

Joomla!™
Programming

psn-dexter-book.indb i 3/7/12 11:53 AM

The mission of Joomla! Press is to enhance the Joomla! experience
by providing useful, well-written, and engaging publications for
all segments of the Joomla! Community from beginning users

to platform developers. Titles in Joomla! Press are authored by the leading
experts and contributors in the community.

Visit informit.com/joomlapress for a complete list of available publications.

Joomla! Press

Make sure to connect with us!
informit.com/socialconnect

Joomla!™
Programming

Mark Dexter
Louis Landry

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

psn-dexter-book.indb iii 3/7/12 11:53 AM

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial cap-
ital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382- 3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging- in- Publication Data
Dexter, Mark, 1954–
 Joomla! programming / Mark Dexter, Louis Landry.
 p. cm.
 Includes index.
 ISBN 978-0-13-278081-0 (pbk. : alk. paper) 1. Joomla! (Computer
file) 2. Web sites—Authoring programs. 3. Web site development. I.
Landry, Louis, 1980- II. Title.
 TK5105.8885.J86D492 2012
 006.7'6—dc23 2011052204

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236- 3290.

ISBN- 13: 978- 0- 13- 278081- 0
ISBN- 10: 0- 13- 278081- X

Text printed in the United States on recycled paper at at RR Donnelly in Crawfordsville,
Indiana.
First printing, March 2012

Editor- in- Chief
Mark L. Taub

Executive Editor
Debra Williams
Cauley

Development Editor
Sheri Cain

Managing Editor
John Fuller

Full- Service
Production Manager
Julie B. Nahil

Copy Editor
Scribe Inc.

Indexer
Scribe Inc.

Proofreader
Scribe Inc.

Technical Reviewer
Andrea Tarr

Publishing
Coordinator
Kim Boedigheimer

Compositor
Scribe Inc.

psn-dexter-book.indb iv 3/7/12 11:53 AM

This book is dedicated to the many hardworking volunteers
in the Joomla! community whose cheerful dedication renews

on a daily basis the authors’ faith in humankind.

psn-dexter-book.indb v 3/7/12 11:53 AM

This page intentionally left blank

Contents

 Preface xix

 Acknowledgments xxvii

 About the Authors xxix

 1 What Is Joomla! Development? 1
Developing for Joomla Is Not Difficult! 1

The Joomla Technical Environment 1

Joomla Programming:
What Do You Need to Know? 3

Extending Joomla: Let Me Count the Ways 4

Open Source Means You Have Control 4

Overrides Let You Change What Shows on
the Page 4

Extensions 6

Plugins 6

Modules 9

Components 10

Languages 11

Templates 13

Which Extension Type
Should I Use for My Project? 14

Using Joomla as a Platform or Framework 15

Summary 16

 2 Getting Your Workstation Ready for Joomla!
Development 17
Requirements to Run Joomla 17

Apache DocumentRoot Folder 18

Getting Up- To- Date Instructions 19

Windows Platforms 19

Mac OS X Plaform 19

Linux Platforms 20

Default Owner for Files and Folders 20

psn-dexter-book.indb vii 3/7/12 11:53 AM

Contentsviii

Tools of the Trade 21

IDE versus Text Editor 21

Open- Source IDE Choices 22

Commercial IDEs 37

Text Editor Choices 37

Other Tools 38

Version Control Software 38

Automatic Builder Software (Ant and Phing) 38

Automated Test Programs 39

Summary 39

 3 How Joomla! Works 41
Tour of Joomla Folders 41

Front End versus Back End 42

Cache 42

CLI 43

Components 43

Images 45

Includes 46

Installation 46

Language 47

Libraries 47

Logs 47

Media 47

Modules 48

Plugins 48

Templates 49

Tmp 50

Administrator 50

Joomla Platform 56

Web Programming versus “Normal” Programming 58

Maintaining the State of the Program 58

Controlling and Checking the Commands 60

Anatomy of a Joomla Execution Cycle 61

Load the Index.php File 62

Check the Execution Environment 62

Define the File Locations 64

psn-dexter-book.indb viii 3/7/12 11:53 AM

Contents ix

Load the Joomla Framework 66

Start or Continue the Session 67

Route the URL 68

Execute the Component 70

Render the Page 76

Output the Page 82

Summary of Joomla Session 83

Naming Conventions (Conventional Wisdom?) 85

Global Objects 85

Overview of Database Tables 86

Note about Table Prefixes 86

Summary 89

 4 Extending Joomla!
with Layout Overrides 91

Template Basics 91

Template Folders and Files 92

Template index.php File 93

Positions in Templates 96

Template Parameters 100

Module Chrome 103

Copy Template 105

Template Layout Override
of Latest Articles Module 108

Module Configuration in Sample Data:
loadposition 108

Creating the Layout Override File 109

Customizing the Layout 112

Fixing a Problem Using the strip_tags Function 113

Using the JHtmlString truncate Method 116

Using the JHtml::_ Syntax 120

Change the Look of a Component:
User Registration 121

Alternative Layouts 125

Adding a New Menu Item Layout 126

Parameter Overrides 127

How Do Layout Overrides Work? 129

psn-dexter-book.indb ix 3/7/12 11:53 AM

Contentsx

Nonlayout Overrides 129

Module Chrome: Add New Module Style 129

Language Overrides: Add Translation to Our
Override 134

Table and Model Overrides 137

Summary 138

 5 Extending Joomla! with Plugins 139

What Is a Plugin? 139

How Do Plugins Work? 139

Naming Conventions for Plugins 140

Plugin Types: Where Can You Insert a Plugin? 140

Authentication 141

Captcha 141

Content 141

Editors 141

Editors- XTD 141

Extension 141

Search 141

Smart Search (Finder) 142

System 142

User 142

Tour of Selected Core Plugins 142

System: SEF 142

Authentication: joomla Folder 145

Content: joomla Folder 154

onBeforeCompileHead 159

User Registration Plugin 164

Update the Approval Override File 165

Add the XML File 166

Add the PHP Plugin File 167

Add the Language Files 169

Test the Plugin 170

Package the Plugin 171

Improved User Registration Plugin 173

Create the Plugin XML File 174

Create the Form XML File 174

Create the Plugin PHP File 176

psn-dexter-book.indb x 3/7/12 11:53 AM

Contents xi

Add the Language Files 178

Test the Plugin 178

Package the Plugin 179

Adding Parameters to Our Plugin 179

Using Plugins to Override Core Classes 182

How Plugins Are Imported 182

How Joomla Classes Are Loaded 183

Example: Override the JTableNested Class 184

Plugin Best Practices 186

Summary 186

 6 Extending Joomla!
with Modules 187

What Is a Module? 187

Modules versus Components 187

Tour of a Core Module 188

Module XML File 188

Main Module File 189

Module Helper Class 192

Default Layout File 195

Show Articles by the Current Author 197

Module Structure 197

Module XML File 198

Entry File: mod_joompro_articles_author.php 203

Helper File 204

Layout File: default.php 215

Language Files 216

Validating Parameters in JForm 218

Help File 225

Packaging the Module 226

Review of Our Module 226

Module Best Practices 227

Summary 227

 7 Components Part I: Controllers and Models 229

What Is a Component? 229

CRUD, Get, and Post 230

Components Are Unique 230

psn-dexter-book.indb xi 3/7/12 11:53 AM

Contentsxii

MVC Design Pattern 230

Back- End Weblinks Component 231

Installation Files 233

Components Menu 233

Component Options (Parameters) 234

Helper Methods 234

Weblinks Component Entry Point 235

Weblinks Controller in Action 237

Weblinks Models 252

Weblinks Table Class 259

Summary 262

 8 Components Part II: Views, JForm, and Front End 263

Views and the display() Method 263

Weblinks View 263

Default Layout File 267

WeblinksViewWeblink View 275

Using JForm in Weblinks 275

Saving the JForm Object in Memory 280

Modifying Forms Dynamically 281

Rendering the JForm 282

Back- End Weblinks Summary 287

Front- End Weblinks Component 288

Similar Folder Structure and MVC Pattern 288

Menu Item Types 290

Front- End Routing 293

Front- End News Feed View 303

Summary 304

 9 Components Part III:
Example Component Back End 305

Example Component Functional Overview 305

Detailed Design 306

Back- End Files 307

Subscriptions Manager: Subscriptions Screen 308

Default Controller 309

Submanager Controller and Toolbar Tasks 311

Manager View 314

psn-dexter-book.indb xii 3/7/12 11:53 AM

Contents xiii

Helper Class 317

Manager Model 319

Database Tables 324

Manager Screen Layout 326

Subscriptions Manager: Add and Edit 331

Controller Tasks 331

Add and Edit View 333

Add and Edit Model 336

Add and Edit Form 341

Table Class 346

Language Files 349

Installation and Configuration 351

Summary 353

 10 Components Part IV:
Example Component Front End 355
Files Overview 355

Installation XML File 355

Component Entry Point 356

Default Controller 357

Subscription- Category View 359

Menu Item XML File 359

Category View 361

Model 366

Category Helper File 371

Category Layout Files 371

Subscription View 375

Subscription Edit Controller Methods 376

Edit View and Form 378

Edit Layout 382

Subscribe Task 383

Form Model 386

Thank- You Layout 391

Language File 392

Packaging the Component 394

New Functionality: Back- End Subscriber Report 395

New Toolbar Button 395

Controller Method for New Task 396

psn-dexter-book.indb xiii 3/7/12 11:53 AM

Contentsxiv

New Model Class 396

Controller Method to Export File 400

Report in Action 401

Real- World Considerations 402

Summary 403

 11 Working with Your Database 405
Database Overview 405

Creating and Modifying
Tables with DDL Commands 407

CREATE TABLE Command 407

Data Types 410

Column Attributes 412

ALTER TABLE Command 413

DROP TABLE Command 414

Using phpMyAdmin 414

Test and Debug SQL Queries 414

Create DDL Scripts 416

Backup and Copy a Database 418

Using SQL Data with DML Commands 419

SELECT Queries 419

UPDATE Queries 426

INSERT Queries 427

DELETE Queries 428

UNION Queries 428

Expressions in Queries 429

Designing the Table Structure 429

Reference Tables 429

Key Fields and Foreign Keys 430

Mapping Tables 430

History Tables 431

Working with the Database Inside Joomla 432

Using JDatabaseQuery 432

Working with Query Data 438

Summary 442

psn-dexter-book.indb xiv 3/7/12 11:53 AM

Contents xv

 12 JavaScript and
MooTools in Joomla! 443
What Is JavaScript? 443

How Does JavaScript Work? 444

What Is MooTools? 444

How JavaScript and MooTools
Are Used in Joomla 446

Built- In JavaScript Features 446

Calendar 446

Caption 448

Colorpicker 449

Form Validation 449

Framework 452

Highlighter 452

Keepalive 453

Modal 453

Check All and Multiselect 458

Noframes 459

Switcher 459

Tooltip 463

Tree 463

Uploader 466

Using MooTools Extensions 467

Using AJAX in Joomla 467

Using Other JavaScript Frameworks 471

Summary 473

 13 Using the Joomla! Platform as an Application
Framework 475
What Is the Joomla Platform? 475

Why Have a Separate Project? 475

What Can the Platform Be Used For? 476

Platform Example Programs 477

Set Up Platform Project 477

Hello World CLI Application 479

Web Hello WWW Application 480

Subscription Monitoring Example 482

Project Structure 482

Configuration File 483

psn-dexter-book.indb xv 3/7/12 11:53 AM

Contentsxvi

Monitor File 484

Subscription Monitoring File 486

Running Our Monitor Program 496

Running CLI Programs Inside the Joomla CMS 497

Summary 497

 A Crash Course on PHP and Object- Oriented
Programming 499
PHP File Structure 499

PHP- Only Files 499

Files with PHP and HTML 499

PHP Syntax Basics 500

White Space 500

Important Characters 500

Common Operators 502

Arithmetic and String Concatenate 502

Setting Variable Types 502

Logical Operators 503

If Statements 503

Switch Statement 505

Looping Statements 505

Foreach Loops 505

For Loops 506

Do/While Loops 506

Continue Command 506

Alternative Syntax 507

Variables 508

Declaring variables 508

Variable Scope 508

Arrays 508

Working with Arrays 509

Strings 510

Constants and Current Directory 510

Functions and Methods 511

Function Structure 511

Function Variable Scope 511

Passing Variables by Reference 512

Including Files and File Types 512

psn-dexter-book.indb xvi 3/7/12 11:53 AM

Contents xvii

Class Declaration Files 513

Function Declaration Files 513

Simple Script 513

Mixed Files 514

Including Files 514

Object- Oriented Programming Basics 514

Classes and Objects 514

Constructor Method 515

Creating Objects 515

Standard Class 516

Extends and Inheritance 516

Method Overriding 516

Public, Protected, Private Modifiers 517

Static Methods, Fields, and Variables 517

$this, self, and parent 517

Simple Debugging 518

Viewing Defined Variables 519

Viewing the Stack Trace 519

Some Advanced Code Techniques 519

Using || Instead of If Statements 519

Method Chaining 520

PHP Magic Methods 520

Variable Class and Method Names 521

Regular Expressions 522

 B Joomla! Filter Types 523

HTML Filtering 524

Using Filtering in Joomla Applications 524

Filtering in JForm 524

Filtering in JRequest and JInput 524

Using JFilterInput Directly 525

 C JHtml Methods 527

Calling JHtml Methods 527

Custom JHtml Classes 528

JHtml Class Methods 528

Link 528

Image 528

psn-dexter-book.indb xvii 3/7/12 11:53 AM

Contentsxviii

Stylesheet 528

Script 529

Calendar 529

Date 529

HTML Folder Classes 529

Batch 529

Behavior 529

Category 530

Content 530

ContentLanguage 530

E- mail 530

Form 530

Grid 530

Image 531

JGrid 531

List 531

Select 531

Sliders 531

String 531

Tabs 532

Glossary 533

Index 539

psn-dexter-book.indb xviii 3/7/12 11:53 AM

Preface

Joomla! development encompasses a wide variety of tasks. One project might be to
create a single override file to change the way one page is presented. Another project
might be to create an extension with multiple components, plugins, and modules.

Although no book can be all things to all people, this book provides helpful infor-
mation for a variety of people, from beginners with no Joomla development experi-
ence to experienced Joomla developers who need a quick start on version 2.5.

Experienced Joomla User
Who’s New to Programming
You have probably run into situations where adjusting parameters isn’t quite enough
to get your site just the way you want it. Or perhaps you need an extension that isn’t
quite like anything you have found in the Joomla Extensions Directory (JED). If so,
this book will help you get started customizing Joomla by writing PHP code. You
absolutely do NOT need to be an expert programmer to do basic Joomla development.
Remember, just as Joomla was designed to let you create websites without knowing
anything about PHP or MySQL, it is also designed to let you do a lot of customizing
with a very modest amount of development knowledge. You will be pleasantly sur-
prised at how much you can do with just a small amount of code and how quickly you
can learn what you need to expand the f lexibility and functionality of Joomla.

This book assumes that you know nothing whatsoever about PHP or MySQL pro-
gramming. Everything we do is explained from the ground up. We also provide refer-
ences to free resources to help you learn more about these subjects.

Experienced Web Programmer
Who’s New to Joomla
In this case, you already have the basic technical knowledge to jump in; you just need
to know how Joomla works. This book is organized to let you find this information
quickly. Although we provide some basic PHP and MySQL information, the book is
organized to make it easy for you to skip sections that you already know so you can
focus on the specific information about Joomla. We also explain the design choices
that were made in the overall Joomla architecture so you can understand why the pro-
gram was built this way.

psn-dexter-book.indb xix 3/7/12 11:53 AM

Prefacexx

Need a Quick Start on Version 2.5 Development
Joomla version 1.6 was a significant change from version 1.5, especially from a devel-
oper’s point of view. Joomla versions 1.7 and 2.5 were incremental changes from 1.6.
This book is based entirely on the 1.6/1.7/2.5 versions of Joomla. Where applicable,
changes from version 1.5 are highlighted.

Need to Learn More about How Joomla
Works and Developing Extensions
This book will provide a number of insider insights into not only how Joomla works,
but also why it was designed as it was. In any large, complex package like Joomla, there
are a number of design decisions that were made that have important implications for
the developer. Understanding how it works and what the best practices are for Joomla
development will allow you to write extensions that take full advantage of the Joomla
framework and architecture and will be easy to modify and maintain going forward.

What This Book Is Not About
This book does not cover Joomla templates and design issues in general. Also, this
book does not cover how to use Joomla. There are separate books that do a great job
of covering these topics.

Joomla developers use a variety of tools, including PHP, SQL, XHTML, CSS, and
JavaScript. Most of what we cover in this book involves writing PHP code. We do not
assume that the reader already knows a lot of PHP or SQL, and we explain the code
used in this book as we go along. However, this book does not try to teach the reader
PHP or SQL in depth. Where appropriate, we point the reader to additional resources
to supplement the information presented.

How This Book Is Organized
This book is organized from the simple to the complex. If you are an experienced
Joomla developer, you can skim the first two chapters and start with Chapter 3. If
you are less experienced, you will find it best to work through each chapter in order,
although you may want to skip some of the sidebar information where we discuss
more advanced design considerations.

This book is also designed to make it easy to use as a reference. If your initial proj-
ect is a plugin, you can go straight to Chapter 5 and then fill in from prior chapters as
needed, based on your experience.

This book contains a number of sidebars with supplemental information, including
discussions of why Joomla works the way it does, background information on security
or other important issues, and other topics that are not strictly needed to continue the
f low of the book. These sidebars allow you to read or skip topics depending on your
level of interest. They also make it easy to come back to something later.

psn-dexter-book.indb xx 3/7/12 11:53 AM

Preface xxi

Each major type of development includes a step- by- step tutorial. The authors
strongly believe that the best way to understand how something works is to create a
working example. Each step in the tutorial is explained so that you will understand
what you are doing and why you are doing it.

The Challenge of Web Development:
Too Many Things to Know!
One challenging aspect of web development— especially for newcomers— is the num-
ber of topics with which we need to be at least somewhat familiar. For example, in
a typical Joomla development project, we will almost certainly work with PHP and
probably with SQL queries. Working with HTML and XML is very common, and
sometimes you need to be familiar with CSS and JavaScript. To set up your working
environment on your PC, you will need to install and configure a web server such
as Apache or Microsoft Internet Information Services (IIS) and get PHP and MySQL
installed, configured, and working as well.

That’s a lot of things to know about, and we haven’t even started with Joomla yet!
Each of these topics is large enough for an entire book, and no one could possibly
hope to be an expert in all of them.

Fortunately, to develop programs for Joomla you do not need to be an expert in
any of these topics. However, you do need to understand how they fit together and
enough about each to do the job at hand.

This book does not assume that you have in- depth knowledge of any of these
topics. Everything you need to know about each topic is explained as we go along.
To keep this book to a manageable length, we provide the information you need to
understand the material presented and then list resources that provide greater depth for
a given subject.

PHP? MySQL? Apache? XHTML?
XML? CSS? JavaScript?

psn-dexter-book.indb xxi 3/7/12 11:53 AM

Prefacexxii

What’s New in Joomla Version 2.5?
Joomla version 1.6 was released in January 2011. It included a number of major
changes from version 1.5. Starting with version 1.6, the Joomla project committed to
releasing a new version every six months and a new long- term- support (LTS) release
every 18 months. As a result, version 1.7 was released in July 2011 and version 2.5 in
January 2012.

Why did the number skip from 1.7 to 2.5? This was done so that all LTS releases
would be numbered as X.5, where X is the major release. Version 1.5 was an LTS
release. Version 2.5 is the LTS release for the 1.6/1.7/2.5 series. Version 3.5 (due in
July 2013) will be the next LTS release, after versions 3.0 (July 2012) and 3.1 (January
2013).

This book covers Joomla version 2.5. Since a major goal of this book is to help
developers with the transition from version 1.5, we highlight areas where things are
done differently for version 2.5.

Version 1.6 was a major upgrade that incorporated a number of significant changes.
Version 1.7 contained some smaller new features, and 2.5 more additional features.
The most important of these are listed here.

Access Control List System
Version 1.6 added a new access control list (ACL) system that allows site administrators
to fine- tune what different groups of users are allowed to do in the front and back end
of Joomla. This system is extremely powerful and f lexible, and it is easy for third- party
developers to hook into. We explain how the system works and what you need to
know to take full advantage of it in your projects.

User- Defined Category Levels (and No More Sections!)
Prior Joomla versions had two fixed levels for articles called section and category. In ver-
sion 1.6, sections are eliminated. Instead, you can create your own category structure.
For example, you can have a simple category structure with just one level, or you can
have categories, subcategories, sub- subcategories, and so on—up to any (reasonable)
depth. This allows for simpler and more complex structures than were available before.

This feature is designed to make it easy for developers to add this same feature to
their own extensions.

JForm
In version 1.5, you could easily create screens for setting parameters using the
JParameter class. In version 1.6, this is replaced with a new class called JForm,
which makes it easier to create powerful forms for your applications. JForm gives
you a great combination of f lexibility and ease of use when you need to create data
entry forms in Joomla. All the back- end screens for Joomla were rewritten for version
1.6 using JForm.

psn-dexter-book.indb xxii 3/7/12 11:53 AM

Preface xxiii

One impact of this change is that the format for XML files for extensions has
changed. This is discussed in each of the chapters about writing extensions.

JTableNested
JTableNested is a new base class for the Category, Menu, and other tables that allow
for nested levels of items. It provides an API to make it easy for developers to create
tables based on nested sets in our code.

JDatabaseQuery
JDatabaseQuery is a new class that makes it easier to write complex SQL queries in
Joomla. It gives you an application programming interface (API) to build SQL queries
in a logical manner, based on the logical structure of the query. This makes it much
easier to write and maintain complex SQL queries. You don’t have to use this new
class in your SQL queries, but we hope you will agree that it is a better way to work
with SQL queries in Joomla.

PHP Version 5.2
Joomla version 1.5 had to be compatible with PHP version 4. This limited the extent
to which Joomla could take advantage of the object- oriented programming (OOP)
improvements made to PHP in version 5.0 and 5.2.

Starting with Joomla version 1.6, PHP version 5.2 or higher is required. This
allows version 1.6 to use static and abstract classes. In addition, in PHP 5.2, all objects
are passed by reference by default, which means that the &= (assigned by reference)
operator is no longer needed in most cases.

The newer PHP also allows Joomla to use the native SimpleXML class for parsing
XML files and to use the native DateTime class. So JXMLElement and JDate have
been modified and simplified accordingly.

MySQL Version 5.0.4
Joomla 1.6 requires MySQL version 5.0.4 or higher. This version of MySQL provides
a number of enhancements, including stored procedures, triggers, views, and a number
of performance improvements. It also allows for large columns of type varchar.

Language File Format
Joomla version 1.6 introduces a major change to the language file format. Previ-
ously, Joomla used a proprietary format. Starting in version 1.6, that was changed
to the standard PHP .ini file format. This allows Joomla to use the standard PHP
parse_ini_file command, which is much faster and simpler than the old proprietary
method.

This does, however, require that language files be reformatted to the new standard.

psn-dexter-book.indb xxiii 3/7/12 11:53 AM

Prefacexxiv

One- Click Update
Version 2.5 allows your Joomla website to be updated automatically. The site admin-
istrator is notified whenever an update is available either for the core Joomla files or
for any extension used on the site (as long as the extension developer supports this fea-
ture). The site can be updated simply by clicking on the Update button. Instructions
for setting up this capability for extensions is discussed in the companion website,
http://joomlaprogrammingbook.com.

Improved MVC
The model- view- controller (MVC) design pattern was improved for version 1.6. This
included using the pattern more consistently in the back end and improving code reuse
by moving code to standard library classes where possible. We discuss Joomla’s MVC
implementation in detail in Chapters 7– 10.

Support of Other Databases
Version 2.5 introduced support for other databases (besides MySQL), starting with
Microsoft SQL Server. Support for PostgreSQL is also under development and is
expected to be added soon.

Improved Search
Version 2.5 introduced Smart Search. This is a completely new search engine that
greatly improves the quality and accuracy of full- text searching of the content in a
Joomla website.

Companion Website
The authors have set up a website at http://joomlaprogrammingbook.com where we
have additional information about Joomla programming. We also have zip archive files
with the code from the book, organized by chapter.

This website will be kept up to date with new information about Joomla versions
and will list any corrections to the print version of the book.

Welcome to Joomla Development
Joomla developers come from all backgrounds and have varied amounts of experience
in software development. Many started with HTML websites and have learned more
about web programming as they worked with Joomla. Some have degrees in computer
science; some come from a background in web design. Others just learned by using
Joomla, reading, and working with others.

The Joomla development community strives to be open and welcoming to new
people, including those with little or no programming experience or formal technical

psn-dexter-book.indb xxiv 3/7/12 11:53 AM

http://joomlaprogrammingbook.com
http://joomlaprogrammingbook.com

Preface xxv

education. A number of resources are available for reading about various topics and
asking questions. Two of the most important ones are as follows:

n http://developer.joomla.org is the Joomla site exclusively devoted to Joomla
development. This website includes information about the current state of the
project and the latest development news. It also includes links to the Google
groups where Joomla development issues are discussed.

n http://docs.joomla.org/Developers is the entry point for all developer-
related, online documentation in the Joomla wiki site. Note that this site is a
wiki that is maintained by the community. Anyone can register and update or
add information to the wiki.

The authors hope this book makes it easier for people to learn to develop programs
for Joomla, regardless of their prior level of experience.

psn-dexter-book.indb xxv 3/7/12 11:53 AM

http://developer.joomla.org
http://docs.joomla.org/Developers

This page intentionally left blank

Acknowledgments

The Joomla! development community is friendly, and experienced developers rou-
tinely take time to help newcomers. This book would not have been possible without
the help of many people in that community who answered questions and helped to
fill in the numerous gaps in my knowledge. I want to especially thank the people who
read chapters and provided invaluable feedback: Andrea Tarr, Elin Waring, Omar
Ramos, and Sam Moffatt. Finally, I want to thank my wife, Deb, whose support and
encouragement (and occasional homemade fudge) kept me going.

— Mark Dexter

psn-dexter-book.indb xxvii 3/7/12 11:53 AM

This page intentionally left blank

About the Authors

Mark Dexter has been writing software since the 1970s. He cofounded and ran a
commercial software company for 28 years before retiring to do volunteer work in
open- source software. Mark first started using Joomla! in 2008 and joined the Pro-
duction Leadership Team in 2009. He has worked extensively in different areas of the
project, including the user forums, Google Summer of Code, documentation and help
screens, and the Bug Squad. Mark has actively participated in the Joomla development
process since 2009, including fixing bugs, adding features, and coordinating the release
of new Joomla versions. Mark lives in Seattle, Washington.

Louis Landry wrote a large part of the Joomla framework for versions 1.5 and 1.6,
and he has been a major design architect for Joomla for over five years. His first expe-
rience with computers was playing on a 286 with Basic at his father’s office. Louis has
programmed in many languages, ranging from low level x86 assembly to managed
languages like Java and scripting languages like PHP. He was a founding member of
his university’s robotics team. Louis is a car nut, and enjoys working on them in his
spare time. He lives in Silicon Valley in California.

psn-dexter-book.indb xxix 3/7/12 11:53 AM

This page intentionally left blank

5
Extending Joomla! with Plugins

In this chapter, we examine how plugins work and the different types of events that
can trigger plugins. We look at some core plugins and then create our own plugin,
based on the user registration form we created previously.

Then we create a zip archive that allows any Joomla! website to install and use our
plugin extension. Next we add some parameters to the plugin and discuss the JForm
class that handles parameters. We add a language file to handle translating the text for
our plugin.

Finally, we discuss some powerful things that plugins allow us to do, including
overriding models, tables, and other standard Joomla classes. We finish by discussing
some best practices for developing and using plugins.

What Is a Plugin?
A plugin is simply a PHP program that executes at one or more predefined points
in the Joomla execution cycle. These points are called events and are triggered from
within Joomla.

A plugin can be very simple— for example, to set a value before saving a field to the
database. Or it can be very complex— for example, to convert all the URLs in a docu-
ment to a different format. Plugins can even be used to override standard core classes.

Plugins are tied to events. To understand plugins, we need to understand the pre-
defined events in Joomla and also how to create our own events.

How Do Plugins Work?
Plugins work in three steps, as follows:

 1. One or more plugin files are included into the current script, usually with the
JPluginHelper::importPlugin() method. Because plugins are normally class
declarations, no code is executed at this point.

 2. An event is triggered, usually with the $dispatcher- >trigger() method
(where $dispatcher is a JDispatcher object). Each event has a name, such as
onBeforeInitialise or onContentBeforeSave.

psn-dexter-book.indb 139 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins140

 3. The event processing code looks for any enabled plugins that are currently
loaded that have a method that matches the event name. If any matching meth-
ods are found, they are executed.

Loading and Executing PHP Scripts that Declare Classes

Most plugins in Joomla contain only a class declaration. This means that they declare
a class and define the methods for the class, but they don’t include any lines of code
outside the class declaration.

When this type of file is loaded (for example, with the PHP command require_
once), a new class is created in working memory, with all its methods. However, none
of the methods in the class actually get executed. A method will only get executed
when a line of code calls that method.

This is why the JPluginHelper::importPlugin() method gets the plugin ready
to execute, but it normally doesn’t actually execute any code. The plugin methods
are only executed when the event is triggered, for example with the $dispatcher- >
trigger() method.

Naming Conventions for Plugins
For plugins to be found by the JPluginHelper::importPlugin() method, we need to
follow the correct naming conventions for the plugin file and class names.

Plugin folder and file names are created as follows:

plugins/<plugin type>/<plugin name>/<plugin name>.php

So, for example, the SEF file is plugins/system/sef/sef.php. Plugins have an XML
file with the same name (for example, plugins/system/sef/sef.xml). We discuss the
XML file later in the chapter when we talk about packaging a plugin extension.

The class name of the plugin is based on the naming convention

 "plg" + <plugin type> + <plugin file name>

So, for example, the class name of the SEF plugin is plgSystemSEF.

Plugin Types: Where Can You Insert a Plugin?
Plugins execute when their events are triggered. Plugin events as defined in Joomla
are different from events in event- driven programs. In event- driven programming,
the program waits for an event, which is frequently a user action such as a mouse click
or keyboard entry. Joomla events can be thought of as checkpoints along the vari-
ous paths of the execution cycle. Every time the execution cycle reaches an event

psn-dexter-book.indb 140 3/7/12 11:53 AM

Plugin Types: Where Can You Insert a Plugin? 141

checkpoint, the event is triggered. The events are fixed, although different events get
triggered depending on what type of execution cycle we are in. Let’s look brief ly at
each event type.

Authentication
There is only one event for authentication, called onUserAuthenticate. This event is
triggered whenever a user attempts to log in to the front or back end of the site.

Captcha
Captcha is a way to prevent spamming by requiring a user to type some text based on
a distorted image of the letters. Joomla version 2.5 added the ability to use captcha
to validate user registration. This is implemented by means of three events: onInit,
onDisplay, and onCheckAnswer.

Content
Content events are triggered when content is displayed or edited. This includes arti-
cles, contacts, and other types of content.

Editors
Editors are implemented in Joomla as plugins. However, they don’t really fit the pat-
tern of plugins as discussed in this chapter. Adding a new editor in Joomla requires in-
depth knowledge of JavaScript and is not an easy task. In this book, we do not discuss
in detail how to add an editor, but we do show how to use editors in form fields.

Editors- XTD
Editors- XTD plugins are used to create the buttons that show below the editors
(for example, Image, Pagebreak, and Read More). There is only one event for these
plugins, called onDisplay.

Extension
This plugin type was introduced in Joomla version 1.6. Extension events are triggered
when extensions are installed, uninstalled or edited and saved in the Module, Plugin,
Template, or Language Manager.

Search
Search plugins implement the search functionality in Joomla. The core plugins are
categories, contacts, content, news feeds, and Weblinks. The search events are onCon-
tentSearchAreas and onContentSearch. The onContentSearchAreas event is used
to create an array of content items to search, and the onContentSearch event is used

psn-dexter-book.indb 141 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins142

to actually execute the search for each of the content types. Extension developers can
include search plugins to allow the Joomla search to work with their components.

Smart Search (Finder)
The Smart Search plugins are found in the plugins/finder folder. These plugins are
used to index the site’s content for use with Smart Search. A plugin is provided for
each content type (contacts, content, news feeds, and weblinks) and can be enabled
to allow indexing of this type. The events provided are onFinderAfterDelete,
onFinderAfterSave, onFinderBeforeSave, onFinderCategoryChangeState, and
onFinderChangeState.

System
System plugins provide events that are triggered during each Joomla execution cycle.
These include onAfterInitialise, the first event triggered in Joomla, and events tied
to the render(), dispatch(), and route() methods. System events should be used for
plugins that need to be triggered during every execution cycle, regardless of which
task is being performed.

User
User events are triggered during two different tasks. One group of events is tied to
editing user information in the User Manager. These include onUserAfterDelete,
onUserAfterSave, onUserBeforeDelete, and onUserBeforeSave. A second group
of events is related to logging on and off the site. These include onUserLogin and
onUserLogout.

Tour of Selected Core Plugins
One confusing thing about plugins is that they vary so much. The only thing they
have in common is how they are called. Given this, we will start our discussion with
a quick look at a few core plugins. These examples will give you an idea of the variety
of tasks you can accomplish with plugins.

System: SEF
Our first example is the SEF plugin. This is a class called plgSystemSef in the f ile
plugins/system/sef/sef.php and enables Joomla to use search- engine- friendly
(SEF) URLs.

Where Is It Triggered?
Let’s start with how this plugin gets executed— in other words, the code that includes
the plugin class and triggers this plugin’s event.

The SEF plugin is a system plugin and it is triggered with the onAfterRender
event. Before we trigger the event, we need to include the plugin file.

psn-dexter-book.indb 142 3/7/12 11:53 AM

Tour of Selected Core Plugins 143

If we are loading a page in the front end of our site, we invoke the render()
method of the JSite class (in the file includes/application.php). Near the end of
this method, we see the following line of code:

JPluginHelper::importPlugin('system');

This command loads all the enabled system plugins into working memory. (If a
plugin is disabled in the Plugin Manager, it doesn’t get loaded.) We only have to do
this command once during a given method. After the system plugin classes are loaded
into working memory, we can trigger one or more system events.

Because these plugins are class declarations, we haven’t executed any code yet.
Later in the render() method of the JSite class we actually trigger the onAfter-
Render() method:

// Trigger the onAfterRender event.
$this- >triggerEvent('onAfterRender');

This triggers the onAfterRender event. Let’s follow the code to see how it works.
The variable $this is an object of type JSite, so $this- >triggerEvent calls the trig-
gerEvent() method of the JSite class with one argument, the string 'OnAfterRender'.

JSite extends the JApplication class (libraries/joomla/application/
application.php). Because JSite doesn’t have its own triggerEvent() method
(in other words, it does not override that method inherited from its parent class), it
calls the method from JApplication.

So the triggerEvent() method from JApplication gets executed. This code is as
follows:

function triggerEvent($event, $args=null)

{

 $dispatcher = JDispatcher::getInstance();

 return $dispatcher- >trigger($event, $args);
}

This code creates an object of type JDispatcher and then calls the trigger()
method for that object. The $event argument is set to “onAfterRender” and,
because we didn’t pass a second argument, the $args argument is set to its default
value of null.

The result is that it executes the onAfterRender() method of every enabled plugin
that is available in working memory. In this case, the search is limited to system plugins
because we specified the type as “system” when we called importPlugin('system'), so
only system plugins are loaded into our working memory.

Normally, our plugin method names should be consistent with the plugin type.
For example, we should only use system event method names in system plugins. If
we follow this convention, it doesn’t matter if we have other plugin types loaded into
memory, since only methods that match the event type will be executed.

psn-dexter-book.indb 143 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins144

Trigger Method Implementation
We will not go into detail about exactly how the trigger() method is implemented in
Joomla. To create plugins, we just need to know what it does, which is to execute all the
methods that match the event name. If you are interested in digging deeper into how this
works, you can explore the code. You will find that Joomla uses the “observer” design
pattern, where events are “observable” and the plugins are “observers.”

What Does It Do?
Now let’s look at the SEF plugin code. The code for the first part of the sef.php file
is as follows:

// no direct access

defined ('_JEXEC') or die;

/**

* Joomla! SEF Plugin

*

* @package Joomla

* @subpackage System

*/

class plgSystemSef extends JPlugin

{

 /**

 * Converting the site URL to fit to the HTTP request

 */

 public function onAfterRender()
 {

The first line of code (after the documentation block which is not shown) is our
standard defined command, which ensures that we are running this code inside
Joomla. Before version 2.5, we needed a jimport statement to import the library file
libraries/joomla/plugin/plugin.php. Starting with version 2.5, this file is loaded
for us automatically by the Joomla platform’s autoloader. It contains the class JPlugin,
which is the parent class for all our plugins. We use it when we declare this class name,
plgSystemSef, as a subclass of the JPlugin class.

In this case, the type is system and the file name is sef, hence the full name plg-
SystemSef. Finally, we declare the public function onAfterRender().

Upper and Lower Case in Class and Method Names
PHP doesn’t distinguish between uppercase and lowercase in class and method
names. However, we normally use “camel case” for class and method names. Camel
case is where the first letter in each word is capitalized. Normally, class names start

psn-dexter-book.indb 144 3/7/12 11:53 AM

Tour of Selected Core Plugins 145

with an uppercase letter and method names start with a lowercase letter, but for plu-
gin class names we start with lowercase. This convention just makes the code easier
for people to read.

This plugin scans the HTML document for links and converts those links to
search- engine- friendly links. It also replaces relative URLs with full- path URLs for a
few other types of links. We aren’t going to discuss the onAfterRender() method in
detail, but let’s look at two of aspects of it.

First, let’s look at this code near the beginning of the method:

if ($app- >getName() != 'site' || $app- >getCfg('sef')=='0') {

 return true;
}

This is checking two conditions. The first one, $app- >getName() != 'site',
checks to see if we are not in the front end of our website. The second condition,
$app- >getCfg('sef')=='0', checks whether we have the search- engine- friendly URL’s
parameter set to zero (off) in our Global Configuration. If either of these conditions is
true, then we exit the method immediately with a return value of boolean true.

Why do we do this? We only want to change the URLs when (a) we are in the front
end of the site and (b) when the SEF setting is set to yes. However, we need to under-
stand that this plugin is executed every time we encounter the onAfterRender event,
whether we are in the front end or the administrative back end, and regardless of the
SEF setting. That is why we have to put the check inside our plugin to make sure that
the conditions for running this apply. We check that the conditions are met and, if not,
we just exit the method before we have made any changes to the document object.

The second important point is that the onAfterRender() method does not take any
arguments and it returns a boolean value to indicate whether or not it executed suc-
cessfully. Different plugin types and methods have different method signatures (sets of
arguments passed to the method) and return different values, so you have to be aware
of these when you create a plugin.

Authentication: joomla Folder
This plugin is run when a user logs in to the site. It checks that the user name and
password are valid. It is one of three authentication plugins included in the core
Joomla distribution and is the default method for checking Joomla users.

This plugin is in the file plugins/authentication/joomla/joomla.php and its
class name is plgAuthenticationJoomla.

How Does It Get Executed?
When a user attempts to log in to a Joomla site, the authenticate() method of the
JAuthentication class (libraries/joomla/user/authentication.php) is executed.
In that method, we see the expected line of code

psn-dexter-book.indb 145 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins146

$plugins = JPluginHelper::getPlugin('authentication');

that loads all the enabled authentication plugins into working memory.
Later in that method, we see a foreach loop as follows:

foreach ($plugins as $plugin)

{

 $className = 'plg'.$plugin- >type.$plugin- >name;

 if (class_exists($className)) {

 $plugin = new $className($this, (array)$plugin);

 }

 else {

 // bail here if the plugin can't be created

 JError::raiseWarning(50, JText::sprintf(

�'JLIB_USER_ERROR_AUTHENTICATION_FAILED_LOAD_PLUGIN', $className));
 continue;

 }

 // Try to authenticate
 $plugin- >onUserAuthenticate($credentials, $options, $response);

This loops through any enabled authentication plugins and checks that the class name
exists. If any enabled authentication plugin does not exist, it fails with an error. If all
the classes exist, then it executes the last line, which triggers the onUserAuthenticate
method for each plugin. Note that three arguments are passed to the plugin: $creden-
tials, $options, and $response. We discuss them in the next section.

What Does It Do?
The code for the onUserAuthenticate method is shown in Listing 5.1.

Listing 5.1 onUserAuthenciate Method for Joomla Authentication

function onUserAuthenticate($credentials, $options, &$response)

{

 $response- >type = 'Joomla';

 // Joomla! does not like blank passwords

 if (empty($credentials['password'])) {

 $response- >status = JAUTHENTICATE_STATUS_FAILURE;

 $response- >error_message =

�Text::_('JGLOBAL_AUTH_EMPTY_PASS_NOT_ALLOWED');
 return false;

 }

 // Initialise variables.

 $conditions = '';

 // Get a database object

 $db = JFactory::getDbo();

psn-dexter-book.indb 146 3/7/12 11:53 AM

Tour of Selected Core Plugins 147

 $query = $db- >getQuery(true);

 $query- >select('id, password');

 $query- >from('#__users');

 $query- >where('username=' . $db- >Quote($credentials['username']));

 $db- >setQuery($query);

 $result = $db- >loadObject();

 if ($result) {

 $parts = explode(':', $result- >password);

 $crypt = $parts[0];

 $salt = @$parts[1];

 $testcrypt = JUserHelper::getCryptedPassword(

 $credentials['password'], $salt);

 if ($crypt == $testcrypt) {

 // Bring this in line with the rest of the system

 $user = JUser::getInstance($result- >id);

 $response- >email = $user- >email;

 $response- >fullname = $user- >name;

 if (JFactory::getApplication()- >isAdmin()) {

 $response- >language = $user- >getParam('admin_language');

 }

 else {

 $response- >language = $user- >getParam('language');

 }

 $response- >status = JAUTHENTICATE_STATUS_SUCCESS;

 $response- >error_message = '';

 } else {

 $response- >status = JAUTHENTICATE_STATUS_FAILURE;

 $response- >error_message =

�JText::_('JGLOBAL_AUTH_INVALID_PASS');
 }

 } else {

 $response- >status = JAUTHENTICATE_STATUS_FAILURE;

 $response- >error_message = JText::_('JGLOBAL_AUTH_NO_USER');

 }

}

Let’s discuss the code for this plugin. The first lines are as follows:

function onUserAuthenticate($credentials, $options, &$response)
 {

The method takes three arguments. The variable $credentials is an associa-
tive array with two elements: “password” and “username.” This is the password and

psn-dexter-book.indb 147 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins148

username the user has typed in to the form. The second argument, $options, is not
used in this method.

The third argument, $response, is very important. Notice that there is an amper-
sand (“&”) in front of $response. This tells us that this variable is passed by reference.
This means that when we make changes to this object during our method, the calling
method will see the changed object. See the sidebar entitled “Assign by Reference and
Pass by Reference” for more information on this.

This method returns a boolean false if the login does not succeed. If the login
does succeed, no value is returned. We do, however, pass data back to the calling
method, because we change the $response object and those changes are available to
the calling method after this method finishes.

Assign by Reference and Pass by Reference

Joomla version 2.5 requires PHP version 5.2 or higher, whereas Joomla version 1.5
could work with PHP version 4. PHP 5 changed the default behavior when objects are
assigned to variables. In PHP 4, when we had an object variable— for example, $myOb-
ject— we did the following:

$x = $myObject;

$x was created as a copy (or clone) of $myObject. So if later on in our code we
changed $myObject, $x was not affected. However, if we did the following,

$x = &$myObject;

the “&” told PHP to create $x as another reference to $myObject. This is called assign-
ing by reference. In this case, $x and $myObject point to the same object. If we later
change $myObject, the same change will be reflected in $x (because they are in effect
two names for the same object).

The same thing holds for referencing objects in method signatures— an example is
the following:

function onUserAuthenticate($credentials, $options, &$response)

The “&” tells PHP that we are passing a reference of the $response object to
this method. So if we change the $response variable during the method, we will be
changing the same object that was passed to the method. This means that when we
exit the method and return to the calling method, any changes made to $response
will be reflected in this same variable in the calling method.

With PHP version 5, we don’t need to use the “&” in the first example. When
we do

$x = $myObject;

psn-dexter-book.indb 148 3/7/12 11:53 AM

Tour of Selected Core Plugins 149

in PHP version 5, it assigns by reference. So the “&” is no longer needed. If we want
to create a new object, we need to use the command

$x = clone $myObject;

which actually creates a copy or clone of the object.

If you look at the Joomla version 1.5 code, you will see many places where we use
the “&” in assignment statements like this to force PHP 4 to assign by reference. How-
ever, in Joomla version 2.5, we don’t need these and they have been removed.

The situation with “&” in method signatures (passing by reference) is a bit different. It
is still recommended that we put the “&” in when we are passing an object by reference to
a method. For one thing, this tells the developer that any changes to this object made dur-
ing the method will be available to the calling method. For another, there are differences
between some PHP versions and this way we know we are forcing a pass by reference.

Before version 2.5, we needed to use jimport to import the user helper. We need
this class later on to encrypt the test password. In version 2.5 and later this class is
loaded by the autoloader.

The next line

$response- >type = 'Joomla';

sets the type field of the $response object to 'Joomla'. This field indicates what
authentication plugin was used to validate the user.

The next code block is as follows:

// Joomla! does not like blank passwords

if (empty($credentials['password'])) {

 $response- >status = JAUTHENTICATE_STATUS_FAILURE;

 $response- >error_message = JText::_(

�'JGLOBAL_AUTH_EMPTY_PASS_NOT_ALLOWED');
 return false;
}

This is an if statement that checks that there was a password entered. If not, the
authentication fails. To indicate this, we set the status and error_message fields of
the $response object and we return a boolean false.

The next block of code does a simple database query to get the user ID and pass-
word from the Joomla database. This is our first example of a database query, and it
uses the JDatabaseQuery class that was added in version 1.6. The line

$db = JFactory::getDbo();

creates a JDatabase object. This is normally the first step for any database query. The
next line

psn-dexter-book.indb 149 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins150

$query = $db- >getQuery(true);

creates the JDatabaseQuery object. The next line

$query- >select('id, password');

adds the database columns id and password to the SELECT part of the query. The next line

$query- >from('#__users');

adds the #__users table to the query. Note that we access the table with the prefix
"#__" (pound sign and two underscore characters). Before the query is actually run,
this prefix will be replaced with the table prefix selected when Joomla was installed
(for example, "jos_").

The next line

$query- >where('username=' .
$db- >Quote($credentials['username']));

adds a WHERE clause that restricts the query to rows where the username column is
equal to the username element in the $credentials array. Because the username col-
umn must be unique within the database, we will only get one row from this query.

The method $db- >quote() is very important for security. It puts quotes around
the username value and “escapes” any characters that have special meaning in SQL
queries— for example, if single or double quotes could potentially be used to end one
SQL statement and start a new statement. To protect against this, they are converted
to \\' or \\". This causes the database to ignore the special meaning of these characters
and prevents someone from entering in a SQL command in the username field.

Security Alert: Use $db- >quote, (int), and (float) to Prevent SQL Injection

In this example, the variable $credentials['username'] is entered by a user of
the website. As we have discussed earlier, we have to protect our data against would-
 be hackers who might try to enter malicious SQL commands by typing them into data
fields. This type of attack or exploit is known as SQL injection.

We can prevent SQL injection by following two simple rules:

 1. If a value is expected to be an integer (like –1 or 1234) or a floating decimal
number (like 12.3456 or –2.3), use PHP to convert (or cast, in programming
jargon) the value to the desired type. To do this, use the (int) or (float) com-
mand. For example, the line

 $query- >where('id =' . (int) $id);

psn-dexter-book.indb 150 3/7/12 11:53 AM

Tour of Selected Core Plugins 151

 uses the (int) command to convert $id to an integer. This guarantees that
nothing but an integer will get into that SQL command. Anything other than num-
bers and the minus sign will be stripped. This prevents any SQL commands from
being entered via the variable.

 2. For any variable types other than integer and float (for example, text or dates),
use $db- >quote to ensure that the values are safe to use inside a query— for
example,

 $query- >where('title =' . $db- >quote($myTitle);

 If $myTitle contains quotes or other characters that have special meaning inside
SQL commands, they will be escaped. This causes the database to ignore their
special meaning and just treat them as normal text.

If you follow these two rules, you help protect your data and prevent hackers from
running unauthorized queries.

At this point, we have built our query and are ready to run it against the database.
This is done in the following code:

$db- >setQuery($query);
$result = $db- >loadObject();

The f irst line passes the query to the database object, and the second line runs
the query against the database and returns the query results to the $result vari-
able. If for some reason the query was not successful, $result will be empty or
the boolean false.

The remainder of the method is an if/then/else block that starts as follows:

if ($result) {

 $parts = explode(':', $result- >password);

 $crypt = $parts[0];

 $salt = @$parts[1];

 $testcrypt = JUserHelper::getCryptedPassword($credentials['password'],
�$salt);

The first line checks that the $result variable evaluates to a boolean true. If it
doesn’t, we skip down to the outside else code block as follows:

} else {

 $response- >status = JAUTHENTICATE_STATUS_FAILURE;

 $response- >error_message = JText::_('JGLOBAL_AUTH_NO_USER');
}

This gives the user an error message saying the login was not successful.

psn-dexter-book.indb 151 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins152

Using Non- Boolean Values in PHP If Statement Conditions
If you are new to PHP, the way nonboolean variables (variables other than true and
false) are used in if statements can be confusing. For example, in the statement
"if ($result)", $result doesn’t have to be a boolean. If it isn’t a boolean, it is
converted to a boolean and then evaluated. If it contains any data other than a blank
or zero, it will evaluate to true and the code block after the if statement will be
executed. For example, if $result is an object or array, it will be evaluated as true,
regardless of what data it contains.

In the example "$result = $db- >loadObject()", this is OK because the
loadObject() method either returns an object or a boolean false. If it returns an object,
the object will always evaluate as true, so we know if we got a valid result or an error.

There is a pitfall to watch out for when working with values that can be zero or
blank. For example, if a method can return a zero as a valid value and returns a bool-
ean false if there is an error, the code "if (!$result)" will not work to check for
an error. If zero is returned, the variable $result will evaluate as false, so the expres-
sion "!$result" (not $result) will be true. So the code block will process as though
there were an error even though we got a valid result.

Similarly, the statement "if ($result == false)" will not work. This is less
obvious, but it has the same problem as the previous example. If $result is zero, it
will evaluate to false and therefore "$result == false" will be true and again the
code block will be executed as though there were an error.

The solution in this case is to use the PHP comparison operator "===" (three equal
signs), which checks for an identical match. This means that the two values must be
the same type (boolean, integer, string, and so on) and the same value. So the expres-
sion "$result === false" will be true only if $result is the boolean false. Using
this method will fix our example, even if $result is an integer zero. If $result is
zero, "$result === false" will be false.

The operators "===" and "!==" both check for an exact match of type as well as
value and are useful in cases where you may have an integer zero, a string “0,” or a
blank string as valid results of a method.

If the database query returned a valid result (in $result), then we execute the if
code block. The first part is as follows:

$parts = explode(':', $result- >password);

$crypt = $parts[0];

$salt = @$parts[1];

$testcrypt = JUserHelper::getCryptedPassword($credentials['password'],
�$salt);

In the Joomla database, the password is stored as two fields separated by a colon. The
first line in the previous code block uses the PHP explode function to put the two parts
of the password column into an array called $parts. Then we put the first part of that
into a variable called $crypt and the second part into a variable called $salt.

psn-dexter-book.indb 152 3/7/12 11:53 AM

Tour of Selected Core Plugins 153

By default, Joomla uses a one- way hash command called md5 to encrypt passwords.
By one way, we mean that you can only encrypt a password. You cannot decrypt it.
To check that the user has entered the right password, we encrypt the value entered by
the user and store in the $testcrypt variable.

Then we do another “if/then/else” code block, based on whether or not the
encrypted value of the entered password equals the encrypted value stored in the data-
base. This code block is as follows:

if ($crypt == $testcrypt) {

 // Bring this in line with the rest of the system

 $user = JUser::getInstance($result- >id);

 $response- >email = $user- >email;

 $response- >fullname = $user- >name;

 if (JFactory::getApplication()- >isAdmin()) {

 $response- >language = $user- >getParam('admin_language');

 }

 else {

 $response- >language = $user- >getParam('language');

 }

 $response- >status = JAUTHENTICATE_STATUS_SUCCESS;

 $response- >error_message = '';

 } else {

 $response- >status = JAUTHENTICATE_STATUS_FAILURE;

 $response- >error_message = JText::_('JGLOBAL_AUTH_INVALID_PASS');
 }

In the first part of the code block, our passwords match. So we get the user object
and set the email and fullname fields of the $response object based on the user
object values. Then we get the correct language object, depending on whether we are
in the front or back end of the site. Finally, we set the status field of the $response to
a success message.

If the passwords don’t equal, we set the status field to indicate a failure and set the
error_message field.

Notice that we don’t issue a return command when the login is successful. Instead,
this method uses a trick to communicate back to the calling method. The trick is that
the $response variable is changed inside this method to show field values from the
valid user object.

Recall that the plugin’s authenticate() method was called in our example
from the authenticate() method of the JAuthentication class. If we look at the
JAuthentication code after the plugin is called, we see the following:

 // If authentication is successful break out of the loop

 if ($response- >status === JAUTHENTICATE_STATUS_SUCCESS)

 {

 if (empty($response- >type)) {

 $response- >type = isset($plugin- >_name) ? $plugin- >_name :

psn-dexter-book.indb 153 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins154

 $plugin- >name;

 }

 if (empty($response- >username)) {

 $response- >username = $credentials['username'];

 }

 if (empty($response- >fullname)) {

 $response- >fullname = $credentials['username'];

 }

 if (empty($response- >password)) {

 $response- >password = $credentials['password'];

 }

 }

}
return $response;

This altered version of the $response object is available to this method and, in
fact, is returned by this method. Even though the plugin method doesn’t return the
$response object, it still passes its results back to the calling method via the updated
$response object.

Content: joomla Folder
This plugin is in the file plugins/content/joomla/joomla.php and its class name is
plgContentJoomla.

It has two methods. The onContentAfterSave() method is used to send a noti-
f ication e- mail to users when a new article has been saved. The onContentBefore
Delete() method is used to check whether a category has any items assigned to it
before deleting it. Let’s look at the onContentBeforeDelete()method.

How Does It Get Executed?
When a user deletes categories, articles, contacts, or other items in the administrative
back end of Joomla, the onContentBeforeDelete event is triggered. One place this
is done is in the JModelAdmin class (libraries/joomla/application/component/
modeladmin.php). If we examine the delete() method, we see the following code:

// Trigger the onContentBeforeDelete event.

$result = $dispatcher- >trigger($this- >event_before_delete,
�array($context, $table));

In this class, the field event_before_delete has been set to the string onContent-
BeforeDelete in the class’s constructor method.

There are two things to note about this code. First, we are expecting a return
value, which is stored in the $result variable. Second, we pass two arguments to the
trigger() method: the event name and an array with two elements. The trigger()

psn-dexter-book.indb 154 3/7/12 11:53 AM

Tour of Selected Core Plugins 155

method unpacks this array and passes each of its elements as arguments to the onCon-
tentBeforeDelete() method. In this case, the two arguments are $context and
$table. The variable $context is designed to tell us something about the context in
which this event has been triggered (for example, “com_categories.category”). The
variable $table is an array of the data that is about to be deleted.

What Does It Do?
The first part of the method is as follows:

public function onContentBeforeDelete($context, $data)

{

 // Skip plugin if we are deleting something other than categories

 if ($context != 'com_categories.category') {

 return true;
 }

As discussed earlier, this plugin will be executed any time a user is deleting any
type of content. Because this plugin checks whether a category has any items assigned
to it, it only makes sense in the context of deleting a category. So the first if state-
ment checks to make sure we are trying to delete a category. If not, we exit the plu-
gin, returning a boolean true.

As mentioned earlier, every plugin has a PHP file and an XML file. A plugin’s
XML file does three things. First, it provides descriptive information about the plu-
gin, such as its name, version, date, author, and license. Second, it lists all the files that
need to be installed or uninstalled. Finally, it defines any parameters or options that
can be set when using the plugin. These options show in the Plugin Manager screen
when the plugin is opened for editing.

Parameters in Joomla allow the website administrator to control details about how
the site will work without needing to write programming code. In this example, the
Content → Joomla! plugin allows the administrator to control whether or not to check
that categories are empty before deleting them. This is accomplished with a parameter
by the name of check_categories. We will discuss parameters in more detail later in
this chapter.

The check_categories parameter allows the administrator to disable the category
check. This is accomplished in the next code block of the method:

// Check if this function is enabled.

if (!$this- >params- >def('check_categories', 1)) {

 return true;
}

The object $this- >params is a JRegistry object that contains the parameters
saved in the #__extensions database table for this plugin. The def() method reads
the parameter value, using a default value of 1 if the parameter is not defined. Recall
that in PHP, a zero evaluates to a boolean false. Here we take advantage of this.

psn-dexter-book.indb 155 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins156

The parameter will be zero if we don’t want to check categories and 1 if we do. If
the parameter is zero, the condition (using the PHP “!” not operator) will be true, so
we will halt the method and return true. If the parameter is not set or 1, we skip the
return statement and continue with the method.

The next part of the method follows:

$extension = JRequest::getString('extension');

Here, we get the $extension based on the value in the PHP $_REQUEST vari-
able. Notice that we use the Joomla library method JRequest::getString(). We
could just read the $_REQUEST array directly. However, it is strongly recommended
always to use the JRequest methods to do this, since they provide built- in f il-
tering. In this case, the getString() method f ilters out hex and URL- encoded
characters. JRequest provides a number of methods for reading request variables
(getString(), getInt(), getWord(), and so on), and we always want to use the
most restrictive method that we can. In other words, if we know the request value
should always be an integer, we should use getInt. See Appendix B for all the f il-
ter types available.

The next code block is shown here:

// Default to true if not a core extension

$result = true;

$tableInfo = array (

 'com_banners' => array('table_name' => '#__banners'),

 'com_contact' => array('table_name' => '#__contact_details'),

 'com_content' => array('table_name' => '#__content'),

 'com_newsfeeds' => array('table_name' => '#__newsfeeds'),

 'com_weblinks' => array('table_name' => '#__weblinks')
);

Here, we set our result variable to true as a default value. Then, we build an array
of the different table names for the different extension types. This plugin will only
work for these five extensions. This array tells us the table name for each extension.

The next section of code is as follows:

// Now check to see if this is a known core extension

if (isset($tableInfo[$extension]))

{

 // Get table name for known core extensions

 $table = $tableInfo[$extension]['table_name'];

 // See if this category has any content items
 $count = $this- >_countItemsInCategory($table, $data- >get('id'));

This checks whether our current extension is in the array of the five core exten-
sions. If it is, we execute the code inside the if statement. If the current extension is

psn-dexter-book.indb 156 3/7/12 11:53 AM

Tour of Selected Core Plugins 157

not one of the five core extensions, we skip to the bottom of the method and just
return the $result variable, which we set to true earlier.

Inside the if code block, we set the $table variable to the table name we defined
earlier. Then we set the $count variable, using the private method _countItemsIn-
Category(). This method runs the database query to see how many items (articles,
contacts, and so on) are in this category. Note that we pass as arguments the name of
the table ($table) and the value data- >get('id'), which gives us the id field for the
category from the $data object that was passed in as the second argument.

Variable Names in Methods and Variable Scope

If you are new to programming, there is a potentially confusing point here about
the $table variable. Recall that the code that triggered this event passed an array
defined as array($context, $table) and that this array was unpacked to become
the two arguments for the onContentDelete() method here.

When the second argument was passed, it was called $table. However, the sec-
ond argument in the function signature for the onContentDelete() method is called
$data. Even though these have different names, the $data variable in our current
method has the same value as the $table variable was when the event was triggered.

When arguments are passed to functions, the position of the argument is what is
important, not the name of the variable. The first variable from the calling method gets
loaded into the first variable in the method signature, and so on. The variable name in
the method signature is the name for that variable inside the method.

In programming, this concept is called scope. The scope of a variable is the part
of the program where that variable has a specific meaning. In PHP, most variables are
local in scope. That means they are only defined inside the method or function where
they are used. The great thing about local variables is that we don’t have to worry
about whether we might have used the same variable name somewhere else in the
program. We only have to keep track of variable names within a single method.

The variable $table is local to the onContentDelete() method, so it can mean
something different in that method from what it might mean somewhere else in the
program. Because we don’t use the variable name $table in the method signature of
onContentDelete(), we are free to use it inside the method to mean anything we
like. In this case, the variable $table in this method refers to the table name defined
in the $tableInfo array.

The next section of code follows:

// Return false if db error

if ($count === false)

{

 $result = false;

}

psn-dexter-book.indb 157 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins158

This checks whether we got a valid result from our _countItemsInCategory()
method. This method returns a number or a boolean false. Note that we use the
triple === comparison operator to check that $count is a boolean and is false. We have
to do that because zero is a valid return value from our countItemsInCategory()
method. If the method did return false, then for some reason the database query
returned an error. In this case, we set the return value to false. If the method did
return a valid result, we enter the else block of code that follows.

else

 {

 // Show error if items are found in the category

 if ($count > 0) {

 $msg = JText::sprintf('COM_CATEGORIES_DELETE_NOT_ALLOWED',

�$data- >get('title')) .
 JText::plural('COM_CATEGORIES_N_ITEMS_ASSIGNED', $count);

 JError::raiseWarning(403, $msg);

 $result = false;

 }

 // Check for items in any child categories

�(if it is a leaf, there are no child categories)
 if (!$data- >isLeaf()) {

 $count = $this- >_countItemsInChildren(

 $table, $data- >get('id'), $data);

 if ($count === false)

 {

 $result = false;

 }

 elseif ($count > 0)

 {

 $msg = JText::sprintf('COM_CATEGORIES_DELETE_NOT_ALLOWED',

�$data- >get('title')) .
 JText::plural('COM_CATEGORIES_HAS_SUBCATEGORY_ITEMS', $count);

 JError::raiseWarning(403, $msg);

 $result = false;

 }

 }
}

The first if statement checks if the count is greater than zero. If so, we produce a
warning message to the user and set the $result variable to false.

An important point here is that, by returning false, this plugin will prevent the
user from deleting the category. Another point here is that we don’t actually do the
return statement until the end of the method. So we continue to execute the code.

The next section of code checks whether there are any items contained in any child
categories, using the _CountItemsInChildren() method. Note that we use a shortcut
to save a little processing time. There is a method in the $data object called isLeaf().

psn-dexter-book.indb 158 3/7/12 11:53 AM

Tour of Selected Core Plugins 159

This method returns a true if the current category is a “leaf” in the category “tree,”
meaning that it doesn’t have any child categories. If so, we don’t have to check for
items in child categories. In this case, we skip the whole code block.

If there are child categories, and if there are any items in these categories, we
create another warning message and we set the $result variable to false. Note
that if both warning conditions are present— meaning we have items in the cur-
rent category and in child categories— then we issue both warnings. We use the
JError::raisewarning() to display the warning to the user, and we include the
count of items in the warning message.

A cool new method called plural() was added to the JText class in Joomla ver-
sion 1.6. This allows Joomla to automatically select the right language tag based on
whether the number being shown is 1 or more than 1. We use that to show both of
our warning messages. For example, we want it to say “item” if there is one (“1 item”)
but “items” if there are more than one (“5 items”). The JText::plural() method
does this for us without requiring an if statement. Also, it handles languages where
there are different forms of a word for one, two, or three items.

The end of the method is the code "return $result;", which just returns true if
no items were found or false otherwise. As noted previously, this method only does any
real work when we are deleting in the #__categories table. We could have added this
check into the category table class instead of using a plugin. Why use a plugin?

The answer is f lexibility. Performing this check in a plugin provides the admin-
istrator a number of options. First of all, plugins can be disabled, which allows an
administrator to remove the category checking. Second, the parameters in the plugin
allow the individual checks to be turned on and off. Third, you can provide your own
plugin that either replaces or supplements the functionality of this or any core plugin.
Finally, this plugin provides an easy- to- follow model for third- party extension devel-
opers to use to provide category checking for their extensions.

This is a great demonstration of the real power of plugins to enhance the f lexibility
of the system. They can be disabled or replaced without hacking any core files, allow-
ing you to control lots of behind- the- scenes processing in Joomla.

onBeforeCompileHead
Now we are going to have some fun. We’re going to write a simple plugin that uses an
event called onBeforeCompileHead. This event allows us to modify the HTML head
element in the page just before it is rendered. So we can use this event to modify any
HTML element that goes in the head, including meta, title, link, or script elements.

How Does It Get Executed?
The onBeforeCompileHead event is triggered in the fetchHead() method of
JDocumentRendererHtml (libraries/joomla/document/html/renderer/head.php).
This method reads the information for the head HTML element from the document
object and prints it out to the buffer in HTML text format. The following code trig-
gers the event:

psn-dexter-book.indb 159 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins160

// Trigger the onBeforeCompileHead event

$app = JFactory::getApplication();

$app- >triggerEvent('onBeforeCompileHead');

What Does It Do?
If we look at the HTML page source code for the home page of a site with the sample
data installed, we see a series of meta elements inside the head element:

 <meta name="robots" content="index, follow" />

 <meta name="keywords" content="My keywords." />

 <meta name="rights" content="My rights." />
 <meta name="language" content="en- GB" />

Our plugin will be simple. It will add a “revised” attribute to the HTML meta ele-
ment, based on a parameter that the user enters for the plugin. For example, the output
of our plugin might be as follows:

 <meta name="revised" content="Mark Dexter, 17 March 2012" />

where the content attribute is the text typed into the plugin parameter.
To do this, we will need to understand how the JDocumentHTML object stores the

data for the HTML head element. Let’s do a bit of investigating. In the fetchHead()
method of JDocumentRendererHead class where the onBeforeCompileHead is trig-
gered, we see that we have a variable $document in the method signature. This is a
JDocumentHTML object, which has a method called getHeadData() that returns the
header data for the document or page. If we put the command

var_dump($document- >getHeadData());

in the fetchHead() method of that class (for example, just before the code that
triggers the event) and then display the home page on the site, we will see a
long dump of the output of the getHeadData(), part of which is shown in the
following.

array

 'title' => string 'Home' (length=4)

 'description' => string 'My description.' (length=15)

 'link' => string '' (length=0)

 'metaTags' =>

 array

 'http-equiv' =>

 array

 'content- type' => string 'text/html' (length=9)

 'standard' =>

 array

 'robots' => string 'index, follow' (length=13)

 'keywords' => string 'My keywords.' (length=12)

psn-dexter-book.indb 160 3/7/12 11:53 AM

Tour of Selected Core Plugins 161

 'rights' => string 'My rights.' (length=10)
 'language' => string 'en- GB' (length=5)

If we compare this to the HTML source code shown earlier, we see that the meta
elements with name attributes are stored in the object as an associative array stored in
the standard element inside the metaTags element. The value of the name attribute is
the key to the associative array (for example, “robots”), and the value of the content
attribute is the value of the associative array (for example, “index, follow”).

We want our plugin to add a new meta element with the name attribute of
“revised” and the value to be the option entered in the Plugin Manager form by the
user. We want to keep any existing meta elements and just add this as a new one.

Our code is going to work as follows:

 1. Read the existing header data from the document. This will be an array like the
one shown earlier.

 2. Add an element to the associative array that is stored inside the standard ele-
ment of the array inside the metaTags element. The key for this array will be
“revised” and the data will be the value entered by the user for the parameter.

 3. Write back the modified array to the document object using the setHeader-
Data() (which is the mirror image of the getHeaderData() method).

 4. Finally, we only want to do this if there is some data in the plugin parameter. If
it is empty, don’t do anything.

Now we are going to create the plugin. Here are the steps:

 1. Create the folder for the plugin. We’ll call the plugin “mymeta,” so we need to
create a folder called plugins/system/mymeta.

 2. To save typing, we can copy some existing files and just edit them. Copy the
files index.html, p3p.php, and p3p.xml from the plugins/system/p3p folder
to the new plugins/system/mymeta folder. Then rename the p3p.php and
p3p.xml to mymeta.php and mymeta.xml.

 3. Edit the mymeta.xml file so it appears as shown in Listing 5.2. Here we changed
the name, author, creationDate, copyright, description, and filename XML tags.

Listing 5.2 mymeta.xml File

<?xml version="1.0" encoding="utf- 8"?>

<install version="1.6" type="plugin" group="system">

 <name>My Meta Plugin</name>

 <author>Mark Dexter and Louis Landry</author>

 <creationDate>January 2012</creationDate>

 <copyright>Copyright (C) 2012 Mark Dexter and Louis Landry. All rights
�reserved.</copyright>
 <license>GNU General Public License version 2 or later; see LICENSE.txt
</license>

 <authorEmail>admin@joomla.org</authorEmail>

 <authorUrl>www.joomla.org</authorUrl>

psn-dexter-book.indb 161 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins162

 <version>2.5.0</version>

 <description>My Meta Plugin</description>

 <files>

 <filename plugin="mymeta">mymeta.php</filename>

 <filename>index.html</filename>

 </files>

 <config>

 <fields name="params">

 <fieldset name="basic">

 <field name="revised" type="text"

 description="Meta revised text for content attribute"

 label="Revised Content"

 default=""

 size="50"

 />

 </fieldset>

 </fields>

 </config>

</install>

We also changed the entire field element to add our new parameter. We set the
name to “revised”; set the type to “text”; and set the description, label, and size.

 4. At this point, we have the code for entering the parameter for our plugin.
Next we need to actually write the plugin. Listing 5.3 shows the listing for the
mymeta.php file, with the plugin code.

Listing 5.3 mymeta.php File

<?php

/**

 * @copyright Copyright (C) 2012 Mark Dexter and Louis Landry.

 * @license GNU General Public License version 2 or later; see

�LICENSE.txt
 */

// no direct access

defined('_JEXEC') or die;

jimport('joomla.plugin.plugin');

/**

 * Example System Plugin

 */

class plgSystemMyMeta extends JPlugin

{

 function onBeforeCompileHead()

 {

 if ($this- >params- >get('revised')) {

 $document = JFactory::getDocument();

psn-dexter-book.indb 162 3/7/12 11:53 AM

Tour of Selected Core Plugins 163

 $headData = $document- >getHeadData();

 $headData['metaTags']['standard']['revised'] =

 $this- >params- >get('revised');

 $document- >setHeadData($headData); }

 }

}

We have renamed the class to plugSystemMyMeta and named the function
onBeforeCompileHead, the same as the event we are using for the plugin. The
code is simple, once you understand the array structure of the getHeadData()
method.

First we check whether there is anything in the “revised” parameter from our
plugin. If not, we skip all the processing.

If there is something in this parameter, we proceed. We get the document
object and then save the results of getHeadData() in $headData.

We create a new associative array element called “revised” and set its value
to the parameter value. Note that this is an array that is nested inside two other
arrays, as we saw when we dumped this value earlier.

 5. At this point, our plugin is complete and ready to go. However, our Joomla
installation doesn’t know about it yet. The files are in the correct folders, but
there is no row in the #__extensions table for the plugin.

Recall from Chapter 4 when we copied the beez20 template that we had
to use the Discover feature to install the new template. The same thing holds
true here.

So, in the administrative back end, navigate to the Extensions → Extension
Manager and select the Discover tab. Then click the Discover icon in the tool-
bar. You should see something similar to Figure 5.1.

 6. Now click the check box at the left and then click the Install icon in the toolbar.
A message should display that indicates the plugin was successfully installed.

Installing an extension creates a row in the #__extensions table that stores
information about the plugin. Joomla only “knows about” extensions that are in
this table. The Discover process looks for extensions that are in the file system
and not in the #__extensions table.

Figure 5.1 Discover screen showing new plugin

psn-dexter-book.indb 163 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins164

The normal way to install an extension is from an archive file created for that
purpose. In the next section, we create a plugin and create a zip archive to allow
it to be installed.

Now that our plugin is installed, let’s test it. Navigate to the Extensions → Plugin
Manager and filter on system plugins. You should see the My Meta Plugin listed.
Clicking on it should show a screen as shown in Figure 5.2.

Change the plugin to Enabled, enter in something for the Revised Content, and then
navigate to the home page of the site. In your browser, select the option to show the
HTML source code for the page (for example, in Firefox, select View → Page source). You
should see something like the following. The line added by the plugin is highlighted:

 <meta name="robots" content="index, follow" />

 <meta name="keywords" content="My keywords." />

 <meta name="rights" content="My rights." />

 <meta name="language" content="en- GB" />

 <meta name="revised" content="Mark Dexter, 17 March 2011" />
 <meta name="description" content="My description." />

As a final test, go back to the Plugin Editor and blank out the Revised Content
value. Then redisplay the home page and check the source code. Now there should be
no meta tag with the name="revised", since there was no content for this tag.

If we step back for a minute, we can appreciate how easy it was for us to make this
change. We simply added two new files to the system and edited a few lines of code.
With this small amount of work, we were able to change the content of the head ele-
ment on every page in our site.

User Registration Plugin
For our next example, let’s add some validation to the override form we added in the
previous chapter.

Figure 5.2 Edit screen for My Meta Plugin

psn-dexter-book.indb 164 3/7/12 11:53 AM

User Registration Plugin 165

Update the Approval Override File
Recall that we added two check boxes to the user registration form, as shown in Fig-
ure 5.3.

This was accomplished by adding the following code to the layout override file:
templates/beez_20_copy/html/com_users/registration/approval.php:

<fieldset>

 <legend><?php echo JText::_(

�'BEEZ_20_COPY_TERMS_OF_SERVICE')?></legend>
 <p><input type="checkbox" />

 <?php echo JText::_()?> </p>

 <?php if ($this- >params- >get('show_age_checkbox')) : ?>

 <p><input type="checkbox" />

 <?php echo JText::_('BEEZ_20_COPY_AGE')?> </p>

 <?php endif; ?>
</fieldset>

We need to modify this code slightly before we write our plugin. Our plugin will
check that both check boxes have been clicked by the user. If not, the plugin will
return false, which will stop the registration process.

When we submit a PHP form with the post method, the values for the form are
saved in the PHP super global variable called $_REQUEST. The values are saved in an
associative array, where the key to the array is the name attribute of each input ele-
ment. If an input element has no name attribute, it doesn’t get saved. Accordingly, we
need to add name attributes to both of the check box fields. In the following code, we
call the first check box tos_agree and the second one old_enough.

Figure 5.3 Customized registration form

psn-dexter-book.indb 165 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins166

<fieldset>

 <legend><?php echo JText::_(

 'BEEZ_20_COPY_TERMS_OF_SERVICE')?></legend>

 <p><input type="checkbox" name="tos_agree" />

 <?php echo JText::_('BEEZ_20_COPY_AGREE')?> </p>

 <?php if ($this- >params- >get('show_age_checkbox')) : ?>

 <p><input type="checkbox" name = "old_enough" />

 <?php echo JText::_('BEEZ_20_COPY_AGE')?> </p>

 <?php endif; ?>

</fieldset>

Add the XML File
Next, we create the plugin PHP and XML files. The name of the plugin is “myreg-
istration,” and it is a user plugin. So we will create a folder called plugins/user/
myregistration and create our two plugin files, myregistration.xml and myregis-
tration.php, in that folder.

The myregistraion.xml file listing is shown in Listing 5.4.

Listing 5.4 myregistration.xml File

<?xml version="1.0" encoding="utf- 8"?>

<extension version="2.5" type="plugin" group="user">

 <name>plg_user_myregistration</name>

 <author>Mark Dexter and Louis Landry</author>

 <creationDate>January 2012</creationDate>

 <copyright>(C) 2012 Mark Dexter and Louis Landry.</copyright>

 <license>GNU General Public License version 2 or later; see

�LICENSE.txt</license>
 <authorEmail>admin@joomla.org</authorEmail>

 <authorUrl>www.joomla.org</authorUrl>

 <version>2.5.0</version>

 <description>PLG_USER_MYREGISTRATION_XML_DESCRIPTION</description>

 <files>

 <filename plugin="myregistration">myregistration.php</filename>

 <filename>index.html</filename>

 <folder>language</folder>

 </files>

 <config>

 </config>

</extension>

This is similar to the earlier example plugin. Note that we are defining a language
subfolder for our plugin. We discuss this when we create our zip archive file.

psn-dexter-book.indb 166 3/7/12 11:53 AM

User Registration Plugin 167

Add the PHP Plugin File
The code for the myregistration.php file is shown in Listing 5.5.

Listing 5.5 myregistration.php File

<?php

/**

 * @copyright Copyright (C) 2012 Mark Dexter & Louis Landry. All

�rights reserved.
 * @license GNU General Public License version 2 or later; see

�LICENSE.txt
 */

defined('JPATH_BASE') or die;

jimport('joomla.plugin.plugin');

/**

 * This is our custom registration plugin class. It verifies that the

�user
 * checked the boxes indicating that he/she agrees to the terms of

�service
 * and is old enough to use the site.

 */

class plgUserMyRegistration extends JPlugin

{

 /**

 * Method to handle the "onUserBeforeSave" event and determine

 * whether we are happy with the input enough that we will allow

 * the save to happen. Specifically we are checking to make sure that

 * this is saving a new user (user registration), and that the

 * user has checked the boxes that indicate agreement to the terms of

 * service and that he/she is old enough to use the site.

 *

 * @param array $previousData The currently saved data for the

�user.
 * @param bool $isNew True if the user to be saved is new.

 * @param array $futureData The new data to save for the user.

 *

 * @return bool True to allow the save process to continue,

 * false to stop it.

 *

 * @since 1.0

 */

 function onUserBeforeSave($previousData, $isNew, $futureData)

 {

psn-dexter-book.indb 167 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins168

 // If we aren’t saving a "new" user (registration), or if we are

�not
 // in the front end of the site, then let the

 // save happen without interruption.

 if (!$isNew || !JFactory::getApplication()- >isSite()) {

 return true;

 }

 // Load the language file for the plugin

 $this- >loadLanguage();

 $result = true;

 // Verify that the "I agree to the terms of service for this

�site."
 // checkbox was checked.

 if (!JRequest::getBool('tos_agree')) {

 JError::raiseWarning(1000,

 JText::_('PLG_USER_MYREGISTRATION_TOS_AGREE_REQUIRED'));

 $result = false;

 }

 // Verify that the "I am at least 18 years old." checkbox was

�checked.
 if (!JRequest::getBool('old_enough')) {

 JError::raiseWarning(1000,

 JText::_('PLG_USER_MYREGISTRATION_OLD_ENOUGH_REQUIRED'));

 $result = false;

 }

 return $result;

 }

}

The first two lines of code should be familiar. First we ensure that we are inside
Joomla. Then we import the parent class for this plugin. (Note that, because of the
autoloader, this line of code is no longer required as of version 2.5.) The class name
follows the required naming convention of “plg” plus the type (“user”) plus the plugin
name (“myregistration”). The class extends JPlugin.

The class has one method, which is named according to the event that will trigger
it. In this case the method is onUserBeforeSave(). This event is triggered when we
try to save a new user in the back end or register a new user in the front end.

The first thing we do is to make sure we are creating a new user in the front end. If
not, we just return true and skip the rest of the processing.

The next thing we do is to load the language file. This loads the file administrator/
language/en- GB/en- GB.plg_user_myregistration.ini, which we discuss a bit
later. Then we set our $result variable to true.

psn-dexter-book.indb 168 3/7/12 11:53 AM

User Registration Plugin 169

The next section is an if block. We use the JRequest::getBool() method to get
the tos_agree element from the PHP $_REQUEST variable. This method returns a
boolean true or false. Since this is a check box, we expect it to either have the
value “on” or it will not be defined. However, we are also mindful that a hacker can
manipulate the $_REQUEST variable and put values in there that we don’t expect. By
using the JRequestion::getBool() method, we know that we will always get a true
or false value, no matter what a hacker might put in that field.

If the check box has been checked, the JRequest::getBool('tos_agree') will
return a value of true and the expression (!JRequest::getBool('tos_agree')) will
be false (recall that “!” means “not”). In this case, we don’t execute the code inside
the block.

If the check box has not been checked, we enter the code block. Here we execute
two lines of code. The first calls the JError::raiseWarning() method. The first
argument is the error code, which we don’t use in this example (so it can be most
anything). The second argument is the error text. Here we are using the JText::_()
method to make the error text translatable. This means we will need to put the lan-
guage key PLG_USER_MYREGISTRATION_TOS_AGREE_REQUIRED in our language file.
The second line in the code block sets the $result variable to false. This means that
the method will return a value of false, which will stop the save process.

The second if statement is identical to the first one, except that it checks that the
second check box has been clicked and returns a different message to the user.

The last line of code just returns the $result variable, which will be true if both if
code blocks were skipped. If the user forgot to check both check boxes, they will get
both error messages, which is what we want.

Add the Language Files
The last step before we can try our plugin is to add the language files. Recall in our
XML file we add the following lines:

<files>

 <filename plugin="myregistration">myregistration.php</filename>

 <filename>index.html</filename>

 <folder>language</folder>
</files>

The folder element indicates that there will be a subfolder called “language” in the
folder for our plugin.

When we create a plugin, we can choose whether to have the language files in
the plugins folder or in the adminstrator/languages folder. For extensions, it is
normally recommended to keep all extension files separate from core files, so putting
extension language files in the folder for the extension is normally preferred.

In our example, we will have two language files: en- GB.plg_user_myregistration
.ini and en- GB.plg_user_myregistration.sys.ini. These files will go into the
folder plugins/user/myregistration/language/en- GB/.

psn-dexter-book.indb 169 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins170

The first f ile is the primary language f ile and contains the language keys that will
be used when the plugin code is executed and also when the plugin is opened for
editing in the Plugin Manager. In this f ile we put any keys we will need for front-
end display or for editing options. Listing 5.5 shows the listing for the main plugin
language f ile.

Listing 5.5 en- GB.plg_user_myregistration.ini File

; Language file for myregistration plugin

PLG_USER_MYREGISTRATION_TOS_AGREE_REQUIRED="You must agree to the terms of

�service."
PLG_USER_MYREGISTRATION_OLD_ENOUGH_REQUIRED="You must be at least 18 years

�old."

The second file (with the .sys in the name) is used to translate the name of the
plugin when it is listed in the Extension Manager or Plugin Manager. We also put the
description of the plugin in the .sys file so that we can translate the description in the
message that shows when the plugin has been installed. This convention is used for all
extension types. Listing 5.6 shows the listing for the .sys language file.

Listing 5.6 en- GB.plg_user_myregistration.sys.ini File

; sys language file for myregistration plugin

; The .sys.ini files are used when listing the extensions in the extension

; manager or plugin manager

PLG_USER_MYREGISTRATION="User - My Registration"

PLG_USER_MYREGISTRATION_XML_DESCRIPTION="Checks that terms and age boxes

�have been checked."

As a last step, copy an index.html file from another Joomla folder into the
plugins/user/myregistration folder and the language and language/en- GB sub-
folders. As discussed earlier, every folder we create in Joomla should have an index.
html file to prevent users from browsing the folder directly.

Test the Plugin
At this point, we can test our plugin. Again, we navigate to Extensions → Extension
Manager → Discover and click on the Discover icon in the toolbar. Our new plugin
extension should be listed using the translated text “User – My Registration” that we
used in the .sys language file.

psn-dexter-book.indb 170 3/7/12 11:53 AM

User Registration Plugin 171

Tip: Using phpMyAdmin to Uninstall the Plugin
When you are testing and debugging a plugin or other extension, you may want to
repeat the Discover and Install steps. In this case, you may not want to uninstall the
extension, since that will delete the extension files from your Joomla folders.

A simple trick you can do is to delete the row for the extension in the #__exten-
sions table in the database (for example, using phpMyAdmin). This undoes the instal-
lation without deleting the extension’s files.

If you are unfamiliar with MySQL and phpMyAdmin, we discuss these in Chapter 11.

Again, we click the check box to select the plugin and then click on the Install icon.
When we have installed it, note that the plugin description from the .sys language file
should show in the Extension Manager: Discover screen, as shown in Figure 5.4.

At this point, we can test the plugin. To test it, first enable it in Plugin Manager.
Then try to register a new user with the approval.php override file without checking
the two check boxes. You should see a message as shown in Figure 5.5.

You should also test the other cases to make sure they work as expected. These
include the following:

n Save with one check box checked (should get one error message).
n Save with both check boxes checked (should work correctly).
n Create a user from the administrative back end (Users → User Manager → Add

New User should work correctly).

Package the Plugin
So far, we have used the Discover method to install our extensions. This works well
during development. However, if we want to be able to install our extension on other
Joomla sites, we need to package it in an installation archive file. This is very easy to
do. We need a program that allows us to create archives in zip, tar.gz, or tar.bz2
format. For Windows, the free program “7- Zip” (http://www.7-zip.org/download
.html) works well. For Linux and Mac OS X, programs to create a zip archive come
installed with the operating system.

Figure 5.4 Plugin description from .sys language file

psn-dexter-book.indb 171 3/7/12 11:53 AM

http://www.7-zip.org/download.html
http://www.7-zip.org/download.html

Chapter 5 Extending Joomla! with Plugins172

Note about Slashes (“/” and “\”)
If you use Windows, the folders on your file system use the back- slash (“\”) character.
If you use Mac OS X or Linux, they use the forward- slash (“/”) character. For this book,
we will use the forward slash. If you use Windows, just use the back slash instead.

The steps to create an installable zip archive are as follows:

 1. Create a new folder on your disk system (for example, temp) and copy the three
plugin files myregistration.xml, myregistration.php, and index.html, and
the language folder (which contains the en- GB subfolder with the two language
files) to this folder.

 2. Create a zip file that includes the three files and the language folder. The exact
command for creating the archive will depend on your operating system and the
software you use.

For Windows with 7- Zip, you would highlight the three files and language
folder in the Windows Explorer, right- click, and select 7- Zip → Add to Archive
and then follow the instructions— for example, naming the zip file plg_user_
myregistration.zip.

Figure 5.5 User plugin error messages

psn-dexter-book.indb 172 3/7/12 11:53 AM

Improved User Registration Plugin 173

For Mac OS X, you would do something very similar, except you would
select “Create Archive” from the file menu after highlighting the files.

In Linux, you could go to the command prompt in the temp folder and enter
the command

$ zip - r plg_user_myregistration.zip *

 3. After you create the zip archive, open it and check that it has the three files and
one folder you expect.

 4. Now we want to check that the file installs correctly. Uninstall the plugin by
navigating to Extensions → Extension Manager → Manage. Select the plugin and
click on the Uninstall icon in the toolbar. You should see the message “Unin-
stalling plugin was successful.” Note that this step will delete the files from your
Joomla folders. However, you should already have these files copied to the temp
directory created in step 1.

 5. Navigate to Extension Manager → Install and click the Browse button. Browse
to the zip archive file you created and click the Upload and Install button. You
should get the message “Installing plugin was successful.”

At this point, we have a fully functioning plugin extension that can be installed on
any site that runs Joomla version 1.6 or higher.

Improved User Registration Plugin
In the previous example, we created the myregistration plugin to add validation
to the alternative user registration menu item we created in Chapter 4. This plugin
depends on this alternative menu item. To transfer this functionality to another Joomla
website, we would have to install the alternative menu item— including the beez_20_
copy template— as well as the new myregistration plugin. It would be easier to
manage if we could do the entire job in the plugin.

Using the new JForm class and the form event added in Joomla version 1.6, we can
override the registration form inside the plugin, without creating a separate alternative
Menu Item file. We can also use JForm to do the validation for us, and thereby elimi-
nate the need for the onBeforeSave() plugin method. With this approach, we can
package all this functionality into one small plugin extension and make it very easy to
add this capability to another Joomla website.

We’ll call this version of the plugin myregistration2. It will contain the follow-
ing f iles:

n forms/form.xml: File with the JForm information for the fields added by the
plugin

n language/en- GB/en- GB.plg_user_myregistration2.ini: Main language file
n language/en- GB/en- GB.plg_user_myregistration2.sys.ini: Sys language

file

psn-dexter-book.indb 173 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins174

n myregistration2.php: Plugin code file
n myregistration2.xml: Plugin XML file

Let’s go through the steps to create the plugin.

Create the Plugin XML File
As before, we create the plugin folder (plugins/user/myregistration2) and create
our main XML file in that folder. The listing for the myregistration2.xml file is
shown in Listing 5.7.

Listing 5.7 myregistration2.xml File

<?xml version="1.0" encoding="utf- 8"?>

<extension version="2.5" type="plugin" group="user" method="upgrade" >

 <name>plg_user_myregistration2</name>

 <author>Mark Dexter and Louis Landry</author>

 <creationDate>January 2012</creationDate>

 <copyright>(C) 2012 Mark Dexter and Louis Landry. All rights reserved.

 </copyright>

 <license>GNU General Public License version 2 or later; see LICENSE.txt

 </license>

 <authorEmail>admin@joomla.org</authorEmail>

 <authorUrl>www.joomla.org</authorUrl>

 <version>2.5.0</version>

 <description>PLG_USER_MYREGISTRATION2_XML_DESCRIPTION</description>

 <files>

 <filename plugin="myregistration2">myregistration2.php</filename>

 <filename>index.html</filename>

 <folder>forms</folder>

 <folder>language</folder>

 </files>

 <config>

 </config>

</extension>

This file is similar to the previous example. Note that we change the name of the
plugin in the name element and twice in the filename element. Also, we have added a
folder element for the form folder. We discuss that in the next section.

Create the Form XML File
In this example, we use the JForm class to add our two fields to the registration form.
With JForm, we can add fields to a form using one of two techniques:

n Load the fields from an XML file.
n Load the fields from a string (for example, created inside the plugin PHP file).

psn-dexter-book.indb 174 3/7/12 11:53 AM

Improved User Registration Plugin 175

The first method is recommended for most cases, since it is generally easier to work
with and maintain an XML file. Listing 5.8 shows the code for the form.xml file.

Listing 5.8 form.xml File

<?xml version="1.0" encoding="utf- 8"?>

<form>

 <fieldset name="tos"

 label="PLG_USER_MYREGISTRATION2_TERMS_OF_SERVICE"

 >

 <field name="tos_agree" type="checkbox"

 default="0"

 filter="bool"

 label="PLG_USER_MYREGISTRATION2_AGREE"

 required="true"

 value="1"

 />

 <field name="old_enough" type="checkbox"

 default="0"

 filter="bool"

 label="PLG_USER_MYREGISTRATION2_AGE"

 required="true"

 value="1"

 />

 </fieldset>

</form>

This file defines the two fields we want to add to the user registration form, and it
closely mirrors the actual HTML code that will be created by JForm. The outer ele-
ment is called form and will create an HTML form element. It contains one fieldset
element. A fieldset HTML element is used to group fields together on the form.
Inside the fieldset, we have our two field elements.

Each field element has the following attributes:

n default: Default value (if unchecked)

n filter: The filter used to check the input from this field

n label: The label for this field (note that this will be translated)

n required: Flag to tell JForm to make this field required

n value: The value in the form when the checkbox is checked

The label and value attributes are standard attributes of the HTML input ele-
ment. The filter attribute causes JForm to filter the input field using one of the stan-
dard JHtml filter values. In this case, we are filtering to allow only boolean true and
false values. So even if a user changes the form in their browser to submit some other
information (for example, some malicious SQL or JavaScript code), JForm will filter
this and convert it to a boolean value.

psn-dexter-book.indb 175 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins176

The default attribute specifies the value to send if this input is not entered— in
this case, if the check box is not checked. We specify a value of “0,” which will con-
vert to a boolean false.

The required attribute causes JForm to require this input field to be filled out. In
the case of a check box, this requires that the check box is checked. JForm will not
allow the user to register without checking the box. Because JForm handles this vali-
dation automatically, we don’t need the onBeforeSave() method that we used in the
myregistration plugin.

We see how this file is used in the next section.

Create the Plugin PHP File
Listing 5.9 shows the code for the myregistration2.php file.

Listing 5.9 myregistration2.php File

<?php

/**

* @copyright Copyright (C) 2012 Mark Dexter and Louis Landry

* @license GNU General Public License version 2 or later; see

�LICENSE.txt
 */

defined('JPATH_BASE') or die;

/**

 * This is our custom registration plugin class. It verifies that the

�user checked the boxes
 * indicating that he/she agrees to the terms of service and is old enough

�to use the site.
 *

 * @package Joomla.Plugins

 * @subpackage User.MyRegistration2

 * @since 1.0

 */

class plgUserMyRegistration2 extends JPlugin

{

 /**

 * Method to handle the "onContentPrepareForm" event and alter the

�user registration form. We
 * are going to check and make sure that the form being prepared is

�the user registration form
 * from the com_users component first. If that is the form we are

�preparing, then we will
 * load our custom xml file into the form object which adds our custom

�fields.
 *

psn-dexter-book.indb 176 3/7/12 11:53 AM

Improved User Registration Plugin 177

 * @param JForm $form The form to be altered.

 * @param array $data The associated data for the form.

 *

 * @return bool

 *

 * @since 1.0

 */

 public function onContentPrepareForm($form, $data)

 {

 // If we aren’t in the registration form ignore the form.

 if ($form- >getName() != 'com_users.registration') {

 return;

 }

 // Load the plugin language file

 $this- >loadLanguage();

 // Load our custom registration xml into the user registration

�form.
 $form- >loadFile(dirname(__FILE__).'/forms/form.xml');

 }

}

The first part is the same as the earlier plugins. We rely on the autoloader to import
the JPlugin class, and we extend that class. We name the plugin class according to the
plugin naming convention— in this case, plgUserMyRegistration2.

The class has one method, onContentPrepareForm(). The onContentPrepareForm
event is triggered at the point where the JForm has been prepared but not yet rendered.
We are able to modify the JForm object in working memory just before it is used to cre-
ate the form. Two arguments are passed to the class. The variable $form holds the JForm
object and the variable $data holds a standard object with any data for the form.

Then we make sure we are processing a registration form. If we are not (meaning
that we are processing some other form), we just want to quit. So we test the form
name. If it is not equal to com_users.registration, we return without doing any
processing.

At this point, we know we are processing the user registration form. Next we load
the language file so we can translate the language text in our form.

Then the last line does all the work to create the two new fields. It calls the load-
File() method of JForm with our form.xml file as the argument. This causes JForm
to merge the fields in the form.xml file with the form that is already in working
memory from the standard XML file (in this case, components/com_users/models/
forms/registration.xml). Since the two fields in our form.xml file are new fields
(in other words, they have different names from those of the other fields in the form),
the two new fields are added to the form.

psn-dexter-book.indb 177 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins178

That’s all there is to it. At this point, the fields in our form.xml file have been
added to the form and will be included in the output. As mentioned earlier, because
we use the required attribute in the fields, we don’t need additional code to ensure
that these boxes are checked. JForm does it for us.

Add the Language Files
As before, we have two language files, located in the folder plugins/user/myregis-
tration2/language/en- GB). The main file is en- GB.plg_user_myregistration2.
ini. The .sys file is used for translating the plugin name and description in the plugin
manager. These are shown in Listing 5.10 and Listing 5.11.

Listing 5.10 en- GB.plg_user_myregistration2.ini File

; Language file for myregistration2 plugin

PLG_USER_MYREGISTRATION2_TERMS_OF_SERVICE="Added Fields for Terms of

�Service Agreement"

PLG_USER_MYREGISTRATION2_AGREE="I agree to the terms."

PLG_USER_MYREGISTRATION2_AGE="I am at least 18 years old."

Listing 5.11 en- GB.plg_user_myregistration2.sys.ini File

; sys language file for myregistration2 plugin

; The .sys.ini files are used when listing the extensions in the extension

�manager or plugin manager

PLG_USER_MYREGISTRATION2="User - My Registration2"

PLG_USER_MYREGISTRATION2_XML_DESCRIPTION="Demonstration plugin that checks

�that overrides user registration. Checks that terms and age boxes have

�been checked."

Test the Plugin
Test the plugin as we have done in the previous examples, using the Extension Man-
ager Discover and Install functions.

To test the plugin, you will need to disable the myregistration plugin (not the
myregistration2 plugin), enable the myregistration2 plugin, and make sure that
the Registration menu item uses the default menu item type instead of the alternative
menu item type (Register With Approval) that we created in Chapter 4.

Once this is set up, when you load the Registration menu item, you should see the
form shown in Figure 5.6.

Notice that the two new fields show the asterisk to indicate they are required, just
like the other required fields on the form. If you press the Register button without
checking the check boxes, you should see the following messages:

psn-dexter-book.indb 178 3/7/12 11:53 AM

Adding Parameters to Our Plugin 179

These are the standard messages that JForm shows when the user submits a form that is
missing required fields.

Package the Plugin
To package the plugin for installation from an archive file, we follow the same process
as described earlier:

 1. Copy the files from the plugins/user/myregistration2 folder to a temporary
folder on your computer.

 2. Use an archive program to create a zip archive of these files. By convention, the
archive would be called plg_user_myregistration2.zip (but it can be named
anything as long as it contains all the correct files and folders).

Test that the archive file can be installed successfully by uninstalling the existing
myregistration2 plugin and then installing it from the archive file.

Adding Parameters to Our Plugin
Next, let’s add a parameter to our plugin. Suppose we want the user to be able to
configure whether or not to show the second check box. To do this, we need to do
three things:

Figure 5.6 Custom registration form from MyRegistration2 plugin

Figure 5.7 JForm required field messages

psn-dexter-book.indb 179 3/7/12 11:53 AM

Chapter 5 Extending Joomla! with Plugins180

n Add a parameter field to our plugin XML file.
n Add logic to the plugin to check the parameter and remove the field if desired.
n Add the new language keys to the main language file.

The parameter field is added using a JForm field, similar to what we added in our
form.xml file. The revised code for the config element is shown here:

<config>

 <fields name="params">

 <fieldset name="basic" >

 <field name="show_age_checkbox" type="radio"

 label="PLG_USER_MYREGISTRATION2_SHOW_AGE"

 description="PLG_USER_MYREGISTRATION2_SHOW_AGE_DESC"

 default="0">

 <option value="0">JHIDE</option>

 <option value="1">JSHOW</option>

 </field>

 </fieldset>

 </fields>
</config>

This code is similar to the code for template parameters we saw in Chapter 3. It is
used to add the options when we edit this plugin. We create a fields element with
the name attribute equal to “params” to hold our fieldset and field elements and put
the fields element inside the config element.

We need this fields element with the name attribute in our XML file. Otherwise
the options will not show in the plugin edit screen. This is because the layout file used
to create the form for editing plugins (administrator/components/com_plugins/
views/plugin/tmpl/edit_options.php) looks for a fields element with a name of
“params” and includes the contained fieldset elements as options in the form. If we
don’t have this fields element, no options will show on the plugin edit screen. This
is also true for components, modules, and templates.

Note that we didn’t need this fields element when we created our form.xml
f ile. It is only required when we are adding parameters to the installation XML file
for an extension.

Inside the fieldset element we define a new field with a type of “radio” with two
option elements, “0” for Hide and “1” for Show. Notice that we use the language
keys JHIDE and JSHOW. These are standard language keys used throughout Joomla, so
we don’t have to add them to our plugin language file. Notice also that each option
is a separate element. Field types that provide a list of options, like radio or list, use a
series of option elements, one for each item in the list.

The next step is to add the two new keys to the language f ile. We add them to
the en- GB.plug_user_myregistration2.ini f ile (not the .sys.ini f ile) because
these are used when editing the individual plugin in Plugin Manager. The label
attribute should be short, since it will be used to label the f ield. The description

psn-dexter-book.indb 180 3/7/12 11:53 AM

Adding Parameters to Our Plugin 181

attribute can be longer. It will show up in the tool tip that pops up when you hover
the mouse on the f ield.

The new language file lines are as follows:

PLG_USER_MYREGISTRATION2_SHOW_AGE="Show Age Checkbox"

PLG_USER_MYREGISTRATION2_SHOW_AGE_DESC="Whether to Hide or Show the Show
�Age check box. If it is shown, it will be required."

Figure 5.8 shows the two new language strings on the Plugin Manager form. Note
that we have Debug Language enabled in the Global Configuration → System, so we
see the double “**” around the text fields to indicate that they are properly translated.

The last step is to change the plugin code to check the new parameter and act on it.
The revised code for the onContentPrepareForm() method is as follows:

public function onContentPrepareForm($form, $data)

{

 // If we aren't in the registration form ignore the form.

 if ($form- >getName() != 'com_users.registration') {

 return;

 }

 // Load the plugin language file

 $this- >loadLanguage();

 // Load our custom registration xml into the user registration form.

 $form- >loadFile(dirname(__FILE__).'/forms/form.xml');

 if (!$this- >params- >get('show_age_checkbox', '1')) {

 $form- >removeField('old_enough');

 }
}

The only new code is the if statement at the end of the method. This gets the new
parameter and uses it as a boolean value inside the if statement condition. If the Show
option was selected, the parameter will be true. Since we use a not (“!”) in the if
statement condition, the statement inside the if code block will not be executed when
the parameter is true. So, if we have selected Show, we will skip the if block and the
entire form will be shown.

Figure 5.8 New parameter in Plugin Manager

psn-dexter-book.indb 181 3/7/12 11:54 AM

Chapter 5 Extending Joomla! with Plugins182

If we have selected Hide, the statement

$form- >removeField('old_enough');

will execute. This uses the removeField() method of the JForm class to remove the
field named “old_enough” from the form. That’s all we need to do. After you have
made these changes, test that the parameter works as expected.

There are some other useful methods in JForm we can use to modify forms in a
plugin. One is to change a field attribute. For example, suppose we wanted to have an
option to choose whether or not to make a field required. We could use the command

$form- >setFieldAttribute('old_enough', 'required', 'false');

to change the “old_enough” field to no longer be required.
The important thing to remember is this: We can use the onContentPrepareForm

event to intercept the JForm object before the form is shown. Then we can use JForm
methods to add, remove, or alter fields in the form. This gives us a chance to tailor the
form to fit our exact needs.

Using Plugins to Override Core Classes
We can use the existing plugin framework to override most core classes in Joomla.
Note: This is an advanced topic and not something that you want to do unless you
really need to. However, it is useful to know about in case you need it.

How Plugins Are Imported
We have seen that, to trigger a plugin, you first use the
JPluginHelper::importPlugin() method to import the plugin. This adds the class and
its methods to working memory. If we take a closer look at how this method works, we
see that the code that actually does the import is in the private import() method of the
JPluginHelper class (libraries/joomla/plugin/helper.php), as follows:

if (!isset($paths[$path])) {

 require_once $path;

}
$paths[$path] = true;

The first line checks to see if this specific plugin has already been added. The
$paths variable is an associative array containing all the plugins that have already been
imported. The key to the array is the full path to each plugin file and the value of each
element is the class name. We use the PHP function isset() to check if this element
is in the array. If not, then the PHP command require_once includes this file.

Finally, the value for this element is set to the boolean true, which ensures that the
next time through this element will be set in the array, so the require_once will not
be called again for the same file.

psn-dexter-book.indb 182 3/7/12 11:54 AM

Using Plugins to Override Core Classes 183

There are two important points to understand about this process:

n As discussed earlier, normally plugin files declare classes, so no code is executed at
that time. The only thing that happens is that the class and its methods are loaded
into memory so that their methods can be called later in the cycle. In that case,
no code is actually executed as a result of the JPluginHelper::importPlugin()
method.

n Nothing in Joomla requires a plugin to be a class declaration. A plugin can
be a simple PHP script— that is, one that executes as soon as it is included.
If we make a plugin this way, it will execute immediately, as soon as the
JPluginHelper::importPlugin method is executed (instead of when the event
is triggered).

This provides a mechanism for loading any PHP script whenever we import plugins.

How Joomla Classes Are Loaded
Next, we need to understand an important point about how Joomla core classes
are loaded into working memory. If we look at the jimport function that is typi-
cally used to load Joomla core classes, we see it is a function in the f ile libraries/
loader.php. Note that this is a free- standing function, not a class method. That is
why it is invoked just with the function name and no class name. The code for this
function is shown here:

function jimport($path)

{

 return JLoader::import($path);
}

It simply invokes the JLoader::import() method. The first lines of code in the
JLoader::import() method are the following:

 // Only import the library if not already attempted.
 if (!isset(self::$imported[$key]))

This is checking to see whether we have already imported this class. The value
self::$imported is a static associative array with a key (the variable $key) equal to
the argument passed to JImport (for example, “joomla.plugin.plugin”) and a value of
boolean true or false. When a class is imported, an element is added to this array,
and the value is set to true if the import was successful and false if it was unsuccess-
ful. So, once a class has been imported, Joomla won’t try to import it again.

The JLoader::load() and JLoader::_autoload() (the Platform “autoloader”)
methods also check to see if a class has already been loaded before trying to load a class.

So the important point is this: if the class already exists— meaning it is already
loaded into working memory— we skip loading this class. The method just returns a
value of true and exits. None of the Joomla load methods will try to load a class a sec-
ond time.

psn-dexter-book.indb 183 3/7/12 11:54 AM

Chapter 5 Extending Joomla! with Plugins184

This means that we can use a plugin to load a class into working memory, as long
as we do it before it gets loaded by the Joomla core programs. If we do this, the meth-
ods from our class will be used instead of the methods from the core class.

As it happens, system plugins are loaded into working memory very early in the
Joomla execution cycle, before most (but not all) Joomla core classes.

Example: Override the JTableNested Class
Let’s do a quick example to illustrate this. We will override the core JTableNested
class. This class is the parent class for all the nested table classes in Joomla (for exam-
ple, JTableCategories for the #__categories table). In this example, we will dem-
onstrate how to override this class but we will leave it to the reader to imagine what
code and behavior you might want to change.

Here are the steps:

 1. Create a new folder called plugins/system/myclasses and copy the file
libraries/joomla/database/tablenested.php to this new folder. This will
give you a file called plugins/system/myclasses/tablenested.php. (Remem-
ber to add index.html files to all the new folders we create.)

 2. Edit the new file and replace the existing rebuild() method with the following
code:

public function rebuild($parentId = null, $leftId = 0, $level = 0,
�$path = '')
{

 exit('From myclasses/tabelnested.php file');
}

This code will simply prove that we are running our override class in place of
the core class. When we press the Rebuild option (for example, in the Category
Manager: Articles), if we are running our method, the program should exit with
the message just shown.

 3. Now we need to add the plugin to load our class in place of the core class. We
will call the plugin “myclasses.” To do this, create a new file called myclasses.
php in the plugins/system/myclasses folder.

 4. In the new file (plugins/system/myclasses/myclasses.php), add the code
shown in Listing 5.7.

Listing 5.7 myclasses.php File

<?php

/**

 * Demonstration plugin to replace a core class.

 * This is fired on the first system import (before

 * the onBeforeInitialise event).

 */

// no direct access

psn-dexter-book.indb 184 3/7/12 11:54 AM

Using Plugins to Override Core Classes 185

defined('_JEXEC') or die;

// Replace core JTableNested with override version

include_once JPATH_ROOT.'/plugins/system/myclasses/tablenested.php';

 Notice that this code is not declaring a class. It is simply running a script. This
means that it will be executed as soon as the system plugins are imported, before
the first system event. This code just includes our new tablenested.php file.

 5. Create the XML file for this plugin (plugins/system/myclasses/myclasses.
xml) with the code shown in Listing 5.8.

Listing 5.8 myclasses.xml File

<?xml version="1.0" encoding="utf- 8"?>

<extension version="2.5" type="plugin" group="system">

 <name>plg_system_myclasses</name>

 <author>Mark Dexter and Louis Landry</author>

 <creationDate>January 2012</creationDate>

 <copyright>Copyright (C) 2012 Mark Dexter and Louis Landry.</copyright>

 <license>GPL2</license>

 <authorEmail>admin@joomla.org</authorEmail>

 <authorUrl>www.joomla.org</authorUrl>

 <version>1.6.0</version>

 <description>MyClasses plugin demonstration</description>

 <files>

 <filename plugin="myclasses">myclasses.php</filename>

 <filename>index.html</filename>

 </files>

 <config>

 </config>

</extension>

 6. Navigate to the back end of Joomla and Discover and Install the plugin as we
have done before in the previous examples. Remember also to enable the plugin
in the Plugin Manager.

 7. Navigate to Content → Category Manager in the Joomla back end and click on
the Rebuild icon. Joomla should halt and you should see the message “From
myclasses/tabelnested.php file.” This indicates that we have successfully overrid-
den this core class.

This technique can be used to override most Joomla core classes, except for those that
are already loaded before the system plugins are imported.

If you override a core class in this manner, you don’t need to worry about your
class getting overwritten during a Joomla upgrade. So this technique is much better
than simply hacking core files. However, a word of caution is in order here. If there
are bug fixes for any core classes you have overridden, you will need to check whether

psn-dexter-book.indb 185 3/7/12 11:54 AM

Chapter 5 Extending Joomla! with Plugins186

these fixes apply to your override classes. If so, you will need to apply the fixes your-
self. This will be especially important if the bug fixes correct security issues.

Plugin Best Practices
The most important thing about plugins is to know when to use them. That means
understanding the events available in Joomla and what standard behaviors you can over-
ride. In many cases, when you are having a difficult time figuring out how to solve a
problem with a module or a component, a plugin might make the job a lot easier.

Here are some other tips about plugins:
n Plugins are executed in the order in which they appear in the Ordering column

in Plugin Manager. In most cases, the ordering doesn’t matter. However, in some
cases, where you have more than one plugin triggered from the same event, and
where the results of one plugin can affect the processing of a subsequent one,
the order can be important. In this case, you can change the order in the Plugin
Manager by adjusting the Ordering values to control the execution order.

n Normally, we want to use the naming conventions for plugin class names and
method names. Otherwise, the plugins won’t get called correctly. The exception
is if you want the script to be run when the plugin is imported, in which case
only the file and folder name is important (as in the class override example in
the previous section).

n Different events require different method signatures. Make sure you are aware
of what values are available for each event and what values, if any, your method
should return. The Joomla repository includes a folder called tests/plugins. This
folder contains example plugins for each plugin type. These example files show all
the events and the method signatures for each. Also, the plugin events are docu-
mented in the Joomla wiki at http://docs.joomla.org/Plugin/Events.

n Try to pick the best event for the job at hand. If you need a new event— for
example, in a custom component— you can create it just by triggering it at the
desired place in the program. If you believe that you need a new event added
in a core class, ask about it on one of the development lists. If others agree, the
event can be added to the core.

Summary
In this chapter, we learned about plugins. We started by looking in detail at some core
plugins. Then we created some plugins of our own, including one that allows us easily
to customize the user registration process in Joomla.

Along the way, we saw how plugins allow us to do a lot with a little well- placed
code and how they provide the site administrator with a high degree of f lexibility. We
even saw how we can use plugins, if needed, to override most core classes in Joomla.

In the next chapter, we discuss another important type of Joomla extension: modules.

psn-dexter-book.indb 186 3/7/12 11:54 AM

http://docs.joomla.org/Plugin/Events

Index

A
abridge() method, 532
access control list (ACL) system, xxii, 57, 87,

134, 232, 256−257, 306−307, 337, 378,
385

Access modifiers, 243−244
access() method, 529
access.xml file, 232, 234, 257, 307,

313−314, 352
addItem() method, 304
addMapRow() method, 388−389
addSubmenu() method, 234, 311
addToolbar() method, 266, 275, 315, 334,

454
admin() method, 531
Aggregate functions, 425−426, 436
AJAX (asynchronous JavaScript and XML), 2,

443−444, 453, 467, 469−471, 473, 535
Alias, 293, 324, 349, 533
allowAdd() method, 331−333
allowEdit() method, 331, 333, 377−378
ALNUM filter type, 523
ALTER TABLE command, 407, 413, 534
Alternative Menu Item, 127, 533, 536
alternative syntax, 100, 499, 507
ampersand, 148, 347, 451, 502
AND operator, 211, 502
Ant, 22, 38−40
Apache web server, xxi, 1−3, 17−21, 55, 62,

84, 294, 533, 535, 537
appendButton() method, 396
application programming interface (API),

xxiii, 117, 119, 245, 445, 533−534, 537
application.php file, 46, 53, 68−69, 82, 142,

516
Aptana Studio Pro, 37
ARRAY filter type, 523, 525
array_keys() method, 401

psn-dexter-book.indb 539 3/7/12 11:54 AM

Article Manager component540

Article Manager component, 52, 108, 125,
231, 423, 455, 457−458

Article ordering, 217, 225
ASC. See sort by ascending under databases
Associative array, 70, 79, 147, 161, 163,

165, 182−183, 204, 242, 246, 260−261,
277−278, 281, 297−299, 303, 319, 367,
440−441, 465, 501, 505, 508−509, 528

Asynchronous JavaScript and XML. See AJAX
Asynchronous requests, 467, 469
Atom 1.0 format, 303
ATOM XML feed, 56
Atomic template, 49, 93, 96−99, 103−104
Authentication, 50, 141, 145−146, 149, 153,

476
authorise() method, 70, 256−257, 520
Authorized user, 531
AuthorisedViewLevels() method, 362
AUTO_INCREMENT attribute, 324−325,

408−409, 411−413, 417, 428, 431
Autoload feature, 66, 203

B
Back quotes, 408, 427
BASE64 filter type, 523
Batch operations, 529
Beez5 template, 14, 95
Beez20 template, 49, 92, 100, 102,

105−108, 110−111, 121, 123, 125−126,
130−132, 137, 165, 173, 464, 467

bind() method, 259−261, 276, 280, 293,
381

Black list filtering, 524
Blueprint CSS framework, 94−95
Bluestork template, 54, 267
Boolean values, 145,152, 175, 181, 271,

336−337, 387, 533
BOOLEAN filter type, 523

boolean() method, 530
bootstrap.php file, 477−481, 484
build() method, 68, 293, 300−302, 537

C
caching, 43, 258
Call Stack view, 34, 36
cancel() method, 250−251, 253

Captcha, 50, 141
Cascading style sheets (CSS), xx, xxi, 1−3,

16, 21, 47, 50, 57, 92, 94−95, 102, 105,
191, 197, 202, 272, 327, 449, 454, 528,
534

Catch block, 72, 277−278, 280, 485
Category id, 257, 292, 295−300, 302−303,

306, 332−333, 340, 360, 363, 368,
370−371, 377, 399, 411, 421, 458

Category Manager, 52, 184−185
Check all boxes, 270, 458−459
check() method, 259, 261−262, 348
check_categories parameter, 155
checkEditId() method, 239
checkedOut() method, 531
checkIn() method, 377
Child categories, 158−159, 303, 466
Choose Layout, 364
Classes, 26, 87−89, 144, 184, 192, 202,

220, 259, 309, 312, 317, 346, 396, 451,
512−513, 516, 521, 528, 533

class declarations, 65−66, 140, 183,
191, 480, 513

class methods, 33, 513, 516−517, 533
clear() method, 208−209
cloak() method, 530
close() method, 400−401, 456, 470
CMD filter type, 358, 523
Colorpicker, 447, 449
Columns, 270, 309, 406, 412, 533

names, 194, 209, 210, 261, 420, 427,
429, 434, 437, 441

comma- delimited list, 206, 211, 437
Command- line- interface (CLI) applications,

43, 477, 479, 481−482, 497, 534
comma- separated values (CSV), 206,

395−397, 400−402
Components, xix, 5, 10, 11, 14, 16, 42−44,

47, 50−51, 63, 70, 73−75, 84−85, 92−93,
98, 121, 123, 125−127, 129, 137, 141,
177, 180, 187−188, 204, 215, 227, 229–
262, 263– 304, 305– 353, 355– 403, 446,
448−449, 452, 454−457, 460, 471−472,
513, 528, 533−537

Articles component, 9, 187
best- fit menu items, 196– 300
best- fit URL methods, 294– 296

psn-dexter-book.indb 540 3/7/12 11:54 AM

custom() method 541

building the URL for, 296– 302
check all boxes, 270
com_categories, 52, 155, 233, 293,

306, 318−329, 352
com_content component, 10,

43−44, 52, 70, 74, 85, 92, 156, 187,
204−205, 214−215, 229, 360, 446,
456−458, 513, 533

com_users component, 43, 52, 121,
123−124, 126−127, 137, 165, 176,
177, 181, 452, 454, 533

com_weblinks, 43, 52, 156, 231,
233−234, 236−241, 249, 256, 257,
263−264, 267−268, 275−277, 283,
287−288, 290−293, 296−298,
300−301, 303, 308, 311, 326

controllers, 229– 262
default layout file, 267– 268
default view, 274– 275
defined, 229– 230
edit.php file, 283– 284
Featured Articles Blog menu item, 10
filter select lists, 269– 270
finding category paths from menu

items, 300– 302
folder structure of, 288– 290
front- end news feed view, 303– 304
front- end routing, 293– 303
helper methods, 234– 235
housekeeping, 268
installation files, 233
JController display() method, 265
menu item types, 290– 291
menu items, 6, 10, 81, 88, 126, 129,

229−230, 233, 290−294, 296−299,
360, 533

menu, 233– 234
model publish() method, 253– 258
model save() method, 258– 259
models, 229– 262
model- view- controller (MVC) design

pattern, 230– 231, 288– 290
modifying forms dynamically,

281– 282
naming conventions in, 252– 253
options (parameters), 234
other model methods, 259

pagination controls in, 274
parameter fields element, 292– 293
parsing the URL, 302– 303
rendering the JForm, 282– 287
request fields element, 291– 292
review of controllers in components,

251– 252
saving JForm Object in memory,

280– 281
SEF URL background 294– 294
sortable column headings, 270– 271
title filter, 268– 269
views and the display() method, 263

config.xml file, 232, 234, 307, 312, 316,
352, 360

configuration.php file, 41, 46, 55, 67−68,
86−87, 482−485, 496−497

Constructor methods, 154, 241−243,
249−252, 258, 260, 273, 320−321, 347,
367, 370, 397, 435, 486−487, 489, 495,
515

Container style, 104
Content management system (CMS), 15−16,

38−39, 47, 56, 63, 66, 83, 294, 405, 445,
475−476, 483, 489, 497, 513, 525

ContentHelperRoute, 204−205, 213−214, 465
Controllers, 231−232, 237−241, 249,

251−253, 288, 309−311, 331, 357, 376,
385, 396, 400, 534, 536

controller.php file, 232, 236−239, 249,
263, 265, 288−289, 307, 309, 352,
355−357, 468

object, 237, 264
tasks, 249, 331

Cookies, 461−462
COUNT() function, 425−426, 436
countItemsInCategory() method, 158
countItemsInChildren() method, 158
Create Read Update Delete (CRUD), 230
Create Table, 416
CREATE TABLE command, 324−325, 407,

409−410, 413, 417−418, 534
csvReport() method, 396
Curly braces, 24, 72, 99, 100, 103, 130,

500−501
custom() method, 396

psn-dexter-book.indb 541 3/7/12 11:54 AM

Data definition language (DDL) commands542

D
Data definition language (DDL) commands,

406−409, 411, 413−414, 416, 418, 534, 537
Data manipulation language (DML)

commands, 406−407, 418−419, 421, 423,
425, 427, 537

Databases, 405– 442
#__ prefix, 86−87, 150, 194, 207, 210,

323−325, 405, 408−409, 418
a.* syntax, 208−209, 322−323, 367, 420
aggregate functions, 425−426, 436
ALTER TABLE command, 413– 414
and JDatabaseQuery objects, 432– 434
AUTO_INCREMENT attribute,

408, 409, 412
backing up a database, 418– 419
CHAR data type, 411
column attributes, 412– 414
column lists, 419– 420
copying, 418– 419
CREATE TABLE command, 407– 413
creating and modifying tables with

data definition language (DDL)
commands, 407– 414

data definition language (DDL) scripts,
416– 417

data manipulation language (DML)
commands and, 419– 429

data types in , 410– 412
DATETIME data type, 411– 412
debugging SQL queries, 414– 416
DECIMAL data type, 412
DEFAULT attribute, 413
DELETE queries, 428, 438– 439
designing table structures, 429– 432
DOUBLE data type, 412
DROP TABLE command, 414
duplicate indexes, 428
duplicate keys, 428
errors, 438, 439−440
expressions in queries, 429
FLOAT data type, 412
foreign keys, 409−410, 413, 421−422,

430−431
FROM clause, 420– 421
GROUP BY queries, 425– 426, 436
history tables, 429, 431– 432
indexes, 409– 410

INSERT queries, 427– 428, 436– 439
INTEGER data type, 411
JDatabaseQuery and, 436, 438
JOIN clause, 421– 422
key fields, 430
LIMIT queries, 424– 425
list of Joomla! database tables, 87– 89
mapping tables, 429, 430– 431
MEDIUMTEXT data type, 412
method chaining, 435– 436
NOT NULL attribute, 412
ORDER BY queries, 424
overview of, 405– 406
phpMyAdmin and, 414– 418
primary keys, 408– 409
protecting against hackers, 434– 435
queries, 149, 152, 157−158, 324, 488,

490, 492, 494, 534
query data, 438– 442
reference tables, 429– 430
returning query results, 440– 442
SELECT queries, 419– 426, 433– 434,

439– 442
sort by ascending, 200−201, 213,

369−370, 399, 424, 432, 434
sort by descending, 101, 127, 180, 181,

192, 194, 200−202, 217−221, 292,
312−313, 344−346, 349−350, 359,
369−370, 373, 380, 382, 424, 426,
434, 446, 450, 456

tables, 86– 89
testing SQL queries, 414– 416
TEXT data type, 412
TINYINT data type, 411
UNION queries, 428– 429
UNSIGNED attribute, 413
UPDATE queries, 426– 427, 432– 439
VARCHAR data type, 411
WHERE clause, 423– 424
working inside Joomla!, 432– 442

Date and time, 68, 211, 406, 411, 424, 429,
489, 491

DATETIME data type, 408−409, 411−413
Debug Language feature, 135, 181
Debug System feature, 135, 416
Debugging, 21, 28−30, 34, 36−37, 113, 518

stack, 28−29, 34, 519, 535
Xdebug, 28, 34

psn-dexter-book.indb 542 3/7/12 11:54 AM

getArticleRoute() method 543

DECIMAL data type, 412
def() method, 155
DEFAULT, 127, 324−325, 349−350, 359,

364, 393, 408, 410, 412−414, 417
default_items.php file, 372, 465
defines.php file, 46, 53, 64−65
DELETE queries, 428, 432, 438
dirname() function, 478−479, 510
Discover feature, 106−107, 163, 170−171,

178, 185, 353
dispatch() method, 70, 76, 142, 519
display() method, 237, 239, 243, 249−250,

263−267, 269, 271, 273, 275, 303−304,
311, 315, 319, 334, 358, 361−364,
378−380, 518, 521, 536

doEndSubscription() method, 488
doEndSubscriptions() method, 491
doExecute() method, 481−482, 487
DOUBLE data type, 412, 523
DROP TABLE command, 326, 407, 414

E
Eclipse, 17, 21−30, 34, 36−38, 40, 249−250,

518, 534, 535
edit() method, 238−239, 250−251, 253,

331, 376−377, 380
edit_params.php file, 282, 286
editList() method, 396
Editors- XTD plugins, 141
elseif statements, 158, 273, 363, 365,

503−504
Empty method, 495−496
end() method, 531−532
Errors

conditions, 15, 47, 277−278, 439, 496
reporting, 132
highlighting, 37

Exceptions, 71, 277−280, 485, 494
execute() method, 237−238, 241, 246, 264,

480−482, 485, 487, 521
executeComponent() method, 75
existing() method, 270, 530
exit() method, 56
Exporting files, 400, 418−419, 427
exportReport() method, 395−396, 400
Extension Manager, 14, 52, 106, 141, 163,

170−171, 173, 178, 233, 353, 394, 534

Extensions, xx, xxii−xxiv, 5−6, 9, 11−12, 39,
48−51, 53, 57, 66, 83, 87, 89, 100, 106,
138, 141, 155−156, 159, 163, 169−171,
178, 197−198, 215−216, 229, 234, 275,
280, 290, 294−295, 300, 394, 443,
445−467, 472, 534, 536

Joomla! Extensions Directory (JED),
xix, 6

See also Components, Languages,
Modules

F
Factory design pattern, 56, 66, 85
factory.php file, 56, 66, 85
fclose() method, 401
fetchHead() method, 159, 160
fetchTemplate() method, 78
File transfer protocol (FTP), 57
filter() method, 259, 386
Firebug, 61, 202, 219, 225
Firefox, 164, 304, 478
FLOAT data type, 412, 523
Fonts, 2, 91−92, 472, 481, 534, 537
fopen() method, 401
Foreign keys, 409−410, 413, 421−422,

430−431
Form id, 390
form.php file, 288, 356, 387
Form validation, 283, 341, 382, 447, 450,

460, 468
Foundational classes and functions, 56
fputcsv() method, 401
Framework classes, 67
framework.php file, 66
Free and open- source software (FOSS), 4,

534
FROM clause, 201, 420
from() method, 194, 207, 433, 436,

438−489
fromObject() method, 401

G
genericList() method, 531
get() method, 129, 266, 275, 441, 489, 495,

525
getActions() method, 235, 317
getArticleRoute() method, 214−215

psn-dexter-book.indb 543 3/7/12 11:54 AM

getAuthorisedGroups() method544

getAuthorisedGroups() method, 192, 194
getAuthorisedViewLevels() method, 206, 362,

367
getCategoryRoute() method, 296−297, 300
getDate() method, 86, 206, 347−348, 368,

388, 484−485, 501, 517
getEndedSubscriptions() method, 487−488
getError() method, 239, 247, 253−254,

257−258, 264, 279, 310, 384, 392
getForm() method, 259, 275−276, 281, 336,

338, 379
getHead() method, 515
getHeadData() method, 160, 163
getHeaderData() method, 161
getInput() method, 284, 286, 343, 448,

456−457
getInstance() method, 69, 143, 237−238,

243, 246, 254, 264, 277, 279, 371, 385,
480, 515−516, 525

getItem() method, 260, 275, 278−279, 290,
293, 336, 340, 379

getItems() method, 266, 275, 299, 319, 366,
396

getLabel() method, 284, 287, 343, 383
getLanguageFilter() method, 212−213
getLayoutPath() method, 191, 204, 215, 226
getList() method, 205
getListQuery() method, 322, 367, 398
getMapRow() method, 388
getModel() method, 243, 246−247, 252,

311, 333, 377−378, 384−385, 517−518
getNullDate() method, 206−207, 368
getPagination() method, 266, 274−275, 319,

366−367
getPath() method, 297−298, 301−302
getState() method, 266, 275, 336, 366−367,

379
getString() method, 156, 370, 525
getSubscription() method, 491, 493
getTable() method, 253−254, 337, 511
getUsers() method, 190, 192
getUserStateFromRequest() method, 370
GIT, 38
Github, 38, 41
Global Configuration, 52, 55, 132, 134−135,

145, 181, 206, 215, 304, 416, 447, 460,
532

Global objects, 85−86
gmdate() method, 489
GNU General Public License, 55
Google, xxv, 55, 294, 484
goToPage() method, 470−471
grandparent, 295−296, 516, 518
Greenwich Mean Time (GMT), 68, 489, 496
GROUP BY, 420, 425−426, 433, 436
group() method, 433, 436
groupedList() method, 531
Hathor template, 54, 267
header() method, 400
Helper class, 65, 190−192, 203, 311, 318
Helper methods, 234, 245, 287, 396
helper.php file, 53, 72, 182, 188−190, 199,

203−204
History table, 429
htaccess.txt file, 18, 55
HTML (hypertext markup language)

anchor element, 197, 241, 272, 296,
454, 457, 458, 462, 528

border attribute, 104−105, 114, 131−134
border_width, 104−105
fieldset element, 101−103, 124,

127, 129, 135−136, 162, 165−166,
175, 180, 189, 199−202, 220, 234,
277, 283−287, 291−293, 312−313,
326−327, 342−344, 346, 359−360,
373−374, 379−380, 382−383, 456

h1 element, 12, 96, 98, 111, 119−120,
122−123, 372, 391, 394, 465

header data, 160−161
help element, 128, 225, 291
HTML DOCTYPE declaration, 95
html folder, 92, 116, 125, 528
htmlspecialchars() function, 191, 273,

363, 534
httpd.conf file, 18, 20, 21
img tag, 113−114, 233, 351−352, 372,

448, 467, 528
input element, 165, 175, 202, 449−450
list (li) element, 111−115, 119, 121,

196−197, 216, 283−287, 342−343,
461−466, 527

meta element, 160−161
name attribute, 98, 161, 165, 180, 287,

292, 293, 469

psn-dexter-book.indb 544 3/7/12 11:54 AM

Javascript 545

option attribute, 127
p element, 115
src attribute, 95, 114, 372, 448, 482,

496−497, 528
table cell (td) element, 130, 271−272,

330
table element, 130−131
table heading element, 130
table row element, 130, 271
title attribute, 127, 448, 463
title element, 95
ul element, 111, 114, 119−121, 196−197,

216, 283−287, 342−343, 461−466

I
id column, 70, 88, 207, 260, 409, 414, 420,

428, 430
id() method, 271, 530
iframe, 447, 454−455, 457−459, 524
import.php file, 66, 85, 478−479, 484
importPlugin() method, 139−140, 182−183
Index syntax, 410
index.html files, 18, 20, 30, 45−46, 55, 93,

110, 122, 161−162, 166, 169−170, 172,
174, 184−185, 188, 199, 232, 352, 355

index.php file, 2, 18, 28, 42, 45−46, 50, 55,
62−68, 70, 76, 78, 81−84, 93−94, 96, 98,
103, 129, 131−133, 215, 233, 236−240,
249, 264, 268, 283, 290, 293, 295−297,
300, 302, 310, 318, 326, 329, 333, 341,
374, 376, 382−386, 391−392, 395−396,
454, 457−458, 461, 466−468, 478,
480−481, 499, 513, 519

Indexed array, 440−441, 509
Indexing, 88, 142, 294
initialise() method, 68
innerJoin() method, 210, 433
INNER JOIN statements, 421−424, 430−431,

433
INSERT command, 407, 418−419, 427, 429,

432, 436−438
installing Joomla!

DocumentRoot folder, 18−20, 477−478
WampServer, 18−19
XAMPP, 18−20, 414

INTEGER data type, 408−409, 411−413,
523−524

Integrated development environment (IDE),
17, 21−23, 26, 30, 36−40, 518, 534,
535−536

Internationalization. See Languages
Introtext, 112−115, 119−120, 527
Invalid column names, 320
Invalid data, 61, 201, 225, 278, 451−452,

496
isDefault() method, 531
isset command, 71, 79, 133−134, 153, 156,

182−183, 203−204, 261, 277, 280, 286,
298−299, 333, 363, 386, 490, 509, 521

item() method, 529

J
JAccess, 86, 518
JAdministrator object, 53, 68, 85−86
JArrayHelper, 246−247, 332, 400−401
JApplication, 25, 30, 68−69, 82, 86, 143,

206, 340, 348, 515−516
Javascript, 2– 3, 443– 473

article selector modal, 455– 458
built- in JavaScript features, 446– 466
check all, 458– 459
defined, 443
disabling the Submit or Save action,

451– 452
highlighter behavior, 452– 453
how it works, 444
in Joomla!, 446
javascript folder, 92
JavaScript object notation (JSON), 57,

87, 103, 105, 260−261, 293, 324, 412,
470

JS calendar, 446– 448
JS caption, 448
JS colorpicker, 449
JS form validation, 449– 452
JS framework, 452
keepalive behavior, 453
modal behavior, 453– 454
MooTools defined, 444– 445
multiselect, 458, 459
noframes behavior, 459
switcher behavior, 459– 462

psn-dexter-book.indb 545 3/7/12 11:54 AM

546 Javascript

Javascript (continued)
tooltip behavior, 463
tree behavior, 463– 466
uploader behavior, 466
user configuation modal, 454– 455
using AJAX in Joomla!, 467– 471
using MooTools extensions, 467
using other JavaScript frameworks,

471– 473
JButton, 241
JButtonPopup, 455
JCategories, 297, 367, 370−371
JCategoryNode, 297, 302
JCli, 479, 480, 485−487, 489, 495
JComponentHelper render() method, 72– 74
JController class, 236−238, 241−243, 246,

249−250, 252, 264−265, 289, 304, 308,
310−311, 319, 357−358, 367, 521

JControllerAdmin, 241−243, 245−247,
249−250, 253, 256, 311−312

JControllerForm, 238, 240, 250, 252, 258,
331, 377

JDatabase, 85−86, 149, 193, 195, 205−208,
325, 346, 390, 432−434, 436, 440, 486,
489, 495, 504, 520

JDatabaseMySQL class, 86, 496
JDate, xxiii, 85−86, 207, 515, 517
JDEBUG, 67−68, 70, 82
JDispatcher object type, 139, 143, 254, 279,

385, 486
JDocument, 81, 86, 304, 472, 515−516, 518
JDocumentFeed, 86, 304
JDocumentHTML, 78, 80−81, 86, 160, 265,

304, 514−516
JDocumentJSON, 86
JEditor, 86, 515
JEXEC constant, 63, 94, 111, 118, 120,

144, 162, 185, 189, 195, 203−204, 216,
220, 223, 236, 283, 308, 310, 312, 314,
317, 319, 326, 331, 334, 336, 341, 346,
357, 361, 366, 371−373, 377, 379, 382,
387, 391, 397, 460, 464−465, 479, 480,
483−484, 510, 513

jexit() function, 56
JFactory class, 26, 56, 66−68, 71, 73,

77−78, 85−86, 94, 146−147, 149, 153,
160, 162, 168, 192, 206−207, 213, 236,

254, 256, 265, 268, 276, 298, 308, 315,
318, 320, 326, 332−333, 335−338, 340,
347−348, 357, 361−362, 364, 367−370,
373, 378−379, 381, 383, 385, 388,
390−391, 400, 432, 435−436, 456,
468, 470−471, 484−485, 488, 490, 495,
500−501, 515, 517, 520, 525

JFeedItem object, 304
JFilterInput, 102, 220, 310, 357, 523−525
JForm classes, xxii, 128, 139, 173−180,

182, 202, 218−220, 223, 225, 232, 259,
263−264, 266, 268, 270, 272, 274−284,
286−290, 292, 294, 296, 298, 300, 302,
304, 307, 338−339, 341, 360, 446−451,
456, 463, 524, 525, 537

JFormFieldCategory, 360
JFormRule class, 220−221, 223−225, 360,

451−452
JFormRuleOptions class, 223−224
JHIDE language key, 180, 293, 359
JHTML, 118, 120−121, 123−124, 175,

268−272, 283, 285−286, 326−330,
341, 343, 372−374, 382−383, 444, 446,
448−450, 452−453, 455, 459−460,
463−465, 468, 471, 527−532

batch folder class, 529
behavior folder class, 529
calendar method, 529
calling JHTML methods, 527
category folder class, 530
content folder class, 530
contentlanguage folder class, 530
custom JHTML classes, 528
date method, 529
email folder class, 530
form folder class, 530
grid folder class, 530
HTML folder classes, 529– 532
image folder class, 531
image method, 528
jgrid folder class, 531
JHTML class methods, 528
layouts using, 118– 119
link method, 528
list folder class, 531
methods, 527– 532
script method, 529

psn-dexter-book.indb 546 3/7/12 11:54 AM

Joomla! execution cycle 547

select folder class, 531
sliders folder class, 531
string folder class, 531– 532
stylesheet method, 528
tabs folder class, 532

JHtmlBehavior, 283
JHtmlString class, 116−120, 527
JHtmlWeblinks, 268
jimport() method, 56, 67
JLoader class, 56, 66−67, 117−118,

120−121, 183, 203−204, 310−311, 315,
387, 397, 513−514

JLog, 484−485, 487−488, 493
JMail, 86, 495
JMenuSite, 299
JModel class, 137, 266−276, 336−367
JModelAdmin, 154, 253−254, 257−260,

275−276, 279, 289, 336
JModelForm, 258−259, 276−277, 279
JModelList, 266, 319−320, 322, 366−367
JModuleHelper class, 190−191, 203−204, 215
JObject, 278−279, 318, 387, 469, 516
JOIN clause, 419−423, 426, 430, 433
Joomla!

core distribution, 45, 106, 407
core extensions, 6, 83, 156−157, 233,

407
core modules, 9
developing modules, 9
libraries, 15, 56
long- term support (LTS) release, xxii
running locally, 17
standard database, 86
third- party extensions, 6
user interface, 11
version 1.5, xx, xxii−xxiii, 15, 47, 49,

56, 103, 148−149, 193, 445, 475
version 1.6, xx, xxii−xxiii, xxiv, 6, 15,

47, 49, 52−53, 87, 103, 106, 125−126,
141, 149, 173, 193, 198, 213, 218,
226, 248, 256, 278−279, 432, 445

version 1.7, xx, xxii, 86, 323, 497
version 2.5, xix−xx, xxii, xxiv, 4, 9, 19,

42, 47−49, 52−53, 56, 66, 137, 141,
144, 148−149, 168, 187, 193, 247, 294,
421−422, 432, 446, 449, 525, 537

version 2.5.2, 4

Joomla! as a platform, 475– 497
configuration file, 483– 484
monitor file, 484– 486
platform example programs, 477– 482
project structure, 482
running the monitoring file, 496
setting up a platform project, 477– 478
subscription monitoring example,

482– 496
uses of, 476– 477

Joomla! development, 1– 16
choosing an extension type, 14– 15
controlling and checking commands,

60– 61
default owners and, 20– 21
design decisions that affect developing,

xx
developer site, 128
extending, 4– 15
filter types, 523– 525
for the experienced Joomla! user, xix
for the experienced web programmer,

xix
platform packages, 57
prerequisite knowledge, 3
techinical requirements, 17– 21
technical environment, 1– 3
tools for development, 21– 40
using Joomla! as a framework, 15– 16
using Joomla! as a platform, 15– 16, 56
web programming vs. normal

programming 58– 60
Joomla! documentation, 19, 22, 30, 39, 75,

125
Joomla! event system, 6, 57
Joomla! execution cycle, 61– 84

checking the execution environment,
62– 63

defining file locations, 64– 66
executing the component, 70– 76
including PHP files, 65– 66
loading the framework, 66– 67
loading the index.php file, 62
outputing the page, 82– 83
rendering the page, 79– 81
routing the URL, 68– 70
starting or continuing the session, 6– 98

psn-dexter-book.indb 547 3/7/12 11:54 AM

Joomla! Extensions Directory (JED)548

Joomla! Extensions Directory (JED), xix, 6
Joomla! folder structure

administrator folder index.php file, 55
administrator folder, 50– 51
administrator/cache folder, 51
administrator/components folder, 51
administrator/help folder, 51
administrator/includes folder, 51
administrator/language folder, 51
administrator/manifests folder, 53
administrator/modules folder, 53– 54
administrator/templates folder, 54
cache folder, 42– 43
cli folder, 43
components folder, 43– 44
files in top- level folders, 55
front- end vs. back- end folders, 42
images folder, 45
includes folder, 46
index.html files and, 45
index.php files and, 62
installation folder, 46
language folder, 47
libraries folder, 47
logs folder, 47
media folder, 47– 48
modules folder, 48
plugin folder, 48
templates folder 49– 50
tmp folder, 50

Joomla! platform project, 15
Joomla! specific links, 294−295, 298, 409
joomla.xml file, 53, 55
JPagination, 274
JPATH_BASE constant, 64−66, 73−74, 167,

176, 479−480, 484, 510, 519
JPATH_COMPONENT, 73−74, 263, 268, 283,

289, 311, 326, 341, 372−373, 379, 387,
397, 464, 528

JPATH_LIBRARIES constant, 64, 118
JPlugin class, 144, 162, 167−168, 176−177
jQuery, 445, 471−473
JRegistry class, 86, 104, 155, 190, 205, 224,

241−242, 260−261, 275, 293, 362−363,
486, 515, 520

JRequest methods, 69−71, 74, 76−77,
156, 168−169, 205−206, 208, 236−239,

245, 246, 248, 264−265, 289, 308, 310,
335, 340, 357, 369, 370, 377−378, 382,
384−386, 390−391, 458, 524−525

JRoute, 123−124, 213−215, 249, 264, 296,
300, 303−304, 310, 374, 382, 384−386,
391−392, 461, 528

JRouterSite, 46, 53, 69, 300, 302
JSHOW language key, 180, 293, 360
JSite class, 28, 46, 68−69, 70, 74, 76−77,

79, 81−82, 85−86, 142−143, 516, 519
JSite dispatch() method, 70– 72
JSite render() method, 77– 78
JString class, 116, 368, 510
JTable class, 12, 87, 137, 229, 254,

260−262, 293, 337−338, 346−347, 432,
452, 515

JTableNested, xxiii, 184−185
JToolBarHelper, 315−318, 335, 396, 454
JURI object, 68−71, 86, 293, 302, 468,

471−472, 515, 537
JUser, 85−86, 147, 153, 194, 206, 257, 362,

387, 515, 520
JView, 266, 272, 275, 289, 314−315, 334,

361, 379
JWeb, 478, 480−482
JXMLElement, xxiii, 86, 224, 225, 280

L
LAMPP, 533, 535
Languages, 11– 12

.sys.ini language files, 47, 170−171,
178, 199, 216

extension, 12, 535
file format, xxiii
file keys, 11
files, xxiii, 6, 47, 51, 73−74, 91−92,

106, 131, 136−137, 169, 178, 189,
198−201, 216, 226, 267, 349, 535

folder, 51, 92, 172, 189, 198−199, 349
language key, 11−12, 134, 136−137,

199, 201, 225, 269, 317
Language Manager, 52, 137, 141
language pack, 12
Language Switcher, 49, 213
language() method, 529

Latest Articles module, 108−113, 115, 117,
119

psn-dexter-book.indb 548 3/7/12 11:54 AM

Modules 549

Latest News module, 108−109, 125, 132
Latest Users, 49, 188, 198
Layout

alternative layouts, 125−126, 191, 202,
204, 209, 215, 226, 363−364, 531

article list, 5
changing the look of a component

with, 121– 125
creating, 109– 112
latest article module example,

108– 121
Latest News module layout file

example, 110– 111
layouts using JHTML, 118– 119
order of display, 5
overrides, 91– 122, 135, 137, 165, 363
Single Article view, 9
template override file, 5
templates, 13– 14
user registration component example,

121– 125
using JHTML::_syntax in, 120– 121
using JHTMLString truncate in,

116– 120
using strip_tags to fix problems in,

113– 116
LEFT joins, 324, 421−422, 434
leftJoin() method, 194, 210, 433
LICENSE.txt file, 55, 161, 174, 216, 351
Linux, 17, 19, 20, 22, 36, 38, 43, 64,

171−173, 482, 534−535
loadAssoc() method, 260, 440−441
loadAssocList() method, 440−441
loadColumn() method, 440−441
loadForm() method, 276−280
loadFormData() method, 276−279, 339
Loadmodule plugin, 108−109
loadObject() method, 147, 151−152, 206,

208, 389, 440−441, 494
loadObjectList() method, 193, 195, 208,

213−214, 439−441, 488−490
loadResult() method, 208, 348, 440−441,

500−501, 504
loadRow() method, 440
loadRowList() method, 440−441
Login screen, 12, 52

M
Mac OS X, 17, 19−20, 22, 36, 38, 64,

171−173
Magic constants, 510
malicious code, 15, 55, 60, 150, 175, 191,

203, 205−206, 212, 223, 226, 248, 272,
275, 369−370, 381, 434−435, 451

Mapping tables, 88, 377, 384, 386−399,
402, 430−432, 436, 438, 482, 489−492,
496

md5 hash command, 153, 280−281, 322
Media Manager, 44, 52, 447, 463, 466
MEDIUMTEXT, 410, 412
Menu item id, 300, 377
Menu Item Types, 10, 290−291
Mercurial, 38, 40
Metadata, 7, 71−72, 127, 231−232,

260−261, 291, 359−360, 366, 461−462
Method chaining, 78, 264, 358, 377, 435,

480, 489, 520
Method signatures, 145, 148−149, 186
methods.php file, 56
Microsoft Internet Information Services (IIS),

xxi, 1−3, 17, 19, 55, 62, 535, 537
Microsoft SQL Server, xxiv, 19, 193, 407, 432
Modal behavior, 453−455
Modal window, 234, 447, 454−455, 457−458
Model- view- controller (MVC) design pattern,

xxiv, 10, 75, 229−232, 235, 237, 247, 251,
262, 263, 287−288, 305, 355, 386, 395,
402−403, 471, 534, 536−537

Module chrome, 92, 98, 103– 105, 129−130,
513

modChrome function, 104−105,
129−131, 134

modChrome_container function,
104−105

Module Manager, 47−48, 52, 98, 105, 109,
125, 131, 187, 190−191, 198−199, 217

Modules, xix, 5−6, 9, 14, 16, 42, 44, 47−48,
50, 52−54, 72, 76, 79, 81, 83−84, 88,
92−93, 97−99, 103−105, 109−110,
121−122, 129−133, 137, 180, 187– 227,
230−231, 233−234, 287, 296, 321, 378,
458, 460, 513, 530, 534−536

best practices, 227
calling methods in, 191– 192

psn-dexter-book.indb 549 3/7/12 11:54 AM

550 Modules

Modules (continued)
core modules, 188– 197
custom JFormRule class, 220– 222
default layout file, 195– 197
entry file, 203– 204
help files in, 225– 226
helper classes, 192– 195
helper file, 204– 215
including files in, 191– 192
integer type in JForm, 218– 219
integer filters in JForm, 219– 220
language files in, 216– 217
layout file/default.php file, 215– 216
list validation, 223– 225
main module file, 189– 191
mod_articles_archive subfolder, 49,

202
mod_articles_categories subfolder, 49
mod_articles_category subfolder, 49
mod_articles_latest subfolder, 49,

109−111, 118, 120, 125, 132
mod_articles_news subfolder, 49
mod_articles_popular subfolder, 49
mod_banners subfolder, 49
mod_breadcrumbs subfolder, 49
mod_custom subfolder, 49, 54
mod_feed subfolder, 49, 54
mod_finder subfolder, 49
mod_finder. See also Smart Search

engine
mod_footer subfolder, 49
mod_languages subfolder, 49
mod_latest, 54
mod_logged, 54
mod_login subfolder, 49, 54, 105
mod_menu subfolder, 49, 54, 187
mod_multilangstatus, 54
mod_popular, 54
mod_quickicon, 54
mod_random_image subfolder, 49
mod_related_items subfolder, 49
mod_rewrite feature, 55
mod_search subfolder, 49
mod_sections subfolder, 49
mod_stats subfolder, 49
mod_status, 54
mod_submenu, 54

mod_syndicate subfolder, 49
mod_title, 54
mod_toolbar, 54, 241, 266
mod_users_lastest.php file, 191
mod_users_latest subfolder, 49,

188−192, 195−196, 199
mod_weblinks subfolder, 49
mod_whosonline subfolder, 49
mod_wrapper subfolder, 49
modules.php file, 130
packaging the module, 226
reviewing, 226– 227
Show Articles by Current User

example, 197– 217
structure, 197– 198
validating parameters in JForm,

218– 225
validation error messages, 222– 223
vs. components, 187– 188
XML file, 188– 189, 198– 203

monitor.php file, 482, 484, 486, 496−497
monitoring, 486−488, 496
MooTools, 48, 94, 268, 286, 443−448,

450, 452−454, 456, 458, 460, 462, 464,
466−468, 470−473, 529

Multiselect, 268, 326, 447, 458−459
mymeta.xml file, 161
MySQL, xix, xxi, xxiii−xxiv, 1, 2, 17, 19−20,

86, 171, 193, 207, 214, 324−325, 405,
407−410, 414, 418, 424−425, 429, 525,
535, 536

reserved words, 136, 408
version 5.0.4, xxiii

N
Namespacing, 131, 136
Naming conventions, 74−75, 85, 104, 120,

134, 140, 168, 177, 250, 252, 301, 314,
514

NetBeans, 17, 21−22, 30−36, 38, 40, 518,
535, 536

News feed, 72, 87−88, 303−304, 428
NOT NULL attribute, 324−325, 408,

412−414, 417
Notepad, 37−38
Notepad++, 37

psn-dexter-book.indb 550 3/7/12 11:54 AM

Parent document 551

now() method, 68
Null value, 207, 412, 504
Nusphere’s PhpED, 37

O
ob_end_clean() method, 75
ob_get_contents() method, 75
ob_start() method, 75, 190, 267
Object- oriented programming (OOP), xxiii, 11,

62, 230, 241, 243−244, 247, 278, 445,
514– 522

$this variable, 517– 518
|| instead of if, 519– 520
advanced code techniques, 519
classes, 515– 516
constructor method, 515
creating objects, 515– 516
extends, 516
inheritance in, 516
method chaining, 520
method names, 521– 522
method overriding in, 516– 517
objects, 515– 516
parent keyword, 518
PHP magic methods, 520– 521
private modifiers, 517
protected modifiers, 517
public modifiers, 517
regular expressions in, 522
self keyword, 517– 518
simple debugging in, 518– 519
standard class in, 516
static methods, fields, and variables,

517
variable class, 521
viewing defined variables, 519
viewing the stack trace, 519

ON clause, 210
ON statement, 421
onAfterDispatch event, 71, 76, 84
onAfterInitialise event, 84, 142
onAfterRender event, 78, 81, 84, 142−145
onAfterSave event, 6−8
onBeforeCompileHead plugin, 159– 164
onBeforeInitialise, 139, 184
onBeforeRender() method, 78−79, 84
onBeforeSave event, 6−8, 173, 176

onclick, 240−241, 317, 327, 458−459, 461,
469

onClose, 454−455
onContentAfterSave() method, 154
onContentBeforeDelete() method, 154−155
onContentBeforeSave, 139
onContentChangeState, 255, 257−258
onContentPrepare, 530
onContentPrepareForm, 176−177, 181−182,

279
onContentSearch event, 141
onContentSearchAreas event, 141
onSuccess, 470
onUserAuthenticate event, 141, 146−148
onUserBeforeSave event, 142, 167−168
Option command, 72
options() method, 269−270, 531
OR operator, 211, 501
ORDER BY clause, 193, 201, 213, 418−419,

424−426, 431−432, 433−435
order() method, 194, 213, 433−434, 530
ordering() method, 531
overrides, 4– 6, 14, 16, 47, 69, 91, 105, 108,

121, 125−126, 129, 134, 137, 178, 226,
282, 331, 398, 481

files, xix, 92, 110−112, 121−122, 125,
134, 137, 165, 171, 267, 528

layout, 91– 121. See also layout
nonlayout overrides, 126– 137
Overrides tab, 137
parameter overrides, 127– 129
parameters, 100– 103
table overrides, 137

P
Page refresh, 447, 467
Pagination, 265−266, 273−275, 314−315,

322, 328−329, 361−363, 374−375, 439,
455, 458

panel() method, 286, 343, 531−532
Params field, 129, 363
Params object, 390
Parent class, 81−82, 143−144, 168, 184,

238, 240, 242−243, 246, 250, 252, 257,
260−262, 277, 311−312, 348, 377, 382,
397−398, 489, 516−518, 535−536

Parent document, 454

psn-dexter-book.indb 551 3/7/12 11:54 AM

Parent window552

Parent window, 454−458
parse() method, 68, 70, 78, 293, 301−303,

537
parseTemplate() method, 78
Passwords, 18, 50, 60, 145−147, 149−154,

414, 449−451, 483−484, 495
Performance penalties, 81
Permissions, 21, 134, 211, 235−236,

240, 256−257, 271−274, 282, 329, 333,
336−337, 339−370, 375, 380

Phing, 22, 38−40
PHP, 499– 515

.ini file format, xxiii
alternative if/then/else syntax, 98– 100
alternative syntax in, 507– 508
arithmetic operators, 502
arrays in, 509
assign by references, 148– 149
basic syntax, 500– 502
break statement, 505
class declaration files, 513
closing tag, 499
code blocks, 500
common operators in, 502– 503
constants in, 510
continue command in, 506– 507
control statements, 99– 100
contructor methods, 241– 242
converting strings to integers with,

502
current directory in, 510
declaring variables in, 508
defining constants in, 510
do/while loops, 506
echo command, 11, 82−83, 196−197,

266−267
elseif statements, 158, 273, 363, 365,

503−504
exception handing, 278
explode() function, 152
file structure, 499
files with PHP and HTML, 499
for loops, 79, 99, 506
foreach loops, 99, 111−112, 146, 197,

214−216, 271, 273, 302, 329, 401,
440, 458, 488, 505– 506

function declaration files, 513

function structure in, 511
function variable scope in, 511– 512
functions in, 511– 512
if statement conditions, 152
if statements, 23, 99, 149, 152,

155−156, 158−159, 169, 181, 196,
197, 212, 274, 299, 401, 500,
503−505, 507−508, 520, 522

if/then statements, 98, 134, 151, 153,
205, 215, 501

important characters, 500– 502
including file types in, 512– 514
including files in, 512– 514
logical operators in, 503
looping statements in, 505– 507
method names, 144– 145
methods in, 511– 512
mixed files, 514
mixing with HTML, 96
nonboolean values in, 152
parse_ini_file command, xxiii
pass by references, 148– 149
passing variables by reference, 512
PHP Development Tools (PDT), 22, 30
PHPEclipse, 30
phpmailer folder, 47, 56
PHP- only files, 499
scripts that declare classes, 140
setting variable types in, 502
simple script files, 513– 514
special characters in, 501
string concatenate, 502
strings, 510
switch statements in, 505
ternary operator, 502
try/catch blocks in, 278
uppercase vs. lowercase in, 144– 145
using constants, 65
variable scope in, 508
variables in, 508– 510
version 4, 148
version 5, 148
version 5.2, xxiii, 4, 148, 161, 164, 278
warnings, 508
white space, 500, 507

phpMyAdmin, 171, 325−326, 405, 408,
414−419, 496

psn-dexter-book.indb 552 3/7/12 11:54 AM

repareDocument() method 553

phputf8 folder, 47, 56
plgSystemSef class, 142, 144
Plugin Editor, 164
Plugin Manager, 52, 143, 155, 161,

170−171, 180−181, 185−186
Plugins, xix, 6−9, 14−16, 22, 48, 52, 64, 70,

76, 83, 95, 137, 139−186, 188−189, 230,
233−255, 257−258, 277, 279, 280, 287,
385, 534

adding language files in, 169– 170, 178
adding parameters to a plugin,

179– 182
adding PHP plugin files in, 167– 169
adding XML file in, 166
authentication plugin type, 141
best practices in developing, 186
captcha plugin type, 141
content plugin type, 141
core, 142– 145
creating the form XML file, 174– 176
creating the plugin PHP file, 176– 178
creating the plugin, 174
creating the XML file, 174
editors plugin type, 141
editors- XTD plugin type, 141
execution of, 154– 155, 159– 160
extension plugin type, 141
how Joomla! classes are loaded, 183– 184
how they work, 139– 140
importing plugins, 172– 183
improved user registration plugin

example, 173– 179
naming conventions for, 140
overriding core classes with, 182– 186
overriding JTableNested class with,

184– 186
packaging finished plugins, 171– 173, 179
plugin.php file, 144
search plugin type, 141
SEF plugin, 142– 145
Smart Search plugin type, 142
system plugin type, 142
system, 142– 154
testing a plugin, 170– 171, 178– 179
types of, 50, 140– 142
uninstalling, 171

updating the approval override file,
165– 166

user plugin type, 142
user registration plugin, 164– 186

populateState() method, 320−321, 369, 390,
397

Pop- up windows, 453, 455
PostgreSQL, xxiv, 193, 407
preg_match, 78−79, 522
preg_match_all statements, 78−79
preg_replace command, 73−74, 522
prepare() method, 530
preprocessForm() method, 276
Primary keys, 260, 306, 333, 383, 389,

408−410, 412, 428, 430−431
Program flow, 6−7, 60, 276, 306, 444, 488
Protected method, 300, 397, 481
Public method, 315, 387, 397
publish() method, 241−249, 251, 253−259,

262, 311−312
published() method, 272, 531
publishedOptions() method, 269, 531
Publishing Options, 285

Q
qn() method, 489−490, 520−521
query() method, 86, 438−439
quote() method, 150, 208, 212, 369−370,

390, 434−435, 490, 520−521
quoteName() method, 324, 490, 520−521

R
radioList() method, 531
Read More break, 113
README.txt file, 55
Redirect value, 237
redirect() method, 25, 236−238, 264, 289,

308, 357
Reference table, 429
register() method, 66, 117−121, 203−204,

311, 387, 513−514
render() method, 72, 75−81, 93, 142−143
renderComponent() method, 72, 519
renderModule() method, 190
repareDocument() method, 303, 364,

380−381

psn-dexter-book.indb 553 3/7/12 11:54 AM

Repository554

Repository, 26, 39, 41, 57, 186, 475, 477
require command, 190−191, 196, 204
require_once, 65−66, 75, 182, 189, 191,

203−204, 263, 289, 301, 311, 387, 513−514
reset() method, 255
Return command, 153, 255, 300, 511
Return value, 145, 158, 264, 439−440, 504
Reusing code, 230, 247
robots.txt file, 55
route() method, 68−70, 85, 142, 302
route.php file, 204, 296
router.php file, 46, 53, 69, 215, 288,

300−301, 513
RSS feeds, 47, 56, 303−304

S
save() method, 240, 250−251, 253,

258−259, 283, 289, 341
saveorder() method, 243, 249, 251, 253, 259
Search text filter, 399
Search- engine- friendly, 142, 145, 294, 522,

533
Security, 18, 150

administrator login, 11
authentication, 50, 141, 145−146, 149,

153, 476
authorized user, 531
hackers, 169, 201, 208, 219, 223, 235,

239−240, 245, 259, 272, 282, 320,
339, 345−346, 384, 435

malicious code, 15, 55, 60, 150,
175, 191, 203, 205−206, 212, 223,
226, 248, 272, 275, 369−370, 381,
434−435, 451

passwords, 18, 50, 60, 145−147,
149−154, 414, 449−451, 483−484, 495

permissions, 21, 134, 211, 235−236,
240, 256−257, 271−274, 282, 329,
333, 336−337, 339−370, 375, 380

user profiles, 60
SEF, 71, 72, 140, 142, 144−145, 206, 215,

293−294, 296, 300, 302−304, 340, 537
SELECT query, 150, 193−194, 269, 292, 327,

349, 359, 415, 419−433, 436, 438−440,
456, 534

Self keyword, 297
Semicolons, 451, 500−501

sendNotificationEmail() method, 493,
495−496

sendResponse() method, 469−470
set() method, 70, 436−437, 489
setFieldAttribute() method, 281−282
setLastVisit() method, 511
setModelState() method, 396−397
setQuery() method, 195, 208, 214, 438−439
setRedirect() method, 392
7- Zip, 171−172
show_description, 359−360, 372, 375
Single Article menu item, 455
Single Category, 294−295, 302
Singleton design pattern, 85
site() method, 531
Slider JavaScript, 531, 532
Slug, 213−214, 303, 362
Smart Search engine, xxiv, 43, 49, 52, 88,

142
Smultron, 38
sort() method, 271, 530
Special characters, 427, 435
sprintf() method, 223, 394
SQL, xx−xxi, xxiii−xxiv, 3, 16, 19, 21,

150−151, 175, 193−195, 201, 205, 208,
211, 223, 226, 232−233, 272, 307, 320,
322−323, 325, 369, 398−399, 405−407,
412, 414−429, 432−438, 442, 534, 537

injection attacks, 208
queries, xxi, xxiii, 3, 208, 405,

415−416, 420−421, 432, 442, 537
statements, 150, 193

Standard element, 161
start() method, 286, 343, 531−532
Static information, 429−430
static methods, 72, 193, 205, 297, 501,

517−518
stdClass object, 112−114, 516
Storage array networks (SANs), 65– 66
store() method, 259, 261−262, 347−348
STRING filter type, 523−525
strip_tags function, 113, 115, 119, 121, 382
strrpos function, 116
sub_id, 357, 374, 376−377, 383−386,

390−391
submitform() method, 469−470
subscribe() method, 383−385, 391−392

psn-dexter-book.indb 554 3/7/12 11:54 AM

Templates 555

Subscription Manager plugin example, 305–
353, 355– 403

add and edit form for, 341– 346
add and edit model, 336– 340
add and edit view in, 333– 336
back- end files, 307– 308
category helper file, 371
category layout files, 371– 375
category view in, 361– 366
component entry point, 356– 357
controller method for new task, 396
controller method to export file,

400– 401
controller tasks in, 331– 333
controller validate method, 385– 386
creating a back- end subscriber report,

395
database tables in, 324– 326
default controller for, 309– 311
default controllers for, 357– 358
detailed design of, 306
edit layout, 382– 383
edit view and form, 378– 382
file structure of, 355– 394
folder structure, 307
form model, 386– 390
functional overview of, 305– 306
helper class for, 317– 319
installation and configuration of,

351– 353
installation XML file, 355– 356
language file, 392– 394
language files for, 349– 350
manager model for, 319– 324
manager screen layout for, 326– 331
manager view, 314– 317
menu item XML file, 359– 360
model in, 366– 371
new model class, 396– 400
new toolbar button, 395– 396
packaging the component, 394
real- world considerations, 402
submanager controller for, 311– 314
subscribe task, 383– 385
subscriber report in action, 401– 402
subscription edit controller methods,

376– 378

subscription view, 375– 392
subscription- category view, 359– 375
subscriptions screen for, 308– 314
table class in, 346– 349
thank- you layout, 391– 392
toolbar tasks, 311– 314

subscriptions, 292, 305−306, 308, 314,
317, 322−326, 333, 347−348, 350, 359,
367−369, 371, 374−376, 378, 395, 398,
400−402, 432, 482, 486−491, 494,
496−497

subscription id, 306, 311, 333, 358,
389, 399, 496

creating a Subscription Manager, 305–
353, 355– 403.

subscription.xml file, 307, 331, 344,
356, 379, 383

substr function, 73, 113, 115−116, 301,
323, 399

Subversion, 22, 38, 40
SVN repository, 41
Switch statements, 500
Syntax errors, 24, 30

T
table bind() method, 260– 261
table check() method, 262
table load() method, 260
Table names, 156−157, 193, 338, 347, 371,

407−408, 414, 427−428, 496
table store() method, 261
taskMap array, 241, 243−244, 249−250
TCP/IP, 2
Templates, 91– 121

adding a new Menu Item layout,
126– 129

alternative layouts, 125−126, 191,
202, 204, 209, 215, 226, 363−364,
531

Beez20 template, 49, 92, 100, 102,
105−108, 110−111, 121, 123,
125−126, 130−132, 137, 165, 173,
464, 467

Beez5 template, 14, 95
Bluestork template, 54, 267
copying, 105– 108

psn-dexter-book.indb 555 3/7/12 11:54 AM

556 Templates

Templates (continued)
creating a layout override file, 109–

112. See also layout overrides
customizing a layout, 112– 113
files and folders, 92– 93
Hathor template, 54, 267
index.php file, 93– 96
language overrides, 134– 137. See also

languages
layouts using JHTML, 118– 119
model overrides, 137
module chrome and, 129– 137
new module styles, 129– 134
positions in, 96– 98
Template Manager, 14, 52, 92, 100, 107
template overrides, 5, 14, 108, 126,

204, 267, 464, 531, 537
Ternary operators, 133−134, 222, 502, 504
test() method, 221−222, 225, 451
test.php file, 75, 471−472
TEXT filter type, 135, 408−409, 410, 412
Time stamp field, 68
TINYINT filter type, 408−409, 411, 413
tmpl variable, 77, 93, 109−110, 121,

126−127, 180, 188−191, 199, 232, 267,
282, 286, 288, 291, 296, 307, 309, 326,
331, 341, 356, 359, 371, 382, 391, 448,
452, 454−458, 460, 528

token() method, 530
toMySql() method, 206, 207
Tools for development, 21– 40

Ant, 25, 38, 43– 46
automated test programs, 39
automatic builder software, 38– 39
automatic code completion, 24
code completion, 24, 30, 32−33, 37
commercial integrated design

environments (IDEs), 37
Eclipse, 22– 30, 36
error reporting, 30, 133, 205, 480
integrated design environments

(IDEs), 22– 23
NetBeans, 30– 36
Notepad++, 37– 38
open- source integrated design

environments (IDEs), 22– 36
other tools, 38– 39

Phing, 25, 38– 39, 43– 46
PHPEclipse, 30
syntax highlighting, 23−24, 30−31,

37−38
text editor, 21, 23, 38, 325, 499
text editors, 37– 38
version control software, 38

Tooltips, 268, 283, 287, 291, 326, 341,
373−374, 382, 444, 446−447, 460, 463, 468

toString() method, 82, 195, 261, 433, 439
Translated strings, 135
Tree, 18, 158, 447, 463−466
trigger() method, 139, 140, 143−144, 154,

258
triggerEvent() method, 143
truncate() method, 116−117, 119−120, 527,

532
Try/catch blocks, 72, 277, 278, 281, 485−486

U
UNION queries, 428, 438
Unique names, 136
updateMapRow() method, 388−389
updateSubscriptionMapping() method, 385−387
User id, 89, 306, 389−399, 495
User interface, 11, 316, 336, 446, 451−452,

535
User Manager, 52, 142, 171, 452, 454, 533
User- Defined Category Levels, xxii
USERNAME, 523
UTF- 8, 47, 56, 116, 379, 410−411, 499, 510

V
validate() method, 223, 240, 259, 384−386
values() method, 436−437
var_dump output, 112−113, 160, 519
VARCHAR filter type, 408−409, 411−413
Variables

$_REQUEST, 156, 165, 169, 206,
230, 235, 238, 268, 284, 292, 384

$application field, 85
$args, 80, 81, 143, 490, 521
$array, 261, 301, 302
$canCheckin, 271, 329
$cid, 246, 247, 248, 254, 256
$clean, 75

psn-dexter-book.indb 556 3/7/12 11:54 AM

Variables 557

$conf, 265
$config, 86, 242−243, 247, 252−254,

312, 319−320, 338, 367, 378, 484,
485−487

$contents, 72, 75
$data, 80−83, 155−158, 177, 181, 246,

258−259, 276−277, 279−280, 282,
332−333, 338, 340, 385−386, 389,
396, 400, 439, 440−442, 517, 524

$db, 146−147, 149−152, 192−193,
195, 206, 208−209, 212−213,
218, 322−324, 347−348, 367−370,
388−390, 398−400, 433, 435−439,
483−484, 486−487, 500−501, 504

$dispatcher, 139−140, 143, 154, 254,
257−258, 279, 486−487

$document, 71−72, 76−81, 86, 160,
162−163, 265, 471−472

$event, 143
$form, 177, 181−182, 221−224, 258−259,

276−279, 281−282, 334, 338−339, 385
$fp, 400−401
$id, 150, 206−208, 239, 264, 297,

299−302, 310, 321, 357−358, 370,
384−385, 391, 441, 465

$input, 221−222, 224, 486−487
$item, 111−113, 115, 119−121,

213−214, 216, 271−273, 296−300,
329−330, 334, 362, 374−375,
379−380, 458, 465, 527, 529−530

$items, 205, 213−215, 298, 314,
361−362

$key, 183, 333, 377, 383, 489, 505−506
$levels, 206, 209, 211
$limit, 369, 433, 439
$limitstart, 369, 433, 439−440
$linknames, 189−190
$list, 111−112, 119, 121, 203−204, 216
$max, 221−223
$min, 221−223
$myTimestamp, 511−512
$name, 79, 189, 196−197, 247, 252, 277,

286−287, 312, 378, 391, 394, 500
$names, 196−197
$needles, 297−300
$now, 206−207, 209, 211−212, 488,

490−491, 517

$nullDate, 206−207, 209, 211−212, 368
$option, 74
$options, 68, 146−148, 277−278,

280−281, 371, 518
$params, 71−72, 77−78, 80−81, 104,

130−134, 189−193, 195−196, 203,
205, 213, 216, 218, 321, 361−363,
369, 379−380, 390

$params, 78
$parts, 64, 147, 151−152, 301
$path, 75
$pk, 255, 275, 390
$pks, 254−257
$query, 147, 150−151, 192−195, 201,

206−213, 218, 300−301, 322−323,
348, 367−369, 388−390, 398−400,
432−439, 488, 490−492, 494

$response, 146−149, 151, 153−154, 470
$result, 69, 147, 151−159, 168−169,

193, 195, 222−223, 257, 266−267,
318−319, 377, 384, 522

$salt, 147, 151−152
$saveOrder, 268, 273−274
$segments, 301−302
$source, 277, 280−281, 522
$subscription, 384−385, 387−388, 392,

491−494
$table, 154−158, 254−255, 257, 275,

340, 347, 511
$testcrypt, 147, 151−153
$this, 24−25, 30, 69−71, 77−82, 94−97,

99, 122, 129, 135, 143, 146, 154−156,
158, 162−163, 165−166, 168, 177,
181, 239, 242−244, 246−250, 252,
254−258, 260, 264−286, 296−297,
303, 310−311, 315, 320−323, 326,
329−330, 333−335, 338, 340−343,
347−349, 358, 361−382, 384−386,
388−392, 396−399, 435, 439, 448,
456−458, 460−461, 465, 467, 469,
480−481, 486−495, 511, 517−518,
521, 529−530

$timestamp, 511−512
$value, 221−222, 224−225, 246−248,

254, 256−257, 505−506
$view_item, 377
$with, 81

psn-dexter-book.indb 557 3/7/12 11:54 AM

Version control software558

Version control software, 22, 26, 38, 40
vi, 38

W
Web servers, xxi, 1−3, 17−19, 40, 44−45, 55,

59, 60−62, 294, 443−444, 477−478, 497,
533, 535, 537

web.config.txt file, 55
Weblinks component, 44, 49, 52, 87,

141−142, 205, 229, 231−237, 239−241,
243, 245, 247, 249, 250−253, 255−259,
261−264, 267−268, 273−276, 282,
284−285, 287−291, 293−305, 308, 311,
314−316, 320, 326−328, 331, 334−335,
352, 358, 361, 364, 372, 403, 457−459

back- end summary, 287
com_weblinks, 43, 52, 156, 231,

233−234, 236−241, 249, 256, 257,
263−264, 267−268, 275−277, 283,
287−288, 290−293, 296−298,
300−301, 303, 308, 311, 326

component entry point, 235– 237
controller in action, 237– 251
front- end component of, 288– 293
items, 271– 274
models, 252– 259
using JForm in, 275– 276
view, 263– 264
Weblink Edit view, 263
weblink.xml file, 232, 277, 288
Weblinks manager, 274– 275
weblinks.php file, 232, 234, 236, 241,

252, 263, 288−289, 308
weblinks.xml file, 232−233, 290
WeblinksBuildRoute() method, 301

WeblinksController, 237, 239, 249,
263, 265, 289, 311

WeblinksControllerWeblink, 237−238,
240, 250−253, 258, 289−290, 332

WeblinksControllerWeblinks, 241,
243, 246−247, 249, 251−253, 311

WeblinksModel getForm() method,
276– 280

WeblinksModelWeblink, 247,
252−254, 256, 259−260, 276, 279,
281, 289– 290

WeblinksViewWeblinks display()
method, 265– 267

WeblinkViewWeblinks, 275– 276
Wessling, Rouven, 467
WHERE clauses, 150, 193−194, 207−208,

211−213, 324, 369, 419−420, 423−428,
431−435, 437−438

where() method, 194, 207, 210−211,
433−434, 436−489

While statements, 500
White list filtering, 524
Windows, 17, 19, 22, 36−37, 64, 171−172,

478, 535
WORD filter type, 523
Word boundaries, 116, 119

X
XHTML, xx−xxi, 1, 2, 16, 94−95, 535, 537

Y
Yahoo, 294

Z
ZendStudio, 37

psn-dexter-book.indb 558 3/7/12 11:54 AM

	Contents
	Preface
	Acknowledgments
	About the Authors
	5 Extending Joomla! with Plugins
	What Is a Plugin?
	How Do Plugins Work?
	Naming Conventions for Plugins

	Plugin Types: Where Can You Insert a Plugin?
	Authentication
	Captcha
	Content
	Editors
	Editors-XTD
	Extension
	Search
	Smart Search (Finder)
	System
	User

	Tour of Selected Core Plugins
	System: SEF
	Authentication: joomla Folder
	Content: joomla Folder
	onBeforeCompileHead

	User Registration Plugin
	Update the Approval Override File
	Add the XML File
	Add the PHP Plugin File
	Add the Language Files
	Test the Plugin
	Package the Plugin

	Improved User Registration Plugin
	Create the Plugin XML File
	Create the Form XML File
	Create the Plugin PHP File
	Add the Language Files
	Test the Plugin
	Package the Plugin

	Adding Parameters to Our Plugin
	Using Plugins to Override Core Classes
	How Plugins Are Imported
	How Joomla Classes Are Loaded
	Example: Override the JTableNested Class

	Plugin Best Practices
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

