ANALYZING
COMPUTER
SECURITY
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearson.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Pfleeger, Charles P., 1948–
p. cm.
Includes bibliographical references and index.
1. Computer security. 2. Data protection. I. Pfleeger, Shari Lawrence. II. Title.
QA76.9.A25P4485 2011
005.8—dc23
2011013943

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Second printing, December 2011
Contents

Foreword xxiii
Preface xxvii
About the Authors xxxv

1 SECURITY BLANKET OR SECURITY THEATER? 2
How Dependent Are We on Computers? 6
What Is Computer Security? 8
 The Vulnerability–Threat–Control Paradigm 10
Threats 11
 Confidentiality 13
 Integrity 15
 Availability 16
 Types of Threats 17
 Types of Attackers 19
Harm 24
 Risk and Common Sense 25
 Method–Opportunity–Motive 28
Vulnerabilities 30
Controls 30
Analyzing Security With Examples 33
Conclusion 34
Exercises 35
2 KNOCK, KNOCK. WHO’S THERE? 38
 Attack: Impersonation 39
 Attack Details: Failed Authentication 40
 Identification versus Authentication 41
 Vulnerability: Faulty or Incomplete Authentication 41
 Password Use 42
 Countermeasure: Strong Authentication 47
 Knowledge: Something You Know 48
 Biometrics: Something You Are 51
 Tokens: Something You Have 60
 Multifactor Authentication 62
 Secure Authentication 63
 Conclusion 64
 Recurring Thread: Privacy 67
 Anonymity 67
 Multiple Identities—Linked or Not 67
 Pseudonymity 68
 Recurring Thread: Usability 69
 Password Guidelines 69
 Single Sign-On 69
 Exercises 71

3 2 + 2 = 5 72
 Attack: Program Flaw in Spacecraft Software 74
 Threat: Program Flaw Leads to Security Failing 75
 Vulnerability: Incomplete Mediation 77
 Definition 77
 Security Implication 78
 Vulnerability: Race Condition 79
 Definition 79
 Security Implication 81
 Vulnerability: Time-of-Check to Time-of-Use 82
 Definition 82
 Security Implication 83
 Vulnerability: Undocumented Access Point 84
 Ineffective Countermeasure: Penetrate-and-Patch 85
 Countermeasure: Identifying and Classifying Faults 86
 Faults and Failures 86
 Types of Flaws 88
Countermeasure: Secure Software Design Elements 90
 Modularity 90
 Encapsulation 92
 Information Hiding 92
 Mutual Suspicion 93
 Confinement 93
 Simplicity 94
 Genetic Diversity 94
 Design Principles for Security 95

Countermeasure: Secure Software Development Process 97
 Peer Reviews 98
 Hazard Analysis 101

Good Design 103
 Prediction 104
 Static Analysis 104
 Configuration Control 105
 Lessons from Mistakes 110
 Standards of Program Development 110
 Design Principles Work 111
 Process Standards 112
 Program Controls in General 113

Countermeasure: Testing 114
 Types of Testing 114
 Effectiveness of Testing 117
 Limitations of Testing 117
 Testing Especially for Security 118

Countermeasure: Defensive Programming 122

Conclusion 123

Recurring Thread: Legal—Redress for Software Failures 125
 Selling Correct Software 126

Exercises 128

4 A HORSE OF A DIFFERENT COLOR 130

Attack: Malicious Code 131

Threat: Malware—Virus, Trojan Horse, and Worm 132
 History of Malicious Code 136

Technical Details: Malicious Code 138
 Harm from Malicious Code 138
 Transmission and Propagation 143
Vulnerability: Parameter Length and Number 233
Vulnerability: Unsafe Utility Programs 234
Attack: Important Overflow Exploitation Examples 234
 Morris Worm 234
 Code Red 237
 SQL Slammer 240
 Conficker 242
Countermeasure: Programmer Bounds Checking 244
Countermeasure: Programming Language Support 244
 Safe Languages 245
 Safe Compilers 246
Countermeasure: Stack Protection/Tamper Detection 247
Countermeasure: Hardware Protection of Executable Space 249
 Fence 250
 Base/Bounds Registers 251
 Tagged Architecture 254
 Paging and Segmentation 256
 Combined Paging with Segmentation 260
Countermeasure: General Access Control 261
 Access Control Directory 263
 Access Control Matrix 266
 Access Control List 267
 Privilege List 269
 Capability 269
Conclusion 272
Exercises 274

7 **HE WHO STEALS MY PURSE ...** 276
Attack: Veterans’ Administration Laptop Stolen 277
Threat: Loss of Data 278
Extended Threat: Disaster 278
Vulnerability: Physical Access 279
Vulnerability: Unprotected Availability of Data 279
Vulnerability: Unprotected Confidentiality of Data 279
Countermeasure: Policy 280
Countermeasure: Physical Security 280
Countermeasure: Data Redundancy (Backup) Backup 282
8 THE ROOT OF ALL EVIL

Background: Operating System Structure
333
Attack: Phone Rootkit
337
Attack Details: What Is a Rootkit?
338
 Rootkit Evades Detection
338
 Rootkit Operates Unchecked
341
 Sony XCP Rootkit
342
 TDSS Rootkits
345
 Other Rootkits
346
Vulnerability: Software Complexity
347
Vulnerability: Difficulty of Detection and Eradication
347
Countermeasure: Simplicity of Design
348
 Layered Design
348
 Kernelized Design
351
Countermeasure: Trusted Systems
353
 Trusted Systems
355
 Trusted Computing Base (TCB)
357
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>SCANNING THE HORIZON</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>Attack: Investigation, Intrusion, and Compromise</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>Threat: Port Scan</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Attack Details</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>Harm: Knowledge and Exposure</td>
<td>374</td>
</tr>
<tr>
<td></td>
<td>Recurring Thread: Legal—Are Port Scans Legal?</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Vulnerability: Revealing Too Much</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>Vulnerability: Allowing Internal Access</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>Countermeasure: System Architecture</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>Countermeasure: Firewall</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>What Is a Firewall?</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Design of Firewalls</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>Types of Firewalls</td>
<td>382</td>
</tr>
<tr>
<td></td>
<td>Personal Firewalls</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>Comparison of Firewall Types</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Example Firewall Configurations</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>Countermeasure: Network Address Translation (NAT)</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Countermeasure: Security Perimeter</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>402</td>
</tr>
<tr>
<td>10</td>
<td>DO YOU HEAR WHAT I HEAR?</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>Attack: Wireless (WiFi) Network Access</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Attack Details</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>WiFi Background</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Harm: Confidentiality–Integrity–Availability</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>Confidentiality</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>Integrity</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>Availability</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>Attack: Unauthorized Access</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>Vulnerability: Protocol Weaknesses</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>Picking Up the Beacon</td>
<td>414</td>
</tr>
</tbody>
</table>
Contents

- Key Revocation 458
- Key Backup 458
- Countermeasure: Asymmetric Cryptography 459
 - Motivation 459
 - Characteristics 460
 - Rivest–Shamir–Adelman (RSA) Encryption 461
 - Uses of Public Key Encryption 462
- Countermeasure: Kerberos 464
- Conclusion 468
- Recurring Thread: Ethics—Monitoring Users 471
- Exercises 472

INTERLUDE B: ELECTRONIC VOTING 474

- What Is Electronic Voting? 475
 - Casting Ballots 476
 - Transmitting and Counting Ballots 476
- What Is a Fair Election? 477
- What Are the Critical Issues? 477
 - Secrecy 478
 - Tampering 479
 - Assuring Accuracy 480
 - Usability 480
 - Cost and Benefit 481

12 DISREGARD THAT MAN BEHIND THE CURTAIN 482

- Attack: Radar Sees Only Blue Skies 483
- Threat: Man in the Middle 484
- Threat: “In-the-Middle” Activity 487
 - DNS Spoofing 487
 - Rerouting Routing 488
 - Router Takes Over a Network 490
 - Source Routing and Address Spoofing 491
 - Physical Man in the Middle 491
 - Man-in-the-Browser Attack 493
 - Man-in-the-Phone Attack 495
 - Page-in-the-Middle Attack 495
 - Program Download Substitution 495
 - Capturing CAPTCHAs 496
 - Man-in-the-Middle Attacks in General 498
13 NOT ALL IS AS IT SEEMS

Attacks: Forgeries
Fake Email
Fake Web Site
Fake Code

Threat: Integrity Failure

Attack Details
Web Site Defacement
Substitute Content on a Real Web Site
Fake Email Message 532
Fake (Inaccurate) Email Header Data 534
Web Bug 534
Clickjacking 536
Drive-by Download 537
Cross Site Scripting 539
SQL Injection 540
Summary of Threats 542
Vulnerability: Protocol Weaknesses 542
Vulnerability: Code Flaws 543
Vulnerability: Humans 543
 Framing 544
 Optimism Bias 544
 Naïveté 544
 Vulnerabilities 545
Countermeasure: Digital Signature 545
 Components and Characteristics of Signatures 546
 Secure Hash Functions 548
 Public Keys for Signing 549
 Trust 550
 Certificates: Trustable Identities and Public Keys 555
 Digital Signatures—All the Pieces 558
 Public Key Infrastructure 561
 Signed Code 565
Countermeasure: Secure Protocols 566
Countermeasure: Access Control 566
 Limited Privilege 567
 Procedure-Oriented Access Control 567
 Role-Based Access Control 568
Countermeasure: User Education 568
Possible Countermeasure: Analysis 569
 Open Source 569
 Evaluation 570
Non-Countermeasure: Software Goodness Checker 571
 Requirements 571
 Complexity 571
 Decidability 571
Conclusion 572
Exercises 574
14 PLAY IT [AGAIN] SAM, OR, LET’S LOOK AT THE INSTANT REPLAY 576

- Attack: Cloned RFIDs 577
- Threat: Replay Attacks 578
 - Reprocessed Transactions 578
 - Password Replays 578
 - Physical Replay 579
- Vulnerability: Reuse of Session Data 580
- Countermeasure: Unrepeatable Protocol 580
 - Liveness 580
 - Liveness Beacon 581
 - Sequence Number 582
 - Nonce 582
 - Similar Attack: DNS Cache Poisoning 582
- Countermeasure: Cryptography 583
 - Asymmetric Cryptography and PKI 583
 - Cryptographic Key Replacement 584
- Conclusion: Replay Attacks 584
- Similar Attack: Session Hijack 584
- Vulnerability: Electronic Impersonation 588
- Vulnerability: Nonsecret Token 588
- Countermeasure: Encryption 589
 - SSH Encryption 589
 - SSL and TLS Encryption 589
- Countermeasure: IPsec 593
 - IPsec Security Association 594
 - Headers and Data 594
 - Key Management 594
 - Modes of Operation 595
- Countermeasure: Design 596
- Conclusion 597
- Exercises 598

15 I CAN’T GET NO SATISFACTION 600

- Attack: Massive Estonian Web Failure 601
- Threat: Denial of Service 602
- Threat: Flooding 602
- Threat: Blocked Access 603
- Threat: Access Failure 604
Case: Beth Israel Deaconess Hospital Systems Down 605
Vulnerability: Insufficient Resources 606
 Insufficient Capacity 606
 Network Flooding Attack 606
 Resource Starvation 610
Vulnerability: Addressee Cannot Be Found 611
 Traffic Redirection 611
 DNS Attacks 612
Vulnerability: Exploitation of Known Vulnerability 613
Vulnerability: Physical Disconnection 613
 Transmission Failure 614
 Component Failure 614
Countermeasure: Network Monitoring and Administration 614
 Capacity Planning 615
 Load Balancing 616
 Network Tuning 616
 Network Addressing 616
 Shunning 617
 Blacklisting and Sinkholing 617
Countermeasure: Intrusion Detection and Prevention Systems 618
 Types of IDSs 618
 Other Intrusion Detection Technology 623
 Intrusion Prevention Systems 624
 Intrusion Response 624
 Honeypots 626
 Goals for Intrusion Detection Systems 628
 IDS Strengths and Limitations 629
Countermeasure: Management 630
 Backup 630
 Redundancy and Server Farms 631
 Physical Security 632
 Planning 632
Conclusion: Denial of Service 633
Extended Attack: E Pluribus Contra Unum 635
 Distributed Denial-of-Service Attacks 635
 Scripted Denial-of-Service Attacks 637
Technical Details 638
 Bots 638
 Botnets 638
Contents

Malicious Autonomous Mobile Agents
Autonomous Mobile Protective Agents
Recurring Thread: Legal—DDoS Crime Does Not Pay
Vulnerability: Previously Described Attacks
- TFN
- Trin00
- Stacheldraht
Countermeasures: Preventing Bot Conscription
- Vulnerability Scan
- Computer Hygiene
- Separation and Limited Privilege
- Outbound Monitoring
Countermeasures: Handling an Attack Under Way
- Firewalls and IPSs
- Rate Limiting
- ACLs
- Filtering and Throttling
Conclusion: Distributed Denial of Service
Exercises

INTERLUDE C: CYBER WARFARE
What Is Cyber Warfare?
- Definition of Cyber Warfare
Examples of Cyber Warfare
- Estonia
- Iran
- Israel and Syria
- Canada
Critical Issues
- When Is It Warfare?
- How Likely Is It?
- What Are Appropriate Reactions to Cyber War?
- Other Policy, Ethical, and Legal Issues

16
'TWAS BRILLIG, AND THE SLITHY TOVES ...
Attack: Grade Inflation
Threat: Data Corruption
- Sequencing
- Substitution

19
Contents

Insertion 665
Salami 666
Similarity 666
Countermeasure: Codes 667
 Error Detection Codes 667
 Error Correction Codes 668
Countermeasure: Protocols 668
Countermeasure: Procedures 669
 Backup 669
 Redundancy 669
Countermeasure: Cryptography 670
 Block Chaining 670
 Password Salt 672
Conclusion 673
Exercises 674

17 PEERING THROUGH THE WINDOW 676
 Attack: Sharing Too Much 677
 Attack Details: Characteristics of Peer-to-Peer Networks 677
 The P2P Model 678
 P2P Network Uses 679
 Threat: Inappropriate Data Disclosure 680
 Threat: Introduction of Malicious Software 681
 Threat: Exposure to Unauthorized Access 682
 Vulnerability: User Failure to Employ Access Controls 683
 Vulnerability: Unsafe User Interface 683
 Vulnerability: Malicious Downloaded Software 684
 Countermeasure: User Education 685
 Countermeasure: Secure-by-Default Software 685
 Countermeasure: Legal Action 686
 Countermeasure: Outbound Firewall or Guard 688
 Conclusion 689
 Recurring Thread: Legal—Protecting Computer Objects 691
 Copyrights 691
 Patents 696
 Trade Secrets 699
 Protection for Computer Objects 700
 Exercises 704
18 MY 100,000 NEAREST AND DEAREST FRIENDS 706

Attack: I See U 707
Threat: Loss of Confidentiality 708
Threat: Data Leakage 709
Threat: Introduction of Malicious Code 710
Attack Details: Unintended Disclosure 711
 Sensitive Data 711
 Types of Disclosures 712
 Direct Inference 714
 Inference by Arithmetic 715
 Aggregation 719
 Linkage 719
Vulnerability: Exploiting Trust Relationships 721
Vulnerability: Analysis on Data 722
Vulnerability: Hidden Data Attributes 722
Countermeasure: Data Suppression and Modification 724
 Statistical Suppression 725
 Concealment 727
 Query Analysis 729
Countermeasure: User Awareness and Education 729
 Understanding the Online Environment 729
 Payments on the Web 730
 Site and Portal Registrations 731
 Whose Page Is This? 731
 Shopping on the Internet 732
Countermeasure: Policy 733
Conclusion 734
Exercises 736

AFTERWORD 738

Challenges Facing Us 739
 Diverse and Distributed Ownership of the Infrastructure 739
 Appeal as a Criminal Tool 740
 Difficulty in Quickly Identifying and Reacting to Emergent Behavior 740
Critical Issues 741
 Misaligned Incentives 741
 The Need for Diversity 742
 Compatibility with Organizational Culture and Goals 742
Moving Forward: Suggested Next Steps for Improving Computer Security

Address All Unwelcome Behaviors the Same Way

Extend Liability Statutes to Cyber Technology

Insist on Good Systems Engineering

Provide Economic Incentives for Good Security Hygiene

Perform Multidisciplinary Research

And Now for Something a Little Different

Bibliography

Index
Security and privacy are basic human desires. Sometimes those desires are stronger than at other times, and as humans we are often inconsistent in our choices. People seem to have a pretty good idea of when they want security, such as protection against harm from bears or bullies, or against property loss when executing bank transactions. Their interest in privacy also seems clear at times, such as when sending a resume to a prospective employer or accessing grades on a university computer system. However, at other times, people exhibit somewhat less security- or privacy-conscious behavior, such as going bungee jumping or in their use of loyalty cards when shopping. Sometimes the desire for security or privacy varies across nearly identical circumstances. An example of this is when a person receives an email from an unknown party, he might be reluctant to click on an included hyperlink, but when he receives the same email from a friend he happily clicks the hyperlink. These examples illustrate that people decide consciously whether the perceived value they’re receiving (adrenaline rush, loyalty points, convenience) exceeds any decrease in security or privacy. It can also be the case that people make these decisions based upon faulty information or when they are unaware of all the relevant facts.

Sometimes the overriding perceived value is simply that the service being provided is convenient or fast. Grocers have certainly demonstrated that customers are willing to disclose their shopping habits in exchange for the convenience of a loyalty card to avoid the inconvenience of clipping, storing, and transporting paper coupons.

When people take the time to think about it, they want to feel as secure and private as the situation seems to warrant. As with most things, the experience one has will color the assessment of the situation. Just as an experienced mechanic would be less intimidated by driving across the country with a balky engine in his prized classic sports car, a skilled practitioner knows just how secure or private a situation is. People assume and trust that security and privacy will be attributes of a system, but they may be disappointed. Often they do not make security and privacy explicit requirements, instead leaving them as implicit assumptions. When that trust is violated, people may be surprised and often a little annoyed, but only if they actually know about the failure and understand its full impact.
Beyond the traditional security and privacy protections provided by the government, such as law enforcement, emergency services, or social services, people are increasingly dependent upon computer and network systems for their happiness and livelihood, often without their knowledge. As a result, the issues surrounding security and privacy are also increasingly complex and confusing. The good news is that this increased dependence has led to some clarity around two points and perhaps a few answers.

CYBER INFRASTRUCTURES

A new set of computerized and networked systems has emerged: many natural and man-made systems are becoming increasingly instrumented, interconnected, and intelligent. These systems, and the man-made infrastructures that use them, are making people’s lives safer and more predictable and comfortable. At the same time, they are enabling innovation in reliable and cost efficient energy, better transportation systems, improved agriculture systems, more effective medical service delivery, and many other areas.

The industries that operate the critical infrastructures are primarily from the private sector and are adopting these technologies at an accelerating rate. The improved efficiencies, cost savings, and market access that these systems promise are irresistible. On the other hand, the millions of people affected by this move to “cyber infrastructures” are either unaware of it, or welcome it and the promise of better prices, efficiency, and reliability.

The improvements in efficiency, service, and reliability are indeed attractive. Yet, as with any technological move, there are some concerns.

Many of the critical infrastructures consist of widely distributed systems utilizing subsystems of sensors and actuators to monitor and manage the infrastructure. These subsystems may not have been designed to be connected to a network or to provide any proof of their identity or location. Since such subsystems were not expected to be replaced for years or even decades, upgrading them to more powerful and potentially secure versions will be slow and expensive. In addition, since these subsystems have not been connected to the open Internet before, connecting them now subjects them to a whole new set of threats and vulnerabilities without the benefit of suitable controls.

Many of these subsystems were designed for use on private, non-carrier class networks using proprietary protocols. Much of their security and privacy was implicitly provided by the network. For cost savings these subsystems are being moved to public networks, standard protocols, and open interfaces. As this move occurs, those implicit capabilities should become explicit requirements, lest new or previously shrouded vulnerabilities be exposed.

Many of these same subsystems employ embedded nontraditional operating systems that were most likely developed without strong security in mind, leaving the operating system itself vulnerable to attack from the open Internet as well as insiders.

Concerns about security and privacy are new to most vendors in the highly competitive critical infrastructure industry. As a result, they may make some poor assumptions about what is effective security. For example, having the same short cryptographic key stored into all of a power company’s residential electric meters doesn’t add much security since the key will likely be guessed and publicized.
Finally, the people in the traditional IT security industry have had to learn that there are some very basic differences between their world and that of the cyber infrastructure. For example, the traditional security goals of confidentiality, integrity, and availability are not necessarily equals in the cyber infrastructure. There, the highest priority is more often availability, since by definition a critical infrastructure is, well, critical, and so the challenges of reliability and fail-safety rise in importance.

This rapid spread of computing and networking into critical infrastructures raises very clear concerns about security and privacy. While more traditional IT security and privacy concerns have been the subject of research and development for many years, there the risks were primarily financial, taking such forms as plummeting stock prices after a very public hack, successful corporate espionage, or a loss of market share due to a drop in customer confidence after a private information leak. When a critical infrastructure has a failure, the effect can vary from widespread inconvenience, to loss of life or property, or a threat to national or international security.

Multidisciplinary Nature of the Problem

The traditional response is to throw more technology at new security and privacy problems. More technology may very well help, especially with the huge challenge of building systems that are secure by design, addressing the needs of legacy systems, and finding ways to actually use the flood of new data pooling around computing systems today.

However, adding more and more technology to the mix has failed to keep up with the rate of new threats and vulnerabilities. In fact, some would argue that the constant addition of more technology has exacerbated the problem by adding complexity, more implicit assumptions, and more vulnerabilities, all of which could potentially interact. Instead of relying solely on technology, people have come to realize that a multidisciplinary approach would be more effective.

For example, Joel Brenner, past U.S. National Counterintelligence Executive and Inspector General for the National Security Agency, said in an article in *Communications of ACM*\(^2\) that “[c]hange in the U.S. is driven by three things: liability, market demand, and regulatory (usually Federal) action.” There are now regulations that hold organizations liable for the loss of personal information, and several large cases have been prosecuted and damages assessed. However, liability hasn’t played much of a role in driving improvements to cyber security since it has proven difficult to ascertain precisely what was warranted, what failed and for what reason, and who should pay. Some worry that liability would squelch innovation and agility, especially in smaller companies.\(^3\) As for market demand, sometimes the public doesn’t realize that a security or privacy breach has occurred, or the degree to which such a breach affects their lives. As a result, the public has only made lukewarm, episodic demands for improvements in cyber security and has a very short memory for past incidents.

So perhaps one way out is via regulatory support. If regulations were to come, the challenge will be to find a way for them to be

- Relevant—addressing a problem that really matters
- Meaningful—addressing the identified problem in an effective manner
- Enforceable—preventing violations or enabling detection and prosecution of violators
While a multidisciplinary approach (combining technology, legislation, and market pressures) will help us move forward, one underlying challenge of security and privacy is common to all of them: People are the ultimate critical infrastructure. Every day, people decide whether to do something in a secure or private way. If it’s too difficult, slow, annoying, or otherwise costly to do something securely, most people will almost invariably elect to do it unsecurely. This is especially true when it comes to a person getting his or her tasks done at work. Whether at a school or a bank or an electric power distribution company, if the job depends on performance of a task, people will find a way around anything that gets in the way, including security. Thus, people are both part of the problem and a key part of any multidisciplinary solution.

Whether the threat is from bears or bullies, people need a clear understanding of their vulnerabilities to the threats and the controls they can exert upon them. The real challenge is that in today’s interconnected, interdependent, and intelligent world, the threats are many, the vulnerabilities are constantly growing, and the controls must be agile, effective, usable, and expand beyond technology to address the multidisciplinary facets of the challenge.

This is where teachers and authors like Chuck and Shari Pfleeger are indispensable. In this book, the authors adopt a new approach to explaining the intricacies of the security and privacy challenge, one that is particularly well suited to today’s cyber security challenges. Their use of the threat–vulnerability–countermeasure paradigm, combined with extensive real-world examples throughout, results in a very effective learning methodology. The examples illustrate the “hows” of the particular issue being examined, the reliance on implicit assumptions, the indications of a failure, and the spectrum of real-world impacts that successful security and privacy breaches have had. With each of the discussions, the authors include effective strategies for addressing the problems and methodologies for avoiding them in the first place. This refreshing new approach helps the reader not only to understand the problems, but also to gain a deeper appreciation of why they occur and why they are important topics of study. The authors have provided a comprehensive treatment of the important aspects of security and privacy in computing, thoroughly preparing the reader for the new multidisciplinary security and privacy challenges to come.

—Charles C. Palmer
IBM Research
Yorktown Heights, NY

NOTES

Preface

Computer technology surrounds us; from mobile phones to digital cameras, and hybrid vehicles to laser surgery, we achieve results that would be impossible without computers. On any given day you probably interact with computer-controlled or computer-assisted devices tens or hundreds of times, generally without even thinking of the computing involved. And this discussion does not even include the laptops, desktops, netbooks, and other actual computers we use, let alone the Internet and its vast oceans of data. Of course, we could do without all these things, but our lives would be different.

At the same time, as we become more accustomed to and integrated with computers, their weaknesses become our weaknesses. If you lost power, you could write a report by hand or on a manual typewriter, but the process would be a challenge; you might be relieved when the power went back on. You do not worry about changes to paper documents, as long as they are protected from physical hazards such as fire or deterioration, but you must guard against accidentally modifying a file or losing it because of a power surge. When you share a secret with a friend, you do not worry that your secret will become public if someone takes a picture of your friend, but you do need to prevent your files from being copied without your permission. Our use of computer technology has brought with it certain risks.

This book is about bad things that can happen with computers and ways to protect our computing. The title *Analyzing Computer Security* should alert you that this book is intended to help you develop a way of thinking critically about computers and their security.

WHY READ THIS BOOK?

You do not learn algebra by memorizing the names of famous mathematicians or learning the Greek alphabet. You learn algebra by studying its principles, techniques, and results. And then you work problems ... lots of problems. You get to the point where you can set up the equations for a mixture problem before you even finish reading or hearing the problem statement. Solving two equations in two unknowns becomes easy. But these tasks were really challenging the first time you did them.
Now let us consider a different kind of learning: completing a crossword puzzle. At the beginning you may have had trouble filling in any cells. Gradually you learned tricks: a plural is likely to end in S, Q is usually followed by U, two Js together may indicate a mistake. Gradually, your analytic skills developed and you may have found you could solve harder puzzles. In a way, you began to think like the person who wrote the puzzle.

This book will do the same kind of thing for you with respect to the security of computers and data: It will make you aware of how such systems can fail—or be made to fail—and how to protect yourself and your use of computing. You will start to look at computing as would an attacker. Your question becomes not How can I make this work? but How could this fail? Only by figuring out the failure modes can you decide how to protect yourself.

For these reasons, the threat–vulnerability–countermeasure approach is the basis of our presentation. Each chapter starts with an attack, from which we challenge you to develop your ability to identify people or things that could cause harm, locate the weaknesses against which they would work, and learn about the protective tools of the computer security community. For more than forty years, the leaders in our field have been developing a vast array of defenses that we will share with you. Just as with algebra, you need to know the tools of the field, but you also need to develop the insight that guides when to apply which tool.

Who Should Read This Book?

Three groups of people can profit from reading this book: students, computing professionals, and users.

College and university students can use this book in a one- or two-semester course on computer and information security. It covers the most important points such courses address, such as network security, application code, identification and authentication, access control, and operating systems. You will find the expected topics of firewalls, intrusion detection and protection systems, cryptography, viruses, and secure programming techniques, as well as many others. We think you will learn how, when, and why to apply these things for the most benefit.

Computing professionals may have a different context and focus from that of college students. Whereas many students want the full development of the subject, you as professionals may be more comfortable diving into the middle, to learn about a topic that is of immediate importance. From that topic, you can move to neighboring topics that are relevant, or pick another topic in which you have an interest. Although the book has a front-to-back progression, we point to other chapters that have material relevant to what you are currently reading, so you can feel comfortable starting at your point of interest and referring back if you find a concept you need to learn more about.

Computer users can easily find the language of computer security mystifying: Viruses, teardrop attacks, bots, drive-by downloads, backdoors, and rootkits sound dreadful, which they can be, but underneath they are just words to describe methods attackers use to harm you. To protect yourself, ignore the colorful language and focus instead on what valuable things of yours are at risk and how you can defend yourself.
You will find not just definitions of these terms but also examples to which you can relate.

We wrote this book to be useful to all three kinds of readers.

What Will You Learn From This Book?

From this book you will learn how to think critically and creatively about security. Anyone can memorize facts, but mere facts will not address the constantly changing situations in computer security. You need to be able to look at new programs, technologies, requirements, data collections, and objects with an eye for how their security can fail and how those potential failures can be countered.

As you read this book you will encounter many examples: some old, some very recent. We even mention some situations from the days before computers, to amplify or demonstrate a point we want you to understand.

ROADMAP

As you look at the Contents you will not find a networks chapter or the cryptography section or even the privacy pages. That is because computer security, like many disciplines, has interrelationships. We have chosen to work with, rather than against, those connections.

How Is This Book Structured?

We think you will find this book intriguing. We have laid it out in a rather nontraditional way for a textbook, but the structure is designed to help you learn to think critically about security.

Think for a moment of a history book, for example, about the nineteenth century. One conventional way to present history is chronologically: Start at the beginning in 1800 and work by date through all the major events until 1900. That organization is familiar because that is the way our lives unfold, but it is not the only way to present history. Another way to appreciate history is to observe the changes in society. For example, we could look at how artists abandoned realism and classicism for impressionism. We could analyze how inventions and the Industrial Revolution changed the nature of work, or how small city-states united to form large nations. Just as photography lets people see and record events that had formerly been represented only in words, so do we seek to view security through a lens that will help you understand its principles.

Threats–Vulnerabilities–Countermeasures

The lens we have chosen is the threat–vulnerability–countermeasure paradigm. Computer objects are subject to threats from attack sources; those attacks aim to exploit weaknesses or vulnerabilities; and we can take action to protect against the harm those threats could cause. We use case studies to illustrate each attack type.

We have picked real examples for our case studies. In some cases there was an obvious failure: a human error, technology failure, misunderstanding, or an oversight.
We assure you, these failures may be obvious in retrospect, but they were not so apparent before the event. That is precisely the point of this book: You should develop the ability to analyze a situation outside this book, to determine what threats could be raised, what vulnerabilities exploited, and what countermeasures employed. From studying the examples in this book and our explanations, you will acquire both the tools to use as countermeasures and the experience to guide your thinking.

Mapping

In case you want to find a particular topic, Table P-1 shows you where some of the conventional topics of computer security are covered. (This table shows only main locations for these topics.)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threats, vulnerabilities, and countermeasures</td>
<td>1: Definitions</td>
</tr>
<tr>
<td></td>
<td>All other chapters: Examples</td>
</tr>
<tr>
<td>Identification and authentication</td>
<td>2: Basic concepts</td>
</tr>
<tr>
<td></td>
<td>12: Shared secrets, one-time passwords</td>
</tr>
<tr>
<td>Cryptography</td>
<td>4: Cryptographic checksums</td>
</tr>
<tr>
<td></td>
<td>7: Symmetric encryption</td>
</tr>
<tr>
<td></td>
<td>10: Cryptographic weaknesses (WiFi protocols)</td>
</tr>
<tr>
<td></td>
<td>11: Key management; asymmetric cryptography</td>
</tr>
<tr>
<td></td>
<td>13: Digital signatures, public key infrastructure, code signing</td>
</tr>
<tr>
<td></td>
<td>14: SSL, IPsec</td>
</tr>
<tr>
<td></td>
<td>16: Block chaining</td>
</tr>
<tr>
<td>Malicious code</td>
<td>4: Viruses, Trojan horses, worms</td>
</tr>
<tr>
<td></td>
<td>6: Buffer overflows</td>
</tr>
<tr>
<td></td>
<td>8: Rootkits</td>
</tr>
<tr>
<td></td>
<td>12: Man-in-the-middle attacks, covert channels</td>
</tr>
<tr>
<td></td>
<td>15: Denial-of-service attacks, distributed denial of service attacks</td>
</tr>
<tr>
<td>Network security</td>
<td>9: Network architecture</td>
</tr>
<tr>
<td></td>
<td>9: Firewalls</td>
</tr>
<tr>
<td></td>
<td>10: WiFi vulnerabilities</td>
</tr>
<tr>
<td></td>
<td>11: Interception</td>
</tr>
<tr>
<td></td>
<td>14: Replay attacks; session hijacks</td>
</tr>
<tr>
<td></td>
<td>15: Intrusion detection systems</td>
</tr>
<tr>
<td>Operating systems</td>
<td>4: Memory separation</td>
</tr>
<tr>
<td></td>
<td>6: Memory management</td>
</tr>
<tr>
<td></td>
<td>8: Rootkits and operating system subversion, trusted operating systems</td>
</tr>
<tr>
<td>Secure software development</td>
<td>3: Techniques</td>
</tr>
<tr>
<td></td>
<td>3: Testing</td>
</tr>
<tr>
<td></td>
<td>6: Error prevention</td>
</tr>
</tbody>
</table>
Expected Background

What background do you need to appreciate this book? We assume you understand programming, machine organization, operating systems, and networking. We give some background in each of these topics where we introduce them, but because these are the topics of entire books and courses, we cannot really cover all that background in this book. A student in a computer science program or a professional designer or developer probably has most of the background necessary or can check a reference for any needed explanation.

How Does This Book Relate to *Security in Computing*?

You may have seen *Security in Computing*, of which the most recent edition was published in 2007. This book began as a revision; however, as it took shape, we realized it was a dramatically different book. True, both books address many of the same topics, and you will even see some overlap because, for example, there are only so many ways you can explain authentication.

However, not only does this book have more recent coverage of emerging topics, the objectives and structure are completely different. If you want encyclopedic coverage of computer security in a taxonomic progression, you want *Security in Computing*. However, we think a significant number of people will like the analytical approach of this book, so we offer it as an alternative for people who want to be able to identify security weaknesses in any situation and know tools and techniques by which to counter those weaknesses.

IN THE CHAPTERS

Let us now explain how the individual chapters are laid out.

Spotlights

Each chapter begins with a spotlight: a handful of bullet points to tell you the major topics that will be covered in the chapter. This lets you quickly know what you will

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters</th>
</tr>
</thead>
</table>
| System design | 5: Security through obscurity
 | 6: Access control models and enforcement
 | 8: Simplicity of design, trusted system design
 | 9: Layered protection
 | 17: Peer-to-peer network model |
| Assurance | 8: Trusted systems
 | 13: Forgeries |
| Privacy | 2: Identities and anonymity
 | 17: Unexpected data distribution
 | 18: Social media applications, inference, and aggregation |
find in a chapter, so if you want to skip around in the book, this block will give you a simple guide.

Threats–Vulnerabilities–Countermeasures

We use the same format for each chapter: a case, explanation of the threats, enumeration and expansion on the vulnerabilities, and statement and development of the countermeasures.

Recurring Threads

Some topics are relevant to computer security; we would be remiss if we did not raise them at appropriate points. These topics are privacy, ethics, law and law enforcement, forensics, management, and economics. We pay attention to these topics at points when they are especially relevant in sections labeled “Recurring Thread.”

Sidebars

Sometimes we want to view a point from a different perspective, show a historical parallel, or tell an interesting story. We do these things in Sidebars. They are set off typographically so you can tell they are interruptions to the normal flow of content.

Interludes

We have added three mini-chapters to give you a chance to apply the analytic skills you will learn. We call these pieces Interludes, and they raise issues related to cloud computing, electronic voting, and cyber warfare. Currently in an early stage of development, each of these is an important area that we expect will gain in prominence in the future. Although people are beginning to address the security issues for these areas, more analysis and implementation remain to be done.

The Interludes challenge your analytical skills. In each Interlude we lay out the topic and ask some pointed questions for your consideration. However, we leave the bulk of the work to you: Who would have method, opportunity, and motive to attack? What would be the nature of the attack? What harm could occur? Where might there be vulnerabilities that could be exploited? How difficult would an attack be? And what countermeasures could or should be applied now to render each of these situations more secure in the future?

Conclusions

We conclude each chapter by briefly reviewing the salient points, summarizing the current state of and future issues for the chapter’s topic, and tabulating the key threats, vulnerabilities, and countermeasures of the chapter.

Exercises

At the end of each chapter you will find a set of exercises. Many of the exercises call for you to analyze, describe, or justify something. You can do these exercises mentally or in writing, and you can use some as debate topics for friends, students, or colleagues.
Afterword

We end the book with a last, unnumbered chapter, to describe where we think the field of computer security is heading. Crystal balls are notoriously cloudy, and we do not think our ability to predict the future is exceptional. Still, this book has pointed out some security strengths and weaknesses in our current computing environment, and we use the Afterword to recommend things to which the community should pay attention.

ACKNOWLEDGMENTS

It is increasingly difficult to acknowledge all the people who have influenced this book. Many colleagues and friends have contributed their knowledge and insight, often without knowing their impact. By arguing a point or sharing explanations of concepts, our associates have forced us to question or rethink what we know.

We thank our associates in at least two ways. First, we have tried to include references to their written works. References in the text cite specific papers relating to particular thoughts or concepts, but the Bibliography also includes broader works that have played a more subtle role in shaping our approach to security. So, to all the cited authors, many of whom are friends and colleagues, we happily acknowledge your positive influence on this book.

Rather than name individuals, we thank the organizations in which we have interacted with creative, stimulating, and challenging people from whom we learned a lot. These places include Trusted Information Systems, the Contel Technology Center, the Centre for Software Reliability of the City University of London, Arca Systems, Exodus Communications, the RAND Corporation, Cable & Wireless, and the Institute for Information Infrastructure Protection. If you worked with us at any of these locations, chances are high that your imprint can be found in this book. And for all the side conversations, debates, arguments, and light moments, we are grateful.

We want to recognize and thank three people for their particular, significant contributions to this book. Mischel Kwon first suggested to us the idea of studying security by exploring threats, vulnerabilities, and countermeasures. As we picked up and began to expand that idea, she offered valuable constructive criticism, as well as friendship and encouragement. We similarly appreciate the contributions of Charles Palmer. In addition to writing the Foreword to this book, Charles has been a great friend and colleague who has gladly shared his insights. We also thank Bernard Goodwin, our editor at Prentice Hall, who has been a solid champion during development of this book.
About the Authors

Charles P. Pfleeger is an independent consultant with the Pfleeger Consulting Group, specializing in computer and information system security. Among his responsibilities are threat and vulnerability analysis, risk analysis, system security design and review, certification preparation, training, expert testimony, and general security advice. His customers include government and commercial clients throughout the world.

Dr. Pfleeger was previously a Master Security Architect on the staff of the Chief Security Officer of Cable & Wireless, and Exodus Communications, and before that he was a Senior Computer Scientist and Director of Research for Arca Systems, Director of European Operations for Trusted Information Systems, Inc. (TIS), and a professor in the Computer Science Department of the University of Tennessee.

Dr. Pfleeger was chair of the IEEE Computer Society Technical Committee on Security and Privacy from 1997 to 1999 and has been a member of the executive council of that committee since 1995. He is on the board of reviewers for *Computers and Security*, and was a member of the editorial board of *IEEE Security and Privacy* and the board of advisors for OWASP, the Open Web Application Security Project.

Dr. Pfleeger has lectured throughout the world and published numerous papers and books. His book *Security in Computing* (of which the fourth edition—coauthored with Shari Lawrence Pfleeger—was published in 2007) is the standard college textbook in computer security. He is the author of other books and articles on technical computer security and computer science topics.

He holds a Ph.D. in computer science from The Pennsylvania State University and a B.A. with honors in mathematics from Ohio Wesleyan University. He is a Certified Information Systems Security Professional (CISSP).

Shari Lawrence Pfleeger is the Research Director for Dartmouth College’s Institute for Information Infrastructure Protection, a consortium of leading universities, national laboratories, and nonprofit institutions dedicated to strengthening the U.S. cyber infrastructure. She joined the I3P after serving for nine years as a senior researcher at the RAND Corporation, where her work focused on software quality and cyber security.
About the Authors

Previously, as president of Systems/Software, Inc., she led a consultancy specializing in software engineering and technology. She has been a developer and maintainer for real-time, business-critical software systems, a principal scientist at MITRE Corporation’s Software Engineering Center, and manager of the measurement program at the Contel Technology Center. She has also held several research and teaching positions at universities in the United States and United Kingdom.

Named repeatedly by the Journal of Systems and Software as one of the world’s top software engineering researchers, Dr. Pfleeger is the author of more than one hundred articles and many books, including Security in Computing, Fourth Edition (with Charles Pfleeger), Software Engineering: Theory and Practice, Fourth Edition (with Joanne Atlee) and Solid Software (with Les Hatton and Charles Howell). She has testified before Congress on cyber security risk, and often appears in the media. She has been associate editor-in-chief of IEEE Software, associate editor of IEEE Transactions on Software Engineering, and is currently an associate editor of IEEE Security & Privacy. Dr. Pfleeger was also the founding chair of ACM’s Committee on the Status of Women and Minorities.

Dr. Pfleeger earned a B.A. in mathematics from Harpur College, an M.A. in mathematics from Penn State, an M.S. in planning from Penn State, a Ph.D. in information technology and engineering from George Mason University, and a Doctor of Humane Letters from Binghamton University.

In their spare time, you can find both Pfeegers on their bicycles or doing volunteer work in the Washington, D.C., area.
Security Blanket or Security Theater?

CHAPTER SPOTLIGHT
• Computer security: the threat–vulnerability–countermeasure paradigm
• Harm to confidentiality, integrity, availability
• Nature of threats; method–opportunity–motive; risk
• Kinds of attackers
• Countermeasure effects: prevent, deter, detect, recover
• Analyzing security

How Dependent Are We on Computers? 6
What Is Computer Security? 8
Threats 11
Harm 24
Vulnerabilities 30
Controls 30
Analyzing Security with Examples 33
Conclusion 34
Exercises 35
Imagine a series of events unfolding on a single day. First, 20 million U.S. smart phones stop working. Next follow outages in wireline telephone service, problems with air traffic control, disruptions to the New York Stock Exchange, and eventually severe loss of power on America’s East Coast. What could cause such crippling outcomes?

You might think first they are isolated events, just coincidentally occurring on the same day. But with several things happening at once, you next start to look for common causes. Perhaps the various organizations providing these services bought some of their software from the same vendor, and the software is failing because of a shared flaw. Possibly this situation is like the Y2K problem, when people were concerned that on January 1, 2000 computer systems would crash because they used only two digits for the date (98, 99) and would fail when computer clocks rolled over the year boundary. Or maybe dependencies in one sector trigger actions that cause the initial failure to cascade into other sectors, for example:

1. A software defect causes disruption in mobile phone service.
2. Consequently, those who need to use phones revert to their wireline service, thereby overloading circuits.
3. Air traffic controllers in some parts of the country depend on wireline communication, so overloaded circuits lead to air traffic control problems.
4. Similarly, the New York Stock Exchange is severely debilitated by its brokers’ inability to place and verify trades.
5. At the same time, the power grid experiences problems because its controllers, no longer able to exchange information by using mobile phones, shut down because of a flawed protocol.

There is yet another scenario, used by the Bipartisan Policy Center in its February 2010 Cyber ShockWave exercise: malicious computer software or malware, “planted in phones months earlier through a popular ‘March Madness’ basketball bracket application, disrupts mobile service for millions” [BPC10].

It is difficult—sometimes impossible—to distinguish between an accident and an attack. Consider, for example, an online gambling site that received a flood of blank incoming email messages that overwhelmed servers and slowed customer traffic to a crawl. Blank messages could easily come from a software or hardware problem: a mail handler caught in a loop with one malformed message that it dispatches over and over. Shortly thereafter, the company received email written in broken English. It told the company to wire $40,000 to ten different accounts in Eastern Europe if it wanted its computers to stay online [MCA05]. So much for the “just an accident” theory.

Are these scenarios realistic or implausible? And are cyber security exercises such as these and the ones described in Sidebar 1-1 designed to confirm our readiness (a security
Testing Cyber Security Readiness

Governments and the private sector have organized many “cyber security exercises.” Although the nature of each exercise varies, the goals of such exercises are similar: to anticipate unwelcome cyber events so that prevention and mitigation plans can be made, to make both public and private officials aware of cyber security risks, and to test existing response plans for both coverage and effectiveness.

For example, in November 2010, the European Union ran its first cyber security “stress test,” Cyber Europe 2010. Its objective was to “test Europe’s readiness to face online threats to essential critical infrastructure used by citizens, governments and businesses.” The activities involved 22 participating nations and 8 observers. Among the lessons learned:

- The private sector must be involved.
- Testing of pan-European preparedness measures is lacking because each member nation is still refining its national approach.
- The exercise is a first step in building trust at a pan-European level. More cooperation and information exchange are needed.
- Incident handling varied a lot from one nation to another because of the different roles, responsibilities, and bodies involved in the process. Some nations had difficulty understanding how similar incidents are managed in other member nations.
- A new pan-European directory of contacts need not be created. The existing directories are sufficient but need to be updated and completed regularly.

Other cyber security exercises have been run around the world. The U.S. Department of Homeland Security involves both public and private sector organizations in its biannual Cyber Storm process. And the Bipartisan Policy Center engaged former U.S. government officials in real-time reaction to its simulated cyber attack. Private enterprise and business sector groups also run cyber security exercises; however, they do not usually make their results public, for fear of revealing problems to possible attackers.

To learn more:
The nine-part CNN broadcast of the Cyber ShockWave simulation begins at http://www.youtube.com/watch?v=MDWEM2jM7qY.

blanket) or exacerbate our worries (security theater)? What is the likelihood we will be able to determine the causes of these kinds of failures and then prevent or mitigate their effects?

No matter what your work or family responsibilities, it is important for you to understand the nature of these scenarios, make reasoned judgments about their likelihood, and take prudent actions to protect yourselves and the people, data, and things you value.

One way to develop an understanding is to imagine how you might interpret a situation and then react to it. For example, in the unfolding events from mobile phone outage to East Coast power failure, consider these roles:
• You are using your mobile phone to talk with your friend, and the connection drops. You redial repeatedly but never connect. You then try to call your friend on your land line, but again there is no connection. How long does it take you to realize that the problem affects far more people than just you and your friend? Do you contact the telephone company? (And how? You cannot phone, and your Internet connection may very well depend on your telephone carrier!) By the time the power goes out, how do you know the power failure is related to your phone problems? When do you take any action? And what do you do?

• You are using your mobile phone to call your stockbroker because your company’s initial public offering (IPO) is scheduled for today—so your company’s viability depends on the resulting stock price and the volume of sales. As you begin your conversation with the stockbroker, the connection drops. You redial repeatedly, but never connect. You then try to call your broker on the land line, but again there is no connection. How long does it take you realize that the problem affects your company? Your broker? Others? Whom do you call to report a problem? And when the power goes out, what action do you take?

• You are a government official involved with air traffic control. All morning, you have heard rumors of telephone problems around the country. On your secure government line, you get a call confirming those problems and reporting widening problems with the air traffic control system. How do you determine what is wrong? To whom do you report problems? When you realize that problems with air traffic control may be dangerous to aircraft and their passengers, how do you react? Can you ground all aircraft until the sources of the problems are located and corrected?

• You are a government official involved with regulating the power grid. All morning, you have heard rumors of telephone problems around the country. Your web-based reporting system begins to report sporadic power outages on the East Coast. On your secure government line, you get a call confirming those problems and reporting widening problems with the air traffic control system. How do you determine what is wrong? To whom do you report problems? When you realize that problems with the power grid may threaten the viability of the entire nation’s power system, how do you react? The power grid is owned by the private sector. Does the government have authority to shut down the grid until the sources of the problems are located and corrected?

The last situation has precedents. During World War I, the U.S. government took over the railroads [WIL17] and the telephone-telegraph system by presidential proclamations:

I, Woodrow Wilson, President of the United States, … do hereby take possession and assume control and supervision of each and every telegraph and telephone system, and every part thereof, within the jurisdiction of the United States, including all equipment thereof and appurtenances thereto whatsoever and all materials and supplies [WIL18].

During World War II, the U.S. government encouraged the automotive industry to redirect production toward jeeps, trucks, and airplane parts. The Automotive Council for War Production was formed at the end of 1941, and automobile production was suspended entirely in 1942 so that the industry’s total capacity could focus on the war
effort. So possible reactions to our complex scenario could indeed range from inaction to private sector coordination to government intervention. How do you determine cause and effect, severity of impact, and over what time period? The answers are important in suggesting appropriate actions.

Analyzing Computer Security will assist you in understanding the issues and choosing appropriate responses to address these challenges.

In this chapter, we examine our dependence on computers and then explore the many ways in which we are vulnerable to computer failure. Next, we introduce the key concepts of computer security, including attacks, vulnerabilities, threats, and controls. In turn, these concepts become tools for understanding the nature of computer security and our ability to build the trustworthy systems on which our lives and livelihoods depend.

HOW DEPENDENT ARE WE ON COMPUTERS?

You drive down the road and suddenly your car brakes to a stop—or accelerates uncontrollably. You try to withdraw money from your bank and find that your account is overdrawn, even though you think it should contain plenty of money. Your doctor phones to tell you a recent test showed that your usually normal vitamin D level is a fraction of what it should be. And your favorite candidate loses an election that should have been a sure victory. Should you be worried?

There may be other explanations for these events, but any of them may be the result of a computer security problem. Computers are embedded in products ranging from dogs to spaceships; computers control activities from opening doors to administering the proper dose of radiation therapy. Over the last several decades, computer usage has expanded tremendously, and our dependence on computers has increased similarly. So when something goes awry, it is reasonable to wonder if computers are the source of the problem.

But can we—and should we—depend on computers to perform these tasks? How much can we entrust to them, and how will we determine their dependability, safety, and security? These questions continue to occupy policy makers, even as engineers, scientists, and other inventors devise new ways to use computers.

From one perspective, these failures are welcome events because we learn a lot from them. Indeed, engineers are trained to deal with and learn from past failures. So engineers are well qualified to build large structures on which many of us depend. For example, consider bridges; these days, bridges seldom fail. An engineer can study stresses and strengths of materials, and design a bridge that will withstand a certain load for a certain number of years; to ensure that the bridge will last, the engineer can add a margin of safety by using thicker or stronger materials or adding more supports. You can jump up and down on a bridge, because the extra force when you land is well within the tolerance the engineer expected and planned for. When a bridge does fail, it is usually because some bridge component has been made of defective materials, design plans were not followed, or the bridge has been subjected to more strain than was anticipated (which is why some bridges have signs warning about their maximum load).

But computer software is engineered differently, and not all engineers appreciate the differences or implement software appropriately to address a wide variety of security risks. Sidebar 1-2 illustrates some of these risks.
How Dependent are We on Computers?

Like bridges, computers can fail: Some moving parts wear out, electronic hardware components stop working or, worse, work intermittently. Indeed, computers can be made to fail without even being physically touched. Failures can happen seemingly spontaneously, when unexpected situations put the system into a failing or failed state. So there are many opportunities for both benign users and malicious attackers to cause failures. Failures can be small and harmless, like a “click here” button that does nothing, or catastrophic, like a faulty program that destroys a file or even erases an entire disk. The effects of failures can be readily apparent—a screen goes blank—or stealthy and difficult to find, such as a program that covertly records every key pressed on the keyboard.

Computer security addresses all these types of failures, including the ones we cannot yet see or even anticipate. The computers we consider range from small chips to embedded devices to stand-alone computers to gangs of servers. So too do we include

Protecting Software in Automobile Control Systems

The amount of software installed in a new automobile grows larger from year to year. Most cars, especially more expensive ones, use dozens of microcontrollers to provide a variety of features aimed at enticing buyers. These digital cars use software to control individual subsystems, and then more software to connect the systems into a network.

Whitehorn-Uphrness [WHI01] points out that this kind of software exhibits a major difference in thinking between hardware designers and software designers. “As hardware engineers, they [the automobile designers] assumed that, perhaps aside from bolt-on aftermarket parts, everything else is and should be a black box.” But software folks have a different take: “As a software designer, I assume that all digital technologies are fair game for being played with ... it takes a special kind of personality to look at a software-enabled device and see the potential for manipulation and change—a hacker personality.” That is, hardware engineers do not expect their devices to be opened and changed, but software engineers—especially security specialists—do.

As a result, the hardware-trained engineers designing and implementing automotive software see no reason to protect it from hackers. According to a paper by Koscher and other researchers from the University of Washington and University of California San Diego [KOS10], “Over a range of experiments, both in the lab and in road tests, we demonstrate the ability to adversarially control a wide range of automotive functions and completely ignore driver input—including disabling the brakes, selectively braking individual wheels on demand, stopping the engine, and so on. We find that it is possible to bypass rudimentary network security protections within the car, such as maliciously bridging between our car’s two internal subnets. We also present composite attacks that leverage individual weaknesses, including an attack that embeds malicious code in a car’s telematics unit and that will completely erase any evidence of its presence after a crash.” Their paper presents several laboratory attacks that could have devastating effects if performed on real cars on a highway.

Koscher and colleagues observe that “the future research agenda for securing cyber-physical vehicles is not merely to consider the necessary technical mechanisms, but to also inform these designs by what is feasible practically and compatible with the interests of a broader set of stakeholders.”

Security experts have long sought to inform designers and developers of security risks and countermeasures. Unfortunately, all too often the pleas of the security community are ignored in the rush to add and deliver features that will improve sales.
private networks, public networks, and the Internet. They constitute the backbone of what we do and how we do it: commerce, communication, health care, and more. So understanding failure can lead us to improvements in the way we lead our lives.

Each kind or configuration of computer has many ways of failing and being made to fail. Nevertheless, the analytic approach you will learn in this book will enable you to look at each computer system (and the applications that run on it) to determine how you can protect data, computers, networks, and ultimately yourselves.

WHAT IS COMPUTER SECURITY?

Computer security is the protection of the items you value, called the assets of a computer or computer system. There are many types of assets, involving hardware, software, data, people, processes, or combinations of these. To determine what to protect, we must first identify what has value and to whom.

A computer device (including hardware, added components, and accessories) is certainly an asset. Because most computer hardware is pretty useless without programs, the software is also an asset. Software includes the operating system, utilities and device handlers; applications such as word processing, media players, or email handlers; and even programs that you may have written yourself. Much hardware and software is off-the-shelf, meaning that it is commercially available (not custom-made for your purpose) and that you can easily get a replacement. The thing that makes your computer unique and important to you is your content: photos, tunes, papers, email messages, projects, calendar information, ebooks (with your annotations), contact information, code you created, and the like. Thus, data items on a computer are assets, too. Unlike most hardware and software, data can be hard—if not impossible—to re-create or replace. These assets are shown in Figure 1-1.
These three things—hardware, software, and data—contain or express things like the design for your next new product, the photos from your recent vacation, the chapters of your new book, or the genome sequence resulting from your recent research. All of these things represent intellectual endeavor or property, and they have value that differs from one person or organization to another. It is that value that makes them assets worthy of protection, and they are the elements we want to protect. Other assets, such as access to data, quality of service, processes, human users, and network connectivity, deserve protection, too; they are affected or enabled by the hardware, software, and data. So in most cases, protecting hardware, software, and data covers these other assets as well.

In this book, unless we specifically distinguish among hardware, software, and data, we refer to all these assets as the computer system, or sometimes as the computer. And because processors are embedded in so many devices, we also need to think about such variations as cell phones, implanted pacemakers, and automobiles. Even if the primary purpose of the device is not computing, the device’s embedded computer can be involved in security incidents and represents an asset worthy of protection.

After identifying the assets to protect, we next determine their value. We make value-based decisions frequently, even when we are not aware of them. For example, when you go for a swim you can leave a bottle of water on a towel on the beach, but not your wallet or cell phone. The difference relates to the value of the assets.

The value of an asset depends on the asset owner’s or user’s perspective, and it may be independent of monetary cost, as shown in Figure 1-2. Your photo of your sister, worth only a few cents in terms of paper and ink, may have high value to you and no value to your roommate. Other items’ value depends on replacement cost; some

![Figure 1-2 Values of Assets](image_url)
computer data are difficult or impossible to replace. For example, that photo of you and your friends at a party may have cost you nothing, but it is invaluable because it can never be replaced. On the other hand, the DVD of your favorite film may have cost a significant portion of your take-home pay, but you can buy another one if the DVD is stolen or corrupted. Similarly, timing has bearing on asset value. For example, the value of the plans for a company’s new product line is very high, especially to competitors. But once the new product is released, the plans’ value drops dramatically.

The Vulnerability–Threat–Control Paradigm

The goal of computer security is protecting valuable assets. To study different ways of protection, we use a framework that describes how assets may be harmed and how to counter or mitigate that harm.

A vulnerability is a weakness in the system, for example, in procedures, design, or implementation, that might be exploited to cause loss or harm. For instance, a particular system may be vulnerable to unauthorized data manipulation because the system does not verify a user’s identity before allowing data access.

A threat to a computing system is a set of circumstances that has the potential to cause loss or harm. To see the difference between a threat and a vulnerability, consider the illustration in Figure 1-3. Here, a wall is holding water back. The water to the left of the wall is a threat to the man on the right of the wall: The water could rise, overflowing onto the man, or it could stay beneath the height of the wall, causing the wall to collapse. So the threat of harm is the potential for the man to get wet, get hurt, or be drowned. For now, the wall is intact, so the threat to the man is unrealized.

However, we can see a small crack in the wall—a vulnerability that threatens the man’s security. If the water rises to or beyond the level of the crack, it will exploit the vulnerability and harm the man.

FIGURE 1-3 Threat and Vulnerability
Threats

There are many threats to a computer system, including human-initiated and computer-initiated ones. We have all experienced the results of inadvertent human errors, hardware design flaws, and software failures. But natural disasters are threats, too; they can bring a system down when the computer room is flooded or the data center collapses from an earthquake, for example.

A human who exploits a vulnerability perpetrates an attack on the system. An attack can also be launched by another system, as when one system sends an overwhelming flood of messages to another, virtually shutting down the second system’s ability to function. Unfortunately, we have seen this type of attack frequently, as denial-of-service attacks deluge servers with more messages than they can handle. (We take a closer look at denial of service in Chapters 7 and 15.)

How do we address these problems? We use a control or countermeasure as protection. That is, a control is an action, device, procedure, or technique that removes or reduces a vulnerability. In Figure 1-3, the man is placing his finger in the hole, controlling the threat of water leaks until he finds a more permanent solution to the problem. In general, we can describe the relationship among threats, controls, and vulnerabilities in this way:

A threat is blocked by control of a vulnerability.

In this book we take the approach of picking a particular type of threat, usually in the form of an attack. From that threat we determine the vulnerabilities that could allow the threat to cause harm. Finally, we explore the countermeasures that can control the threat or neutralize the vulnerability. Thus, this book is about protecting assets by countering threats that could exploit vulnerabilities.

Before we can protect assets, we have to know the kinds of harm we have to protect them against, so now we explore threats to valuable assets.

THREATS

We can consider potential harm to assets in two ways: First, we can look at what bad things can happen to assets, and second, we can look at who or what can cause or allow those bad things to happen. These two perspectives enable us to determine how to protect assets.

Think for a moment about what makes your computer valuable to you. First, you use it as a tool for sending and receiving email, searching the web, writing papers, and performing many other tasks, and you expect it to be available for use when you want it. Without your computer these tasks would be harder, if not impossible. Second, you rely heavily on your computer’s integrity. When you write a paper and save it, you trust that the paper will reload exactly as you saved it. Similarly, you expect that the photo a friend passes you on a flash drive will appear the same when you load it into your computer as when you saw it on your friend’s. Finally, you expect the “personal” aspect of a personal computer to stay personal, meaning you want it to protect your confidentiality. For example, you want your email messages to be just between you and your listed recipients; you don’t want them broadcast to other people. And when you write an essay, you expect no one else to be able to copy it without your permission.
These three aspects, availability, integrity, and confidentiality, make your computer valuable to you. But viewed from another perspective, they are three possible ways to make it less valuable, that is, to cause you harm. If someone steals your computer, scrambles data on your disk, or looks at your private data files, the value of your computer has been diminished or your computer use has been harmed. These characteristics are both basic security properties and the objects of security threats.

We can define these three properties as follows.

- **availability**: the ability of a system to ensure that an asset can be used by any authorized parties
- **integrity**: the ability of a system to ensure that an asset is modified only by authorized parties
- **confidentiality**: the ability of a system to ensure that an asset is viewed only by authorized parties

These three properties, hallmarks of good security, appear in the literature as early as James P. Anderson’s essay on computer security [AND73] and reappear frequently in more recent computer security papers and discussions. Taken together (and rearranged), the properties are called the **C-I-A triad** or the **security triad**. ISO 7498-2 [ISO89] adds to them two more properties that are desirable, particularly in communication networks:

- **authentication**: the ability of a system to confirm the identity of a sender
- **nonrepudiation** or **accountability**: the ability of a system to confirm that a sender cannot convincingly deny having sent something

The U.S. Department of Defense [DOD85] adds auditability: the ability of a system to trace all actions related to a given asset. The C-I-A triad forms a foundation for thinking about security. Authentication and nonrepudiation extend security notions to network communications, and auditability is important in establishing individual accountability for computer activity. In this book we generally use the C-I-A triad as our security taxonomy so that we can frame threats, vulnerabilities, and controls in terms of the C-I-A properties affected. We highlight one of these other properties when it is relevant to a particular threat we are describing. For now, we focus on just the three elements of the triad.

What can happen to harm the confidentiality, integrity, or availability of computer assets? If a thief steals your computer, you no longer have access, so you have lost availability; furthermore, if the thief looks at the pictures or documents you have stored, your confidentiality is lost. And if the thief changes the content of your music files but then gives them back with your computer, the integrity of your data has been harmed. You can envision many scenarios based around these three properties.

The C-I-A triad can be viewed from a different perspective: the nature of the harm caused to assets. Harm can also be characterized by four acts: **interception, interruption, modification**, and **fabrication**. From this point of view, confidentiality can suffer if someone intercepts data, availability is lost if someone or something interrupts a flow of data or access to a computer, and integrity can fail if someone or something modifies data or fabricates false data. These four acts are depicted in Figure 1-4.
Thinking of these four kinds of acts can help you determine what threats might exist against the computers you are trying to protect.

To analyze harm, we next refine the C-I-A triad, looking more closely at each of its elements.

Confidentiality

Some things obviously need confidentiality protection. For example, students’ grades, financial transactions, medical records, and tax returns are sensitive. A proud student may run out of a classroom screaming “I got an A!” but the student should be the one to choose whether to reveal that grade to others. Other things, such as diplomatic and military secrets, companies’ marketing and product development plans, and educators’ tests, also must be carefully controlled. Sometimes, however, it is not so obvious that something is sensitive. For example, a military food order may seem like innocuous information, but a sudden increase in the order could be a sign of incipient engagement in conflict. Purchases of food, hourly changes in location, and access to books are not things you would ordinarily consider confidential, but they can reveal something that someone wants to be kept confidential.

The definition of confidentiality is straightforward: Only authorized people or systems can access protected data. However, as we see in later chapters, ensuring confidentiality can be difficult. For example, who determines which people or systems are authorized to access the current system? By “accessing” data, do we mean that an authorized party can access a single bit? the whole collection? pieces of data out of context? Can someone who is authorized disclose data to other parties? Sometimes there is even a question of who owns the data: If you visit a web page, do you own the...
fact that you clicked on a link, or does the web page owner, the Internet provider, someone else, or all of you?

In spite of these complicating examples, confidentiality is the security property we understand best because its meaning is narrower than that of the other two. We also understand confidentiality well because we can relate computing examples to those of preserving confidentiality in the real world.

Confidentiality relates most obviously to data, although we can think of the confidentiality of a piece of hardware (a novel invention) or a person (the whereabouts of a wanted criminal). Here are some properties that could mean a failure of data confidentiality:

- An unauthorized person accesses a data item.
- An unauthorized process or program accesses a data item.
- A person authorized to access certain data accesses other data not authorized (which is a specialized version of an unauthorized person accesses a data item).
- An unauthorized person accesses an approximate data value (for example, not knowing someone’s exact salary but knowing that the salary falls in a particular range or exceeds a particular amount).
- An unauthorized person learns the existence of a piece of data (for example, knowing that a company is developing a certain new product or that talks are under way about the merger of two companies).

Notice the general pattern of these statements: A person, process, or program is (or is not) authorized to access a data item in a particular way. We call the person, process, or program a subject, the data item an object, the kind of access (such as read, write, or execute) an access mode, and the authorization a policy, as shown in Figure 1-5.

FIGURE 1-5 Access Control
These four terms will reappear throughout this book because they are fundamental aspects of computer security.

One word that captures most aspects of confidentiality is view, although you should not take that term literally. A failure of confidentiality does not necessarily mean that someone sees an object and, in fact, it is virtually impossible to look at bits in any meaningful way (although you may look at their representation as characters or pictures). The word view does connote another aspect of confidentiality in computer security, through the association with viewing a movie or a painting in a museum: look but do not touch. In computer security, confidentiality usually means obtaining but not modifying. Modification is the subject of integrity, which we consider in the next section.

Integrity

Examples of integrity failures are easy to find. A number of years ago a malicious macro in a Word document inserted the word “not” after some random instances of the word “is”; you can imagine the havoc that ensued. Because the document was generally syntactically correct, people did not immediately detect the change. In another case, a model of the Pentium computer chip produced an incorrect result in certain circumstances of floating-point arithmetic. Although the circumstances of failure were rare, Intel decided to manufacture and replace the chips. Many of us receive mail that is misaddressed because someone typed something wrong when transcribing from a written list; worse is that inaccuracy being propagated to other mailing lists such that we can never seem to correct the root of the problem. Other times we find that a spreadsheet seems to be wrong, only to find that someone typed “space 123” in a cell, changing it from a numeric value to text, so the spreadsheet program misused that cell in computation. Suppose someone converted numeric data to Roman numerals: One could argue that IV is the same as 4, but IV would not be useful in most applications, nor would it be obviously meaningful to someone expecting 4 as an answer. These cases show some of the breadth of examples of integrity failures.

Integrity is harder to pin down than confidentiality. As Steve Welke and Terry Mayfield [WEL90, MAY91, NCS91b] point out, integrity means different things in different contexts. When we survey the way some people use the term, we find several different meanings. For example, if we say that we have preserved the integrity of an item, we may mean that the item is

- precise
- accurate
- unmodified
- modified only in acceptable ways
- modified only by authorized people
- modified only by authorized processes
- consistent
- internally consistent
- meaningful and usable
Integrity can also mean two or more of these properties. Welke and Mayfield recognize three particular aspects of integrity—authorized actions, separation and protection of resources, and error detection and correction. Integrity can be enforced in much the same way as can confidentiality: by rigorous control of who or what can access which resources in what ways.

Availability

A computer user’s worst nightmare: you turn on the switch and the computer does nothing. Your data and programs are presumably still there, but you cannot get at them. Fortunately, few of us experience that failure. Many of us do experience overload, however: access gets slower and slower; the computer responds but not in a way we consider normal or acceptable.

Availability applies both to data and to services (that is, to information and to information processing), and it is similarly complex. As with the notion of integrity, different people expect availability to mean different things. For example, an object or service is thought to be available if the following are true:

- It is present in a usable form.
- It has enough capacity to meet the service’s needs.
- It is making clear progress, and, if in wait mode, it has a bounded waiting time.
- The service is completed in an acceptable period of time.

We can construct an overall description of availability by combining these goals. Following are some criteria to define availability.

- There is a timely response to our request.
- Resources are allocated fairly so that some requesters are not favored over others.
- Concurrency is controlled; that is, simultaneous access, deadlock management, and exclusive access are supported as required.
- The service or system involved follows a philosophy of fault tolerance, whereby hardware or software faults lead to graceful cessation of service or to work-arounds rather than to crashes and abrupt loss of information. (Cessation does mean end; whether it is graceful or not, ultimately the system is unavailable. However, with fair warning of the system’s stopping, the user may be able to move to another system and continue work.)
- The service or system can be used easily and in the way it was intended to be used. (This is a characteristic of usability, but an unusable system may also cause an availability failure.)

As you can see, expectations of availability are far-reaching. In Figure 1-6 we depict some of the properties with which availability overlaps. Indeed, the security community is just beginning to understand what availability implies and how to ensure it.

A person or system can do three basic things with a data item: view it, modify it, or use it. Thus, viewing (confidentiality), modifying (integrity), and using (availability) are the basic modes of access that computer security seeks to preserve.
A paradigm of computer security is **access control**: To implement a policy, computer security controls all accesses by all subjects to all protected objects in all modes of access. A small, centralized control of access is fundamental to preserving confidentiality and integrity, but it is not clear that a single access-control point can enforce availability. Indeed, experts on dependability will note that single points of control can become single points of failure, making it easy for an attacker to destroy availability by disabling the single control point. Much of computer security’s past success has focused on confidentiality and integrity; there are models of confidentiality and integrity, for example, see David Bell and Leonard La Padula [BEL73, BEL76] and Kenneth Biba [BIB77]. Availability is security’s next great challenge.

We have just described the C-I-A triad and the three fundamental security properties it represents. Our description of these properties was in the context of things that need protection. To motivate your understanding we gave some examples of harm and threats to cause harm. Our next step is to think about the nature of threats themselves.

Types of Threats

For some ideas of harm, look at Figure 1-7 taken from Willis Ware’s report [WAR70]. Although it was written when computers were so big, so expensive, and so difficult to operate that only large organizations like universities, companies, or government departments would have one, Ware’s discussion is still instructive. Ware was concerned primarily with the protection of classified data, that is, preserving confidentiality. In the figure, he depicts humans such as programmers and maintenance staff gaining access to data, as well as radiation by which data can escape as signals. From the figure you can see some of the many kinds of threats to a computer system.

One way to analyze harm is to consider the cause or source. We call a potential cause of harm a **threat**. Different kinds of threats are shown in Figure 1-8. Harm can be caused by either nonhuman events or humans. Examples of **nonhuman threats** include natural disasters like fires or floods; loss of electrical power; failure of a component such as a communications cable, processor chip, or disk drive; or attack by a wild boar.
Human threats can be either benign (nonmalicious) or malicious. Nonmalicious kinds of harm include someone accidentally spilling a soft drink on a laptop, unintentionally deleting text, inadvertently sending an email message to the wrong person, and carelessly typing “12” instead of “21” when entering a phone number or clicking “yes”
instead of “no” to overwrite a file. These inadvertent, human errors happen to most people; we just hope that the seriousness of harm is not too great, or if it is, that we will not repeat the mistake.

Most computer security activity relates to malicious human-caused harm: A malicious attacker actually wants to cause harm, and so we often use the term attack for a malicious computer security event. Malicious attacks can be random or directed. In a random attack the attacker wants to harm any computer or user; such an attack is analogous to accosting the next pedestrian who walks down the street. An example of a random attack is malicious code posted on a web site that could be visited by anybody.

In a directed attack, the attacker intends harm to specific computers, perhaps at one organization (think of attacks against a political organization) or belonging to a specific individual (think of trying to drain a specific person’s bank account, for example, by impersonation). Another class of directed attack is against a particular product, such as any computer running a particular browser. (We do not want to split hairs about whether such an attack is directed—at that one software product—or random, against any user of that product; the point is not semantic perfection but protecting against the attacks.) The range of possible directed attacks is practically unlimited.

Although the distinctions shown in Figure 1-8 seem clear-cut, sometimes the nature of an attack is not obvious until the attack is well under way, or perhaps even ended. A normal hardware failure can seem like a directed, malicious attack to deny access, and hackers often try to conceal their activity to look like ordinary, authorized users. As computer security experts we need to anticipate what bad things might happen, instead of waiting for the attack to happen or debating whether the attack is intentional or accidental.

Neither this book nor any other checklist or method can show you all the kinds of harm that can happen to computer assets. There are too many ways to interfere with your use of these assets. Two retrospective lists of known vulnerabilities are of interest, however. CVE, the Common Vulnerabilities and Exposures list (see http://cve.mitre.org/) is a dictionary of publicly known information security vulnerabilities and exposures. CVE’s common identifiers enable data exchange between security products and provide a baseline index point for evaluating coverage of security tools and services. To measure the extent of harm, CVSS, the Common Vulnerability Scoring System (see http://nvd.nist.gov/cvss.cfm) provides a standard measurement system that allows accurate and consistent scoring of vulnerability impact.

To imagine the full landscape of possible attacks, you may find it useful to consider the kinds of people who attack computer systems. Although potentially anyone is an attacker, certain classes of people stand out because of their backgrounds or objectives. Thus, in the following sections we look at profiles of some classes of attackers.

Types of Attackers

Who are attackers? As we have seen, their motivations range from chance to a specific target. Putting aside attacks from natural and benign causes, we can explore who are attackers and what motivates them.

Most studies of attackers actually analyze computer criminals, that is, people who have actually been convicted of a crime, primarily because that group is easy to identify and study. The ones who got away or who carried off an attack without being
detected may have characteristics different from those of the criminals who have been
captured. Worse, by studying only the criminals we have caught, we may not learn how
to catch attackers who know how to abuse the system without being apprehended.

What does a cyber criminal look like? In television and films the villains wore
shabby clothes, looked mean and sinister, and lived in gangs somewhere out of town.
By contrast, the sheriff dressed well, stood proud and tall, was known and respected by
everyone in town, and struck fear in the hearts of most criminals.

To be sure, some computer criminals are mean and sinister types. But many more
wear business suits, have university degrees, and appear to be pillars of their communi-
ties. Some are high school or university students. Others are middle-aged business
executives. Some are mentally deranged, overtly hostile, or extremely committed to a
cause, and they attack computers as a symbol. Others are ordinary people tempted by
personal profit, revenge, challenge, advancement, or job security—like perpetrators of
any crime, using a computer or not. Researchers have tried to find the psychological
traits that distinguish attackers, as described in Sidebar 1-3. No single profile captures
the characteristics of a “typical” computer attacker, and the characteristics of some
notorious attackers also match many people who are not attackers. As shown in
Figure 1-9, attackers look just like anybody in a crowd.

Individuals

Originally, computer attackers were individuals, acting with motives of fun, challenge,
or revenge. Early attackers such as Robert Morris Jr., the Cornell University graduate
student who brought down the Internet in 1988 [SPA89], and Kevin Mitnick, the man
who broke into and stole data from dozens of computers including the San Diego
Supercomputer Center [MAR95], acted alone.

Organized Worldwide Groups

More recent attacks have involved groups of people. An attack against the
government of the country of Estonia (described in more detail in Chapter 15) is
believed to have been an uncoordinated outburst from a loose federation of attackers
from around the world. Kevin Poulsen [POU05] quotes Tim Rosenberg, a research
professor at George Washington University, warning of “multinational groups of
hackers backed by organized crime” and showing the sophistication of prohibition-
era mobsters. He also reports that Christopher Painter, deputy director of the U.S.
Department of Justice’s computer crime section, argues that cyber criminals and seri-
ous fraud artists are increasingly working in concert or are one and the same. Accord-
ing to Painter, loosely connected groups of criminals all over the world work together
to break into systems and steal and sell information, such as credit card numbers. For
instance, in October 2004, U.S. and Canadian authorities arrested 28 people from
6 countries involved in a global organized cybercrime ring to buy and sell credit card
information and identities.

Whereas early motives for computer attackers such as Morris and Mitnick were
personal, such as prestige or accomplishment, recent attacks have been heavily influ-
enced by financial gain. Security firm McAfee reports “Criminals have realized the
huge financial gains to be made from the Internet with little risk. They bring the skills,
Temple Grandin, a professor of animal science at Colorado State University and a sufferer from a mental disorder called Asperger syndrome (AS), thinks that Kevin Mitnick and several other widely described hackers show classic symptoms of Asperger syndrome. Although quick to point out that no research has established a link between AS and hacking, Grandin notes similar behavior traits among Mitnick, herself, and other AS sufferers. An article in USA Today (29 March 2001) lists the following AS traits:

- poor social skills, often associated with being loners during childhood; the classic “computer nerd”
- fidgeting, restlessness, inability to make eye contact, lack of response to cues in social interaction, such as facial expressions or body language
- exceptional ability to remember long strings of numbers
- ability to focus on a technical problem intensely and for a long time, although easily distracted on other problems and unable to manage several tasks at once
- deep honesty and respect for laws

Donn Parker [PAR98] has studied hacking and computer crime for over 20 years. He states “hackers are characterized by an immature, excessively idealistic attitude … They delight in presenting themselves to the media as idealistic do-gooders, champions of the underdog.”

Consider the following excerpt from an interview [SHA00] with “Mixter,” the German programmer who admitted he was the author of a widespread piece of attack software called Tribal Flood Network (TFN) and its sequel TFN2K:

Q: Why did you write the software?
A: I first heard about Trin00 [another denial of service attack] in July '99 and I considered it as interesting from a technical perspective, but also potentially powerful in a negative way. I knew some facts of how Trin00 worked, and since I didn't manage to get Trin00 sources or binaries at that time, I wrote my own server-client network that was capable of performing denial of service.

Q: Were you involved … in any of the recent high-profile attacks?
A: No. The fact that I authored these tools does in no way mean that I condone their active use. I must admit I was quite shocked to hear about the latest attacks. It seems that the attackers are pretty clueless people who misuse powerful resources and tools for generally harmful and senseless activities just “because they can.”

Notice that from some information about denial-of-service attacks, he wrote his own server-client network and then a denial-of-service attack. But he was “quite shocked” to hear they were used for harm.

More research is needed before we will be able to define the profile of a hacker. And even more work will be needed to extend that profile to the profile of a (malicious) attacker. Not all hackers become attackers; some hackers become extremely dedicated and conscientious system administrators, developers, or security experts. But some psychologists see in AS the rudiments of a hacker's profile.

knowledge, and connections needed for large scale, high-value criminal enterprise that, when combined with computer skills, expand the scope and risk of cybercrime” [MCA05].
Organized Crime

Attackers’ goals include fraud, extortion, money laundering, and drug trafficking, areas in which organized crime has a well-established presence. Evidence is growing that organized crime groups are engaging in computer crime. In fact, traditional criminals are recruiting hackers to join the lucrative world of cybercrime. For example, Albert Gonzales was sentenced in March 2010 to 20 years in prison for working with a crime ring to steal 40 million credit card numbers from retailer TJMaxx and others, costing over $200 million (Reuters, March 26, 2010).

Organized crime may use computer crime (such as stealing credit card numbers or bank account details) to finance other aspects of crime. Recent attacks suggest that organized crime and professional criminals have discovered just how lucrative computer crime can be. Mike Danseglio, a security project manager with Microsoft, said, “In 2006, the attackers want to pay the rent. They don’t want to write a worm that destroys your hardware. They want to assimilate your computers and use them to make money” [NAR06a]. Mikko Hyppönen, Chief Research Officer with Finnish security company f-Secure, agrees that today’s attacks often come from Russia, Asia, and Brazil; the motive is now profit, not fame [BRA06]. Ken Dunham, Director of the Rapid Response Team for Verisign says he is “convinced that groups of well-organized mobsters have taken control of a global billion-dollar crime network powered by skillful hackers” [NAR06b].

McAfee also describes the case of a hacker-for-hire: a businessman who hired a sixteen-year-old New Jersey hacker to attack the web sites of his competitors. The hacker barraged the site for a five-month period and damaged not only the target companies but
also their Internet service providers (ISPs) and other unrelated companies that used the same ISPs. By FBI estimates the attacks cost all the companies over $2 million; the FBI arrested both hacker and businessman in March 2005 [MCA05].

Brian Snow [SNO05] observes that hackers want a score or some kind of evidence to give them bragging rights. Organized crime wants a resource; such criminals want to stay under the radar to be able to extract profit from the system over time. These different objectives lead to different approaches to computer crime: The novice hacker can use a quick and dirty attack, whereas the professional attacker wants a neat, robust, and undetected method that can deliver rewards for a long time.

Terrorists

The link between computer security and terrorism is quite evident. We see terrorists using computers in four ways:

- **Computer as target of attack**: Denial-of-service attacks and web site defacements are popular activities for any political organization because they attract attention to the cause and bring undesired negative attention to the object of the attack. An example is the massive denial-of-service attack launched against the country of Estonia, detailed in Chapter 15.

- **Computer as method of attack**: Launching offensive attacks requires use of computers. Stuxnet, malicious computer code called a worm, is known to attack automated control systems, specifically a model of control system manufactured by Siemens. Experts say the code is designed to disable machinery used in the control of nuclear reactors in Iran [MAR10]. The persons behind the attack are unknown, but the infection is believed to have spread through USB flash drives brought in by engineers maintaining the computer controllers.

- **Computer as enabler of attack**: Web sites, web logs, and email lists are effective, fast, and inexpensive ways to allow many people to coordinate. According to the Council on Foreign Relations, the terrorists responsible for the November 2008 attack that killed over 200 people in Mumbai used GPS systems to guide their boats, Blackberries for their communication, and Google Earth to plot their routes.

- **Computer as enhancer of attack**: The Internet has proved to be an invaluable means for terrorists to spread propaganda and recruit agents. In October 2009 the FBI arrested Colleen LaRose, also known as *JihadJane*, after she had spent months using email, YouTube, MySpace, and electronic message boards to recruit radicals in Europe and South Asia to “wage violent jihad,” according to a federal indictment unsealed in March 2010.

We cannot accurately measure the degree to which terrorists use computers, because of the secret nature of terrorist activities and because our definitions and measurement tools are rather weak. Still, incidents like the one described in Sidebar 1-4 provide evidence that all three of these activities are increasing.

If someone on television sneezes, you do not worry about the possibility of catching a cold. But if someone standing next to you sneezes, you may become concerned. In the next section we examine the harm that can come from the presence of a computer security threat on your own computer systems.
The negative consequence of an actualized threat is **harm**; we protect ourselves against threats in order to reduce or eliminate harm. We have already described many examples of computer harm: a stolen computer, modified or lost file, revealed private letter, or denial of access. These events cause harm that we want to avoid.

In our earlier discussion of asset, we noted that value is highly dependent on owner or outsider perception and need. Some aspects of value are immeasurable, such as the value of the paper you need to submit to your professor tomorrow; if you lose the paper (that is, if its availability is lost), no amount of money will compensate you for it. Items on which you place little or no value might be more valuable to someone else; for example, the group photograph taken at last night’s party can reveal that your friend was not where he told his wife he would be. Even though it may be difficult to assign a specific number as the value of an asset, you can usually assign a value on a generic scale, such as moderate or minuscule or incredibly high, depending on the degree of harm that loss or damage to the object would cause. Or you can assign a value relative to other assets, based on comparable loss: This version of the file is more valuable to me than that version.

In their 2010 global Internet threat report, security firm Symantec surveyed the kinds of goods and services offered for sale on underground web pages. The item most frequently offered in both 2009 and 2008 was credit card numbers, at prices ranging from $0.85 to $30.00 each. (Compare those prices to an individual’s effort to deal with the impact of a stolen credit card or the potential amount lost by the issuing bank.)
Second most frequent was bank account credentials, at $15 to $850; these were offered for sale at 19% of web sites in both years. Email accounts were next at $1 to $20, and lists of email addresses went for $1.70 to $15.00 per thousand. At position 10 in 2009 were web site administration credentials, costing only $2 to $30. These black market web sites demonstrate that the market price of computer assets can be dramatically different from their value to rightful owners.

The value of many assets can change over time, so the degree of harm (and therefore the severity of a threat) can change, too. With unlimited time, money, and capability, we might try to protect against all kinds of harm. But because our resources are limited, we must prioritize our protection, safeguarding only against serious threats and the ones we can control. Choosing the threats we try to mitigate involves a process called risk management, and it includes weighing the seriousness of a threat against our ability to protect.

Risk and Common Sense

The number and kinds of threats are practically unlimited, because devising an attack requires an active imagination, determination, persistence, and time (as well as access and resources). The nature and number of threats in the computer world reflect life in general: The causes of harm are limitless and largely unpredictable. Natural disasters like volcanoes and earthquakes happen with little or no warning, as do auto accidents, heart attacks, influenza, and random acts of violence. To protect against accidents or the flu, you might decide to stay indoors, never venturing outside. But by doing so, you trade one set of risks for another; while you are inside, you are vulnerable to building collapse. There are too many possible causes of harm for us to protect ourselves—or our computers—completely against all of them.

In real life we make decisions every day about the best way to provide our security. For example, although we may choose to live in an area that is not prone to earthquakes, we cannot eliminate earthquake risk entirely. Some choices are conscious, such as deciding not to walk down a dark alley in an unsafe neighborhood; other times our subconscious guides us, from experience or expertise, to take some precaution. We evaluate the likelihood and severity of harm, and then consider ways (called countermeasures or controls) to address threats and determine the controls’ effectiveness.

Computer security is similar. Because we cannot protect against everything, we prioritize: Only so much time, energy, or money is available for protection, so we address some risks and let others slide. Or we consider alternative courses of action, such as transferring risk by purchasing insurance or even doing nothing if the side effects of the countermeasure could be worse than the possible harm. The risk that remains uncovered by controls is called residual risk.

A simplistic model of risk management involves a user calculating the value of all assets, determining the amount of harm from all possible threats, computing the costs of protection, selecting safeguards (that is, controls or countermeasures) based on the degree of risk and on limited resources, and applying the safeguards to optimize harm averted. This approach to risk management is a logical and sensible approach to protection, but it has significant drawbacks. In reality, it is difficult to assess the value of each asset; as we have seen, value can change depending on context, timing, and a host of other characteristics. Even harder is determining the impact of all possible threats.
Chapter 1 Security Blanket or Security Theater?

The range of possible threats is effectively limitless, and it is difficult (if not impossible in some situations) to know the short- and long-term impacts of an action. For instance, Sidebar 1-5 describes a study of the impact of security breaches over time on corporate finances, showing that a threat must be evaluated over time, not just at a single instance.

Short- and Long-Term Risks of Security Breaches

Sidebar 1-5

It was long assumed that security breaches would be bad for business: that customers, fearful of losing their data, would veer away from insecure businesses and toward more secure ones. But empirical studies suggest that the picture is more complicated. Early studies of the effects of security breaches, such as that of Campbell [CAM03], examined the effects of breaches on stock price. They found that a breach's impact could depend on the nature of the breach itself; the effects were higher when the breach involved unauthorized access to confidential data.

Cavusoglu et al. [CAV04] discovered that a breach affects the value not only of the company experiencing the breach but also of security enterprises: On average, the breached firms lost 2.1 percent of market value within two days of the breach's disclosure, but security developers' market value actually increased 1.36 percent.

Myung Ko and Carlos Dorantes [KO06] looked at the longer-term financial effects of publicly announced breaches. Based on the Campbell et al. study, they examined data for four quarters following the announcement of unauthorized access to confidential data. Ko and Dorantes note many types of possible breach-related costs:

Examples of short-term costs include cost of repairs, cost of replacement of the system, lost business due to the disruption of business operations, and lost productivity of employees. These are also considered tangible costs. On the other hand, long-term costs include the loss of existing customers due to loss of trust, failing to attract potential future customers due to negative reputation from the breach, loss of business partners due to loss of trust, and potential legal liabilities from the breach. Most of these costs are intangible costs that are difficult to calculate but extremely important in assessing the overall security breach costs to the organization.

Ko and Dorantes compared two groups of companies: one set (the treatment group) with data breaches, and the other (the control group) without a breach but matched for size and industry. Their findings were striking. Contrary to what you might suppose, the breached firms had no decrease in performance for the quarters following the breach, but their return on assets decreased in the third quarter. The comparison of treatment with control companies revealed that the control firms generally outperformed the breached firms. However, the breached firms outperformed the control firms in the fourth quarter.

These results are consonant with the results of other researchers who conclude that there is minimal long-term economic impact from a security breach. There are many reasons why this is so. For example, customers may think that all competing firms have the same vulnerabilities and threats, so changing to another vendor does not reduce the risk. Another possible explanation may be a perception that a breached company has better security since the breach forces the company to strengthen controls and thus reduce the likelihood of similar breaches. Yet another explanation may simply be the customers' short attention span; as time passes, customers forget about the breach and return to business as usual.

All these studies have limitations, including small sample sizes and lack of sufficient data. But they clearly demonstrate the difficulties of quantifying and verifying the impacts of security risks, and point out a difference between short- and long-term effects.
Although we should not apply protection haphazardly, we will necessarily protect against threats we consider most likely or most damaging. For this reason, it is essential to understand how we perceive threats and evaluate their likely occurrence and impact. Sidebar 1-6 summarizes some of the relevant research in risk perception and decision-making. Such research suggests that, for relatively rare instances such as high-impact security problems, we must take into account the ways in which people focus more on the impact than on the actual likelihood of occurrence.

Let us look more carefully at the nature of a security threat. We have seen that one aspect—its potential harm—is the amount of damage it can cause; this aspect is the impact component of the risk. We also consider how great is the threat’s likelihood. A likely threat is not just one that someone might want to pull off but rather one that could actually occur. Some people might daydream about getting rich by robbing a bank; most, however, would reject that idea because of its difficulty (if not its immorality or risk). One aspect of likelihood is feasibility: Is it even possible to accomplish the attack? If the answer is no, then the likelihood is zero, and therefore so is the risk. So a good place to start in assessing risk is to look at whether the proposed action is feasible. Three factors determine feasibility, as we describe next.

Sidebar 1-6

Perception of the Risk of Extreme Events

When a type of adverse event happens frequently, we can calculate its likelihood and impact by examining both the frequency and nature of the collective set of events. For instance, we can calculate the likelihood that it will rain this week and take an educated guess at the number of inches of precipitation we will receive; rain is a fairly frequent occurrence. But security problems are often extreme events: They happen infrequently and under a wide variety of circumstances, so it is difficult to look at them as a group and draw general conclusions.

Paul Slovic’s work on risk addresses the particular difficulties with extreme events. He points out that evaluating risk in such cases can be a political endeavor as much as a scientific one. He notes that we tend to let values, process, power, and trust influence our risk analysis [SLO99].

Beginning with Fischhoff et al. [FIS78], researchers characterized extreme risk along two perception-based axes: the dread of the risk and the degree to which the risk is unknown. These feelings about risk, called affects by psychologists, enable researchers to discuss relative risks by placing them on a plane defined by the two perceptions as axes. A study by Loewenstein et al. [LOE01] describes how risk perceptions are influenced by association (with events already experienced) and by affect at least as much if not more than by reason. In fact, if the two influences compete, feelings usually trump reason.

This characteristic of risk analysis is reinforced by prospect theory: studies of how people make decisions using reason and feeling. Kahneman and Tversky [KAH79a] showed that people tend to overestimate the likelihood of rare, unexperienced events because their feelings of dread and the unknown usually dominate analytical reasoning about the low likelihood of occurrence. By contrast, if people experience similar outcomes and their likelihood, their feeling of dread diminishes and they can actually underestimate rare events. In other words, if the impact of a rare event is high (high dread), then people focus on the impact, regardless of the likelihood. But if the impact of a rare event is small, then they pay attention to the likelihood.

Although we should not apply protection haphazardly, we will necessarily protect against threats we consider most likely or most damaging. For this reason, it is essential to understand how we perceive threats and evaluate their likely occurrence and impact. Sidebar 1-6 summarizes some of the relevant research in risk perception and decision-making. Such research suggests that, for relatively rare instances such as high-impact security problems, we must take into account the ways in which people focus more on the impact than on the actual likelihood of occurrence.

Let us look more carefully at the nature of a security threat. We have seen that one aspect—its potential harm—is the amount of damage it can cause; this aspect is the impact component of the risk. We also consider how great is the threat’s likelihood. A likely threat is not just one that someone might want to pull off but rather one that could actually occur. Some people might daydream about getting rich by robbing a bank; most, however, would reject that idea because of its difficulty (if not its immorality or risk). One aspect of likelihood is feasibility: Is it even possible to accomplish the attack? If the answer is no, then the likelihood is zero, and therefore so is the risk. So a good place to start in assessing risk is to look at whether the proposed action is feasible. Three factors determine feasibility, as we describe next.
Method–Opportunity–Motive

A malicious attacker must have three things to ensure success: method, opportunity, and motive, depicted in Figure 1-10. Deny the attacker any of those three and the attack will not succeed. Let us examine these properties individually.

Method

By method we mean the skills, knowledge, tools, and other things with which to perpetrate the attack. Think of comic figures that want to do something, for example, to steal valuable jewelry, but the characters are so inept that their every move is doomed to fail. These people lack the capability or method to succeed, in part because there are no classes in jewel theft or books on burglary for dummies.

There are plenty of courses and books about computing, however. Knowledge of specific models of computer systems is widely available in bookstores and on the

Opportunity

Motive

Method

FIGURE 1-10 Method–Opportunity–Motive
Internet. Mass-market systems (such as the Microsoft or Apple or Unix operating systems) are readily available for purchase, as are common software products, such as word processors or database management systems, so potential attackers can even get hardware and software on which to experiment and perfect an attack. Some manufacturers release detailed specifications on how the system was designed or operates, as guides for users and integrators who want to implement other complementary products. Various attack tools—scripts, model programs, and tools to test for weaknesses—are available from hackers’ sites on the Internet, to the degree that many attacks require only the attacker’s ability to download and run a program. The term script kiddie describes someone who downloads a complete attack code package and needs only enter a few details to identify the target and let the script perform the attack. Often, only time and inclination limit an attacker.

Opportunity

Opportunity is the time and access to execute an attack. You hear that a fabulous apartment has just become available, so you rush to the rental agent, only to find someone else rented it five minutes earlier. You missed your opportunity.

Many computer systems present ample opportunity for attack. Systems available to the public are, by definition, accessible; often their owners take special care to make them fully available so that if one hardware component fails, the owner has spares instantly ready to be pressed into service. Other people are oblivious to the need to protect their computers, so unattended laptops and unsecured network connections give ample opportunity for attack. Some systems have private or undocumented entry points for administration or maintenance, but attackers can also find and use those entry points to attack the systems.

Motive

Finally, an attacker must have a motive or reason to want to attack. You probably have ample opportunity and ability to throw a rock through your neighbor’s window, but you do not. Why not? Because you have no reason to want to harm your neighbor: You lack motive.

We have already described some of the motives for computer crime: money, fame, self-esteem, politics, terror. It is often difficult to determine motive for an attack. Some places are “attractive targets,” meaning they are very appealing to attackers. Popular targets include law enforcement and defense department computers, perhaps because they are presumed to be well protected against attack (so that they present a challenge: a successful attack shows the attacker’s prowess). Other systems are attacked because they are easy to attack. And other systems are attacked at random simply because they are there.

By demonstrating feasibility, the factors of method, opportunity, and motive determine whether an attack can succeed. These factors give the advantage to the attacker because they are qualities or strengths the attacker must possess. Another factor, this time giving an advantage to the defender, determines whether an attack will succeed: The attacker needs a vulnerability, an undefended place to attack. If the defender removes vulnerabilities, the attacker cannot attack.
VULNERABILITIES

As we noted earlier in this chapter, a vulnerability is a weakness in the security of the computer system, for example, in procedures, design, or implementation, that might be exploited to cause loss or harm. Think of a bank, with an armed guard at the front door, bulletproof glass protecting the tellers, and a heavy metal vault requiring multiple keys for entry. To rob a bank, you would have to think of how to exploit a weakness not covered by these defenses. For example, you might bribe a teller or pose as a maintenance worker.

Computer systems have vulnerabilities, too. In this book we consider many, such as weak authentication, lack of access control, errors in programs, finite or insufficient resources, and inadequate physical protection. Paired with a credible attack, each of these vulnerabilities can allow harm to confidentiality, integrity, or availability. Each attack vector seeks to exploit a particular vulnerability.

Our next step is to find ways to block threats by neutralizing vulnerabilities.

CONTROLS

A control or countermeasure is a means to counter threats. Harm occurs when a threat is realized against a vulnerability. To protect against harm, then, we can neutralize the threat, close the vulnerability, or both. The possibility for harm to occur is called risk. We can deal with harm in several ways:

- **prevent** it, by blocking the attack or closing the vulnerability
- **deter** it, by making the attack harder but not impossible
- **deflect** it, by making another target more attractive (or this one less so)
- **mitigate** it, by making its impact less severe
- **detect** it, either as it happens or some time after the fact
- **recover** from its effects

Of course, more than one of these controls can be used simultaneously. So, for example, we might try to prevent intrusions—but if we suspect we cannot prevent all of them, we might also install a detection device to warn of an imminent attack. And we should have in place incident-response procedures to help in the recovery in case an intrusion does succeed.

To consider the controls or countermeasures that attempt to prevent exploiting a computing system’s vulnerabilities, we begin by thinking about traditional ways to enhance physical security. In the Middle Ages, castles and fortresses were built to protect the people and valuable property inside. The fortress might have had one or more security characteristics, including

- a strong gate or door to repel invaders
- heavy walls to withstand objects thrown or projected against them
- a surrounding moat to control access
- arrow slits to let archers shoot at approaching enemies
- crenellations to allow inhabitants to lean out from the roof and pour hot or vile liquids on attackers
• a drawbridge to limit access to authorized people
• a portcullis to limit access beyond the drawbridge
• gatekeepers to verify that only authorized people and goods could enter

Similarly, today we use a multipronged approach to protect our homes and offices. We may combine strong locks on the doors with a burglar alarm, reinforced windows, and even a nosy neighbor to keep an eye on our valuables. In each case, we select one or more ways to deter an intruder or attacker, and we base our selection not only on the value of what we protect but also on the effort we think an attacker or intruder will expend to get inside.

Computer security has the same characteristics. We have many controls at our disposal. Some are easier than others to use or implement. Some are cheaper than others to use or implement. And some are more difficult than others for intruders to override. Figure 1-11 illustrates how we use a combination of controls to secure our valuable resources. We use one or more controls, according to what we are protecting, how the cost of protection compares with the risk of loss, and how hard we think intruders will work to get what they want.

In this section, we present an overview of the controls available to us. In the rest of this book, we examine how to use controls against specific kinds of threats.

We can group controls into three largely independent classes. The following list shows the classes and several examples of each type of control.

- **Physical** controls stop or block an attack by using something tangible, such as
 - walls and fences
 - locks
 - (human) guards
 - sprinklers and other fire extinguishers

![FIGURE 1-11 Effects of Controls](image-url)
Security Blanket or Security Theater?

- **Procedural** or administrative controls use a command or agreement that requires or advises people how to act; for example,
 - laws, regulations
 - policies, procedures, guidelines
 - copyrights, patents
 - contracts, agreements

- **Technical** controls counter threats with technology (hardware or software), including
 - passwords
 - access controls enforced by an operating system or application
 - network protocols
 - firewalls, intrusion detection systems
 - encryption
 - network traffic flow regulators

(Note that the term “logical controls” is also used, but some people use it to mean administrative controls, whereas others use it to mean technical controls. To avoid confusion, we do not use that term.)

As shown in Figure 1-12, you can think in terms of the property to be protected and the kind of threat when you are choosing appropriate types of countermeasures. None of these classes is necessarily better than or preferable to the others; they work in different ways with different kinds of results. And it can be effective to use overlapping controls or **defense in depth**: more than one control or more than one class of control to achieve protection.

![Diagram](image-url)

FIGURE 1-12 Types of Countermeasures
ANALYZING SECURITY WITH EXAMPLES

In the remainder of this book we study computer security by using the threat–vulnerability–control paradigm. That is, we begin each chapter with an example of either a real attack that caused harm or a series of attacks. The remaining chapters address confidentiality of messages, integrity of stored code, correctness of data on a video screen, and availability of network access, among other things. Our cases involve political figures, high school students, countries, government agencies, executives, and ordinary users, which should convince you that computer security affects everyone.

You will encounter examples involving email, missile systems, hospitals, mobile phones, spacecraft, and diplomats. Do not fear; you need not know rocket science to appreciate the security aspect of the examples. This variety of examples should help you appreciate (and convince other people) that there are important security aspects of many important current activities. Computer security analysts like to be involved early in the design of a system, product, or solution; there are many possible countermeasures from which to choose, and they can be selected and integrated more easily and effectively during system requirements definition and design rather than later in development. Being handed an already completed product or system and told to “secure this” is often an impossible task.

From each example we identify four things:

1. **Threat.** What threat is being raised? How does it work? On what does it depend? Who are the potential attackers? What are the potential attacks (also called threat agents)? What tools and knowledge are needed to realize the attack?

2. **Harm.** What harm can or did this attack cause? If the attack can support other attacks, what are they? How serious is the harm?

3. **Vulnerability.** What vulnerability is being exploited? Is it a general weakness or specific to one computer or situation? Is there more than one vulnerability? Are all vulnerabilities required for the threat to be actualized?

4. **Control.** How can the vulnerability be controlled? Does the control nullify the threat or close the vulnerability? Is there more than one control? If yes, do they overlap (and complement each other)? Are the controls partial or complete? Are the controls strong or can they be defeated or bypassed? Are they expensive or hard to use?

These four categories are the basis of all computer security planning, and they form the structure of the rest of this book.

In this book you will encounter attacks with intriguing names like masquerade, ping of death, salami, and man in the middle, as well as terms you may have heard before like virus, worm, and Trojan horse. We also describe a wide range of countermeasures, from defensive programming to biometric authentication and secure protocol design to digital signatures. Do not worry if any of these terms is unfamiliar; you will find complete explanations of all.
CONCLUSION

Computer security attempts to ensure the confidentiality, integrity, and availability of computing systems and their components. Three principal parts of a computing system are subject to attacks: hardware, software, and data. These three, and the communications among them, are susceptible to computer security vulnerabilities. In turn, those people and systems interested in compromising a system can devise attacks that exploit the vulnerabilities.

In each chapter of this book we include a list of the important points you should have learned in this chapter. For example, in this chapter we have explained the following concepts:

- Security situations arise in many everyday activities, although sometimes it can be difficult to distinguish between a security attack and an ordinary human or technological breakdown. Alas, clever attackers realize this confusion, so they may make their attack seem like a simple, random failure.
- A threat is an incident that could cause harm. A vulnerability is a weakness through which harm could occur. These two problems combine: Either without the other causes no harm, but a threat exercising a vulnerability means damage. To control such a situation, we can either block or diminish the threat, or close the vulnerability (or both).
- Seldom can we achieve perfect security: no viable threats and no exercisable vulnerabilities. Sometimes we fail to recognize a threat, or other times we may be unable or unwilling to close a vulnerability. Incomplete security is not a bad situation; rather, it demonstrates a balancing act: Control certain threats and vulnerabilities, apply countermeasures that are reasonable, and accept the risk of harm from uncountered cases.
- An attacker needs three things: method—the skill and knowledge to perform a successful attack; opportunity—time and access by which to attack; and motive—a reason to want to attack. Alas, none of these three is in short supply, which means attacks are inevitable.

In this chapter we introduced the notions of threats and harm, vulnerabilities, attacks and attackers, and countermeasures. Attackers leverage threats that exploit vulnerabilities against valuable assets to cause harm, and we hope to devise countermeasures to eliminate means, opportunity, and motive. These concepts are the basis we need to study, understand, and master computer security.

Countermeasures and controls can be applied to the data, the programs, the system, the physical devices, the communications links, the environment, and the personnel. Sometimes several controls are needed to cover a single vulnerability, but sometimes one control addresses many problems at once.

Throughout this book we use a scenario-based format to explore examples of attacks and countermeasures that can control them: First the attack that could or did occur; then the weakness that allowed the attack to succeed, with perhaps some attention to tools, techniques, or knowledge the attacker needed; and finally the countermeasures that can or could offer protection. When possible we present a range of countermeasures so you have a palette of options to apply to future scenarios or situations outside this book.
As you look at countermeasures, keep in mind the balance between risk and control: Does this situation warrant that level (degree, severity, cost) of countermeasure and are there simpler countermeasures that would provide adequate security?

Because the book is organized around types of attacks, we describe vulnerabilities and countermeasures relevant to the specific attacks. Some countermeasures, such as authentication and access control, are effective against many attacks; consequently, we sometimes (as with access control) introduce the topic in one chapter and expand upon it in later chapters. In other cases, as with program development controls, we explore the topic once and simply refer to it when it is relevant in a later scenario.

We think the threat–vulnerability–countermeasure structure gives you the opportunity to analyze these cases on your own. You may think of vulnerabilities we have not listed, and you will almost certainly be able to think of additional countermeasures that could be effective. Computer security is always changing to address new attacks and new technological advances; you do not learn one set of tools or one approach and say you know all there is to know. The breadth and nature of attacks continues to change and grow, as do the means of defense. Our goal is to help you to think critically and creatively in order to be able to address ever-changing threats.

Several themes recur throughout the book: privacy, legal matters, economics, ethics, usability, and forensics. These areas are tangential to security: Each is an important area of study by itself, but at points throughout this book, one or another will be relevant to a particular topic. Rather than have a chapter on each that might get lost or overlooked, we treat these topics when they are relevant, as part of the flow of the main chapters. This arrangement emphasizes that these themes relate to the core content of computer and information security.

To give you additional practice analyzing security, we include three chapters, which we call interludes, in which we present just a bare scenario and invite you to derive the threats, potential vulnerabilities, and countermeasures. The three topics are cloud computing, electronic voting, and cyberwarfare; these interludes are placed among the other chapters.

We also conclude each chapter with exercises to help reinforce what you have learned and let you apply that knowledge in different settings.

EXERCISES

1. List at least three kinds of harm a company could experience from electronic espionage or unauthorized viewing of company confidential materials.

2. List at least three kinds of harm a student could experience from electronic espionage or unauthorized viewing of personal materials.

3. Describe a situation in which complete denial of service to a user (that is, the user gets no response from the computer) is a serious problem to that user. Describe a situation in which 10% denial of service (that is, the response from the computer is 10% slower than normal) is a serious problem to a user.

4. Consider the web site of an organization many people would support, for example, an environmental group or a charity. List at least three classes of people who might attack that web site. What are their motives? Consider the web site of a controversial organization, for example, a group of extreme ideology. List at least three classes of people who might attack
Chapter 1 Security Blanket or Security Theater?

that web site. What are their motives? Can you build a list of three classes that would attack both types of sites?

5. Do you think attempting to break in to (that is, obtain access to or use of) a computing system is ethical? Why or why not? Do you think that act should be illegal? Why or why not? Base your answer on harm: Who is harmed, to what degree, and does benefit to the person breaking in override the harm?

6. Consider electronic medical records. Which of confidentiality, integrity, and availability do their users require? Cite examples of each of these properties you think are required. Describe at least two kinds of people or situations that could threaten each property you name.

7. Distinguish among threat, threat agent, vulnerability, harm, and control.

8. Not all kinds of computer harm are illegal. List five examples of harm that are not illegal.

9. Consider the example with which this chapter began: a series of seemingly unrelated events, including failure of the communications and electrical power networks. Describe a scenario in which these could all occur concurrently but not be related. Describe a way at least one could lead to another. Describe a way you could determine the root cause of each failure.

10. Continuing from Exercise 9, suppose you were a malicious agent assigned to cause failure of the telecommunications and electric power systems. What steps could you take to make it difficult to determine who you are? What steps could you take to make it difficult to determine that the attack was malicious and not a natural accident? What steps could you take to make it seem as though the cause was someone else, for example, a particular foreign country?

11. Consider a restaurant with an online reservation system for patrons. What confidentiality, integrity, and availability threats might such a system experience? Hypothesize vulnerabilities in such a system that an attacker might try to exploit. What controls could be applied against these threats?

12. Suppose a payroll system secretly leaks a list of names of employees earning more than a certain amount each pay period. Who would be harmed by such a vulnerability? How could such a vulnerability come about? What controls could be instituted to counter such a vulnerability? Suppose the leakage was not just names but also employees’ identification numbers and full pay amounts. Would the people harmed or the degree of harm be different? Why or why not? If the employees are the ones suffering the greatest harm, who should be responsible for countering this vulnerability: the employee or the employer? Why?

13. A letter arrives in the surface mail apparently from your bank, but you are skeptical of its origin. What factors would make you skeptical? How could the bank help allay your skepticism in advance of sending the letter? What could the bank put in the letter itself that would reduce your skepticism? Would your answers be the same if the bank sends email instead of a surface mail letter?

14. Consider a program you could install on your own personal web page to display your city’s current time and temperature. What threats could this program cause to you? To people who visit your web site? What controls could counter those threats?

15. Consider a program that allows people to order goods over the Internet. What threats could this program cause to users (purchasers)? What threats could this program cause to the merchant? Hypothesize three vulnerabilities that could allow these threats to be actualized.

16. Suppose you are a talented sailor about to race your boat in a yachting competition. A possible threat to winning is cancellation of the event because of adverse weather conditions. List three other threats you might encounter as you try to win by posting the fastest finishing time. List three vulnerabilities those threats might exploit. List three countermeasures against those threats.
17. Suppose you are a spy, and you need to pass secret materials to another spy, Agent Smart. However, you and Smart have never before met. You are aware that hostile forces are all around, any one of whom might try to impersonate Smart; if you approach someone and asked if she is Agent Smart, she might say she is even if she is not. Suggest a control for this threat—that is, a way you could be convinced the person to whom you are talking is really Agent Smart. Would your technique work if you assumed your telephone and mail were being monitored by the hostile agents? Suggest a way that would work even if your communications were monitored.
Index

Index pages in bold point to the definition or explanation of an item.

Symbols
.. (dot-dot), 243
1x1 GIF, 534
2DES encryption. See Double DES encryption
2G mobile telephone protocol, 447
3DES encryption. See Triple DES encryption
3G mobile telephone protocol, 447
802.11 protocol suite, 408, 414

A
Ability, of an attacker, 29
Absence, of flaws, testing to show, 118
Abuse case, program, 99
Acceptance testing, 115
Acceptance, false, 52
Access card, 197
Access control list, 267, 647
Access control matrix, 266
Access control, 17, 96, 182, 281, 434, 444, 448, 566, 680, 683
failure of, 83
general, 261
granularity, 171
physical, 195
procedure-oriented, 567
role-based, 568
Access mode, 14, 261
Access point
promiscuous, 416
undocumented, 84
wireless network, 409, 410, 413, 414
Access range, wireless network, 410, 421
Access, 13
blocked, 603
denied, 626
failure of, 604
limitation of, 250
network, 211
physical, 183, 186, 279
unauthorized, network, 414
unmediated, 77
wireless network, 417
Accident, 18
Accountability, 12
Accuracy, 15, 501, 59
in authentication, 53
in voting, 475, 477
of biometric authentication, 57
ACK protocol, 608
Acknowledgement number, packet, 586
ACL. See Access control list
Action, intrusion detection system, 626
Activation, malicious code, 152
Activation, virus, 147
Active code attack, 134
Active fault detection, 103
ActiveX code attack, 134, 539
Ad hoc connection, wireless network, 422
Adaptive change, 105
Add-in, code, 565
Add-on
browser, 493, 532
operating system
security as an, 354
Address
resolution, 487, 612
spoofing, 616
Address (contd.)
translation, network, 256, 259, 397
destination, network, 380, 384, 398
IP, 374
MAC, 374
source, network, 380, 384, 398
Addressing
in programming, 245
Internet, 374
Adelman, L., 461
Administration, network, 614
Administrative controls, 32
Adobe Reader, 152, 531
Adobe, 528
Advanced Encryption System, 315, 322, 422, 426, 436, 459, 464, 495, 590
confusion in, 323
diffusion in, 323
key, 323, 325
strength, 324
substitution in, 323
transposition in, 323
Advertising revenue, 720
Advertising, online, 731
Adware, 729
AES. See Advanced Encryption System
Aggregation, 526, 709, 719, 724
Aggregator, online data, 731
Agreement, 32
AH. See Authentication header
Air Defense, Motorola, 421, 422
Air raid, 483
Air traffic control, 483, 740
AirMagnet, Inc., 408
Airports, and laptop theft, 280, 282
al Qaeda, 24
Alarm
intrusion detection system, 625
physical, 189
Algebra, inference by, 718
Alias, 68
Allocation
fair, 16
memory, 219
Alterability, 546
Aria, 590
Arithmetic inference, 715
ARPANET, 136, 225, 234
Asperger syndrome, 21
Aspidistra, 486
Assembly language code, 162
Assertion, of a program, 122
Assets, 8, 24, 175, 653
Association
disclosure through, 719
mobile telephone, 447
network, 411
preferred, wireless network, 416
wireless network, 416, 417
Assumption, 121
Assurance, 213, 463, 480
from testing, 117
of correctness, 355
of software design, 352
program, 121
quality, 97
Asymmetric cryptography, 583
Asymmetric encryption, 289, 311, 459, 461.
See also RSA
Asynchronous token generator, 201
Atlee, J., 89, 100, 118
ATM, 61, 189, 362
Analyzability, in reference monitor, 353
Anderson, J., 136, 352, 355
Anderson, R., 570, 721
Anomaly-based intrusion detection system, 619
Anonymity, 67, 720, 729
in voting, 476
network, 444
Anonymization, failure of, 720, 723
Antivirus code, 335
Antivirus tool, 166
Antón, A., 734
AOL, 723
API. See Application programming interface
App, mobile phone, 543
Apple Inc., 566
Application programming interface, 341
Application proxy firewall, 386
Application, mobile phone, 543
Application, network layer, 382
Application, smartphone, 566
Approximate value, confidentiality of, 14
Arbaugh, W., 419, 420, 424
Arce, I., 656
Architecture
network, 373
system, 376
Aria, 590
Arithmetic inference, 715
ARPANET, 136, 225, 234
Asperger syndrome, 21
Aspidistra, 486
Assembly language code, 162
Assertion, of a program, 122
Assets, 8, 24, 175, 653
Association
disclosure through, 719
mobile telephone, 447
network, 411
preferred, wireless network, 416
wireless network, 416, 417
Assumption, 121
Assurance, 213, 463, 480
from testing, 117
of correctness, 355
of software design, 352
program, 121
quality, 97
Asymmetric cryptography, 583
Asymmetric encryption, 289, 311, 459, 461.
See also RSA
Asynchronous token generator, 201
Atlee, J., 89, 100, 118
ATM, 61, 189, 362
Attachment
email, 527
malicious, 143, 158
Attack signature, 620
Attack toolkit, 132
Attack, 11, 23, 28
brute force, 46, 325
dictionary, 44
directed, 18, 32
enabler of, 23
enhancer of, 23
exhaustive, 46
malicious, 32
method of,
random, 18
script, 134
target of, 23
targeted, 18
zero-day, 136
Attacker, 19, 20, 28, 76, 188
Attrition.org, 663
Audit, 204, 362, 387, 480, 492, 565
by firewall, 381
configuration, 109
in election, 477
Auditability, 12
Authentication failure, 578
Authentication frame, wireless, 411
Authentication header (AH), 594
Authentication server, Kerberos, 465
Authentication, 12, 41, 56, 311, 434, 454, 494, 499, 503, 564, 594
by biometrics, 51
by something you are, 51
by something you have, 60
by something you know, 41, 50
challenge–response, 200
computer-to-computer, 499
continuous, 201, 506
distributed, 445
failure of, 40, 41, 52, 62, 191, 193, 443
incomplete, 41
location-based, 63
multifactor, 62
mutual, 467
nonexistent, 434
one-time, 61, 201
password, 191
remote, 61, 465
renewing, 202
secure, 63
strong, 47, 50, 70, 198
time-based, 63
two-factor, 62
two-way, 501
user, 334
wireless network, 416, 420, 423, 425
Authenticity, 448, 546, 550, 595
code, 505, 565
Authorization, 13, 77
Automated teller machine. See ATM
Automobile, security of, 7
Autonomous mobile protective agent, 642
Autorun feature, 144, 343
Availability, 12, 16, 32, 278, 412, 467, 475, 602, 680, 740
in cloud computing, 215
unprotected, 279
Awareness, user, 729, 746

B
Backdoor, 84, 134, 369, 382, 656, 747
Backup, 159, 280, 282, 604, 630, 669
Backup
by cloud computing, 284
encryption key, 458
mirror site, 282
networked storage, 282
offsite, 282
restore function, 282
selective, 282
Bad traffic, 380
Bagle worm, 642
Ballot, 476
Ballot design, 479
Bank card, 61
Banking system, target of attack, 654
Barclays Bank, 527
Base station, wireless, 410, 413
Base/bounds registers, 251
Bastion host, 385, 395
Beacon, wireless network, 411, 414, 581
Beck, M., 425
Behavioral science, 741
Bell, D., 17
Bellovin, S., 379, 587
Berkeley Internet Name Domain (Bind), 612
Bernstein, M., 225
BestBuy, 408
BetCRIS, 635
Beth Israel-Deaconess Medical Center, 605
Bias, of an authentication mechanism, 57
Biba, K., 17
BifN, 255
Binary data, 219
Biometrics, 51
as identifier, 57
failures of, 59
weaknesses of, 53
BIOS (Basic I/O System), 182, 337, 357
Bipartisan Policy Center, 3
Bishop, M., 479
Black-box
 software module, 92
 testing, 100, 115
Black hole, 648
Blackhole, malicious exploit kit, 537
Blacklist, address, 617
Blaze, M. 148
Block chaining, in cryptography, 670
Block cipher, 312, 319
Blocked access, 603
Blocking, message transmission failure, 287
Boebert, E., 117
Bollinger, T., 113
Book cipher, 301
Boot record, 346
Boot sector virus, 149
Bootstrap loader, 149, 236, 333, 336
Border Gateway Protocol (BGP), 490, 499
Bot, 134, 638
Botmaster, 640, 680
Botnet army, 641
Botnet communication, pull mode, 639
Botnet communication, push mode, 639
Botnet, 638, 680
Bounded disclosure, 713
Bounds checking, 101, 244, 246
Brazil, 22, 159, 476
Breach
 reporting, 135, 213
 security, 26
Britain, 476, 486
Brittleness, software, 349
Broadband access, 740
Broadcast mode, 607
Broadcast, radio, phony, 486
Brooks, F., 111, 113
Browser helper object, 493
Browser hijacker, 134
Browser plug-in, 532
Browser, Internet, 60, 417, 535
Brute force attack, 46, 325, 425
Buffer overflow, 217, 623
Bug, program, 76
Bugging, telephone, 184
Byers, S., 519
Bystander, innocent, 186

C
C programming language, 245
Cabinet Noir, le, 185
Cable splicing, 438
Cable, network communications medium, 437
Cache poisoning, DNS, 582
Caesar cipher, 293, 314
CALL instruction, 219
Call, procedure, 220, 228
Camellia, encryption algorithm, 590
Camera, 537
Canada, 655
Canary, modification detector, 247
Capability Maturity Model (CMM), 112
Capability Maturity Model for Integration (CMMI), 112
Capability
 access control device, 255, 269, 357
 of attack, 28
Capacity, 16, 17
 insufficient, 602
 planning, 615
CAPTCHA, 496
Carpenter, S., 689
Catastrophe, 17
Cause–effect analysis, 102
Centralization, 17
CERT. See Computer Emergency Response Team
Certificate authority (CA), 555, 562
Certificate revocation list (CRL), 566
Certificate(s), 547, 561, 583
chain of, 591
forged, 563
fraudulently issued, 563
hierarchy of, 556
lost, 564
public key, 555
Certification, 363
Challenge, 61
 motive for attack, 20
Challenge–response authentication, 200, 388, 61
Change frequency, password, 202
Change management, program, 108
Change tracking, document, 723
Change to a program
 adaptive, 105
 corrective, 105
 perfective, 107
 preventive, 107
Character representation, 238
Chaum, D., 67
Checking, access mediation, 77
Checking, bounds, 244, 246
Checking
 data, 122
 type, 245
Checklist, 19
Checksum, 168, 169, 669
Cheswick, B., 379, 627
China, 158, 391, 527, 689
Chopchop, integrity attack, 425
Index 777

Chosen ciphertext cryptanalysis, 316
Chosen plaintext cryptanalysis, 316
Churchill, Winston, High School, 181
C-I-A triad, 12, 17
Cipher block chaining (CBC) mode, in
cryptography, 670
Cipher suite, 589
Cipher
block, 312
Caesar, 293, 314
keyless, 289
monoalphabetic, 293
product, 309
stream, 312
substitution, 293
Ciphertext, 288
Ciphertext-only cryptanalysis, 314
Circuit-level gateway firewall, 388, 455
Cisco, 443
Classified data, 508
Clear GIF, 534
Clear-box testing, 115
Clickjacking, 536, 646
Client, network, 407, 410
Client–server sharing, 678
Cloning, 577
Closed mode, wireless network, 414
Cloud computing, 211, 284, 739
Cloud
community, 212
computing domain, 211
private, 212
public, 212
Code modification checker, 623
Code Red worm, 136, 139, 142, 147, 160, 237
Code review, 121
Code signing, 505, 565
Code
active, 134
analysis of, 569
assembly, 162
authenticity of, 565
error correction, 168
error detection, 167
flaw in, 542
hash, 168
malicious. See Malicious code
open source, 569
source, 162
Coding, 89, 96, 97. See also Programming
Cohen, F., 136
Cohesion, of software, 90, 351
Cold site recovery center, 284
Collaboration, in peer-to-peer networking, 679
Collision, error code, 667
Colombia, 500
Columnar transposition, 304
Combination, sensitive data, 725
Command and control regime, 641
Command and control structure, botnet, 639
Command and control, in peer-to-peer
networking, 680
Command-and-control server, 345
Common Criteria for Information Technology
Security Evaluation, 355, 570
Common Vulnerabilities and Exposures
list (CVE), 19, 87
Common Vulnerability Scoring System (CVSS), 19
Communication stream reassembly, 585
Communication, interception, 185
Community cloud, 212
Compactness, in software design, 352
Compilation, 162
conditional, 108
safe, 246
Complete mediation, 77, 96, 172, 262, 355, 381
Completeness, 354
Complexity
as a vulnerability, 444
of encryption, 305
operating system, 337
software, 90, 151, 347, 571
Complexity theory, 153
Component failure, 614
Compromise
confidentiality, 279
encryption key, 456
Computer crime, 172
Computer Emergency Response Team
(CERT), 87, 96, 237
Computer Science and Telecommunications Board
(CSTB), 478
Concealment, malicious code, 235, 236
Concurrency, 16
Conditional compilation, 108
Conditional instruction, 219
Conficker worm, 138, 139, 142, 147, 242, 641
Confidentiality, 12, 13, 32, 174, 183, 278, 279, 412,
475, 550, 594, 595, 708
in cloud computing, 213, 214
Configuration and change control board
(CCB), 109
Configuration audit, 109
Configuration control and management, 105,
110, 111, 131
Configuration error, 87
Configuration identification, 108
Confinement, of a software module, 93
Confusion, 312
in AES encryption, 323
in encryption, 319
Connection, mobile telephone, 447
Index

Connection, wireless network, 415
Connectivity, 373
Consistency, 15
Context switching, 610
Context, firewall, 385
Continuous authentication, 506
Contract, 32
programming by, 122
Control flow analysis, 105
Control(s)
administrative, 32
internal, 191
logical, 32
overlapping, 30
physical, 31
procedural, 32
technical, 32
Control, 11, 30, 33, 65
Control, access. See Access control
Cookie(s), 60, 193, 534, 578, 729
COPS, vulnerability scanning tool, 44, 370
Copying, 18, 183, 344, 577
Copyright, 32, 344, 678, 686, 691, 693, 694
Correction
error, 16
program, 74
Corrective change, program, 105
Correctness, software, 90, 126, 353, 354, 356
Correlation, 723
Corruption, data, 74, 412, 664
Cost, 213
of control, 52
Cost–benefit analysis, 286, 481, 741
Count, inference by, 716
Counter, program. See Program counter
Counterattack, network attack, 626
Counterfeit currency, 131
Counterfeiting, 580
Countermeasure, 11, 30, 65
Coupling, software design, 92, 347
Coverage, test, 116
Covert channel, 508
capacity, 516
detection, 513
file lock, 510
information flow, 515
shared resource, 514
speed, 516
storage, 510
timing, 512
Cowan, C., 247
Crack (security tool), 44
Cracking, password, 44
Crash, system or program, 16
Crawler, 135
Credential, login, 40, 70
Credit card, 730
authentication, 504
stolen, 20
Crime, 29, 40, 42, 58, 172, 234, 643
Crime, organized, 20, 21, 294
Criminal, 19, 21, 40, 421, 58
Criticality, in software design, 350
Crocker, S., 225
Cross site scripting, 539, 540
Crosstalk, 18
CRT display, interception from, 438
Cryptanalysis, 297, 299, 303, 314, 457
chosen ciphertext attack, 316
chosen plaintext attack, 316
ciphertext-only attack, 314
known plaintext attack, 315
probable plaintext attack, 315
Cryptanalyst, 290
Cryptographer, 290
Cryptographic checksum, 169
Cryptographic hash function, 581
Cryptographic key management, 594
Cryptographic key replacement, 584
Cryptographic separation, 170, 249
Cryptography, 290, 583, 670
asymmetric, 459, 461
block chaining, 670
Cryptology, 290
Cryptosystem, 288
Culture, 191
CVE. See Common Vulnerabilities and Exposures
CVSS. See Common Vulnerability Scoring System
Cyber attack, likelihood, 745
Cyber criminal, 740
Cyber espionage, 654
Cyber Europe 4000, 4
Cyber infrastructure, 653, 739
Cyber ShockWave, 3
Cyber Storm, 4
Cyber war, 739
Cyber warfare, 653
Cyber weapon, 657
Cybercrime, 20, 654, 743
Cyberspace, 653
Cyberworthiness, warranty of, 128
Cyclic redundancy check, 411

D
Daemen, J., 322, 371
Damage control, 350
Damage, from malicious code, 142
Darwin (game), 136
Data access, 182
Data checking, 122
Data corruption, 664
Data disclosure
 by range, 726
 concealing, 725
 query protection, 728
 random perturbation, 728
 random sample, 727
 result combination, 725
 rounding, 727
 suppression, 725
 swapping, 728
Data encryption standard, 317, 459, 464, 590
 key length, 319, 321
 security of, 321, 322
Data flow analysis, 105
Data flow, 193
Data intrusion, 483
Data loss, 278
 nonmalicious, 277
Data mining, 526, 719
Data modification, 486, 664
Data validation, 122
Data
 as asset, 8
 dynamic, 229
 global, 223
 incident, 743
 local, 223
 sensitive, 193, 711
 shared, 223
 unchecked, 78
 value of, 720
Database, 711
 link in, 67
DDoS attack. See Distributed denial-of-service attack
De facto policy, 190
De jure policy, 190
Deadlock, 16
Deauthentication frame, wireless, 411
Debugging, 85
DEC VAX, 353
Decidability, 153
Decipher, 288
Decision-making, 544
Decode, 288
Decryption, 288. See also Cryptography, encryption
Defacement, web site, 530
Default deny, 380, 684, 96
Default permit, 380, 684
Default, unsafe, 683
Defense in depth, 32, 96
Defense, U.S. Department of, 12, 110, 318, 361, 653
Defensive programming, 122, 224
Deflection, 30
Degradation, graceful, 16
Delegation, 214
Deleting data on the Internet, 709
Deletion, 64, 192, 195, 215
Delta, program difference, 108
Demilitarized zone (DMZ), network, 395
Denial-of-service attack, 239, 601
Denial-of-service attack, distributed. See Distributed denial-of-service attack
Denial-of-service, 21, 23
Denning, D., 515, 619, 725
Denning, P., 234, 261
Deny, default, 380
Department of Defense, U.S. See Defense, U.S. Department of
Dependability, 16
Dependency, 6
Depletion, resource, 214
DES cracker machine, 322
DES. See Data encryption standard
Design by Contract, 122
Design rationale, 104
Design review, 121
Design
 open, 96, 355
 software, 89, 95, 97, 354
 standards of, 111
TCB, 359
Destination address, network, 380, 398
Destination-based remotely triggered black hole, 648
Destruction, virus, 140
Detection
 access, 197
 error, 16
 evading, 160
 of attack, 30
 of malicious code, 159, 338, 347
Deterrence, 30
Development, software, 76, 89
Device driver, 183
DHCP. See Dynamic Host Configuration Protocol
Dialer program, Microsoft, 217
Dictionary attack, against password, 44
Differential cryptanalysis, 321
Diffie, W., 321, 459
Diffie–Hellman key exchange, 464
Diffusion, in encryption, 313, 319, 323
Digital certificate, 584
Digital divide, 740
Digital Millennium Copyright Act, 695
Digital rights management (DRM), 344, 517
Digital signature, 346, 505, 545
Digram, 306
Directed attack. See Attack, directed
Directory
 access control, 263
 file, 264
Disassembler, 162
Disaster recovery center, 284
Disaster recovery plan, 632
Disaster, 278
Disaster, natural, 17, 25
Disclosure, 13, 508, 680, 685, 712
 accidental, 88
 bounds, 713
 exact, 712
 existence, 713
 negative, 713
 network topology, 374
 of password, 43
 probable value, 713
 tracking of, 724
 unintended, 711
 vulnerability, 148
Discontinuity, 519
Discrimination, of an authenticator, 57
Display terminal, interception from, 438
Distributed denial-of-service attack (DDoS), 214, 635
Distribution, encryption key, 311
Distribution, frequency, 298
Dittrich, D., 644
Diversity, genetic, 94, 742
Diversity, of ownership, 747
DNA
 for authentication, 58
 for identification, 58
DNS. See Domain Name System protocol
DNSSEC, 583, 745
Documentation
 standards of, 111
 system, 98
DoD. See Defense, U.S. Department of,
Domain controller, Windows
 authentication, 445
Domain name resolution. See Address resolution
Domain Name System protocol, 449
 attack, 612
 cache poisoning, 582
 poisoning, 503
 protocol, 487
 query, 487
 record, 613
 root name server, 612
 root, 589
 spoofing, 487
 DNSSEC, 583, 745
Domain, 270, 359, 445
DoS attack. See Denial-of-service attack
DoS. See Denial-of-service
Double DES encryption, 320
Download
 drive-by. See Drive-by download
 malicious code, 143
 program, 528
 trusted, 363
Downloaded files, 677
Drive-by download, 145, 537, 646
DriveCleaner, 156
Driver, device, 183
Drone aircraft, Predator, 433
Dropper, 134
Dual failover mode, 631
Dual-homed gateway, 376
Duplication, of authenticator, 60
Dynamic data structure, 229
Dynamic Host Configuration Protocol, service, 413
Dynamic password, 198
Dynamic token generator, 62

E
Ease of use. See Usability
Easter egg, 84
Eavesdropper, 656
Echo attack, 623, 643
Echo protocol, 606
Echo–chargen attack, 608, 620
Economics, 741
Economy of mechanism, 96, 354
Edge, of a network, 490
Education, user, 568, 729
Effectiveness, of testing, 117
Efficacy, in authentication, 53
eGovernment, 213
Egypt, 658, 746
Eichen, M., 234
El Gamal encryption algorithm, 459
Elasticity, resource, 212
Electric grid, target of attack, 654
Electronic attack, 483
Electronic code book (ECB) mode, in
 cryptography, 670
Electronic voting, 475
Eleonore attack toolkit, 132
Elliptical curve cryptosystem (ECC), 459, 590
Email, 39, 532
 forged,
 header forgery, 534
Embarrassment, 530
Embedded systems, 7
Embedding, malicious code, 333
Emergent behaviors, 740
Encapsulated security payload, 594
Encapsulation, software, 92, 349
Encipher, 288
Encode, 288, 518
Encoding, character, 238
Encrypting virus, 166
Encryption key, 309, 419, 423, 425, 455, 460
backup, 458
compromise, 456
distribution, 311, 456
exchange, 463, 464, 506
exposure, 456
management, 453, 456, 594
public, 460
replacement, 458
rescission, 457, 458
Encryption, 214, 288, 412, 417, 419, 434, 448, 466, 494, 506, 578, 641, 665
application level. See End-to-end encryption as a control, 32
asymmetric, 289, 311, 459, 461. See also RSA
breakable, 291
breaking, 290
complexity of, 305
confusion in, 312
diffusion in, 312
disk, 325
disk encryption, 325
end-to-end, 450
error in, 309
implementation, 309
in operating system, 351
key. See Encryption key
link, 449
network, 448
of passwords, 235
secrecy, 309
secure, 309
symmetric, 289, 311, 459, 461. See also Data encryption standard, Advanced Encryption System
transposition, 293
unused, 435
use of, 345
weaknesses, 316
End-to-end encryption, 450
Enforcement, security, 16, 357
Engineer, security, 76
Engineer, software. See Software engineer
Engineering, 6
Engineering, social. See Social engineering
Engraving and Printing, U.S. Bureau of, 131
Enigma, encryption machine, 317
Enumeration of threats, 65
Eradication, of malicious code, 338, 347
Erasing data on the Internet, 709
Erasure, 192
Ericsson, 492
Error checking, in a program, 93
Error correction code, 168, 668
Error correction, 123
Error detection code, 167, 667
Error detection, 16
Error handling, 219
Error(s), 74, 219
cascading, 74
compilation, 222
human, 18, 84, 87
in encryption, 309
nonmalicious, 74
off-by-one, 230
program, 76, 101
related, 74
runtime, 222
ErrorSafe, 156
Escalation, privilege, 220
ESP. See Encapsulated security payload
Espionage, 191, 184, 654
Estonia, 20, 23, 601, 654
Ethical hacking. See Penetration testing
Ethics, 40, 471
European Union, 4
Evaluation, 19, 355, 356
of correctness, 355
security, 357
software, 570
criteria, 570
Evasion, of malicious code, 136
Evidence, 173, 175
e-voting, 475, 739
Exact disclosure, 712
Excel, Microsoft spreadsheet, 84
Exception, program, 224, 238
Execution mode, privileged, 336
Execution pattern, malicious code, 163
Exercise, preparedness, 4
Exhaustion, resource, 214
Exhaustive attack, 46
Exhaustive key search, 425
Existence, disclosure of, 14, 713
Experience, in testing, 117
Expiration date, certificate, 562
Exploitation, of vulnerability, 112
Exposure
data, 453
encryption key, 456
network topology, 374
Extensible Authentication Protocol (EAP), 423
Extortion, 21
F
Fabrication, 12, 287, 485
Facebook, 42, 45, 93, 280, 417, 525, 537, 710, 720, 733
Facial recognition, 51, 722
Failure modes and effects analysis (FMEA), 102
Failure rate, code, 570
Failure, 744
hardware, 17, 279, 282, 605, 614
induced, 76
program, 76
single point of. See Single point of failure
Failures, cascading, 74
Fair use, 693
Fairness
ethical principle, 16, 471
in elections, 477
Fake malware detector, 639, 641
Fallibility, human, 114
False accept. See False positive
False negative, 52, 59, 629
False positive, 52, 58, 59, 629
False reading, 52
False reject. See False negative
False signal, 483
Fame, 29
Farmer, D., 237, 370
Fault detection
active, 103
detection, passive, 103
Fault log, 101
Fault tolerance, 16, 103
Fault tree analysis (FTA), 102
Fault(s), 99
design, 76
program, 16, 219, 224, 76
sporadic, 226
visibility of, 86
Faults, classification of, 86
Faux environment, 626
FBI, U.S. Federal Bureau of Investigation, 315
Feasibility, 29
Feasibility, of biometric authentication, 57
Federal Bureau of Investigation, U.S., 315
Fence register, 250
Fence
memory, 250
physical, 31
Fiber, network communications medium, 441
Fictitious URL, 646
Fictitious virus scanner, 156
File lock channel, 510
File protection, 240
File
hidden, 164
infected, 158
modification of, 81
Filtering, network traffic, 648
Financial reward, 185
finger program, 235
Fingerprint, 51, 55, 57
Fire, 17, 278
Firefox, browser, 417
Firesheep, browser add-on, 417, 578
Firewall, 32, 376, 454, 566, 647, 682, 688
circuit-level gateway, 388, 455
templation, 392
Great Firewall of China, 391
firewall, 389
hole in, 392
packet filtering gateway, 383
personnal, 390
screening router, 383, 388, 394
stateful inspection, 385
First sale, 693
Fix, flaw, 85
Flash drive, 23, 281
Flaw hypothesis methodology, 119
Flaw(s)
cause of, 86
program, 147, 75, 76
serialization, 79
taxonomy, 88
Flickr, 724
Flood, 17, 278
Flooding attack, 602, 606
Flow analysis, 515
Fluhrer, S., 419, 420
FOR instruction, 219
Foreign Affairs Information System (FAIS), 354
Forensic analysis, 277
Forensics, 193
Forest, Windows authentication, 445
Forged web site, 527
Forgery, 525, 546, 550, 60
of authenticator, 60
of data, 412
of token, 61
Formal methods, software analysis, 120, 572
Fortress, protection, 357
Fragmentation, 623
Frame check sequence, wireless network, 410
Frame, WiFi data unit, 410
Framing bias, 544
Framing, 537
Fraud, 22, 362, 525
Index

Free market, 745
Free speech online, 710
Free-riding, 161, 739
Frequency distribution, in natural language, 298, 303
Front-end intrusion detection system, 622
f-Secure, 22, 529, 643
FTP protocol, 387
Fujitsu, 55
Function call, in operating system, 339
Function testing, 115
Functionality
 of a software module, 92
 program requirement, 85

G
Gasser, M., 88, 353
Gates, B., 98
Gateway
 circuit-level, firewall, 388
 packet filtering, 383
Geer, D., 95, 742
GEMSSOS, 363
Generator, random number, 299
Genetic diversity, 94, 742
Geometry, hand, 51
Geotagging, 723
Germany, 407, 486
Global data, 223
Global System for Mobile Communications, 447
Gonzales, A., 22, 421
Good traffic, 380
Goodness checker, code, 571
Google Docs, 724
Google Street View, 405
Google, 284, 391
Gormley, C., 677
GOTO instruction, 219
GPS coordinate, 723
Graceful degradation, 16
Grades, changing, 181
Graffiti, 531
Graham, S., 261
Grandin, T., 21
Granularity, 203, 250
 of access control, 171
Greatest good for greatest number, 471
Greece, 491, 656, 747
GridIDSure authentication system, 51
Grokster, 686
GSM. See Global System for Mobile Communication
Guard
 firewall, 389
 human, 31, 61, 196
 software, 688
Guessing
 of authenticator, 41
 password, 235
Guideline, 32
Gummy finger, authentication failure, 55

H
Hacker, 21, 176
Hacking, 88
Haldeman, J., 478
Hamming code, 668
Hand geometry, 56
Handler, exception, 238
Hardware
 as asset, 8
 failure of, 18, 614, 664
 protection of, 359
 support for security, 263
 tampering, 197
 theft of, 278
Harm, 11, 17, 24, 30, 33, 65, 96, 138, 186, 187,
 220, 350
 intentional, 18
 malicious code, 165
 malicious, 18
 unintentional, 18
Harrison–Ruzzo–Ullman result, 571
Harvard University, 409
Hash function, 168. See also Message digest
 cryptographic, 581
 keyed, 581
 one-way, 580
 secure, 548
Hatton, L., 89, 100, 120
Hazard analysis, 99, 101
Hazard and operability studies (HAZOP), 102
Header, email, forgery, 534
Heap, system, 227, 229, 245
Heartbeat function, 631
Hellman, M., 321, 459
Help desk, 243
Herd immunity, 161, 739
Heuristic intrusion detection system, 619, 620
Hidden Data Removal Tool (Microsoft), 195
Hidden file, 164
Hierarchical structuring, 350
Hierarchical trust, 552
Hijack, browser/session, 134, 424, 506, 584
History, computer usage, 193. See also Audit
Index

Hoare, C.A.R., 94, 245
Hoax, 604
Hoax, virus, 139
Homeland Security, U.S Department of (DHS), 4
Homogeneity, of systems, 95. See also Diversity
Honeypot, 626
Hook, operating system component, 335, 345
Hop, next, 491
Host, bastion, 385, 395
Hostage situation, 500
Host-based intrusion detection system, 619
Hostile mobile code agent, 134
Hot site recovery center, 285
Hot spot, wireless network, 413
Hotmail, email, 417
Howard, M., 97
Howell, C., 89, 100
HRU. See Harrison–Ruzzo–Ullman result
HTTP protocol, 383, 682
HTTPS (HTTP Secure) protocol, 493, 591
Human error, 84, 87, 664
Human(s), 543, 551, 745
as attack agent, 11
threat, 18
Human–computer interaction, 686
Hupp, J., 133
Hygiene, computer, 158, 745
Hyppönen, M., 22, 643

I
IBM Corp., 318, 443
Iceland, 721
ID, user, 369
Identification, 41, 48, 56, 58, 499, 503
configuration, 108
non-unique, 67
through picture metadata, 722
Identity, 369
card, 62
linked, 67
theft, 20
IDS. See Intrusion detection system
IEEE, 422
IF() instruction, 219
Iframe, 537
IKE. See Internet Security Association Key
Management Protocol Key Exchange
ILoveYou virus, 136, 142
Immunity, herd, 161
Impact, 25, 27
Impersonation, 18, 40, 42, 63, 486, 558, 588
Implementation, 558
of encryption, 309
software, 354, 97
TCB, 359
Implications, 747
Imposter, antivirus tool, 166
Incentives
economic, 745
for security, 741
Incident response plan, 632
Incident response team, 632
Incomplete mediation, 77
Incomprehensibility, software design, 349
Independence, of software, 90
Inductance, 437
Infection. See Malicious code
Inference engine, 619, 621
Inference, 666, 709, 714, 724
by arithmetic, 715
by count, 716
by linear algebra, 718
by mean, 716
by median, 716
by sum, 715
by tracker, 717
direct attack, 714
Information concentrator, 677
Information flow analysis, 515
Information hiding, 92, 348, 517
Information leakage, 508
Infrastructure as a service (IaaS),
cloud model, 213
Infringement
copyright, 688, 694
patent, 698
Initialization vector, encryption, 419, 671
Initialization, operating system, 333
Innocence, presumed, 189
Inoculation agent, 642
Inoculation package, malware
countermeasure, 641
Input validation, 76, 93, 96, 122
Input, to a software module, 92
Insertion attack, 665
Insider threat, 189, 214
Insider(s), 189, 369, 376, 746
Inspection, program, 99
Installation testing, 115
Installation, malicious code, 143, 537
Institute for Information Infrastructure
Protection (I3), 746
Instruction
illegal, 219, 223
privileged, 219, 220, 227
Insurance, 25, 287, 745
Integrated virus, 146
Integration testing, 115
Integrity failure of, 530
Integrity, 12, 15, 32, 174, 182, 226, 346, 359, 410, 412, 423, 448, 475, 519, 665
address, 384
checking, 420
failure of, 81
of code, 347, 356
Intellectual property, 191, 692
Intellectual property rights, 570
Intelligence collection, 654
Intent, 18, 140
Intentional harm. See Harm, intentional
Interaction, feature, 88
Interaction, program, 226
Interception, 12, 184, 192, 287, 362, 407, 485
image, 442
lawful, 443
message, 287
network, 412, 437, 439
of operating system function calls, 340
wireless network, 414, 416
Interface design, 480
Interface, 434
Interface, operating system, 334, 347
Interference, network, 412
Internal intrusion detection system, 623
International Business Machines. See IBM Corp.
Internet Assigned Numbers Authority (IANA), 589
Internet Control Message protocol (ICMP), 606
Internet Information Server (IIS), Microsoft, 147
Internet Protocol
address, 374
fragmentation attack, 610
protocol, 585
Internet relay chat (IRC) channel, 640
Internet Security Association Key Management Protocol, 594
Internet Security Association Key Management Protocol Key Exchange, 595
Internet Service Provider, 23, 443, 659, 682
Internet worm. See Morris worm
Interpreter, 152
Interruption, 12
Intruder, 287, 369
Intrusion detection system, 32, 503, 618
action taken, 626
alarm, 626
anomaly-based, 619
front-end, 622
heuristic, 619, 620
host-based, 619
internal, 623
misuse-based, 621
network-based, 619
protocol inspection, 623
signature-based, 618, 620
state-based, 621
stateful packet analysis, 622
stealth mode, 628
Intrusion prevention system (IPS), 503, 624, 647
Intrusion response, 624
Intrusion
in communication, 486
physical, in a network, 491
Invalid instruction, 219
Invoked, always, property of reference monitor, 353
IP. See Internet Protocol
iPhone app, 566
IPS. See Intrusion prevention system
IPsec, 593
IPv4 protocol suite, 745
IPv6 protocol suite, 593, 745
Iran, 23, 654, 658
Iraq, 433
Iris scan, 51
ISAKMP. See Internet Security Association Key Management Protocol
ISO, 7498-2, 12
ISO 9001, 112
ISO OSI model, 382
Isolation, 235, 250
computer, 158
of firewall, 381
ISP. See Internet Service Provider
Israel, 483, 655
J
Jamming, 483
Java, 539
JavaScript attack, 134
Johnson, E., 677
Jump, program instruction, 220
Justice, U.S. Department of, 20
K
Kahn, D., 290, 308, 317, 582
Karger, P., 110, 119, 136, 353, 363, 571
Kaspersky, 531
KaZaA, 677, 687
Kemmerer, R., 479, 514
Kerberos, 464
Kerckhoffs, A., 194
Kernel
operating system, 334, 348
primitive, 336
security, 334, 351, 359
Kernelized design, 351
Kernell, D., 39, 42
Key backup, encryption, 458
Key change, encryption, 419
Key distribution center, Kerberos, 465
Key distribution, encryption, 311, 456, 552, 557
Key encryption, 423, 288, 290, 296, 309, 425
Key exchange protocol, 485, 506
Key exchange, Diffie–Hellman, 464
Key exchange, encryption, 463, 485, 506
Key exposure, encryption, 456
Key management, encryption, 436, 448, 453, 456, 594
Key replacement, encryption, 457
Key revocation, encryption, 458
Key search, exhaustive, 425
Key to Rebecca, 301
Key database, 67
Key, physical, 60, 148
Keyboard logger, 181
Keyboard
 secure, 361
 signal interception, 438
Key-distribution center, 457
Kill switch, 656, 658
King of the hill, 335
Kismet, scanning tool, 406
Knight, J., 742
Knowledge, as authenticator, 50
Known plaintext cryptanalysis, 315
Koobface network, 639
Krebs, B., 184
KSOS, 363
Kurak, C., 519
KVM, 363

L
l0pht, 221, 370
La Padula, L., 17
Lampson, B., 509
Landau, S., 747
Landwehr, C., 88
Laptop, theft of, 277, 280
Latency time, 373
Law, 32, 125, 193, 213, 643, 686, 691
 port scan, 375
Lawful interception, 443, 492
Layer 7, network, 382
Layered protection, network, 400
Layering
 operating system, 334
 software design, 348
LCD display, interception from, 438
Le Cabinet Noir, 185
LeBlanc, D., 97
LeBlanc, D., 97
Least common mechanism, 96, 355
Least privilege, 96, 97, 157, 172, 191, 203, 262, 281, 354, 356, 567
LeBlanc, D., 97
Legality. See Law
Length, of passwords, 44, 48
Length-preceding string, 232
Lessons learned, 99
Leveson, N., 742
Liability, 213, 743
LimeWire, 677, 687
Limitations of testing, 117
Limited access, 250
Limited privilege, 356, 567, 646. See also
 Least privilege
Limited usage, 250
Limits, for testing, 117
Link encryption, 449
Linkage, disclosure through, 719
Linked identities, 67
Linker, 162
Litchfield, D., 137, 217
Liveness, 580, 581
Load balancing, 616
Loader, bootstrap. See Bootstrap loader
Local data, 223
Location-based authentication, 63
Lock, 31, 60, 197
Logging, 387. See also Audit
Logging, by firewall, 381
Logic bomb, 134
Logical link, 452
Logical separation, 170, 249
Login
 failed, 443
 secure, 361
Long-term effect, 747
Loose source routing, 491
Loss
 from malicious code, 142
 malicious, 278
 of authenticator, 59, 60
 of data, 278
 of password, 43
Lower Merion school district, 708
Lucifer, 318
Lying, 526
Lyon, B. 635

M
MAC address, 374, 405, 409, 416, 420, 424, 437
MAC header, 410
MAC spoofing, 416
MacBeth, Lady (Shakespeare), 192
Machine code, 162
Mafia, 294. See also Crime, organized
Mafiaboy, 176
Magnetic remanence, 192
Magnetic stripe card, 61
Mail agent, 534
Maintenance
 program, 90, 569
 system, 98
Malicious attack, 32
Malicious autonomous mobile agent, 642
Malicious code, 18, 132, 131, 526, 531, 664, 710, 722
 active code, 134
 ActiveX, 134
 appended virus, 145
 attachment, 143
 backdoor. See Backdoor
 boot sector virus, 149
 bot. See Bot
 browser hijacker. See Hijack
Code Red worm. See Code Red worm
Conficker worm. See Conficker worm
detection tools, 159
detection, 333
document virus, 144
download, 528
dropper, 134
embedding, 149, 333
encrypting virus, 166
evasion, 136
harm, 138, 165
hostile mobile code agent, 134
implanting, 149
JavaScript, 134
logic bomb, 134
memory-resident virus, 152
Morris worm. See Morris worm
overwriting, 149
pattern recognition, 160
polymorphic virus, 165
propagation, 136
rabbit, 134
rootkit. See Rootkit
script attack, 134, 144
Slammer. See Slammer worm
SQL Slammer. See Slammer worm
statistics, 162
stealth of, 341
Stuxnet worm. See Stuxnet
time bomb, 134
toolkit, 134
transmission, 143
trapdoor, 134
Trojan horse, 133
virus, 132
worm, 133
zombie, 134
Malicious harm. See Harm, malicious
Malicious programmer, 220
Malicious script, 144
Malicious software, 681
Malware non-detector, 529
Malware, 132, 656. See also Malicious code
Man of La Mancha, 86
Management.
 network, 614
 risk, see Risk management
 system, 98, 630
Man-in-the-browser, 493
Man-in-the-cell phone, 491
Man-in-the-credit card, 491
Man-in-the-middle attack, 424, 484
 browser redirection, 495
 browser, 493
 cell phone, 491
 credit card, 491
 cryptographic key exchange, 484
 human, 500
 mobile phone, 505
 phone, 495
 physical, 491
 radio transmitter, 486
 traffic routing, 488
Man-in-the-mobile, 505
Man-in-the-phone, 495
Mars Global Surveyor (MGS) spacecraft, 74
Masquerade, 220
Mass communication, 23
Master boot record, 346
Match
 exact, 55
 in authentication, 53, 55
Matrix, access control, 266
Maximization, ethical principle, 471
Mayfield, T., 15
McAfee, 20
McGowan, C., 113
McGraw, G., 97, 656
McHugh, J., 519
McIlroy, D., 136
MD4 message digest function, 170, 548
MD5 message digest function, 170, 548, 563, 590
Mean, inference by, 716
Meaningful data, 15
Measurement, 19, 543
Mechanism
 economy of. See Economy of mechanism
 least common. See Least common mechanism
 security, 353, 355, 357
Media access control. See MAC
Median, inference by, 716
Mediation, complete. See Complete mediation
Mediation, incomplete, 77
Medical device, implanted, 500
Medium Access Control address. See MAC address
Melissa virus, 136, 139
Memory allocation, 219
Memory organization, 223
Memory stick, 23, 281
Memory word overflow, 232
Memory, data recovery from, 326
Memory, dynamic, 229
Memory, overwriting, 221
Memory-resident virus, 164, 152
Message digest, 168, 548
See also MD4, MD5, Hash function
Metadata, 722
Method, 28, 185
Method–opportunity–motive, 28, 184
Microsoft, 186, 192, 284, 343, 361, 417, 464, 533, 563
Microsoft Word application, 195
Microwave, network signal, 439
MIFARE, payment card, 436
Millen, J., 509
Mining, data, 526
Mirror site backup, 282
Mirroring, 669
Mistake. See error
Mistakes, learning from, 110, 114
Mistyping, 18
Misuse intrusion detection system, 621
Mitigation, 25, 30, 65, 243
Mitnick, K., 20
MITRE Corp., 19, 87, 217
Mixter, 21
Mob, 20. See also Crime, organized
Mobile code agent, hostile, 134
Mobile phone application, 543, 566
Mobile telephone, 447, 658
mod function, 292
Mode, access, 14, 261
Modifiability, in software design, 352
Modification, 12, 15
detection, 169
of code or data, 226
of data, 486, 664
of message, 287
Modular arithmetic, 292, 462
Modularity, software, 90, 347, 352, 348
Monitor, reference. See
Reference monitor
Monitoring, 503, 646, 708
network, 614, 626
of users, 471
Monoculture, 95, 742. See also Diversity
Moore's law, 291
M-o-o-t operating system, 351
Morpheus, 677
Morris worm, 136, 139, 234
Morris, R., Jr., 20, 234
Morris, R., Sr., 136, 236, 587
Motivation, 492
Motive, 20, 29, 40, 140, 185, 277
Move, program instruction, 220
Mudge, 221
Mulligan, D., 67
Multics, 95, 110, 268, 363
Multifactor authentication, 62
Multipartite virus, 141
Multiplexing, network, 439
Multi-state hardware, 263
Music sharing, 684
Mussorgsky, M., 211
Mutual authentication, 467
Mutual suspicion, 93, 425
MyDoom worm, 642

N
Naïveté, 544
Napster, 686
NASA. See National Aeronautics and Space Administration
National Academy of Science, U.S., 478
National Aeronautics and Space Administration (NASA), U.S., 74
National Institute of Standards and Technology
National Institute of Standards and Technology, U.S., 19, 51, 318, 322, 549
Nationalization, private industry, 5, 747
Native mode system functions, 339
Natural disaster, 17, 278
Negative disclosure, 713
Negative predictive value, 54
Negative, false. See False negative
NESSUS, vulnerability scanning tool, 370
Nested procedure call, 220
Netcat, vulnerability scanning tool, 370
NetSky, 642
Network address translation (NAT), 397
Network address destination, 398
source, 398
Network architecture, 373
Network attack, counterattack, 626
Network connection, rogue, 413
Network flooding, 483
Network Interface Card, 409, 414, 426
Network traffic redirection, 488
Network
domain name resolution
management, 614
router, 376
rout ing, 491
segment of, 373
subnetwork, 376
tuning, 616
wide area, 433
Network-based intrusion detection system, 619
Networked storage, 282
Neumann, P., 349, 526
NIC. See Network Interface Card
NIMDA virus, 136
NIST. See National Institute of Standards and Technology, U.S.
n-item k-percent rule, 725
Nmap, vulnerability scanning tool, 370
No harm, ethical principle, 471
N once, 507, 582
Nonmalicious error, 74
Nonrandomness, 497
Nonrepudiation, 12, 546
Nonreusability, 547
Nothing more, security requirement, 88, 116, 433
Novelty, patent requirement, 696
NSA. See National Security Agency, U.S.
Null-terminated string, 233
NXP Semiconductors, 436

O
Object code, 162
Object reuse, 192
Object, 14, 17, 249, 261
Obscurity, security through. See Security by/through obscurity
Octopus, Hong Kong transit card, 436
Off-by-one error, 230, 244
Offsite backup, 282
Off-the-shelf components, 8
Off-the-shelf software, 434
One-time authentication, 61
One-time pad, 299
One-time password, 198, 504, 580
One-way function, 169
Online identities, 731
Online payment, 730
Online tracking, 708
Online vulnerabilities, 730
Open design, 96, 355
Open mode, wireless network, 414
Open source code, 569
Open System Interconnection model, 447, 542
Openness, ethical principle, 471
Operating system, 220
privileges, 336
structure of, 334
Opportunity, 29, 185
Optical fiber, network communications medium, 441
Optimism bias, 544
Optimism, programmer, 76
Opt-in botnet group, 642
Oracle, 137
Orange book. See TCSEC
Order, of operations, 82
Originality, 692
patent claim, 697
Orman, H., 234
OSI model. See Open System Interconnection model
Outlook program, Microsoft, 225
Out-of-band communication, 504
Output, from a software module, 92
Outsider, 189
OV-ChipKaart, Netherlands transit card, 436
Overflow, buffer. See Buffer overflow
Overflow, integer, 231
Overload, 602
Overwriting of a file, 81
of memory, 221, 222
OWASP (Open Web Application Security Project), 89
Owner, 13
Oyster, London transit card, 436

P
P2P. See peer-to-peer
Pacemaker, 500
Packaging, of software, 92
Packet filtering gateway, 383
Packet reassembly attack, 611
Packet sniffer, network, 437
Packet synchronization, 586
Packet, malformed, 623
Page-in-the-middle, 495
Paging, memory, 259, 260
Palin, S., 39
Parameter, 221, 238
checking, 247
mismatch, 233
modification of, 78
procedure call, 228
Parity, 167
Parker, D., 21
Pass number, 61
Passive fault detection, 103
Passphrase, 425
Passport, Microsoft single sign-on mechanism, 70
Password(s) file, encrypted, 235
Password(s) generator, 62, 70, 199
Password(s) salt, 672
Password(s), 32, 42, 198, 334, 423, 466, 499 attacks on, 43
change frequency, 49, 69, 202 characteristics of, 44
common, 45
dynamic, 198
failure, 195
guessing attack, 235, 443, 666
lengths of, 44
masking, 70
master, 70
one-time, 198, 504
probable, 46
replay, 578
stored, 70
strong, 48, 69
vulnerabilities of, 43
weak, 46, 236
Patch, 85, 241, 242, 343, 344
Patent, 32, 696
Path
file, 243
trusted, 361
Pattern recognition, malicious code, 160
Pattern
execution, of malicious code, 163
for authentication, 57
ciphertext, 299
in encryption, 290
in plaintext, 306
storage, of malicious code, 163
virus, 160
Pattern-matching, 503, 621
Pattern-matching, virus scanner, 154
Payload, wireless data unit, 410
Payments, online, 730
PayPal, 730
PDF file, 152, 195
Peer review, software, 98
Peer-to-peer (P2P) networking, 412, 677
sharing, 677, 678
Penetrate and patch, 85, 344
Penetration testing, 85, 110, 119
Perfeective change, program, 107
Performance degradation, 235
Performance testing, 115
Performance, 17, 88, 352
Performance, program requirement, 85
Perimeter network, 397
physical, 189
security, 399, 442
undefined, 444
virtual, 680
Period, of random number generator, 299
Permission, access, 96
Permission-based design, 380
Permutation, 296, 304, 319
Perpetrator, 19
Persistence, malicious code, 141
Persistency, of malicious code, 338
Personal firewall, 390
Personally identifiable information (PII), 135
Perturbation
of sensitive data, 724
random, disclosure protection, 728
Petmail, email system, 498
Pfleeger, C., 88, 116
Pfleeger, S., 89, 100, 118, 120, 570, 742, 744
Phishing, 214, 501, 532
Photo manipulation, 519
Physical access control, 195
Physical access, 186
Physical control, 30, 31
Physical disconnection, 613
Physical intrusion, in a network, 491
Physical security, 278, 280, 579, 632
Physical separation, 249
Picassa, 724
Pictures at an Exhibition, 211
Ping attack, 620, 623
Ping of death attack, 607
Ping protocol, 606
Piracy, 693
PKI. See Public key infrastructure
Plaintext, 288
Plaintext–ciphertext cryptanalysis, 316
Plan, security testing, 99
Planning, 33
Platform as a service (PaaS), cloud model, 213
Plug-and-play hardware, 184
Plug-in, 493, 538, 565
Pointer, 247
Pointer, stack, 220
Point-to-point connection, wireless network, 422
Policy, 14, 190, 212, 280, 508, 566, 720
access control, 281
enforcement, 357
privacy, 733
security, 96, 355, 380, 433, 565
Index

Push mode coordination, botnet, 639
Puzzle, 496

Q
Quality assurance, 97
Quality
 of code, 97, 241, 569, 571
 of software design, 348
 of trusted software, 356
Quench, 616
Query analysis, disclosure protection, 728
Query
 modification, 541
 search engine, 539

R
Rabbit, malicious code, 134
Race condition, 79
Radiation, communications, 437
Radio broadcast, phony, 486
Radio Frequency ID. See RFID tag
RAM, data recovery from, 326
Random access memory, 219
Random attack, See Attack, random
Random number generator, 299
Random sample, disclosure protection, 727
Ransom, 604, 635
Ranum, M., 379, 570
Rate limiting, network, 616, 647
RC4, encryption algorithm, 419
RCA, 486
Reader, Adobe, 152
Readiness exercise, 3
Reasonableness checking, 101
Reauthentication, 202
Reboot, 225
Receiver Operating Characteristic curve, 54
Recovery
 from attack, 30
 malicious code infection, 159
Red team, testing. See Penetration testing
Redaction Tool, Microsoft, 195
Redirection, network traffic, 488
Redundancy, 103, 631, 669
 data, 282
Reed Solomon code, 668
Reference monitor, 352, 381
 small and simple, 353
 tamperproof, 353
 unbypassable, 353
Reflection, image, 442
Register
 base/bounds, 251
 fence, 250
 return, 220
Registration, for authentication, 57
Registry, system, 239, 242
Regression testing, 115
Regulation, 32
Reject, false. See False negative
Reliability, 225, 570
Remanence, magnetic, 192
Remote authentication, 61
Remote shutdown, 656
Rent-a-bot, 640
Replacement cost, 9
Replacement
code, 146
 encryption key, 457
Replay attack, 200, 467, 527
Replay, password, 578
Replication, code, 132
Reputation, 158, 186
Requirements, 116
 checking, 121
 program, 76, 86, 88
 software development, 354
Rescission, encryption key, 457
Research, 746
Resident virus, 133
Residual risk, 25
Resilience, 680
Resiliency, 612
Resolution, domain name, 487
Resource
 allocation, 348
 assignment, dynamic, 212
 exhaustion attack, 603
 exhaustion, 610
 sharing, 212
 starvation, 610
Response
 in authentication, to attack, 31
 Retina scan, 51
 Retrofitting security, 354
Return register, 220
Reuse, 546, 580
 object, 192
 of software, 90
Revenge, 20
Reverse engineering, 699
Review
 code, 98, 121
 design, 121
 peer. See Peer review
program, 98
software, 96
Revocation list, certificate, 562
Revocation
access right, 264, 272
encryption key, 458
of password, 43
Reward, 185
RFID tag, 436, 577, 724
Rijmen, V., 322
Rijndael, 322
Riot, 278
Risk analysis, 116, 286, 632, 741
Risk management, 25
Risk, 3, 25, 30, 243, 746
estimation of, 27
extreme, 27
of cloud computing, 213
perception of, 27
residual, 25
to environment, 191
to individual, 191
to organization, 190
to system, 190
transferring, 25
Rivest, R., 170, 461, 506, 548, 641
Rivest–Shamir–Adelman encryption algorithm.
See RSA encryption
ROC curve. See Receiver Operating Characteristic curve
Rochlis, J., 234
Rogue network connection, 413
Rogue program, 132
Role-based access control (RBAC), 568
Root DNS server, 589
Root
certificate chain, 561
DNS server, 612
Rootkit revealer, 342
Rootkit, 134, 335
on mobile phone, 337
stealth of, 341
Rounding, disclosure protection, 727
Routed network, 605
Router, 373, 443, 488
network, 376
screening, 383
Routing table, 489
Routing
address, 596, 612
network communication, 443
network, 491, 499
RSA encryption algorithm, 311, 459, 461, 590
RSA Laboratories, 170, 548
Rubin, A., 478
Russia, 22, 158, 241, 601
Russinovich, M., 342
S
Sabotage, 278
Safe language, 245
Salami attack, 666, 740
Salt, password randomizer, 672
Saltzer, J., 95
Sampling, in authentication, 55
San Diego Supercomputer Center, 20
Sandbox, 97
Sanitization, of data space, 96
SANS Institute, 217
Sarbanes–Oxley, 191
SAS Institute, 526
Sasse, A., 742
SATAN (security tool), 44
SATAN, vulnerability scanning tool, 370
Satellite
geospatial, 434
network signal, 440
Scam, email, 526
Scanner
virus, 154, 160
vulnerability, 166
wireless network, 405
Scanning
network, 369
port, 370
vulnerability, 370
Scareware, 134
Schaefer, M., 121
Schell, R., 85, 110, 119, 136, 571
Schröer, J., 725
Schroeder, M., 95
Scomp, 359, 363
Screening router firewall, 383, 388, 394
Script attack, 134, 539, 646
Script kiddie, 29
Search and seizure, online, 710
Search engine, 539
Secrecy, 478
in encryption, 309
Secret, shared. See Shared secret
Secret-key encryption, 289, 311, 459, 461
Secure default, 685
Secure Shell, 382, 589
Secure Sockets Layer protocol, 427, 493, 589
SecurID token, 200, 504, 62
Security association, IPsec, 594
Security blanket, 4
Security Essentials tool, Microsoft, 529
Security through obscurity. See Security, by/through obscurity
Security triad, 12
Security
after-the-fact, 542
as an add-on, 354
by/through obscurity, 96, 194, 344, 436, 443, 492, 598
hardware-supported, 263
in cloud computing, 214
kernel, 351, 359
perimeter, 189, 399, 442
physical, 280
policy, 380, 508
Security-relevant activity, 334
Segment, network, 373
Segmentation, memory, 256, 260
Self-interest, 188
Self-protection, operating system, 335
Self-regulation, 745
Self-replication, code, 132
sendmail routine, 235
Sensitive data, 712
degree of, 712
from source, 712
in relation to previous data, 712
inherently, 712
sensitive attribute or record, 712
Sensitivity, in authentication, 53
Separation, 16, 96, 170, 249, 359, 646
cryptographic, 170, 249
in operating system, 351
in software design, 350
logical, 170, 249
memory, 170, 21
of duties, 191, 203
of privilege, 96, 355
physical, 170, 249
temporal, 170, 249
user, 157
Sequence number, 582
Sequencing, 665
Serialization flaw, 79
Server farm, 631
Server, web, 380
Service program, 509
Service Set Identifier. See SSID
Service, 372
cloud computing models, 213
denial of. See Denial-of-service
Session hijack, network, 134, 424, 506, 584
SETUP program, 143
SHA (Secure Hash Algorithm), 170, 548
SHA-1, 549, 563
SHA-3, 549
Shakespeare, W., 526
Shamir, A., 319, 461, 506
Shannon, C., 309, 319
Shared data, 223
Shared resource matrix, 514
Shared secret, 423, 463, 504
Sharing, 211, 250, 264, 677, 683
Sharing
data, 711
in a software module, 92
network, 444
Shell, computing recovery center, 284
Shoch, J., 133
Shortcut, 195
Shortest path, 605
SHS (Secure Hash Standard), 170. See also SHA
Shunning, address, 617
Side effect, in a program, 85
Signal strength, wireless, 409
Signaling, covert, 519
Signature
attack, 620
digital. See Digital signature
for authentication, 62
malicious code, 153
virus, 160
Signature-based intrusion detection system, 618, 620
Signed code, 505, 565
Signer, digital certificate, 558
Sign-on, single, 69
SilentBanker, 493
Silver bullet, 88, 111, 113
Simmons, G., 517
Simplicity, 96, 493
in reference monitor, 353
of software design, 94, 347, 348, 352
of software, 90, 96
reference monitor concept, 381
Simulation, preparedness, 4
Simultaneousness, 16
Single point of failure, 52, 94, 468
Single sign-on, 69, 465
Single-purpose, software module, 90
Sinkhole, address, 617
Site registration, 731
Size, of device, 279
Skepticism, by programmers, 503
Skimming, 61, 362
Skype, 391, 495
Slammer worm, 136, 139, 240
Small sample suppression, 727
Smallness, 17
 in software design, 352
 reference monitor concept, 381
Smartcard, 197, 564
 credit card, 492
Smartphone application, 543, 566
Smartphone, 740
Smashing, stack, 229
SMTP protocol, 534
Smurf attack, 607
Sniffer, network, 416, 437, 439
Snow, B., 23
SoBig virus, 136
Social engineering, 49, 187
Social media, 708
Social networking, 532, 708
Software as a service (SaaS), cloud model, 213
Software Assurance Forum for Excellence in Code (SAFECode), 97
Software correctness, 126
Software development, 89
Software engineer, 76
Software engineering, 89
Software
 as asset, 8
 complexity of, 347
 copyright of, 694
 failure, 18
 open source, 569
 trusted, 356
Sony XCP rootkit, 343
Soundex, 54
Source address, network, 380, 398
Source code, 162
Source quench protocol, 606, 616
Source routing, 491
Source-based remotely triggered black hole, 648
South Korea, 527
Spafford, E., 40, 45, 234, 237, 570
Spam, 214, 345, 497, 526, 532, 641, 722
Spanning tree, 605
Specification, software, 89, 97
Specificity, in authentication, 53
Speed, of authentication, 55
Spelling, errors in, 67
Splicing, cable, 438
Splicing, operating system extension, 345
Spoofing, 466, 483, 500
 MAC address, 424
Sporadic fault, 226
Spy, 184, 509, 654
Spybot, 729
SQL injection, 540
SQL Slammer, malicious code, 240
SSH. See Secure Shell
SSID (Service Set Identifier), 411, 413, 415, 417, 420, 422
SSID cloaking, 414
SSL. See Secure Sockets Layer protocol, 427, 493, 589
Stack frame, 228
Stack pointer, 220
Stack protection, 247
Stack smashing, 229
Stack
 overflow in, 238
 system, 218, 227, 242
StackGuard utility, 248
Standard, secure coding, 97
Standards, 110, 355
 process, 112
Startup
 secure, 361
 system, 336
State, U.S. Department of, 354
State-based intrusion detection system, 621
Stateful inspection firewall, 385
Stateful packet analysis intrusion detection, 622
State-sponsored attack, 654
Static code analysis, 105
Statistics, 162
Stealth mode
 intrusion detection system, 628
 wireless network, 414
Stealth, 492
 botnet command and control, 641
 malicious code, 152, 157, 338
Stecheldraht, 645
Steganography, 517
Stoll, C., 237, 627
StopBadWare.org, 158
Storage channel, 510
Storage pattern, malicious code, 163
Storage, 219
 strcpy function, 234
 Stream cipher, 312
Strict source routing, 491
String
 overflow, 232
String
 length-preceding, 232
 null-terminated, 233
 variable-length, 232
 strlen function, 234
Strong passwords, 48
Structure, network, 376
STU-III, 504
Stuxnet worm, 23, 138, 139, 654, 658, 740
Subject, 14, 41, 261
 untrusted, 269
Subnet, protected, 376
Subprocedure call, 220
Subscript, out of bounds, 221
Substitution attack, 665
Substitution cipher, 293, 319
Substitution, in AES encryption, 323
Subtask, 90
Sum, inference by, 715
Supplicant, wireless network, 423, 425
Support, hardware, for security, 263
Suppression
 of sensitive data, 724
 statistical, 725
Surface-to-air missile, 483
Surrounding virus, 146
Surveillance attack, 537
Surveillance, 708, 747
Swallow, W., 176
Swapping, disclosure protection, 728
Sweden, 541
Sweeney, L., 720, 723
Swiss bank account, 68
Switched network, 605
Symantec, 24, 137, 159, 162, 493, 495, 505, 613
Symmetric encryption, 289, 311, 459, 461
SYN flood attack, 608, 620, 643, 647
SYN protocol, 608
Synchronization, 82
Synchronous token, 199
Syria, 483, 655
System memory, 220
System Security Engineering Capability Maturity
 Model (SSE CMM), 112
System space, overwriting, 222
Systems engineering, 744

T
Tag, memory, 254
Tampering, 197, 353, 362
 hardware, 197
 with votes, 479
Tamperproof, ballot, 477
Tamperproofness
 in reference monitor, 353
 reference monitor concept, 381
Tap, 18
Target, 23
Targeted attack. See Attack, targeted
TCB. See Trusted computing base
TCP handshake, 608
TCP protocol, 585, 665, 668
TCP session, 608
TCSEC. See Trusted Computer System Evaluation
 Criteria)
TDL-1 rootkit, 345
TDL-2 rootkit, 345
TDL-3 rootkit, 343
TDL-3 rootkit, 345
TDL-4 rootkit, 346
TDSS rootkits, 345, 361
Team, programming, 98
Teardrop attack, 610, 647
Technical control, 32
Telecommuting, 454
Telnet protocol, 369, 534
Template, for authentication, 57
Temporal Key Integrity Protocol, 422, 423, 427
Temporal separation, 170, 249
Terrorism, 29
Terrorist, 21, 23
Test coverage, 116
Test plan, security, 99
Testing, 88, 98, 114, 570
 acceptance, 115
 black box, 100, 115
 clear-box, 115
 completeness of, 118
 complexity of, 118
 confidence from, 118
 effectiveness of, 117
 expertise for, 116
 for security, 122
 function, 115
 installation, 115
 integration, 115
 limitations of, 117
 penetration. See Penetration testing
 performance, 115
 regressions, 115
 relationship to schedule and budget, 118
 setting boundaries of, 118
 shows only presence of flaws, 118
 standards of, 111
 unit, 115
 white box, 100
Tews, E., 425
Theft, 12, 18, 175, 187, 277, 280
Theofanos, M., 52
Therapeutic trust, 188
Thief, 12
Third party, trusted, 457, 565
Third-party ads, online, 731
Thompson, H., 114
Thompson, K., 136, 236
Thrashing, 610
Threat analysis, 76
Threat enumeration, 65
Threat, 10, 17, 25, 33
 human, 18
 insider. See Insider threat
 natural cause, 17
 nonhuman, 17
Threats, enumeration of, 65
Threat–vulnerability–countermeasure analysis, 99
Throttle, 616
Ticket, 464
Ticket-granting server, Kerberos, 465
Tiger team. See Penetration testing
Time bomb, 134
Time, latency, 373
Time-based authentication, 63
Timeliness, 16
Time-of-check to time-of-use flaw, 82
Timestamp, 467
Timing channel, 512
Timing, 81
Titan Rain, 689
TJ Maxx, 22, 421
TKIP. See Temporal Key Integrity Protocol
TLS (transport layer security) protocol, 589
Token generator, asynchronous, 201
Token generator, synchronous, 199
Token, 197, 580, 588
 access control, 270
 dynamic, 61
 for authentication, 60
 password generating, 199
 static, 61
 synchronous, 199
Toolkit
 attack, 132
 malicious code, 134
Tools, attack, 28
Tracker, inference by, 717
Tracking bug, 534
Tracking cookie, 535
Tracking
 document, 723
 online, 731
Trade secret, 699
Tradeoffs, 747
Traffic block, 626
Traffic redirection, network, 582, 611
Traffic volume, 602
Training, user, 568, 685, 729
Transaction, repeat, 578
Transient virus, 133
Translation, network address, 397
Transmission
 error, 669
 failure, 614
 malicious code, 143, 165
 virus, 156
Transparency, software design, 347
Transparent image, web, 536
Transport layer security (TLS) protocol, 589
Transport mode, IPsec, 596

Transposition cipher, 304
Transposition
 columnar, 304
 in AES encryption, 323
 in encryption, 319
Trapdoor, 84, 110, 134, 239
Treasury, U.S. Department of the, 131
Tribal flood network (TFN) attack, 21, 638, 644
Tribal flood network, year 2000 (TFN2k), 21, 638
Trigram, 306
Trin00 attack, 21, 638, 644
Triple DES encryption, 321
Tripwire, utility program, 81, 169, 623
Trojan horse, 133
Trope, R., 128
Trust, 93, 136, 187, 202, 354, 356, 363, 381, 468,
 layered, 349
 of insiders, 191
 therapeutic, 188
TRUSTe certification, 363
Trusted Computer System Evaluation Criteria, 12,
 361, 370
Trusted computing base, 357
 design of, 359
 implementation of, 359
Trusted Information Systems (TIS), 379
Trusted Mach, 363
Trusted path, 361
Trusted system, 354, 355
Trusted third party, 67, 457, 505
Trusted Xenix, 363
Trustfulness, 188
Trustworthiness, 188
Trustworthy Computing Initiative, Microsoft, 98, 363
Trustworthy third party, 565
Tunnel mode, IPsec, 596
Tweet, 710
Twitter, 723
Two-factor authentication, 62
Two-state hardware, 263
Type checking, 245
Type I error, 629
Type II error, 629
Type mismatch, 233
Type safety, 245

U
Ukraine, 131
Unauthenticated user, 242
Unauthorized network access, 414
Unbypassability, in reference monitor, 353
Uncertainty, 741
Understandability, of software, 90
Undetectability, malicious code, 338
Index

Undocumented access point, 84
Unforgeability, 547
Unintended consequences, 747
Unit testing, 115
Unity, in software design, 351
Unlimited privilege, 157
Unsafe utility program, 234
Unscrupulous CA, 592
Update, program, 74
URL
 modification of, 78
 vulnerability in, 77
Usability, 15, 16, 50, 52, 69, 88, 96, 202, 355, 480, 501, 558
Usage limitation, 250
USB device, 181
USB memory drive, 281
Use cases, computer security, 99, 744
Usefulness, 88
User awareness, 729
User behavior, 745
User education, 685
User space, overwriting, 222
User, 18, 568
UserID, 369

V
Vaccination, 161
Validation, input, 76, 93, 96, 122
Validation, program, 121
Valuation, of an asset, 9
Value, 8, 9, 24, 174
 assessing, 25
 of assets, 142
Variation, in malicious code, 160
Variety, in testing, 117
Vax VMM, 363
VAX, 353
Veins, for authentication, 56
Venema, W., 370
Verifiability, of software design, 352
Verification, program, 120, 572
VeriSign, 563
Verizon Breach Report, 135
Verizon, 87
Vernam cipher, 299
Veteran’s Administration, U.S. (VA), 277, 280, 287, 328
Victim, 188
 of crime, 42
Video image, 434
Video sharing, 684
Viega, J., 97
View, confidentiality property, 15
Vigenère tableau, 299
Virtual machine monitor, 346
Virtual private network, 388, 452, 596
Virus hoax, 139
Virus scanner, 154, 158, 160
Virus, 132, 527
 appended, 145
 boot sector, 149
 document, 144
 encrypting, 166
 integrated, 146
 memory-resident, 152
 polymorphic, 165
 resident, 133
 surrounding, 146
 transient, 133
Vodafone, 492, 656, 747
Voice over IP, 495
Voiceprint, for authentication, 51
Volumetric attack, 603
Voting, 541
 electronic, 475
VPN. See Virtual private network
Vulnerabilities
 naming, 87
 statistics, 87
Vulnerability, 10, 18, 30, 33, 370, 433, 497
 analysis, 65
 checker, 237
 disclosure, 148
 effect of, 86
 known, list of, 19
 patch, 137, 370
 program, 77
 scan, 646
 scanning tools, 370
 software, 376
 static password, 198
Vyssotsky, V., 136

W
Waiting time, 16
Waiting, 16
Waladac, 533
Walk-through, 99
War driving, 413
Ware, W., 17, 136, 355
Warfare, 653
Warranty, of program correctness, 128
Watermark, digital, 517
Weak passwords, 236
Weakness, 10, 30. See also Vulnerability
in encryption algorithm, 291, 291
of cryptographic algorithm, 299
Web bug, 534
Web server, 380
Web site defacement, 530
Web site, fake, 527
Weissman, C., 119
Welke, S., 15
Well-known port, 371
WEP. See Wired Equivalency Privacy
Wheeler, D., 81
WHILE instruction, 219
White box testing, 100
Whittaker, J., 114, 116
WiFi Protected Access protocol.
See WPA, WPA2
WiFi, 405
WikiLeaks, 281, 627, 708, 710
Wilson, W., 5
Windows, Microsoft, 445
Winston Churchill High School, 181
Wired Equivalency Privacy, 410, 418, 422
Wireless communication, 407
Wireless connection, 408
Wireless Fidelity (WiFi), 405
Wireless network
access point, 409
access range, 421
access, 417
ad hoc connection, 422
association, 411, 417
authentication, 416, 423
beacon, 411
connection, 415
interception, 414
point-to-point connection, 422
preferred association, 416
supplicant, 423
Wireless networking, 406
Wireless Security Analyzer tool, IBM, 408
Wiretap, 18, 439, 441
lawful, 443
Wiretapping, 747
Word size, memory, 232
Work factor, 195
World War I, 5
World War II, 5, 69, 289, 292, 297, 301, 308, 317, 486
Worm, 133
Worm, Morris. See Morris worm
WPA, 422
WPA2, 422
X
XCP rootkit, 343
Y
Y2K, 3
YouTube, 724
Z
Zero-day attack, 136
Zero-day exploit, 613
Zeus
attack toolkit, 613
Trojan horse, 505
Zombie, 134, 637
Zune music player, Microsoft, 106
Register the Addison-Wesley, Exam Cram, Prentice Hall, Que, and Sams products you own to unlock great benefits.

To begin the registration process, simply go to informit.com/register to sign in or create an account. You will then be prompted to enter the 10- or 13-digit ISBN that appears on the back cover of your product.

Registering your products can unlock the following benefits:
- Access to supplemental content, including bonus chapters, source code, or project files.
- A coupon to be used on your next purchase.

Registration benefits vary by product. Benefits will be listed on your Account page under Registered Products.

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall Professional, Que, and Sams. Here you will gain access to quality and trusted content and resources from the authors, creators, innovators, and leaders of technology. Whether you’re looking for a book on a new technology, a helpful article, timely newsletters, or access to the Safari Books Online digital library, InformIT has a solution for you.
LearnIT at InformIT

Looking for a book, eBook, or training video on a new technology? Seeking timely and relevant information and tutorials? Looking for expert opinions, advice, and tips? **InformIT has the solution.**

- Learn about new releases and special promotions by subscribing to a wide variety of newsletters. Visit informit.com/newsletters.
- Access FREE podcasts from experts at informit.com/podcasts.
- Read the latest author articles and sample chapters at informit.com/articles.
- Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook, Twitter, YouTube, and more! Visit informit.com/socialconnect.