayout 457
14.18.3 GridLayout 460

14.19 Using Panels to Manage More Complex Layouts 462
14.20 JTextArea 464
14.21 Wrap-Up 467

15 Graphics and Java 2D 468
15.1 Introduction 469
15.2 Graphics Contexts and Graphics Objects 471
15.3 Color Control 472
15.4 Manipulating Fonts 479
15.5 Drawing Lines, Rectangles and Ovals 484
15.6 Drawing Arcs 488
15.7 Drawing Polygons and Polylines 491
15.8 Java 2D API 494
15.9 Wrap-Up 501

16 Strings, Characters and Regular Expressions 502
16.1 Introduction 503
16.2 Fundamentals of Characters and Strings 503
16.3 Class String 504

16.3.1 String Constructors 504
16.3.2 String Methods length, charAt and getChars 505
16.3.3 Comparing Strings 506
16.3.4 Locating Characters and Substrings in Strings 511

Contents xiii

16.3.5 Extracting Substrings from Strings 513
16.3.6 Concatenating Strings 514
16.3.7 Miscellaneous String Methods 514
16.3.8 String Method valueOf 516

16.4 Class StringBuilder 517
16.4.1 StringBuilder Constructors 518
16.4.2 StringBuilder Methods length, capacity, setLength

and ensureCapacity 518
16.4.3 StringBuilder Methods charAt, setCharAt, getChars

and reverse 520
16.4.4 StringBuilder append Methods 521
16.4.5 StringBuilder Insertion and Deletion Methods 523

16.5 Class Character 524
16.6 Tokenizing Strings 529
16.7 Regular Expressions, Class Pattern and Class Matcher 530
16.8 Wrap-Up 538

17 Files, Streams and Object Serialization 539
17.1 Introduction 540
17.2 Files and Streams 540
17.3 Class File 542

17.4 Sequential-Access Text Files 546
17.4.1 Creating a Sequential-Access Text File 546
17.4.2 Reading Data from a Sequential-Access Text File 553
17.4.3 Case Study: A Credit-Inquiry Program 556
17.4.4 Updating Sequential-Access Files 561

17.5 Object Serialization 562
17.5.1 Creating a Sequential-Access File Using Object Serialization 563
17.5.2 Reading and Deserializing Data from a Sequential-Access File 569

17.6 Additional java.io Classes 571
17.6.1 Interfaces and Classes for Byte-Based Input and Output 571
17.6.2 Interfaces and Classes for Character-Based Input and Output 573

17.7 Opening Files with JFileChooser 574
17.8 Wrap-Up 577

18 Generic Collections 578
18.1 Introduction 579
18.2 Collections Overview 579
18.3 Type-Wrapper Classes for Primitive Types 580
18.4 Autoboxing and Auto-Unboxing 581
18.5 Interface Collection and Class Collections 581
18.6 Lists 582

18.6.1 ArrayList and Iterator 583
18.6.2 LinkedList 585

xiv Contents

18.7 Collections Methods 590
18.7.1 Method sort 591
18.7.2 Method shuffle 594
18.7.3 Methods reverse, fill, copy, max and min 596
18.7.4 Method binarySearch 598
18.7.5 Methods addAll, frequency and disjoint 600

18.8 Stack Class of Package java.util 602
18.9 Class PriorityQueue and Interface Queue 604
18.10 Sets 605
18.11 Maps 608
18.12 Properties Class 612
18.13 Synchronized Collections 615
18.14 Unmodifiable Collections 615
18.15 Abstract Implementations 616
18.16 Wrap-Up 616

19 Generic Classes and Methods 618
19.1 Introduction 619
19.2 Motivation for Generic Methods 619
19.3 Generic Methods: Implementation and Compile-Time Translation 622
19.4 Additional Compile-Time Translation Issues: Methods That

Use a Type Parameter as the Return Type 625
19.5 Overloading Generic Methods 628
19.6 Generic Classes 628
19.7 Raw Types 636
19.8 Wildcards in Methods That Accept Type Parameters 640
19.9 Generics and Inheritance: Notes 644
19.10 Wrap-Up 645

20 Applets and Java Web Start 646
20.1 Introduction 647
20.2 Sample Applets Provided with the JDK 648
20.3 Simple Java Applet: Drawing a String 652

20.3.1 Executing WelcomeApplet in the appletviewer 654
20.3.2 Executing an Applet in a Web Browser 656

20.4 Applet Life-Cycle Methods 656
20.5 Initialization with Method init 657
20.6 Sandbox Security Model 659
20.7 Java Web Start and the Java Network Launch Protocol (JNLP) 661

20.7.1 Packaging the DrawTest Applet for Use with Java Web Start 661
20.7.2 JNLP Document for the DrawTest Applet 662

20.8 Wrap-Up 666

Contents xv

21 Multimedia: Applets and Applications 667
21.1 Introduction 668
21.2 Loading, Displaying and Scaling Images 669
21.3 Animating a Series of Images 675
21.4 Image Maps 682
21.5 Loading and Playing Audio Clips 685
21.6 Playing Video and Other Media with Java Media Framework 688
21.7 Wrap-Up 692
21.8 Web Resources 692

22 GUI Components: Part 2 694
22.1 Introduction 695
22.2 JSlider 695
22.3 Windows: Additional Notes 699
22.4 Using Menus with Frames 700
22.5 JPopupMenu 708
22.6 Pluggable Look-and-Feel 711
22.7 JDesktopPane and JInternalFrame 716
22.8 JTabbedPane 720
22.9 Layout Managers: BoxLayout and GridBagLayout 722
22.10 Wrap-Up 734

23 Multithreading 735
23.1 Introduction 736
23.2 Thread States: Life Cycle of a Thread 738
23.3 Creating and Executing Threads with Executor Framework 741
23.4 Thread Synchronization 744

23.4.1 Unsynchronized Data Sharing 745
23.4.2 Synchronized Data Sharing—Making Operations Atomic 749

23.5 Producer/Consumer Relationship without Synchronization 752
23.6 Producer/Consumer Relationship: ArrayBlockingQueue 760
23.7 Producer/Consumer Relationship with Synchronization 763
23.8 Producer/Consumer Relationship: Bounded Buffers 769
23.9 Producer/Consumer Relationship: The Lock and Condition Interfaces 776
23.10 Concurrent Collections Overview 783
23.11 Multithreading with GUI 785

23.11.1 Performing Computations in a Worker Thread 786
23.11.2 Processing Intermediate Results with SwingWorker 792

23.12 Interfaces Callable and Future 799
23.13 Java SE 7: Fork/Join Framework 799
23.14 Wrap-Up 800

xvi Contents

24 Networking 801
24.1 Introduction 802
24.2 Manipulating URLs 803
24.3 Reading a File on a Web Server 808
24.4 Establishing a Simple Server Using Stream Sockets 811
24.5 Establishing a Simple Client Using Stream Sockets 813
24.6 Client/Server Interaction with Stream Socket Connections 813
24.7 Datagrams: Connectionless Client/Server Interaction 825
24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 833
24.9 [Web Bonus] Case Study: DeitelMessenger 848
24.10 Wrap-Up 848

25 Accessing Databases with JDBC 849
25.1 Introduction 850
25.2 Relational Databases 851
25.3 Relational Database Overview: The books Database 852
25.4 SQL 855

25.4.1 Basic SELECT Query 856
25.4.2 WHERE Clause 857
25.4.3 ORDER BY Clause 859
25.4.4 Merging Data from Multiple Tables: INNER JOIN 860
25.4.5 INSERT Statement 862
25.4.6 UPDATE Statement 863
25.4.7 DELETE Statement 864

25.5 Instructions for Installing MySQL and MySQL Connector/J 864
25.6 Instructions for Setting Up a MySQL User Account 865
25.7 Creating Database books in MySQL 866
25.8 Manipulating Databases with JDBC 867

25.8.1 Connecting to and Querying a Database 867
25.8.2 Querying the books Database 872

25.9 RowSet Interface 885
25.10 Java DB/Apache Derby 887
25.11 PreparedStatements 889
25.12 Stored Procedures 904
25.13 Transaction Processing 905
25.14 Wrap-Up 905
25.15 Web Resources 906

26 JavaServer™ Faces Web Apps: Part 1 907
26.1 Introduction 908
26.2 HyperText Transfer Protocol (HTTP) Transactions 909
26.3 Multitier Application Architecture 912
26.4 Your First JSF Web App 913

26.4.1 The Default index.xhtml Document: Introducing Facelets 914

Contents xvii

26.4.2 Examining the WebTimeBean Class 916
26.4.3 Building the WebTime JSF Web App in NetBeans 918

26.5 Model-View-Controller Architecture of JSF Apps 922
26.6 Common JSF Components 922
26.7 Validation Using JSF Standard Validators 926
26.8 Session Tracking 933

26.8.1 Cookies 934
26.8.2 Session Tracking with @SessionScoped Beans 935

26.9 Wrap-Up 941

27 JavaServer™ Faces Web Apps: Part 2 942
27.1 Introduction 943
27.2 Accessing Databases in Web Apps 943

27.2.1 Setting Up the Database 945
27.2.2 @ManagedBean Class AddressBean 948
27.2.3 index.xhtml Facelets Page 952
27.2.4 addentry.xhtml Facelets Page 954

27.3 Ajax 956
27.4 Adding Ajax Functionality to the Validation App 958
27.5 Wrap-Up 961

28 Web Services 962
28.1 Introduction 963
28.2 Web Service Basics 965
28.3 Simple Object Access Protocol (SOAP) 965
28.4 Representational State Transfer (REST) 965
28.5 JavaScript Object Notation (JSON) 966
28.6 Publishing and Consuming SOAP-Based Web Services 966

28.6.1 Creating a Web Application Project and Adding a
Web Service Class in NetBeans 966

28.6.2 Defining the WelcomeSOAP Web Service in NetBeans 967
28.6.3 Publishing the WelcomeSOAP Web Service from NetBeans 970
28.6.4 Testing the WelcomeSOAP Web Service with GlassFish

Application Server’s Tester Web Page 971
28.6.5 Describing a Web Service with the Web Service Description

Language (WSDL) 972
28.6.6 Creating a Client to Consume the WelcomeSOAP Web Service 973
28.6.7 Consuming the WelcomeSOAP Web Service 975

28.7 Publishing and Consuming REST-Based XML Web Services 978
28.7.1 Creating a REST-Based XML Web Service 978
28.7.2 Consuming a REST-Based XML Web Service 981

28.8 Publishing and Consuming REST-Based JSON Web Services 983
28.8.1 Creating a REST-Based JSON Web Service 983
28.8.2 Consuming a REST-Based JSON Web Service 985

xviii Contents

28.9 Session Tracking in a SOAP Web Service 987
28.9.1 Creating a Blackjack Web Service 988
28.9.2 Consuming the Blackjack Web Service 991

28.10 Consuming a Database-Driven SOAP Web Service 1002
28.10.1 Creating the Reservation Database 1003
28.10.2 Creating a Web Application to Interact with the

Reservation Service 1006
28.11 Equation Generator: Returning User-Defined Types 1009

28.11.1 Creating the EquationGeneratorXML Web Service 1012
28.11.2 Consuming the EquationGeneratorXML Web Service 1013
28.11.3 Creating the EquationGeneratorJSON Web Service 1017
28.11.4 Consuming the EquationGeneratorJSON Web Service 1017

28.12 Wrap-Up 1020

A Operator Precedence Chart 1022

B ASCII Character Set 1024

C Keywords and Reserved Words 1025

D Primitive Types 1026

E Using the Java API Documentation 1027
E.1 Introduction 1027
E.2 Navigating the Java API 1028

F Using the Debugger 1036
F.1 Introduction 1037
F.2 Breakpoints and the run, stop, cont and print Commands 1037
F.3 The print and set Commands 1041
F.4 Controlling Execution Using the step, step up and next Commands 1043
F.5 The watch Command 1046
F.6 The clear Command 1049
F.7 Wrap-Up 1051

G Formatted Output 1052
G.1 Introduction 1053
G.2 Streams 1053
G.3 Formatting Output with printf 1053

Contents xix

G.4 Printing Integers 1054
G.5 Printing Floating-Point Numbers 1055
G.6 Printing Strings and Characters 1057
G.7 Printing Dates and Times 1058
G.8 Other Conversion Characters 1060
G.9 Printing with Field Widths and Precisions 1062
G.10 Using Flags in the printf Format String 1064
G.11 Printing with Argument Indices 1068
G.12 Printing Literals and Escape Sequences 1068
G.13 Formatting Output with Class Formatter 1069
G.14 Wrap-Up 1070

H GroupLayout 1071
H.1 Introduction 1071
H.2 GroupLayout Basics 1071
H.3 Building a ColorChooser 1072
H.4 GroupLayout Web Resources 1082

I Java Desktop Integration Components 1083
I.1 Introduction 1083
I.2 Splash Screens 1083
I.3 Desktop Class 1085
I.4 Tray Icons 1087

J UML 2: Additional Diagram Types 1089
J.1 Introduction 1089
J.2 Additional Diagram Types 1089

Index 1091

This page intentionally left blank

Live in fragments no longer, only connect.
—Edgar Morgan Foster

Welcome to Java and Java for Programmers, Second Edition! This book presents leading-
edge computing technologies for software developers.

We focus on software engineering best practices. At the heart of the book is the Deitel
signature “live-code approach”—concepts are presented in the context of complete
working programs, rather than in code snippets. Each complete code example is accompa-
nied by live sample executions. All the source code is available at

As you read the book, if you have questions, send an e-mail to deitel@deitel.com;
we’ll respond promptly. For updates on this book, visit the website shown above, follow
us on Facebook (www.facebook.com/DeitelFan) and Twitter (@deitel), and subscribe to
the Deitel® Buzz Online newsletter (www.deitel.com/newsletter/subscribe.html).

Features
Here are the key features of Java for Programmers, 2/e:

Java Standard Edition (SE) 7
• Easy to use as a Java SE 6 or Java SE 7 book. We cover the new Java SE 7 features

in modular sections. Here’s some of the new functionality: Strings in switch

statements, the try-with-resources statement for managing AutoClosable ob-
jects, multi-catch for defining a single exception handler to replace multiple ex-
ception handlers that perform the same task and inferring the types of generic
objects from the variable they’re assigned to by using the <> notation. We also
overview the new concurrency API features.

• Java SE 7’s AutoClosable versions of Connection, Statement and ResultSet.
With the source code for Chapter 25, Accessing Databases with JDBC, we pro-
vide a version of the chapter’s first example that’s implemented using Java SE 7’s
AutoClosable versions of Connection, Statement and ResultSet. AutoClos-
able objects reduce the likelihood of resource leaks when you use them with Java
SE 7’s try-with-resources statement, which automatically closes the AutoClos-

able objects allocated in the parentheses following the try keyword.

Object Technology
• Object-oriented programming and design. We review the basic concepts and ter-

minology of object technology in Chapter 1. Readers develop their first custom-
ized classes and objects in Chapter 3.

www.deitel.com/books/javafp2/

Preface

http://www.facebook.com/DeitelFan
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/books/javafp2/

xxii Preface

• Exception handling. We integrate basic exception handling early in the book and
cover it in detail in Chapter 11, Exception Handling: A Deeper Look.

• Class Arrays and ArrayList. Chapter 7 covers class Arrays—which contains
methods for performing common array manipulations—and class ArrayList—
which implements a dynamically resizable array-like data structure.

• OO case studies. The early classes and objects presentation features Time, Employ-
ee and GradeBook class case studies that weave their way through multiple sec-
tions and chapters, gradually introducing deeper OO concepts.

• Case Study: Using the UML to Develop an Object-Oriented Design and Java Im-
plementation of an ATM. The UML™ (Unified Modeling Language™) is the
industry-standard graphical language for modeling object-oriented systems.
Chapters 12–13 include a case study on object-oriented design using the UML.
We design and implement the software for a simple automated teller machine
(ATM). We analyze a typical requirements document that specifies the system to
be built. We determine the classes needed to implement that system, the attri-
butes the classes need to have, the behaviors the classes need to exhibit and specify
how the classes must interact with one another to meet the system requirements.
From the design we produce a complete Java implementation. Readers often report
having a “light-bulb moment”—the case study helps them “tie it all together” and
really understand object orientation in Java.

• Reordered generics presentation. We begin with generic class ArrayList in Chap-
ter 7. Because you’ll understand basic generics concepts early in the book, our later
data structures discussions provide a deeper treatment of generic collections—
showing how to use the built-in collections of the Java API. We then show how
to implement generic methods and classes.

Database and Web Development

• JDBC 4. Chapter 25, Accessing Databases with JDBC, covers JDBC 4 and uses
the Java DB/Apache Derby and MySQL database management systems. The
chapter features an OO case study on developing a database-driven address book
that demonstrates prepared statements and JDBC 4’s automatic driver discovery.

• Java Server Faces (JSF) 2.0. Chapters 26–27 have been updated with JavaServer
Faces (JSF) 2.0 technology, which greatly simplifies building JSF web applica-
tions. Chapter 26 includes examples on building web application GUIs, validat-
ing forms and session tracking. Chapter 27 discusses data-driven and Ajax-
enabled JSF applications. The chapter features a database-driven multitier web
address book that allows users to add and search for contacts.

• Web services. Chapter 28, Web Services, demonstrates creating and consuming
SOAP- and REST-based web services. Case studies include developing blackjack
and airline reservation web services.

• Java Web Start and the Java Network Launch Protocol (JNLP). We introduce
Java Web Start and JNLP, which enable applets and applications to be launched
via a web browser. Users can install locally for later execution. Programs can also
request the user’s permission to access local system resources such as files—en-

Teaching Approach xxiii

abling you to develop more robust applets and applications that execute safely us-
ing Java’s sandbox security model, which applies to downloaded code.

Multithreading
• Multithreading. We completely reworked Chapter 23, Multithreading [special

thanks to the guidance of Brian Goetz and Joseph Bowbeer—two of the co-au-
thors of Java Concurrency in Practice, Addison-Wesley, 2006].

• SwingWorker class. We use class SwingWorker to create multithreaded user interfaces.

GUI and Graphics
• GUI and graphics presentation. Chapters 14, 15 and 22, and Appendix H pres-

ent Java GUI and Graphics programming.

• GroupLayout layout manager. We discuss the GroupLayout layout manager in the
context of the GUI design tool in the NetBeans IDE.

• JTable sorting and filtering capabilities. Chapter 25 uses these capabilities to sort
the data in a JTable and filter it by regular expressions.

Other Features
• Android. Because of the tremendous interest in Android-based smartphones and

tablets, we’ve included a three-chapter introduction to Android app development
online at www.deitel.com/books/javafp. These chapters are from our new Dei-
tel Developer Series book Android for Programmers: An App-Driven Approach. After
you learn Java, you’ll find it straightforward to develop and run Android apps on
the free Android emulator that you can download from developer.android.com.

• Software engineering community concepts. We discuss agile software develop-
ment, refactoring, design patterns, LAMP, SaaS (Software as a Service), PaaS
(Platform as a Service), cloud computing, open-source software and more.

Teaching Approach
Java for Programmers, 2/e, contains hundreds of complete working examples. We stress
program clarity and concentrate on building well-engineered software.

Syntax Shading. For readability, we syntax shade the code, similar to the way most inte-
grated-development environments and code editors syntax color the code. Our syntax-
shading conventions are:

Code Highlighting. We place gray rectangles around each program’s key code.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easier reference. On-screen components are empha-
sized in the bold Helvetica font (e.g., the File menu) and Java program text in the Lucida

font (e.g., int x = 5;).

comments appear like this
keywords appear like this

constants and literal values appear like this

all other code appears in black

http://www.deitel.com/books/javafp

xxiv Preface

Web Access. All of the source-code examples can be downloaded from:

Objectives. The chapter opening quotations are followed by a list of chapter objectives.

Illustrations/Figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined eight decades of programming and teaching experience.

Thousands of Index Entries. We’ve included a comprehensive index, which is especially
useful when you use the book as a reference.

Software Used in Java for Programmers, 2/e
All the software you’ll need for this book is available free for download from the web. See
the Before You Begin section that follows the Preface for links to each download.

www.deitel.com/books/javafp2
www.pearsonhighered.com/deitel

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make the same errors.

Error-Prevention Tip
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of Java that prevent bugs from getting into programs.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation
These observations help you design attractive, user-friendly graphical user interfaces that
conform to industry norms.

http://www.deitel.com/books/javafp2
http://www.pearsonhighered.com/deitel

Discounts on Deitel Developer Series Books xxv

We wrote most of the examples in Java for Programmers, 2/e, using the free Java Stan-
dard Edition Development Kit (JDK) 6. For the Java SE 7 modules, we used the
OpenJDK’s early access version of JDK 7 (download.java.net/jdk7/). In Chapters 26–
28, we also used the Netbeans IDE, and in Chapter 25, we used MySQL and MySQL
Connector/J. You can find additional resources and software downloads in our Java
Resource Centers at:

Discounts on Deitel Developer Series Books
If you’d like to receive information on professional Deitel Developer Series titles, including
Android for Programmers: An App-Driven Approach, please register your copy of Java for
Programmers, 2/e at informit.com/register. You’ll receive information on how to pur-
chase Android for Programmers at a discount.

Java Fundamentals: Parts I, II and III, Second Edition LiveLessons
Video Training Product
Our Java Fundamentals: Parts I, II and III, Second Edition LiveLessons video training prod-
uct shows you what you need to know to start building robust, powerful software with Java.
It includes 20+ hours of expert training synchronized with Java for Programmers, 2/e. Check
out our growing list of LiveLessons video products:

• Java Fundamentals I and II

• C# 2010 Fundamentals I, II, and III

• C# 2008 Fundamentals I and II

• C++ Fundamentals I and II

• iPhone App-Development Fundamentals I and II

• JavaScript Fundamentals I and II

• Visual Basic 2010 Fundamentals I and II

Coming Soon
• Java Fundamentals I, II and III, Second Edition

• C Fundamentals I and II

• Android App Development Fundamentals I and II

• iPhone and iPad App-Development Fundamentals I and II, Second Edition

For additional information about Deitel LiveLessons video products, visit:

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
Barbara devoted long hours to Internet research to support our writing efforts. Abbey wrote
the new engaging Chapter 1 and the new cover copy. We’re fortunate to have worked on
this project with the dedicated team of publishing professionals at Pearson. We appreciate

www.deitel.com/ResourceCenters.html

www.deitel.com/livelessons

http://www.deitel.com/ResourceCenters.html
http://www.deitel.com/livelessons

xxvi Preface

the guidance, savvy and energy of Mark Taub, Editor-in-Chief of Computer Science. John
Fuller managed the book’s production. Sandra Schroeder did the cover design.

Reviewers
We wish to acknowledge the efforts of the reviewers who contributed to the recent editions
of this content. They scrutinized the text and the programs and provided countless sug-
gestions for improving the presentation: Lance Andersen (Oracle), Soundararajan An-
gusamy (Sun Microsystems), Joseph Bowbeer (Consultant), William E. Duncan
(Louisiana State University), Diana Franklin (University of California, Santa Barbara),
Edward F. Gehringer (North Carolina State University), Huiwei Guan (Northshore
Community College), Ric Heishman (George Mason University), Dr. Heinz Kabutz
(JavaSpecialists.eu), Patty Kraft (San Diego State University), Lawrence Premkumar (Sun
Microsystems), Tim Margush (University of Akron), Sue McFarland Metzger (Villanova
University), Shyamal Mitra (The University of Texas at Austin), Peter Pilgrim (Java
Champion, Consultant), Manjeet Rege, Ph.D. (Rochester Institute of Technology), Man-
fred Riem (Java Champion, Consultant, Robert Half), Simon Ritter (Oracle), Susan Rod-
ger (Duke University), Amr Sabry (Indiana University), José Antonio González Seco
(Parliament of Andalusia), Sang Shin (Sun Microsystems), S. Sivakumar (Astra Infotech
Private Limited), Raghavan “Rags” Srinivas (Intuit), Monica Sweat (Georgia Tech), Vi-
nod Varma (Astra Infotech Private Limited) and Alexander Zuev (Sun Microsystems).

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. We hope you enjoy working with Java for Programmers, 2/e.
Good luck!

Paul and Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. He holds the Sun (now Oracle) Certi-
fied Java Programmer and Certified Java Developer certifications, and is an Oracle Java
Champion. Through Deitel & Associates, Inc., he has delivered Java, C#, Visual Basic, C++,
C and Internet programming courses to industry clients, including Cisco, IBM, Sun Micro-
systems, Dell, Siemens, Lucent Technologies, Fidelity, NASA at the Kennedy Space Center,
the National Severe Storm Laboratory, White Sands Missile Range, Rogue Wave Software,
Boeing, SunGard Higher Education, Stratus, Cambridge Technology Partners, One Wave,
Hyperion Software, Adra Systems, Entergy, CableData Systems, Nortel Networks, Puma,
iRobot, Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the
world’s best-selling programming-language textbook/professional book authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees from MIT and a Ph.D. from Boston University. He has extensive industry and
academic experience, including earning tenure and serving as the Chairman of the Com-
puter Science Department at Boston College before founding Deitel & Associates, Inc.,

deitel@deitel.com

About Deitel & Associates, Inc. xxvii

with his son, Paul J. Deitel. He and Paul are the co-authors of dozens of books and multi-
media packages and they are writing many more. With translations published in Japanese,
German, Russian, Chinese, Spanish, Korean, French, Polish, Italian, Portuguese, Greek,
Urdu and Turkish, the Deitels’ texts have earned international recognition. Dr. Deitel has
delivered hundreds of professional seminars to major corporations, academic institutions,
government organizations and the military.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring, corporate training and software development organization specializ-
ing in computer programming languages, object technology, Android and iPhone app de-
velopment, and Internet and web software technology. The company offers instructor-led
training courses delivered at client sites worldwide on major programming languages and
platforms, such as Java™, C, C++, Visual C#®, Visual Basic®, Objective-C, and iPhone and
iPad app development, Android app development, XML®, Python®, object technology, In-
ternet and web programming, and a growing list of additional programming and software
development courses. The company’s clients include many of the world’s largest companies,
government agencies, branches of the military, and academic institutions.

Through its 35-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming professional books, college text-
books, and LiveLessons DVD- and web-based video courses. Deitel & Associates, Inc. and
the authors can be reached at:

To learn more about Deitel’s Dive Into® Series Corporate Training curriculum, visit:

subscribe to the free Deitel® Buzz Online e-mail newsletter at:

and follow the authors on Facebook

and Twitter

To request a proposal for on-site, instructor-led training at your company or organization,
e-mail

Individuals wishing to purchase Deitel books and LiveLessons DVD training courses
can do so through www.deitel.com. Bulk orders by corporations, the government, the
military and academic institutions should be placed directly with Pearson. For more infor-
mation, visit www.pearsoned.com/professional/index.htm.

deitel@deitel.com

www.deitel.com/training/

www.deitel.com/newsletter/subscribe.html

www.facebook.com/DeitelFan

@deitel

deitel@deitel.com

http://www.deitel.com
http://www.pearsoned.com/professional/index.htm
http://www.deitel.com/training/
http://www.deitel.com/newsletter/subscribe.html
http://www.facebook.com/DeitelFan

This page intentionally left blank

This section contains information you should review before using this book and instruc-
tions to ensure that your computer is set up properly for use with this book. We’ll post
updates (if any) to the Before You Begin section on the book’s website:

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to emphasize on-screen com-
ponents in a sans-serif bold Helvetica font (for example, File menu) and to emphasize Java
code and commands in a sans-serif Lucida font (for example, System.out.println()).

Software Used in the Book
All the software you’ll need for this book is available free for download from the web.

Java SE Software Development Kit (JDK) 6 and 7
We wrote most of the examples in Java for Programmers, 2/e, using the free Java Standard
Edition Development Kit (JDK) 6, which is available from:

For the Java SE 7 modules, we used the OpenJDK’s early access version of JDK 7, which
is available from:

Java DB, MySQL and MySQL Connector/J
In Chapter 25, we use the Java DB and MySQL Community Edition database manage-
ment systems. Java DB is part of the JDK installation. At the time of this writing, the
JDK’s 64-bit installer was not properly installing Java DB. If you are using the 64-bit ver-
sion of Java, you may need to install Java DB separately. You can download Java DB from:

At the time of this writing, the latest release of MySQL Community Edition was
5.5.8. To install MySQL Community Edition on Windows, Linux or Mac OS X, see the
installation overview for your platform at:

• Windows: dev.mysql.com/doc/refman/5.5/en/windows-installation.html

• Linux: dev.mysql.com/doc/refman/5.5/en/linux-installation-rpm.html

• Mac OS X: dev.mysql.com/doc/refman/5.5/en/macosx-installation.html

www.deitel.com/books/javafp2/

www.oracle.com/technetwork/java/javase/downloads/index.html

dlc.sun.com.edgesuite.net/jdk7/binaries-/index.html

www.oracle.com/technetwork/java/javadb/downloads/index.html

Before You Begin

http://www.deitel.com/books/javafp2/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javadb/downloads/index.html

xxx

Carefully follow the instructions for downloading and installing the software on your plat-
form. The downloads are available from:

You also need to install MySQL Connector/J (the J stands for Java), which allows pro-
grams to use JDBC to interact with MySQL. MySQL Connector/J can be downloaded
from

At the time of this writing, the current generally available release of MySQL Connector/J
is 5.1.14. The documentation for Connector/J is located at

To install MySQL Connector/J, carefully follow the installation instructions at:

We do not recommend modifying your system’s CLASSPATH environment variable, which
is discussed in the installation instructions. Instead, we’ll show you how use MySQL Con-
nector/J by specifying it as a command-line option when you execute your applications.

Obtaining the Code Examples
The examples for Java for Programmers, 2/e are available for download at

If you’re not already registered at our website, go to www.deitel.com and click the Register
link below our logo in the upper-left corner of the page. Fill in your information. There’s
no charge to register, and we do not share your information with anyone. We send you
only account-management e-mails unless you register separately for our free Deitel® Buzz
Online e-mail newsletter at www.deitel.com/newsletter/subscribe.html. After regis-
tering for the site, you’ll receive a confirmation e-mail with your verification code. Click
the link in the confirmation e-mail to complete your registration. Configure your e-mail client
to allow e-mails from deitel.com to ensure that the confirmation email is not filtered as
junk mail.

Next, go to www.deitel.com and sign in using the Login link below our logo in the
upper-left corner of the page. Go to www.deitel.com/books/javafp2/. You’ll find the
link to download the examples under the heading Download Code Examples and Other Pre-
mium Content for Registered Users. Write down the location where you choose to save the
ZIP file on your computer. We assume the examples are located at C:\Examples on your
computer.

Setting the PATH Environment Variable
The PATH environment variable on your computer designates which directories the com-
puter searches when looking for applications, such as the applications that enable you to
compile and run your Java applications (called javac and java, respectively). Carefully fol-
low the installation instructions for Java on your platform to ensure that you set the PATH envi-
ronment variable correctly.

dev.mysql.com/downloads/mysql/

dev.mysql.com/downloads/connector/j/

dev.mysql.com/doc/refman/5.5/en/connector-j.html

dev.mysql.com/doc/refman/5.5/en/connector-j-installing.html

www.deitel.com/books/javafp2/

http://www.deitel.com
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com
http://www.deitel.com/books/javafp2/
http://www.deitel.com/books/javafp2/

Setting the CLASSPATH Environment Variable xxxi

If you do not set the PATH variable correctly, when you use the JDK’s tools, you’ll
receive a message like:

In this case, go back to the installation instructions for setting the PATH and recheck your
steps. If you’ve downloaded a newer version of the JDK, you may need to change the name
of the JDK’s installation directory in the PATH variable.

Setting the CLASSPATH Environment Variable
If you attempt to run a Java program and receive a message like

then your system has a CLASSPATH environment variable that must be modified. To fix the
preceding error, follow the steps in setting the PATH environment variable, to locate the
CLASSPATH variable, then edit the variable’s value to include the local directory—typically
represented as a dot (.). On Windows add

at the beginning of the CLASSPATH’s value (with no spaces before or after these characters).
On other platforms, replace the semicolon with the appropriate path separator charac-
ters—often a colon (:)

Java’s Nimbus Look-and-Feel
Java comes bundled with an elegant, cross-platform look-and-feel known as Nimbus. For
programs with graphical user interfaces, we’ve configured our systems to use Nimbus as
the default look-and-feel.

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

For more information on locating these installation folders visit java.sun.com/javase/
6/webnotes/install/index.html. [Note: In addition to the standalone JRE, there’s a
JRE nested in your JDK’s installation folder. If you’re using an IDE that depends on the
JDK (e.g., NetBeans), you may also need to place the swing.properties file in the nested
jre folder’s lib folder.]

'java' is not recognized as an internal or external command,
operable program or batch file.

Exception in thread "main" java.lang.NoClassDefFoundError: YourClass

.;

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

This page intentionally left blank

10
Object-Oriented
Programming:
Polymorphism

O b j e c t i v e s
In this chapter you’ll learn:

� The concept of polymorphism.

� To use overridden methods to effect polymorphism.

� To distinguish between abstract and concrete classes.

� To declare abstract methods to create abstract classes.

� How polymorphism makes systems extensible and
maintainable.

� To determine an object’s type at execution time.

� To declare and implement interfaces.

One Ring to rule them all,
One Ring to find them,
One Ring to bring them all
and in the darkness bind
them.
—John Ronald Reuel Tolkien

General propositions do not
decide concrete cases.
—Oliver Wendell Holmes

A philosopher of imposing
stature doesn’t think in a
vacuum. Even his most
abstract ideas are, to some
extent, conditioned by what
is or is not known in the
time when he lives.
—Alfred North Whitehead

Why art thou cast down, O
my soul?
—Psalms 42:5

10.1 Introduction 255

10.1 Introduction
We continue our study of object-oriented programming by explaining and demonstrating
polymorphism with inheritance hierarchies. Polymorphism enables you to “program in
the general” rather than “program in the specific.” In particular, polymorphism enables
you to write programs that process objects that share the same superclass (either directly
or indirectly) as if they’re all objects of the superclass; this can simplify programming.

Consider the following example of polymorphism. Suppose we create a program that
simulates the movement of several types of animals for a biological study. Classes Fish,
Frog and Bird represent the types of animals under investigation. Imagine that each class
extends superclass Animal, which contains a method move and maintains an animal’s cur-
rent location as x-y coordinates. Each subclass implements method move. Our program
maintains an Animal array containing references to objects of the various Animal sub-
classes. To simulate the animals’ movements, the program sends each object the same mes-
sage once per second—namely, move. Each specific type of Animal responds to a move

message in its own way—a Fish might swim three feet, a Frog might jump five feet and a
Bird might fly ten feet. Each object knows how to modify its x-y coordinates appropriately
for its specific type of movement. Relying on each object to know how to “do the right
thing” (i.e., do what is appropriate for that type of object) in response to the same method
call is the key concept of polymorphism. The same message (in this case, move) sent to a
variety of objects has “many forms” of results—hence the term polymorphism.

Implementing for Extensibility
With polymorphism, we can design and implement systems that are easily extensible—
new classes can be added with little or no modification to the general portions of the pro-
gram, as long as the new classes are part of the inheritance hierarchy that the program pro-
cesses generically. The only parts of a program that must be altered are those that require
direct knowledge of the new classes that we add to the hierarchy. For example, if we extend

10.1 Introduction
10.2 Polymorphism Examples
10.3 Demonstrating Polymorphic Behavior
10.4 Abstract Classes and Methods
10.5 Case Study: Payroll System Using

Polymorphism
10.5.1 Abstract Superclass Employee
10.5.2 Concrete Subclass

SalariedEmployee
10.5.3 Concrete SubclassHourlyEmployee
10.5.4 Concrete Subclass

CommissionEmployee
10.5.5 Indirect Concrete Subclass

BasePlusCommissionEmployee
10.5.6 Polymorphic Processing, Operator

instanceof and Downcasting
10.5.7 Summary of the Allowed

Assignments Between Superclass and
Subclass Variables

10.6 final Methods and Classes
10.7 Case Study: Creating and Using

Interfaces
10.7.1 Developing a Payable Hierarchy
10.7.2 Interface Payable
10.7.3 Class Invoice
10.7.4 Modifying Class Employee to

Implement Interface Payable
10.7.5 Modifying Class

SalariedEmployee for Use in the
Payable Hierarchy

10.7.6 Using Interface Payable to Process
Invoices and Employees
Polymorphically

10.7.7 Common Interfaces of the Java API
10.8 Wrap-Up

256 Chapter 10 Object-Oriented Programming: Polymorphism

class Animal to create class Tortoise (which might respond to a move message by crawling
one inch), we need to write only the Tortoise class and the part of the simulation that
instantiates a Tortoise object. The portions of the simulation that tell each Animal to
move generically can remain the same.

Chapter Overview
First, we discuss common examples of polymorphism. We then provide a simple example
demonstrating polymorphic behavior. We use superclass references to manipulate both su-
perclass objects and subclass objects polymorphically.

We then present a case study that revisits the employee hierarchy of Section 9.4.5. We
develop a simple payroll application that polymorphically calculates the weekly pay of sev-
eral different types of employees using each employee’s earnings method. Though the
earnings of each type of employee are calculated in a specific way, polymorphism allows
us to process the employees “in the general.” In the case study, we enlarge the hierarchy to
include two new classes—SalariedEmployee (for people paid a fixed weekly salary) and
HourlyEmployee (for people paid an hourly salary and “time-and-a-half” for overtime).
We declare a common set of functionality for all the classes in the updated hierarchy in an
“abstract” class, Employee, from which “concrete”classes SalariedEmployee, HourlyEm-
ployee and CommissionEmployee inherit directly and “concrete” class BasePlusCommis-
sionEmployee inherits indirectly. As you’ll soon see, when we invoke each employee’s
earnings method off a superclass Employee reference, the correct earnings subclass calculation
is performed, due to Java’s polymorphic capabilities.

Programming in the Specific
Occasionally, when performing polymorphic processing, we need to program “in the spe-
cific.” Our Employee case study demonstrates that a program can determine the type of an
object at execution time and act on that object accordingly. In the case study, we’ve decided
that BasePlusCommissionEmployees should receive 10% raises on their base salaries. So,
we use these capabilities to determine whether a particular employee object is a Base-

PlusCommissionEmployee. If so, we increase that employee’s base salary by 10%.

Interfaces
The chapter continues with an introduction to Java interfaces. An interface describes a set
of methods that can be called on an object, but does not provide concrete implementations
for all the methods. You can declare classes that implement (i.e., provide concrete imple-
mentations for the methods of) one or more interfaces. Each interface method must be de-
clared in all the classes that explicitly implement the interface. Once a class implements an
interface, all objects of that class have an is-a relationship with the interface type, and all
objects of the class are guaranteed to provide the functionality described by the interface.
This is true of all subclasses of that class as well.

Interfaces are particularly useful for assigning common functionality to possibly unre-
lated classes. This allows objects of unrelated classes to be processed polymorphically—
objects of classes that implement the same interface can respond to all of the interface
method calls. To demonstrate creating and using interfaces, we modify our payroll appli-
cation to create a general accounts payable application that can calculate payments due for
company employees and invoice amounts to be billed for purchased goods. As you’ll see,
interfaces enable polymorphic capabilities similar to those possible with inheritance.

10.2 Polymorphism Examples 257

10.2 Polymorphism Examples
We now consider several additional examples of polymorphism.

Quadrilaterals
If class Rectangle is derived from class Quadrilateral, then a Rectangle object is a more
specific version of a Quadrilateral. Any operation (e.g., calculating the perimeter or the
area) that can be performed on a Quadrilateral can also be performed on a Rectangle.
These operations can also be performed on other Quadrilaterals, such as Squares, Par-
allelograms and Trapezoids. The polymorphism occurs when a program invokes a meth-
od through a superclass Quadrilateral variable—at execution time, the correct subclass
version of the method is called, based on the type of the reference stored in the superclass
variable. You’ll see a simple code example that illustrates this process in Section 10.3.

Space Objects in a Video Game
Suppose we design a video game that manipulates objects of classes Martian, Venusian, Plu-
tonian, SpaceShip and LaserBeam. Imagine that each class inherits from the superclass Spa-
ceObject, which contains method draw. Each subclass implements this method. A screen
manager maintains a collection (e.g., a SpaceObject array) of references to objects of the var-
ious classes. To refresh the screen, the screen manager periodically sends each object the same
message—namely, draw. However, each object responds its own way, based on its class. For
example, a Martian object might draw itself in red with green eyes and the appropriate num-
ber of antennae. A SpaceShip object might draw itself as a bright silver flying saucer. A La-

serBeam object might draw itself as a bright red beam across the screen. Again, the same
message (in this case, draw) sent to a variety of objects has “many forms” of results.

A screen manager might use polymorphism to facilitate adding new classes to a system
with minimal modifications to the system’s code. Suppose that we want to add Mercurian

objects to our video game. To do so, we’d build a class Mercurian that extends SpaceOb-
ject and provides its own draw method implementation. When Mercurian objects appear
in the SpaceObject collection, the screen manager code invokes method draw, exactly as it
does for every other object in the collection, regardless of its type. So the new Mercurian objects
simply “plug right in” without any modification of the screen manager code by the pro-
grammer. Thus, without modifying the system (other than to build new classes and
modify the code that creates new objects), you can use polymorphism to conveniently
include additional types that were not envisioned when the system was created.

Software Engineering Observation 10.1
Polymorphism enables you to deal in generalities and let the execution-time environment
handle the specifics. You can command objects to behave in manners appropriate to those
objects, without knowing their types (as long as the objects belong to the same inheritance
hierarchy).

Software Engineering Observation 10.2
Polymorphism promotes extensibility: Software that invokes polymorphic behavior is
independent of the object types to which messages are sent. New object types that can
respond to existing method calls can be incorporated into a system without modifying the
base system. Only client code that instantiates new objects must be modified to
accommodate new types.

258 Chapter 10 Object-Oriented Programming: Polymorphism

10.3 Demonstrating Polymorphic Behavior
Section 9.4 created a class hierarchy, in which class BasePlusCommissionEmployee inher-
ited from CommissionEmployee. The examples in that section manipulated Commission-

Employee and BasePlusCommissionEmployee objects by using references to them to
invoke their methods—we aimed superclass variables at superclass objects and subclass
variables at subclass objects. These assignments are natural and straightforward—super-
class variables are intended to refer to superclass objects, and subclass variables are intended
to refer to subclass objects. However, as you’ll soon see, other assignments are possible.

In the next example, we aim a superclass reference at a subclass object. We then show
how invoking a method on a subclass object via a superclass reference invokes the subclass
functionality—the type of the referenced object, not the type of the variable, determines
which method is called. This example demonstrates that an object of a subclass can be treated
as an object of its superclass, enabling various interesting manipulations. A program can
create an array of superclass variables that refer to objects of many subclass types. This is
allowed because each subclass object is an object of its superclass. For instance, we can
assign the reference of a BasePlusCommissionEmployee object to a superclass Commission-
Employee variable, because a BasePlusCommissionEmployee is a CommissionEmployee—
we can treat a BasePlusCommissionEmployee as a CommissionEmployee.

As you’ll learn later in the chapter, you cannot treat a superclass object as a subclass
object, because a superclass object is not an object of any of its subclasses. For example, we
cannot assign the reference of a CommissionEmployee object to a subclass BasePlusCom-
missionEmployee variable, because a CommissionEmployee is not a BasePlusCommission-
Employee—a CommissionEmployee does not have a baseSalary instance variable and does
not have methods setBaseSalary and getBaseSalary. The is-a relationship applies only
up the hierarchy from a subclass to its direct (and indirect) superclasses, and not vice versa
(i.e., not down the hierarchy from a superclass to its subclasses).

The Java compiler does allow the assignment of a superclass reference to a subclass
variable if we explicitly cast the superclass reference to the subclass type—a technique we
discuss in Section 10.5. Why would we ever want to perform such an assignment? A super-
class reference can be used to invoke only the methods declared in the superclass—
attempting to invoke subclass-only methods through a superclass reference results in com-
pilation errors. If a program needs to perform a subclass-specific operation on a subclass
object referenced by a superclass variable, the program must first cast the superclass refer-
ence to a subclass reference through a technique known as downcasting. This enables the
program to invoke subclass methods that are not in the superclass. We show a downcasting
example in Section 10.5.

The example in Fig. 10.1 demonstrates three ways to use superclass and subclass vari-
ables to store references to superclass and subclass objects. The first two are straightfor-
ward—as in Section 9.4, we assign a superclass reference to a superclass variable, and a
subclass reference to a subclass variable. Then we demonstrate the relationship between
subclasses and superclasses (i.e., the is-a relationship) by assigning a subclass reference to a
superclass variable. This program uses classes CommissionEmployee and BasePlusCommis-

sionEmployee from Fig. 9.10 and Fig. 9.11, respectively.
In Fig. 10.1, lines 10–11 create a CommissionEmployee object and assign its reference

to a CommissionEmployee variable. Lines 14–16 create a BasePlusCommissionEmployee

object and assign its reference to a BasePlusCommissionEmployee variable. These assign-

10.3 Demonstrating Polymorphic Behavior 259

1 // Fig. 10.1: PolymorphismTest.java
2 // Assigning superclass and subclass references to superclass and
3 // subclass variables.
4
5 public class PolymorphismTest
6 {
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15
16
17
18 // invoke toString on superclass object using superclass variable
19 System.out.printf("%s %s:\n\n%s\n\n",
20 "Call CommissionEmployee's toString with superclass reference ",
21 "to superclass object",);
22
23 // invoke toString on subclass object using subclass variable
24 System.out.printf("%s %s:\n\n%s\n\n",
25 "Call BasePlusCommissionEmployee's toString with subclass",
26 "reference to subclass object",
27);
28
29 // invoke toString on subclass object using superclass variable
30
31
32 System.out.printf("%s %s:\n\n%s\n",
33 "Call BasePlusCommissionEmployee's toString with superclass",
34 "reference to subclass object",);
35 } // end main
36 } // end class PolymorphismTest

Call CommissionEmployee's toString with superclass reference to superclass
object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Call BasePlusCommissionEmployee's toString with subclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 1 of 2.)

// assign superclass reference to superclass variable
CommissionEmployee commissionEmployee = new CommissionEmployee(

"Sue", "Jones", "222-22-2222", 10000, .06);

// assign subclass reference to subclass variable
BasePlusCommissionEmployee basePlusCommissionEmployee =

new BasePlusCommissionEmployee(
"Bob", "Lewis", "333-33-3333", 5000, .04, 300);

commissionEmployee.toString()

basePlusCommissionEmployee.toString()

CommissionEmployee commissionEmployee2 =
basePlusCommissionEmployee;

commissionEmployee2.toString()

260 Chapter 10 Object-Oriented Programming: Polymorphism

ments are natural—for example, a CommissionEmployee variable’s primary purpose is to
hold a reference to a CommissionEmployee object. Lines 19–21 use commissionEmployee

to invoke toString explicitly. Because commissionEmployee refers to a CommissionEm-

ployee object, superclass CommissionEmployee’s version of toString is called. Similarly,
lines 24–27 use basePlusCommissionEmployee to invoke toString explicitly on the
BasePlusCommissionEmployee object. This invokes subclass BasePlusCommissionEm-

ployee’s version of toString.
Lines 30–31 then assign the reference of subclass object basePlusCommissionEm-

ployee to a superclass CommissionEmployee variable, which lines 32–34 use to invoke
method toString. When a superclass variable contains a reference to a subclass object, and
that reference is used to call a method, the subclass version of the method is called. Hence,
commissionEmployee2.toString() in line 34 actually calls class BasePlusCommissionEm-
ployee’s toString method. The Java compiler allows this “crossover” because an object
of a subclass is an object of its superclass (but not vice versa). When the compiler encoun-
ters a method call made through a variable, the compiler determines if the method can be
called by checking the variable’s class type. If that class contains the proper method decla-
ration (or inherits one), the call is compiled. At execution time, the type of the object to
which the variable refers determines the actual method to use. This process, called dynamic
binding, is discussed in detail in Section 10.5.

10.4 Abstract Classes and Methods
When we think of a class, we assume that programs will create objects of that type. Some-
times it’s useful to declare classes—called abstract classes—for which you never intend to
create objects. Because they’re used only as superclasses in inheritance hierarchies, we refer
to them as abstract superclasses. These classes cannot be used to instantiate objects, be-
cause, as we’ll soon see, abstract classes are incomplete. Subclasses must declare the “missing
pieces” to become “concrete” classes, from which you can instantiate objects. Otherwise,
these subclasses, too, will be abstract. We demonstrate abstract classes in Section 10.5.

Purpose of Abstract Classes
An abstract class’s purpose is to provide an appropriate superclass from which other classes
can inherit and thus share a common design. In the Shape hierarchy of Fig. 9.3, for exam-
ple, subclasses inherit the notion of what it means to be a Shape—perhaps common attri-
butes such as location, color and borderThickness, and behaviors such as draw, move,
resize and changeColor. Classes that can be used to instantiate objects are called concrete

Call BasePlusCommissionEmployee's toString with superclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 2 of 2.)

10.4 Abstract Classes and Methods 261

classes. Such classes provide implementations of every method they declare (some of the
implementations can be inherited). For example, we could derive concrete classes Circle,
Square and Triangle from abstract superclass TwoDimensionalShape. Similarly, we could
derive concrete classes Sphere, Cube and Tetrahedron from abstract superclass ThreeDi-
mensionalShape. Abstract superclasses are too general to create real objects—they specify
only what is common among subclasses. We need to be more specific before we can create
objects. For example, if you send the draw message to abstract class TwoDimensionalShape,
the class knows that two-dimensional shapes should be drawable, but it does not know
what specific shape to draw, so it cannot implement a real draw method. Concrete classes
provide the specifics that make it reasonable to instantiate objects.

Not all hierarchies contain abstract classes. However, you’ll often write client code
that uses only abstract superclass types to reduce the client code’s dependencies on a range
of subclass types. For example, you can write a method with a parameter of an abstract
superclass type. When called, such a method can receive an object of any concrete class
that directly or indirectly extends the superclass specified as the parameter’s type.

Abstract classes sometimes constitute several levels of a hierarchy. For example, the
Shape hierarchy of Fig. 9.3 begins with abstract class Shape. On the next level of the hier-
archy are abstract classes TwoDimensionalShape and ThreeDimensionalShape. The next
level of the hierarchy declares concrete classes for TwoDimensionalShapes (Circle, Square
and Triangle) and for ThreeDimensionalShapes (Sphere, Cube and Tetrahedron).

Declaring an Abstract Class and Abstract Methods
You make a class abstract by declaring it with keyword abstract. An abstract class nor-
mally contains one or more abstract methods. An abstract method is one with keyword
abstract in its declaration, as in

Abstract methods do not provide implementations. A class that contains any abstract
methods must be explicitly declared abstract even if that class contains some concrete
(nonabstract) methods. Each concrete subclass of an abstract superclass also must provide
concrete implementations of each of the superclass’s abstract methods. Constructors and
static methods cannot be declared abstract. Constructors are not inherited, so an
abstract constructor could never be implemented. Though non-private static

methods are inherited, they cannot be overridden. Since abstract methods are meant to
be overridden so that they can process objects based on their types, it would not make
sense to declare a static method as abstract.

public abstract void draw(); // abstract method

Software Engineering Observation 10.3
An abstract class declares common attributes and behaviors (both abstract and concrete)
of the various classes in a class hierarchy. An abstract class typically contains one or more
abstract methods that subclasses must override if they are to be concrete. The instance
variables and concrete methods of an abstract class are subject to the normal rules of
inheritance.

Common Programming Error 10.1
Attempting to instantiate an object of an abstract class is a compilation error.

262 Chapter 10 Object-Oriented Programming: Polymorphism

Using Abstract Classes to Declare Variables
Although we cannot instantiate objects of abstract superclasses, you’ll soon see that we can
use abstract superclasses to declare variables that can hold references to objects of any con-
crete class derived from those abstract superclasses. Programs typically use such variables
to manipulate subclass objects polymorphically. You also can use abstract superclass names
to invoke static methods declared in those abstract superclasses.

Consider another application of polymorphism. A drawing program needs to display
many shapes, including types of new shapes that you’ll add to the system after writing the
drawing program. The drawing program might need to display shapes, such as Circles,
Triangles, Rectangles or others, that derive from abstract class Shape. The drawing pro-
gram uses Shape variables to manage the objects that are displayed. To draw any object in
this inheritance hierarchy, the drawing program uses a superclass Shape variable con-
taining a reference to the subclass object to invoke the object’s draw method. This method
is declared abstract in superclass Shape, so each concrete subclass must implement
method draw in a manner specific to that shape—each object in the Shape inheritance
hierarchy knows how to draw itself. The drawing program does not have to worry about the
type of each object or whether the program has ever encountered objects of that type.

Layered Software Systems
Polymorphism is particularly effective for implementing so-called layered software sys-
tems. In operating systems, for example, each type of physical device could operate quite
differently from the others. Even so, commands to read or write data from and to devices
may have a certain uniformity. For each device, the operating system uses a piece of soft-
ware called a device driver to control all communication between the system and the de-
vice. The write message sent to a device-driver object needs to be interpreted specifically
in the context of that driver and how it manipulates devices of a specific type. However,
the write call itself really is no different from the write to any other device in the system—
place some number of bytes from memory onto that device. An object-oriented operating
system might use an abstract superclass to provide an “interface” appropriate for all device
drivers. Then, through inheritance from that abstract superclass, subclasses are formed
that all behave similarly. The device-driver methods are declared as abstract methods in
the abstract superclass. The implementations of these abstract methods are provided in the
concrete subclasses that correspond to the specific types of device drivers. New devices are
always being developed, often long after the operating system has been released. When you
buy a new device, it comes with a device driver provided by the device vendor. The device
is immediately operational after you connect it to your computer and install the driver.
This is another elegant example of how polymorphism makes systems extensible.

10.5 Case Study: Payroll System Using Polymorphism
This section reexamines the hierarchy that we explored throughout Section 9.4. Now we
use an abstract method and polymorphism to perform payroll calculations based on an en-
hanced employee inheritance hierarchy that meets the following requirements:

Common Programming Error 10.2
Failure to implement a superclass’s abstract methods in a subclass is a compilation error
unless the subclass is also declared abstract.

10.5 Case Study: Payroll System Using Polymorphism 263

A company pays its employees on a weekly basis. The employees are of four types: Salaried
employees are paid a fixed weekly salary regardless of the number of hours worked, hourly
employees are paid by the hour and receive overtime pay (i.e., 1.5 times their hourly sal-
ary rate) for all hours worked in excess of 40 hours, commission employees are paid a per-
centage of their sales and base-salaried commission employees receive a base salary plus a
percentage of their sales. For the current pay period, the company has decided to reward
salaried-commission employees by adding 10% to their base salaries. The company
wants to write an application that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The
classes that extend Employee are SalariedEmployee, CommissionEmployee and HourlyEm-

ployee. Class BasePlusCommissionEmployee—which extends CommissionEmployee—
represents the last employee type. The UML class diagram in Fig. 10.2 shows the inheri-
tance hierarchy for our polymorphic employee-payroll application. Abstract class name
Employee is italicized—a convention of the UML.

Abstract superclass Employee declares the “interface” to the hierarchy—that is, the set
of methods that a program can invoke on all Employee objects. We use the term “interface”
here in a general sense to refer to the various ways programs can communicate with objects
of any Employee subclass. Be careful not to confuse the general notion of an “interface”
with the formal notion of a Java interface, the subject of Section 10.7. Each employee,
regardless of the way his or her earnings are calculated, has a first name, a last name and a
social security number, so private instance variables firstName, lastName and social-

SecurityNumber appear in abstract superclass Employee.
The following sections implement the Employee class hierarchy of Fig. 10.2. The first

section implements abstract superclass Employee. The next four sections each implement
one of the concrete classes. The last section implements a test program that builds objects
of all these classes and processes those objects polymorphically.

10.5.1 Abstract Superclass Employee
Class Employee (Fig. 10.4) provides methods earnings and toString, in addition to the
get and set methods that manipulate Employee’s instance variables. An earnings method
certainly applies generically to all employees. But each earnings calculation depends on the
employee’s class. So we declare earnings as abstract in superclass Employee because a de-

Fig. 10.2 | Employee hierarchy UML class diagram.

Employee

CommissionEmployee HourlyEmployeeSalariedEmployee

BasePlusCommissionEmployee

264 Chapter 10 Object-Oriented Programming: Polymorphism

fault implementation does not make sense for that method—there isn’t enough informa-
tion to determine what amount earnings should return. Each subclass overrides earnings
with an appropriate implementation. To calculate an employee’s earnings, the program as-
signs to a superclass Employee variable a reference to the employee’s object, then invokes
the earnings method on that variable. We maintain an array of Employee variables, each
holding a reference to an Employee object. (Of course, there cannot be Employee objects,
because Employee is an abstract class. Because of inheritance, however, all objects of all
subclasses of Employee may nevertheless be thought of as Employee objects.) The program
will iterate through the array and call method earnings for each Employee object. Java
processes these method calls polymorphically. Declaring earnings as an abstract method
in Employee enables the calls to earnings through Employee variables to compile and forc-
es every direct concrete subclass of Employee to override earnings.

Method toString in class Employee returns a String containing the first name, last
name and social security number of the employee. As we’ll see, each subclass of Employee
overrides method toString to create a String representation of an object of that class that
contains the employee’s type (e.g., "salaried employee:") followed by the rest of the
employee’s information.

The diagram in Fig. 10.3 shows each of the five classes in the hierarchy down the left
side and methods earnings and toString across the top. For each class, the diagram

Fig. 10.3 | Polymorphic interface for the Employee hierarchy classes.

weeklySalary

abstract

Commission-
Employee

BasePlus-
Commission-
Employee

Hourly-
Employee

Salaried-
Employee

Employee

toStringearnings

if (hours <= 40)
wage * hours

else if (hours > 40)
{

40 * wage +
(hours - 40) *
wage * 1.5

}

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklySalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage; hours worked: hours

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate

base salaried commission employee:
firstName lastName

social security number: SSN
gross sales: grossSales;
commission rate: commissionRate;
base salary: baseSalary

firstName lastName
social security number: SSN

10.5 Case Study: Payroll System Using Polymorphism 265

shows the desired results of each method. We do not list superclass Employee’s get and set
methods because they’re not overridden in any of the subclasses—each of these methods
is inherited and used “as is” by each subclass.

Let’s consider class Employee’s declaration (Fig. 10.4). The class includes a con-
structor that takes the first name, last name and social security number as arguments (lines
11–16); get methods that return the first name, last name and social security number (lines
25–28, 37–40 and 49–52, respectively); set methods that set the first name, last name and
social security number (lines 19–22, 31–34 and 43–46, respectively); method toString

(lines 55–60), which returns the String representation of an Employee; and abstract

method earnings (line 63), which will be implemented by each of the concrete subclasses.
The Employee constructor does not validate its parameters in this example; normally, such
validation should be provided.

Why did we decide to declare earnings as an abstract method? It simply does not
make sense to provide an implementation of this method in class Employee. We cannot
calculate the earnings for a general Employee—we first must know the specific type of
Employee to determine the appropriate earnings calculation. By declaring this method
abstract, we indicate that each concrete subclass must provide an appropriate earnings

implementation and that a program will be able to use superclass Employee variables to
invoke method earnings polymorphically for any type of Employee.

1 // Fig. 10.4: Employee.java
2 // Employee abstract superclass.
3
4
5 {
6 private String firstName;
7 private String lastName;
8 private String socialSecurityNumber;
9

10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17
18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first; // should validate
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29

Fig. 10.4 | Employee abstract superclass. (Part 1 of 2.)

public abstract class Employee

266 Chapter 10 Object-Oriented Programming: Polymorphism

10.5.2 Concrete Subclass SalariedEmployee
Class SalariedEmployee (Fig. 10.5) extends class Employee (line 4) and overrides abstract
method earnings (lines 33–37), which makes SalariedEmployee a concrete class. The
class includes a constructor (lines 9–14) that takes a first name, a last name, a social secu-
rity number and a weekly salary as arguments; a set method to assign a new nonnegative
value to instance variable weeklySalary (lines 17–24); a get method to return weeklySal-

ary’s value (lines 27–30); a method earnings (lines 33–37) to calculate a SalariedEm-

ployee’s earnings; and a method toString (lines 40–45), which returns a String

including the employee’s type, namely, "salaried employee: " followed by employee-
specific information produced by superclass Employee’s toString method and Salaried-

Employee’s getWeeklySalary method. Class SalariedEmployee’s constructor passes the
first name, last name and social security number to the Employee constructor (line 12) to
initialize the private instance variables not inherited from the superclass. Method earn-

30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last; // should validate
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41
42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53
54 // return String representation of Employee object
55 @Override
56 public String toString()
57 {
58 return String.format("%s %s\nsocial security number: %s",
59 getFirstName(), getLastName(), getSocialSecurityNumber());
60 } // end method toString
61
62
63
64 } // end abstract class Employee

Fig. 10.4 | Employee abstract superclass. (Part 2 of 2.)

// abstract method overridden by concrete subclasses
public abstract double earnings(); // no implementation here

10.5 Case Study: Payroll System Using Polymorphism 267

ings overrides Employee’s abstract method earnings to provide a concrete implementa-
tion that returns the SalariedEmployee’s weekly salary. If we do not implement
earnings, class SalariedEmployee must be declared abstract—otherwise, class Sala-

riedEmployee will not compile. Of course, we want SalariedEmployee to be a concrete
class in this example.

1 // Fig. 10.5: SalariedEmployee.java
2 // SalariedEmployee concrete class extends abstract class Employee.
3
4
5 {
6 private double weeklySalary;
7
8 // four-argument constructor
9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else

22 throw new IllegalArgumentException(
23 "Weekly salary must be >= 0.0");
24 } // end method setWeeklySalary
25
26 // return salary
27 public double getWeeklySalary()
28 {
29 return weeklySalary;
30 } // end method getWeeklySalary
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 } // end class SalariedEmployee

Fig. 10.5 | SalariedEmployee concrete class extends abstract class Employee.

public class SalariedEmployee extends Employee

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{

return getWeeklySalary();
} // end method earnings

// return String representation of SalariedEmployee object
@Override
public String toString()
{

return String.format("salaried employee: %s\n%s: $%,.2f",
super.toString(), "weekly salary", getWeeklySalary());

} // end method toString

268 Chapter 10 Object-Oriented Programming: Polymorphism

Method toString (lines 40–45) overrides Employee method toString. If class Sal-
ariedEmployee did not override toString, SalariedEmployee would have inherited the
Employee version of toString. In that case, SalariedEmployee’s toString method would
simply return the employee’s full name and social security number, which does not ade-
quately represent a SalariedEmployee. To produce a complete String representation of
a SalariedEmployee, the subclass’s toString method returns "salaried employee: " fol-
lowed by the superclass Employee-specific information (i.e., first name, last name and
social security number) obtained by invoking the superclass’s toString method (line
44)—this is a nice example of code reuse. The String representation of a SalariedEm-

ployee also contains the employee’s weekly salary obtained by invoking the class’s
getWeeklySalary method.

10.5.3 Concrete Subclass HourlyEmployee
Class HourlyEmployee (Fig. 10.6) also extends Employee (line 4). The class includes a con-
structor (lines 10–16) that takes as arguments a first name, a last name, a social security
number, an hourly wage and the number of hours worked. Lines 19–26 and 35–42 declare
set methods that assign new values to instance variables wage and hours, respectively.
Method setWage (lines 19–26) ensures that wage is nonnegative, and method setHours

(lines 35–42) ensures that hours is between 0 and 168 (the total number of hours in a
week) inclusive. Class HourlyEmployee also includes get methods (lines 29–32 and 45–48)
to return the values of wage and hours, respectively; a method earnings (lines 51–58) to
calculate an HourlyEmployee’s earnings; and a method toString (lines 61–67), which re-
turns a String containing the employee’s type ("hourly employee: ") and the employee-
specific information. The HourlyEmployee constructor, like the SalariedEmployee con-
structor, passes the first name, last name and social security number to the superclass Em-
ployee constructor (line 13) to initialize the private instance variables. In addition,
method toString calls superclass method toString (line 65) to obtain the Employee-spe-
cific information (i.e., first name, last name and social security number)—this is another
nice example of code reuse.

1 // Fig. 10.6: HourlyEmployee.java
2 // HourlyEmployee class extends Employee.
3
4
5 {
6 private double wage; // wage per hour
7 private double hours; // hours worked for week
8
9 // five-argument constructor

10 public HourlyEmployee(String first, String last, String ssn,
11 double hourlyWage, double hoursWorked)
12 {
13 super(first, last, ssn);
14 setWage(hourlyWage); // validate hourly wage
15 setHours(hoursWorked); // validate hours worked
16 } // end five-argument HourlyEmployee constructor
17

Fig. 10.6 | HourlyEmployee class extends Employee. (Part 1 of 2.)

public class HourlyEmployee extends Employee

10.5 Case Study: Payroll System Using Polymorphism 269

18 // set wage
19 public void setWage(double hourlyWage)
20 {
21 if (hourlyWage >= 0.0)
22 wage = hourlyWage;
23 else

24 throw new IllegalArgumentException(
25 "Hourly wage must be >= 0.0");
26 } // end method setWage
27
28 // return wage
29 public double getWage()
30 {
31 return wage;
32 } // end method getWage
33
34 // set hours worked
35 public void setHours(double hoursWorked)
36 {
37 if ((hoursWorked >= 0.0) && (hoursWorked <= 168.0))
38 hours = hoursWorked;
39 else

40 throw new IllegalArgumentException(
41 "Hours worked must be >= 0.0 and <= 168.0");
42 } // end method setHours
43
44 // return hours worked
45 public double getHours()
46 {
47 return hours;
48 } // end method getHours
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68 } // end class HourlyEmployee

Fig. 10.6 | HourlyEmployee class extends Employee. (Part 2 of 2.)

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{

if (getHours() <= 40) // no overtime
return getWage() * getHours();

else

return 40 * getWage() + (getHours() - 40) * getWage() * 1.5;
} // end method earnings

// return String representation of HourlyEmployee object
@Override
public String toString()
{

return String.format("hourly employee: %s\n%s: $%,.2f; %s: %,.2f",
super.toString(), "hourly wage", getWage(),
"hours worked", getHours());

} // end method toString

270 Chapter 10 Object-Oriented Programming: Polymorphism

10.5.4 Concrete Subclass CommissionEmployee
Class CommissionEmployee (Fig. 10.7) extends class Employee (line 4). The class includes
a constructor (lines 10–16) that takes a first name, a last name, a social security number,
a sales amount and a commission rate; set methods (lines 19–26 and 35–42) to assign new
values to instance variables commissionRate and grossSales, respectively; get methods
(lines 29–32 and 45–48) that retrieve the values of these instance variables; method earn-

ings (lines 51–55) to calculate a CommissionEmployee’s earnings; and method toString

(lines 58–65), which returns the employee’s type, namely, "commission employee: " and
employee-specific information. The constructor also passes the first name, last name and
social security number to Employee’s constructor (line 13) to initialize Employee’s private
instance variables. Method toString calls superclass method toString (line 62) to obtain
the Employee-specific information (i.e., first name, last name and social security number).

1 // Fig. 10.7: CommissionEmployee.java
2 // CommissionEmployee class extends Employee.
3
4
5 {
6 private double grossSales; // gross weekly sales
7 private double commissionRate; // commission percentage
8
9 // five-argument constructor

10 public CommissionEmployee(String first, String last, String ssn,
11 double sales, double rate)
12 {
13 super(first, last, ssn);
14 setGrossSales(sales);
15 setCommissionRate(rate);
16 } // end five-argument CommissionEmployee constructor
17
18 // set commission rate
19 public void setCommissionRate(double rate)
20 {
21 if (rate > 0.0 && rate < 1.0)
22 commissionRate = rate;
23 else

24 throw new IllegalArgumentException(
25 "Commission rate must be > 0.0 and < 1.0");
26 } // end method setCommissionRate
27
28 // return commission rate
29 public double getCommissionRate()
30 {
31 return commissionRate;
32 } // end method getCommissionRate
33
34 // set gross sales amount
35 public void setGrossSales(double sales)
36 {

Fig. 10.7 | CommissionEmployee class extends Employee. (Part 1 of 2.)

public class CommissionEmployee extends Employee

10.5 Case Study: Payroll System Using Polymorphism 271

10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 10.8) extends class CommissionEmployee (line 4)
and therefore is an indirect subclass of class Employee. Class BasePlusCommissionEmployee
has a constructor (lines 9–14) that takes as arguments a first name, a last name, a social secu-
rity number, a sales amount, a commission rate and a base salary. It then passes all of these
except the base salary to the CommissionEmployee constructor (line 12) to initialize the in-
herited members. BasePlusCommissionEmployee also contains a set method (lines 17–24) to
assign a new value to instance variable baseSalary and a get method (lines 27–30) to return
baseSalary’s value. Method earnings (lines 33–37) calculates a BasePlusCommissionEm-

ployee’s earnings. Line 36 in method earnings calls superclass CommissionEmployee’s
earnings method to calculate the commission-based portion of the employee’s earnings—
this is another nice example of code reuse. BasePlusCommissionEmployee’s toString meth-
od (lines 40–46) creates a String representation of a BasePlusCommissionEmployee that
contains "base-salaried", followed by the String obtained by invoking superclass Com-
missionEmployee’s toString method (another example of code reuse), then the base salary.
The result is a String beginning with "base-salaried commission employee" followed by
the rest of the BasePlusCommissionEmployee’s information. Recall that CommissionEm-

37 if (sales >= 0.0)
38 grossSales = sales;
39 else

40 throw new IllegalArgumentException(
41 "Gross sales must be >= 0.0");
42 } // end method setGrossSales
43
44 // return gross sales amount
45 public double getGrossSales()
46 {
47 return grossSales;
48 } // end method getGrossSales
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66 } // end class CommissionEmployee

Fig. 10.7 | CommissionEmployee class extends Employee. (Part 2 of 2.)

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{

return getCommissionRate() * getGrossSales();
} // end method earnings

// return String representation of CommissionEmployee object
@Override
public String toString()
{

return String.format("%s: %s\n%s: $%,.2f; %s: %.2f",
"commission employee", super.toString(),
"gross sales", getGrossSales(),
"commission rate", getCommissionRate());

} // end method toString

272 Chapter 10 Object-Oriented Programming: Polymorphism

ployee’s toString obtains the employee’s first name, last name and social security number
by invoking the toString method of its superclass (i.e., Employee)—yet another example of
code reuse. BasePlusCommissionEmployee’s toString initiates a chain of method calls that
span all three levels of the Employee hierarchy.

1 // Fig. 10.8: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class extends CommissionEmployee.
3
4
5 {
6 private double baseSalary; // base salary per week
7
8 // six-argument constructor
9 public BasePlusCommissionEmployee(String first, String last,

10 String ssn, double sales, double rate, double salary)
11 {
12 super(first, last, ssn, sales, rate);
13 setBaseSalary(salary); // validate and store base salary
14 } // end six-argument BasePlusCommissionEmployee constructor
15
16 // set base salary
17 public void setBaseSalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else

22 throw new IllegalArgumentException(
23 "Base salary must be >= 0.0");
24 } // end method setBaseSalary
25
26 // return base salary
27 public double getBaseSalary()
28 {
29 return baseSalary;
30 } // end method getBaseSalary
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 } // end class BasePlusCommissionEmployee

Fig. 10.8 | BasePlusCommissionEmployee class extends CommissionEmployee.

public class BasePlusCommissionEmployee extends CommissionEmployee

// calculate earnings; override method earnings in CommissionEmployee
@Override
public double earnings()
{

return getBaseSalary() + super.earnings();
} // end method earnings

// return String representation of BasePlusCommissionEmployee object
@Override
public String toString()
{

return String.format("%s %s; %s: $%,.2f",
"base-salaried", super.toString(),
"base salary", getBaseSalary());

} // end method toString

10.5 Case Study: Payroll System Using Polymorphism 273

10.5.6 Polymorphic Processing, Operator instanceof and Downcasting
To test our Employee hierarchy, the application in Fig. 10.9 creates an object of each of the
four concrete classes SalariedEmployee, HourlyEmployee, CommissionEmployee and
BasePlusCommissionEmployee. The program manipulates these objects nonpolymorphic-
ally, via variables of each object’s own type, then polymorphically, using an array of Em-
ployee variables. While processing the objects polymorphically, the program increases the
base salary of each BasePlusCommissionEmployee by 10%—this requires determining the
object’s type at execution time. Finally, the program polymorphically determines and outputs
the type of each object in the Employee array. Lines 9–18 create objects of each of the four
concrete Employee subclasses. Lines 22–30 output the String representation and earnings
of each of these objects nonpolymorphically. Each object’s toString method is called implic-
itly by printf when the object is output as a String with the %s format specifier.

1 // Fig. 10.9: PayrollSystemTest.java
2 // Employee hierarchy test program.
3
4 public class PayrollSystemTest
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20 System.out.println("Employees processed individually:\n");
21
22 System.out.printf("%s\n%s: $%,.2f\n\n",
23 salariedEmployee, "earned", salariedEmployee.earnings());
24 System.out.printf("%s\n%s: $%,.2f\n\n",
25 hourlyEmployee, "earned", hourlyEmployee.earnings());
26 System.out.printf("%s\n%s: $%,.2f\n\n",
27 commissionEmployee, "earned", commissionEmployee.earnings());
28 System.out.printf("%s\n%s: $%,.2f\n\n",
29 basePlusCommissionEmployee,
30 "earned", basePlusCommissionEmployee.earnings());
31
32 // create four-element Employee array
33
34
35
36
37

Fig. 10.9 | Employee hierarchy test program. (Part 1 of 3.)

// create subclass objects
SalariedEmployee salariedEmployee =

new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
HourlyEmployee hourlyEmployee =

new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);
CommissionEmployee commissionEmployee =

new CommissionEmployee(
"Sue", "Jones", "333-33-3333", 10000, .06);

BasePlusCommissionEmployee basePlusCommissionEmployee =
new BasePlusCommissionEmployee(
"Bob", "Lewis", "444-44-4444", 5000, .04, 300);

Employee[] employees = new Employee[4];

// initialize array with Employees
employees[0] = salariedEmployee;
employees[1] = hourlyEmployee;

274 Chapter 10 Object-Oriented Programming: Polymorphism

38
39
40
41 System.out.println("Employees processed polymorphically:\n");
42
43 // generically process each element in array employees
44 for (Employee currentEmployee : employees)
45 {
46 System.out.println(); // invokes toString
47
48 // determine whether element is a BasePlusCommissionEmployee
49 if ()
50 {
51 // downcast Employee reference to
52 // BasePlusCommissionEmployee reference
53 BasePlusCommissionEmployee employee =
54 ;
55
56 employee.setBaseSalary(1.10 * employee.getBaseSalary());
57
58 System.out.printf(
59 "new base salary with 10%% increase is: $%,.2f\n",
60 employee.getBaseSalary());
61 } // end if
62
63 System.out.printf(
64 "earned $%,.2f\n\n",);
65 } // end for
66
67
68
69
70
71 } // end main
72 } // end class PayrollSystemTest

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

Fig. 10.9 | Employee hierarchy test program. (Part 2 of 3.)

employees[2] = commissionEmployee;
employees[3] = basePlusCommissionEmployee;

currentEmployee

currentEmployee instanceof BasePlusCommissionEmployee

(BasePlusCommissionEmployee) currentEmployee

currentEmployee.earnings()

// get type name of each object in employees array
for (int j = 0; j < employees.length; j++)

System.out.printf("Employee %d is a %s\n", j,
employees[j].getClass().getName());

10.5 Case Study: Payroll System Using Polymorphism 275

Creating the Array of Employees
Line 33 declares employees and assigns it an array of four Employee variables. Line 36 as-
signs the reference to a SalariedEmployee object to employees[0]. Line 37 assigns the
reference to an HourlyEmployee object to employees[1]. Line 38 assigns the reference to
a CommissionEmployee object to employees[2]. Line 39 assigns the reference to a Base-

PlusCommissionEmployee object to employee[3]. These assignments are allowed, because
a SalariedEmployee is an Employee, an HourlyEmployee is an Employee, a Commission-

Employee is an Employee and a BasePlusCommissionEmployee is an Employee. Therefore,
we can assign the references of SalariedEmployee, HourlyEmployee, CommissionEmploy-
ee and BasePlusCommissionEmployee objects to superclass Employee variables, even
though Employee is an abstract class.

Polymorphically Processing Employees
Lines 44–65 iterate through array employees and invoke methods toString and earnings

with Employee variable currentEmployee, which is assigned the reference to a different
Employee in the array on each iteration. The output illustrates that the appropriate meth-
ods for each class are indeed invoked. All calls to method toString and earnings are re-
solved at execution time, based on the type of the object to which currentEmployee refers.
This process is known as dynamic binding or late binding. For example, line 46 implicitly
invokes method toString of the object to which currentEmployee refers. As a result of
dynamic binding, Java decides which class’s toString method to call at execution time
rather than at compile time. Only the methods of class Employee can be called via an Em-

gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04;

Employee 0 is a SalariedEmployee
Employee 1 is a HourlyEmployee
Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. 10.9 | Employee hierarchy test program. (Part 3 of 3.)

earned: $500.00

base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

276 Chapter 10 Object-Oriented Programming: Polymorphism

ployee variable (and Employee, of course, includes the methods of class Object). A super-
class reference can be used to invoke only methods of the superclass—the subclass method
implementations are invoked polymorphically.

Performing Type-Specific Operations on BasePlusCommissionEmployees
We perform special processing on BasePlusCommissionEmployee objects—as we encoun-
ter these objects at execution time, we increase their base salary by 10%. When processing
objects polymorphically, we typically do not need to worry about the “specifics,” but to
adjust the base salary, we do have to determine the specific type of Employee object at ex-
ecution time. Line 49 uses the instanceof operator to determine whether a particular Em-
ployee object’s type is BasePlusCommissionEmployee. The condition in line 49 is true if
the object referenced by currentEmployee is a BasePlusCommissionEmployee. This
would also be true for any object of a BasePlusCommissionEmployee subclass because of
the is-a relationship a subclass has with its superclass. Lines 53–54 downcast currentEm-
ployee from type Employee to type BasePlusCommissionEmployee—this cast is allowed
only if the object has an is-a relationship with BasePlusCommissionEmployee. The condi-
tion at line 49 ensures that this is the case. This cast is required if we’re to invoke subclass
BasePlusCommissionEmployee methods getBaseSalary and setBaseSalary on the cur-
rent Employee object—as you’ll see momentarily, attempting to invoke a subclass-only meth-
od directly on a superclass reference is a compilation error.

If the instanceof expression in line 49 is true, lines 53–60 perform the special pro-
cessing required for the BasePlusCommissionEmployee object. Using BasePlusCommis-

sionEmployee variable employee, line 56 invokes subclass-only methods getBaseSalary
and setBaseSalary to retrieve and update the employee’s base salary with the 10% raise.

Calling earnings Polymorphically
Lines 63–64 invoke method earnings on currentEmployee, which polymorphically calls
the appropriate subclass object’s earnings method. Obtaining the earnings of the Sala-

riedEmployee, HourlyEmployee and CommissionEmployee polymorphically in lines 63–
64 produces the same results as obtaining these employees’ earnings individually in lines
22–27. The earnings amount obtained for the BasePlusCommissionEmployee in lines 63–
64 is higher than that obtained in lines 28–30, due to the 10% increase in its base salary.

Common Programming Error 10.3
Assigning a superclass variable to a subclass variable (without an explicit cast) is a com-
pilation error.

Software Engineering Observation 10.4
If a subclass object’s reference has been assigned to a variable of one of its direct or indirect
superclasses at execution time, it’s acceptable to downcast the reference stored in that
superclass variable back to a subclass-type reference. Before performing such a cast, use the
instanceof operator to ensure that the object is indeed an object of an appropriate subclass.

Common Programming Error 10.4
When downcasting a reference, a ClassCastException occurs if the referenced object at ex-
ecution time does not have an is-a relationship with the type specified in the cast operator.

10.5 Case Study: Payroll System Using Polymorphism 277

Using Reflection to Get Each Employee’s Class Name
Lines 68–70 display each employee’s type as a String, using basic features of Java’s so-
called reflection capabilities. Every object knows its own class and can access this informa-
tion through the getClass method, which all classes inherit from class Object. Method
getClass returns an object of type Class (from package java.lang), which contains in-
formation about the object’s type, including its class name. Line 70 invokes getClass on
the current object to get its runtime class. The result of the getClass call is used to invoke
getName to get the object’s class name.

Avoiding Compilation Errors with Downcasting
In the previous example, we avoided several compilation errors by downcasting an Em-

ployee variable to a BasePlusCommissionEmployee variable in lines 53–54. If you remove
the cast operator (BasePlusCommissionEmployee) from line 54 and attempt to assign Em-

ployee variable currentEmployee directly to BasePlusCommissionEmployee variable em-

ployee, you’ll receive an “incompatible types” compilation error. This error indicates
that the attempt to assign the reference of superclass object currentEmployee to subclass
variable employee is not allowed. The compiler prevents this assignment because a Com-

missionEmployee is not a BasePlusCommissionEmployee—the is-a relationship applies only
between the subclass and its superclasses, not vice versa.

Similarly, if lines 56 and 60 used superclass variable currentEmployee to invoke sub-
class-only methods getBaseSalary and setBaseSalary, we’d receive “cannot find symbol”
compilation errors at these lines. Attempting to invoke subclass-only methods via a super-
class variable is not allowed—even though lines 56 and 60 execute only if instanceof in line
49 returns true to indicate that currentEmployee holds a reference to a BasePlusCommis-

sionEmployee object. Using a superclass Employee variable, we can invoke only methods
found in class Employee—earnings, toString and Employee’s get and set methods.

10.5.7 Summary of the Allowed Assignments Between Superclass and
Subclass Variables
Now that you’ve seen a complete application that processes diverse subclass objects poly-
morphically, we summarize what you can and cannot do with superclass and subclass ob-
jects and variables. Although a subclass object also is a superclass object, the two objects are
nevertheless different. As discussed previously, subclass objects can be treated as objects of
their superclass. But because the subclass can have additional subclass-only members, as-
signing a superclass reference to a subclass variable is not allowed without an explicit cast—
such an assignment would leave the subclass members undefined for the superclass object.

We’ve discussed four ways to assign superclass and subclass references to variables of
superclass and subclass types:

1. Assigning a superclass reference to a superclass variable is straightforward.

2. Assigning a subclass reference to a subclass variable is straightforward.

Software Engineering Observation 10.5
Although the actual method that’s called depends on the runtime type of the object to
which a variable refers, a variable can be used to invoke only those methods that are
members of that variable’s type, which the compiler verifies.

278 Chapter 10 Object-Oriented Programming: Polymorphism

3. Assigning a subclass reference to a superclass variable is safe, because the subclass
object is an object of its superclass. However, the superclass variable can be used
to refer only to superclass members. If this code refers to subclass-only members
through the superclass variable, the compiler reports errors.

4. Attempting to assign a superclass reference to a subclass variable is a compilation
error. To avoid this error, the superclass reference must be cast to a subclass type
explicitly. At execution time, if the object to which the reference refers is not a sub-
class object, an exception will occur. (For more on exception handling, see
Chapter 11.) You should use the instanceof operator to ensure that such a cast
is performed only if the object is a subclass object.

10.6 final Methods and Classes
We saw in Sections 6.3 and 6.9 that variables can be declared final to indicate that they
cannot be modified after they’re initialized—such variables represent constant values. It’s
also possible to declare methods, method parameters and classes with the final modifier.

Final Methods Cannot Be Overridden
A final method in a superclass cannot be overridden in a subclass—this guarantees that
the final method implementation will be used by all direct and indirect subclasses in the
hierarchy. Methods that are declared private are implicitly final, because it’s not possi-
ble to override them in a subclass. Methods that are declared static are also implicitly fi-
nal. A final method’s declaration can never change, so all subclasses use the same method
implementation, and calls to final methods are resolved at compile time—this is known
as static binding.

Final Classes Cannot Be Superclasses
A final class that’s declared final cannot be a superclass (i.e., a class cannot extend a fi-
nal class). All methods in a final class are implicitly final. Class String is an example of
a final class. If you were allowed to create a subclass of String, objects of that subclass
could be used wherever Strings are expected. Since class String cannot be extended, pro-
grams that use Strings can rely on the functionality of String objects as specified in the
Java API. Making the class final also prevents programmers from creating subclasses that
might bypass security restrictions. For more insights on the use of keyword final, visit

and

download.oracle.com/javase/tutorial/java/IandI/final.html

www.ibm.com/developerworks/java/library/j-jtp1029.html

Common Programming Error 10.5
Attempting to declare a subclass of a final class is a compilation error.

Software Engineering Observation 10.6
In the Java API, the vast majority of classes are not declared final. This enables
inheritance and polymorphism. However, in some cases, it’s important to declare classes
final—typically for security reasons.

http://www.ibm.com/developerworks/java/library/j-jtp1029.html

10.7 Case Study: Creating and Using Interfaces 279

10.7 Case Study: Creating and Using Interfaces
Our next example (Figs. 10.11–10.15) reexamines the payroll system of Section 10.5.
Suppose that the company involved wishes to perform several accounting operations in a
single accounts payable application—in addition to calculating the earnings that must be
paid to each employee, the company must also calculate the payment due on each of sev-
eral invoices (i.e., bills for goods purchased). Though applied to unrelated things (i.e., em-
ployees and invoices), both operations have to do with obtaining some kind of payment
amount. For an employee, the payment refers to the employee’s earnings. For an invoice,
the payment refers to the total cost of the goods listed on the invoice. Can we calculate
such different things as the payments due for employees and invoices in a single application
polymorphically? Does Java offer a capability requiring that unrelated classes implement a
set of common methods (e.g., a method that calculates a payment amount)? Java interfaces
offer exactly this capability.

Standardizing Interactions
Interfaces define and standardize the ways in which things such as people and systems can
interact with one another. For example, the controls on a radio serve as an interface between
radio users and a radio’s internal components. The controls allow users to perform only a
limited set of operations (e.g., change the station, adjust the volume, choose between AM
and FM), and different radios may implement the controls in different ways (e.g., using
push buttons, dials, voice commands). The interface specifies what operations a radio must
permit users to perform but does not specify how the operations are performed.

Software Objects Communicate Via Interfaces
Software objects also communicate via interfaces. A Java interface describes a set of meth-
ods that can be called on an object to tell it, for example, to perform some task or return
some piece of information. The next example introduces an interface named Payable to
describe the functionality of any object that must be capable of being paid and thus must
offer a method to determine the proper payment amount due. An interface declaration
begins with the keyword interface and contains only constants and abstract methods.
Unlike classes, all interface members must be public, and interfaces may not specify any im-
plementation details, such as concrete method declarations and instance variables. All
methods declared in an interface are implicitly public abstract methods, and all fields
are implicitly public, static and final. [Note: As of Java SE 5, it became a better pro-
gramming practice to declare sets of constants as enumerations with keyword enum. See
Section 6.9 for an introduction to enum and Section 8.9 for additional enum details.]

Using an Interface
To use an interface, a concrete class must specify that it implements the interface and must
declare each method in the interface with the signature specified in the interface declara-
tion. To specify that a class implements an interface add the implements keyword and the

Good Programming Practice 10.1
According to Chapter 9 of the Java Language Specification, it’s proper style to declare an
interface’s methods without keywords public and abstract, because they’re redundant
in interface method declarations. Similarly, constants should be declared without key-
words public, static and final, because they, too, are redundant.

280 Chapter 10 Object-Oriented Programming: Polymorphism

name of the interface to the end of your class declaration’s first line. A class that does not
implement all the methods of the interface is an abstract class and must be declared
abstract. Implementing an interface is like signing a contract with the compiler that
states, “I will declare all the methods specified by the interface or I will declare my class
abstract.”

Relating Disparate Types
An interface is often used when disparate (i.e., unrelated) classes need to share common
methods and constants. This allows objects of unrelated classes to be processed polymor-
phically—objects of classes that implement the same interface can respond to the same
method calls. You can create an interface that describes the desired functionality, then im-
plement this interface in any classes that require that functionality. For example, in the ac-
counts payable application developed in this section, we implement interface Payable in
any class that must be able to calculate a payment amount (e.g., Employee, Invoice).

Interfaces vs. Abstract Classes
An interface is often used in place of an abstract class when there’s no default implementation
to inherit—that is, no fields and no default method implementations. Like public ab-

stract classes, interfaces are typically public types. Like a public class, a public interface
must be declared in a file with the same name as the interface and the .java file-name ex-
tension.

Tagging Interfaces
We’ll see in Chapter 17, Files, Streams and Object Serialization, the notion of “tagging
interfaces”—empty interfaces that have no methods or constant values. They’re used to
add is-a relationships to classes. For example, in Chapter 17 we’ll discuss a mechanism
called object serialization, which can convert objects to byte representations and can con-
vert those byte representations back to objects. To enable this mechanism to work with
your objects, you simply have to mark them as Serializable by adding implements Se-

rializable to the end of your class declaration’s first line. Then, all the objects of your
class have the is-a relationship with Serializable.

10.7.1 Developing a Payable Hierarchy
To build an application that can determine payments for employees and invoices alike, we
first create interface Payable, which contains method getPaymentAmount that returns a
double amount that must be paid for an object of any class that implements the interface.
Method getPaymentAmount is a general-purpose version of method earnings of the
Employee hierarchy—method earnings calculates a payment amount specifically for an
Employee, while getPaymentAmount can be applied to a broad range of unrelated objects.
After declaring interface Payable, we introduce class Invoice, which implements interface
Payable. We then modify class Employee such that it also implements interface Payable.

Common Programming Error 10.6
Failing to implement any method of an interface in a concrete class that implements the
interface results in a compilation error indicating that the class must be declared ab-

stract.

10.7 Case Study: Creating and Using Interfaces 281

Finally, we update Employee subclass SalariedEmployee to “fit” into the Payable hierar-
chy by renaming SalariedEmployee method earnings as getPaymentAmount.

Classes Invoice and Employee both represent things for which the company must be
able to calculate a payment amount. Both classes implement the Payable interface, so a
program can invoke method getPaymentAmount on Invoice objects and Employee objects
alike. As we’ll soon see, this enables the polymorphic processing of Invoices and
Employees required for the company’s accounts payable application.

The UML class diagram in Fig. 10.10 shows the hierarchy used in our accounts pay-
able application. The hierarchy begins with interface Payable. The UML distinguishes an
interface from other classes by placing the word “interface” in guillemets (« and ») above
the interface name. The UML expresses the relationship between a class and an interface
through a relationship known as realization. A class is said to “realize,” or implement, the
methods of an interface. A class diagram models a realization as a dashed arrow with a
hollow arrowhead pointing from the implementing class to the interface. The diagram in
Fig. 10.10 indicates that classes Invoice and Employee each realize (i.e., implement) inter-
face Payable. As in the class diagram of Fig. 10.2, class Employee appears in italics, indi-
cating that it’s an abstract class. Concrete class SalariedEmployee extends Employee and
inherits its superclass’s realization relationship with interface Payable.

10.7.2 Interface Payable
The declaration of interface Payable begins in Fig. 10.11 at line 4. Interface Payable con-
tains public abstract method getPaymentAmount (line 6). The method is not explicitly
declared public or abstract. Interface methods are always public and abstract, so they
do not need to be declared as such. Interface Payable has only one method—interfaces
can have any number of methods. In addition, method getPaymentAmount has no param-
eters, but interface methods can have parameters. Interfaces may also contain fields that
are implicitly final and static.

Good Programming Practice 10.2
When declaring a method in an interface, choose a method name that describes the meth-
od’s purpose in a general manner, because the method may be implemented by many un-
related classes.

Fig. 10.10 | Payable interface hierarchy UML class diagram.

Invoice Employee

SalariedEmployee

«interface»
Payable

282 Chapter 10 Object-Oriented Programming: Polymorphism

10.7.3 Class Invoice
We now create class Invoice (Fig. 10.12) to represent a simple invoice that contains bill-
ing information for only one kind of part. The class declares private instance variables
partNumber, partDescription, quantity and pricePerItem (in lines 6–9) that indicate
the part number, a description of the part, the quantity of the part ordered and the price
per item. Class Invoice also contains a constructor (lines 12–19), get and set methods
(lines 22–74) that manipulate the class’s instance variables and a toString method (lines
77–83) that returns a String representation of an Invoice object. Methods setQuantity
(lines 46–52) and setPricePerItem (lines 61–68) ensure that quantity and pricePer-

Item obtain only nonnegative values.
Line 4 indicates that class Invoice implements interface Payable. Like all classes, class

Invoice also implicitly extends Object. Java does not allow subclasses to inherit from
more than one superclass, but it allows a class to inherit from one superclass and imple-
ment as many interfaces as it needs. To implement more than one interface, use a comma-
separated list of interface names after keyword implements in the class declaration, as in:

1 // Fig. 10.11: Payable.java
2 // Payable interface declaration.
3
4
5
6
7

Fig. 10.11 | Payable interface declaration.

public class ClassName extends SuperclassName implements FirstInterface,
SecondInterface, …

Software Engineering Observation 10.7
All objects of a class that implement multiple interfaces have the is-a relationship with
each implemented interface type.

1 // Fig. 10.12: Invoice.java
2 // Invoice class that implements Payable.
3
4
5 {
6 private String partNumber;
7 private String partDescription;
8 private int quantity;
9 private double pricePerItem;

10
11 // four-argument constructor
12 public Invoice(String part, String description, int count,
13 double price)
14 {
15 partNumber = part;

Fig. 10.12 | Invoice class that implements Payable. (Part 1 of 3.)

public interface Payable
{

double getPaymentAmount(); // calculate payment; no implementation
} // end interface Payable

public class Invoice implements Payable

10.7 Case Study: Creating and Using Interfaces 283

16 partDescription = description;
17 setQuantity(count); // validate and store quantity
18 setPricePerItem(price); // validate and store price per item
19 } // end four-argument Invoice constructor
20
21 // set part number
22 public void setPartNumber(String part)
23 {
24 partNumber = part; // should validate
25 } // end method setPartNumber
26
27 // get part number
28 public String getPartNumber()
29 {
30 return partNumber;
31 } // end method getPartNumber
32
33 // set description
34 public void setPartDescription(String description)
35 {
36 partDescription = description; // should validate
37 } // end method setPartDescription
38
39 // get description
40 public String getPartDescription()
41 {
42 return partDescription;
43 } // end method getPartDescription
44
45 // set quantity
46 public void setQuantity(int count)
47 {
48 if (count >= 0)
49 quantity = count;
50 else

51 throw new IllegalArgumentException("Quantity must be >= 0");
52 } // end method setQuantity
53
54 // get quantity
55 public int getQuantity()
56 {
57 return quantity;
58 } // end method getQuantity
59
60 // set price per item
61 public void setPricePerItem(double price)
62 {
63 if (price >= 0.0)
64 pricePerItem = price;
65 else

66 throw new IllegalArgumentException(
67 "Price per item must be >= 0");
68 } // end method setPricePerItem

Fig. 10.12 | Invoice class that implements Payable. (Part 2 of 3.)

284 Chapter 10 Object-Oriented Programming: Polymorphism

Class Invoice implements the one method in interface Payable—method get-

PaymentAmount is declared in lines 86–90. The method calculates the total payment
required to pay the invoice. The method multiplies the values of quantity and pricePer-

Item (obtained through the appropriate get methods) and returns the result (line 89). This
method satisfies the implementation requirement for this method in interface Payable—
we’ve fulfilled the interface contract with the compiler.

10.7.4 Modifying Class Employee to Implement Interface Payable
We now modify class Employee such that it implements interface Payable. Figure 10.13
contains the modified class, which is identical to that of Fig. 10.4 with two exceptions.
First, line 4 of Fig. 10.13 indicates that class Employee now implements interface Payable.
So we must rename earnings to getPaymentAmount throughout the Employee hierarchy.
As with method earnings in the version of class Employee in Fig. 10.4, however, it does
not make sense to implement method getPaymentAmount in class Employee because we
cannot calculate the earnings payment owed to a general Employee—we must first know
the specific type of Employee. In Fig. 10.4, we declared method earnings as abstract for
this reason, so class Employee had to be declared abstract. This forced each Employee

concrete subclass to override earnings with an implementation.
In Fig. 10.13, we handle this situation differently. Recall that when a class imple-

ments an interface, it makes a contract with the compiler stating either that the class will
implement each of the methods in the interface or that the class will be declared abstract.
If the latter option is chosen, we do not need to declare the interface methods as abstract
in the abstract class—they’re already implicitly declared as such in the interface. Any

69
70 // get price per item
71 public double getPricePerItem()
72 {
73 return pricePerItem;
74 } // end method getPricePerItem
75
76 // return String representation of Invoice object
77 @Override
78 public String toString()
79 {
80 return String.format("%s: \n%s: %s (%s) \n%s: %d \n%s: $%,.2f",
81 "invoice", "part number", getPartNumber(), getPartDescription(),
82 "quantity", getQuantity(), "price per item", getPricePerItem());
83 } // end method toString
84
85
86
87
88
89
90
91 } // end class Invoice

Fig. 10.12 | Invoice class that implements Payable. (Part 3 of 3.)

// method required to carry out contract with interface Payable
@Override
public double getPaymentAmount()
{

return getQuantity() * getPricePerItem(); // calculate total cost
} // end method getPaymentAmount

10.7 Case Study: Creating and Using Interfaces 285

concrete subclass of the abstract class must implement the interface methods to fulfill the
superclass’s contract with the compiler. If the subclass does not do so, it too must be
declared abstract. As indicated by the comments in lines 62–63, class Employee of
Fig. 10.13 does not implement method getPaymentAmount, so the class is declared
abstract. Each direct Employee subclass inherits the superclass’s contract to implement
method getPaymentAmount and thus must implement this method to become a concrete
class for which objects can be instantiated. A class that extends one of Employee’s concrete
subclasses will inherit an implementation of getPaymentAmount and thus will also be a
concrete class.

1 // Fig. 10.13: Employee.java
2 // Employee abstract superclass that implements Payable.
3
4
5 {
6 private String firstName;
7 private String lastName;
8 private String socialSecurityNumber;
9

10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17
18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first; // should validate
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29
30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last; // should validate
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41

Fig. 10.13 | Employee class that implements Payable. (Part 1 of 2.)

public abstract class Employee implements Payable

286 Chapter 10 Object-Oriented Programming: Polymorphism

10.7.5 Modifying Class SalariedEmployee for Use in the Payable
Hierarchy
Figure 10.14 contains a modified SalariedEmployee class that extends Employee and ful-
fills superclass Employee’s contract to implement Payable method getPaymentAmount.
This version of SalariedEmployee is identical to that of Fig. 10.5, but it replaces method
earnings with method getPaymentAmount (lines 34–38). Recall that the Payable version
of the method has a more general name to be applicable to possibly disparate classes. The
remaining Employee subclasses (e.g., HourlyEmployee, CommissionEmployee and Base-

PlusCommissionEmployee) also must be modified to contain method getPaymentAmount

in place of earnings to reflect the fact that Employee now implements Payable. We leave
these modifications as an exercise.

42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53
54 // return String representation of Employee object
55 @Override
56 public String toString()
57 {
58 return String.format("%s %s\nsocial security number: %s",
59 getFirstName(), getLastName(), getSocialSecurityNumber());
60 } // end method toString
61
62
63
64 } // end abstract class Employee

1 // Fig. 10.14: SalariedEmployee.java
2 // SalariedEmployee class extends Employee, which implements Payable.
3
4 public class SalariedEmployee extends Employee
5 {
6 private double weeklySalary;
7

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 1 of 2.)

Fig. 10.13 | Employee class that implements Payable. (Part 2 of 2.)

// Note: We do not implement Payable method getPaymentAmount here so
// this class must be declared abstract to avoid a compilation error.

10.7 Case Study: Creating and Using Interfaces 287

When a class implements an interface, the same is-a relationship provided by inheri-
tance applies. Class Employee implements Payable, so we can say that an Employee is a
Payable. In fact, objects of any classes that extend Employee are also Payable objects. Sal-
ariedEmployee objects, for instance, are Payable objects. Objects of any subclasses of the
class that implements the interface can also be thought of as objects of the interface type.
Thus, just as we can assign the reference of a SalariedEmployee object to a superclass
Employee variable, we can assign the reference of a SalariedEmployee object to an inter-

8 // four-argument constructor
9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else

22 throw new IllegalArgumentException(
23 "Weekly salary must be >= 0.0");
24 } // end method setWeeklySalary
25
26 // return salary
27 public double getWeeklySalary()
28 {
29 return weeklySalary;
30 } // end method getWeeklySalary
31
32
33
34 @Override
35
36
37
38
39
40 // return String representation of SalariedEmployee object
41 @Override
42 public String toString()
43 {
44 return String.format("salaried employee: %s\n%s: $%,.2f",
45 super.toString(), "weekly salary", getWeeklySalary());
46 } // end method toString
47 } // end class SalariedEmployee

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 2 of 2.)

// calculate earnings; implement interface Payable method that was
// abstract in superclass Employee

public double getPaymentAmount()
{

return getWeeklySalary();
} // end method getPaymentAmount

288 Chapter 10 Object-Oriented Programming: Polymorphism

face Payable variable. Invoice implements Payable, so an Invoice object also is a Pay-

able object, and we can assign the reference of an Invoice object to a Payable variable.

10.7.6 Using Interface Payable to Process Invoices and Employees
Polymorphically
PayableInterfaceTest (Fig. 10.15) illustrates that interface Payable can be used to pro-
cess a set of Invoices and Employees polymorphically in a single application. Line 9 de-
clares payableObjects and assigns it an array of four Payable variables. Lines 12–13
assign the references of Invoice objects to the first two elements of payableObjects. Lines
14–17 then assign the references of SalariedEmployee objects to the remaining two ele-
ments of payableObjects. These assignments are allowed because an Invoice is a Pay-

able, a SalariedEmployee is an Employee and an Employee is a Payable. Lines 23–29 use
the enhanced for statement to polymorphically process each Payable object in payable-

Objects, printing the object as a String, along with the payment amount due. Line 27
invokes method toString via a Payable interface reference, even though toString is not
declared in interface Payable—all references (including those of interface types) refer to objects
that extend Object and therefore have a toString method. (Method toString also can be
invoked implicitly here.) Line 28 invokes Payable method getPaymentAmount to obtain
the payment amount for each object in payableObjects, regardless of the actual type of
the object. The output reveals that the method calls in lines 27–28 invoke the appropriate
class’s implementation of methods toString and getPaymentAmount. For instance, when
currentPayable refers to an Invoice during the first iteration of the for loop, class In-
voice’s toString and getPaymentAmount execute.

Software Engineering Observation 10.8
When a method parameter is declared with a superclass or interface type, the method
processes the object received as an argument polymorphically.

Software Engineering Observation 10.9
Using a superclass reference, we can polymorphically invoke any method declared in the
superclass and its superclasses (e.g., class Object). Using an interface reference, we can
polymorphically invoke any method declared in the interface, its superinterfaces (one
interface can extend another) and in class Object—a variable of an interface type must
refer to an object to call methods, and all objects have the methods of class Object.

1 // Fig. 10.15: PayableInterfaceTest.java
2 // Tests interface Payable.
3
4 public class PayableInterfaceTest
5 {
6 public static void main(String[] args)
7 {
8 // create four-element Payable array
9

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 1 of 2.)

Payable[] payableObjects = new Payable[4];

10.7 Case Study: Creating and Using Interfaces 289

10.7.7 Common Interfaces of the Java API
In this section, we overview several common interfaces found in the Java API. The power
and flexibility of interfaces is used frequently throughout the Java API. These interfaces
are implemented and used in the same manner as the interfaces you create (e.g., interface

10
11 // populate array with objects that implement Payable
12 payableObjects[0] = new Invoice("01234", "seat", 2, 375.00);
13 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95);
14 payableObjects[2] =
15 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
16 payableObjects[3] =
17 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00);
18
19 System.out.println(
20 "Invoices and Employees processed polymorphically:\n");
21
22 // generically process each element in array payableObjects
23 for (Payable currentPayable : payableObjects)
24 {
25 // output currentPayable and its appropriate payment amount
26 System.out.printf("%s \n%s: $%,.2f\n\n",
27 ,
28 "payment due",);
29 } // end for
30 } // end main
31 } // end class PayableInterfaceTest

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
quantity: 2
price per item: $375.00
payment due: $750.00

invoice:
part number: 56789 (tire)
quantity: 4
price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00
payment due: $1,200.00

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 2 of 2.)

currentPayable.toString()
currentPayable.getPaymentAmount()

290 Chapter 10 Object-Oriented Programming: Polymorphism

Payable in Section 10.7.2). The Java API’s interfaces enable you to use your own classes
within the frameworks provided by Java, such as comparing objects of your own types and
creating tasks that can execute concurrently with other tasks in the same program.
Figure 10.16 overviews a few of the more popular interfaces of the Java API that we use in
Java for Programmers, 2/e.

10.8 Wrap-Up
This chapter introduced polymorphism—the ability to process objects that share the same
superclass in a class hierarchy as if they’re all objects of the superclass. The chapter dis-
cussed how polymorphism makes systems extensible and maintainable, then demonstrated
how to use overridden methods to effect polymorphic behavior. We introduced abstract

Interface Description

Comparable Java contains several comparison operators (e.g., <, <=, >, >=, ==, !=) that
allow you to compare primitive values. However, these operators cannot
be used to compare objects. Interface Comparable is used to allow
objects of a class that implements the interface to be compared to one
another. Interface Comparable is commonly used for ordering objects in
a collection such as an array. We use Comparable in Chapter 18, Generic
Collections, and Chapter 19, Generic Classes and Methods.

Serializable An interface used to identify classes whose objects can be written to
(i.e., serialized) or read from (i.e., deserialized) some type of storage
(e.g., file on disk, database field) or transmitted across a network. We
use Serializable in Chapter 17, Files, Streams and Object Serializa-
tion, and Chapter 24, Networking.

Runnable Implemented by any class for which objects of that class should be able
to execute in parallel using a technique called multithreading (discussed
in Chapter 23, Multithreading). The interface contains one method,
run, which describes the behavior of an object when executed.

GUI event-listener
interfaces

You work with graphical user interfaces (GUIs) every day. In your web
browser, you might type the address of a website to visit, or you might
click a button to return to a previous site. The browser responds to your
interaction and performs the desired task. Your interaction is known as
an event, and the code that the browser uses to respond to an event is
known as an event handler. In Chapter 14, GUI Components: Part 1,
and Chapter 22, GUI Components: Part 2, you’ll learn how to build
GUIs and event handlers that respond to user interactions. Event han-
dlers are declared in classes that implement an appropriate event-lis-
tener interface. Each event-listener interface specifies one or more
methods that must be implemented to respond to user interactions.

SwingConstants Contains a set of constants used in GUI programming to position GUI
elements on the screen. We explore GUI programming in Chapters 14
and 22.

Fig. 10.16 | Common interfaces of the Java API.

10.8 Wrap-Up 291

classes, which allow you to provide an appropriate superclass from which other classes can
inherit. You learned that an abstract class can declare abstract methods that each subclass
must implement to become a concrete class and that a program can use variables of an ab-
stract class to invoke the subclasses’ implementations of abstract methods polymorphical-
ly. You also learned how to determine an object’s type at execution time. We discussed the
concepts of final methods and classes. Finally, the chapter discussed declaring and imple-
menting an interface as another way to achieve polymorphic behavior.

You should now be familiar with classes, objects, encapsulation, inheritance, inter-
faces and polymorphism—the most essential aspects of object-oriented programming.

In the next chapter, you’ll learn about exceptions, useful for handling errors during a
program’s execution. Exception handling provides for more robust programs.

Symbols
^, boolean logical exclusive

OR 107, 110
truth table 110

_ SQL wildcard character
857, 858

, (comma) formatting flag
95

--, predecrement/
postdecrement 82

-, subtraction 34, 35
!, logical NOT 107, 110

truth table 110
!=, not equals 36
? (wildcard type argument)

642
?:, ternary conditional

operator 66
. dot separator 42
‚ flag 1064
(flag 1064
{, left brace 25
}, right brace 25
@HttpSessionScope

annotation 990
@Override annotation 233
@Resource annotation 951
* SQL wildcard character

856
* wildcard in a file name 43
*, multiplication 34, 35
*=, multiplication

assignment operator 82
/ forward slash in end tags

663
/, division 34, 35
/* */ traditional comment

24
/** */ Java

documentation
comment 24

//, end-of-line comment
23

/=, division assignment
operator 82

\, backslash escape
sequence 29

\', single-quote-character
escape sequence 1068

\", double-quote escape
sequence 29, 1068

\\, backslash-character
escape sequence 1068

\b, escape sequence 1068
\f, form-feed escape

sequence 1069
\n, newline escape

sequence 29, 1069
\r, carriage-return escape

sequence 29, 1069
\t, horizontal tab escape

sequence 29, 1069
&, boolean logical AND

107, 109
&&, conditional AND 108,

109
truth table 108

flag 1064, 1065
% conversion character

1060
% SQL wildcard character

857
%, remainder 34, 35
%% format specifier 1062
%=, remainder assignment

operator 82
%A format specifier 1056
%a format specifier 1056
%B format specifier 1060
%b format specifier 111,

1060, 1061
%C format specifier 1057
%c format specifier 1057
%d format specifier 33,

1054, 1055
%E format specifier 1055,

1056
%e format specifier 1055,

1056
%f format specifier 58,

1055, 1056
%G format specifier 1056
%g format specifier 1056
%H format specifier 1060
%h format specifier 1061
%n format specifier 1061
%o format specifier 1054,

1055
%S format specifier 1057

%s format specifier 30,
1054, 1057

%T format specifier 1058
%t format specifier 1058
%X format specifier 1054
%x format specifier 1054
- flag 1064
+ flag 1064
– (minus sign) formatting

flag 94
+, addition 34, 35
++, preincrement/

postincrement 82
+=, addition assignment

operator 81
+=, string concatenation

assignment operator 518
<, less than 36
<=, less than or equal 36
<> diamond notation for

generic type inference
(Java SE 7) 585

<>, angle brackets for XML
elements 663

-=, subtraction assignment
operator 82

== to determine whether
two references refer to
the same object 252

==, is equal to 36
>, greater than 36
>=, greater than or equal to

36
|, boolean logical inclusive

OR 107, 109
||, conditional OR 107,

108
truth table 109

Numerics
0 flag 149
0 format flag 190
0x (hexadecimal prefix)

1065
127.0.0.1 (localhost IP

address) 819, 909

A
abbreviating assignment

expressions 81

abs method of Math 116
absolute method of

ResultSet 878
absolute path 542, 543,

545
absolute value 116
abstract class 256, 260,

261, 262, 280
abstract data type (ADT)

188
abstract implementation

616
abstract keyword 261
abstract method 261, 262,

265, 370, 417, 1025
abstract superclass 260, 370
Abstract Window Toolkit

(AWT) 404
package 124

Abstract Window Toolkit
Event package 124

AbstractButton class
420, 422, 701, 706
addActionListener

method 423
addItemListener

method 425
isSelected method

708
setMnemonic method

706
setRolloverIcon

method 422
setSelected method

707
AbstractCollection

class 616
AbstractList class 616
AbstractMap class 616
AbstractQueue class 616
AbstractSequentialList

class 616
AbstractSet class 616
AbstractTableModel

class 872, 878
fireTableStruc-

tureChanged meth-
od 878

accept method of class
ServerSocket 811,
818

Index

1092 Index

access modifier 41, 48, 360
private 48, 192, 228
protected 192, 228
public 41, 192, 228

access modifier in the UML
- (private) 51
+ (public) 43

access shared data 759
accessibility 405
accessor method 202
Account class (ATM case

study) 326, 329, 332,
334, 335, 342, 349, 350,
351, 353, 354, 355, 381

acquire the lock 745
action 65, 69
action expression in the

UML 63, 339
action key 450
action of an object 339
action state in the UML 63,

339
action state symbol 63
ActionEvent class 414,

415, 419, 466, 679
getActionCommand

method 415, 423
ActionListener interface

414, 419
actionPerformed

method 414, 418,
460, 466

actionPerformedmethod
of interface
ActionListener 414,
418, 460, 466

ACTIVATED constant of
nested class EventType
810

activation in a UML
sequence diagram 353

activity diagram 62, 63, 65,
91
do...while statement

97
for statement 92
if statement 65
if...else statement 65
in the UML 69, 326,

339, 340, 357
sequence statement 63
switch statement 104
while statement 69

activity in the UML 63,
326, 338, 341

actor in use case in the
UML 324

actual type arguments 623
acyclic gradient 497
Ada programming

language 736
adapter class 443

Adapter Classes used to
implement event
handlers 447

add a web service reference
to an application in
NetBeans 974

add an event handler in
Netbeans 1076

add method
ArrayList<T> 185,

806
ButtonGroup 429
JFrame 408
JMenu 706
JMenuBar 707
LinkedList<T> 590
List<T> 585, 587

addActionListener
method
of class AbstractBut-

ton 423
of class JTextField

414
addAll method

Collections 590, 600
List 587

addFirst method of
LinkedList 590

addGap method of class
GroupLayout.Group
1072

addGap method of class
GroupLayout.
ParallelGroup 1072

addGap method of class
GroupLayout.
SequentialGroup
1072

adding a web service
reference to an
application 973

addItemListenermethod
of class
AbstractButton 425

addition 34, 35
addition compound

assignment operator, +=
81

addKeyListener method
of class Component 450

addLast method of
LinkedList 589

addListSelection-
Listener method of
class JList 435

addMouseListener
method of class
Component 442

addMouseMotion-
Listener method of
class Component 442

addPoint method of class
Polygon 492, 494

addSeparator method of
class JMenu 707

addTab method of class
JTabbedPane 721

addTableModelListener
method of TableModel
872

addTrayIcon method of
class SystemTray 1088

addWindowListener
method of class Window
700

advertisement 933
aggregation in the UML

331
Agile Alliance

(www.agilealliance.
org) 18

Agile Manifesto
(www.agilemanifesto
.org) 18

agile software development
xxiii, 18, 18

.aif file extension 685,
688

.aiff file extension 685,
688

Ajax 943
id attributes for ele-

ments 961
Ajax (Asynchronous

JavaScript and XML)
16, 956, 957

Ajax-enabled
web applications xxii

Ajax request 961
Ajax web application 957
algorithm

in Java Collections
Framework 590

aligning components in
GroupLayout 1072

aligning decimal points in
output 1053

alpha software 19
alphabetizing 506
Amazon S3 19
analysis stage of the

software life cycle 324
anchor (a) element 664
anchor field of class

GridBagConstraints
725

AND (in SQL) 863, 864
Android 6

Android Market 6
app 15
Market 6
operating system 2, 6
smartphone 6

Android for Programmers:
An App-Driven Approach
6

angle bracket (<>) for XML
elements 663

angle brackets (< and >)
623

animated shape 652
animating a series of images

675
animation 657, 668, 680
Animator applet 648
annotation

@Override 233
Annotations

@GET 980
@PathParam 980
@Produces 980
@WebMethod 968
@WebParam 969
@WebService 968
Path 979

annotations
@Resource 951

anonymous inner class 414,
432, 448

anti-aliasing 651
Apache Derby xxii
Apache Software

Foundation 5
Apache Tomcat 968
API (application

programming interface)
31, , 115

API documentation
(download.oracle.com
/javase/6/docs/api/)
123

API links
Deprecated 1029
Help 1029
Index 1029
Tree 1029

append method of class
StringBuilder 521

applet 647, 652, 659, 803
draggable 674

applet .class file 655
Applet class

getAppletContext
method 807

getAudioClipmethod
685

getCodeBase method
685

getParametermethod
804

play method 685
showStatus method

682
applet container 647, 656
Applet Package 124

http://www.agilealliance.org
http://www.agilealliance.org
http://www.agilemanifesto.org
http://www.agilemanifesto.org

Index 1093

applet parameter 803
Applet that draws a string

653
applet XHTML element

655
AppletContext interface

803
showDocumentmethod

803, 807
applet-desc element of a

JNLP document 664
applets directory

JDK sample applets
648

applets in the public
domain 803

appletviewer applet
container 647, 649
Applet menu 650
Quit menu item 650
Reload menu item 650

application 23, 24, 41
command-line argu-

ments 118
application programming

interface (API) 7, 115
application server 908
Application servers

Apache Tomcat 968
GlassFish 968
JBoss Application Serv-

er 968
application-desc

element of a JNLP
document 664
height attribute 664
main-class attribute

664
name attribute 664
width attribute 664

arc 488, 648
arc angle 488
arc width and arc height for

rounded rectangles 487
Arc2D class 469

CHORD constant 498
OPEN constant 498
PIE constant 498

Arc2D.Double class 494
archive files 220
ArcTest applet 648
args parameter 178
argument index 1054,

1060, 1068
argument list 1055
argument promotion 122
argument to a method 25,

44
arithmetic compound

assignment operators 81
arithmetic operators 34
arithmetic overflow 301

ArithmeticException
class 295, 300

array 540, 806
bounds checking 151
ignoring element zero

152
length instance vari-

able 142
pass an array element to

a method 159
pass an array to a meth-

od 159
array-access expression 142
array-creation expression

143
array initializer 145

for multidimensional
array 168

nested 168
array of one-dimensional

arrays 168
ArrayBlockingQueue

class 759, 760, 770, 784
size method 761

arraycopymethod of class
System 181, 182

ArrayIndexOutOfBounds
Exception class 151,
153, 153, 494

ArrayList<T> generic
class 183, 582, 598, 640,
806, 991
add method 185, 806
clear method 183
containsmethod 183,

186
get method 185
indexOf method 183
isEmpty method 203
remove method 184,

185
size method 185
toString method 642
trimToSize method

184
Arrays class 180

asList method 588,
589

binarySearchmethod
180

equals method 180
fill method 180, 794
sort method 180
toString method 536

arrow 63
arrow key 450
arrowhead in a UML

sequence diagram 353
artifact in the UML 1089
ascending order 181

ASC in SQL 859, 860
ascent 482

ASCII (American Standard
Code for Information
Interchange) character
set 105

ASCII character set
Appendix 1024

asList method of Arrays
588, 589

assert statement 315,
1025

assertion 315
AssertionError class 315
Assigning superclass and

subclass references to
superclass and subclass
variables 259

assignment operator, = 33,
38

assignment operators 81
associate

right to left 78
association (in the UML)

329, 330, 331, 362, 363
name 330

associativity of operators
35, 38, 84
left to right 38
right to left 35

asterisk (*) SQL wildcard
character 856

asynchronous call 352
asynchronous event 301
Asynchronous JavaScript

and XML (Ajax) 956
asynchronous request 956
ATM (automated teller

machine) case study
319, 324

ATM class (ATM case study)
329, 330, 334, 336, 338,
342, 349, 350, 351, 352,
353, 361

ATM system 324, 325,
327, 328, 338, 342, 360

ATMCaseStudy class (ATM
case study) 395

atomic operation 750, 905
attribute 360, 362, 363

compartment in a class
diagram 336

declaration in the UML
336, 338

in the UML 4, 43, 329,
333, 334, 336, 338,
341, 368, 369

name in the UML 336
of a class 3
of an object 4
of an XHTML element

655
type in the UML 336

.au file extension 685, 688

audio clip 685, 687, 692
AudioClip interface 685

loop method 685
play method 685
stop method 685

Austrailian Botanical
Gardens
(www.anbg.gov.au/
anbg/index.html) 692

authorISBN table of books
database 852, 853

authors table of books
database 852

auto commit state 905
auto-unboxing 581
autobox an int 626
autoboxing 528, 581, 626
AutoCloseable interface

317, 872
close method 317

autoincremented 852, 862
automated teller machine

(ATM) 319, 324
user interface 320

automatic driver discovery
(JDBC 4) xxii, 869

automatic garbage
collection 304

automatic scrolling 435
automatic updating 661
average 70, 72
.avi file extension 688
await method of interface

Condition 777, 781
awaitTermination

method of interface
ExecutorService 748

AWT (Abstract Window
Toolkit) 404
components 405

AWTEvent class 416

B
B conversion character

1060
b conversion character

1060
B2B (business-to-business)

transactions 964
background color 476, 478
backing array 588
backslash (\) 29, 1068,

1069
BalanceInquiry class

(ATM case study) 329,
331, 334, 335, 336, 339,
342, 350, 351, 352, 353,
361, 365, 366, 367

http://www.anbg.gov.au/anbg/index.html
http://www.anbg.gov.au/anbg/index.html

1094 Index

BankDatabase class (ATM
case study) 329, 332,
334, 342, 344, 349, 350,
351, 352, 353, 354, 361,
363

bar chart 148, 149, 648
bar of asterisks 148, 149
BarChart applet 648
base class 225
base of a number 526
BASELINE alignment

constant in
GroupLayout 1072

baseline of the font 480
BasePlusCommissionEmp

loyee class extends
CommissionEmployee
272

BasicStroke class 469,
497, 498
CAP_ROUND constant

499
JOIN_ROUND constant

499
batch file 551
behavior 342

of a class 3
of a system 338, 339,

341, 351
beta software 20
bidirectional iterator 588
bidirectional navigability in

the UML 361
BigDecimal class 56, 96

documentation (down-
load.oracle.com/
javase/6/docs/
api/java/math/
BigDecimal.html)
96

BigInteger class 786
binary file 541
binary operator 110
binary search algorithm

598
binarySearch method

of Arrays 180, 182
of Collections 590,

598, 600
BindException class 818
binding the server to the

port 811, 826
BindingProvider

interface 1001
getRequestContext

method 1001
bitwise operators 107
Blackjack 988
blank line 24
_blank target frame 807
Blink applet 648
block 68, 76, 811, 829

block increment of a
JSlider 696

block until connection
received 818

blocked state 739, 745
BlockingQueue interface

760
put method 760, 761
take method 760, 761

body
of a class declaration 25
of a loop 69
of a method 25
of an if statement 35

body XHTML element
655

Bohm, C. 62
BOLD constant of class Font

480
book-title capitalization

403, 420
books database 852

table relationships 855
Boolean

attribute in the UML
334

class 580
boolean

expression 66, 1042
promotions 123

boolean logical AND, &
107, 109

boolean logical exclusive
OR, ^ 107, 110
truth table 110

boolean logical inclusive
OR, | 109

boolean primitive type 66,
1025, 1026, 1042

border of a JFrame 699
BorderLayout class 441,

452, 454, 457, 466
CENTER constant 441,

457, 460
EAST constant 441, 457
NORTH constant 441,

457
SOUTH constant 441,

457
WEST constant 441, 457

BOTH constant of class
GridBagConstraints
726

bottom tier 913
bounded buffer 770
bounding rectangle 486,

488, 696
bounds checking 151
Box class 466, 722, 723

createGlue method
725

createHorizontal-
Box method 466,
723

createHorizontal-
Glue method 725

createHorizontal-
Strut method 725

createRigidArea
method 725

createVerticalBox
method 724

createVerticalGlue
method 725

createVertical-
Strut method 724

X_AXIS constant 725
Y_AXIS constant 725

boxing conversion 581,
626

BoxLayout class 466, 722
BoxLayout layout manager

722
braces ({ and }) 68, 76, 90,

145
not required 102

braille screen reader 405
break 1025
break mode 1039
break statement 102, 105
breakpoint 1037

inserting 1039, 1041
listing 1050
removing 1051

bricks-and-mortar store
933

brightness 478
Brin, Sergey 15
brittle software 245
browse method of class

Desktop 1085
browsing 803
buffer 572, 753
buffered I/O 572
BufferedImage class 498

createGraphics
method 498

TYPE_INT_RGB con-
stant 498

BufferedInputStream
class 572

BufferedOutputStream
class 572
flush method 572

BufferedReader class 573
BufferedWriter class 573
building-block approach to

creating programs 4
bulk operation 581
business logic 913
business publications 20
business rule 913

business-to-business (B2B)
transactions 964

button 400, 420
button label 420
ButtonGroup class 426,

701, 708
add method 429

byte-based stream 541
Byte class 580
byte keyword 1026
byte primitive type 98,

1025
promotions 123

ByteArrayInputStream
class 573

ByteArrayOutputStream
class 573

bytecode 8, 26
bytecode verifier 9

C
c option of the jar

command 662
cache 912
CachedRowSet interface

885
close method 887

calculations 38, 62
Calendar class 1059

getInstance method
1060

call-by-reference 161
call-by-value 161
call method of interface

Callable 799
Callable interface 799

call method 799
CallableStatement

interface 904
callback function 958
calling method (caller) 41,

49
camera 6
cancel method of class

SwingWorker 799
CANCEL_OPTION constant

of JFileChooser 577
CannotRealizePlayerEx

ception exception 690
canRead method of File

543
canWrite method of File

543
CAP_ROUND constant of

class BasicStroke 499
capacity method

of class StringBuild-
er 518

capacity of a
StringBuilder 517

card games 153

Index 1095

card shuffling
Fisher-Yates 156

Card Shuffling and
Dealing
with Collections

method shuffle
594

CardTest applet 648
carriage return 29
Cascading Style Sheets

(CSS) 908
case keyword 102, 1025
case sensitive 24

Java commands 12
case studies xxii
CashDispenser class

(ATM case study) 329,
330, 331, 334, 335, 342,
354, 379

casino 125, 130
cast

downcast 258
operator 77, 122

catch
a superclass exception

303
an exception 296

catch
block 298, 298, 300,

301, 304, 308, 310
clause 298, 1025
keyword 298

Catch block 153
catch handler

multi-catch 316
catch-or-declare

requirement 302
cd to change directories 26
ceil method of Math 116
cellpadding attribute of

h:dataTable 954
cellspacing attribute of

h:dataTable 954
CENTER constant

BorderLayout 441,
457, 460

FlowLayout 457
GridBagConstraints

726
GroupLayout 1072

center mouse button click
445

centered 454
certificate authority 660
chained exception 311
change directories 26, 648
ChangeEvent class 699
ChangeListener interface

699
stateChangedmethod

699

changing look-and-feel of a
Swing-based GUI 715

char
array 505
keyword 1025, 1026
primitive type 32, 98
promotions 123

character
constant 105
literal 503

character-based stream 541
Character class 503, 524,

580
charValue method

528
digit method 526
forDigit method 526
isDefined method

524
isDigit method 524
isJavaIdentifier-

Part method 525
isJavaIdentifier-

Start method 524
isLetter method 526
isLetterOrDigit

method 526
isLowerCase method

526
isUpperCase method

526
static conversion

methods 527
toLowerCase method

526
toUpperCase method

526
CharArrayReader class

573
CharArrayWriter class

573
charAt method

of class String 505
of class StringBuild-

er 520
CharSequence interface

536
charValuemethod of class

Character 528
checkbox 420, 426
checkbox label 425
checked exception 302
Checking with assert that

a value is within range
315

child window 695, 716,
718, 719

CHORD constant of class
Arc2D 498

circular buffer 771
class 3, 336, 342, 346, 360

class keyword 41

class (cont.)
constructor 42, 53, 362
data hiding 48
declaration 24, 653
declare a method 40
default constructor 53
field 47
file 26
get method 196
instance variable 4, 47,

117
instantiating an object

40
name 24, 218, 362
set method 196

class-average problem 70,
74

class cannot extend a final
class 278

Class class 253, 277, 409,
878
getName method 253,

277
getResource method

409
class diagram

for the ATM system
model 332, 356

in the UML 325, 329,
331, 335, 342, 360,
363, 367, 368, 369

.class file 8, 27
separate one for every

class 194
.class file extension 685
class hierarchy 225, 261
class instance creation

expression 42, 54
class keyword 24, 41,

1025
class library 226, 251
class loader 9, 220, 409
class method 116
class name

fully qualified 47
class variable 117, 210
classwide information 210
ClassCastException

class 628
Classes

AbstractButton 420,
422, 701, 706

AbstractCollection
616

AbstractList 616
AbstractMap 616
AbstractQueue 616
AbstractSequen-

tialList 616
AbstractSet 616
AbstractTableModel

872, 878

Classes (cont.)
ActionEvent 414,

415, 419, 466, 679
Arc2D 469
Arc2D.Double 494
ArithmeticExcep-

tion 295
ArrayBlockingQueue

759, 760, 770, 784
ArrayIndexOutOf-

BoundsException
151, 153

ArrayList<T> 183,
183, 185, 186, 582,
583, 598, 640, 806

Arrays 180
AssertionError 315
AWTEvent 416
BasicStroke 469,

497, 498
BigDecimal 56, 96
BigInteger 786
BindException 818
Boolean 580
BorderLayout 441,

452, 454, 457, 466
Box 466, 722, 723
BoxLayout 466, 722
BufferedImage 498
BufferedInput-

Stream 572
BufferedOutput-

Stream 572
BufferedReader 573
BufferedWriter 573
ButtonGroup 426,

701, 708
Byte 580
ByteArrayInput-

Stream 573
ByteArrayOutput-

Stream 573
Calendar 1059
ChangeEvent 699
Character 503, 521,

524, 580
CharArrayReader 573
CharArrayWriter 573
Class 253, 277, 409,

878
ClassCastException

628
Collections 582, 625
Color 469
Component 405, 438,

471, 472, 673, 680,
700, 731

ComponentAdapter
443

ComponentListener
454

1096 Index

Classes (cont.)
ConcurrentHashMap

784
ConcurrentLinked-

Deque 784
ConcurrentSkip-

ListMap 784
ConcurrentSkip-

ListSet 784
Container 405, 435,

454, 462
ContainerAdapter

443
CopyOnWriteArray-

List 784
CopyOnWriteArray-

Set 784
DatagramPacket 826,

848
DatagramSocket 826
DataInputStream 572
DataOutputStream

572
Date 1059
DelayQueue 784
Desktop 1085
Dimension 680
Double 580, 641
DriverManager 869
Ellipse2D 469
Ellipse2D.Double

494
Ellipse2D.Float 494
EmptyStackExcep-

tion 604
EnumSet 209
Error 301
EventListenerList

418
Exception 301
ExecutionException

788
Executors 741
File 542
FileInputStream 541
FileOutputStream

541
FileReader 541, 573
FileWriter 541
FilterInputStream

571
FilterOutputStream

571
Float 580
FlowLayout 408, 454
FocusAdapter 443
Font 425, 469, 480
FontMetrics 469, 482
Formatter 542, 1053
Frame 699
GeneralPath 469, 499

Classes (cont.)

GradientPaint 469,
497

Graphics 448, 469,
494, 673

Graphics2D 469, 494,
498

GridBagConstraints
725, 731

GridBagLayout 722,
725, 727, 731

GridLayout 454, 460
GroupLayout 454,

1071
GroupLayout.Group

1072
GroupLayout.Paral-

lelGroup 1072
GroupLayout.Se-

quentialGroup
1072

Gson 985
HashMap 608, 804
HashSet 605
Hashtable 608
HyperlinkEvent 808,

810
IllegalMonitorSta-

teException 763,
778

Image 669
ImageIcon 409, 669,

678, 679
IndexOutOfRangeEx-

ception 153
InetAddress 819,

825, 829, 830
InputEvent 438, 445,

450
InputMismatchEx-

ception 295
InputStream 571,

811, 812, 813
InputStreamReader

573
Integer 403, 580, 641
InterruptedExcep-

tion 742
ItemEvent 425, 429
JApplet 653, 700
JAXB 980
JButton 404, 420,

423, 460
JCheckBox 404, 423
JCheckBoxMenuItem

700, 701, 707
JColorChooser 476
JComboBox 404, 429,

726

Classes (cont.)
JComponent 405, 406,

408, 418, 429, 433,
446, 462, 469, 471,
680

JdbcRowSetImpl 887
JDesktopPane 716
JDialog 707
JEditorPane 808
JFileChooser 574
JFrame 699
JInternalFrame 716,

718
JLabel 404, 406
JList 404, 433
JMenu 700, 707, 718
JMenuBar 700, 707,

718
JMenuItem 701, 718
JOptionPane 401
JPanel 404, 446, 447,

454, 462, 675, 696
JPasswordField 410,

415
JPopupMenu 708
JProgressBar 795
JRadioButton 423,

426, 429
JRadioButtonMenu-

Item 700, 701, 708
JScrollPane 435,

437, 466, 467
JSlider 695, 696,

699, 1072
JTabbedPane 720, 725
JTable 872
JTextArea 452, 464,

466, 727, 730
JTextComponent 410,

413, 464, 466
JTextField 404, 410,

414, 418, 464
JToggleButton 423
KeyAdapter 443
KeyEvent 419, 450
Line2D 469, 498
Line2D.Double 494
LinearGradient-

Paint 497
LineNumberReader

573
LinkedBlockingD-

eque 784
LinkedBlocking-

Queue 784
LinkedList 582
LinkedTransfer-

Queue 784
ListSelectionEvent

433
ListSelectionModel

435

Classes (cont.)
Long 580
MalformedURLExcep-

tion 807
Manager 688
Matcher 503, 536
Math 116
MouseAdapter 443
MouseEvent 419, 438,

711
MouseMotionAdapter

443, 447
MouseWheelEvent 439
Number 641
Object 209
ObjectInputStream

541, 812, 813, 819
ObjectOutputStream

541
OutputStream 571,

811, 812, 813
OutputStreamWriter

573
Pattern 503, 536
PipedInputStream

571
PipedOutputStream

571
PipedReader 573
PipedWriter 573
Point 448
Polygon 469, 491
PrintStream 571
PrintWriter 573
PriorityBlocking-

Queue 784
PriorityQueue 604
Properties 612
RadialGradient-

Paint 497
Random 124, 125
Reader 573
Rectangle2D 469
Rectangle2D.Double

494
ReentrantLock 777,

779
RoundRectangle2D

469
RoundRectangle2D.D

ouble 494, 498
RowFilter 884
RuntimeException

302
Scanner 32, 45
ServerSocket 811,

818, 840
ServiceManager 672
Short 580
Socket 811, 825, 840,

841
SocketException 826

Index 1097

Classes (cont.)
SplashScreen 1084
SQLException 870
SQLFeatureNotSup-

portedException
877

Stack 602
StackTraceElement

311
String 503
StringBuffer 517
StringBuilder 503,

517
StringIndexOutOf-

BoundsException
513, 520

StringReader 573
StringWriter 573,

980
SwingUtilities 716,

818
SwingWorker 785
SynchronousQueue

784
SystemColor 497
SystemTray 1087
TableModelEvent 884
TableRowSorter 884
TexturePaint 469,

497, 498
Throwable 301, 310
Timer 679, 680
TrayIcon 1088
TreeMap 608
TreeSet 605
Types 871
UIManager 715
UnknownHostExcep-

tion 813
UnsupportedOpera-

tionException
588

URL 685
Vector 582
Window 699
WindowAdapter 443,

884
Writer 573

classified listings 15
ClassName.this 706
CLASSPATH

environment variable
27, 220

classpath 220, 869
-classpath command-

line argument 548
to java 221
to javac 220

clear debugger command
1050

clear method
of ArrayList<T> 183

clear method (cont.)
of List<T> 588
of PriorityQueue 604

clearRectmethod of class
Graphics 485

click a button 410
click a tab 652
click count 443
click the mouse 423, 649
click the scroll arrows 432
client

of a class 342, 351
of an object 51

client code 257
client connection 811
client-server chat 813
client-server relationship

802
client-side artifacts 973
client tier 913
clip art

(www.clipart.com)
692

clock 649
Clock applet 649
clone method of Object

252
clone object 562
cloning objects

deep copy 252
shallow copy 252

close a window 406, 410
close method

of CachedRowSet 887
of Connection 871
of Formatter 552
of interface Connec-

tion 871
of interface ResultSet

871
of interface Statement

871
of JdbcRowSet 887
of ObjectOutput-

Stream 568
of ResultSet 871
of Socket 812
of Statement 871

close method of interface
AutoCloseable 317

closed polygons 491
closePathmethod of class

GeneralPath 501
cloud computing xxiii, 19
code 4
code attribute of <applet>

tag 655
code reuse 225
codebase attribute of the

jnlp element 663
code completion window

(NetBeans) 919

coin tossing 126
collaboration diagram in

the UML 326
collaboration in the UML

348, 349, 350, 352
collection 183, 579
collection hierarchy 581
collection implementation

615
Collection interface 580,

581, 585, 590
contains method 585
iterator method 585

collections
synchronizedcollection

582
unmodifiable collec-

tion 582
Collections class 582,

625
addAll method 590,

600
binarySearchmethod

590, 598, 600
copy method 590, 597
disjointmethod 590,

600
fill method 590, 596
frequency method

590, 600
max method 590, 597
min method 590, 597
reverse method 590,

596
reverseOrdermethod

592
shuffle method 590,

594, 596
sort method 591
wrapper methods 582

collections framework 579
Collections methods

reverse, fill, copy,
max and min 597

collision in a hashtable 609
color 469
color chooser dialog 477
Color class 469

getBlue method 473,
475

getColor method 473
getGreenmethod473,

475
getRed method 473,

475
setColor method 473

Color constant 472, 475
color manipulation 471
color swatches 478
column 167, 851, 852
column number in a result

set 857

columnClasses attribute
of h:dataTable 954

columns attribute of
h:panelGrid 925

columns of a two-
dimensional array 167

com.google.gson.Gson
package 985

com.sun.rowset package
887

combo box 400, 429
comma (,) 93
comma (,) formatting flag

95
comma-separated list 93

of arguments 29, 32
of parameters 119

command-and-control
software system 736

command button 420
command line 25
command-line argument

118, 178
Command Prompt 8, 25
command window 25, 648,

649, 654
comment

end-of-line (single-
line), // 23, 26

Javadoc 24
single line 26

CommissionEmployee
class derived from
Employee 270

commit a transaction 905
commit method of

interface Connection
905

Common Programming
Errors overview xxiv

Commonly used JSF
components 922

communication diagram in
the UML 326, 351, 352

Comparable<T> interface
290, 509, 591, 625
compareTo method

591, 625
Comparator interface 591

compare method 593
Comparator object 591,

597, 606, 608
in sort 591

compare method of
interface Comparator
593

compareTo method
of class String 507,

509
of Comparable 591

compareTo method of
Comparable<T> 625

http://www.clipart.com

1098 Index

comparing String objects
506

comparison operator 290
compartment in a UML

class diagram 43
compile 26
compile a program 8
compile method of class

Pattern 537
compile-time type safety

579
compiled applet class 655
compiler options

-d 218
compile-time type safety

619
compiling an application

with multiple classes 43
complex curve 499
component 2, 124, 437
Component class 405, 438,

471, 472, 478, 673, 680,
700, 731
addKeyListener

method 450
addMouseListener

method 442
addMouseMotionLis-

tener method 442
getHeight method

673
getMaximumSize

method 1072
getMinimumSize

method 680, 698,
1072

getPreferredSize
method 680, 698,
1072

getWidth method 673
repaint method 448
setBackground meth-

od 478
setBounds method

453
setFont method 425
setLocation method

453, 700
setSize method 453,

700
setVisible method

460, 700
component diagram in the

UML 1089
component in the UML

1089
ComponentAdapter class

443
ComponentListener

interface 443, 454

composite structure
diagram in the UML
1090

composition 203, 225, 227,
330, 331, 356
in the UML 330

compound assignment
operators 81, 84

compound interest 93
computerized scientific

notation 1055
concat method of class

String 514
concatenate strings 212
concatenation 120
concrete class 260
concrete subclass 265
CONCUR_READ_ONLY

constant 877
CONCUR_UPDATABLE

constant 877
concurrency 736
Concurrency API 737
concurrent access to a

Collection by
multiple threads 615

concurrent collections
(Java SE 7) 784

concurrent operations 736
concurrent programming

737
concurrent threads 759
ConcurrentHashMap class

784
ConcurrentLinkedDeque

class 784
ConcurrentSkipListMap

class 784
ConcurrentSkipListSet

class 784
condition 35, 97
Condition interface 777,

779
await method 777,

781
signal method 777
signalAll method

777
condition object 777
conditional AND, && 108,

109
truth table 108

conditional expression 66
conditional operator, ?: 66
conditional OR, || 107,

108
truth table 109

confusing the equality
operator == with the
assignment operator =
38

connect to a database 867

connect to server 811, 813
connected lines 491
connected RowSet 885
connection 802, 813, 825,

826, 840, 841
connection between client

and server terminates
814

connection between Java
program and database
869

Connection interface 869,
871, 876, 905
close method 871
commit method 905
createStatement

method 870, 876
getAutoCommit meth-

od 905
prepareStatement

method 895
rollBack method 905
setAutoCommit meth-

od 905
connection-orientedservice

802
connection-oriented,

streams-based
transmission 825

connection pool 945
connection port 811
connectionless service 802,

826
connectionless

transmission 825
consistent state 196
constant 215

in an interface 290
constant integral expression

98, 105
constant variable 105, 146,

215
must be initialized 146

constructor 42, 53, 362
call another constructor

of the same class us-
ing this 198

multiple parameters 55
no argument 198
overloaded 195
parameter list 54

Constructor Detail section
in API 1034

Constructor Summary
section in API 1032

constructors cannot specify
a return type 55

consume an event 414
consumer 752
consumer electronic device

7
consumer thread 753

consuming a web service
965, 966

cont debugger command
1040

Container class 405, 435,
454, 462
setLayout method

408, 454, 460, 462,
725

validate method 462
container for menus 700
ContainerAdapter class

443
ContainerListener

interface 443
contains method

of Collection 585
contains method of class

ArrayList<T> 183,
186

containsKey method of
Map 611

content pane 435, 708
setBackground meth-

od 435
context-sensitive popup

menu 708
continue statement 105,

106, 1025
continuous beta 20
control statement 62, 64,

65
nesting 64
stacking 64

control variable 87, 88, 89
controller (in MVC

architecture) 922, 922
controller logic 913
controlling expression of a

switch 102
controls 399
conversion characters 1054

% 1061
A 1056
a 1056
B 1060
b 1060, 1061
C 1057
c 1057
d 1054
E 1055, 1056
e 1055, 1056
f 1055, 1056
G 1056
g 1056
H 1060
h 1061
n 1061
o 1054
S 1057
s 1057
T 1058

Index 1099

conversion characters
(cont.)
t 1058
X 1054
x 1054

conversion suffix characters
1058
A 1058
a 1058
B 1058
b 1058
c 1058
D 1058
d 1058
e 1059
F 1058
H 1059
I 1059
j 1059
k 1059
l 1059
M 1059
m 1058
P 1059
p 1059
R 1058
r 1058
S 1059
T 1058
Y 1059
y 1059
Z 1059

convert
an integral value to a

floating-point value
123

between number sys-
tems 526

cookie 934, 935
deletion 935
expiration 935
expiration date 935
header 935

coordinate system 469, 471
coordinates 654
coordinates (0, 0) 469
copy method of

Collections 590, 597
copying objects

deep copy 252
shallow copy 252

CopyOnWriteArrayList
class 784

CopyOnWriteArraySet
class 784

core package 27
Core Tag Library (JSF)

922, 926
cos method of Math 116
cosine 116

counter-controlled
repetition 70, 76, 79, 87,
89

-cp command line
argument
to java 221

Craigslist
(www.craigslist.org)
15, 16

craps (casino game) 125,
130

create a desktop application
in NetBeans 973

create a package 215
create a reusable class 216
create a Socket 813
create a web application in

NetBeans 967
create an object of a class 42
createGlue method of

class Box 725
createGraphics method

of class BufferedImage
498

createHorizontalBox
method of class Box
466, 723

createHorizontalGlue
method of class Box 725

createHorizontalStrut
method of class Box 725

createRealizedPlayer
method of class
Manager 688

createRigidAreamethod
of class Box 725

createStatementmethod
of Connection 870,
876

createVerticalBox
method of class Box 724

createVerticalGlue
method of class Box 725

createVerticalStrut
method of class Box 724

creating a Java DB database
in NetBeans 952

creating and initializing an
array 144

cross-site scripting 980
CSS

height attribute 925
width attribute 925

CSS (Cascading Style
Sheets) 908

CSS rule 932
<Ctrl>-d 101
Ctrl key 435, 453
ctrl key 101
<Ctrl>-z 101
currentThreadmethod of

class Thread 746

cursor 25, 28
curve 499, 649
custom drawing area 447
customized subclass of class

JPanel 447
cyclic gradient 497

D
-d compiler option 218
dangling-else problem 67
dashed lines 494
data hiding 48
data integrity 203
data source name 947
data tier 913
database 850, 855

table 851
database-driven multitier

web address book xxii
database management

system (DBMS) 850
datagram packet 802, 825,

826
datagram socket 802, 826
DatagramPacket class

826, 848
getAddress method

829
getData method 829
getLength method

829
getPort method 829

DatagramSocket class 826
receive method 829
send method 829

DataInput interface 572
DataInputStream class

572
DataOutput interface 572

writeBooleanmethod
572

writeByte method
572

writeBytes method
572

writeChar method
572

writeChars method
572

writeDouble method
572

writeFloat method
572

writeInt method 572
writeLong method

572
writeShort method

572
writeUTF method 572

DataOutputStream class
572

DataSource interface 951
date 124
date and time compositions

1058
Date class 1059
date formatting 1054
DB2 850
dead state 739
deadlock 778, 781
dealing 153
debugger 1037

break mode 1039
breakpoint 1037
clear command 1050
cont command 1040
defined 1037
exit command 1046
-g compiler option

1038
inserting breakpoints

1039
jdb command 1039
logic error 1037
next command 1045
print command 1041,

1042
run command 1039,

1041
set command 1041,

1042
step command 1043
step up command

1044
stop command 1039,

1041
suspending program

execution 1041
unwatch command

1046, 1048
watch command 1046

decimal integer 1054
decimal integer formatting

33
decision 35, 64

symbol in the UML 64,
341

declaration
class 24
import 31, 33
method 25

declare a method of a class
40

decrement of a control
variable 87

decrement operator, -- 82
dedicated drawing area 446
deep copy 252
default case in a switch

102, 104, 129
default constructor 53,

201, 232

http://www.craigslist.org

1100 Index

default exception handler
310

default initial value 50
default keyword 1025
default layout of the

content pane 466
default package 47, 216
default upper bound

(Object) of a type
parameter 631

default value 50, 85
define a custom drawing

area 447
degree 488
Deitel Resource Centers 20
DelayQueue class 784
delegation event model 417
delete method of class

StringBuilder 523
DELETE SQL statement

856, 864
deleteCharAt method of

class StringBuilder
523

delimiter for tokens 529
delimiter string 530
demo directory 651
dependent condition 109
deploy a web app 921
deploying a web service 970
deployment diagram in the

UML 1089
Deposit class (ATM case

study) 329, 331, 334,
342, 350, 351, 358, 361,
365, 366

DepositSlot class (ATM
case study) 329, 330,
331, 334, 342, 351, 362

Deprecated link in API 1029
derived class 225
descending order 181
descending sort (DESC) 859
descent 482
descriptive words and

phrases 334, 335
deserialized object 562
design pattern 18
design patterns xxiii
design process 5, 319, 325,

343, 348
design specification 325
Design view in Netbeans

1073
Desktop class 1085

browse method 1085
getDesktop method

1085
isDesktopSupported

method 1085
mail method 1085
open method 1085

desktop element of a
JNLP document 664

desktop integration 661
destroy method

of JApplet 654, 657
development tool 648
dialog 401
dialog box 401, 706
Dialog font 480
DialogInput font 480
diamond in the UML 63
dice game 130
digit 32, 527, 530
digit method of class

Character 526
digital certificate 660
Dimension class 680
dir command on

Windows 648
direct superclass 225, 226
DIRECTORIES_ONLY

constant of
JFileChooser 577

directory 542, 543
name 542
separator 220
tree 650

disconnected RowSet 885,
952

disjoint method of
Collections 590, 600

disk 11, 540
disk drive 648
disk I/O completion 301
dismiss a dialog 402
dispatch

a thread 739
an event 419

display a line of text 25
display area 655
display monitor 469
display output 38
dispose method of class

Window 699
DISPOSE_ON_CLOSE

constant of interface
WindowConstants 699

distance between values
(random numbers) 129

dithering 649
DitherTest applet 649
divide by zero 11, 295
division 34, 35
division compound

assignment operator, /=
82

DNS (domain name
system) server 909

DNS lookup 909
DO_NOTHING_ON_CLOSE

constant of interface
WindowConstants 699

do...while repetition
statement 64, 96, 97,
1025

document 695, 716
dollar signs ($) 24
domain name system

(DNS) server 909
Dorsey, Jack 17
dot (.) separator 42, 95,

116, 210, 494
dotted line in the UML 63
(double) cast 77
Double class 580, 641

parseDouble method
658

double equals, == 38
double-precision floating-

point number 56
double primitive type 32,

56, 74, 1025, 1026
promotions 123

double quotes, " 25, 29
double-selection statement

64
doubleValue method of

Number 642
downcast 276
downcasting 258
drag the scroll box 432
draggable applet 661, 674
dragging the mouse to

highlight 466
draw arc 648
draw complex curve 649
draw graphics 653
draw lines and points 649
draw method of class

Graphics2D 497
draw rectangle 659
draw shapes 469
draw3DRect method of

class Graphics 485, 488
drawArc method of class

Graphics 488
drawImagemethod of class

Graphics 673
drawing color 473
drawing on the screen 471
drawLine method of class

Graphics 485
drawOval method of class

Graphics 485, 488
drawPolygon method of

class Graphics 491, 493
drawPolyline method of

class Graphics 491, 493
drawRect method of class

Graphics 485, 498
drawRoundRectmethod of

class Graphics 486

drawString method of
class Graphics 475,
654, 659

DrawTest applet 649, 650
driver class 41
DriverManager class 869

getConnection meth-
od 869

drop-down list 404, 429
dummy value 74
duplicate of datagram 826
dynamic binding 275
dynamic content 7
dynamic resizing 141
dynamically resizable array

806

E
EAST constant

of class BorderLayout
441, 457

of class GridBagCon-
straints 726

eBay 18
echo character of class

JPasswordField 411
echoes a packet back to the

client 826
Eclipse

demonstration video
(www.deitel.com/
books/javafp2) 23

Eclipse
(www.eclipse.org) 8

Eclipse Foundation 5
edit a program 8
editor 8
EL expression 920
element (XML) 663
element of chance 125
elided UML diagram 329
eligible for garbage

collection 213
eliminate resource leaks

305
Ellipse2D class 469
Ellipse2D.Double class

494
Ellipse2D.Float class

494
ellipsis (...) in a method

parameter list 177
else keyword 1025
emacs 8
email 811
embedded system 6
Employee abstract

superclass 265
Employee class hierarchy

test program 273

http://www.deitel.com/books/javafp2
http://www.deitel.com/books/javafp2
http://www.eclipse.org

Index 1101

Employee class that
implements Payable
285

empty statement (a
semicolon, ;) 38, 68, 98

empty string 415, 505
empty XML element 664,

925
EmptyStackException

class 604
encapsulation 4
end cap 497
End key 450
“end of data entry” 74
end-of-file (EOF) 813

indicator 101
key combinations 551
marker 540

end-of-line (single-line)
comment, // 23, 26

end-of-stream 813
end tag 663
endsWith method of class

String 510
enhanced for statement

157
ensureCapacity method

of class StringBuilder
518

Enter (or Return) key 418,
650, 651

ENTERED constant of nested
class EventType 810

entity-relationship diagram
854

enum 133
constant 206
constructor 207
declaration 206
EnumSet class 209
keyword 133, 1025
values method 208

enumeration 133
enumeration constant 133
EnumSet class 209

range method 209
environment variable

CLASSPATH 27
PATH 26

EOF (end-of-file) 813
EOFException class 570
equal likelihood 127
equality operator == to

compare String objects
507

equality operators 35
equals method

of class Arrays 180
of class Object 252
of class String 507,

509

equalsIgnoreCase
method of class String
507, 509

erasure 624, 627
e-reader 2
e-reader device 6
Error class 301
escape character 29, 863
escape sequence 29, 32,

546, 1068, 1069
\, backslash 29
\", double-quote 29
\t, horizontal tab 29
newline, \n 29, 32

event 290, 338, 410, 472
event classes 416
event-dispatch thread

(EDT) 471, 785, 818
event driven 410
event-driven process 471
event handler 290, 410
event handling 410, 413,

418
event source 415

event ID 419
event listener 290, 416, 443

adapter class 443
interface 413, 414, 417,

419, 438, 443
event object 416
event registration 414
event source 415, 416
EventListenerList class

418
EventObject class

getSource method
415

EventType nested class
ACTIVATED constant

810
ENTERED constant 810
EXITED constant 810

EventType nested class of
HyperlinkEvent 810

exception 152, 293
handler 152
handling 151
parameter 153

Exception class 301
exception handler 298
Exception Handling

multi-catch 316
exception handling

try-with-resources
statement 316

exception parameter 298
Exceptions 153

IndexOutOfRangeEx-
ception 153

execute 10
execute an applet in a web

browser 652, 656

execute attribute of f
ajax 961

execute method
of JdbcRowSet 887

execute method of the
Executor interface 741,
744

executeQuery method
of PreparedState-

ment 896
of Statement 870

executeUpdatemethod of
interface Prepared-
Statement 896

executing an application 12
execution-time error 11
ExecutionException

class 788
Executor interface 741

execute method 741,
744

Executors class 741
newCachedThread-

Pool method 742
ExecutorService

interface 741, 799
awaitTermination-

method 748
shutdown method 744
submit method 799

exists method of File
543

exit debugger command
1046

exit method of class
System 304, 551

exit point
of a control statement

64
EXITED constant of nested

class EventType 810
exiting a for statement 106
exp method of Math 116
expanded submenu 706
expiration date of a cookie

935
explicit conversion 77
exponential format 1054
exponential method 116
exponential notation 1055
exponentiation operator 95
expression 33
extend a class 225
extends keyword 229,

240, 1025
extensibility 257
eXtensible HyperText

Markup Language
(XHTML) 908, 909,
915

extensible language 42

eXtensible Markup
Language (XML) 663,
972

extension mechanism
extending Java with ad-

ditional class librar-
ies 220

external event 437

F
f option of the jar

command 662
f:ajax element 961
f:execute element

execute attribute 961
f:facet JSF element 954
f:render element

execute attribute 961
f:selectItem element

926
f:validateBean element

926
f:validateDoubleRange

element 926
f:validateLength

element 926
f:validateLongRange

element 926
f:validateRegexelement

926
f:validateRequired

element 926
FaceBook 15
Facebook 5, 17
Facelets (JSF) 915
Facelets Tag Library (JSF)

941
Faces servlet 914
fairness policy of a lock 777
false keyword 35, 66,

1025
fatal error 68
fatal logic error 68
fatal runtime error 11
fault tolerant 33, 293
fault-tolerant program 152
feature-complete 20
field 47

default initial value 50
Field Detail section in API

1033
field of a class 135
Field Summary section in

API 1032
field width 94, 1054, 1062
file 540
File class 542

canRead method 543
canWrite method 543
exists method 543
File methods 543

1102 Index

File class (cont.)
getAbsolutePath

method 543
getName method 543
getParent method

543
getPath method 543
isAbsolute method

543
isDirectory method

543
lastModifiedmethod

543
length method 543
list method 543
toURI method 692
used to obtain file and

directory informa-
tion 543

file extensions
.aif 685, 688
.aiff 685, 688
.au 685, 688
.avi 688
.class 685
.gif 669
.jpeg 669
.jpg 669
.mid 685, 688
.mov 688
.mp3 688
.mpeg 688
.mpg 688
.png 669
.rmi 685, 688
.spl 688
.swf 688
.wav 685

file folder 651
File methods 543
file processing 541
File.pathSeparator 546
FileContents interface

678
getLength method

673
FileInputStream class

541, 562, 565, 569, 571,
614

FileNotFoundException
class 551

FileOpenService
interface 669, 672
openFileDialog

method 672
openMultiFileDia-

log method 678
FileOutputStream class

541, 562, 565, 614
FileReader class 541, 573

FILES_AND_DIRECTORIES
constant of
JFileChooser 577

FILES_ONLY constant of
JFileChooser 577

FileWriter class 541, 573
filing cabinet 651
fill method

of class Arrays 180,
182

of class Collections
590, 596

of class Graphics2D
497, 498, 501

fill method of class
Arrays 794

fill pattern 498
fill texture 498
fill with color 469
fill3DRect method of

class Graphics 485, 488
fillArc method of class

Graphics 488
filled-in shape 498
filled rectangle 473
filled three-dimensional

rectangle 485
fillOval method of class

Graphics 449, 485,
488

fillPolygon method of
class Graphics 491, 494

fillRect method of class
Graphics 473, 485, 498

fillRoundRectmethod of
class Graphics 486

filter a stream 571
FilterInputStream class

571
FilterOutputStream

class 571
final

class 278
classes and methods

278
keyword 105, 117, 146,

215, 278, 752, 1025
local variable 432
method 278
variable 146

final state in the UML 63,
339

final value 88
finalize method 209,

252
finally

block 298, 304, 781
clause 304, 1025
keyword 298

find method of class
Matcher 537

fireTableStructure-
Changed method of
AbstractTableModel
878

firewall 965
first method of

SortedSet 608
Fisher-Yates shuffling

algorithm 156
five-pointed star 499
fixed text 34

in a format string 30,
1054

flag value 74
flags 1054, 1064
flash drive 540
Flickr 15
float

literal suffix F 604
primitive type 32, 56,

1025, 1026
primitive type promo-

tions 123
Float class 580
floating-point constant 93
floating-point conversion

specifiers 1063
floating-point literal 56

double by default 56
floating-point number 56,

73, 74, 76, 604, 658,
1056
division 77
double precision 56
double primitive type

56
float primitive type

56
single precision 56

floor method of Math 117
flow of control 69, 76
flow of control in the

if...else statement 65
FlowLayout class 408,

454, 455
CENTER constant 457
LEFT constant 457
RIGHT constant 457
setAlignmentmethod

457
flush method

of class BufferedOut-
putStream 572

of class Formatter 840
of class ObjectOut-

putStream 819
focus 411
focus for a GUI application

696, 712
FocusAdapter class 443
FocusListener interface

443

font
manipulation 471
name 480
size 480
style 480

Font class 425, 469, 480
BOLD constant 480
getFamily method

479, 482
getName method 479,

480
getSize method 479,

480
getStylemethod 479,

482
isBold method 479,

482
isItalicmethod 479,

482
isPlain method 479,

482
ITALIC constant 480
PLAIN constant 480

font information 469
font manipulation 471
font metrics 482

ascent 484
descent 484
height 484
leading 484

font style 423
FontMetrics class 469,

482
getAscent method

483
getDescent method

483
getFontMetrics

method 482
getHeight method

483
getLeading method

483
footerClass attribute of

h:dataTable 954
for attribute of h:message

931
for repetition statement

64, 89, 91, 92, 93, 95,
1025
activity diagram 92
enhanced 157
example 91
header 89
nested 149

forDigit method of class
Character 526

foreign key 853, 855
fork/join framework 799
form 923
formal type parameter 623

Index 1103

format method
of class Formatter

551, 1070
of class String 190,

1070
format specifiers 30, 1054

%.2f for floating-point
numbers with preci-
sion 78

%% 1061
%B 1060
%b 1060
%b for boolean values

111
%c 1057
%d 33, 1054, 1055
%E 1056
%e 1056
%f 58, 1056
%G 1056
%g 1056
%H 1061
%h 1060
%n 1061
%n (line separator) 552
%o 1055
%S 1057
%s 30, 1054, 1057
%X 1055
%x 1055

format string 30, 1054,
1063

formatted output 1060
, (comma) formatting

flag 95
%f format specifier 58
– (minus sign) format-

ting flag 94
0 flag 149, 190
aligning decimal points

in output 1053
boolean values 111
conversion character

1054
date and time composi-

tions 1058
date and time conver-

sion suffix characters
1058

dates 1054
exponential format

1054
field width 94, 1054
floating-point num-

bers 58
grouping separator 95
inserting literal charac-

ters 1053
integers in hexadecimal

format 1054
integers in octal format

1054

formatted output (cont.)
left justification 1053
left justify 94
precision 58, 1054
right justification 94,

1053
rounding 1053
times 1054

Formatter class 542, 548,
1053, 1069
close method 552
documentation

(java.sun.com/
javase/6/docs/
api/java/util/
Formatter.html)
1058, 1069

flush method 840
format method 551,

1070
toString method

1070
FormatterClosedExcept

ion class 552
formatting

display formatted data
29

Formatting date and time
with conversion
character t 1059

Formatting output with
class Formatter 1069

forward slash character (/)
in end tags 663

Foursquare 15, 18
Fractal applet 649
fragile software 245
frame (in the UML) 354
Frame class 699
free graphics programs

(www.freebyte.com/
graphicprograms) 692

FreeTTS 693
frequency method of

Collections 590, 600
FROM SQL clause 856
fromJson method of class

Gson 987
fully qualified class name

47, 218
function key 450
Future interface 799

get method 799
Future Splash (.spl) files

688

G
-g command line option to

javac 1038
G.I.M.P. 669
game playing 125

gaming console 6
garbage collection 737
garbage collector 209, 301,

304, 685
general class average

problem 73
general path 499
generalities 257
generalization in the UML

365
GeneralPath class 469,

499
closePath method

501
lineTo method 500
moveTo method 500

generic class 183, 619, 628
generic collections xxii
generic interface 625
generic method 619, 622,

628
generics xxii, 580, 619

actual type arguments
623

angle brackets (< and >)
623

default upper bound
(Object) of a type
parameter 631

erasure 624
formal type parameter

623
method 622
parameterized class 629
parameterized type 629
scope of a type parame-

ter 631
type parameter 623
type parameter section

623
type variable 623
upper bound of a type

parameter 626, 627
upper bound of a wild-

card 642
wildcard type argument

(?) 642
wildcard without an

upper bound 644
wildcards 640, 642

gesture 6
get a value 51
@GET annotation 980
GET HTTP request 910
get method

of class ArrayList<T>
185

of interface Future
799

of interface List<T>
585

of interface Map 611

get method 51, 196, 202
get request 912
get started

java.sun.com/
new2java/ 8

getAbsolutePathmethod
of class File 543

getActionCommand
method of class
ActionEvent 415, 423

getAddress method of
class DatagramPacket
829

getAscentmethod of class
FontMetrics 483

getAudioClip method of
class Applet 685

getAutoCommitmethod of
interface Connection
905

getBlue method of class
Color 473, 475

getByNamemethod of class
InetAddress 825

getChars method
of class String 505
of class StringBuild-

er 520
getClass method of class

Object 409
getClass method of

Object 253, 277
getClassName method of

class StackTrace-
Element 311

getClassName method of
class UIManager.
LookAndFeelInfo 715

getClickCountmethod of
class MouseEvent 446

getCodeBase method of
class Applet 685

getColor method of class
Color 473

getColor method of class
Graphics 473

getColumnClass method
of TableModel 872,
878

getColumnClassName
method of
ResultSetMetaData
878

getColumnCount method
of ResultSetMetaData
870, 878

getColumnCount method
of TableModel 872,
878

getColumnNamemethod of
ResultSetMetaData
878

http://www.freebyte.com/graphicprograms
http://www.freebyte.com/graphicprograms

1104 Index

getColumnNamemethod of
TableModel 872, 878

getColumnTypemethod of
ResultSetMetaData
871

getConnectionmethod of
DriverManager 869

getContentPane method
of class JFrame 435

getControlPanelCompon
ent method of interface
Player 690

getData method of class
DatagramPacket 829

getDefaultSystemTray
method of class
SystemTray 1088

getDescent method of
class FontMetrics 483

getDesktop method of
class Desktop 1085

getEventType method of
class HyperlinkEvent
810

getFamilymethod of class
Font 479, 482

getFileName method of
class StackTrace-
Element 311

getFont method of class
Graphics 480

getFontMetrics method
of class FontMetrics
482

getFontMetrics method
of class Graphics 483

getGreen method of class
Color 473, 475

getHeightmethod of class
Component 673

getHeightmethod of class
FontMetrics 483

getHostName method of
class InetAddress 819

getIcon method of class
JLabel 409

getIconHeightmethod of
class ImageIcon 673

getIconWidth method of
class ImageIcon 673

getImage method of class
ImageIcon 673

getInetAddress method
of class Socket 818

getInputStream method
of class Socket 812, 813

getInstalledLookAnd-
Feels method of class
UIManager 715

getInstance method of
Calendar 1060

getInt method of
ResultSet 871

getKeyChar method of
class KeyEvent 453

getKeyCode method of
class KeyEvent 452

getKeyModifiersText
method of class
KeyEvent 453

getKeyText method of
class KeyEvent 453

getLeading method of
class FontMetrics 483

getLengthmethod of class
DatagramPacket 829

getLength method of
interface FileContents
673

getLineNumbermethod of
class StackTrace-
Element 311

getLocalHost method of
class InetAddress 825,
830

getMaximumSize method
of class Component 1072

getMessage method of
class Throwable 310

getMethodNamemethod of
class StackTrace-
Element 311

getMinimumSize method
of class Component 680,
698, 1072

getModifiers method of
class InputEvent 453

getName method of class
Class 253, 277

getName method of class
File 543

getName method of class
Font 479, 480

getObject method of
interface ResultSet
871, 878

getOutputStreammethod
of class Socket 812

getParameter method of
class Applet 804

getParentmethod of class
File 543

getPassword method of
class JPasswordField
415

getPath method of class
File 543

getPoint method of class
MouseEvent 448

getPort method of class
DatagramPacket 829

getPreferredSize
method of class
Component 680, 698,
1072

getProperty method of
class Properties 612

getRed method of class
Color 473, 475

getRequestContext
method of interface
BindingProvider
1001

getResource method of
class Class 409

getRow method of
interface ResultSet
878

getRowCount method of
interface TableModel
872, 878

getSelectedFilemethod
of class JFileChooser
577

getSelectedIndex
method of class
JComboBox 432

getSelectedIndex
method of class JList
435

getSelectedTextmethod
of class JText-
Component 466

getSelectedValues
method of class JList
438

getSize method of class
Font 479, 480

getSourcemethod of class
EventObject 415

getStackTracemethod of
class Throwable 310

getStateChange method
of class ItemEvent 433

getStyle method of class
Font 479, 482

getText method of class
JLabel 409

getText method of class
JTextComponent 708

getting started with Java
871

getURL method of class
HyperlinkEvent 810

getValue method of class
JSlider 699

getValueAt method of
interface TableModel
872, 878

getVisualComponent
method of interface
Player 690

getWidth method of class
Component 673

getX method of class
MouseEvent 442

getY method of class
MouseEvent 442

GIF (Graphics Interchange
Format) 409, 669

.gif file extension 669
glass pane 435
GlassFish application server

908, 913, 914, 968
Tester web page 971

Good Programming
Practices overview xxiv

Google 15
Goggles 15
Maps 16
Storage 19

Gosling, James 7
goto elimination 62
goto statement 62
gradient 497
GradientPaint class 469,

497
graph information 149
graphical user interface

(GUI) 124, 290, 399
design tool 453

graphics 446, 648, 649,
651, 668

Graphics class 448, 469,
471, 494, 654, 657, 658,
673
clearRect method

485
draw3DRect method

485, 488
drawArc method 488
drawImage method

673
drawLine method 485
drawOvalmethod 485,

488
drawPolygon method

491, 493
drawPolylinemethod

491, 493
drawRectmethod 485,

498
drawRoundRect meth-

od 486
drawString method

475, 654, 659
fill3DRect method

485, 488
fillArc method 488
fillOvalmethod449,

485, 488
fillPolygon method

491, 494

Index 1105

Graphics class (cont.)
fillRectmethod473,

485, 498
fillRoundRect meth-

od 486
getColor method 473
getFont method 480,

480
getFontMetrics

method 483
setColor method 498
setFont method 480

graphics context 471
graphics demo 652
graphics in a platform-

independent manner
471

Graphics Interchange
Format (GIF) 409, 669

Graphics2D class 469,
494, 498, 501
draw method 497
fillmethod 497, 498,

501
rotate method 501
setPaint method 497
setStroke method

497
translate method

501
GraphicsTest applet 649
GraphLayout applet 649
greedy quantifier 534
grid 460
grid for GridBagLayout

layout manager 725
GridBagConstraints

class 725, 731
anchor field 725
BOTH constant 726
CENTER constant 726
EAST constant 726
gridheight field 727
gridwidth field 727
gridx field 726
gridy field 726
HORIZONTAL constant

726
instance variables 725
NONE constant 726
NORTH constant 726
NORTHEAST constant

726
NORTHWEST constant

726
RELATIVE constant

731
REMAINDER constant

731
SOUTH constant 726
SOUTHEAST constant

726

GridBagConstraints
class (cont.)
SOUTHWEST constant

726
VERTICAL constant

726
weightx field 727
weighty field 727
WEST constant 726

GridBagConstraints
constants RELATIVE and
REMAINDER 731

GridBagLayout class 722,
725, 727, 731
setConstraints

method 731
GridBagLayout layout

manager 727
gridheight field of class

GridBagConstraints
727

GridLayout class 454, 460
GridLayout containing six

buttons 461
gridwidth field of class

GridBagConstraints
727

gridx field of class
GridBagConstraints
726

gridy field of class
GridBagConstraints
726

GROUP BY 856
group method of class

Matcher 538
grouping separator

(formatted output) 95
GroupLayout class 454,

722, 1071
BASELINE alignment

constant 1072
CENTER alignment con-

stant 1072
default layout manager

in Netbeans 1071
groups 1072
LEADING aligning com-

ponents 1072
LEADING alignment

constant 1072
parallel layout of GUI

components 1071
recommended GUI de-

sign guidelines 1072
sequential horizontal

orientation 1071
sequential layout of

GUI components
1071

spacing between com-
ponents 1072

GroupLayout class (cont.)
TRAILING alignment

constant 1072
GroupLayout.Group class

1072
addGap method 1072

GroupLayout.Parallel-
Group class 1072
addGap method 1072

GroupLayout.Sequen-
tialGroup class 1072
addGap method 1072

Groupon 15, 17
groups in GroupLayout

1072
Gson class 985

code.google.com/p/
google-gson/ 983

fromJson method 987
toJson method 985

guard condition in the
UML 65, 341

guarding code with a lock
745

GUI (Graphical User
Interface) 290
component 399, 648
design tool 453

guide lines (Netbeans)
1074, 1075

guillemets (« and ») in the
UML 55

H
H conversion character

1060
h conversion character

1060
h:body JSF element 916
h:column JSF element 954
h:commandButtonelement

922, 926
h:dataTable element

cellpadding attribute
954

cellspacing attribute
954

columnClasses attri-
bute 954

footerClass attribute
954

headerClass attribute
954

rowClasses attribute
954

styleClass attribute
954

value attribute 953
var attribute 954

h:dataTable JSF element
944, 952

h:form element 922, 923
h:graphicImage element

922, 925
h:head JSF element 916
h:inputText element 922,

925, 931
h:message element 931
h:outputLink element

922, 926, 939, 940
h:outputStyleSheet

element 931
h:outputText element

931
h:panelGrid element 922,

924
h:selectItem element

922
h:selectOneMenuelement

922, 926
h:selectOneRadio

element 922, 926, 939
handle an exception 296
handshake point 811, 825
hardcopy printer 11
has-a relationship 203,

225, 331
hash bucket 609
hash table 605, 609
hashCode method of

Object 253
hashing 608
HashMap class 608, 804

keySet method 611
HashSet class 605
Hashtable class 608, 609
hash-table collisions 609
hasNext method

of class Scanner 101,
551

of interface Iterator
585, 588

hasPrevious method of
ListIterator 588

headerClass attribute of
h:dataTable 954

headSet method of class
TreeSet 607

heavyweight components
405

height 482
height attribute (CSS)

925
height attribute of the

applet-desc element
655, 664

height of a rectangle in
pixels 473

Help link in API 1029
helper method 104
hexadecimal integer 1054
“hidden” fields 135
hide a dialog 402

1106 Index

hide implementation
details 192

HIDE_ON_CLOSE constant
of interface Window-
Constants 699

hollow diamonds
(representing
aggregation) in the
UML 331

Home key 450
HORIZONTAL constant of

class GridBag-
Constraints 726

horizontal coordinate 469
horizontal gap space 460
horizontal glue 725
horizontal JSlider

component 695
horizontal scrollbar policy

467
horizontal tab 29
HORIZONTAL_SCROLLBAR_

ALWAYS constant of class
JScrollPane 467

HORIZONTAL_SCROLLBAR_
AS_NEEDED constant of
class JScrollPane 467

HORIZONTAL_SCROLLBAR_
NEVER constant of class
JScrollPane 467

host 909
host name 825
hostname 909
hot area 682
hot spots in bytecode 10
HourlyEmployee class

derived from Employee
268

HousingMaps.com 16
href attribute of the jnlp

element 663
.htm file name extension

654
HTML (Hypertext

Markup Language) 908
HTML (HyperText

Markup Language)
document 647, 654, 655

html element 915
.html file name extension

654
HTML Tag Library (JSF)

915, 922
HTTP (HyperText

Transfer Protocol) 803,
909, 934
being used with fire-

walls 965
header 911
method 910
request type 911
transaction 910

HTTP status codes
(www.w3.org/
Protocols/rfc2616/
rfc2616-sec10.html)
911

hue 478
Hughes, Chris 17
hyperlink 808, 810
HyperlinkEvent class

808, 810
EventType nested class

810
getEventTypemethod

810
getURL method 810

HyperlinkListener
interface 810
hyperlinkUpdate

method 810
hyperlinkUpdatemethod

of interface
HyperlinkListener
810

HyperText Transfer
Protocol (HTTP) 803,
909, 911, 934

I
I/O performance

enhancement 572
icon 403
Icon interface 409
id attribute of a JSF

element 925
id attributes for elements

in Ajax requests and
responses 961

IDE (integrated
development
environment) 8

identifier 24, 32
identity column 890
IDENTITY keyword (SQL)

890
IDEs

NetBeans 964
IEEE 754

(grouper.ieee.org/
groups/754/) 1026

IEEE 754 floating point
1026

if single-selection
statement 35, 63, 64, 65,
98, 1025
activity diagram 65

if...else double-selection
statement 64, 65, 76, 98
activity diagram 65

ignoring array element zero
152

IllegalArgumentExcept
ion class 190

IllegalMonitorState-
Exception class 763,
778

IllegalStateException
class 556

image 656, 668, 692
Image class 669
image map 668, 682
ImageIcon class 409, 669,

678, 679
getIconHeight meth-

od 673
getIconWidthmethod

673
getImage method 673
paintIcon method

679
ImageObserver interface

673
immutable 505
immutable object 212
immutable String object

505
implement an interface

256, 279, 287
implementation-

dependent code 192
implementation of a

function 265
implementation phase 370
implementation process

343, 360
implements 1025
implements keyword 279,

282
implements multiple

interfaces 439
implicit conversion 77
import declaration 31, 33,

47, 217, 1025
increment 93

a control variable 88
expression 106
of a control variable 87
of a for statement 91
operator, ++ 82

increment and decrement
operators 82

indefinite postponement
740, 781

indefinite repetition 74
indentation 67
independent software

vendor (ISV) 251
index 151
index (subscript) 142
Index link in API 1029
index of a JComboBox 431
index zero 142

indexOf method of class
ArrayList<T> 183

indexOf method of class
String 511

IndexOutOfBounds-
Exception class 597

indirect superclass 225, 226
InetAddress class 819,

825, 829, 830
getByName method

825
getHostName method

819
getLocalHostmethod

825, 830
infinite loop 77, 91, 829,

833
infinite recursion 250
infinity symbol 855
information element of a

JNLP document 664
information hiding 4, 48
information tier 913
inheritance 4, 225, 365,

368, 369, 370
examples 226
extends keyword 229,

240
hierarchy 226, 262
hierarchy for university

CommunityMembers
227

multiple 225
single 225

init method
of JApplet 654, 656,

657, 659
initComponents

autogenerated method
in Netbeans 1076

initial state in the UML 63,
338, 339

initial value of an attribute
336

initial value of control
variable 87

initialization at the
beginning of each
repetition 79

initialize an applet 656
initialize applet’s instance

variables 659
initializer block (static)

937
initializer list 145
initializing two-

dimensional arrays in
declarations 169

initiate an action 701
inlining method calls 200

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Index 1107

inner class 413, 425, 448,
707
anonymous 432
object of 426
relationship between an

inner class and its
top-level class 426

INNER JOIN SQL clause
856, 861

innermost set of brackets
152

input data from the
keyboard 38

input dialog 401
input/output 542
input/output operation 63
input/output package 124
InputEvent class 438,

445, 450
getModifiersmethod

453
isAltDown method

446, 453
isControlDown meth-

od 453
isMetaDown method

446, 453
isShiftDown method

453
InputMismatchExcep-

tion class 295, 298
InputStream class 563,

571, 614, 811, 812, 813
read method 673

InputStreamReader class
573

insert method of class
StringBuilder 523

INSERT SQL statement
856, 862

inserting literal characters
in the output 1053

insertion point 183, 599
instance 3
instance (non-static)

method 211
instance of a class 47
instance variable 4, 47, 47,

56, 117
instanceof operator 276,

1025
instantiating an object of a

class 40
int primitive type 32, 74,

82, 98, 1025, 1026
promotions 123

integer 30
array 145
division 73
quotient 34
value 32

Integer class 180, 403,
580, 641
parseIntmethod 180,

403
integer conversion

characters 1054
integer division 34
integers

suffix L 603
integral expression 105
integrated development

environment (IDE) 8
intelligent consumer

electronic device 7
interaction between a web

service client and a web
service 973

interaction diagram in the
UML 351

interaction overview
diagram in the UML
1090

interactions among objects
348, 352

interest rate 93
interface 256, 280, 288,

870
declaration 279
implementing more

than one at a time
439

tagging interface 563
interface keyword 279,

1025
Interfaces 279

ActionListener 414,
419

AppletContext 803
AudioClip 685
AutoCloseable 317,

872
BlockingQueue 760
CachedRowSet 885
Callable 799
CallableStatement

904
ChangeListener 699
CharSequence 536
Collection 580, 581,

590
Comparable 290, 509,

591, 625
Comparator 591
ComponentListener

443
Condition 777, 779
Connection 869, 871,

876
ContainerListener

443
DataInput 572
DataOutput 572

Interfaces (cont.)
DataSource 951
Executor 741
ExecutorService

741, 799
FileOpenService

669, 672
FocusListener 443
Future 799
HyperlinkListener

810
Icon 409
ImageObserver 673
ItemListener 425,

708
Iterator 582
JdbcRowSet 885
KeyListener 419,

443, 450
LayoutManager 453,

457
LayoutManager2 457
List 580, 588
ListIterator 582
ListSelectionLis-

tener 435, 807
Lock 776
Map 580, 608
MouseInputListener

438, 442
MouseListener 419,

438, 443, 711
MouseMotionListen-

er 419, 438, 443
MouseWheelListener

439
ObjectInput 562
ObjectOutput 562
Player 688
PreparedStatement

904
PropertyChangeLis-

tener 798
Queue 580, 581, 604,

760
RequestContext 1001
ResultSet 870
ResultSetMetaData

870
RowSet 885
Runnable 741, 841,

290
Serializable 290,

563
Set 580, 581, 605
SortedMap 608
SortedSet 606
Statement 871
SwingConstants 409,

699, 290
TableModel 872
WindowConstants 699

Interfaces (cont.)
WindowListener 443,

700, 884
internal frame

closable 718
maximizable 718
minimizable 718
resizable 718

Internet 803
Internet domain name in

reverse order 217
Internet telephony 15
interruptmethod of class

Thread 742
InterruptedException

class 742
intrinsic lock 745
invoke a method 52
invokeLater method of

class SwingUtilities
818

IOException class 568
IP address 829, 909

of the server 825
iPhone 15, 18
is-a relationship 225, 257
isAbsolute method of

File 543
isActionKey method of

class KeyEvent 453
isAltDownmethod of class

InputEvent 446, 453
isBold method of class

Font 479, 482
isCancelled method of

class SwingWorker 794
isControlDownmethod of

class InputEvent 453
isDefinedmethod of class

Character 524
isDesktopSupported

method of class
Desktop 1085

isDigit method of class
Character 524

isDirectory method of
File 543

isEmpty method
ArrayList 203
Map 612
Stack 604

isItalic method of class
Font 479, 482

isJavaIdentifierPart
method of class
Character 525

isJavaIdentifierStart
method of class
Character 524

isLetter method of class
Character 526

1108 Index

isLetterOrDigitmethod
of class Character 526

isLowerCase method of
class Character 526

isMetaDown method of
class InputEvent 446,
453

isPlain method of class
Font 479, 482

isPopupTrigger method
of class MouseEvent
711

isRunningmethod of class
Timer 679

isSelected method
AbstractButton 708
JCheckBox 426

isShiftDown method of
class InputEvent 453

isUpperCase method of
class Character 526

ITALIC constant of class
Font 480

ItemEvent class 425, 429
getStateChange

method 433
itemLabel attribute of

f:selectItem 926
ItemListener interface

425, 708
itemStateChanged

method 425, 426,
708

itemStateChanged
method of interface
ItemListener 425,
426, 708

itemValue attribute of
f:selectItem 926

iteration 72
of a loop 87, 106

iteration (looping)
of a for loop 152

iterative model 323
iterator 579
Iterator interface 582

hasNext method 585
next method 585
remove method 585

iterator method of
Collection 585

J
Jacopini, G. 62
JApplet class 653, 654,

656, 700
destroy method 654
init method 654, 659
paint method 654,

659

JApplet class (cont.)
start method 654,

659
stop method 654

jar command 662
c option 662
f option 662
v option 662

jar element of a JNLP
document 664

JAR file 674, 681
Java 2D API 469, 494, 651,

669
Java 2D shapes 494
Java 2D Shapes package

124
Java 3D API 668, 669, 693
Java Abstract Window

Toolkit (AWT) package
124

Java Abstract Window
Toolkit Event package
124

Java Advanced Imaging
API 669

Java API 115, 289
overview 123

Java API documentation
download 34

Java API Interfaces 289
Java applet 653
Java Applet Package 124
Java Application

Programming Interface
(Java API) 7, 31, 115,
123

Java Architecture for XML
Binding (JAXB) 980

Java archive (JAR) file 661
Java class library 7, 31, 115
java command 9, 12, 23

-splash option 1083
Java compiler 8
Java Concurrency Package

124
Java Database Connectivity

(JDBC) 850
Java DB xxii, 850, 887, 943
Java DB Developer’s Guide

890
Java debugger 1037
Java development

environment 8, 9, 10,
648

Java Development Kit
(JDK) 26

Java EE 6 908
Java EE 6 tutorial 908
java element of a JNLP

document 664
Java-enabled web browser

647

Java Enterprise Edition
(Java EE) 2, 908

.java extension 8

.java file name extension
40

Java fonts
Dialog 480
DialogInput 480
Monospaced 480
SansSerif 480
Serif 480

Java HotSpot compiler 10
Java Image I/O API 669
Java Input/Output Package

124
java interpreter 26
Java Keywords 1025
Java Language Package 124
Java look and feel Graphics

Repository 692
Java look-and-feel

repository
(java.sun.com/
developer/techDocs/
hi/repository) 692

Java Media Framework
(JMF)
API 669, 688
download 688

Java Media Framework
package 124

Java Micro Edition (Java
ME) 2

Java Naming and Directory
Interface (JNDI) 947

Java Network Launch
Protocol (JNLP) 647,
660, 661

Java Networking Package
124

Java Plug-In 647
Java programming

language 6
Java Resource Centers at

www.deitel.com/
ResourceCenters.htm
l 26

Java SE 6
API documentation

(java.sun.com/
javase/6/docs/
api/) 123

package overview
(java.sun.com/
javase/6/docs/
api/overview-
summary.html) 123

Java SE 7 105
Automatically Closing

Connections,
Statements and
ResultSets 872

Java SE 7 (cont.)
ConcurrentLinked-

Deque 784
fork/join framework

799
LinkedTransfer-

Queue 784
multi-catch 316
new concurrent collec-

tions 784
Strings in switch

statements 105
try-with-resources

statement 316
type inference with the

<> notation 585
Java SE Development Kit

(JDK) 7, 24
Java Sound API 669, 693
Java Speech API 669, 693
Java Speech API

(java.sun.com/
products/java-
media/speech) 693

Java Standard Edition (Java
SE) 2
6 2
7 2

Java Swing Event Package
125

Java Swing GUI
Components Package
125

Java Utilities Package 124
Java Virtual Machine

(JVM) 7, 8, 23, 25
Java Web Start 647, 660,

661
automatic updating

661
desktop integration

661
javaws command 664
overview 665

Java website
(java.sun.com) 123

JAVA_HOME environment
variable 888

java.applet package 124
java.awt class 699
java.awt package 124,

404, 471, 472, 491, 494,
653, 669, 680, 711

java.awt.color package
494

java.awt.event package
124, 125, 416, 418, 443,
453

java.awt.font package
494

java.awt.geom package
124, 494

http://www.deitel.com/ResourceCenters.htm
http://www.deitel.com/ResourceCenters.htm

Index 1109

java.awt.image package
494

java.awt.image.render
able package 494

java.awt.print package
494

java.beans package 798
java.com 647
java.io package 124, 541
java.lang package 33,

116, 124, 229, 252, 503,
741
imported in every Java

program 33
java.math package 56
java.net package 124,

802
java.sql package 124,

869, 870
java.util package 31,

124, 125, 183, 580, 602,
640, 1059
Calendar class 1059
Date class 1059

java.util.concurrent
package 124, 741, 760,
783, 799

java.util.concurrent.
locks package 776, 777

java.util.prefspackage
612

java.util.regexpackage
503

Java™ Language
Specification
(java.sun.com/docs/
books/jls/) 35

Java2D API 494
Java2D applet 651
Java2D directory 651
JavaBean 916
JavaBean property 916
JavaBeans Specification

916
javac compiler 8, 26
Javadoc comment 24
javadoc utility program

24
JavaScript 908
JavaScript Object Notation

(JSON) 966
JavaServer Faces (JSF) xxii
JavaServer Pages (JSP)

XML declaration 915
xmlns attributes 915

javax.faces.bean
package (JSF) 917

javax.jnlp package 661,
669, 672

javax.media package 124,
688

javax.sql package 951

javax.sql.rowset
package 885

javax.swing package 125,
399, 401, 409, 418, 420,
466, 476, 653, 669, 699,
715, 718

javax.swing.event
package 125, 416, 435,
443, 699

javax.swing.table
package 872, 884

JAXB (Java Architecture
for XML Binding) 980

JAXB class 980
marshal method 980
unmarshal method

983
JAX-RS 963
JAX-WS 963
JAX-WS package 125
JBoss Application Server

(www.jboss.com/
products/platforms/
application) 968

JButton class 404, 420,
423, 460

JCheckBox buttons and
item events 424

JCheckBox class 404, 423
isSelected method

426
JCheckBoxMenuItem class

700, 701, 707
JColorChooser class 476,

478
showDialog method

477
JComboBox class 404, 429,

726
getSelectedIndex

method 432
setMaximumRowCount

method 432
JComboBox that displays a

list of image names 430
JComponent class 405,

406, 408, 418, 429, 433,
446, 462, 469, 471, 680
paintComponent

method 446, 469,
679, 696, 698

repaint method 472
setForeground meth-

od 708
setOpaque method

446, 449
setToolTipText

method 408
jdb command 1039
JDBC

API 850, 867, 904
driver 850, 851

JDBC 4 xxii
JDBC documentation 851
JDBC information

(www.oracle.com/
technetwork/java/
javase/tech/index-
jsp-136101.html) 851

JDBC Package 124
jdbc:mysql://

localhost/books 869
JdbcRowSet interface 885

close method 887
execute method 887
setCommand method

887
setPassword method

887
setUrl method 887
setUsername method

887
JdbcRowSetImpl class 887
JDesktopPane class 716
JDesktopPane

documentation
(download.oracle.co
m/javase/6/docs/
api/javax/swing/
JDesktopPane.html)
719

JDialog class 707
JDIC (Java Desktop

Integration
Components)
addTrayIcon method

of class SystemTray
1088

browsemethod of class
Desktop 1085

Desktop class 1085
getDefaultSystem-

Tray method of
class SystemTray
1088

getDesktopmethod of
class Desktop 1085

isDesktopSupported
method of class
Desktop 1085

mail method of class
Desktop 1085

open method of class
Desktop 1085

removeTrayIcon
method of class
SystemTray 1088

-splash command-
line option to the
java command
1083

splash screen 1083
SplashScreen class

1084

JDIC (cont.)
SystemTray class 1087
Tray icons 1087
TrayIcon class 1088

JDK 7, 26
demo directory 648,

651
JEditorPane class 808

setPage method 810
Jesse James Garrett 956
JFileChooser class 574

CANCEL_OPTION con-
stant 577

FILES_AND_DIRECTOR
IES constant 577

FILES_ONLY constant
577

getSelectedFile
method 577

setFileSelection-
Mode method 577

showOpenDialog
method 577

JFileChooser dialog 574
JFrame class 699

add method 408
EXIT_ON_CLOSE 410
getContentPane

method 435
setDefaultCloseOp-

eration method
410, 699

setJMenuBar method
700, 707

setSize method 410
setVisible method

410
JFrame.EXIT_ON_CLOSE

410
JInternalFrame class

716, 718
documentation 719

JLabel class 404, 406
documentation 406
getIcon method 409
getText method 409
setHorizontalA-

lignment method
409

setHorizontalText-
Position method
409

setIcon method 409
setText method 409
setVerticalAlign-

ment method 409
setVerticalTextPo-

sition method 409
JList class 404, 433

addListSelection-
Listener method
435

http://www.jboss.com/products/platforms/application
http://www.jboss.com/products/platforms/application
http://www.jboss.com/products/platforms/application
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html

1110 Index

JList class (cont.)
getSelectedIndex

method 435
getSelectedValues

method 438
setFixedCellHeight

method 437
setFixedCellWidth

method 437
setListData method

438
setSelectionMode

method 435
setVisibleRowCount

method 435
JMenu class 700, 707, 718

add method 706
addSeparatormethod

707
JMenuBar class 700, 707,

718
add method 707

JMenuItem class 701, 718
JMenus and mnemonics

701
JMF (Java Media

Framework) API 669,
685, 688

JNDI (Java Naming and
Directory Interface) 947

JNLP 672, 674, 681
FileOpenService

669, 672
main-class 662
ServiceManager class

672
JNLP (Java Network

Launch Protocol) 661
JNLP document 662

applet-desc element
664

application-desc el-
ement 664

desktop element 664
documentation 673
information element

664
jar element 664
java element 664
jnlp element 663
offline-allowed ele-

ment 664
resources element

664
shortcut element 664
title element 664
vendor element 664

jnlp element of a JNLP
document 663
codebase attribute

663
href attribute 663

jnlp.jar 673, 681
JOIN_ROUND constant of

class BasicStroke 499
joining database tables 853,

861
Joint Photographic Experts

Group (JPEG) 409, 669
JOptionPane class 401,

402
constants for message

dialogs 404
documentation 403
PLAIN_MESSAGE con-

stant 403
showInputDialog

method 402
showMessageDialog

method 403
JOptionPane constants for

message dialogs
JOptionPane.

ERROR_MESSAGE
404

JOptionPane.INFOR-
MATION_MESSAGE
404

JOptionPane.PLAIN_
MESSAGE 404

JOptionPane.QUES-
TION_MESSAGE 404

JOptionPane.WARN-
ING_MESSAGE 404

JPanel class 404, 446, 447,
454, 462, 675, 696

JPasswordField class
410, 415
getPassword method

415
JPEG (Joint Photographic

Experts Group) 409,
669

.jpeg file extension 669

.jpg file extension 669
JPopupMenu class 708

show method 711
JProgressBar class 795
JRadioButton class 423,

426, 429
JRadioButtonMenuItem

class 700, 701, 708
JScrollPane class 435,

437, 466, 467
HORIZONTAL_SCROLL-

BAR_ALWAYS con-
stant 467

HORIZONTAL_SCROLL-
BAR_AS_NEEDED
constant 467

HORIZONTAL_SCROLL-
BAR_NEVER constant
467

JScrollPane class (cont.)
setHorizontal-

ScrollBarPolicy
method 467

setVerticalScroll-
BarPolicy method
467

VERTICAL_SCROLLBAR
_ALWAYS constant
467

VERTICAL_SCROLLBAR
_AS_NEEDED con-
stant 467

VERTICAL_SCROLLBAR
_NEVER constant
467

JScrollPane scrollbar
policies 466

JSF
application lifecycle

928, 933
Core Tag Library 922,

926
deploy an app 921
f:selectItem ele-

ment 926
f:validateBean ele-

ment 926
f:validateDou-

bleRange element
926

f:validateLength el-
ement 926

f:validateLon-
gRange element 926

f:validateRegex ele-
ment 926

f:validateRequired
element 926

Facelets 915
h:commandButton ele-

ment 922, 926
h:form element 922,

923
h:graphicImage ele-

ment 922, 925
h:inputText element

922, 925, 931
h:message element

931
h:outputLink ele-

ment 922, 926, 939,
940

h:outputStyleSheet
element 931

h:outputText ele-
ment 931

h:panelGrid element
922, 924

h:selectItem ele-
ment 922

JSF (cont.)
h:selectOneMenu ele-

ment 922, 926
h:selectOneRadio el-

ement 922, 926, 939
HTML Tag Library

915, 922
javax.faces.bean

package 917
@ManagedBean annoa-

tion 917, 920
@RequestScoped an-

noation 920
resource library 925
resources folder 925
resources library 925
session expire 935
ui:repeat element

941
JSF Expression Language

916
JSF Facelets Tag Library

941
JSF web-application

framework 913
JSlider class 695, 696,

699, 1072
block increment 696
documentation 699
getValue method 699
major tick marks 695
minor tick marks 695
setInverted method

696
setMajorTickSpac-

ing method 699
setPaintTicks meth-

od 699
snap-to ticks 695
thumb 695
tick marks 695

JSON (JavaScript Object
Notation) 966

JSON (www.json.org)
966

JTabbedPane class 720,
725
addTab method 721
SCROLL_TAB_LAYOUT

constant 725
TOP constant 725

JTable class 872
RowFilter 884
setRowFiltermethod

884
setRowSortermethod

884
sorting and filtering

xxiii
TableRowSorter 884

http://www.json.org

Index 1111

JTextArea class 452, 464,
466, 727, 730
setLineWrap method

466
JTextComponent class

410, 413, 464, 466
getSelectedText

method 466
getText method 708
setDisabledText-

Color method 452
setEditable method

413
setText method 466

JTextField class 404,
410, 414, 418, 464
addActionListener

method 414
JTextFields and

JPasswordFields 411
JToggleButton class 423
JumpingBox applet 649
just-in-time compilation

10
just-in-time (JIT) compiler

10

K
key constant 453, 453
key event 419, 450
Key event handling 450
key/value pair 609
KeyAdapter class 443
keyboard 30, 399
KeyEvent class 419, 450

getKeyChar method
453

getKeyCode method
452

getKeyModifiers-
Text method 453

getKeyText method
453

isActionKey method
453

KeyListener interface
419, 443, 450
keyPressed method

450, 452
keyReleased method

450
keyTyped method 450

Keypad class (ATM case
study) 326, 329, 330,
331, 342, 349, 350, 351,
353, 362, 365, 396

keyPressed method of
interface KeyListener
450, 452

keyReleased method of
interface KeyListener
450

keySet method
of class HashMap 611
of class Properties

614
keyTyped method of

interface KeyListener
450

keyword 24, 64
Keywords

abstract 261
boolean 66, 1042
break 102
case 102
catch 298
char 32
class 24, 41
continue 105
default 102
do 64, 96
double 32, 56
else 64
enum 133
extends 229, 240
false 66, 1025
final 105, 117, 146,

752
finally 298
float 32, 56
for 64, 89
if 64
implements 279
import 31
instanceof 276
int 32
interface 279
new 32, 42, 143, 144
null 52, 143, 1025
private 48, 192, 202
public 24, 40, 41, 48,

119, 192
reserved but not used

by Java 1025
return 48, 49, 122
static 95, 116
super 228, 250
switch 64
synchronized 745
table of keywords and

reserved words 1025
this 193, 210
throw 307
true 66, 1025
try 298
void 25, 41
while 64, 96

Koenig, Andrew 293

L
label 406
label in a switch 102
labels for tick marks 695
LAMP 19
language package 124
last-in, first-out (LIFO)

order 633
last method of

ResultSet 878
last method of

SortedSet 608
lastIndexOf method of

class String 511
lastModified method of

class File 543
late binding 275
layout manager 408, 441,

453, 462, 1071
BorderLayout 441
FlowLayout 408
GridLayout 460

layoutContainermethod
of interface
LayoutManager 457

LayoutManager interface
453, 457
layoutContainer

method 457
LayoutManager2 interface

457
lazy quantifier 534
leading 482
LEADING alignment

constant in
GroupLayout 1072

left brace, { 25, 32
LEFT constant of class

FlowLayout 457
left justification 1053
left justified 94, 409, 454
left-mouse-button click

445
Left, center and right

mouse-button clicks 443
length field of an array

142
length instance variable of

an array 142
length method of class

String 505
length method of class

StringBuilder 518
length method of File

543
lexicographical comparison

508, 509
library attribute of

h:graphicImage 925
library of resources (JSF)

925

life cycle of a thread 738,
740

lifecycle of a JSF
application 928, 933

lifeline of an object in a
UML sequence diagram
353

LIFO (last-in, first-out)
633

lightweight GUI
component 405, 707

LIGHTWEIGHT_RENDERER
constant of class
Manager 689

LIKE operator (SQL) 857
LIKE SQL clause 858, 860
line 469, 484, 493
line join 497
line wrapping 466
Line2D class 469, 498
Line2D.Double class 494
LinearGradientPaint

class 497
LineNumberReader class

573
lineTo method of class

GeneralPath 500
LinkedBlockingDeque

class 784
LinkedBlockingQueue

class 784
LinkedList class 582, 598

add method 590
addFirst method 590
addLast method 589

LinkedTransferQueue
class 784

Linux 8, 25, 551, 648
Linux operating system 5, 6
list 431
List interface 580, 581,

588, 591, 596
add method 585, 587
addAll method 587
clear method 588
get method 585
listIteratormethod

588
size method 585, 588
subList method 588
toArray method 589

list method of File 543,
545

list method of
Properties 614

listen for events 414
ListIterator interface

582
hasPrevious method

588
previous method 588
set method 588

1112 Index

listIterator method of
interface List 588

ListSelectionEvent
class 433

ListSelectionListener
interface 435, 807
valueChangedmethod

435
ListSelectionModel

class 435
MULTIPLE_INTERVAL_

SELECTION constant
435, 437

SINGLE_INTERVAL_
SELECTION constant
435, 437

SINGLE_SELECTION
constant 435

literals
floating point 56

load another web page into
a browser 682, 684

load factor 609
load method of

Properties 614
loading 9
Loading and displaying an

image in an applet 669
Loading and playing an

AudioClip 685
local variable 47, 71, 135,

195
localhost 909
localhost (127.0.0.1)

address 819
localization 405
location (0, 0) 653
lock an object 766
Lock interface 776

lock method 776, 781
newConditionmethod

777, 779
unlock method 776,

781
lock method of interface

Lock 776, 781
log method of Math 117
logarithm 117
logic error 8, 33, 68, 89,

1037
logical input operations

572
logical negation, or logical

NOT (!) operator truth
table 110

logical operators 107, 110
logical output operations

572
long

literal suffix L 603
Long class 580
long keyword 1025, 1026

long promotions 123
look-and-feel 404, 405,

453, 711
Nimbus 400

Look-and-feel of a Swing-
based GUI 712

look-and-feel of an
application 404

LookAndFeelInfo nested
class of class UIManager
715

lookingAtmethod of class
Matcher 537

lookup method of class
ServiceManager 672

loop 69, 72
body 96
continuation condi-

tion 64
counter 87
infinite 77
statement 64, 68

loop-continuation
condition 87, 88, 89, 91,
96, 97, 106

loop method of interface
AudioClip 685

loopback address 819
looping 72
lowercase letter 24
lowered rectangle 488
ls command on UNIX

648

M
m-by-n array 167
Mac OS X 8, 25, 551
Macintosh 471
Macintosh AIFF file format

685, 688
Macintosh look-and-feel

712
Macromedia Flash movies

(.swf) 688
magnetic tape 540
mail method of class

Desktop 1085
main method 32, 41
main thread 744
main-class attribute of

the applet-desc
element 664

main-class specified in an
JNLP document 662

major tick marks of class
JSlider 695

make your point (game of
craps) 130

making decisions 38
MalformedURLException

class 807

@ManagedBean annoation
(JSF) 917, 920

Manager class 688
createRealized-

Player method 688
LIGHTWEIGHT_REND-

ERER constant 689
setHint method 689

many-to-many relationship
855

many-to-one mapping 608
many-to-one relationship

in the UML 332
Map interface 580, 608

containsKey method
611

get method 611
isEmpty method 612
put method 611
size method 612

mappings of SQL types to
Java types 871

marshal method of class
JAXB 980

mashups 16
Matcher class 503, 536

find method 537
group method 538
lookingAt method

537
matches method 537
replaceAll method

537
replaceFirstmethod

537
matcher method of class

Pattern 537
matches method of class

Matcher 537
matches method of class

Pattern 537
matches method of class

String 530
matching catch block 298
Math class 95, 116

abs method 116
ceil method 116
cos method 116
E constant 117
exp method 116
floor method 117
log method 117
max method 117
min method 117
PI constant 117
pow method 95, 116,

117
random method 125
sqrt method 116, 117,

122
tan method 117

Matisse GUI designer
(Netbeans) 1071

max method of
Collections 590, 597

max method of Math 117
maximize a window 406,

719
maximized internal frame

719
maximum attribute of an h

validateLength valida-
tor 932

maxLength attribute of an
h:inputText element
932

MDI (Multiple Document
Interface) 695, 716

memory buffer 572
memory leak 209, 304
memory-space/execution-

time trade-off 609
memory utilization 609
menu 400, 464, 700, 701
menu bar 400, 700, 707
menu item 701, 706
merge in the UML 341
merge records from tables

860
merge symbol in the UML

69
message 52, 654
message dialog 401, 403

types 403
message in the UML 349,

351, 352, 353
message passing in the

UML 353
Meta key 445, 446
meta XHTML element

916
metadata 870
metal look-and-feel 695,

712
method 3, 25, 360

local variable 47
parameter 44, 46
parameter list 44
return type 49
signature 138
static 95

method call 4, 119
method declaration 119
Method Detail section in

API 1034
method header 41
method overloading 137
method parameter list 177
Method Summary section

in API 1033
methods called

automatically during
applet’s execution 656

Index 1113

methods implicitly final
278

microblogging 15, 17
Microsoft Audio/Video

Interleave (.avi) file
688, 688

Microsoft SQL Server 850
Microsoft Windows 101,

471, 699, 711
Microsoft Windows-style

look-and-feel 712
.mid file extension 685,

688
middle mouse button 446
middle tier 913
MIDI (Musical Instrument

Digital Interface) file
format (.mid or .rmi
extensions) 685, 688

MIME (Multipurpose
Internet Mail
Extensions) 911, 935

min method of
Collections 590, 597

min method of Math 117
minimize a window 406,

700, 719
minimize internal frame

719
minor tick marks of class

JSlider 695
minus sign (–) formatting

flag 94
minus sign (-) indicating

private visibility in the
UML 360

mnemonic 405, 701, 705,
707

mobile application 2
mobile check-in 15
modal dialog 403, 478
modal dialog box 706
model (in MVC

architecture) 922
model of a software system

329, 337, 367
Model-View-Controller

(MVC) 922
modifier key 453
modules in Java 115
MoleculeViewer applet

649
monetary calculations 96
monitor 745
monitor lock 745
Monospaced Java font 480
Moskovitz, Dustin 17
Motif-style (UNIX) look-

and-feel 695, 712
mouse 399, 649
mouse button 649
mouse-button click 445

mouse click 443
mouse event 419, 438, 711

handling 438
mouse wheel 439
MouseAdapter class 443
mouseClicked method of

interface Mouse-
Listener 438, 443

mouseDragged method of
interface MouseMotion-
Listener 439, 447

mouseEntered method of
interface Mouse-
Listener 439

MouseEvent class 419,
438, 711
getClickCount meth-

od 446
getPoint method 448
getX method 442
getY method 442
isAltDown method

446
isMetaDown method

446
isPopupTrigger

method 711
mouseExited method of

interface
MouseListener 439

MouseInputListener
interface 438, 442

MouseListener interface
419, 438, 443, 711
mouseClickedmethod

438, 443
mouseEnteredmethod

439
mouseExited method

439
mousePressedmethod

438, 711
mouseReleased meth-

od 438, 711
MouseMotionAdapter

class 443, 447
MouseMotionListener

interface 419, 438, 443
mouseDraggedmethod

439, 447
mouseMoved method

439, 447
mouseMoved method of

interface MouseMotion-
Listener 439, 447

mousePressed method of
interface Mouse-
Listener 438, 711

mouseReleasedmethod of
interface
MouseListener 438,
711

MouseWheelEvent class
439

MouseWheelListener
interface 439
mouseWheelMoved

method 439
mouseWheelMovedmethod

of interface Mouse-
WheelListener 439

.mov file extension 688
moveTo method of class

GeneralPath 500
Mozilla Foundation 5
.mp3 file extension 688
MP3 player 6
.mpeg file extension 688
MPEG Layer 3 Audio

(.mp3) files 688
MPEG-1 videos 688
MPEG-1 videos (.mpeg,

.mpg) 688
.mpg file extension 688
multi-button mouse 445
multicast 803, 848
multi-catch 316
multidimensional array

167, 168
multimedia 668
multiple class declarations

in one source-code file
194

multiple document
interface (MDI) 695,
716

multiple inheritance 225
multiple-selection list 433,

435
multiple-selection

statement 64
MULTIPLE_INTERVAL_

SELECTION constant of
interface ListSelec-
tionModel 435, 437

multiplication compound
assignment operator, *=
82

multiplication, * 34, 35
multiplicative operators: *,

/ and % 78
multiplicity 329, 330
Multipurpose Internet

Mail Extensions
(MIME) 911, 935

multithreaded user
interfaces xxiii

multithreading 582, 736
multitier application 912
multitouch screen 6
Musical Instrument Digital

Interface (MIDI) file
format (.mid or .rmi
extensions) 685, 688

mutable data 752
mutator method 202
mutual exclusion 744
mutually exclusive options

426
MVC (Model-View-

Controller) 922
MySQL 19, 850, 864, 866

Community Edition
864

Connector/J xxx, 865
mysqld.exe 866

N
n conversion character

1060
%n format specifier (line

separator) 552
n-tier application 912
name attribute of

@WebParam annotation
969

name attribute of
@WebService
annotation 968

name attribute of
h:graphicImage 925

name attribute of the
@ManagedBean
annotation 917

name attribute of the
applet-desc element
664

name collision 218
name conflict 218
name of a param 804
name of an array 142
name of an attribute 915
named constant 146
NASA multimedia

(www.nasa.gov/
multimedia/
highlights/
index.html) 692

NASA multimedia
(www.nasa.gov/
multimedia/
index.html) 692

NASA Multimedia Gallery
692

native keyword 1025
natural comparison

method 591
natural logarithm 117
navigability arrow in the

UML 360
negative arc angles 489
negative degree 488
NervousText applet 649
nested array initializers 168

http://www.nasa.gov/multimedia/highlights/index.html
http://www.nasa.gov/multimedia/highlights/index.html
http://www.nasa.gov/multimedia/highlights/index.html
http://www.nasa.gov/multimedia/index.html
http://www.nasa.gov/multimedia/index.html
http://www.nasa.gov/multimedia/index.html
http://www.nasa.gov/multimedia/highlights/index.html

1114 Index

nested class 413, 715
relationship between an

inner class and its
top-level class 426

Nested Class Summary
section in API 1032

nested control statements
79, 129
Examination-results

problem 79
nested for statement 149,

169, 170, 171, 174
nested if...else selection

statement 66, 67
nested message in the UML

353
NetBeans 908

add a web service refer-
ence to an applica-
tion 974

code-completion win-
dow 919

creating a Java DB da-
tabase 952

Show Line Numbers
919

Netbeans
demonstration video

(www.deitel.com/
books/javafp2) 23

NetBeans
(www.netbeans.org) 8

NetBeans IDE 908, 964,
1073
add an event handler

1076
create a desktop appli-

cation 973
create a new project

1073
create a web application

967
Design view 1073
GroupLayout 1071
guide lines 1074, 1075
New JFrame Form dia-

log 975
New Web Service Client

dialog 974
New Web Service dialog

967
Palette window 1073,

1074
Properties window

1073
snap-to alignment grid

1076
Web Application project

966

Netbeans IDE 1071, 1073
Design view 1073
initComponents auto-

generated method
1076

Source view 1073
NetBeans Matisse GUI

design tool xxiii
Netbeans Matisse GUI

designer 1071
network message arrival

301
networking package 124
New JFrame Form dialog

975
new keyword 32, 42, 143,

144, 1025
new Scanner(System.in)

expression 32
new state 738
new to Java

(www.oracle.com/
technetwork/topics/
newtojava/overview/
index.html) 8

New Web Service Client
dialog 974

New Web Service dialog
967

newCachedThreadPool
method of class
Executors 742

newCondition method of
interface Lock 777, 779

newline character 28
newline escape sequence,

\n 29, 32, 503
next method

of Iterator 585
of ResultSet 871
of Scanner 45

nextDouble method of
class Scanner 59

nextInt method of class
Random 125, 129

nextLine method of class
Scanner 44

Nimbus look and feel 400,
712
swing.properties

xxxi, 401
Nirvanix 19
no-argument constructor

198, 200
non-static class member

210
NONE constant of class

GridBagConstraints
726

nonfatal logic error 68
nonfatal runtime error 11

NoPlayerException
exception 690

NORTH constant of class
BorderLayout 441,
457

NORTH constant of class
GridBagConstraints
726

NORTHEAST constant of
class GridBag-
Constraints 726

NORTHWEST constant of
class GridBag-
Constraints 726

NoSuchElementExcep-
tion class 551, 556

note in the UML 63
Notepad 8
notify method of class

Object 763
notify method of Object

253
notifyAllmethod of class

Object 763, 766, 767
notifyAll method of

Object 253
noun phrase in require-

ments document 327
null 1025
null keyword 50, 52, 143,

403
null reserved word 85
Number class 641

doubleValue method
642

number systems 526
numeric Classes 580

O
object 2
object (or instance) 4, 351,

654
Object class 209, 225, 229,

570
clone method 252
equals method 252
finalize method 252
getClassmethod 253,

277, 409
hashCode method 253
notify method 253,

763
notifyAll method

253, 763, 766, 767
toStringmethod 232,

253
wait method 253, 763

object diagram in the UML
1089

object of a derived class 258

object of a derived class is
instantiated 250

object-oriented analysis
and design (OOAD) 5

object-oriented design
(OOD) 319, 325, 327,
337, 360

object-oriented language 5
object-oriented

programming (OOP) 2,
5, 225

object serialization 562,
819

ObjectInput interface
562
readObject method

563
ObjectInputStream class

541, 562, 563, 569, 812,
813, 819

ObjectOutput interface
562
writeObject method

562
ObjectOutputStream

class 541, 562, 563, 614
close method 568
flush method 819

octal integer 1054
off-by-one error 89
offer method of

PriorityQueue 604
offline-allowedelement

of a JNLP document
664

ON clause 861
one-to-many relationship

855
one-to-one mapping 608
one-, two- or three-button

mouse 445
one-to-many relationship

in the UML 332
one-to-one relationship in

the UML 332
OOAD (object-oriented

analysis and design) 5
OOD (object-oriented

design) 319, 325, 327,
337

OOP (object-oriented
programming) 5, 225

opaque Swing GUI
components 446

open a file 541
OPEN constant of class

Arc2D 498
Open Handset Alliance 6
open method of class

Desktop 1085
open source 5, 6
open source software xxiii

http://www.deitel.com/books/javafp2
http://www.deitel.com/books/javafp2
http://www.netbeans.org
http://www.oracle.com/technetwork/topics/newtojava/overview/index.html
http://www.oracle.com/technetwork/topics/newtojava/overview/index.html
http://www.oracle.com/technetwork/topics/newtojava/overview/index.html
http://www.oracle.com/technetwork/topics/newtojava/overview/index.html

Index 1115

openFileDialog method
of interface
FileOpenService 672

openMultiFileDialog
method of interface
FileOpenService 678

openStream method of
class URL 987

operand 77
operating system 6
operation compartment in

a class diagram 342
operation in the UML 43,

329, 342, 346, 362, 363,
368, 369

operation parameter in the
UML 46, 343, 346, 347,
348

operationName attribute
of the @WebMethod
annotation 968

operator 33
operator precedence 34

operator precedence
chart 78

Operator Precedence
Chart Appendix
1022

rules 34
Operators

^, boolean logical ex-
clusive OR 107, 110

--, predecrement/post-
decrement 82

--, prefix decrement/
postfix decrement
82, 83

!, logical NOT 107,
110

?:, ternary conditional
operator 66

*=, multiplication as-
signment operator
82

/=, division assignment
operator 82

&, boolean logical AND
107, 109

&&, conditional AND
108, 109

%=, remainder assign-
ment operator 82

++, prefix increment/
postfix increment
82, 83

++, preincrement/
postincrement 82

+=, addition assign-
ment operator 81

=, assignment 33, 38
-=, subtraction assign-

ment operator 82

Operators (cont.)
|, boolean logical in-

clusive OR 107, 109
||, conditional OR

107, 108
arithmetic 34
boolean logical AND, &

107, 109
boolean logical exclu-

sive OR, ^ 107, 110
boolean logical inclu-

sive OR, | 109
cast 77
compound assignment

81, 84
conditional AND, &&

108, 109
conditional operator,

?: 66
conditional OR, ||

107, 108, 109
decrement operator, --

82, 83
increment and decre-

ment 82
increment, ++ 82
logical operators 107,

110, 111
multiplication, * 34
multiplicative: *, / and

% 78
postfix decrement 82
postfix increment 82
prefix decrement 82
prefix increment 82
remainder, % 34, 35
subtraction, - 35

optical disk 540
optimizing compiler 95
optional package 220
Oracle Corporation 850
order 62
ORDER BY SQL clause 856,

859, 860
ordering of records 856
origin component 711
out-of-bounds array index

301
outer set of brackets 152
output 25
output cursor 25, 28
output parameter for a

CallableStatement
904

OutputStream class 562,
571, 811, 812, 813

OutputStreamWriter
class 573

oval 484, 488, 653
oval bounded by a rectangle

488

oval filled with gradually
changing colors 497

overflow 301
overload a method 137
overloaded constructors

195
overloaded method 619
overloading generic

methods 628
override a superclass

method 228, 232

P
PaaS (Platform as a Service)

19
pack method of class

Window 719
package 31, 115, 123, 215,

1089
package access 221
package-access members of

a class 222
package-access methods

221
package declaration 216
package diagram in the

UML 1089
package directory names

218
package directory structure

216
package keyword 1025
package name 47
package overview 123
Packages

com.google.gson.Gs
on 985

default package 47
java.applet 124
java.awt 124, 404,

472, 494, 653, 669,
680, 699, 711

java.awt.color 494
java.awt.event 124,

125, 416, 418, 443,
453

java.awt.font 494
java.awt.geom 124,

494
java.awt.image 494
java.awt.image.

renderable 494
java.awt.print 494
java.beans 798
java.io 124, 541
java.lang 33, 116,

124, 229, 252, 503,
741

java.math 56
java.net 124, 802

packages (cont.)
java.sql 124, 869,

870
java.util 31, 124,

125, 183, 640
java.util.concur-

rent 124, 741, 760,
783, 799

java.util.concur-
rent.locks 776,
777

java.util.prefs 612
java.util.regex 503
javax.jnlp 661, 669,

672
javax.media 124, 688
javax.sql 951
javax.sql.rowset

885
javax.swing 125,

399, 401, 409, 420,
466, 476, 669, 699,
715, 718

javax.swing.event
125, 416, 418, 435,
443, 699

javax.swing.table
872, 884

packet 802, 826
packet-based

communications 802
Page Down key 450
page layout software 503
Page Up key 450
Page, Larry 15
paint method of JApplet

654, 657, 659
Paint object 497
paintComponent method

of class JComponent
446, 469, 679, 696, 698

paintIconmethod of class
ImageIcon 679

panel 462
parallel layout of GUI

components 1071
parallel operations 736
param element 804
parameter 44, 46
parameter in the UML 46,

343, 346, 347, 348
parameter list 44, 54
parameterized class 629
parameterized type 629
parent directory 543
parent window 403, 695,

716
parent window for a dialog

box 706
parent window specified as

null 706
parentheses 25

1116 Index

parseDouble method of
Double 658

parseInt method of class
Integer 403

parseInt method of
Integer 180

partial page update 958
pass an array element to a

method 159
pass an array to a method

159
pass-by-reference 161
pass-by-value 159, 161
passing options to a

program 179
password 411
@Path annotation 979
PATH environment variable

xxx, xxxi, 26
path information 542
path to a resource 910
@PathParam annotation

980
pathSeparator static

field of File 546
pattern 494
Pattern class 503, 536

compile method 537
matcher method 537
matches method 537

pattern matching 857
Payable interface

declaration 282
Payable interface

hierarchy UML class
diagram 281

Payable interface test
program processing
Invoices and
Employees
polymorphically 288

peek method of class
PriorityQueue 604

peek method of class
Stack 604

percent (%) SQL wildcard
character 857

perform a calculation 38
perform a task 41
perform an action 25
performing operations

concurrently 736
persistent data 540
persistent Hashtable 612
personalization 933
photo sharing 15
PHP 19
physical input operation

572
physical output operation

572

PIE constant of class Arc2D
498

pie-shaped arc 498
pipe 571
PipedInputStream class

571
PipedOutputStream class

571
PipedReader class 573
PipedWriter class 573
pixel (“picture element”)

469
pixel coordinates 653
PLAF (pluggable look-and-

feel) 695
PLAIN constant of class

Font 480, 480
PLAIN_MESSAGE 403
Platform as a Service (PaaS)

19, 19
platform dependency 740
play method of class

Applet 685
play method of interface

AudioClip 685
Player interface 688

getControlPanel-
Component method
690

getVisualComponent
method 690

start method 690
playing an AudioClip 685
playing audio 685
pluggable look-and-feel

(PLAF) 695
pluggable look-and-feel

package 405
plus sign (+) indicating

public visibility in the
UML 360

PNG (Portable Network
Graphics) 409, 669

.png file extension 669
point 480, 649
Point class 448
POJO (Plain Old Java

Object) 916, 968
poll method of

PriorityQueue 604
polygon 491, 493
Polygon class 469, 491

addPointmethod 492,
494

polyline 491
polylines 491
polymorphic processing

of collections 582
polymorphic processing of

related exceptions 303

polymorphically process
Invoices and
Employees 288

polymorphism 105, 253,
255, 365, 366, 376

pool of threads 812
pop method of Stack 604
popup trigger event 708,

711
port 811
port number 811, 813,

825, 826, 830
portability 471
Portability Tips overview

xxiv
portable 9
portable GUI 125
Portable Network Graphics

(PNG) 409, 669
position number 142
positive and negative arc

angles 489
positive degrees 488
POST request 911
postback 933
postcondition 314
postdecrement 83
postfix decrement operator

82
postfix increment operator

82, 91
PostgreSQL 850
postincrement 83, 84
pow method of class Math

95, 116, 117
power (exponent) 117
power of 2 larger than 100

68
prebuilt data structures 579
precedence 34, 38, 84

arithmetic operators 35
chart 35, 78

Precedence Chart
Appendix 1022

precision 1054, 1055
format of a floating-

point number 78
precision of a floating-

point value 56
precision of a formatted

floating-point number
58

precondition 314
predecrement 82
predefined character class

530
predicate 857
predicate method 203
preemptive scheduling 740
Preferences API 612
prefix decrement operator

82

prefix increment operator
82

preincrement 82, 84
Preincrementing and

postincrementing 83
PreparedStatement

interface 889, 890, 892,
895, 904
executeQuerymethod

896
executeUpdate meth-

od 896
setString method

889, 896
prepareStatement

method of interface
Connection 895

presentation logic 913
presentation of a document

915
previous method of

ListIterator 588
primary key 851, 855
primitive type 32, 52, 85,

122
boolean 1042
byte 98
char 32, 98
double 32, 56, 74
float 32, 56
int 32, 33, 74, 82, 98
names are keywords 32
passed by value 161
promotions 123
short 98

principal in an interest
calculation 93

principle of least privilege
214

print debugger command
1041

print method of
System.out 27, 28

print on multiple lines 28
print spooling 753
printArray generic

method 623
printf method of

System.out 29, 1053
println method of

System.out 28
printStackTracemethod

of class Throwable 310
PrintStream class 571,

614
PrintWriter class 552,

573
priority of a thread 740
PriorityBlockingQueue

class 784

Index 1117

PriorityQueue class 604
clear method 604
offer method 604
peek method 604
poll method 604
size method 604

privacy protection 934
private

access modifier48, 192,
228

data 202
field 202
keyword 202, 360,

1025
private static

class member 210
probability 125
producer 752
producer thread 753
producer/consumer

relationship 752, 771
@Produces annotation 980
program in the general 255
program in the specific 255
Projects window 918
promotion 77, 933

of arguments 122
rules 77, 122

promotions for primitive
types 123

Properties class 612
getProperty method

612
keySet method 614
list method 614
load method 614
setProperty method

612
store method 614

property (JSF) 916
property of a JavaBean 916
propertyChange method

of interface Property-
ChangeListener 799

PropertyChangeListener
interface 798
propertyChange

method 799
proprietary class 251
protected access modifier

192, 228, 1025
protocol for

communication (jdbc)
869

proxy class for a web service
968, 973

pseudorandom number
125, 129

public
abstract method 279

public (cont.)
access modifier 40, 41,

48, 119, 192, 228
class 24
final static data 279
interface 188
keyword 24, 48, 360,

362, 363, 1025
member of a subclass

228
method 189, 192
method encapsulated

in an object 192
service 188
static class members

210
static method 210

publishing a web service
965, 966, 970

push method of class
Stack 603

put method
of interface Blocking-

Queue 760, 761
of interface Map 611
of interface Request-

Context 1001

Q
qualified name 861
quantifiers used in regular

expressions 534, 534
quantum 739
query 850, 852
query a database 867
query method 202
query string 912
QUESTION_MESSAGE 403
queue 581, 604
Queue interface 580, 581,

604, 760
queue length 811
queue to the server 818
QuickTime (.mov) files

688

R
RadialGradientPaint

class 497
radians 116
radio button 420, 426
radio button group 426
radix (base) of a number

526
raised rectangle 488
Random class 124, 125

documentation 125
nextInt method 125,

129
setSeed method 130

random method of class
Math 125

random numbers 129
difference between val-

ues 129
element of chance 125
generation 153
processing 124
pseudorandom number

125
scaling 126
scaling factor 126, 129
seed 125
seed value 129
shift a range 126
shifting value 126, 129

range method of class
EnumSet 209

range-view methods 588,
606

Rational Software
Corporation 325

Rational Unified Process™
325

raw type 636
RDBMS (relational

database management
system) 913

read method of class
InputStream 673

read-only file 568
read-only text 406
Reader class 573
reading a file on a web

server 808
readObject method of

ObjectInput 563
readObject method of

ObjectInputStream
570

ready state 739
real number 32, 74
realization in the UML 281
receive a connection 818
receive data from a server

825
receive method of class

DatagramSocket 829
reclaim memory 213
recognizing clients 934
recommended GUI design

guidelines used by
GroupLayout 1072

record 546
rectangle 469, 473, 485,

649, 653
Rectangle2D class 469
Rectangle2D.Double

class 494
redirect a standard stream

541
redirect a stream 541

ReentrantLock class 777,
779

refactoring xxiii, 18
tool 18

refer to an object 52
reference 52
reference type 52, 221
reflection 277
regexFilter method of

class RowFilter 884
regionMatchesmethod of

class String 507
register a port 811
register an

ActionListener 707
registered listener 418
registering the event

handler 413
regular expression 530

^ 531
? 534
. 537
{n,} 534
{n,m} 534
{n} 534
* 533
\D 530
\d 530
\S 530
\s 530
\W 530
\w 530
+ 533
| 534

Regular Expressions
Resource Center 538

reinventing the wheel 4, 31,
180

relational database 850,
851

relational database
management system
(RDBMS) 850, 913

relational database table
851

relational operators 35
relationship between an

inner class and its top-
level class 426

RELATIVE constant of class
GridBagConstraints
731

relative path 542
release a lock 766
release a resource 304, 305
release candidate 20
reload an entire web page

956
Reload from

appletviewer’s Applet
menu 650, 651

reluctant quantifier 534

1118 Index

remainder 34
remainder compound

assignment operator, %=
82

REMAINDER constant of
class
GridBagConstraints
731

remainder operator, % 34,
35

remove duplicate String
605

remove method of class
ArrayList<T> 184,
185

remove method of
interface Iterator 585

removeTableModel-
Listener method of
interface TableModel
872

removeTrayIcon method
of class SystemTray
1088

render attribute of f
ajax 961

rendering XHTML in a
web browser 911

Reordering output with
argument index 1068

repaint method of class
Component 448

repaint method of class
JComponent 472

repainted 657
repetition 64

counter controlled 76,
79

sentinel controlled 73,
74, 76

repetition statement62, 64,
68
do...while 64, 96, 97,

97
for 64, 92
while 64, 68, 69, 72,

76, 87
repetition terminates 69
replaceAll method

of class Matcher 537
of class String 535

replaceFirst method
of class Matcher 537
of class String 535

Representational State
Transfer (REST) 963,
965

representing integers in
hexadecimal format
1054

representing integers in
octal format 1054

request method 911
RequestContext interface

1001
put method 1001

@RequestScoped
annoation (JSF) 920
default 920

required attribute of a JSF
element 931

requirements 5, 323
requirements document

319, 323, 325
requirements gathering

323
reserved word 64, 1025

false 65
null 50, 52, 85
true 65

resizable array 806
implementation of a

List 582
resolution 469
resource leak 209, 304
resource library (JSF) 925
resource-release code 304
resources element of a

JNLP document 664
resources folder of a JSF

app 925
responses to a survey 150,

152
REST (Representational

State Transfer) 963
restart method of class

Timer 679
RESTful web services 965
result 857
result set concurrency 877
result set type 876
ResultSet interface 870,

876, 878
absolute method 878
close method 871
column name 871
column number 871
CONCUR_READ_ONLY

constant 877
CONCUR_UPDATABLE

constant 877
concurrency constant

877
getInt method 871
getObject method

871, 878
getRow method 878
last method 878
next method 871
TYPE_FORWARD_ONLY

constant 876
TYPE_SCROLL_INSENS-

ITIVE constant 876

ResultSet Interface (cont.)
TYPE_SCROLL_SENS-

ITIVE constant 877
ResultSetMetaData

interface 870, 878
getColumnClassName

method 878
getColumnCount

method 870, 878
getColumnName meth-

od 878
getColumnType meth-

od 871
ResultSetTableModel

enables a JTable to
display the contents of a
ResultSet 872

resumption model of
exception handling 299

rethrow an exception 307
Return key 650, 651
return keyword 49, 122,

1025
return message in the UML

353
return type 49

in the UML 343, 348
of a method 41, 49

reusability 629
reusable software

components 2, 123, 226
reuse 3, 31
reverse method of class

StringBuilder 520
reverse method of

Collections 590, 596
reverseOrder method of

Collections 592
RGB value 472, 473, 478
right aligned 454
right brace, } 25, 32, 71, 76
RIGHT constant of class

FlowLayout 457
right justification 1053,

1062
right justify output 94
right justifying integers

1062
rigid area of class Box 725
.rmi file extension 685,

688
robust 33
robust application 293
role in the UML 330
role name in the UML 330
roll back a transaction 905
rollback method of

interface Connection
905

rolling two dice 133
rollover Icon 420
root directory 542

root element (XML) 663
root html element 915
rotate method of class

Graphics2D 501
round a floating-point

number for display
purposes 78

round-robin scheduling
740

rounded rectangle 486, 498
rounded rectangle (for

representing a state in a
UML state diagram)
338

rounding 1053
rounding a number 34, 73,

96, 116
RoundRectangle2D class

469
RoundRectangle2D.

Double class 494, 498
row 851, 855, 856, 857,

858, 862
rowClasses attribute of

h:dataTable 954
RowFilter class 884
rows of a two-dimensional

array 167
rows to be retrieved 856
RowSet interface 885
Rule of Entity Integrity

855
Rule of Referential

Integrity 853
rule of thumb (heuristic)

107
rules of operator

precedence 34
run an applet in a web

browser 656
run debugger command

1039
run method of interface

Runnable 741, 840
Runnable interface 290,

741, 841
run method 741, 840

runnable state 738
running an application 12
running state 739
runtime error 11
runtime logic error 33
RuntimeException class

302

S
SaaS (Software as a Service)

xxiii, 19
Salesforce 15
sandbox security model

660

Index 1119

SansSerif Java font 480
saturation 478
Saverin, Eduardo 17
savings account 93
scalar 159
scaling (random numbers)

126
scaling an image 673
scaling factor (random

numbers) 126, 129
Scanner class 31, 32

hasNext method 101
next method 45
nextDouble method

59
nextLine method 44

scheduling threads 740
scientific notation 1055
scope 90
scope of a declaration 135
scope of a type parameter

631
scope of a variable 90
Screen class (ATM case

study) 329, 330, 342,
349, 350, 351, 353, 355,
362

screen cursor 29
screen-manager program

257
scroll 431, 435
scroll arrow 432
scroll box 432
SCROLL_TAB_LAYOUT

constant of class
JTabbedPane 725

scrollbar 435, 466
of a JComboBox 432

scrollbar policies 466
SDK (Software

Development Kit) 19
search engine 912
Second Life 15
secondary storage devices

540
sector 489
security 9
security certificate 660
SecurityException class

551
seed value (random

numbers) 125, 129
SEI (service endpoint

interface) 968, 973
SELECT SQL keyword 856,

857, 858, 859, 860
selected text in a

JTextArea 466
selecting an item from a

menu 410
selecting data from a table

852

selection 64
selection criteria 857
selection mode 435
selection statement 62, 63

if 63, 64, 65, 98
if...else 64, 65, 65,

76, 98
switch 64, 98, 104

_self target frame 807
Selvadurai, Naveen 18
semicolon (;) 25, 32, 38
send a message to an object 4
send data to a server 825
send message 52
send method of class

DatagramSocket 829
sentence-style

capitalization 402
sentinel-controlled

repetition 74, 76
sentinel value 74, 76
separator character 545
separator line in a menu

706, 707
sequence 64, 582
sequence diagram in the

UML 326, 351
sequence of messages in the

UML 352
sequence structure 62
sequence-structure activity

diagram 63
SequenceInputStream

class 573
sequential-access file 540,

546, 812
sequential execution 62
sequential horizontal

orientation in
GroupLayout 1071

sequential layout of GUI
components 1071

Serializable interface
290, 563

serialized object 562
Serif Java font 480
server 802
server farm 935
server port number 825
server response 912
server-side artifacts 968
server-side form handler 911
server waits for connections

from clients 811
server’s Internet address

813
server-side form handler

911
ServerSocket class 811,

818, 840
accept method 811,

818

service description for a
web service 972

service endpoint interface
(SEI) 968, 973

service of a class 192
ServiceManager class 672

lookup method 672
serviceName attribute of

@WebService
annotation 968

session 934
session expire (JSF) 935
session tracking 934

in web services 987
@SessionScoped

annotation 934, 935,
937

set a value 51
set debugger command

1041
Set interface 580, 581,

605, 606, 608
set method

of interface ListIter-
ator 588

set method 51, 196
set of constants

as an interface 279
SET SQL clause 863
set up event handling 413
setAlignment method of

class FlowLayout 457
setAutoCommitmethod of

interface Connection
905

setBackgroundmethod of
class Component 435,
478

setBoundsmethod of class
Component 453

setCharAtmethod of class
StringBuilder 520

setColor method of class
Graphics 473, 498

setCommand method of
JdbcRowSet interface
887

setConstraints method
of class GridBagLayout
731

setDefaultCloseOperat
ion method of class
JFrame 410, 699

setDisabledTextColor
method of class
JTextComponent 452

setEditable method of
class JTextComponent
413

setErr method of class
System 541

setFileSelectionMode
method of class
JFileChooser 577

setFixedCellHeight
method of class JList
437

setFixedCellWidth
method of class JList
437

setFont method of class
Component 425

setFont method of class
Graphics 480

setForegroundmethod of
class JComponent 708

setHint method of class
Manager 689

setHorizontalAlign-
ment method of class
JLabel 409

setHorizontalScroll-
BarPolicy method of
class JScrollPane 467

setHorizontalText-
Position method of
class JLabel 409

setIcon method of class
JLabel 409

setIn method of class
System 541

setInverted method of
class JSlider 696

setJMenuBar method of
class JFrame 700, 707

setLayoutmethod of class
Container 408, 454,
460, 462, 725

setLineWrap method of
class JTextArea 466

setListData method of
class JList 438

setLocation method of
class Component 453,
700

setLookAndFeel method
of class UIManager 715

setMajorTickSpacing
method of class
JSlider 699

setMaximumRowCount
method of class
JComboBox 432

setMnemonic method of
class AbstractButton
706

setOpaquemethod of class
JComponent 446, 449

setOut method of System
541

setPage method of class
JEditorPane 810

1120 Index

setPaint method of class
Graphics2D 497

setPaintTicksmethod of
class JSlider 699

setPassword method of
JdbcRowSet interface
887

setProperty method of
Properties 612

setRolloverIconmethod
of class
AbstractButton 422

setRowFilter method of
class JTable 884

setRowSorter method of
class JTable 884

setSeed method of class
Random 130

setSelected method of
class AbstractButton
707

setSelectionMode
method of class JList
435

setSize method of class
Component 453, 700

setSize method of class
JFrame 410

setString method of
interface
PreparedStatement
889, 896

setStrokemethod of class
Graphics2D 497

setText method of class
JLabel 409

setText method of class
JTextComponent 466

Setting the PATH
environment variable
xxx, xxxi

setToolTipText method
of class JComponent
408

setUrl method of
JdbcRowSet interface
887

setUsername method of
JdbcRowSet interface
887

setVerticalAlignment
method of class JLabel
409

setVerticalScrollBar-
Policy method of class
JScrollPane 467

setVerticalText-
Position method of
class JLabel 409

setVisible method of
class Component 410,
460, 700

setVisibleRowCount
method of class JList
435

shadow a field 135
shallow copy 252, 253
shape 494
Shape class hierarchy 227
Shape object 497
shapes 649
shared buffer 753
shell 25
shell prompt in UNIX 8
shell script 551
Shift 453
shift (random numbers)

126
shifting value 126
shifting value (random

numbers) 129
short-circuit evaluation

109
Short class 580
short primitive type 98,

1025, 1026
promotions 123

shortcut element of a
JNLP document 664

shortcut key 701
Show Line Numbers 919
show method of class

JPopupMenu 711
showDialog method of

class JColorChooser
477

showDocument method of
interface
AppletContext 803,
807

showInputDialogmethod
of class JOptionPane
402

showMessageDialog
method of class
JOptionPane 403

showOpenDialog method
of class JFileChooser
577

showStatus method of
class Applet 682

shuffle 153
algorithm 594

shuffle method of class
Collections 590, 594,
596

shuffling
Fisher-Yates 156

shutdown method of class
ExecutorService 744

side effect 109
Sieve of Eratosthenes 794

signal method of
interface Condition
777, 781

signal value 74
signalAll method of

interface Condition
777

signature 139
signature of a method 138
simple condition 107
simple name 218
Simple Object Access

Protocol (SOAP) 963,
966

SimpleGraph applet 649
simulate a middle-mouse-

button click on a one- or
two-button mouse 446

simulate a right-mouse-
button click on a one-
button mouse 446

simulation 125
sin method of class Math

117
sine 117
single-entry/single-exit

control statements 64
single inheritance 225
single-line (end-of-line)

comment 26
single-precision floating-

point number 56
single-quote character 503,

858
single-selection list 433
single-selection statement

64, 64
single static import 213
single-type-import

declaration 219
SINGLE_INTERVAL_

SELECTION constant of
interface ListSelec-
tionModel 435, 435,
437

SINGLE_SELECTION
constant of interface
ListSelectionModel
435

single-selection statement
if 64

size method
of class ArrayBlock-

ingQueue 761
of class ArrayList<T>

185
of class Priority-

Queue 604
of interface List 585,

588
of interface Map 612

size of the applet’s display
area 655

Skype 15
sleep interval 739
sleep method of class

Thread 741, 754, 755,
756

sleeping thread 739
small circles in the UML 63
small diamond symbol (for

representing a decision
in a UML activity
diagram) 341

smartphone 2, 6
snap-to ticks for JSlider

695
SOA (services oriented

architecture) xxiii
SOAP (Simple Object

Access Protocol) 963,
965, 966, 973
envelope 965
message 965

social commerce 15, 17
social networking 15
socket 802
socket-based

communication 802
Socket class 811, 825, 840,

841
close method 812
getInetAddress

method 818
getInputStream

method 812, 813
getOutputStream

method 812
SocketException class

826
Software as a Service (SaaS)

19
Software Development Kit

(SDK) 19
software engineering 202
Software Engineering

Observations overview
xxiv

software life cycle 323
software reuse 4, 215, 225,

619
solid circle (for

representing an initial
state in a UML diagram)
in the UML 338, 339

solid circle enclosed in an
open circle (for
representing the end of a
UML activity diagram)
339

solid circle in the UML 63

Index 1121

solid circle surrounded by a
hollow circle in the
UML 63

solid diamonds
(representing
composition) in the
UML 330

sort 181
sort method

of class Arrays 180
of class Collections

591
SortDemo applet 649
sorted order 606, 608
SortedMap interface 608
SortedSet interface 606,

608
first method 608
last method 608

sorting
descending order 591
with a Comparator 592

sorting techniques 649
sound 656, 668
sound card 685
sound engine 685
sounds 692
source code 8, 251
Source view in Netbeans

1073
SourceForge 5
SOUTH constant of class

BorderLayout 441,
457

SOUTH constant of class
GridBagConstraints
726

SOUTHEAST constant of
class GridBag-
Constraints 726

SOUTHWEST constant of
class GridBag-
Constraints 726

space character 24
space flag 1065
spacing between

components in
GroupLayout 1072

speaker 685
special character 32, 503
specialization 225
specialization in the UML

366
specifics 257
.spl file extension 688
-splash command-line

option to the java
command 1083

splash screen 1083
SplashScreen class 1084
split method of class

String 529, 535

SpreadSheet applet 649
SQL 850, 852, 855, 856,

862
DELETE statement 856,

864
FROM clause 856
GROUP BY 856
IDENTITY keyword

890
INNER JOIN clause 856,

861
INSERT statement 856,

862
LIKE clause 858
ON clause 861
ORDER BY clause 856,

859, 860
SELECT query 856,

857, 858, 859, 860
SET clause 863
UPDATE statement 856
VALUES clause 862
WHERE clause 857

.sql 866
SQL (Structured Query

Language) 889
SQL keyword 855
SQL script 866
SQL statement 905
SQLException class 870,

871, 890
SQLFeatureNotSupport-

edException class 877
sqrt method of class Math

116, 117, 122
square brackets, [] 142
square root 117
stack 628
Stack class 604

isEmpty method 604
of package java.util

602
peek method 604
pop method 604
push method 603

Stack generic class 629
Stack< Double > 636
Stack< Integer > 636

Stack generic class
declaration 629

stack trace 295
stack unwinding 308
StackTraceElement class

311
getClassNamemethod

311
getFileName method

311
getLineNumber meth-

od 311
getMethodName meth-

od 311

stale value 749
standard error stream 298,

307, 1053
standard error stream

(System.err) 541, 571
standard input stream

(System.in) 32, 541
standard output stream

307
standard output stream

(System.out) 25, 541,
571

standard reusable
component 226

standard time format 190
start method of class

JApplet 654, 657, 659
start method of class

Timer 679
start method of interface

Player 690
start tag 663
starting angle 488
startsWith method of

class String 510
starvation 740
state 326
state button 423
state dependent 753
state diagram for the ATM

object 338
state diagram in the UML

338
state in the UML 326, 339
state machine diagram in

the UML 326, 338
state of an object 333, 338
stateChanged method of

interface
ChangeListener 699

stateless protocol 934
statement 25, 41
Statement interface 870,

871, 889
close method 871
executeQuerymethod

870
Statements

break 102, 105, 106
continue 105
control statement 62,

64, 65
control-statement nest-

ing 64
control-statement

stacking 64
do...while 64, 96, 97
double selection 64
empty 38, 68
empty statement 68
enhanced for 157

Statements (cont.)
for 64, 89, 91, 92, 93,

95
if 35, 63, 64, 65, 98
if...else 64, 65, 76, 98
looping 64
multiple selection 64
nested 79
nested if...else 66, 67
repetition 62, 64, 68
return 122
selection 62, 63
single selection 64
switch 64, 98, 104
switch multiple-selec-

tion statement 129
try 153
while 64, 68, 69, 72,

76, 87
statements

throw 190
try-with-resources

316
static

class member 210
class variable 211
field (class variable)

210
import 213
import on demand 214
keyword 116, 1025
method 41, 95

static binding 278
static initializer block

937
status bar 653
step debugger command

1043
step up debugger

command 1044
Stone, Isaac “Biz” 17
stop debugger command

1039
stop method

of JApplet 654, 657
stop method of class

Timer 680
stop method of interface

AudioClip 685
store method of

Properties 614
stored procedure 904
stream 307, 1053
stream header 819
stream of bytes 540
stream socket 802, 813,

833
stream-based

communications 802
streams 802
streams-based transmission

825

1122 Index

strictfp keyword 1025
string 25

of characters 25
String class 503

charAt method 505,
520

compareTo method
507, 509

concat method 514
endsWith method 510
equals method 507,

509
equalsIgnoreCase

method 507, 509
format method 190,

1070
getChars method 505
immutable 212
indexOf method 511
lastIndexOf method

511
length method 505
matches method 530
regionMatches meth-

od 507
replaceAll method

535
replaceFirstmethod

535
split method 529,

535
startsWith method

510
substring method

513
toCharArray method

516
toLowerCase 588
toLowerCase method

515
toUpperCase 588
toUpperCase method

515
trim method 516
valueOf method 516

String class searching
methods 511

string concatenation 120,
212

string literal 503
StringBuffer class 517
StringBuilder class 503,

517
append method 521
capacity method 518
charAt method 520
constructors 518
delete method 523
deleteCharAtmethod

523
ensureCapacity

method 518

StringBuilder class (cont.)
getChars method 520
insert method 523
length method 518
reverse method 520
setCharAt method

520
StringIndexOutOf-

BoundsException class
513, 520

StringReader class 573
Strings in switch

statements 105
StringWriter class 573,

980
Stroke object 497, 498
strongly typed languages 85
Stroustrup, Bjarne 293
structure 915
structure of a system 337,

338
structured programming 62
Structured Query

Language (SQL) 850,
852, 855

style attribute of
h:panelGrid 925

styleClass attribute of a
JSF element 931

styleClass attribute of
h:dataTable 954

subclass 225, 365, 366
subdirectory 649
sublist 588
subList method of List

588
submenu 701
submit method of class

ExecutorService 799
subprotocol for

communication 869
subscript (index) 142
substringmethod of class

String 513
subtraction 34

operator, - 35
subtraction compound

assignment operator, -=
82

suffix F for float literals
604

suffix L for long literals 603
sum the elements of an

array 147
summarizing responses to a

survey 150
Sun Audio file format (.au

extension) 685, 688
super keyword 228, 250,

1025
call superclass construc-

tor 242

superclass 225, 365, 366
constructor 232
constructor call syntax

242
default constructor 232
direct 225, 226
indirect 225, 226
method overridden in a

subclass 250
suspend an applet’s

execution 657
sweep 488
sweep counterclockwise

488
.swf file extension 688
Swing Event Package 125
Swing GUI APIs 399
Swing GUI components

399
Swing GUI components

package 125
swing.properties file

xxxi, 401
SwingConstants interface

290, 409, 699
SwingSet3 demo 399
SwingUtilities class

716, 818
invokeLater method

818
updateComponent-

TreeUI method 716
SwingWorker class 785

cancel method 799
doInBackground

method 785, 788
done method 785, 788
execute method 785
get method 785
isCancelled method

794
process method 786,

795
publish method 785,

795
setProgress method

786, 795
switch logic 105
switch multiple-selection

statement 64, 98, 104,
129, 1025
activity diagram with

break statements
104

case label 102
comparing Strings

105
controlling expression

102
default case 102, 104,

129
Sybase 850

synchronization 744, 764
synchronization wrapper

615
synchronize 737
synchronize access to a

collection 582
synchronized

keyword 615, 745,
1025

method 745
statement 745

synchronized collection
582

synchronous call 352
synchronous error 301
synchronous request 956
SynchronousQueue class

784
syntax error 26
system 325
system behavior 325
System class

arraycopy 181, 182
exit method 304, 551
setErr method 541
setIn method 541
setOut 541

system requirements 323
system service 811
system structure 325
System.err (standard

error stream) 298, 541,
571, 1053

System.in (standard input
stream) 541

System.out
print method 27, 28,

28
printf method 29
println method 25,

28
System.out (standard

output stream) 25, 541,
571

SystemColor class 497
SystemTray class 1087

addTrayIcon method
1088

getDefaultSystem-
Tray method 1088

removeTrayIcon
method 1088

T
tab 1068
tab character, \t 29
Tab key 25
tab stops 25, 29
table 167, 851
table element 167
table of values 167

Index 1123

TableModel interface 872
addTableModelLis-

tener 872
getColumnClass

method 872, 878
getColumnCount

method 872, 878
getColumnName meth-

od 872, 878
getRowCount method

872
getValueAt method

872
removeTableModel-

Listener 872
TableModelEvent class

884
TableRowSorter class 884
tablet 2
tablet computer 6
tabular format 145
tag (in an XHTML

document) 654
tag library (JSF) 915
tagging interface 280, 563
tailSet method of class

TreeSet 608
take method of class

BlockingQueue 760,
761

tan method of class Math
117

tangent 117
target frame 807

_blank 807
_self 807
_top 808

TCP (Transmission
Control Protocol) 802

technical publications 20
telephone system 826
temporary 77
Terminal application (Max

OS X) 8
terminal window 25
terminate an application

706
terminate successfully 551
terminated state 739
termination housekeeping

209, 252
termination model of

exception handling 299
ternary operator 66
test a web service 971
testing a web service from

another computer 972
text editor 503
text file 541
text that jumps 649
TexturePaint class 469,

497, 498

The Free Site
(www.thefreesite.co
m) 692

The Java™ Language
Specification
(java.sun.com/docs/
books/jls/) 35

thick lines 494
this

keyword 193, 194, 210,
1025

reference 193
to call another con-

structor of the same
class 198

thread 299, 471, 656
life cycle 738, 740
of execution 736
scheduling 739, 756
state 738
synchronization 615,

744
Thread class

currentThread meth-
od 746

interrupt method
742

sleep method 741
thread confinement 785
thread-life-cycle statechart

diagram 738, 740
thread pool 741
thread priority 740
thread safe 749, 785
thread scheduler 740
thread states

blocked 739, 745
dead 739
new 738
ready 739
runnable 738
running 739
terminated 739
timed waiting 738
waiting 738

three-button mouse 445
three-dimensional shape

649
three-dimensional view

649
three-dimensional

rectangle 485
three-dimensional, high-

resolution, color
graphics 668

throw an exception 152,
153, 294, 298

throw an exception 190,
199

throw keyword 307, 1025
throw point 295
throw statement 307

Throwable class 301, 310
getMessage method

310
getStackTrace meth-

od 310
hierarchy 302
printStackTrace

method 310
throws an exception 189
throws clause 300
throws keyword 1025
thumb of class JSlider

695, 699
thumb position of class

JSlider 699
Tic-Tac-Toe 833
tick marks on a JSlider

695
TicTacToe

applet 649, 650
tier in a multitier

application 912
time formatting 1054
timed waiting state 738
Timer class 679, 680

isRunning method
679

restart method 679
start method 679
stop method 680

timeslice 739
timeslicing 740
timing diagram in the

UML 1090
title bar 400, 406, 699
title bar of a window 403
title bar of internal window

718
title element of a JNLP

document 664
title of a JSF document

916
titles table of books

database 852, 854
toArray method of List

589, 590
toCharArray method of

class String 516
toggle buttons 420
toJson method of class

Gson 985
token of a String 529
tokenization 529
toLowerCase method of

class Character 526
toLowerCase method of

class String 515, 588
tool tips 405, 408, 410
top 604
TOP constant of class

JTabbedPane 725
top-level class 413

_top target frame 808
top tier 913
toString method

of class ArrayList
591, 642

of class Arrays 536
of class Formatter

1070
of class Object 232,

253
toUpperCase method of

class Character 526
toUpperCase method of

class String 515, 588
toURI method of class

File 692
toURL method of class URI

692
track mouse events 439
tracking customers 933
traditional comment 24
traditional web application

956
TRAILING alignment

constant in
GroupLayout 1072

trailing white-space
characters 516

Transaction class (ATM
case study) 365, 366,
367, 368, 370, 396

transaction processing 905
transfer of control 62
transient keyword 565,

1025
transition arrow 65, 69

in the UML 63
transition arrow in the

UML 69
transition between states in

the UML 338, 341
transition in the UML 63
translatemethod of class

Graphics2D 501
transparency of a

JComponent 446
traverse an array 169
Tray icons 1087
TrayIcon class 1088
tree 605, 650
Tree link in API 1029
TreeMap class 608
TreeSet class 605, 606,

608
headSet method 607
tailSet method 608

trigger an event 404
trigonometric cosine 116
trigonometric sine 117
trigonometric tangent 117
trim method of class

String 516

http://www.thefreesite.com
http://www.thefreesite.com

1124 Index

trimToSize method of
class ArrayList<T> 184

true 35, 1025
true reserved word 65, 66
truncate 34
truncate fractional part of a

calculation 73
truncated 549
truth table 108
truth tables

for operator ^ 110
for operator ! 110
for operator && 108
for operator || 109

try block 153, 298, 308
terminates 299

try keyword 298, 1025
try statement 153, 300
try-with-resources

statement 316
24-hour clock format 188
Twitter 15, 17

tweet 17
two-dimensional graphics

demo 651
two-dimensional array167,

169
two-dimensional array with

three rows and four
columns 168

two-dimensional graphics
494

two-dimensional shapes
469

type 32
type argument 631
type casting 77
type-import-on-demand

declaration 219
type inference with the <>

notation (Java SE 7) 585
type parameter 623, 629,

636
scope 631
section 623, 629

type variable 623
type-wrapper class 524,

580, 625
implements Compara-

ble 625
TYPE_FORWARD_ONLY

constant 876
TYPE_INT_RGB constant of

class BufferedImage
498

TYPE_SCROLL_INSENS-
ITIVE constant 876

TYPE_SCROLL_SENSITIVE
constant 877

Types class 871
typesetting system 503
typing in a text field 410

U
UDP (User Datagram

Protocol) 802, 826
ui:repeat element 941
UIManager class 715

getInstalledLook-
AndFeels method
715

LookAndFeelInfo
nested class 715

setLookAndFeel
method 715

UIManager.LookAndFeel
Info class
getClassNamemethod

715
UML (Unified Modeling

Language) 5, 319, 325,
329, 336, 337, 365
activity diagram 62, 63,

65, 69, 91, 97
aggregation 331
arrow 63
association 329
class diagram 43
compartment in a class

diagram 43
diagram 325
diamond 64
dotted line 63
elided diagram 329
final state 63
frame 354
guard condition 65
guillemets (« and ») 55
hollow diamond repre-

senting aggregation
331

many-to-one relation-
ship 332

merge symbol 69
multiplicity 329
note 63
one-to-many relation-

ship 332
one-to-one relationship

332
Resource Center

(www.deitel.com/
UML/) 326

role name 330
solid circle 63
solid circle surrounded

by a hollow circle 63
solid diamond repre-

senting composi-
tion 330

Specification 331
UML (www.uml.org) 63

UML Activity Diagram
small diamond symbol

(for representing a
decision) in the
UML 341

solid circle (for repre-
senting an initial
state) in the UML
339

solid circle enclosed in
an open circle (for
representing the end
of an activity) in the
UML 339

UML Class Diagram 329
attribute compartment

336
operation compart-

ment 342
UML Sequence Diagram

activation 353
arrowhead 353
lifeline 353

UML State Diagram
rounded rectangle (for

representing a state)
in the UML 338

solid circle (for repre-
senting an initial
state) in the UML
338

UML Use Case Diagram
actor 324
use case 325

unary operator 78, 110
cast 77

unboxing 629, 634
unboxing conversion 581
uncaught exception 299
unchecked exceptions 302
uncovering a component

472
underlying data structure

604
underscore (_) SQL

wildcard character 857,
858

uneditable JTextArea 464
uneditable text or icons 404
Unicode character set 85,

105, 503, 508, 524,
1026

Unicode value of the
character typed 453

Unified Modeling
Language (UML) 5,
319, 325, 329, 336, 337,
365

Uniform Resource
Identifier (URI) 542,
803

Uniform Resource Locator
(URL) 542, 803, 909

universal-time format 188,
189, 190

UNIX 8, 25, 101, 551, 648
UnknownHostException

class 813
unlock method of

interface Lock 776, 781
unmarshalmethod of class

JAXB 983
unmodifiable collection

582
unmodifiable wrapper 615
unspecified number of

arguments 177
UnsupportedOperation-

Exception class 588
unwatch debugger

command 1048
unwinding the method-call

stack 308
UPDATE SQL statement

856, 863
updateComponentTreeUI

method of class
SwingUtilities 716

upper bound 625
of a wildcard 642

upper bound of a type
parameter 626, 627

upper-left corner (0, 0)
coordinates of an applet
653

upper-left corner of a GUI
component 469

upper-left x-coordinate 473
upper-left y-coordinate 473
uppercase letter 24, 32
URI (Uniform Resource

Identifier) 542, 803
URI class

toURL method 692
URL (Uniform Resource

Locator) 542, 803, 804,
909

URL class 685
openStream method

987
use case diagram in the

UML 324, 325
use case in the UML 324
use case modeling 324
User Datagram Protocol

(UDP) 802, 826
user interface 913
Utilities Package 124
utility method 104

http://www.deitel.com/UML/
http://www.deitel.com/UML/
http://www.uml.org

Index 1125

V
v option of the jar

command 662
va 552
valid identifier 32
validate method of class

Container 462
validation 926
validatorMessage

attribute of a JSF
element 931

Validators (JSF)
f:validateBean 926
f:validateDou-

bleRange 926
f:validateLength

926
f:validateLong-

Range 926
f:validateRegex 926
f:validateRequired

926
validity checking 203
value attribute of

h:dataTable 953
value attribute of

h:inputText 931
value attribute of

h:outputLink 926
value attribute of

ui:repeat 941
value of a param 804
value of an attribute 915
valueChanged method of

interface
ListSelectionListen
er 435

valueOf method of class
String 516

values method of an enum
208

VALUES SQL clause 862
var attribute of

h:dataTable 954
var attribute of ui:repeat

941
variable 30, 32

name 32
reference type 52

variable declaration
statement 32

variable is not modifiable
215

variable-length argument
list 177

variable scope 90
Vector class 186, 582
vendor element of a JNLP

document 664
verb phrase in requirements

document 342

VERTICAL constant of class
GridBagConstraints
726

vertical coordinate 469
vertical gap space 460
vertical scrolling 466
vertical strut 724
VERTICAL_SCROLLBAR_

ALWAYS constant of class
JScrollPane 467

VERTICAL_SCROLLBAR_
AS_NEEDED constant of
class JScrollPane 467

VERTICAL_SCROLLBAR_
NEVER constant of class
JScrollPane 467

vi 8
video 668, 692
video game 126
video sharing 15
View 400
view 588
view (in MVC) 922
view a shape from different

angles 649
virtual directory 910
virtual key code 452
virtual machine (VM) 8
virtual world 15
visibility in the UML 360
visibility marker in the

UML 360
visual feedback 423
void keyword 25, 41, 1025
VoIP (Voice over IP 18
volatile keyword 1025

W
WADL (Web Application

Description Language)
981

wait for a new connection
818

wait method of class
Object 253, 763

waiting line 581, 604
waiting state 738
waiting thread 766
watch debugger command

1046
waterfall model 323
.wav file extension 685
web 803
Web 2.0 15
web app development 908
web application

Ajax 957
traditional 956

Web Application
Description Language
(WADL) 981

web application framework
908

Web Application project
966

web browser 647, 807
execute an applet 652,

656
Web Form 935
web server 811, 909
Web Service Description

Language (WSDL) 972
web service host 965
web service reference 974
web services 16, 963

adding a web service
reference to an ap-
plication 973

client-side artifacts 973
consuming a web ser-

vice 965
deploying a web service

970
@GET annotation 980
GlassFish application

server’s Tester web
page 971

implemented as a class
965

JAX-RS 963
JAX-WS 963
name attribute of @Web-

Service annotation
968

@Path annotation 979
@PathParam annota-

tion 980
POJO (Plain Old Java

Object) 916, 968
processing user-defined

types 1009
@Produces annotation

980
proxy class 968, 973
publishing a web ser-

vice 965, 970
RequestContext in-

terface 1001
REST 963
server-side artifacts 968
serviceName attri-

bute of @WebSer-
vice annotation
968

session tracking 990
SOAP 973
test a web service 971
testing a web service

from another com-
puter 972

web service host 965
web service reference

974

web services (cont.)
@WebMethod annota-

tion 968
@WebParam annotation

969
@WebService annota-

tion 968
@WebMethod annotation

968
operationName attri-

bute 968
@WebParam annotation 969

name attribute 969
@WebService annotation

968
name attribute 968
serviceName attribute

968
weightx field of class

GridBagConstraints
727

weighty field of class
GridBagConstraints
727

WEST constant of class
BorderLayout 441,
457

WEST constant of class
GridBagConstraints
726

WHERE SQL clause 856,
857, 858, 860, 863, 864

while repetition statement
64, 68, 69, 72, 76, 87,
1025
activity diagram in the

UML 69
white space 24, 25
white-space character 516,

529, 530
whole/part relationship

330
widgets 399
width 484
width attribute (CSS) 925
width attribute of the

applet-desc element
664

width of a rectangle in
pixels 473

width of an applet in pixels
655

Wikipedia 15
wildcard 642

in a generic type pa-
rameter 640

type argument 642
upper bound 642

Williams, Evan 17
window 699

1126 Index

Window class 699
addWindowListener

method 700
dispose method 699
pack method 719

window event 700
window event-handling

methods 443
window events 700
window gadgets 399
windowActivatedmethod

of interface
WindowListener 700

WindowAdapter class 443,
884

windowClosed method of
interface
WindowListener 700,
884

windowClosingmethod of
interface
WindowListener 700

WindowConstants
interface 699
DISPOSE_ON_CLOSE

constant 699
DO_NOTHING_ON_

CLOSE constant 699
HIDE_ON_CLOSE con-

stant 699
windowDeactivated

method of interface
WindowListener 700

windowDeiconified
method of interface
WindowListener 700

windowIconifiedmethod
of interface Window-
Listener 700

windowing system 405
WindowListener interface

443, 700, 884
windowActivated

method 700
windowClosedmethod

700, 884
windowClosing meth-

od 700

windowDeactivated
method 700

windowDeiconified
method 700

windowIconified
method 700

windowOpenedmethod
700

windowOpened method of
interface Window-
Listener 700

Windows 8, 101, 551, 648
Windows look-and-feel

695
Windows Performance

Package 688
Windows Wave file format

(.wav extension) 685
WireFrame applet 649
Withdrawal class (ATM

case study) 329, 330,
331, 334, 340, 341, 342,
350, 351, 353, 354, 355,
362, 363, 365, 366, 367,
370

word character 530
word processor 503, 511
workflow 63
workflow of an object in

the UML 339
wrap stream types 812, 813
wrapper methods of the

Collections class 582
wrapper object

(collections) 615
wrapping stream objects

562, 568
wrapping text in a

JTextArea 466
writeable 543
writeBoolean method of

interface DataOutput
572

writeByte method of
interface DataOutput
572

writeBytes method of
interface DataOutput
572

writeChar method of
interface DataOutput
572

writeChars method
of interface DataOut-

put 572
writeDouble method

of interface DataOut-
put 572

writeFloat method
of interface DataOut-

put 572
writeInt method of

interface DataOutput
572

writeLong method of
interface DataOutput
572

writeObject method
of class ObjectOut-

putStream 568
of interface Object-

Output 562
Writer class 573, 573
writeShort method of

interface DataOutput
572

writeUTF method of
interface DataOutput
572

WSDL (Web Service
Description Language)
972

www 18

X
x-coordinate 469, 493, 653
X_AXIS constant of class

Box 725
x-axis 469
XHTML (eXtensible

HyperText Markup
Language) 908, 909, 915
applet element 655
body element 655
document 654
page 909
tag 654

XHTML 1.0
Strict Recommenda-

tion 915
Transitional Recom-

mendation 915
XML (eXtensible Markup

Language) 663, 908,
972
declaration 915
element 663
empty element 925
end tag 663
root element 663
start tag 663
vocabulary 663

XMLHttpRequest object
956

xmlns attributes 915

Y
y-coordinate 469, 493
Y_AXIS constant of class

Box 725
y-axis 469
YouTube 15, 18

Z
0 (zero) flag 1064, 1066
zero-based counting 144
zeroth element 142
Zuckerberg, Mark 17

	Contents
	Preface
	Before You Begin
	10 Object-Oriented Programming: Polymorphism
	10.1 Introduction
	10.2 Polymorphism Examples
	10.3 Demonstrating Polymorphic Behavior
	10.4 Abstract Classes and Methods
	10.5 Case Study: Payroll System Using Polymorphism
	10.5.1 Abstract Superclass Employee
	10.5.2 Concrete Subclass SalariedEmployee
	10.5.3 Concrete Subclass HourlyEmployee
	10.5.4 Concrete Subclass CommissionEmployee
	10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
	10.5.6 Polymorphic Processing, Operator instanceof and Downcasting
	10.5.7 Summary of the Allowed Assignments Between Superclass and Subclass Variables

	10.6 final Methods and Classes
	10.7 Case Study: Creating and Using Interfaces
	10.7.1 Developing a Payable Hierarchy
	10.7.2 Interface Payable
	10.7.3 Class Invoice
	10.7.4 Modifying Class Employee to Implement Interface Payable
	10.7.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
	10.7.6 Using Interface Payable to Process Invoices and Employees Polymorphically
	10.7.7 Common Interfaces of the Java API

	10.8 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

