
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780132678209
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780132678209
https://plusone.google.com/share?url=http://www.informit.com/title/9780132678209
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780132678209
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780132678209/Free-Sample-Chapter

“The simplified yet deep level of detail, comprehensive coverage of material,
and informative historical references make this book perfect for the class-
room... An easy read, with complex examples presented simply, and great
historical references rarely found in such books. Awesome!”

—Gloria W.

Praise for the Previous Edition

“The long-awaited second edition of Wesley Chun’s Core Python Programming
proves to be well worth the wait—its deep and broad coverage and useful
exercises will help readers learn and practice good Python.”

—Alex Martelli, author of Python in a Nutshell and editor of Python Cookbook

“There has been lot of good buzz around Wesley Chun’s Core Python
Programming. It turns out that all the buzz is well earned. I think this is the
best book currently available for learning Python. I would recommend Chun’s
book over Learning Python (O’Reilly), Programming Python (O’Reilly), or The
Quick Python Book (Manning).”

—David Mertz, Ph.D., IBM DeveloperWorks

“I have been doing a lot of research [on] Python for the past year and have
seen a number of positive reviews of your book. The sentiment expressed
confirms the opinion that Core Python Programming is now considered the
standard introductory text.”

—Richard Ozaki, Lockheed Martin

“Finally, a book good enough to be both a textbook and a reference on the
Python language now exists.”

—Michael Baxter, Linux Journal

“Very well written. It is the clearest, friendliest book I have come across
yet for explaining Python, and putting it in a wider context. It does not
presume a large amount of other experience. It does go into some impor-
tant Python topics carefully and in depth. Unlike too many beginner
books, it never condescends or tortures the reader with childish hide-and-
seek prose games. [It] sticks to gaining a solid grasp of Python syntax and
structure.”

—http://python.org bookstore Web site

http://python.org

“[If] I could only own one Python book, it would be Core Python Programming
by Wesley Chun. This book manages to cover more topics in more depth
than Learning Python but includes it all in one book that also more than
adequately covers the core language. [If] you are in the market for just one
book about Python, I recommend this book. You will enjoy reading it,
including its wry programmer’s wit. More importantly, you will learn
Python. Even more importantly, you will find it invaluable in helping
you in your day-to-day Python programming life. Well done, Mr. Chun!”

—Ron Stephens, Python Learning Foundation

“I think the best language for beginners is Python, without a doubt. My
favorite book is Core Python Programming.”

—s003apr, MP3Car.com Forums

“Personally, I really like Python. It’s simple to learn, completely intuitive,
amazingly flexible, and pretty darned fast. Python has only just started to
claim mindshare in the Windows world, but look for it to start gaining lots
of support as people discover it. To learn Python, I’d start with Core Python
Programming by Wesley Chun.”

—Bill Boswell, MCSE, Microsoft Certified Professional Magazine Online

“If you learn well from books, I suggest Core Python Programming. It is by
far the best I’ve found. I’m a Python newbie as well and in three months’
time I’ve been able to implement Python in projects at work (automating
MSOffice, SQL DB stuff, etc.).”

—ptonman, Dev Shed Forums

“Python is simply a beautiful language. It’s easy to learn, it’s cross-plat-
form, and it works. It has achieved many of the technical goals that Java
strives for. A one-sentence description of Python would be: ‘All other lan-
guages appear to have evolved over time—but Python was designed.’ And
it was designed well. Unfortunately, there aren’t a large number of books for
Python. The best one I’ve run across so far is Core Python Programming.”

—Chris Timmons, C. R. Timmons Consulting

“If you like the Prentice Hall Core series, another good full-blown treat-
ment to consider would be Core Python Programming. It addresses in elabo-
rate concrete detail many practical topics that get little, if any, coverage in
other books.”

—Mitchell L. Model, MLM Consulting

www.MP3Car.com

Core

PYTHON
Applications Programming

Third Edition

The Core Series is designed to provide you � the experienced programmer �
with the essential information you need to quickly learn and apply the latest,
most important technologies.

Authors in The Core Series are seasoned professionals who have pioneered
the use of these technologies to achieve tangible results in real-world settings.
These experts:
� Share their practical experiences
� Support their instruction with real-world examples
� Provide an accelerated, highly effective path to learning the subject at hand

The resulting book is a no-nonsense tutorial and thorough reference that allows
you to quickly produce robust, production-quality code.

Visit informit.com/coreseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Core Series

www.informit.com/coreseries
www.informit.com/socialconnect

Core

PYTHON
Applications Programming

Third Edition

Wesley J. Chun

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

��������	
��������	������������������	���������������	����	�����
�	
����������	�
��������������	�����������
����	
���������	��������������	
������������	
������
��
�����������������	����������������	
��������	����
�������������	�����	
����	����
����	�����		�����������������	���

�
����	
������������
���
����	�������������	
���������	�������	
����������	���������
�������������������������	������������������������������������	���������������
�������� ���������	���������������������	����������!���	��������������������	����
��	
�������������	����	
��������	
���������	������������������	������
������

�
�������
�����������������	�������	����	
��������
��������������!���	�	�����������
����
�������������������
��
�����������������	����������������"�����	���������
�������	��	����	�������	��������������	�������������������	�����������������������
��	���	��#���������������	��������������	��	$

%�&��'������	������(��������	�&���
)*++,�-*.�-/01
�������2������	��
���������

#���������	����	
��%��	���&	�	�����������	��	$

3�	����	������&���
��	����	�����2����������

4��	������	
�����$��������	����"�

��������	
��	�����������	���������������	������
'
����������
'������	
����������	����������������"�������5��'
����6�-������
�� ���

7����������$�'����8�	
���������������"�������5��'
�����.++9�
3�������������
3&: �+�0-�.;9*.+�1�)�����$�����������,
0��8�	
���)'����	�������������������,�3��'
�����������'����8�	
��

�������������33����	���
<=9;�9-�81*'/*�.+0.
++>�0?096��.- .+00+>.1+-

'������
	�@�.+0.�8������A����	�����3���

=������
	����������8���	������	
��%��	���&	�	�����=���������
���������	���������	��	���
����������
	�����������������	������	�����������	
�������
���������	���������
���	���
��������	�����	�������������	��������	�������	�������������������������������������
����	����������
���������
�	��������������������������������������	�������������	��
�� ��	�����������	
������������������	������		�����!��	�	��8������A����	�����3�����
8��������B����	���	��C���D����&	���	��%�����&������7������ ���5�����+9/>*���������
���������������!��	�	��).+0,�.-;�-.1+��

3&: �0-$�19*�+�0-�.;9*.+�1
3&: �0+$��������+�0-�.;9*.+�1

���	�����	������	
��%��	���&	�	���������������������	�A������:��	
�������������
=���=���������
�����
&����������	�����5����.+0-

To my parents,
who taught me that everybody is different.

And to my wife,
who lives with someone who is different.

This page intentionally left blank

ix

CONTENTS

Preface xv

Acknowledgments xxvii

About the Author xxxi

Part I General Application Topics 1

Chapter 1 Regular Expressions 2
1.1 Introduction/Motivation 3
1.2 Special Symbols and Characters 6
1.3 Regexes and Python 16
1.4 Some Regex Examples 36
1.5 A Longer Regex Example 41
1.6 Exercises 48

Chapter 2 Network Programming 53
2.1 Introduction 54
2.2 What Is Client/Server Architecture? 54
2.3 Sockets: Communication Endpoints 58
2.4 Network Programming in Python 61
2.5 *The SocketServer Module 79
2.6 *Introduction to the Twisted Framework 84
2.7 Related Modules 88
2.8 Exercises 89

x Contents

Chapter 3 Internet Client Programming 94
��� ����	
��	�������	�������� ��
��� ������������	����� ��
��� �������	���� � !
��! "#$��� ��!
��� �	%��&��&� ���

����� "#$���	��'(������� ���
����� "#$���	%������ ��!
����� ��)#*���+	���,+	"#$���	-��.�&�� ���
����! *���	%��&��&��/	-�&,���01	2���&������ ���
����� 3����4	$��� ��5
����� 6'��� �!!

��� 2�����+	$�+,��� �!�
��7 "8��&���� �!5

Chapter 4 Multithreaded Programming 156
!�� ����+,&����9$���.����� ��7
!�� �����+�	��+	%��&����� ��5
!�� �����+�	��+	%0���� ��
!�! ���	thread	$�+,�� ��!
!�� ���	threading	$�+,�� ���
!�� ��'(�����	-�����	.��	$,��������+�+	"8�&,���� �5
!�7 $,��������+���	��	%��&��&� �5�
!�5 %��+,&��#����,'��	%��)��'	��+	���	Queue/queue	$�+,�� � �
!��
��������.�	�����+��������	��	�����+� � �
!�� 2�����+	$�+,��� � �
!��� "8��&���� ��

Chapter 5 GUI Programming 213
��� ����+,&���� ��!
��� �������	��+	%0����	%�����''��� ���
��� �������	"8�'(��� ���
��!
	*����	��,�	��	:����	6;� ���
��� 2�����+	$�+,���	��+	:����	6;� �!7
��� "8��&���� ��

Chapter 6 Database Programming 253
��� ����+,&���� ��!
��� ���	%0����	<*#
% ���
��� :2$� �5�
��! ���#2���������	<���)���� � �
��� 2�����+	2������&�� ���
��� "8��&���� ���

Contents xi

Chapter 7 *Programming Microsoft Office 324
7�� ����+,&���� ���
7�� �:$	������	%�����''���	����	%0���� ���
7�� ����+,&���0	"8�'(��� ��5
7�! ����'�+����	"8�'(��� ��5
7�� 2�����+	$�+,���9%�&����� ��7
7�� "8��&���� ��7

Chapter 8 Extending Python 364
5�� ����+,&����9$���.����� ���
5�� "8���+���	%0����)0	�������	"8�������� ��5
5�� 2�����+	��(�&� �5!
5�! "8��&���� �55

Part II Web Development 389

Chapter 9 Web Clients and Servers 390
��� ����+,&���� ���
��� %0����	��)	������	����� ���
��� ��)	������� !�
��! ��)	=>��%?	-��.��� !�5
��� 2�����+	$�+,��� !��
��� "8��&���� !��

Chapter 10 Web Programming: CGI and WSGI 441
� �� ����+,&���� !!�
� �� >��(���	��)	-��.���	%��&���	������	<��� !!�
� �� *,��+���	�6	
((��&������ !!�
� �! ;����	;��&�+�	����	�6 !�!
� ��
+.��&�+	�6 !��
� �� ����+,&����	��	�-6 !75
� �7 2���#����+	��)	<�.���('��� !57
� �5 2�����+	$�+,��� !55
� �� "8��&���� !�

Chapter 11 Web Frameworks: Django 493
���� ����+,&���� !�!
���� ��)	���'������ !�!
���� ����+,&����	��	<@���� !��
���! %��@�&��	��+	
((� � �
���� 3�,�	A>����	����+B	
((��&�����	=
	*���? � 7
���� ��������	�	$�+��	��	
++	<���)���	-��.�&� � �
���7 ���	%0����	
((��&�����	-���� ��!
���5 ���	<@����	
+'�����������	
((��5
���� ��������	���	*���C�	;���	������&� ��7

xii Contents

���� '(��.���	���	:,�(,� ��7
����� �������	����	;���	�(,� �!�
����� ���'�	��+	$�+��	���'� �!�
����� $���	
)�,�	D���� ���
����! EF���#��+#����	'(��.�'���� ���
����� E;���	������� ��!
����� E
�	����'�+����	<@����	
((/	���	�����
((��.�� ��!
����7 2���,�&�� ��7
����5 ���&�,���� ��7
����� "8��&���� ��5

Chapter 12 Cloud Computing: Google App Engine 604
���� ����+,&���� � �
���� ����	�	���,+	��'(,����� � �
���� ���	-��+)�8	��+	���	
(("�����	-<G ���
���! ��������	��	
(("�����	���'����� ��7
���� %0����	��7	-,((��� ���
���� ��'(�������	��	<@���� ��5
���7 -�������	A>����	����+B ��5
���5 ��������	A>����	����+B	$��,���0	=H�(����	;����? ���
���� ;(���+���	0�,�	
((��&�����	��	6����� ���
���� $��(����	A>����	����+B	����	�	-�'(�� *��� ���
�����
++���	$�'&�&��	-��.�&� �!7
����� -����&	����� ���
�����
++���	;����	-��.�&� ���
����! 2�'���	
%	-���� ��!
����� F��������	2�,�+	=����	%0����	��+�? ���
����� -��+���	������	$�������)0	;���� I$%% ��
����7 %��&������	'���� ���
����5 ����	J,�,��	=;��&��+,��+	�����? ���
����� %��������	����	
((����� �7
���� ���	;2F���&�	-��.�&� �7�
����� F��������	2�,�+	=�����,�	%0����	��+�? �7�
����� D��+��	F�&�#� �7�
����� 2���,�&�� �7�
����! ���&�,���� �7�
����� "8��&���� �5

Chapter 13 Web Services 684
���� ����+,&���� �5�
���� ���	3����4	�����&�	-��&�	J,���	-��.�� �5�
���� $�&��)�������	����	������� ��
���! "8��&���� 7 7

Contents xiii

Part III Supplemental/Experimental 713

Chapter 14 Text Processing 714
�!�� ��''�#-�(�����+	D��,�� 7��
�!�� K�.�-&��(�	:)@�&�	�������� 7��
�!�� "8�����)��	$���,(F���,��� 7�!
�!�! 2������&�� 7�5
�!�� 2�����+	$�+,��� 7!
�!�� "8��&���� 7!

Chapter 15 Miscellaneous 743
���� K0���� 7!!
���� 6�����L 7!5
���� "8��&���� 7��

Appendix A Answers to Selected Exercises 763

Appendix B Reference Tables 768

Appendix C Python 3: The Evolution of a Programming Language 798
��� ��0	�	%0����	��������� 7��
��� ����	>��	������+� 7��
��� $��������	����� 5 �
��! ���&�,���� 5 �
��� 2������&�� 5 �

Appendix D Python 3 Migration with 2.6+ 807
<�� %0����	�/	���	��8�	6��������� 5 7
<�� ������� 5 �
<�� *,���#�	�,�&����� 5��
<�! :)@�&�#:������+	%�����''���/	���	<��������	�����	:)@�&�� 5�!
<�� -������ 5��
<�� "8&�(����� 5��
<�7 :����	����������	�����	��+	��(� 5�7
<�5 �������	��+�	����	��	��'(���)��	��	*��� D�������	��8	��+	��8 5�5
<�� ���&�,���� 5��

Index 823

This page intentionally left blank

xv

PREFACE

Welcome to the Third Edition of Core Python
Applications Programming!
We are delighted that you have engaged us to help you learn Python as
quickly and as deeply as possible. The goal of the Core Python series of
books is not to just teach developers the Python language; we want you
you to develop enough of a personal knowledge base to be able to develop
software in any application area.

In our other Core Python offerings, Core Python Programming and Core
Python Language Fundamentals, we not only teach you the syntax of the
Python language, but we also strive to give you in-depth knowledge of
how Python works under the hood. We believe that armed with this
knowledge, you will write more effective Python applications, whether
you’re a beginner to the language or a journeyman (or journeywoman!).

Upon completion of either or any other introductory Python books, you
might be satisfied that you have learned Python and learned it well. By
completing many of the exercises, you’re probably even fairly confident in
your newfound Python coding skills. Still, you might be left wondering,
“Now what? What kinds of applications can I build with Python?” Per-
haps you learned Python for a work project that’s constrained to a very
narrow focus. “What else can I build with Python?”

xvi Preface

About this Book
In Core Python Applications Programming, you will take all the Python
knowledge gained elsewhere and develop new skills, building up a toolset
with which you’ll be able to use Python for a variety of general applica-
tions. These advanced topics chapters are meant as intros or “quick dives”
into a variety of distinct subjects. If you’re moving toward the specific
areas of application development covered by any of these chapters, you’ll
likely discover that they contain more than enough information to get you
pointed in the right direction. Do not expect an in-depth treatment because
that will detract from the breadth-oriented treatment that this book is
designed to convey.

Like all other Core Python books, throughout this one, you will find
many examples that you can try right in front of your computer. To ham-
mer the concepts home, you will also find fun and challenging exercises at
the end of every chapter. These easy and intermediate exercises are meant
to test your learning and push your Python skills. There simply is no sub-
stitute for hands-on experience. We believe you should not only pick up
Python programming skills but also be able to master them in as short a
time period as possible.

Because the best way for you to extend your Python skills is through
practice, you will find these exercises to be one of the greatest strengths of
this book. They will test your knowledge of chapter topics and definitions
as well as motivate you to code as much as possible. There is no substitute
for improving your skills more effectively than by building applications.
You will find easy, intermediate, and difficult problems to solve. It is also
here that you might need to write one of those “large” applications that
many readers wanted to see in the book, but rather than scripting
them—which frankly doesn’t do you all that much good—you gain by
jumping right in and doing it yourself. Appendix A, “Answers to Selected
Exercises,” features answers to selected problems from each chapter. As
with the second edition, you’ll find useful reference tables collated in
Appendix B, “Reference Tables.”

I’d like to personally thank all readers for your feedback and encourage-
ment. You’re the reason why I go through the effort of writing these books.
I encourage you to keep sending your feedback and help us make a fourth
edition possible, and even better than its predecessors!

Preface xvii

Who Should Read This Book?
This book is meant for anyone who already knows some Python but wants
to know more and expand their application development skillset.

Python is used in many fields, including engineering, information tech-
nology, science, business, entertainment, and so on. This means that the list
of Python users (and readers of this book) includes but is not limited to

• Software engineers

• Hardware design/CAD engineers

• QA/testing and automation framework developers

• IS/IT/system and network administrators

• Scientists and mathematicians

• Technical or project management staff

• Multimedia or audio/visual engineers

• SCM or release engineers

• Web masters and content management staff

• Customer/technical support engineers

• Database engineers and administrators

• Research and development engineers

• Software integration and professional services staff

• Collegiate and secondary educators

• Web service engineers

• Financial software engineers

• And many others!

Some of the most famous companies that use Python include Google,
Yahoo!, NASA, Lucasfilm/Industrial Light and Magic, Red Hat, Zope, Disney,
Pixar, and Dreamworks.

xviii Preface

The Author and Python
I discovered Python over a decade ago at a company called Four11. At the
time, the company had one major product, the Four11.com White Page
directory service. Python was being used to design its next product: the
Rocketmail Web-based e-mail service that would eventually evolve into
what today is Yahoo! Mail.

It was fun learning Python and being on the original Yahoo! Mail engi-
neering team. I helped re-design the address book and spell checker. At
the time, Python also became part of a number of other Yahoo! sites,
including People Search, Yellow Pages, and Maps and Driving Directions,
just to name a few. In fact, I was the lead engineer for People Search.

Although Python was new to me then, it was fairly easy to pick
up—much simpler than other languages I had learned in the past. The
scarcity of textbooks at the time led me to use the Library Reference and
Quick Reference Guide as my primary learning tools; it was also a driving
motivation for the book you are reading right now.

Since my days at Yahoo!, I have been able to use Python in all sorts of
interesting ways at the jobs that followed. In each case, I was able to har-
ness the power of Python to solve the problems at hand, in a timely man-
ner. I have also developed several Python courses and have used this book
to teach those classes—truly eating my own dogfood.

Not only are the Core Python books great learning devices, but they’re
also among the best tools with which to teach Python. As an engineer, I
know what it takes to learn, understand, and apply a new technology. As a
professional instructor, I also know what is needed to deliver the most effective
sessions for clients. These books provide the experience necessary to be able
to give you real-world analogies and tips that you cannot get from some-
one who is “just a trainer” or “just a book author.”

What to Expect of the Writing Style:
Technical, Yet Easy Reading
Rather than being strictly a “beginners” book or a pure, hard-core com-
puter science reference book, my instructional experience has taught me
that an easy-to-read, yet technically oriented book serves the purpose the
best, which is to get you up to speed on Python as quickly as possible so
that you can apply it to your tasks posthaste. We will introduce concepts

www.Four11.com

Preface xix

coupled with appropriate examples to expedite the learning process. At the
end of each chapter you will find numerous exercises to reinforce some of
the concepts and ideas acquired in your reading.

We are thrilled and humbled to be compared with Bruce Eckel’s writing
style (see the reviews to the first edition at the book’s Web site, http://
corepython.com). This is not a dry college textbook. Our goal is to have a
conversation with you, as if you were attending one of my well-received
Python training courses. As a lifelong student, I constantly put myself in
my student’s shoes and tell you what you need to hear in order to learn
the concepts as quickly and as thoroughly as possible. You will find read-
ing this book fast and easy, without losing sight of the technical details.

As an engineer, I know what I need to tell you in order to teach you a
concept in Python. As a teacher, I can take technical details and boil them
down into language that is easy to understand and grasp right away. You
are getting the best of both worlds with my writing and teaching styles,
but you will enjoy programming in Python even more.

Thus, you’ll notice that even though I’m the sole author, I use the “third-
person plural” writing structure; that is to say, I use verbiage such as “we”
and “us” and “our,” because in the grand scheme of this book, we’re all in
this together, working toward the goal of expanding the Python program-
ming universe.

About This Third Edition
At the time the first edition of this book was published, Python was enter-
ing its second era with the release of version 2.0. Since then, the language
has undergone significant improvements that have contributed to the
overall continued success, acceptance, and growth in the use of the lan-
guage. Deficiencies have been removed and new features added that bring
a new level of power and sophistication to Python developers worldwide.
The second edition of the book came out in 2006, at the height of Python’s
ascendance, during the time of its most popular release to date, 2.5.

The second edition was released to rave reviews and ended up outsell-
ing the first edition. Python itself had won numerous accolades since that
time as well, including the following:

• Tiobe (www.tiobe.com)

– Language of the Year (2007, 2010)

www.tiobe.com
http://corepython.com
http://corepython.com

xx Preface

• LinuxJournal (linuxjournal.com)

– Favorite Programming Language (2009–2011)

– Favorite Scripting Language (2006–2008, 2010, 2011)

• LinuxQuestions.org Members Choice Awards

– Language of the Year (2007–2010)

These awards and honors have helped propel Python even further.
Now it’s on its next generation with Python 3. Likewise, Core Python Pro-
gramming is moving towards its “third generation,” too, as I’m exceedingly
pleased that Prentice Hall has asked me to develop this third edition.
Because version 3.x is backward-incompatible with Python 1 and 2, it will
take some time before it is universally adopted and integrated into indus-
try. We are happy to guide you through this transition. The code in this
edition will be presented in both Python 2 and 3 (as appropriate—not
everything has been ported yet). We’ll also discuss various tools and prac-
tices when porting.

The changes brought about in version 3.x continue the trend of iterating
and improving the language, taking a larger step toward removing some
of its last major flaws, and representing a bigger jump in the continuing
evolution of the language. Similarly, the structure of the book is also mak-
ing a rather significant transition. Due to its size and scope, Core Python
Programming as it has existed wouldn’t be able to handle all the new mate-
rial introduced in this third edition.

Therefore, Prentice Hall and I have decided the best way of moving for-
ward is to take that logical division represented by Parts I and II of the pre-
vious editions, representing the core language and advanced applications
topics, respectively, and divide the book into two volumes at this juncture.
You are holding in your hands (perhaps in eBook form) the second half of
the third edition of Core Python Programming. The good news is that the
first half is not required in order to make use of the rich amount of content
in this volume. We only recommend that you have intermediate Python
experience. If you’ve learned Python recently and are fairly comfortable
with using it, or have existing Python skills and want to take it to the next
level, then you’ve come to the right place!

As existing Core Python Programming readers already know, my primary
focus is teaching you the core of the Python language in a comprehen-
sive manner, much more than just its syntax (which you don’t really need
a book to learn, right?). Knowing more about how Python works under
the hood—including the relationship between data objects and memory
management—will make you a much more effective Python programmer

www.linuxjournal.com

Preface xxi

right out of the gate. This is what Part I, and now Core Python Language
Fundamentals, is all about.

As with all editions of this book, I will continue to update the book’s
Web site and my blog with updates, downloads, and other related articles
to keep this publication as contemporary as possible, regardless to which
new release of Python you have migrated.

For existing readers, the new topics we have added to this edition include:
• Web-based e-mail examples (Chapter 3)

• Using Tile/Ttk (Chapter 5)

• Using MongoDB (Chapter 6)

• More significant Outlook and PowerPoint examples (Chapter 7)

• Web server gateway interface (WSGI) (Chapter 10)

• Using Twitter (Chapter 13)

• Using Google+ (Chapter 15)

In addition, we are proud to introduce three brand new chapters to the
book: Chapter 11, “Web Frameworks: Django,” Chapter 12, “Cloud Com-
puting: Google App Engine,” and Chapter 14, “Text Processing.” These rep-
resent new or ongoing areas of application development for which Python
is used quite often. All existing chapters have been refreshed and updated
to the latest versions of Python, possibly including new material. Take a
look at the chapter guide that follows for more details on what to expect
from every part of this volume.

Chapter Guide
This book is divided into three parts. The first part, which takes up about
two-thirds of the text, gives you treatment of the “core” members of any
application development toolset (with Python being the focus, of course).
The second part concentrates on a variety of topics, all tied to Web pro-
gramming. The book concludes with the supplemental section which pro-
vides experimental chapters that are under development and hopefully
will grow into independent chapters in future editions.

All three parts provide a set of various advanced topics to show what
you can build by using Python. We are certainly glad that we were at least
able to provide you with a good introduction to many of the key areas of
Python development including some of the topics mentioned previously.

Following is a more in-depth, chapter-by-chapter guide.

xxii Preface

Part I: General Application Topics

Chapter 1—Regular Expressions

Regular expressions are a powerful tool that you can use for pattern
matching, extracting, and search-and-replace functionality.

Chapter 2—Network Programming

So many applications today need to be network oriented. In this chapter, you
learn to create clients and servers using TCP/IP and UDP/IP as well as get an
introduction to SocketServer and Twisted.

Chapter 3—Internet Client Programming

Most Internet protocols in use today were developed using sockets. In
Chapter 3, we explore some of those higher-level libraries that are used to
build clients of these Internet protocols. In particular, we focus on file
transfer (FTP), the Usenet news protocol (NNTP), and a variety of e-mail
protocols (SMTP, POP3, IMAP4).

Chapter 4—Multithreaded Programming

Multithreaded programming is one way to improve the execution perfor-
mance of many types of applications by introducing concurrency. This
chapter ends the drought of written documentation on how to implement
threads in Python by explaining the concepts and showing you how to
correctly build a Python multithreaded application and what the best use
cases are.

Chapter 5—GUI Programming

Based on the Tk graphical toolkit, Tkinter (renamed to tkinter in Python 3)
is Python’s default GUI development library. We introduce Tkinter to you
by showing you how to build simple GUI applications. One of the best
ways to learn is to copy, and by building on top of some of these applica-
tions, you will be on your way in no time. We conclude the chapter by tak-
ing a brief look at other graphical libraries, such as Tix, Pmw, wxPython,
PyGTK, and Ttk/Tile.

Preface xxiii

Chapter 6—Database Programming

Python helps simplify database programming, as well. We first review
basic concepts and then introduce you to the Python database application
programmer’s interface (DB-API). We then show you how you can connect
to a relational database and perform queries and operations by using
Python. If you prefer a hands-off approach that uses the Structured Query
Language (SQL) and want to just work with objects without having to
worry about the underlying database layer, we have object-relational man-
agers (ORMs) just for that purpose. Finally, we introduce you to the world
of non-relational databases, experimenting with MongoDB as our NoSQL
example.

Chapter 7—Programming Microsoft Office

Like it or not, we live in a world where we will likely have to interact with
Microsoft Windows-based PCs. It might be intermittent or something we
have to deal with on a daily basis, but regardless of how much exposure
we face, the power of Python can be used to make our lives easier. In this
chapter, we explore COM Client programming by using Python to control
and communicate with Office applications, such as Word, Excel, Power-
Point, and Outlook. Although experimental in the previous edition, we’re
glad we were able to add enough material to turn this into a standalone
chapter.

Chapter 8—Extending Python

We mentioned earlier how powerful it is to be able to reuse code and
extend the language. In pure Python, these extensions are modules and
packages, but you can also develop lower-level code in C/C++, C#, or Java.
Those extensions then can interface with Python in a seamless fashion.
Writing your extensions in a lower-level programming language gives you
added performance and some security (because the source code does not
have to be revealed). This chapter walks you step-by-step through the
extension building process using C.

xxiv Preface

Part II: Web Development

Chapter 9—Web Clients and Servers

Extending our discussion of client-server architecture in Chapter 2, we apply
this concept to the Web. In this chapter, we not only look at clients, but also
explore a variety of Web client tools, parsing Web content, and finally, we
introduce you to customizing your own Web servers in Python.

Chapter 10—Web Programming: CGI and WSGI

The main job of Web servers is to take client requests and return results.
But how do servers get that data? Because they’re really only good at
returning results, they generally do not have the capabilities or logic nec-
essary to do so; the heavy lifting is done elsewhere. CGI gives servers the
ability to spawn another program to do this processing and has histori-
cally been the solution, but it doesn’t scale and is thus not really used in
practice; however, its concepts still apply, regardless of what framework(s)
you use, so we’ll spend most of the chapter learning CGI. You will also
learn how WSGI helps application developers by providing them a com-
mon programming interface. In addition, you’ll see how WSGI helps
framework developers who have to connect to Web servers on one side
and application code on the other so that application developers can write
code without having to worry about the execution platform.

Chapter 11—Web Frameworks: Django

Python features a host of Web frameworks with Django being one of the
most popular. In this chapter, you get an introduction to this framework
and learn how to write simple Web applications. With this knowledge,
you can then explore other Web frameworks as you wish.

Chapter 12—Cloud Computing: Google App Engine

Cloud computing is taking the industry by storm. While the world is most
familiar with infrastructure services like Amazon’s AWS and online appli-
cations such as Gmail and Yahoo! Mail, platforms present a powerful alter-
native that take advantage of infrastructure without user involvement but
give more flexibility than cloud software because you control the application
and its code. In this chapter, you get a comprehensive introduction to the first
platform service using Python, Google App Engine. With the knowledge
gained here, you can then explore similar services in the same space.

Preface xxv

�������	
����	��������

��������	�
�������������������������������	���������������������������
��������
��
���� ������	�� �!
���"�#��
�	���
� �
�������������������
!�����
�������������
	�������������$�����������	����%��������%�����
�
�����
�������� ���%��&����
��� �$�'��
����	�
�����

Part III: Supplemental/Experimental

�������	
������	����������

(�� $���� ������'���
�� 	�
���� ���� �	��� %��� ��� ����� ��	������� �����
�%���������$�����������)*+�������,*(-��
� �$��
��%�./0����������
����
�
�$� ����� 	�
�������� �
��� ��� 	�����1����� ������ ��� $�'� �
���� ��� ���
�����
� � 	�'����� ��� ����� ./0� ��� �����
�� ���� %��� 	
�� 	�
��� ������
�'������	� ���	
�����2�)������	����%�������./0�2�)�

�������	
���������������

����� 	�
���� 	�������� �$� ������'
���
�� ��
���������� �����%� ������� ����
$����� �� ��� �
��	�
����� ���
� $������ �����������	��	���� ����� ��	�� �
,
�
1,%�����
� �3�����4�

Conventions
5������
'��������
� ����	��	� ��
�����monospaced�$������%�������%�
�� ��
���
����Bold-monospaced�$�����0������$��������������������
 ���
��
�����
���������>>>���������������%����������������'����5���
 �
����
��������6�����$�����$�
�	�
�������	�����������	������� �	
������
������
���
 �
�	� �
� 1��������
��'
���
���

2���������)���-����

2���������)���/� ���

2���������)�������

-���$�
���������%�����
������������ ������������	���������������'�
��� ����������� ���������� �$� �%����� ��� ���	�� ���� $�
����� $���

���
� �

2.5

xxvi Preface

Book Resources
We welcome any and all feedback—the good, the bad, and the ugly. If you
have any comments, suggestions, kudos, complaints, bugs, questions, or
anything at all, feel free to contact me at corepython@yahoo.com.

You will find errata, source code, updates, upcoming talks, Python train-
ing, downloads, and other information at the book’s Web site located at:
http://corepython.com. You can also participate in the community discus-
sion around the “Core Python” books at their Google+ page, which is
located at: http://plus.ly/corepython.

http://corepython.com
http://plus.ly/corepython

xxvii

ACKNOWLEDGMENTS

Acknowledgments for the Third Edition

Reviewers and Contributors
Gloria Willadsen (lead reviewer)
Martin Omander (reviewer and also coauthor of Chapter 11, “Web
Frameworks: Django,” creator of the TweetApprover application, and
coauthor of Section 15.2, “Google+,” in Chapter 15, “Miscellaneous”).
Darlene Wong
Bryce Verdier
Eric Walstad
Paul Bissex (coauthor of Python Web Development with Django)
Johan “proppy” Euphrosine
Anthony Vallone

Inspiration
My wife Faye, who has continued to amaze me by being able to run the
household, take care of the kids and their schedule, feed us all, handle the
finances, and be able to do this while I’m off on the road driving cloud
adoption or under foot at home, writing books.

xxviii Acknowledgments

Editorial
Mark Taub (Editor-in-Chief)
Debra Williams Cauley (Acquisitions Editor)
John Fuller (Managing Editor)
Elizabeth Ryan (Project Editor)
Bob Russell, Octal Publishing, Inc. (Copy Editor)
Dianne Russell, Octal Publishing, Inc. (Production and Management Services)

Acknowledgments for the Second Edition

Reviewers and Contributors
Shannon -jj Behrens (lead reviewer)
Michael Santos (lead reviewer)
Rick Kwan
Lindell Aldermann (coauthor of the Unicode section in Chapter 6)
Wai-Yip Tung (coauthor of the Unicode example in Chapter 20)
Eric Foster-Johnson (coauthor of Beginning Python)
Alex Martelli (editor of Python Cookbook and author of Python in a Nutshell)
Larry Rosenstein
Jim Orosz
Krishna Srinivasan
Chuck Kung

Inspiration
My wonderful children and pet hamster.

Acknowledgments xxix

Acknowledgments for the First Edition

Reviewers and Contributors
Guido van Rossum (creator of the Python language)
Dowson Tong
James C. Ahlstrom (coauthor of Internet Programming with Python)
S. Candelaria de Ram
Cay S. Horstmann (coauthor of Core Java and Core JavaServer Faces)
Michael Santos
Greg Ward (creator of distutils package and its documentation)
Vincent C. Rubino
Martijn Faassen
Emile van Sebille
Raymond Tsai
Albert L. Anders (coauthor of MT Programming chapter)
Fredrik Lundh (author of Python Standard Library)
Cameron Laird
Fred L. Drake, Jr. (coauthor of Python & XML and editor of the official
Python documentation)
Jeremy Hylton
Steve Yoshimoto
Aahz Maruch (author of Python for Dummies)
Jeffrey E. F. Friedl (author of Mastering Regular Expressions)
Pieter Claerhout
Catriona (Kate) Johnston
David Ascher (coauthor of Learning Python and editor of Python Cookbook)
Reg Charney
Christian Tismer (creator of Stackless Python)
Jason Stillwell
and my students at UC Santa Cruz Extension

Inspiration
I would like to extend my great appreciation to James P. Prior, my high
school programming teacher.

To Louise Moser and P. Michael Melliar-Smith (my graduate thesis advi-
sors at The University of California, Santa Barbara), you have my deepest
gratitude.)

xxx Acknowledgments

Thanks to Alan Parsons, Eric Woolfson, Andrew Powell, Ian Bairnson, Stuart
Elliott, David Paton, all other Project participants, and fellow Projectologists
and Roadkillers (for all the music, support, and good times).

I would like to thank my family, friends, and the Lord above, who have kept
me safe and sane during this crazy period of late nights and abandonment,
on the road and off. I want to also give big thanks to all those who
believed in me for the past two decades (you know who you are!)—I
couldn’t have done it without you.

Finally, I would like to thank you, my readers, and the Python community
at large. I am excited at the prospect of teaching you Python and hope that
you enjoy your travels with me on this, our third journey.

Wesley J. Chun
Silicon Valley, CA
(It’s not so much a place as it is a state of sanity.)
October 2001; updated July 2006,
March 2009, March 2012

xxxi

ABOUT THE AUTHOR

Wesley Chun was initiated into the world of computing during high
school, using BASIC and 6502 assembly on Commodore systems. This was
followed by Pascal on the Apple IIe, and then ForTran on punch cards. It
was the last of these that made him a careful/cautious developer, because
sending the deck out to the school district’s mainframe and getting the
results was a one-week round-trip process. Wesley also converted the
journalism class from typewriters to Osborne 1 CP/M computers. He got
his first paying job as a student-instructor teaching BASIC programming to
fourth, fifth, and sixth graders and their parents.

After high school, Wesley went to University of California at Berkeley
as a California Alumni Scholar. He graduated with an AB in applied math
(computer science) and a minor in music (classical piano). While at Cal, he
coded in Pascal, Logo, and C. He also took a tutoring course that featured
videotape training and psychological counseling. One of his summer
internships involved coding in a 4GL and writing a “Getting Started” user
manual. He then continued his studies several years later at University of
California, Santa Barbara, receiving an MS in computer science (distributed
systems). While there, he also taught C programming. A paper based on his
master’s thesis was nominated for Best Paper at the 29th HICSS conference,
and a later version appeared in the University of Singapore’s Journal of High
Performance Computing.

xxxii About the Author

Wesley has been in the software industry since graduating and has con-
tinued to teach and write, publishing several books and delivering hun-
dreds of conference talks and tutorials, plus Python courses, both to the
public as well as private corporate training. Wesley’s Python experience
began with version 1.4 at a startup where he designed the Yahoo! Mail
spellchecker and address book. He then became the lead engineer for
Yahoo! People Search. After leaving Yahoo!, he wrote the first edition of
this book and then traveled around the world. Since returning, he has
used Python in a variety of ways, from local product search, anti-spam
and antivirus e-mail appliances, and Facebook games/applications to
something completely different: software for doctors to perform spinal
fracture analysis.

In his spare time, Wesley enjoys piano, bowling, basketball, bicycling,
ultimate frisbee, poker, traveling, and spending time with his family. He
volunteers for Python users groups, the Tutor mailing list, and PyCon.
He also maintains the Alan Parsons Project Monster Discography. If you
think you’re a fan but don’t have “Freudiana,” you had better find it! At
the time of this writing, Wesley was a Developer Advocate at Google, rep-
resenting its cloud products. He is based in Silicon Valley, and you can fol-
low him at @wescpy or plus.ly/wescpy.

156

CHAPTER

Multithreaded Programming

> With Python you can start a thread, but you can’t stop it.
> Sorry. You’ll have to wait until it reaches the end of execution.

So, just the same as [comp.lang.python], then?
—Cliff Wells, Steve Holden

(and Timothy Delaney), February 2002

In this chapter...

• Introduction/Motivation
• Threads and Processes
• Threads and Python
• The thread Module
• The threading Module
• Comparing Single vs. Multithreaded Execution
• Multithreading in Practice
• Producer-Consumer Problem and the Queue/queue Module
• Alternative Considerations to Threads
• Related Modules

4.1 Introduction/Motivation 157

n this section, we will explore the different ways by which you can
achieve more parallelism in your code. We will begin by differentiat-
ing between processes and threads in the first few of sections of this

chapter. We will then introduce the notion of multithreaded programming
and present some multithreaded programming features found in Python.
(Those of you already familiar with multithreaded programming can skip
directly to Section 4.3.5.) The final sections of this chapter present some
examples of how to use the threading and Queue modules to accomplish
multithreaded programming with Python.

4.1 Introduction/Motivation
Before the advent of multithreaded (MT) programming, the execution of
computer programs consisted of a single sequence of steps that were exe-
cuted in synchronous order by the host’s CPU. This style of execution was
the norm whether the task itself required the sequential ordering of steps
or if the entire program was actually an aggregation of multiple subtasks.
What if these subtasks were independent, having no causal relationship
(meaning that results of subtasks do not affect other subtask outcomes)? Is
it not logical, then, to want to run these independent tasks all at the same
time? Such parallel processing could significantly improve the perfor-
mance of the overall task. This is what MT programming is all about.

MT programming is ideal for programming tasks that are asynchronous
in nature, require multiple concurrent activities, and where the processing
of each activity might be nondeterministic, that is, random and unpredictable.
Such programming tasks can be organized or partitioned into multiple
streams of execution wherein each has a specific task to accomplish.
Depending on the application, these subtasks might calculate intermediate
results that could be merged into a final piece of output.

While CPU-bound tasks might be fairly straightforward to divide into
subtasks and executed sequentially or in a multithreaded manner, the task
of managing a single-threaded process with multiple external sources of
input is not as trivial. To achieve such a programming task without multi-
threading, a sequential program must use one or more timers and imple-
ment a multiplexing scheme.

A sequential program will need to sample each I/O terminal channel to
check for user input; however, it is important that the program does not
block when reading the I/O terminal channel, because the arrival of user
input is nondeterministic, and blocking would prevent processing of other
I/O channels. The sequential program must use non-blocked I/O or
blocked I/O with a timer (so that blocking is only temporary).

I

158 Chapter 4 • Multithreaded Programming

Because the sequential program is a single thread of execution, it must
juggle the multiple tasks that it needs to perform, making sure that it does
not spend too much time on any one task, and it must ensure that user
response time is appropriately distributed. The use of a sequential pro-
gram for this type of task often results in a complicated flow of control
that is difficult to understand and maintain.

Using an MT program with a shared data structure such as a Queue
(a multithreaded queue data structure, discussed later in this chapter), this
programming task can be organized with a few threads that have specific
functions to perform:

• UserRequestThread: Responsible for reading client input,
perhaps from an I/O channel. A number of threads would be
created by the program, one for each current client, with
requests being entered into the queue.

• RequestProcessor: A thread that is responsible for retrieving
requests from the queue and processing them, providing
output for yet a third thread.

• ReplyThread: Responsible for taking output destined for the
user and either sending it back (if in a networked application)
or writing data to the local file system or database.

Organizing this programming task with multiple threads reduces the
complexity of the program and enables an implementation that is clean,
efficient, and well organized. The logic in each thread is typically less com-
plex because it has a specific job to do. For example, the UserRequestThread
simply reads input from a user and places the data into a queue for further
processing by another thread, etc. Each thread has its own job to do; you
merely have to design each type of thread to do one thing and do it well.
Use of threads for specific tasks is not unlike Henry Ford’s assembly line
model for manufacturing automobiles.

4.2 Threads and Processes

4.2.1 What Are Processes?
Computer programs are merely executables, binary (or otherwise), which
reside on disk. They do not take on a life of their own until loaded into
memory and invoked by the operating system. A process (sometimes called

4.2 Threads and Processes 159

a heavyweight process) is a program in execution. Each process has its own
address space, memory, a data stack, and other auxiliary data to keep
track of execution. The operating system manages the execution of all pro-
cesses on the system, dividing the time fairly between all processes.
Processes can also fork or spawn new processes to perform other tasks, but
each new process has its own memory, data stack, etc., and cannot gener-
ally share information unless interprocess communication (IPC) is employed.

4.2.2 What Are Threads?
Threads (sometimes called lightweight processes) are similar to processes
except that they all execute within the same process, and thus all share the
same context. They can be thought of as “mini-processes” running in par-
allel within a main process or “main thread.”

A thread has a beginning, an execution sequence, and a conclusion. It has
an instruction pointer that keeps track of where within its context it is cur-
rently running. It can be preempted (interrupted) and temporarily put on
hold (also known as sleeping) while other threads are running—this is called
yielding.

Multiple threads within a process share the same data space with the
main thread and can therefore share information or communicate with
one another more easily than if they were separate processes. Threads are
generally executed in a concurrent fashion, and it is this parallelism and
data sharing that enable the coordination of multiple tasks. Naturally, it is
impossible to run truly in a concurrent manner in a single CPU system, so
threads are scheduled in such a way that they run for a little bit, then yield
to other threads (going to the proverbial back of the line to await more
CPU time again). Throughout the execution of the entire process, each
thread performs its own, separate tasks, and communicates the results
with other threads as necessary.

Of course, such sharing is not without its dangers. If two or more
threads access the same piece of data, inconsistent results can arise because
of the ordering of data access. This is commonly known as a race condition.
Fortunately, most thread libraries come with some sort of synchronization
primitives that allow the thread manager to control execution and access.

Another caveat is that threads cannot be given equal and fair execution
time. This is because some functions block until they have completed. If
not written specifically to take threads into account, this skews the amount
of CPU time in favor of such greedy functions.

160 Chapter 4 • Multithreaded Programming

4.3 Threads and Python
In this section, we discuss how to use threads in Python. This includes the
limitations of threads due to the global interpreter lock and a quick demo
script.

4.3.1 Global Interpreter Lock
Execution of Python code is controlled by the Python Virtual Machine (a.k.a.
the interpreter main loop). Python was designed in such a way that only one
thread of control may be executing in this main loop, similar to how multi-
ple processes in a system share a single CPU. Many programs can be in
memory, but only one is live on the CPU at any given moment. Likewise,
although multiple threads can run within the Python interpreter, only one
thread is being executed by the interpreter at any given time.

Access to the Python Virtual Machine is controlled by the global inter-
preter lock (GIL). This lock is what ensures that exactly one thread is run-
ning. The Python Virtual Machine executes in the following manner in an
MT environment:

1. Set the GIL
2. Switch in a thread to run
3. Execute either of the following:

a. For a specified number of bytecode instructions, or
b. If the thread voluntarily yields control (can be accomplished

time.sleep(0))
4. Put the thread back to sleep (switch out thread)
5. Unlock the GIL
6. Do it all over again (lather, rinse, repeat)

When a call is made to external code—that is, any C/C++ extension
built-in function—the GIL will be locked until it has completed (because
there are no Python bytecodes to count as the interval). Extension pro-
grammers do have the ability to unlock the GIL, however, so as the Python
developer, you shouldn’t have to worry about your Python code locking
up in those situations.

As an example, for any Python I/O-oriented routines (which invoke
built-in operating system C code), the GIL is released before the I/O call is
made, allowing other threads to run while the I/O is being performed.
Code that doesn’t have much I/O will tend to keep the processor (and GIL)

4.3 Threads and Python 161

for the full interval a thread is allowed before it yields. In other words,
I/O-bound Python programs stand a much better chance of being able to
take advantage of a multithreaded environment than CPU-bound code.

Those of you who are interested in the source code, the interpreter main
loop, and the GIL can take a look at the Python/ceval.c file.

4.3.2 Exiting Threads
When a thread completes execution of the function it was created for, it
exits. Threads can also quit by calling an exit function such as
thread.exit(), or any of the standard ways of exiting a Python process
such as sys.exit() or raising the SystemExit exception. You cannot, how-
ever, go and “kill” a thread.

We will discuss in detail the two Python modules related to threads in the
next section, but of the two, the thread module is the one we do not recom-
mend. There are many reasons for this, but an obvious one is that when the
main thread exits, all other threads die without cleanup. The other module,
threading, ensures that the whole process stays alive until all “important”
child threads have exited. (For a clarification of what important means, read
the upcoming Core Tip, “Avoid using the thread module.”)

Main threads should always be good managers, though, and perform the
task of knowing what needs to be executed by individual threads, what data
or arguments each of the spawned threads requires, when they complete
execution, and what results they provide. In so doing, those main threads
can collate the individual results into a final, meaningful conclusion.

4.3.3 Accessing Threads from Python
Python supports multithreaded programming, depending on the operating
system on which it’s running. It is supported on most Unix-based platforms,
such as Linux, Solaris, Mac OS X, *BSD, as well as Windows-based PCs.
Python uses POSIX-compliant threads, or pthreads, as they are commonly
known.

By default, threads are enabled when building Python from source
(since Python 2.0) or the Win32 installed binary. To determine whether
threads are available for your interpreter, simply attempt to import the
thread module from the interactive interpreter, as shown here (no errors
occur when threads are available):

>>> import thread
>>>

162 Chapter 4 • Multithreaded Programming

If your Python interpreter was not compiled with threads enabled, the
module import fails:

>>> import thread
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named thread

In such cases, you might need to recompile your Python interpreter to
get access to threads. This usually involves invoking the configure script
with the --with-thread option. Check the README file for your distribution
to obtain specific instructions on how to compile Python with threads for
your system.

4.3.4 Life Without Threads
For our first set of examples, we are going to use the time.sleep() func-
tion to show how threads work. time.sleep() takes a floating point argu-
ment and “sleeps” for the given number of seconds, meaning that
execution is temporarily halted for the amount of time specified.

Let’s create two time loops: one that sleeps for 4 seconds (loop0()), and
one that sleeps for 2 seconds (loop1()), respectively. (We use the names
“loop0” and “loop1” as a hint that we will eventually have a sequence of
loops.) If we were to execute loop0() and loop1() sequentially in a one-
process or single-threaded program, as onethr.py does in Example 4-1, the
total execution time would be at least 6 seconds. There might or might not
be a 1-second gap between the starting of loop0() and loop1() as well as
other execution overhead which can cause the overall time to be bumped
to 7 seconds.

Example 4-1 Loops Executed by a Single Thread (onethr.py)

This script executes two loops consecutively in a single-threaded program. One
loop must complete before the other can begin. The total elapsed time is the sum
of times taken by each loop.

1 #!/usr/bin/env python
2
3 from time import sleep, ctime
4
5 def loop0():
6 print 'start loop 0 at:', ctime()
7 sleep(4)

4.3 Threads and Python 163

We can verify this by executing onethr.py, which renders the following
output:

$ onethr.py
starting at: Sun Aug 13 05:03:34 2006
start loop 0 at: Sun Aug 13 05:03:34 2006
loop 0 done at: Sun Aug 13 05:03:38 2006
start loop 1 at: Sun Aug 13 05:03:38 2006
loop 1 done at: Sun Aug 13 05:03:40 2006
all DONE at: Sun Aug 13 05:03:40 2006

Now, assume that rather than sleeping, loop0() and loop1() were sepa-
rate functions that performed individual and independent computations,
all working to arrive at a common solution. Wouldn’t it be useful to have
them run in parallel to cut down on the overall running time? That is the
premise behind MT programming that we now introduce.

4.3.5 Python Threading Modules
Python provides several modules to support MT programming, including
the thread, threading, and Queue modules. Programmers can us the thread
and threading modules to create and manage threads. The thread module
provides basic thread and locking support; threading provides higher-level,
fully-featured thread management. With the Queue module, users can
create a queue data structure that can be shared across multiple threads.
We will take a look at these modules individually and present examples and
intermediate-sized applications.

8 print 'loop 0 done at:', ctime()
9
10 def loop1():
11 print 'start loop 1 at:', ctime()
12 sleep(2)
13 print 'loop 1 done at:', ctime()
14
15 def main():
16 print 'starting at:', ctime()
17 loop0()
18 loop1()
19 print 'all DONE at:', ctime()
20
21 if __name__ == '__main__':
22 main()

164 Chapter 4 • Multithreaded Programming

CORE TIP: Avoid using the thread module

We recommend using the high-level threading module instead of the thread
module for many reasons. threading is more contemporary, has better thread
support, and some attributes in the thread module can conflict with those in the
threading module. Another reason is that the lower-level thread module has few
synchronization primitives (actually only one) while threading has many.

However, in the interest of learning Python and threading in general, we do
present some code that uses the thread module. We present these for learning
purposes only; hopefully they give you a much better insight as to why you
would want to avoid using thread. We will also show you how to use more
appropriate tools such as those available in the threading and Queue modules.

Another reason to avoid using thread is because there is no control of when
your process exits. When the main thread finishes, any other threads will also
die, without warning or proper cleanup. As mentioned earlier, at least threading
allows the important child threads to finish first before exiting.

Use of the thread module is recommended only for experts desiring lower-
level thread access. To emphasize this, it is renamed to _thread in Python 3.
Any multithreaded application you create should utilize threading and per-
haps other higher-level modules.

4.4 The thread Module
Let’s take a look at what the thread module has to offer. In addition to
being able to spawn threads, the thread module also provides a basic syn-
chronization data structure called a lock object (a.k.a. primitive lock, simple
lock, mutual exclusion lock, mutex, and binary semaphore). As we mentioned
earlier, such synchronization primitives go hand in hand with thread
management.

Table 4-1 lists the more commonly used thread functions and LockType
lock object methods.

3.x

4.4 The thread Module 165

The key function of the thread module is start_new_thread(). It takes a
function (object) plus arguments and optionally, keyword arguments. A
new thread is spawned specifically to invoke the function.

Let’s take our onethr.py example and integrate threading into it. By
slightly changing the call to the loop*() functions, we now present mtsleepA.py
in Example 4-2:

Table 4-1 thread Module and Lock Objects

Function/Method Description

thread Module Functions

start_new_thread(function,
args, kwargs=None)

Spawns a new thread and executes function
with the given args and optional kwargs

allocate_lock() Allocates LockType lock object

exit() Instructs a thread to exit

LockType Lock Object Methods

acquire(wait=None) Attempts to acquire lock object

locked() Returns True if lock acquired, False
otherwise

release() Releases lock

Example 4-2 Using the thread Module (mtsleepA.py)

The same loops from onethr.py are executed, but this time using the simple
multithreaded mechanism provided by the thread module. The two loops are
executed concurrently (with the shorter one finishing first, obviously), and the
total elapsed time is only as long as the slowest thread rather than the total time for
each separately.

1 #!/usr/bin/env python
2
3 import thread
4 from time import sleep, ctime
5
6 def loop0():
7 print 'start loop 0 at:', ctime()

(Continued)

166 Chapter 4 • Multithreaded Programming

start_new_thread() requires the first two arguments, so that is the rea-
son for passing in an empty tuple even if the executing function requires
no arguments.

Upon execution of this program, our output changes drastically. Rather
than taking a full 6 or 7 seconds, our script now runs in 4 seconds, the
length of time of our longest loop, plus any overhead.

$ mtsleepA.py
starting at: Sun Aug 13 05:04:50 2006
start loop 0 at: Sun Aug 13 05:04:50 2006
start loop 1 at: Sun Aug 13 05:04:50 2006
loop 1 done at: Sun Aug 13 05:04:52 2006
loop 0 done at: Sun Aug 13 05:04:54 2006
all DONE at: Sun Aug 13 05:04:56 2006

The pieces of code that sleep for 4 and 2 seconds now occur concur-
rently, contributing to the lower overall runtime. You can even see how
loop 1 finishes before loop 0.

The only other major change to our application is the addition of the
sleep(6) call. Why is this necessary? The reason is that if we did not stop
the main thread from continuing, it would proceed to the next statement,
displaying “all done” and exit, killing both threads running loop0() and
loop1().

We did not have any code that directed the main thread to wait for the
child threads to complete before continuing. This is what we mean by
threads requiring some sort of synchronization. In our case, we used
another sleep() call as our synchronization mechanism. We used a value

Example 4-2 Using the thread Module (mtsleepA.py) (Continued)

8 sleep(4)
9 print 'loop 0 done at:', ctime()
10
11 def loop1():
12 print 'start loop 1 at:', ctime()
13 sleep(2)
14 print 'loop 1 done at:', ctime()
15
16 def main():
17 print 'starting at:', ctime()
18 thread.start_new_thread(loop0, ())
19 thread.start_new_thread(loop1, ())
20 sleep(6)
21 print 'all DONE at:', ctime()
22
23 if __name__ == '__main__':
24 main()

4.4 The thread Module 167

of 6 seconds because we know that both threads (which take 4 and 2 sec-
onds) should have completed by the time the main thread has counted to 6.

You are probably thinking that there should be a better way of manag-
ing threads than creating that extra delay of 6 seconds in the main
thread. Because of this delay, the overall runtime is no better than in our
single-threaded version. Using sleep() for thread synchronization as we
did is not reliable. What if our loops had independent and varying exe-
cution times? We could be exiting the main thread too early or too late.
This is where locks come in.

Making yet another update to our code to include locks as well as getting
rid of separate loop functions, we get mtsleepB.py, which is presented in
Example 4-3. Running it, we see that the output is similar to mtsleepA.py.
The only difference is that we did not have to wait the extra time for
mtsleepA.py to conclude. By using locks, we were able to exit as soon as
both threads had completed execution. This renders the following output:

$ mtsleepB.py
starting at: Sun Aug 13 16:34:41 2006
start loop 0 at: Sun Aug 13 16:34:41 2006
start loop 1 at: Sun Aug 13 16:34:41 2006
loop 1 done at: Sun Aug 13 16:34:43 2006
loop 0 done at: Sun Aug 13 16:34:45 2006
all DONE at: Sun Aug 13 16:34:45 2006

Example 4-3 Using thread and Locks (mtsleepB.py)

Rather than using a call to sleep() to hold up the main thread as in
mtsleepA.py, the use of locks makes more sense.

1 #!/usr/bin/env python
2
3 import thread
4 from time import sleep, ctime
5
6 loops = [4,2]
7
8 def loop(nloop, nsec, lock):
9 print 'start loop', nloop, 'at:', ctime()
10 sleep(nsec)
11 print 'loop', nloop, 'done at:', ctime()
12 lock.release()
13

(Continued)

168 Chapter 4 • Multithreaded Programming

So how did we accomplish our task with locks? Let’s take a look at the
source code.

Line-by-Line Explanation

Lines 1–6
After the Unix startup line, we import the thread module and a few famil-
iar attributes of the time module. Rather than hardcoding separate func-
tions to count to 4 and 2 seconds, we use a single loop() function and
place these constants in a list, loops.

Lines 8–12
The loop() function acts as a proxy for the deleted loop*() functions from
our earlier examples. We had to make some cosmetic changes to loop() so
that it can now perform its duties using locks. The obvious changes are
that we need to be told which loop number we are as well as the sleep
duration. The last piece of new information is the lock itself. Each thread
will be allocated an acquired lock. When the sleep() time has concluded,
we release the corresponding lock, indicating to the main thread that this
thread has completed.

Example 4-3 Using thread and Locks (mtsleepB.py) (Continued)

14 def main():
15 print 'starting at:', ctime()
16 locks = []
17 nloops = range(len(loops))
18
19 for i in nloops:
20 lock = thread.allocate_lock()
21 lock.acquire()
22 locks.append(lock)
23
24 for i in nloops:
25 thread.start_new_thread(loop,
26 (i, loops[i], locks[i]))
27
28 for i in nloops:
29 while locks[i].locked(): pass
30
31 print 'all DONE at:', ctime()
32
33 if __name__ == '__main__':
34 main()

4.5 The threading Module 169

Lines 14–34
The bulk of the work is done here in main(), using three separate for
loops. We first create a list of locks, which we obtain by using the
thread.allocate_lock() function and acquire (each lock) with the
acquire() method. Acquiring a lock has the effect of “locking the lock.”
Once it is locked, we add the lock to the lock list, locks. The next loop
actually spawns the threads, invoking the loop() function per thread, and
for each thread, provides it with the loop number, the sleep duration, and
the acquired lock for that thread. So why didn’t we start the threads in the
lock acquisition loop? There are two reasons. First, we wanted to synchro-
nize the threads, so that all the horses started out the gate around the same
time, and second, locks take a little bit of time to be acquired. If your
thread executes too fast, it is possible that it completes before the lock has
a chance to be acquired.

It is up to each thread to unlock its lock object when it has completed
execution. The final loop just sits and spins (pausing the main thread)
until both locks have been released before continuing execution. Because
we are checking each lock sequentially, we might be at the mercy of all the
slower loops if they are more toward the beginning of the set of loops. In
such cases, the majority of the wait time may be for the first loop(s). When
that lock is released, remaining locks may have already been unlocked
(meaning that corresponding threads have completed execution). The
result is that the main thread will fly through those lock checks without
pause. Finally, you should be well aware that the final pair of lines will
execute main() only if we are invoking this script directly.

As hinted in the earlier Core Note, we presented the thread module
only to introduce the reader to threaded programming. Your MT applica-
tion should use higher-level modules such as the threading module,
which we discuss in the next section.

4.5 The threading Module
We will now introduce the higher-level threading module, which gives
you not only a Thread class but also a wide variety of synchronization
mechanisms to use to your heart’s content. Table 4-2 presents a list of all
the objects available in the threading module.

170 Chapter 4 • Multithreaded Programming

In this section, we will examine how to use the Thread class to imple-
ment threading. Because we have already covered the basics of locking,
we will not cover the locking primitives here. The Thread() class also con-
tains a form of synchronization, so explicit use of locking primitives is not
necessary.

Table 4-2 threading Module Objects

Object Description

Thread Object that represents a single thread of execution

Lock Primitive lock object (same lock as in thread module)

RLock Re-entrant lock object provides ability for a single thread
to (re)acquire an already-held lock (recursive locking)

Condition Condition variable object causes one thread to wait until
a certain “condition” has been satisfied by another
thread, such as changing of state or of some data value

Event General version of condition variables, whereby any
number of threads are waiting for some event to occur
and all will awaken when the event happens

Semaphore Provides a “counter” of finite resources shared between
threads; block when none are available

BoundedSemaphore Similar to a Semaphore but ensures that it never exceeds
its initial value

Timer Similar to Thread, except that it waits for an allotted
period of time before running

Barriera Creates a “barrier,” at which a specified number of
threads must all arrive before they’re all allowed to
continue

a. New in Python 3.2.3.2

4.5 The threading Module 171

CORE TIP: Daemon threads

Another reason to avoid using the thread module is that it does not support the
concept of daemon (or daemonic) threads. When the main thread exits, all child
threads will be killed, regardless of whether they are doing work. The concept of
daemon threads comes into play here if you do not desire this behavior.

Support for daemon threads is available in the threading module, and here is
how they work: a daemon is typically a server that waits for client requests to
service. If there is no client work to be done, the daemon sits idle. If you set the
daemon flag for a thread, you are basically saying that it is non-critical, and it is
okay for the process to exit without waiting for it to finish. As you have seen in
Chapter 2, “Network Programming,” server threads run in an infinite loop and do
not exit in normal situations.

If your main thread is ready to exit and you do not care to wait for the child
threads to finish, then set their daemon flags. A value of true denotes a thread
is not important or more likely, not doing anything but waiting for a client.

To set a thread as daemonic, make this assignment: thread.daemon = True before
you start the thread. (The old-style way of calling thread.setDaemon(True) is
deprecated.) The same is true for checking on a thread’s daemonic status; just
check that value (versus calling thread.isDaemon()). A new child thread inher-
its its daemonic flag from its parent. The entire Python program (read as: the
main thread) will stay alive until all non-daemonic threads have exited—in
other words, when no active non-daemonic threads are left.

4.5.1 The Thread Class
The Thread class of the threading module is your primary executive
object. It has a variety of functions not available to the thread module.
Table 4-3 presents a list of attributes and methods.

172 Chapter 4 • Multithreaded Programming

Table 4-3 Thread Object Attributes and Methods

Attribute Description

Thread object data attributes

name The name of a thread.

ident The identifier of a thread.

daemon Boolean flag indicating whether a thread is
daemonic.

Thread object methods

__init__(group=None,
target=None, name=None,
args=(), kwargs={},
verbose=None,
daemon=None)c

Instantiate a Thread object, taking target callable
and any args or kwargs. A name or group can also
be passed but the latter is unimplemented. A
verbose flag is also accepted. Any daemon value
sets the thread.daemon attribute/flag.

start() Begin thread execution.

run() Method defining thread functionality (usually
overridden by application writer in a subclass).

join(timeout=None) Suspend until the started thread terminates; blocks
unless timeout (in seconds) is given.

getName()a Return name of thread.

setName(name)a Set name of thread.

isAlive/is_alive()b Boolean flag indicating whether thread is still
running.

isDaemon()c Return True if thread daemonic, False otherwise.

setDaemon(daemonic)c Set the daemon flag to the given Boolean daemonic
value (must be called before thread start().

a. Deprecated by setting (or getting) thread.name attribute or passed in during instantiation.
b. CamelCase names deprecated and replaced starting in Python 2.6.
c. is/setDaemon() deprecated by setting thread.daemon attribute; thread.daemon can

also be set during instantiation via the optional daemon value—new in Python 3.3.

4.5 The threading Module 173

There are a variety of ways by which you can create threads using the
Thread class. We cover three of them here, all quite similar. Pick the one
you feel most comfortable with, not to mention the most appropriate for
your application and future scalability (we like the final choice the best):

• Create Thread instance, passing in function
• Create Thread instance, passing in callable class instance
• Subclass Thread and create subclass instance

You’ll discover that you will pick either the first or third option. The lat-
ter is chosen when a more object-oriented interface is desired and the for-
mer, otherwise. The second, honestly, is a bit more awkward and slightly
harder to read, as you’ll discover.

Create Thread Instance, Passing in Function
In our first example, we will just instantiate Thread, passing in our func-
tion (and its arguments) in a manner similar to our previous examples.
This function is what will be executed when we direct the thread to begin
execution. Taking our mtsleepB.py script from Example 4-3 and tweaking
it by adding the use of Thread objects, we have mtsleepC.py, as shown in
Example 4-4.

Example 4-4 Using the threading Module (mtsleepC.py)

The Thread class from the threading module has a join() method that lets the
main thread wait for thread completion.

1 #!/usr/bin/env python
2
3 import threading
4 from time import sleep, ctime
5
6 loops = [4,2]
7
8 def loop(nloop, nsec):
9 print 'start loop', nloop, 'at:', ctime()
10 sleep(nsec)
11 print 'loop', nloop, 'done at:', ctime()
12
13 def main():
14 print 'starting at:', ctime()
15 threads = []

(Continued)

174 Chapter 4 • Multithreaded Programming

When we run the script in Example 4-4, we see output similar to that of
its predecessors:

$ mtsleepC.py
starting at: Sun Aug 13 18:16:38 2006
start loop 0 at: Sun Aug 13 18:16:38 2006
start loop 1 at: Sun Aug 13 18:16:38 2006
loop 1 done at: Sun Aug 13 18:16:40 2006
loop 0 done at: Sun Aug 13 18:16:42 2006
all DONE at: Sun Aug 13 18:16:42 2006

So what did change? Gone are the locks that we had to implement when
using the thread module. Instead, we create a set of Thread objects. When
each Thread is instantiated, we dutifully pass in the function (target) and
arguments (args) and receive a Thread instance in return. The biggest dif-
ference between instantiating Thread (calling Thread()) and invoking
thread.start_new_thread() is that the new thread does not begin execu-
tion right away. This is a useful synchronization feature, especially when
you don’t want the threads to start immediately.

Once all the threads have been allocated, we let them go off to the races
by invoking each thread’s start() method, but not a moment before that.
And rather than having to manage a set of locks (allocating, acquiring,
releasing, checking lock state, etc.), we simply call the join() method for
each thread. join() will wait until a thread terminates, or, if provided, a
timeout occurs. Use of join() appears much cleaner than an infinite loop
that waits for locks to be released (which is why these locks are sometimes
known as spin locks).

Example 4-4 Using the threading Module (mtsleepC.py) (Continued)

16 nloops = range(len(loops))
17
18 for i in nloops:
19 t = threading.Thread(target=loop,
20 args=(i, loops[i]))
21 threads.append(t)
22
23 for i in nloops: # start threads
24 threads[i].start()
25
26 for i in nloops: # wait for all
27 threads[i].join() # threads to finish
28
29 print 'all DONE at:', ctime()
30
31 if __name__ == '__main__':
32 main()

4.5 The threading Module 175

One other important aspect of join() is that it does not need to be
called at all. Once threads are started, they will execute until their given
function completes, at which point, they will exit. If your main thread has
things to do other than wait for threads to complete (such as other process-
ing or waiting for new client requests), it should do so. join() is useful
only when you want to wait for thread completion.

Create Thread Instance, Passing in Callable Class Instance
A similar offshoot to passing in a function when creating a thread is hav-
ing a callable class and passing in an instance for execution—this is the
more object-oriented approach to MT programming. Such a callable class
embodies an execution environment that is much more flexible than a
function or choosing from a set of functions. You now have the power of
a class object behind you, as opposed to a single function or a list/tuple of
functions.

Adding our new class ThreadFunc to the code and making other slight
modifications to mtsleepC.py, we get mtsleepD.py, shown in Example 4-5.

Example 4-5 Using Callable Classes (mtsleepD.py)

In this example, we pass in a callable class (instance) as opposed to just a
function. It presents more of an object-oriented approach than mtsleepC.py.

1 #!/usr/bin/env python
2
3 import threading
4 from time import sleep, ctime
5
6 loops = [4,2]
7
8 class ThreadFunc(object):
9
10 def __init__(self, func, args, name=''):
11 self.name = name
12 self.func = func
13 self.args = args
14
15 def __call__(self):
16 self.func(*self.args)
17

(Continued)

176 Chapter 4 • Multithreaded Programming

When we run mtsleepD.py, we get the expected output:
$ mtsleepD.py
starting at: Sun Aug 13 18:49:17 2006
start loop 0 at: Sun Aug 13 18:49:17 2006
start loop 1 at: Sun Aug 13 18:49:17 2006
loop 1 done at: Sun Aug 13 18:49:19 2006
loop 0 done at: Sun Aug 13 18:49:21 2006
all DONE at: Sun Aug 13 18:49:21 2006

So what are the changes this time? The addition of the ThreadFunc class
and a minor change to instantiate the Thread object, which also instanti-
ates ThreadFunc, our callable class. In effect, we have a double instantiation
going on here. Let’s take a closer look at our ThreadFunc class.

We want to make this class general enough to use with functions other
than our loop() function, so we added some new infrastructure, such as
having this class hold the arguments for the function, the function itself,
and also a function name string. The constructor __init__() just sets all
the values.

When the Thread code calls our ThreadFunc object because a new thread
is created, it will invoke the __call__() special method. Because we
already have our set of arguments, we do not need to pass it to the
Thread() constructor and can call the function directly.

Example 4-5 Using Callable classes (mtsleepD.py) (Continued)

18 def loop(nloop, nsec):
19 print 'start loop', nloop, 'at:', ctime()
20 sleep(nsec)
21 print 'loop', nloop, 'done at:', ctime()
22
23 def main():
24 print 'starting at:', ctime()
25 threads = []
26 nloops = range(len(loops))
27
28 for i in nloops: # create all threads
29 t = threading.Thread(
30 target=ThreadFunc(loop, (i, loops[i]),
31 loop.__name__))
32 threads.append(t)
33
34 for i in nloops: # start all threads
35 threads[i].start()
36
37 for i in nloops: # wait for completion
38 threads[i].join()
39
40 print 'all DONE at:', ctime()
41
42 if __name__ == '__main__':
43 main()

4.5 The threading Module 177

Subclass Thread and Create Subclass Instance
The final introductory example involves subclassing Thread(), which turns
out to be extremely similar to creating a callable class as in the previous
example. Subclassing is a bit easier to read when you are creating
your threads (lines 29–30). We will present the code for mtsleepE.py in
Example 4-6 as well as the output obtained from its execution, and leave it
as an exercise for you to compare mtsleepE.py to mtsleepD.py.

Example 4-6 Subclassing Thread (mtsleepE.py)

Rather than instantiating the Thread class, we subclass it. This gives us more
flexibility in customizing our threading objects and simplifies the thread
creation call.

1 #!/usr/bin/env python
2
3 import threading
4 from time import sleep, ctime
5
6 loops = (4, 2)
7
8 class MyThread(threading.Thread):
9 def __init__(self, func, args, name=''):
10 threading.Thread.__init__(self)
11 self.name = name
12 self.func = func
13 self.args = args
14
15 def run(self):
16 self.func(*self.args)
17
18 def loop(nloop, nsec):
19 print 'start loop', nloop, 'at:', ctime()
20 sleep(nsec)
21 print 'loop', nloop, 'done at:', ctime()
22
23 def main():
24 print 'starting at:', ctime()
25 threads = []
26 nloops = range(len(loops))
27
28 for i in nloops:
29 t = MyThread(loop, (i, loops[i]),
30 loop.__name__)
31 threads.append(t)
32

(Continued)

178 Chapter 4 • Multithreaded Programming

Here is the output for mtsleepE.py. Again, it’s just as we expected:
$ mtsleepE.py
starting at: Sun Aug 13 19:14:26 2006
start loop 0 at: Sun Aug 13 19:14:26 2006
start loop 1 at: Sun Aug 13 19:14:26 2006
loop 1 done at: Sun Aug 13 19:14:28 2006
loop 0 done at: Sun Aug 13 19:14:30 2006
all DONE at: Sun Aug 13 19:14:30 2006

While you compare the source between the mtsleep4 and mtsleep5
modules, we want to point out the most significant changes: 1) our MyThread
subclass constructor must first invoke the base class constructor (line 9),
and 2) the former special method __call__() must be called run() in the
subclass.

We now modify our MyThread class with some diagnostic output and
store it in a separate module called myThread (look ahead to Example 4-7)
and import this class for the upcoming examples. Rather than simply call-
ing our functions, we also save the result to instance attribute self.res,
and create a new method to retrieve that value, getResult().

Example 4-6 Subclassing Thread (mtsleepE.py) (Continued)

33 for i in nloops:
34 threads[i].start()
35
36 for i in nloops:
37 threads[i].join()
38
39 print 'all DONE at:', ctime()'
40
41 if __name__ == '__main__':
42 main()

Example 4-7 MyThread Subclass of Thread (myThread.py)

To generalize our subclass of Thread from mtsleepE.py, we move the subclass to
a separate module and add a getResult() method for callables that produce
return values.

1 #!/usr/bin/env python
2
3 import threading
4 from time import ctime
5

4.5 The threading Module 179

4.5.2 Other Threading Module Functions
In addition to the various synchronization and threading objects, the Threading
module also has some supporting functions, as detailed in Table 4-4.

6 class MyThread(threading.Thread):
7 def __init__(self, func, args, name=''):
8 threading.Thread.__init__(self)
9 self.name = name
10 self.func = func
11 self.args = args
12
13 def getResult(self):
14 return self.res
15
16 def run(self):
17 print 'starting', self.name, 'at:', \
18 ctime()
19 self.res = self.func(*self.args)
20 print self.name, 'finished at:', \
21 ctime()

Table 4-4 threading Module Functions

Function Description

activeCount/
active_count()a Number of currently active Thread objects

currentThread()/
current_threada

Returns the current Thread object

enumerate() Returns list of all currently active Threads

settrace(func)b Sets a trace function for all threads

setprofile(func)b Sets a profile function for all threads

stack_size(size=0)c Returns stack size of newly created threads;
optional size can be set for subsequently created
threads

a. CamelCase names deprecated and replaced starting in Python 2.6.
b. New in Python 2.3.
c. An alias to thread.stack_size(); (both) new in Python 2.5.

180 Chapter 4 • Multithreaded Programming

4.6 Comparing Single vs. Multithreaded
Execution

The mtfacfib.py script, presented in Example 4-8 compares execution of
the recursive Fibonacci, factorial, and summation functions. This script
runs all three functions in a single-threaded manner. It then performs the
same task by using threads to illustrate one of the advantages of having
a threading environment.

Example 4-8 Fibonacci, Factorial, Summation (mtfacfib.py)

In this MT application, we execute three separate recursive functions—first in a
single-threaded fashion, followed by the alternative with multiple threads.

1 #!/usr/bin/env python
2
3 from myThread import MyThread
4 from time import ctime, sleep
5
6 def fib(x):
7 sleep(0.005)
8 if x < 2: return 1
9 return (fib(x-2) + fib(x-1))
10
11 def fac(x):
12 sleep(0.1)
13 if x < 2: return 1
14 return (x * fac(x-1))
15
16 def sum(x):
17 sleep(0.1)
18 if x < 2: return 1
19 return (x + sum(x-1))
20
21 funcs = [fib, fac, sum]
22 n = 12
23
24 def main():
25 nfuncs = range(len(funcs))
26
27 print '*** SINGLE THREAD'
28 for i in nfuncs:
29 print 'starting', funcs[i].__name__, 'at:', \
30 ctime()
31 print funcs[i](n)
32 print funcs[i].__name__, 'finished at:', \
33 ctime()
34
35 print '\n*** MULTIPLE THREADS'
36 threads = []

4.6 Comparing Single vs. Multithreaded Execution 181

Running in single-threaded mode simply involves calling the functions
one at a time and displaying the corresponding results right after the func-
tion call.

When running in multithreaded mode, we do not display the result
right away. Because we want to keep our MyThread class as general as pos-
sible (being able to execute callables that do and do not produce output),
we wait until the end to call the getResult() method to finally show you
the return values of each function call.

Because these functions execute so quickly (well, maybe except for the
Fibonacci function), you will notice that we had to add calls to sleep() to
each function to slow things down so that we can see how threading can
improve performance, if indeed the actual work had varying execution
times—you certainly wouldn’t pad your work with calls to sleep(). Any-
way, here is the output:

$ mtfacfib.py
*** SINGLE THREAD
starting fib at: Wed Nov 16 18:52:20 2011
233
fib finished at: Wed Nov 16 18:52:24 2011
starting fac at: Wed Nov 16 18:52:24 2011
479001600
fac finished at: Wed Nov 16 18:52:26 2011
starting sum at: Wed Nov 16 18:52:26 2011
78
sum finished at: Wed Nov 16 18:52:27 2011

*** MULTIPLE THREADS
starting fib at: Wed Nov 16 18:52:27 2011
starting fac at: Wed Nov 16 18:52:27 2011
starting sum at: Wed Nov 16 18:52:27 2011

37 for i in nfuncs:
38 t = MyThread(funcs[i], (n,),
39 funcs[i].__name__)
40 threads.append(t)
41
42 for i in nfuncs:
43 threads[i].start()
44
45 for i in nfuncs:
46 threads[i].join()
47 print threads[i].getResult()
48
49 print 'all DONE'
50
51 if __name__ == '__main__':
52 main()

182 Chapter 4 • Multithreaded Programming

fac finished at: Wed Nov 16 18:52:28 2011
sum finished at: Wed Nov 16 18:52:28 2011
fib finished at: Wed Nov 16 18:52:31 2011
233
479001600
78
all DONE

4.7 Multithreading in Practice
So far, none of the simplistic sample snippets we’ve seen so far represent
code that you’d write in practice. They don’t really do anything useful
beyond demonstrating threads and the different ways that you can create
them—the way we’ve started them up and wait for them to finish are all
identical, and they all just sleep, too.

We also mentioned earlier in Section 4.3.1 that due to the fact that the
Python Virtual Machine is single-threaded (the GIL), greater concurrency
in Python is only possible when threading is applied to an I/O-bound
application (versus CPU-bound applications, which only do round-robin),
so let’s look at an example of this, and for a further exercise, try to port it to
Python 3 to give you a sense of what that process entails.

4.7.1 Book Rankings Example
The bookrank.py script shown in Example 4-9 is very staightforward. It
goes to the one of my favorite online retailers, Amazon, and asks for the
current rankings of books written by yours truly. In our sample code,
you’ll see a function, getRanking(), that uses a regular expression to pull
out and return the current ranking plus showRanking(), which displays the
result to the user.

Note that, according to their Conditions of Use guidelines, “Amazon
grants you a limited license to access and make personal use of this site and not to
download (other than page caching) or modify it, or any portion of it, except with
express written consent of Amazon.” For our application, all we’re doing is
looking at the current book rankings for a specific book and then throwing
everything away; we’re not even caching the page.

Example 4-9 is our first (but nearly-final) attempt at bookrank.py, which
is a non-threaded version.

4.7 Multithreading in Practice 183

Line-by-Line Explanation

Lines 1–7
These are the startup and import lines. We’ll use the atexit.register()
function to tell us when the script is over (you’ll see why later). We’ll also
use the regular expression re.compile() function for the pattern that
matches a book’s ranking on Amazon’s product pages. Then, we save the

Example 4-9 Book Rankings “Screenscraper” (bookrank.py)

This script makes calls to download book ranking information via separate
threads.

1 #!/usr/bin/env python
2
3 from atexit import register
4 from re import compile
5 from threading import Thread
6 from time import ctime
7 from urllib2 import urlopen as uopen
8
9 REGEX = compile('#([\d,]+) in Books ')
10 AMZN = 'http://amazon.com/dp/'
11 ISBNs = {
12 '0132269937': 'Core Python Programming',
13 '0132356139': 'Python Web Development with Django',
14 '0137143419': 'Python Fundamentals',
15 }
16
17 def getRanking(isbn):
18 page = uopen('%s%s' % (AMZN, isbn)) # or str.format()
19 data = page.read()
20 page.close()
21 return REGEX.findall(data)[0]
22
23 def _showRanking(isbn):
24 print '- %r ranked %s' % (
25 ISBNs[isbn], getRanking(isbn))
26
27 def _main():
28 print 'At', ctime(), 'on Amazon...'
29 for isbn in ISBNs:
30 _showRanking(isbn)
31
32 @register
33 def _atexit():
34 print 'all DONE at:', ctime()
35
36 if __name__ == '__main__':
37 main()

184 Chapter 4 • Multithreaded Programming

threading.Thread import for future improvement (coming up a bit later),
time.ctime() for the current timestamp string, and urllib2.urlopen() for
accessing each link.

Lines 9–15
We use three constants in this script: REGEX, the regular expression object
(compiled from the regex pattern that matches a book’s ranking); AMZN, the
base Amazon product link—all we need to complete each link is a book’s
International Standard Book Number (ISBN), which serves as a book’s ID,
differentiating one written work from all others. There are two standards:
the ISBN-10 ten-character value and its successor, the ISBN-13 thirteen-
character ISBN. Currently, Amazon’s systems understand both ISBN types, so
we’ll just use ISBN-10 because they’re shorter. These are stored in the
ISBNs dictionary along with the corresponding book titles.

Lines 17–21
The purpose of getRanking() is to take an ISBN, create the final URL with
which to communicate to Amazon’s servers, and then call urllib2.urlopen()
on it. We used the string format operator to put together the URL (on line 18)
but if you’re using version 2.6 and newer, you can also try the str.format()
method, for example, '{0}{1}'.format(AMZN,isbn).

Once you have the full URL, call urllib2.urlopen()—we shortened it to
uopen()—and expect the file-like object back once the Web server has been
contacted. Then the read() call is issued to download the entire Web page,
and “file” is closed. If the regex is as precise as we have planned, there
should only be exactly one match, so we grab it from the generated list
(any additional would be dropped) and return it back to the caller.

Lines 23–25
The _showRanking() function is just a short snippet of code that takes an
ISBN, looks up the title of the book it represents, calls getRanking() to get
its current ranking on Amazon’s Web site, and then outputs both of these
values to the user. The leading single-underscore notation indicates that
this is a special function only to be used by code within this module and
should not be imported by any other application using this as a library or
utility module.

4.7 Multithreading in Practice 185

Lines 27–30
_main() is also a special function, only executed if this module is run
directly from the command-line (and not imported for use by another
module). It shows the start and end times (to let users know how long it
took to run the entire script) and calls _showRanking() for each ISBN to lookup
and display each book’s current ranking on Amazon.

Lines 32–37
These lines present something completely different. What is atexit.register()?
It’s a function (used in a decorator role here) that registers an exit function
with the Python interpreter, meaning it’s requesting a special function be
called just before the script quits. (Instead of the decorator, you could have
also done register (_atexit()).

Why are we using it here? Well, right now, it’s definitely not needed.
The print statement could very well go at the end of _main() in lines 27–31,
but that’s not a really great place for it. Plus this is functionality that you
might really want to use in a real production application at some point.
We assume that you know what lines 36–37 are about, so onto the output:

$ python bookrank.py
At Wed Mar 30 22:11:19 2011 PDT on Amazon...
- 'Core Python Programming' ranked 87,118
- 'Python Fundamentals' ranked 851,816
- 'Python Web Development with Django' ranked 184,735
all DONE at: Wed Mar 30 22:11:25 2011

If you’re wondering, we’ve separated the process of retrieving (getRanking())
and displaying (_showRanking() and _main()) the data in case you wish to
do something other than dumping the results out to the user via the termi-
nal. In practice, you might need to send this data back via a Web template,
store it in a database, text it to a mobile phone, etc. If you put all of this
code into a single function, it makes it harder to reuse and/or repurpose.

Also, if Amazon changes the layout of their product pages, you might
need to modify the regular expression “screenscraper” to continue to be
able to extract the data from the product page. By the way, using a regex
(or even plain old string processing) for this simple example is fine, but
you might need a more powerful markup parser, such as HTMLParser
from the standard library or third-party tools like BeautifulSoup, html5lib,
or lxml. (We demonstrate a few of these in Chapter 9, “Web Clients and
Servers.”)

186 Chapter 4 • Multithreaded Programming

Add threading
Okay, you don’t have to tell me that this is still a silly single-threaded pro-
gram. We’re going to change our application to use threads instead. It is an
I/O-bound application, so this is a good candidate to do so. To simplify
things, we won’t use any of the classes and object-oriented programming;
instead, we’ll use threading.Thread directly, so you can think of this more
as a derivative of mtsleepC.py than any of the succeeding examples. We’ll
just spawn the threads and start them up immediately.

Take your application and modify the _showRanking(isbn) call to the
following:

Thread(target=_showRanking, args=(isbn,)).start().

That’s it! Now you have your final version of bookrank.py and can see
that the application (typically) runs faster because of the added concur-
rency. But, your still only as fast as the slowest response.

$ python bookrank.py
At Thu Mar 31 10:11:32 2011 on Amazon...
- 'Python Fundamentals' ranked 869,010
- 'Core Python Programming' ranked 36,481
- 'Python Web Development with Django' ranked 219,228
all DONE at: Thu Mar 31 10:11:35 2011

As you can see from the output, instead of taking six seconds as our
single-threaded version, our threaded version only takes three. Also note
that the output is in “by completion” order, which is variable, versus the
single-threaded display. With the non-threaded version, the order is
always by key, but now the queries all happen in parallel with the output
coming as each thread completes its work.

In the earlier mtsleepX.py examples, we used Thread.join() on all the
threads to block execution until each thread exits. This effectively prevents
the main thread from continuing until all threads are done, so the print
statement of “all DONE at” is called at the correct time.

In those examples, it’s not necessary to join() all the threads because
none of them are daemon threads. The main thread is not going to exit the
script until all the spawned threads have completed anyway. Because of
this reasoning, we’ve dropped all the join()s in mtsleepF.py. However,
realize that if we displayed “all done” from the same spot, it would be
incorrect.

The main thread would have displayed “all done” before the threads
have completed, so we can’t have that print call above in _main(). There
are only 2 places we can put this print: after line 37 when _main() returns
(the very final line executed of our script), or use atexit.register() to

4.7 Multithreading in Practice 187

register an exit function. Because the latter is something we haven’t dis-
cussed before and might be something useful to you later on, we thought
this would be a good place to introduce it to you. This is also one interface
that remains constant between Python 2 and 3, our upcoming challenge.

Porting to Python 3
The next thing we want is a working Python 3 version of this script. As
projects and applications continue down the migration path, this is some-
thing with which you need to become familiar, anyway. Fortunately, there
are few tools to help you, one of them being the 2to3 tool. There are gener-
ally two ways of using it:

$ 2to3 foo.py # only output diff
$ 2to3 -w foo.py # overwrites w/3.x code

In the first command, the 2to3 tool just displays the differences between
the version 2.x original script and its generated 3.x equivalent. The -w flag
instructs 2to3 to overwrite the original script with the newly minted 3.x
version while renaming the 2.x version to foo.py.bak.

Let’s run 2to3 on bookrank.py, writing over the existing file. It not only
spits out the differences, it also saves the new version, as we just
described:

$ 2to3 -w bookrank.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
--- bookrank.py (original)
+++ bookrank.py (refactored)
@@ -4,7 +4,7 @@
 from re import compile
 from threading import Thread
 from time import ctime
-from urllib2 import urlopen as uopen
+from urllib.request import urlopen as uopen

 REGEX = compile('#([\d,]+) in Books ')
 AMZN = 'http://amazon.com/dp/'
@@ -21,17 +21,17 @@
 return REGEX.findall(data)[0]

 def _showRanking(isbn):
- print '- %r ranked %s' % (
- ISBNs[isbn], getRanking(isbn))
+ print('- %r ranked %s' % (
+ ISBNs[isbn], getRanking(isbn)))

3.x

188 Chapter 4 • Multithreaded Programming

 def _main():
- print 'At', ctime(), 'on Amazon...'
+ print('At', ctime(), 'on Amazon...')
 for isbn in ISBNs:
 Thread(target=_showRanking,
args=(isbn,)).start()#_showRanking(isbn)

 @register
 def _atexit():
- print 'all DONE at:', ctime()
+ print('all DONE at:', ctime())

 if __name__ == '__main__':
 _main()
RefactoringTool: Files that were modified:
RefactoringTool: bookrank.py

The following step is optional for readers, but we renamed our files to
bookrank.py and bookrank3.py by using these POSIX commands (Windows-
based PC users should use the ren command):

$ mv bookrank.py bookrank3.py
$ mv bookrank.py.bak bookrank.py

If you try to run our new next-generation script, it’s probably wishful
thinking that it’s a perfect translation and that you’re done with your
work. Something bad happened, and you’ll get the following exception in
each thread (this output is for just one thread as they’re all the same):

$ python3 bookrank3.py
Exception in thread Thread-1:
Traceback (most recent call last):
 File "/Library/Frameworks/Python.framework/Versions/
 3.2/lib/python3.2/threading.py", line 736, in
 _bootstrap_inner
 self.run()
 File "/Library/Frameworks/Python.framework/Versions/
 3.2/lib/python3.2/threading.py", line 689, in run
 self._target(*self._args, **self._kwargs)
 File "bookrank3.py", line 25, in _showRanking
 ISBNs[isbn], getRanking(isbn)))
 File "bookrank3.py", line 21, in getRanking
 return REGEX.findall(data)[0]
TypeError: can't use a string pattern on a bytes-like object
 :

Darn it! Apparently the problem is that the regular expression is a (Uni-
code) string, whereas the data that comes back from urlopen() file-like
object’s read() method is an ASCII/bytes string. The fix here is to compile
a bytes object instead of a text string. Therefore, change line 9 so that
re.compile() is compiling a bytes string (by adding the bytes string. To

4.7 Multithreading in Practice 189

do this, add the bytes string designation b just before the opening quote,
as shown here:

REGEX = compile(b'#([\d,]+) in Books ')

Now let’s try it again:
$ python3 bookrank3.py
At Sun Apr 3 00:45:46 2011 on Amazon...
- 'Core Python Programming' ranked b'108,796'
- 'Python Web Development with Django' ranked b'268,660'
- 'Python Fundamentals' ranked b'969,149'
all DONE at: Sun Apr 3 00:45:49 2011

Aargh! What’s wrong now? Well, it’s a little bit better (no errors), but the
output looks weird. The ranking values grabbed by the regular expres-
sions, when passed to str() show the b and quotes. Your first instinct
might be to try ugly string slicing:

>>> x = b'xxx'
>>> repr(x)
"b'xxx'"
>>> str(x)
"b'xxx'"
>>> str(x)[2:-1]
'xxx'

However, it’s just more appropriate to convert it to a real (Unicode
string, perhaps using UTF-8:

>>> str(x, 'utf-8')
'xxx'

To do that in our script, make a similar change to line 53 so that it now
reads as:

return str(REGEX.findall(data)[0], 'utf-8')

Now, the output of our Python 3 script matches that of our Python 2 script:
$ python3 bookrank3.py
At Sun Apr 3 00:47:31 2011 on Amazon...
- 'Python Fundamentals' ranked 969,149
- 'Python Web Development with Django' ranked 268,660
- 'Core Python Programming' ranked 108,796
all DONE at: Sun Apr 3 00:47:34 2011

In general, you’ll find that porting from version 2.x to version 3.x fol-
lows a similar pattern: you ensure that all your unit and integration tests
pass, knock down all the basics using 2to3 (and other tools), and then
clean up the aftermath by getting the code to run and pass the same tests.
We’ll try this exercise again with our next example which demonstrates
the use of synchronization with threads.

190 Chapter 4 • Multithreaded Programming

4.7.2 Synchronization Primitives
In the main part of this chapter, we looked at basic threading concepts and
how to utilize threading in Python applications. However, we neglected to
mention one very important aspect of threaded programming: synchroniza-
tion. Often times in threaded code, you will have certain functions or
blocks in which you don’t (or shouldn’t) want more than one thread exe-
cuting. Usually these involve modifying a database, updating a file, or
anything similar that might cause a race condition, which, if you recall
from earlier in the chapter, is when different code paths or behaviors are
exhibited or inconsistent data was rendered if one thread ran before
another one and vice versa. (You can read more about race conditions on
the Wikipedia page at http://en.wikipedia.org/wiki/Race_condition.)

Such cases require synchronization. Synchronization is used when any
number of threads can come up to one of these critical sections of code
(http://en.wikipedia.org/wiki/Critical_section), but only one is allowed
through at any given time. The programmer makes these determinations
and chooses the appropriate synchronization primitives, or thread control
mechanisms to perform the synchronization. There are different types of
process synchronization (see http://en.wikipedia.org/wiki/Synchronization_
(computer_ science)) and Python supports several types, giving you enough
choices to select the best one to get the job done.

We introduced them all to you earlier at the beginning of this section, so
here we’d like to demonstrate a couple of sample scripts that use two types
of synchronization primitives: locks/mutexes, and semaphores. A lock is
the simplest and lowest-level of all these mechanisms; while semaphores
are for situations in which multiple threads are contending for a finite
resource. Locks are easier to explain, so we’ll start there, and then discuss
semaphores.

4.7.3 Locking Example
Locks have two states: locked and unlocked (surprise, surprise). They sup-
port only two functions: acquire and release. These actions mean exactly
what you think.

As multiple threads vie for a lock, the first thread to acquire one is per-
mitted to go in and execute code in the critical section. All other threads
coming along are blocked until the first thread wraps up, exits the critical
section, and releases the lock. At this moment, any of the other waiting
threads can acquire the lock and enter the critical section. Note that there

http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/Critical_section
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)

4.7 Multithreading in Practice 191

is no ordering (first come, first served) for the blocked threads; the selec-
tion of the “winning” thread is not deterministic and can vary between
different implementations of Python.

Let’s see why locks are necessary. mtsleepF.py is an application that
spawns a random number of threads, each of which outputs when it has
completed. Take a look at the core chunk of (Python 2) source here:

from atexit import register
from random import randrange
from threading import Thread, currentThread
from time import sleep, ctime

class CleanOutputSet(set):
 def __str__(self):
 return ', '.join(x for x in self)

loops = (randrange(2,5) for x in xrange(randrange(3,7)))
remaining = CleanOutputSet()

def loop(nsec):
 myname = currentThread().name
 remaining.add(myname)
 print '[%s] Started %s' % (ctime(), myname)
 sleep(nsec)
 remaining.remove(myname)
 print '[%s] Completed %s (%d secs)' % (
 ctime(), myname, nsec)
 print ' (remaining: %s)' % (remaining or 'NONE')

def _main():
 for pause in loops:
 Thread(target=loop, args=(pause,)).start()

@register
def _atexit():
 print 'all DONE at:', ctime()

We’ll have a longer line-by-line explanation once we’ve finalized our
code with locking, but basically what mtsleepF.py does is expand on our
earlier examples. Like bookrank.py, we simplify the code a bit by skipping
object-oriented programming, drop the list of thread objects and thread
join()s, and (re)use atexit.register() (for all the same reasons as
bookrank.py).

Also as a minor change to the earlier mtsleepX.py examples, instead of
hardcoding a pair of loops/threads sleeping for 4 and 2 seconds, respec-
tively, we wanted to mix it up a little by randomly creating between 3 and
6 threads, each of which can sleep anywhere between 2 and 4 seconds.

192 Chapter 4 • Multithreaded Programming

One of the new features that stands out is the use of a set to hold the
names of the remaining threads still running. The reason why we’re sub-
classing the set object instead of using it directly is because we just want to
demonstrate another use case, altering the default printable string repre-
sentation of a set.

When you display a set, you get output such as set([X, Y, Z,...]). The
issue is that the users of our application don’t (and shouldn’t) need to
know anything about sets or that we’re using them. We just want to dis-
play something like X, Y, Z, ..., instead; thus the reason why we derived
from set and implemented its __str__() method.

With this change, and if you’re lucky, the output will be all nice and
lined up properly:

$ python mtsleepF.py
[Sat Apr 2 11:37:26 2011] Started Thread-1
[Sat Apr 2 11:37:26 2011] Started Thread-2
[Sat Apr 2 11:37:26 2011] Started Thread-3
[Sat Apr 2 11:37:29 2011] Completed Thread-2 (3 secs)
 (remaining: Thread-3, Thread-1)
[Sat Apr 2 11:37:30 2011] Completed Thread-1 (4 secs)
 (remaining: Thread-3)
[Sat Apr 2 11:37:30 2011] Completed Thread-3 (4 secs)
 (remaining: NONE)
all DONE at: Sat Apr 2 11:37:30 2011

However, if you’re unlucky, you might get strange output such as this
pair of example executions:

$ python mtsleepF.py
[Sat Apr 2 11:37:09 2011] Started Thread-1
 [Sat Apr 2 11:37:09 2011] Started Thread-2
[Sat Apr 2 11:37:09 2011] Started Thread-3
[Sat Apr 2 11:37:12 2011] Completed Thread-1 (3 secs)
 [Sat Apr 2 11:37:12 2011] Completed Thread-2 (3 secs)
 (remaining: Thread-3)
 (remaining: Thread-3)
[Sat Apr 2 11:37:12 2011] Completed Thread-3 (3 secs)
 (remaining: NONE)
all DONE at: Sat Apr 2 11:37:12 2011

$ python mtsleepF.py
[Sat Apr 2 11:37:56 2011] Started Thread-1
[Sat Apr 2 11:37:56 2011] Started Thread-2
 [Sat Apr 2 11:37:56 2011] Started Thread-3
[Sat Apr 2 11:37:56 2011] Started Thread-4

[Sat Apr 2 11:37:58 2011] Completed Thread-2 (2 secs)
 [Sat Apr 2 11:37:58 2011] Completed Thread-4 (2 secs)
 (remaining: Thread-3, Thread-1)
 (remaining: Thread-3, Thread-1)

4.7 Multithreading in Practice 193

[Sat Apr 2 11:38:00 2011] Completed Thread-1 (4 secs)
 (remaining: Thread-3)
[Sat Apr 2 11:38:00 2011] Completed Thread-3 (4 secs)
 (remaining: NONE)
all DONE at: Sat Apr 2 11:38:00 2011

What’s wrong? Well, for one thing, the output might appear partially
garbled (because multiple threads might be executing I/O in parallel). You
can see some examples of preceding code in which the output is inter-
leaved, too. Another problem identified is when you have two threads
modifying the same variable (the set containing the names of the remain-
ing threads).

Both the I/O and access to the same data structure are part of critical sec-
tions; therefore, we need locks to prevent more than one thread from
entering them at the same time. To add locking, you need to add a line of
code to import the Lock (or RLock) object and create a lock object, so add/
modify your code to contain these lines in the right places:

from threading import Thread, Lock, currentThread
lock = Lock()

Now you mut use your lock. The following code highlights the acquire()
and release() calls that we should insert into our loop() function:

def loop(nsec):
 myname = currentThread().name
 lock.acquire()
 remaining.add(myname)
 print '[%s] Started %s' % (ctime(), myname)
 lock.release()
 sleep(nsec)
 lock.acquire()
 remaining.remove(myname)
 print '[%s] Completed %s (%d secs)' % (
 ctime(), myname, nsec)
 print ' (remaining: %s)' % (remaining or 'NONE')
 lock.release()

Once the changes are made, you should no longer get strange output:
$ python mtsleepF.py
[Sun Apr 3 23:16:59 2011] Started Thread-1
[Sun Apr 3 23:16:59 2011] Started Thread-2
[Sun Apr 3 23:16:59 2011] Started Thread-3
[Sun Apr 3 23:16:59 2011] Started Thread-4
[Sun Apr 3 23:17:01 2011] Completed Thread-3 (2 secs)
 (remaining: Thread-4, Thread-2, Thread-1)
[Sun Apr 3 23:17:01 2011] Completed Thread-4 (2 secs)
 (remaining: Thread-2, Thread-1)

194 Chapter 4 • Multithreaded Programming

[Sun Apr 3 23:17:02 2011] Completed Thread-1 (3 secs)
 (remaining: Thread-2)
[Sun Apr 3 23:17:03 2011] Completed Thread-2 (4 secs)
 (remaining: NONE)
all DONE at: Sun Apr 3 23:17:03 2011

The modified (and final) version of mtsleepF.py is shown in Example 4-10.

Example 4-10 Locks and More Randomness (mtsleepF.py)

In this example, we demonstrate the use of locks and other threading tools.

1 #!/usr/bin/env python
2
3 from atexit import register
4 from random import randrange
5 from threading import Thread, Lock, currentThread
6 from time import sleep, ctime
7
8 class CleanOutputSet(set):
9 def __str__(self):
10 return ', '.join(x for x in self)
11
12 lock = Lock()
13 loops = (randrange(2,5) for x in xrange(randrange(3,7)))
14 remaining = CleanOutputSet()
15
16 def loop(nsec):
17 myname = currentThread().name
18 lock.acquire()
19 remaining.add(myname)
20 print '[%s] Started %s' % (ctime(), myname)
21 lock.release()
22 sleep(nsec)
23 lock.acquire()
24 remaining.remove(myname)
25 print '[%s] Completed %s (%d secs)' % (
26 ctime(), myname, nsec)
27 print ' (remaining: %s)' % (remaining or 'NONE')
28 lock.release()
29
30 def _main():
31 for pause in loops:
32 Thread(target=loop, args=(pause,)).start()
33
34 @register
35 def _atexit():
36 print 'all DONE at:', ctime()
37
38 if __name__ == '__main__':
39 main()

4.7 Multithreading in Practice 195

Line-by-Line Explanation

Lines 1–6
These are the usual startup and import lines. Be aware that thread-
ing.currentThread() is renamed to threading.current_thread() starting
in version 2.6 but with the older name remaining intact for backward
compatibility.

Lines 8–10
This is the set subclass we described earlier. It contains an implementation
of __str__() to change the output from the default to a comma-delimited
string of its elements.

Lines 12–14
Our global variables consist of the lock, an instance of our modified set
from above, and a random number of threads (between three and six),
each of which will pause or sleep for between two and four seconds.

Lines 16–28
The loop() function saves the name of the current thread executing it, then
acquires a lock so that the addition of that name to the remaining set and
an output indicating the thread has started is atomic (where no other
thread can enter this critical section). After releasing the lock, this thread
sleeps for the predetermined random number of seconds, then re-acquires
the lock in order to do its final output before releasing it.

Lines 30–39
The _main() function is only executed if this script was not imported for
use elsewhere. Its job is to spawn and execute each of the threads. As men-
tioned before, we use atexit.register() to register the _atexit() func-
tion that the interpreter can execute before exiting.

As an alternative to maintaining your own set of currently running
threads, you might consider using threading.enumerate(), which returns
a list of all threads that are still running (including daemon threads, but
not those which haven’t started yet). We didn’t use it for our example here
because it gives us two extra threads that we need to remove to keep our
output short: the current thread (because it hasn’t completed yet) as well
as the main thread (not necessary to show this either).

2.6

196 Chapter 4 • Multithreaded Programming

Also don’t forget that you can also use the str.format() method instead
of the string format operator if you’re using Python 2.6 or newer (includ-
ing version 3.x). In other words, this print statement

 print '[%s] Started %s' % (ctime(), myname)

 can be replaced by this one in 2.6+
 print '[{0}] Started {1}'.format(ctime(), myname)

or this call to the print() function in version 3.x:
 print('[{0}] Started {1}'.format(ctime(), myname))

If you just want a count of currently running threads, you can use
threading.activeCount() (renamed to active_count() starting in version
2.6), instead.

Using Context Management
Another option for those of you using Python 2.5 and newer is to have nei-
ther the lock acquire() nor release() calls at all, simplifying your code.
When using the with statement, the context manager for each object is
responsible for calling acquire() before entering the suite and release()
when the block has completed execution.

The threading module objects Lock, RLock, Condition, Semaphore, and
BoundedSemaphore, all have context managers, meaning they can be used
with the with statement. By using with, you can further simplify loop() to:

from __future__ import with_statement # 2.5 only
def loop(nsec):
 myname = currentThread().name
 with lock:
 remaining.add(myname)
 print '[%s] Started %s' % (ctime(), myname)
 sleep(nsec)
 with lock:
 remaining.remove(myname)
 print '[%s] Completed %s (%d secs)' % (
 ctime(), myname, nsec)
 print ' (remaining: %s)' % (
 remaining or 'NONE',)

Porting to Python 3
Now let’s do a seemingly easy port to Python 3.x by running the 2to3 tool
on the preceding script (this output is truncated because we saw a full
diff dump earlier):

2.6-2.7

3.x

2.5

3.x

4.7 Multithreading in Practice 197

$ 2to3 -w mtsleepF.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
 :
RefactoringTool: Files that were modified:
RefactoringTool: mtsleepF.py

After renaming mtsleepF.py to mtsleepF3.py and mtsleep.py.bak to
mtsleepF.py, we discover, much to our pleasant surprise, that this is one
script that ported perfectly, with no issues:

$ python3 mtsleepF3.py
[Sun Apr 3 23:29:39 2011] Started Thread-1
[Sun Apr 3 23:29:39 2011] Started Thread-2
[Sun Apr 3 23:29:39 2011] Started Thread-3
[Sun Apr 3 23:29:41 2011] Completed Thread-3 (2 secs)
 (remaining: Thread-2, Thread-1)
[Sun Apr 3 23:29:42 2011] Completed Thread-2 (3 secs)
 (remaining: Thread-1)
[Sun Apr 3 23:29:43 2011] Completed Thread-1 (4 secs)
 (remaining: NONE)
all DONE at: Sun Apr 3 23:29:43 2011

Now let’s take our knowledge of locks, introduce semaphores, and look
at an example that uses both.

4.7.4 Semaphore Example
As stated earlier, locks are pretty simple to understand and implement. It’s
also fairly easy to decide when you should need them. However, if the sit-
uation is more complex, you might need a more powerful synchronization
primitive, instead. For applications with finite resources, using sema-
phores might be a better bet.

Semaphores are some of the oldest synchronization primitives out
there. They’re basically counters that decrement when a resource is being
consumed (and increment again when the resource is released). You can
think of semaphores representing their resources as either available or
unavailable. The action of consuming a resource and decrementing the
counter is traditionally called P() (from the Dutch word probeer/proberen)
but is also known as wait, try, acquire, pend, or procure. Conversely, when a
thread is done with a resource, it needs to return it back to the pool. To do
this, the action used is named “V()” (from the Dutch word verhogen/
verhoog) but also known as signal, increment, release, post, vacate. Python
simplifies all the naming and uses the same function/method names as

198 Chapter 4 • Multithreaded Programming

locks: acquire and release. Semaphores are more flexible than locks
because you can have multiple threads, each using one of the instances of
the finite resource.

For our example, we’re going to simulate an oversimplified candy vend-
ing machine as an example. This particular machine has only five slots
available to hold inventory (candy bars). If all slots are taken, no more
candy can be added to the machine, and similarly, if there are no more of
one particular type of candy bar, consumers wishing to purchase that
product are out-of-luck. We can track these finite resources (candy slots)
by using a semaphore.

Example 4-11 shows the source code (candy.py).

Example 4-11 Candy Vending Machine and Semaphores (candy.py)

This script uses locks and semaphores to simulate a candy vending machine.

1 #!/usr/bin/env python
2
3 from atexit import register
4 from random import randrange
5 from threading import BoundedSemaphore, Lock, Thread
6 from time import sleep, ctime
7
8 lock = Lock()
9 MAX = 5
10 candytray = BoundedSemaphore(MAX)
11
12 def refill():
13 lock.acquire()
14 print 'Refilling candy...',
15 try:
16 candytray.release()
17 except ValueError:
18 print 'full, skipping'
19 else:
20 print 'OK'
21 lock.release()
22
23 def buy():
24 lock.acquire()
25 print 'Buying candy...',
26 if candytray.acquire(False):
27 print 'OK'
28 else:
29 print 'empty, skipping'
30 lock.release()
31

4.7 Multithreading in Practice 199

Line-by-Line Explanation

Lines 1–6
The startup and import lines are quite similar to examples earlier in this
chapter. The only thing new is the semaphore. The threading module
comes with two semaphore classes, Semaphore and BoundedSemaphore. As
you know, semaphores are really just counters; they start off with some
fixed number of a finite resource.

This counter decrements when one unit of this is allocated, and when
that unit is returned to the pool, the counter increments. The additional
feature you get with a BoundedSemaphore is that the counter can never
increment beyond its initial value; in other words, it prevents the aberrant
use case where a semaphore is released more times than it’s acquired.

Lines 8–10
The global variables in this script are the lock, a constant representing the
maximum number of items that can be inventoried, and the tray of candy.

32 def producer(loops):
33 for i in xrange(loops):
34 refill()
35 sleep(randrange(3))
36
37 def consumer(loops):
38 for i in xrange(loops):
39 buy()
40 sleep(randrange(3))
41
42 def _main():
43 print 'starting at:', ctime()
44 nloops = randrange(2, 6)
45 print 'THE CANDY MACHINE (full with %d bars)!' % MAX
46 Thread(target=consumer, args=(randrange(
47 nloops, nloops+MAX+2),)).start() # buyer
48 Thread(target=producer, args=(nloops,)).start() #vndr
49
50 @register
51 def _atexit():
52 print 'all DONE at:', ctime()
53
54 if __name__ == '__main__':
55 _main()

200 Chapter 4 • Multithreaded Programming

Lines 12–21
The refill() function is performed when the owner of the fictitious vend-
ing machines comes to add one more item to inventory. The entire routine
represents a critical section; this is why acquiring the lock is the only way
to execute all lines. The code outputs its action to the user as well as warns
when someone has exceeded the maximum inventory (lines 17–18).

Lines 23–30
buy() is the converse of refill(); it allows a consumer to acquire one unit
of inventory. The conditional (line 26) detects when all finite resources
have been consumed already. The counter can never go below zero, so this
call would normally block until the counter is incremented again. By pass-
ing the nonblocking flag as False, this instructs the call to not block but to
return a False if it would've blocked, indicating no more resources.

Lines 32–40
The producer() and consumer() functions merely loop and make corre-
sponding calls to refill() and buy(), pausing momentarily between calls.

Lines 42–55
The remainder of the code contains the call to _main() if the script was exe-
cuted from the command-line, the registration of the exit function, and
finally, _main(), which seeds the newly created pair of threads represent-
ing the producer and consumer of the candy inventory.

The additional math in the creation of the consumer/buyer is to ran-
domly suggest positive bias where a customer might actually consume
more candy bars than the vendor/producer puts in the machine (other-
wise, the code would never enter the situation in which the consumer
attempts to buy a candy bar from an empty machine).

Running the script results in output similar to the following:
$ python candy.py
starting at: Mon Apr 4 00:56:02 2011
THE CANDY MACHINE (full with 5 bars)!
Buying candy... OK
Refilling candy... OK
Refilling candy... full, skipping
Buying candy... OK
Buying candy... OK
Refilling candy... OK
Buying candy... OK
Buying candy... OK
Buying candy... OK
all DONE at: Mon Apr 4 00:56:08 2011

4.7 Multithreading in Practice 201

CORE TIP: Debugging might involve intervention

At some point, you might need to debug a script that uses semaphores, but to do
this, you might need to know exactly what value is in the semaphore’s counter at
any given time. In one of the exercises at the end of the chapter, you will imple-
ment such a solution to candy.py, perhaps calling it candydebug.py, and give it the
ability to display the counter’s value. To do this, you’ll need to look at the source
code for threading.py (and probably in both the Python 2 and Python 3
versions).

You’ll discover that the threading module’s synchronization primitives are
not class names even though they use CamelCase capitalization to look like a
class. In fact, they’re really just one-line functions that instantiate the objects
you’re expecting. There are two problems to consider: the first one is that you
can’t subclass them (because they’re functions); the second problem is that the
variable name changed between version 2.x and 3.x.

The entire issue could be avoided if the object gives you clean/easy access to a
counter, which it doesn’t. You can directly access the counter’s value because
it’s just an attribute of the class, as we just mentioned, the variable name
changed from self.__value, meaning self._Semaphore__value, in Python 2
to self._value in Python 3.

For developers, the cleanest application programming interface (API) (at least
in our opinion) is to derive from threading._BoundedSemaphore class and
implement an __len__() method but use the correct counter value we just dis-
cussed if you plan to support this on both version 2.x and version 3.x.

Porting to Python 3
Similar to mtsleepF.py, candy.py is another example of how the 2to3 tool is
sufficient to generate a working Python 3 version, which we have renamed to
candy3.py. We’ll leave this as an exercise for the reader to confirm.

Summary
We’ve demonstrated only a couple of the synchronization primitives that
come with the threading module. There are plenty more for you to
explore. However, keep in mind that that’s still only what they are: “prim-
itives.” There’s nothing wrong with using them to build your own classes
and data structures that are thread-safe. The Python Standard Library
comes with one, the Queue object.

3.x

202 Chapter 4 • Multithreaded Programming

4.8 Producer-Consumer Problem and the
Queue/queue Module

The final example illustrates the producer-consumer scenario in which a
producer of goods or services creates goods and places it in a data struc-
ture such as a queue. The amount of time between producing goods is non-
deterministic, as is the consumer consuming the goods produced by the
producer.

We use the Queue module (Python 2.x; renamed to queue in version 3.x)
to provide an interthread communication mechanism that allows threads
to share data with each other. In particular, we create a queue into which
the producer (thread) places new goods and the consumer (thread) con-
sumes them. Table 4-5 itemizes the various attributes that can be found in
this module.

Table 4-5 Common Queue/queue Module Attributes

Attribute Description

Queue/queue Module Classes

Queue(maxsize=0) Creates a FIFO queue of given maxsize where
inserts block until there is more room, or (if
omitted), unbounded

LifoQueue(maxsize=0) Creates a LIFO queue of given maxsize where
inserts block until there is more room, or (if
omitted), unbounded

PriorityQueue(maxsize=0) Creates a priority queue of given maxsize where
inserts block until there is more room, or (if
omitted), unbounded

Queue/queue Exceptions

Empty Raised when a get*() method called for an
empty queue

Full Raised when a put*() method called for a full
queue

3.x

4.8 Producer-Consumer Problem and the Queue/queue Module 203

We’ll use Example 4-12 (prodcons.py), to demonstrate producer-consumer
Queue/queue. The following is the output from one execution of this script:

$ prodcons.py
starting writer at: Sun Jun 18 20:27:07 2006
producing object for Q... size now 1
starting reader at: Sun Jun 18 20:27:07 2006
consumed object from Q... size now 0
producing object for Q... size now 1
consumed object from Q... size now 0
producing object for Q... size now 1
producing object for Q... size now 2
producing object for Q... size now 3
consumed object from Q... size now 2
consumed object from Q... size now 1
writer finished at: Sun Jun 18 20:27:17 2006
consumed object from Q... size now 0
reader finished at: Sun Jun 18 20:27:25 2006
all DONE

Attribute Description

Queue/queue Object Methods

qsize() Returns queue size (approximate, whereas
queue may be getting updated by other threads)

empty() Returns True if queue empty, False otherwise

full() Returns True if queue full, False otherwise

put(item, block=True,
timeout=None)

Puts item in queue; if block True (the default) and
timeout is None, blocks until room is available; if
timeout is positive, blocks at most timeout sec-
onds or if block False, raises the Empty exception

put_nowait(item) Same as put(item, False)

get(block=True,
timeout=None)

Gets item from queue, if block given (not 0), block
until an item is available

get_nowait() Same as get(False)

task_done() Used to indicate work on an enqueued item
completed, used with join() below

join() Blocks until all items in queue have been processed
and signaled by a call to task_done() above

204 Chapter 4 • Multithreaded Programming

Example 4-12 Producer-Consumer Problem (prodcons.py)

This implementation of the Producer–Consumer problem uses Queue objects
and a random number of goods produced (and consumed). The producer and
consumer are individually—and concurrently—executing threads.

1 #!/usr/bin/env python
2
3 from random import randint
4 from time import sleep
5 from Queue import Queue
6 from myThread import MyThread
7
8 def writeQ(queue):
9 print 'producing object for Q...',
10 queue.put('xxx', 1)
11 print "size now", queue.qsize()
12
13 def readQ(queue):
14 val = queue.get(1)
15 print 'consumed object from Q... size now', \
16 queue.qsize()
17
18 def writer(queue, loops):
19 for i in range(loops):
20 writeQ(queue)
21 sleep(randint(1, 3))
22
23 def reader(queue, loops):
24 for i in range(loops):
25 readQ(queue)
26 sleep(randint(2, 5))
27
28 funcs = [writer, reader]
29 nfuncs = range(len(funcs))
30
31 def main():
32 nloops = randint(2, 5)
33 q = Queue(32)
34
35 threads = []
36 for i in nfuncs:
37 t = MyThread(funcs[i], (q, nloops),
38 funcs[i].__name__)
39 threads.append(t)
40
41 for i in nfuncs:
42 threads[i].start()
43
44 for i in nfuncs:
45 threads[i].join()
46
47 print 'all DONE'
48
49 if __name__ == '__main__':
50 main()

4.8 Producer-Consumer Problem and the Queue/queue Module 205

As you can see, the producer and consumer do not necessarily alternate
in execution. (Thank goodness for random numbers!) Seriously, though,
real life is generally random and non-deterministic.

Line-by-Line Explanation

Lines 1–6
In this module, we use the Queue.Queue object as well as our thread class
myThread.MyThread, seen earlier. We use random.randint() to make pro-
duction and consumption somewhat varied. (Note that random.randint()
works just like random.randrange() but is inclusive of the upper/end
value).

Lines 8–16
The writeQ() and readQ() functions each have a specific purpose: to place
an object in the queue—we are using the string 'xxx', for example—and
to consume a queued object, respectively. Notice that we are producing
one object and reading one object each time.

Lines 18–26
The writer() is going to run as a single thread whose sole purpose is to
produce an item for the queue, wait for a bit, and then do it again, up to the
specified number of times, chosen randomly per script execution. The
reader() will do likewise, with the exception of consuming an item, of
course.

You will notice that the random number of seconds that the writer
sleeps is in general shorter than the amount of time the reader sleeps. This
is to discourage the reader from trying to take items from an empty queue.
By giving the writer a shorter time period of waiting, it is more likely that
there will already be an object for the reader to consume by the time their
turn rolls around again.

Lines 28–29
These are just setup lines to set the total number of threads that are to be
spawned and executed.

206 Chapter 4 • Multithreaded Programming

Lines 31–47
Finally, we have our main() function, which should look quite similar to
the main() in all of the other scripts in this chapter. We create the appropri-
ate threads and send them on their way, finishing up when both threads
have concluded execution.

We infer from this example that a program that has multiple tasks to
perform can be organized to use separate threads for each of the tasks.
This can result in a much cleaner program design than a single-threaded
program that attempts to do all of the tasks.

In this chapter, we illustrated how a single-threaded process can limit
an application’s performance. In particular, programs with independent,
non-deterministic, and non-causal tasks that execute sequentially can be
improved by division into separate tasks executed by individual threads.
Not all applications will benefit from multithreading due to overhead and
the fact that the Python interpreter is a single-threaded application, but
now you are more cognizant of Python’s threading capabilities and can
use this tool to your advantage when appropriate.

4.9 Alternative Considerations to Threads
Before you rush off and do some threading, let’s do a quick recap: thread-
ing in general is a good thing. However, because of the restrictions of the
GIL in Python, threading is more appropriate for I/O-bound applications
(I/O releases the GIL, allowing for more concurrency) than for CPU-bound
applications. In the latter case, to achieve greater parallelism, you’ll need
processes that can be executed by other cores or CPUs.

Without going into too much detail here (some of these topics have
already been covered in the “Execution Environment” chapter of Core
Python Programming or Core Python Language Fundamentals), when looking
at multiple threads or processes, the primary alternatives to the threading
module include:

4.9.1 The subprocess Module
This is the primary alternative when desiring to spawn processes, whether
to purely execute stuff or to communicate with another process via the stan-
dard files (stdin, stdout, stderr). It was introduced to Python in version 2.4.

2.4

4.9 Alternative Considerations to Threads 207

4.9.2 The multiprocessing Module
This module, added in Python 2.6, lets you spawn processes for multiple
cores or CPUs but with an interface very similar to that of the threading
module; it also contains various mechanisms to pass data between pro-
cesses that are cooperating on shared work.

4.9.3 The concurrent.futures Module
This is a new high-level library that operates only at a “job” level, which
means that you no longer have to fuss with synchronization, or managing
threads or processes. you just specify a thread or process pool with a cer-
tain number of “workers,” submit jobs, and collate the results. It’s new in
Python 3.2, but a port for Python 2.6+ is available at http://code.google.
com/p/pythonfutures.

What would bookrank3.py look like with this change? Assuming every-
thing else stays the same, here’s the new import and modified _main()
function:

from concurrent.futures import ThreadPoolExecutor
 . . .
def _main():
 print('At', ctime(), 'on Amazon...')
 with ThreadPoolExecutor(3) as executor:
 for isbn in ISBNs:
 executor.submit(_showRanking, isbn)
 print('all DONE at:', ctime())

The argument given to concurrent.futures.ThreadPoolExecutor is the
thread pool size, and our application is looking for the rankings of three
books. Of course, this is an I/O-bound application for which threads are
more useful. For a CPU-bound application, we would use concurrent.
futures.ProcessPoolExecutor, instead.

Once we have an executor (whether threads or processes), which is
responsible for dispatching the jobs and collating the results, we can call
its submit() method to execute what we would have had to spawn a thread
to run previously.

 If we do a “full” port to Python 3 by replacing the string format operator
with the str.format() method, making liberal use of the with statement, and
using the executor’s map() method, we can actually delete _showRanking()
and roll its functionality into _main(). In Example 4-13, you’ll find our final
bookrank3CF.py script.

2.6

3.2

http://code.google.com/p/pythonfutures
http://code.google.com/p/pythonfutures

208 Chapter 4 • Multithreaded Programming

Line-by-Line Explanation

Lines 1–14
Outside of the new import statement, everything in the first half of this
script is identical to the bookrank3.py file we looked at earlier in this chapter.

Lines 16–18
The new getRanking() uses the with statement and str.format(). You can
make the same change to bookrank.py because both features are available
in version 2.6+ (they are not unique to version 3.x).

Lines 20–26
In the previous code example, we used executor.submit() to spawn the
jobs. Here, we tweak this slightly by using executor.map() because it

Example 4-13 Higher-Level Job Management (bookrank3CF.py)

Our friend, the book rank screenscraper, but this time using
concurrent.futures.

1 #!/usr/bin/env python
2
3 from concurrent.futures import ThreadPoolExecutor
4 from re import compile
5 from time import ctime
6 from urllib.request import urlopen as uopen
7
8 REGEX = compile(b'#([\d,]+) in Books ')
9 AMZN = 'http://amazon.com/dp/'
10 ISBNs = {
11 '0132269937': 'Core Python Programming',
12 '0132356139': 'Python Web Development with Django',
13 '0137143419': 'Python Fundamentals',
14 }
15
16 def getRanking(isbn):
17 with uopen('{0}{1}'.format(AMZN, isbn)) as page:
18 return str(REGEX.findall(page.read())[0], 'utf-8')
19
20 def _main():
21 print('At', ctime(), 'on Amazon...')
22 with ThreadPoolExecutor(3) as executor:
23 for isbn, ranking in zip(
24 ISBNs, executor.map(getRanking, ISBNs)):
25 print('- %r ranked %s' % (ISBNs[isbn], ranking)
26 print('all DONE at:', ctime())
27
28 if __name__ == '__main__':
29 main()

4.10 Related Modules 209

allows us to absorb the functionality from _showRanking(), letting us remove
it entirely from our code.

The output is nearly identical to what we’ve seen earlier:
$ python3 bookrank3CF.py
At Wed Apr 6 00:21:50 2011 on Amazon...
- 'Core Python Programming' ranked 43,992
- 'Python Fundamentals' ranked 1,018,454
- 'Python Web Development with Django' ranked 502,566
all DONE at: Wed Apr 6 00:21:55 2011

You can read more about the concurrent.futures module origins at the
link below.

• http://docs.python.org/dev/py3k/library/concurrent.futures.html

• http://code.google.com/p/pythonfutures/

• http://www.python.org/dev/peps/pep-3148/

A summary of these options and other threading-related modules and
packages can be found in the next section.

4.10 Related Modules
Table 4-6 lists some of the modules that you can use when programming
multithreaded applications.

Table 4-6 Threading-Related Standard Library Modules

Module Description

threada Basic, lower-level thread module

threading Higher-level threading and synchronization objects

multiprocessingb Spawn/use subprocesses with a “threading” interface

subprocessc Skip threads altogether and execute processes
instead

Queue Synchronized FIFO queue for multiple threads

mutexd Mutual exclusion objects

(Continued)

http://docs.python.org/dev/py3k/library/concurrent.futures.html
http://code.google.com/p/pythonfutures/
http://www.python.org/dev/peps/pep-3148/

210 Chapter 4 • Multithreaded Programming

4.11 Exercises
4-1. Processes versus Threads. What are the differences between

processes and threads?
4-2. Python Threads. Which type of multithreaded application will

tend to fare better in Python, I/O-bound or CPU-bound?
4-3. Threads. Do you think anything significant happens if you

have multiple threads on a multiple CPU system? How do
you think multiple threads run on these systems?

4-4. Threads and Files.
a) Create a function that obtains a byte value and a filename

(as parameters or user input) and displays the number of
times that byte appears in the file.

b) Suppose now that the input file is extremely large. Multi-
ple readers in a file is acceptable, so modify your solution
to create multiple threads that count in different parts of
the file such that each thread is responsible for a certain
part of the file. Collate the data from each thread and pro-
vide the correct total. Use the timeit module to time both
the single- threaded new multithreaded solutions and
say something about the difference in performance, if
any.

4-5. Threads, Files, and Regular Expressions. You have a very large
mailbox file—if you don’t have one, put all of your e-mail mes-
sages together into a single text file. Your job is to take

Table 4-6 Threading-Related Standard Library Modules (Continued)

Module Description

concurrent.futurese High-level library for asynchronous execution

SocketServer Create/manage threaded TCP or UDP servers

a. Renamed to _thread in Python 3.0.
b. New in Python 2.6.
c. New in Python 2.4.
d. Deprecated in Python 2.6 and removed in version 3.0.
e. New in Python 3.2 (but available outside the standard library for version 2.6+).

4.11 Exercises 211

the regular expressions you designed earlier in this book that
recognize e-mail addresses and Web site URLs and use them
to convert all e-mail addresses and URLs in this large file
into live links so that when the new file is saved as an .html
(or .htm) file, it will show up in a Web browser as live and
clickable. Use threads to segregate the conversion process
across the large text file and collate the results into a single
new .html file. Test the results on your Web browser to
ensure the links are indeed working.

4-6. Threads and Networking. Your solution to the chat service
application in the previous chapter required you to use
heavyweight threads or processes as part of your solution.
Convert your solution to be multithreaded.

4-7. *Threads and Web Programming. The Crawler application in
Chapter 10, “Web Programming: CGI and WSGI,” is a single-
threaded application that downloads Web pages. It would
benefit from MT programming. Update crawl.py (you could
call it mtcrawl.py) such that independent threads are used to
download pages. Be sure to use some kind of locking mecha-
nism to prevent conflicting access to the links queue.

4-8. Thread Pools. Instead of a producer thread and a consumer
thread, change the code for prodcons.py, in Example 4-12 so
that you have any number of consumer threads (a thread pool)
which can process or consume more than one item from the
Queue at any given moment.

4-9. Files. Create a set of threads to count how many lines there
are in a set of (presumably large) text files. You can choose
the number of threads to use. Compare the performance
against a single-threaded version of this code. Hint: Review
the exercises at the end of the Chapter 9, in Core Python
Programming or Core Python Language Fundamentals.

4-10. Concurrent Processing. Take your solution to Exercise 4-9 and
adopt it to a task of your selection, for example, processing a
set of e-mail messages, downloading Web pages, processing
RSS or Atom feeds, enhancing message processing as part of
a chat server, solving a puzzle, etc.

4-11. Synchronization Primitives. Investigate each of the synchroni-
zation primitives in the threading module. Describe what
they do, what they might be useful for, and create working
code examples for each.

212 Chapter 4 • Multithreaded Programming

The next couple of exercises deal with the candy.py script featured in
Example 4-11.

4-12. Porting to Python 3. Take the candy.py script and run the 2to3
tool on it to create a Python 3 version called candy3.py.

4-13. The threading module. Add debugging to the script. Specifi-
cally, for applications that use semaphores (whose initial
value is going to be greater than 1), you might need to know
exactly the counter’s value at any given time. Create a varia-
tion of candy.py, perhaps calling it candydebug.py, and give it
the ability to display the counter’s value. You will need to
look at the threading.py source code, as alluded to earlier in
the CORE TIP sidebar. Once you’re done with the modifica-
tions, you can alter its output to look something like the
following:
$ python candydebug.py
starting at: Mon Apr 4 00:24:28 2011
THE CANDY MACHINE (full with 5 bars)!
Buying candy... inventory: 4
Refilling candy... inventory: 5
Refilling candy... full, skipping
Buying candy... inventory: 4
Buying candy... inventory: 3
Refilling candy... inventory: 4
Buying candy... inventory: 3
Buying candy... inventory: 2
Buying candy... inventory: 1
Buying candy... inventory: 0
Buying candy... empty, skipping
all DONE at: Mon Apr 4 00:24:36 2011

823

INDEX

Symbols
^ (carat) symbol

for matching from start of string, 6, 10
for negation, 12

? (question mark), in regex, 6, 12–13, 24, 47
. (dot) symbol, in regex, 6, 9, 23
(?:...) notation, 32
(?!...) notation, 33
(?=...) notation, 33
{ } (brace operators), 12
{% %} (percent signs and braces), for Django

block tags, 529
{% block ... %} tag, 553
{% extends ... %} tag, 554
* (asterisk), in regex, 6, 12–13
** (exponentiation), 771
/ (division operator), 771, 810

Python 3 changes, 803–804
// (double-slash division operator), 804, 811
// (floor division), 772, 803, 804, 810, 811
\ (backslash) to escape characters to include in

search, 23
\s special character, for whitespace characters,

14
& (ampersand), for key-value pairs, 403
(hash symbol)

for comment, 32
for Django comments, 518

% (percent sign)
for hexadecimal ordinal equivalents, 403
for modulo, 772
in string format operator conversion

symbols, 776
+ (plus sign)

for encoding, 403
in regex, 6, 12–13

| (pipe symbol)
for Django variable tag filters, 528
in regex, 9

~ (bit inversion), 771
$ (dollar sign), for matching end of string, 6, 10
Numerics
2to3 tool, 187, 407, 805, 817
-3 switch, for Python 3 transition, 817
3to2 tool, 805, 818
500 HTTP error, 445
A
\A special character, for matching start of

string, 10
abs() function, 770
__abs__() method, 793
AbstractFormatter object, 415
accept() method, 62, 65
access key, for Google+ API, 749
access token secret, for Twitter, 694
access token, for Twitter, 694
acquire() method (lock object), 165, 169, 190,

193
Active FTP mode, 98, 103
Active Record pattern, 295
active sheet in Excel, 329
activeCount() function (threading module),

179
active_count() function (threading module),

179
ActiveMapper, 295
ActiveX, 326

See also COM (Component Object Model)
programming

adapter for database. See database adapters
add() function (set types), 785

824 Index

__*add__() method, 792, 794
addition sign (+). See + (plus sign)
address families, 58
Admin Console page, adding Appstats UI

as custom, 671
admin.py file, 559

to register data models, 580
administration app in Django, 518–527

setup, 518–519
ADMIN_MEDIA_PREFIX variable, 570
adodbapi, 317
AdvCGI class, 476
advcgi.py CGI application, 468–478
advertising on cloud services, 135
AF_INET sockets, 58
AF_INET6 sockets, 58
AF_LOCAL sockets, 58
AF_NETLINK sockets, 59
AF_TIPC sockets, 59
AF_UNIX sockets, 58
all() method, 298
allocate_lock() function, 165
alphabet, for regular expressions, 5
alphanumeric character class, \w special class

for, 14
alphanumeric character, matching in regex, 7
alternation (|) operation, in regex, 9
Amazon, 608

“Conditions of Use” guidelines, 182
Amazon Web Services (AWS), 607
ampersand (&), for key-value pairs, 403
anchors, parsing, 418
and operator, 770
__*and__() method, 793
animalGtk.pyw application, 242–244
animalTtk.pyw application, 245
animalTtk3.pyw application, 246
anonymous FTP login, 96, 102
Apache web server, 428, 446, 479

Django and, 497
apiclient.discovery.build() function, 755
API_KEY variable for Google+, 755
apilevel attribute (DB-API), 260
APIs (application programming interfaces),

685
Google App Engine and, 614–616
Twitter libraries, 691

App Engine Blobstore, 613
App Engine. See Google App Engine
App Identity API, 614
app.yaml file, 628

for handling inbound e-mail, 658
for tasks queues, 664
handler for Appstats, 671
inbound_services: section, 661
for remote API shell, 654

append() function, 772
append() method (list), 781
appengine_config.py file, 671

“application/x-www-form-urlencoded”, 466
applications

event-driven, 80
Google hosting of, 605
recording events from, 671
uploading to Google, 629
visibility on desktop, 330

apps in Django, 501
creating, 566

AppScale back-end system, 676
Appstats, 614, 670

handler for, 671
APSW, 317
archive() view function, 543
arguments, default for widgets, 221
ArithmeticError, 788
arraysize attribute (DB-API Cursor object), 265
article() method (NNTP object), 107
as keyword, 802, 816
ASCII strings

regular expression with, 188
vs. Unicode, 800–801, 815

ASCII symbols, vs. regular expression special
characters, 34

assertEqual() method, 555
AssertionError, 788
asterisk (*), in regex, 6, 12–13
async* module, 88
asynchat module, 88
asyncore module, 88
atexit.register() function, 183, 185, 195
_atexit() function, registering, 195
attachment to e-mail, 131
AttributeError exceptions, 21, 788
authentication, 487

in Django, 574, 595
federated, 653
in Google, 755
with Google Accounts, 652
in Google App Engine, 574
SMTP, 118
for Twitter account, 694
urllib2 HTTP example, 405–407
vs. authorization, 569

authentication header, base64-encoded, in
HTTP request, 406

authorization
vs. authentication, 569
with Twitter, 694

auto_now_add feature, in Django, 578
B
\B special character, for word boundary

matches, 10
\b special character, for word boundary

matches, 10
backbone, 395
backend server, 394
Backends service/API, 614

Index 825

background color of button, argument for, 227
backslash (\) to escape characters to include in

search, 23
backward compatibility, 799
Barrier object (threading module), 170
base (Web) server, 429
base representation, 794
base64 module, 147
base64-encoded authentication header, in

HTTP request, 406
BaseException, 788
BaseHTTPRequestHandler class, 429, 430, 447
BaseHTTPServer class, 430, 432, 489
BaseHTTPServer module, 429, 435
BaseRequestHandler class (SocketServer

module), 79
BaseServer class (SocketServer module), 79
BeautifulSoup package, 185, 418, 421, 422, 424,

435, 489
BeautifulSoup.BeautifulSoup class

importing, 427
Beazley, David, 384
beginning of string, matching from, 10
Berkeley sockets, 58
Bigtable, 610, 635
bin() function, 770
binary literals, 804, 810
binary operators, 792, 793
BINARY type object (DB-API), 267
Binary type object (DB-API), 267
binascii module, 147
bind() method, 62, 67, 74
binding, 233
binhex module, 147
Bissex, Paul, Python Web Development with

Django, 496
bit inversion (~), 771
bitwise operators, 772
blacklist section, in dos.yaml file, 675
blank lines, in newsgroup article, 113
Blobstore, 614

resources, 676
block tags in Django, 529
blocking-oriented socket methods, 63
blog application

admin.py file, 559
code review, 557–563
from Google App Engine, 631–647

adding datastore service, 635–638
adding form, 633–635
iterative improvements, 640
plain text conversion to HTML, 632

manage.py to create, 507
models.py file, 558
reverse-chronological order for, 537
summary, 563
template file, 562
URL pattern creation, 529–533
urls.py file, 557

user interface, 527–537
view function creation, 533–537
views.py file, 560

blog.views.archive() function, 561
blog.views.create_blogpost() function, 561
blog/admin.py file, updating with

BlogPostAdmin class, 525
BlogEntry.post() method, 637
blogging, 690
BlogPostAdmin class, 525
BlogPostForm object, 559
Boa Constructor module, 248
body() method (NNTP object), 107
boilerplate code, 370–377

include Python header file, 371
initModule() modules, initializer function,

376
PyMethodDef ModuleMethods[] array, 376
PyObject* Module_func() wrappers,

371–376
SWIG and, 384

boilerplate, base server as, 429
bookrank.py script, 182–189

adding threading, 186–187
non-threaded version, 182–185
porting to Python 3, 187–189

bookrank3CF.py script, 208–209
bool type, 809
Boolean operators, 770
borrowed reference, 383
bot, 410
bottle framework, App Engine and, 617, 676
BoundedSemaphore class, 199
BoundedSemaphore object (threading module),

170
context manager, 196

BoxSizer widget, 241
bpython, 515
brace operators ({ }), 12
BSD Unix, 58
*BSD, Zip files for App Engine SDK, 620
BSON format, 311
buffer size, for timestamp server, 67
build() function, 754
build_absolute_uri() method, 591
built-in functions in Python 3, 813
__builtins__ module, 285
burstiness rates, for task queues, 663
Button widget, 220, 222

Label and Scale widgets with, 224–225
Label widget with, 223

buy() function, 200
bytecode, 19
bytes literals, 815
bytes objects, and string format operator, 409
bytes type, 800, 815
C
C language

converting data between Python and, 372

826 Index

C language (continued)
creating application for extension, 368–370
extensions in, 365
memory leak, 375
Python-wrapped version of library, 380–382

caching, 647
key for, 649
Memcache in App Engine for, 647–651
on proxy server, 394

__call__() method, 791
callable classes, for threads, 175–176
callables

as deferred tasks, 669
in Django templates, 528
WSGI applications defined as, 481

callbacks, 217
binding event to, 233

callproc() method (DB-API Cursor object), 265
camel capitalization in Twython, 703
candy.py script, 198–200

porting to Python 3, 201
Canvas widget, 220
Capabilities service/API, 614
capitalize() function, 773
capitalize() method (string), 778
capitalizing name in form, 460
carat (^) symbol

for matching from start of string, 6, 10
for negation, 12

Cascading Style Sheets (CSS), 553
C-compiled modules/packages, whitelist, 613
center() method (string), 773, 778
cformat() function, 285, 288
CGI (common gateway interface)

alternatives, 479–487
external processes, 480
server integration, 479
See also WSGI (Web Server Gateway

Interface)
basics, 442–444
errors, exercise answer, 766
form encodings specifications, 466
scalability limitations, 494

CGI applications, 444
cookies, 466–478
form and results page generation, 452–456
form page creation, 448–450
fully interactive Web sites, 457–463
multivalued fields, 467
results page, 450–452
Unicode with, 464–465
Web server setup, 446–448

cgi module/package, 433, 445, 488
CGI-capable development server, 432
CGIHTTPRequestHandler class, 429, 447
CGIHTTPServer class, 430, 489
CGIHTTPServer module, 432, 435

handlers in, 430
cgitb module, 433, 445–446, 488

Channel service/API, 614
resources, 677

character classes, creating, 24
character sets

negation of matches, 14
special characters for, 14

characters
escaping to include in search, 23
hexadecimal ordinal equivalents of

disallowed, 403
matching any single, 6, 23
non-ASCII, 464
See also special characters

chat invitation, 660
chatter score, for Google+ posts, 757
Checkbutton widget, 220
checkUserCookie() method, 476
Cheeseshop, 311, 418
CherryPy, 494
child threads, main thread need to wait for, 166
child widget, 217
chr() function, 770, 773
CIL (Common Intermediate Language), 387
class type in Python 3, 801
class wrapper, 486
class-based generic views, 553
classes, special methods for, 791–795
classic classes, 814
clear() function (set types), 785
clear() method (dictionary), 782
client/server architecture

exercise answer, 765
hardware, 55
network programming, 56–57
software, 55–56
Web surfing and, 391–392
window system, 216
XML-RPC and, 733–738

clientConnectionFailed() method, 87
clientConnectionLost() method, 87
clients, 54

awareness of server, 57
for NNTP, 108–114
for UDP

creating, 74–76
executing, 76

FTP
example program, 100–102
list of typical, 103

Internet, 95
location on Internet, 394–395
socket methods, 62–63
spawning threads to handle requests, 65
TCP

creating, 68–71
executing, 71–73
executing Twisted, 87
SocketServer execution, 83

Index 827

SocketServer for creating, 82–83
Twisted for creating, 85–87

client-side COM programming, 326–327
with Excel, 328–330, 338–340
with Outlook, 334–337, 340–347
with PowerPoint, 332–334, 347–356
with Word, 331

close() method, 63, 66
for server, 72
for UDP server, 73

close() method (DB-API Connection object),
264

close() method (DB-API Cursor object), 265
close() method (file object), 786
close() method (IMAP4 object), 129
close() method (urlopen object), 401
closed() method (file object), 787
closing spreadsheet without saving, 330
cloud computing, 605–611

levels of service, 607–609
Web-based SaaS, 135

Cloud SQL service/API, 615
Cloud Storage service/API, 615
clrDir() method, 235
CMDs dictionary, 702
cmp() function, 769, 773
__cmp__() method, 792
coerce() function, 771
__coerce__() method, 794
co-location, 395
columns in database tables, 255
column-stores, 310
COM (Component Object Model) program-

ming, client-side, 326–327
basics, 325
with Excel, 328–330, 338–340
with Outlook, 334–337, 340–347
with PowerPoint, 332–334, 347–356
with Word, 331

ComboBox widget, 236, 238, 241
ComboBoxEntry widget, position of labels, 244
command shell, executing http.server

module from, 447
command-line

FTP clients, 103
to start App Engine application, 629

comma-separated values (CSV), 715–719
Yahoo! Stock Quotes example, 717–719

Comment class, 579
Comment objects, for TweetApprover, 578
comments

hash symbol (#) for, 32
in regex, 8, 16

commit() method (DB-API Connection object),
264, 271

common gateway interface. See CGI (common
gateway interface)

Common Intermediate Language (CIL), 387

communication endpoint, 58
See also sockets

comparisons, 769
compatibility library, for Tweepy and

Twython, 693–706
compilation of regex, decision process, 19
compile() function, 17
compiled languages, vs. interpreted, 367
compiling extensions, 377–379
complex() function, 771
__complex__() method, 793
Concurrence networking framework, 89
concurrency, 626
concurrent.futures module, 207, 210
concurrent.futures.ProcessPool Executor, 207
concurrent.futures.ThreadPoolExecutor, 207
Condition object (threading module), 170

context manager, 196
conditional expressions, 288
conditional regular expression matching, 34
connect() attribute (DB-API), 260
connect() function, 286

for database access, 261–262
connect() method, 62
connect_ex() method, 62
connection attribute (DB-API Cursor object),

265
Connection objects (DB-API), 263–264

database adapters with, 271
connectionless socket, 60
connectionMade() method, 86
connection-oriented sockets, 60
constants

in Outlook, 336
in PowerPoint, 334

constructors (DB-API), 266–268
consumer key, for OAuth, 694
consumer secret, for OAuth, 694
consumer() function, 200
container environments, and Django install,

500
containers, widgets as, 217
__contains__() method, 794
context, for Django template variables, 528
continue statement, 113
Control widget, 236, 238
Conversion package/API, 615
converting data between Python and C/C++,

372
cookie jar, 476
Cookie module/package, 433, 476, 488
cookielib module/package, 433, 476, 488
cookies, 392, 487

CGI for, 466–478
expiration date, 467

copy() function (set types), 784
copy() method (dictionary), 782
costs, cloud computing services and, 606

828 Index

CouchDB, 318
couchdb-python, 318
count() function, 773
count() method (list), 781
count() method (string), 778
counters

semaphores as, 197, 199
value display for debugging, 201

counting, by App Engine, 643
crawl.py script, 411–418

sample invocation, 417–418
crawler, 410
Crawler class, 416
CREATE DATABASE statement (SQL), 256
CREATE TABLE statement (MySQL), 271
CREATE TABLE statement (SQL), 256
create() function, for database table, 287
create_blogpost() view function, 562
create_connection() function, 77
cron job, 101
cron service, 615, 673
cron.yaml file, 673
cross-site request forgery, 544
cStringIO module/package, 413
cStringIO.StringIO class, 731
CSV (comma-separated values), 715–719

downloading files for importing into Excel
or Quicken, 685

csv module, 740
exercise answer, 766
importing, 716

csv.DictReader class, 717
csv.DictWriter class, 717
csv.reader() function, 717
csv.reader() script, 718
csv.writer() function, 717
csvex.py script, 715–717
current_thread function (threading module),

179
currentThread() function (threading

module), 179
cursor for databases, 255
cursor objects (DB-API), 265–266
cursor() method (DB-API Connection object),

264
custom views, 551
customization of classes, special methods for,

791
cwd Tk string variable, 235
cwd() method (FTP objects), 99
cx_Oracle, 318
Cython, 385
D
\d special character, for decimal digit, 14
daemon attribute (Thread object), 172
daemon threads, 171
data

converting between Python and C/C++, 372

in Python 3, 800
manipulation, 3

data attributes (DB-API), 260–261
“Data Mapper” pattern, 295
data models

admin.py file to register, 580
BlogPostForm object for, 559
file for TweetApprover poster app, 578
for blog application, 558
for TweetApprover, 576–582
in Django, experimenting with, 516–517
repetition vs. DRY, 546

data set, script to generate, 41–43
data strings. See strings
data types, 267
database adapters, 258

basics, 270
example application, 275–288

porting to Python 3, 279–288
examples, 270–275

MySQL, 271–272
PostgreSQL, 272–274
SQLite, 274–275

database application programmer’s interface
(DB-API), 259–288

changes between versions, 268
Connection objects, 263–264
cursor objects, 265–266
exceptions, 263
exercise answer, 766
module attributes, 260–263

data attributes, 260–261
function attributes, 261–262

relational databases, available interfaces,
269–270

type objects and constructors, 266–268
web resources, 268

database servers, 55
Database Source Names (DSNs), 294
DatabaseError exception (DB-API), 263
databases

auto-generating records for testing, 538
basics, 254–257
create() function for tables, 287
creating engine to, 296
Django model for, 509–514

table creation, 512–514
using MySQL, 510–511
using SQLite, 511–512

for Django, 498
list of supported, 270
non-relational, 309–315

MongoDB, 310
PyMongo, 311–315

NoSQL, 498
Python and, 257–258
row insertion, update, and deletion, 297
SQL, 256–257
testing, 556

Index 829

user interface, 255
Web resources on modules/packages, 316
See also object relational managers (ORMs)

DATABASES variable, for TweetApprover,
570

DataError exception (DB-API), 263
datagram type of socket, 60
DatagramRequest-Handler class (SocketServer

module), 79
dataReceived() method, 86
datastore admin, for App Engine, 655
Datastore service/API, 614, 615
date

converting American style to world format,
29

converting integer to, 43
Date type object (DB-API), 267
DateFromTicks type object (DB-API), 267
datetime package, 754
DATETIME type object (DB-API), 267
days of the week, extracting from timestamp,

44
DB-API. See database application program-

mer’s interface (DB-API)
dbDump() function, 288
dbDump() method, 298, 307, 315
DB_EXC, 285
DCOracle2, 318
debugging, counter value display and, 201
decode() function, 773
decode() method (string), 778
default arguments, widgets with, 221
default radio button, 454
deferred package, in Google App Engine,

668–670
deferred.defer() function, 668
Dejavu, 289
__del__() method, 791
__delattr__() method, 792
dele() method (POP3 object), 125
delegation, for database operations, 298
DELETE FROM statement (MySQL), 272
DELETE FROM statement (SQL), 257
delete() function, for database adapter, 288
__delete__() method, 792
delete() method, 297, 298
delete() method (FTP objects), 99
__delitem__() method, 794, 795
__delslice__() method, 794
_demo_search() function, 706
denial-of-service protection, 675
Denial-of-Service service/API, 615
DeprecationWarning, 790
description attribute (DB-API Cursor object),

265
desktop, application visibility on, 330
detach() method, 63
developer servers, 446–448
development server in Django, 505–507

dict.fromkeys() function, 702
dict() factory function, 314
dict2json.py script, 722–724
dict2xml.py script, 725–729
dictionary type built-in methods, 782–783
Diesel, 496
difference_update() function (set types), 785
difference() function (set types), 784
digits

\d special character for, 14
matching single in regex, 7

dir() method (FTP objects), 99
directory tree traversal tool, 230–236
direct_to_template() generic view, 561
DirList class, defining constructor for, 232
discard() function (set types), 785
dispatch, static vs. dynamic, 329
Dispatch() function, 329
displayFirst20() function, 113
displaying sets, 192
Distribute, 290
distutils package, 377
distutils.log.warn() function, 279, 285, 693,

716, 722, 819, 821
__*div__() method, 792
division from __future__ module, 811
division operator (/), 771, 810

Python 3 changes, 803–804
divmod() function, 771
__*divmod__() method, 793
Django, 428, 494

administration app, 518–527
data manipulation, 522–527
setup, 518–519
trying out, 519–527

App Engine and, 617, 676
authentication in, 574, 595
auto_now_add feature, 578
basics, 496
caching, 650
data model experimenting, 516–517
development server in, 505–507
fixtures, 513
forms, 546–550

defining, 590
model forms, 547
ModelForm data processing, 549
ModelForm to generate HTML form, 548

“Hello World” application, 507
installation, 499–501

prerequisites, 497–499
labor-saving features, 563
look-and-feel improvements, 553
model for database service, 509–514

table creation, 512–514
using MySQL, 510–511
using SQLite, 511–512

non-relational databases and, 618
output improvement, 537–541

830 Index

Django (continued)
model default ordering, 540
query change, 537–540

projects and apps, 501
basic files, 504
project creation, 502–505

Python application shell, 514–517
resources, 597
sending e-mail from, 567
templates

directory for, 529
specifying location for Web pages, 570

testing blog application code review,
557–563

tutorial, 597
unit testing, 554–557, ??–563
user input, 542–546

cross-site request forgery, 544
template for, 542
URLconf entry, 543
view, 543

user interface for blog, 527–537
template creation, 528–529
URL pattern creation, 529–533
view function creation, 533–537

views, 551–553
generic views, 552–553
semi-generic views, 551

vs. App Engine, 628–630
See also TweetApprover

Django’s Database API, 289
django-admin.py startproject command, 566
django-admin.py utility, 502, 505
Django-nonrel, 498

App Engine and, 617
resources, 597

.dmg file, for App Engine SDK, 620
document object model (DOM) tree-structure,

725
document stores, 310
documentation strings (docstrings), 518

testing, 554
DocXMLRPCServer module/package, 434,

733, 740
do_GET() method, 430, 432
do_HEAD() method, 432
dollar sign ($), for matching end of string, 6, 10
doLS() method, 235
do_POST() method, 432
doResults() method, 477, 478
DOS Command window

Django project creation in, 503
for installing Django, 499

dos.yaml file, blacklist section, 675
dot (.) symbol, in regex, 6, 9, 23
double-slash division operator (//), 804, 811
Download service/API, 615
download() method, 415

downloading
CSV files for importing into Excel or

Quicken, 685
e-mail, Yahoo! Mail Plus account for, 139
file from Web site, 101
Google App Engine SDK, 620
HTML, urlretrieve() for, 402
stock quotes into Excel, 338–340

downloadStatusHook function, 402
DP-API See database application program-

mer’s interface (DB-API)
DROP DATABASE statement (SQL), 256
DROP TABLE statement (SQL), 256
DRY principle, 530, 532, 551, 560

resources on, 591
vs. repetition, 546

DSNs (Database Source Names), 294
Durus, 289
dynamic dispatch, 329, 346
E
East Asian fonts, 464
EasyGUI module, 248
easy_install (Setuptools), for Django, 499
ECMA-262 standard, 719
ehlo() method (SMTP object), 119
Elastic Compute Cloud (EC2), 607
electronic mail. See e-mail
ElementTree XML document parser, 725
ElementTree.getiterator() function, 733
Elixir, 295
e-mail, 114–146

attachment, 131
best practices in security and refactoring,

136–138
composition, 131–134
definition of message, 114
Google App Engine for receiving, 658–660
Google App Engine for sending, 656
Google Gmail service, 144–146
handler for inbound, 659
IMAP, 121–122

Python and, 128
instructing Django to send, 567
multipart alternative messages, 133
parsing, 134
POP, 121–122

interactive example, 123–124
methods, 124–125
Python and, 122

Python modules, 146–147
receiving, 121
sending, 116–117
sending, as task, 666–668
system components and protocols, 115–116
Web-based SaaS cloud computing, 135
Yahoo! Mail, 138–144

Index 831

Yahoo! Mail Plus account for downloading,
139

See also Outlook
e-mail addresses, regex for, 24–26
Email API, 614
email module/package, 131, 147
email.message_from_string() function, 134
email.mime.multiple.MIMEMultipart class,

133
email.mime.text.MIMEText class, 133
email-examples.py script, 132–134
embedding, extensions vs., 387
employee role database example, 291–309

SQLAlchemy for, 291–304
Empty exception (Queue/queue module), 202
empty() method (queue object), 203
encode() function, 773
encode() method, 464
encode() method (string), 778
encoding() method (file object), 787
end of string, matching from, 6, 10
endswith() function, 773
endswith() method (string), 778
ENGINE setting, for Django database, 510
Entry widget, 220
enumerate() function (threading module), 179
environment variables, 481

Django project shell command setup of, 515
wsgi.*, 483

EnvironmentError, 788
EOFError, 72, 788, 789
__eq__() method, 792
eric module, 249
Error exception (DB-API), 263
error exception (socket module), 77
error page, for Advcgi script, 477
error submodule, 400
errorhandler() method (DB-API Connection

object), 264
escaping characters, in regex, 9
ESMTP, 116
estock.pyw script, 338–340
/etc/services file, 59
Event object (threading module), 170
event-based processors for XML, 725
event-driven applications, 80
event-driven processing, 218
events, 217
Excel

COM programming with, 328–330, 338–340
downloading CSV files for importing into,

685
excel.pyw script, 328–330
Exception, 788
exceptions, 788–790

DB-API, 263
in Python 3, 816–817
Python 3 changes, 801–802

for socket module, 77
syntax for handling in database adapters,

280
exc_info, and start_response(), 482
execute() method (DB-API Cursor object), 265
execute*() method (DB-API Cursor object), 266
executemany() function, 287
executemany() method (DB-API Cursor

object), 265
execution rates, for task queues, 663
executor.map(), 208
executor.submit(), 208
exit() function (thread module), 165
exiting threads, 161
expandtabs() method (string), 773, 778
Expat streaming parser, 725
expiration date of cookies, 467
exponentiation (**), 771
extend() method (list), 773, 781
Extended Passive Mode (FTP), 98
eXtensible Markup Language. See XML

(eXtensible Markup Langauge)
extension notations, for regex, 16, 31–34
extensions

basics, 365
creating

boilerplate wrapper for, 370–377
C application code, 368–370
compilation, 377–379

creating on different platforms, 365–366
disadvantages, 367–368
Global Interpreter Lock and, 384
importing, 379
reasons for, 366–367
reference counting and, 382–383
testing, 379–382
threading and, 384
vs. embedding, 387

external processes, as CGI alternative, 480
Extest2.c C library, 380–382
ExtJS, 495
F
fac() function, 368–370
Facebook, 690

scalability issues, 310
factorial function, thread for, 180–182
fake views, 533
family attribute, for socket object, 64
FastCGI, 480
fasterBS() function, 421, 422
federated authentication, 653
fetch() method (IMAP4 object), 129, 130
fetch*() method (DB-API Cursor object), 266
fetchall() method (DB-API Cursor object),

266, 288
fetching database rows, 255
fetchone() method (DB-API Cursor object), 266
Fibonacci function, 180–182

832 Index

fields, multivalued in CGI, 467
FieldStorage class (cgi module), 445

instance, 451
file input type, 466
file objects, methods and data attributes,

786–787
file servers, 55
File Transfer Protocol (FTP), 96–98

client example, 100–102
interactive example, 100
miscellaneous notes, 103–104

fileno() method (file object), 786
fileno() method (socket object), 64
fileno() method (urlopen object), 401
file-oriented socket methods, 63
files, 254

uploading, 478
Files service/API, 615
fill parameter, for packer, 224
filter() function, 804
filter() method, 297
filter_by() method, 297
filters, in Django variable tags, 528
find() method (string), 778
findall() function, 33–34
findall() function/method, 17, 27
findAll() method, 421
finditer() function, 17, 28, 33–34
find_top_posts() function, 758
find_user() function, 758
finish() method, 299, 307
Firebird (InterBase), 317
firewalls, 394
first() method, 298
fixtures, 513
flags

for speciallzed regex compilation, 19
in regex, 8, 18

Flask framework, App Engine and, 617
Flask, App Engine and, 676
float type, division and, 810
float() function, 771
__float__() method, 793
FloatingPointError, 788
floor division (//), 772, 803, 804, 810, 811
__*floordiv__() method, 792
flush() method (file object), 786
Foord, Michael, Python Cookbook, 407
Forcier, Jeff, Python Web Development with

Django, 496
foreground color of button, argument for, 227
forex() function, 736
ForgetSQL, 289
ForkingMixIn class (SocketServer module), 79
ForkingTCPServerclass (SocketServer

module), 79
ForkingUDPServer class (SocketServer

module), 79

form variable, 451
format parameter style, for database parame-

ters, 261
format() function, 773
format() method (string), 778
formatter module/package, 413
formatter object, 415
FormHandler class, 666
forms

CGI specifications on encodings, 466
classes to define, 559
“hidden” variable in, 454
hidden variable in, 467
in Django, 546–550

defining, 590
forward proxies, 394
Frame class, 241
Frame object, 224
Frame widget, 220, 233
Friedl, Jeffrey E.F., Mastering Regular

Expressions, 48
friendsA.py script, 450
friendsB.py script, 453–456
friendsC.py script, 457–462
friendsC3.py script, 462–463
from module import *, 702
fromfd() function, 77
from-import module, 42
fromkeys() method (dictionary), 782
frozenset() function (set types), 784
FTP (File Transfer Protocol)

creating client, 98
support for, 399

ftplib module, 98, 148, 400
ftplib.FTP class

instantiating, 98
methods, 99–100

Full exception (Queue/queue module), 202
full() method (queue object), 203
full-stack systems, 494
function attributes (DB-API), 261–262
functions

PFAs for, 226
standard, 769
vs. methods, 19

functools module, reduced() moved to in
Python 3, 813

functools.partial() method, 229
future_builtins module, 814
FutureWarning, 790
FXPy module, 249
G
Gadfly, 275, 286, 316

database, 258
GAE Framework, App Engine and, 617
Gage, John, 608
gaierror exception, for socket module, 77
__ge__() method, 792

Index 833

gendata.py script, 41–43
GeneratorExit, 788
generic views, 537, 551, 552–553

direct_to_template(), 561
Genshi, 495
geometry managers, 218
GET method,decison to use, 448
GET request

Django development server logging of, 507
for HTTP requests, 400
reading, 430
variables and values in URL, 452

__get__() method, 792
get() method (dictionary), 782
get() method (queue object), 203
get() method, for HTTP GET requests, 624
getaddrinfo() function, 77
__getattr__() method, 299, 705, 792
__getattribute__() method, 792
getCPPCookies() method, 476, 478
get_file() method, 414
getFirstNNTP.py script, 109–114
getfqdn() function, 78
gethostbyaddr() function, 78
gethostbyname() function, 78
gethostbyname_ex() function, 78
gethostname() function, 78
__getitem__() method, 794, 795
getLatestFTP.py script, 101–102
_get_meth() method, 703
getName() method (Thread object), 172
get_nowait() method (queue object), 203
get_object_or_404() shortcut, 584
get_page() method, 416
getpeername() method, 63
get_posts() method, 755
get_presence() function (XMPP), 661
getprotobyname() function, 78
getRanking() function, 182, 184

with statement use by, 208
getResult() method, 178
getservbyname() function, 78
getservbyport() function, 78
__getslice__() method, 794
getsockname() method, 63
getsockopt() method, 63
getSubject() function, 137, 143
gettimeout() method, 63
geturl() method (urlopen object), 401
get_user() method, 756
GIF (Graphics Interchange Format), 401
GitHub, 691
Glade module, 249
Global Interpreter Lock (GIL), 160–163

extensions and, 384
gmail.py script, 144–146
GNOME-Python module, 249
go() method, 416, 477

Google
Account authentication, 652
APIs Client Library for Python, 749
applications hosted by, 605
Terms of Service, 731
uploading application to, 629

Google App Engine, 495
adding users service, 652–654
administration console, 611
authentication options, 574
basics, 605, 609–611
counting by, 643
cron service, 673
datastore admin, 655
Datastore viewer, 640
deferred package, 668–670
denial-of-service protection, 675
documentation, 640
frameworks

choices, 617–626
resources, 678

free service tier, 629
hardware infrastructure, 610
“Hello World” application, 620–626

app.yaml file for configuration settings,
622–624

creating manually, 629–630
index.yaml file, 623
starting, 628

“Hello World” application morphed to blog,
631–647

adding datastore service, 635–638
adding form, 633–635
iterative improvements, 640
plain text conversion to HTML, 632

Images API, 662
interactive console, 640–647
language runtimes, 610
limit to file uploads, 613
Memcache API, 647–651
native datastore, 498
pricing model, 626
Python 2.7 support, 626–628
receiving e-mail, 658–660
remote API shell, 654
resources, 676
sandbox restrictions, 612–616
sending e-mail, 656
sending instant messages, 660
services and APIs, 614–616
static files, 651
System Status page, 612
task queues, 663
URLfetch service, 672
vendor lock-in, 675
vs. Django, 628–630
warming requests, 673
Web-based administration and system

status, 610–611

834 Index

Google App Engine development servers, 428
Google App Engine Oil (GAEO), 617
Google App Engine SDK, 613

downloading and installing, 620
Google Cloud SQL, 498
Google Gmail service, 135, 144–146
Google News server, connection to, 732
Google Web crawlers, 418
Google+ platform, 690, 748–759

basics, 748
chatter score for posts, 757
Python and, 749
social media analysis tool, 750–759

Google+ Ripples, 758
goognewsrss.py script, 730–733, 821
Gopher, support for, 399
gopherlib module, 400
GQL, 638
greediness, 13, 46
Grid (geometry manager), 219
Groovy, 610
group() method, 18, 20, 25–26, 106
group() method (NNTP objects), 107
groupdict() method, 18
groups in regex, parentheses for, 14–15, 45
groups() method, 18, 20, 25–26
__gt__() method, 792
GTK, importing, 243
GTKapp class, 243
guest downloads with FTP, 96
GUI programming, 216

basics, 217–219
event-driven processing, 218
geometry managers, 218

default arguments, 221
FTP client, 103
related modules, 247–250
Swing example, 745–748
toolkit alternatives, 236–246

GTK+ and PyGTK, 242–244
PMW (Python MegaWidgets), 239
Tile/TtK, 244–246
Tix (Tk Interface eXtensions), 238
wxWidgets and wxPython, 240–242

GUI scripts
Button widget, 222
Label and Button widgets, 223
Label widget, 221–222
Label, Button and Scale widgets, 224–225

H
hacking, 394
Hammond, Mark, 326
handle() method, 81
handler class, 406
handlers, 430

for inbound e-mail, 659
for Google App Engine configuration, 623

handles, for urlopen() function, 400

handle_starttag() method, 423
hardware client/server architecture, 55
Harr, Lee, Python Cookbook, 407
hash symbol (#)

for Django comments, 518
for regex comment, 32

__hash__() method, 794
has_key() method (dictionary), 782
head() method (NNTP object), 107
headers, extracting from newsgroup articles,

112
heavyweight process, 159
“Hello World” application

in Google App Engine, 620–626
morphed to blog, 631–647

in Django, 507
in Java, 746
print statement vs. print() function, 820
in Python, 747

helo() method (SMTP object), 119
herror exception, for socket module, 77
hex() function, 771, 773
__hex__() method, 794
hexadecimal format, 810
hexadecimal ordinal equivalents, of

disallowed characters, 403
hidden variable in form, 454, 467
hops, 115
HOST setting, for Django database, 510
HOST variable, 67

for timestamp client, 70
host-port pairs for socket addresses, 59
howmany variable (Python), 451
HR variable for Google+ program, 754
HSC tool, 462
.htaccess file, 405
HTML (HyperText Markup Language), 401,

442
3rd-party tools for generating, 462
parsing tree format, 423
separating HTTP headers from, 451
separating HTTP MIME header from, 454
urlretrieve() to download, 402

HTML forms
in Django for user input, 542
ModelForm to generate, 548
processing ModelForm data, 549

html5lib package, 185, 418, 423, 489
htmlentitydefs module/package, 433, 488
HTMLgen package, 435, 462
htmllib module/package, 413, 433, 488
HTMLParser class, 415, 418
HTMLparser module/package, 185, 433, 488
htmlparser() function, 422
htonl() function, 78
htons() function, 78
htpasswd command, 405
HTTP (HyperText Transfer Protocol), 96, 392

Index 835

separating headers from HTML, 451
separating MIME header from HTML body,

454
support for, 399
XML-RPC and, 733

http.cookiejar module, 476
http.cookies module, 476
http.server class, 430, 489
http.server module, 435, 447
HTTP_COOKIE environment variable, 468
httplib module, 148, 400, 404, 414, 433, 489
httplib2 library, 571
HTTPServer server class, 429
hybrid cloud, 606
hypertext, 442
Hyves social network, 89
I
IaaS (Infrastructure-as-a-Service), 607
ident attribute (Thread object), 172
if statement, 819
IIS (Internet Information Server), 428
Images API, 615, 662
IMAP (Internet Message Access Protocol),

121–122
interactive example, 128
Python and, 128
Yahoo! Mail example, 142–144

IMAP4 class, 128
IMAP4_SSL class, 128
IMAP4_stream class, 128
imaplib module, 128, 148
imaplib.IMAP4 class, methods, 129–131
import statement, 532
ImportError exception, 16, 789
importing

csv module, 716
extensions, 379
ordering guidelines for, 421, 561, 735
PyGTK, GTK, and Pango, 243
Tkinter module, 215
to create compatible code for Python 2.x and

3.x, 820–821
inbound e-mail, handler for, 659
InboundMailHandler class, 659
include Python header file, in boilerplate code,

371
include() directive, in Django project, 508
include() function, 530
IndentationError, 789
index() function, 773
index() method (list), 781
index() method (string), 778
IndexError, 789
inet_aton() function, 78
inet_ntoa() function, 78
inet_ntop() function, 78
inet_pton() function, 78
info() method (urlopen object), 401

Infrastructure-as-a-Service (IaaS), 607
ingmod, 318
Ingres, 318
Ingres DBI, 318
__init__ method (Thread object), 172
__init__.py file in Django project, 504, 508
__init__() method, 176, 414, 791
initModule() module initializer function, 376
input() function, 280
INSERT INTO statement (MySQL), 271
INSERT INTO statement (SQL), 257
insert() function, 287, 773
insert() method (list), 781
insert() method, for MongoDB collection, 314
inserting database rows, 255
INSTALLED_APPS variable, 571
installing

Django, 499–501
prerequisites, 497–499

Google App Engine SDK, 620
Tkinter, 215
Twython library, 571–572

instance attributes, local variable for, 703
instant messages

Google App Engine for sending, 660
receiving, 661

int type, 802, 809
int() function, 771
__int__() method, 793
integers

converting to date, 43
Python 3 changes, 802–804
Python 3 migration and, 809–812

IntegrityError exception (DB-API), 263
InterfaceError exception (DB-API), 263
“Internal Server Error” messages, 446
InternalError exception (DB-API), 263
International Standard Book Number (ISBN),

184
Internet, 392–395

protocols, related modules, 148
See also cloud computing

Internet addresses, 59
formatting, 121

Internet clients, 95
and servers location, 394–395
See also e-mail

Internet Protocol (IP), 60
Internet Server Application Programming

Interface (ISAPI), 479
interpreted languages, vs. compiled, 367
intersection() function (set types), 784
intersection_update() function (set types), 785
__invert__() method, 793
io.BytesIO class, 731
ioctl() method, 63
IOError, 789
IP (Internet Protocol), 60

836 Index

IP address, binding, 62
IPv6 TCP client, creating, 71
IPython, 515

starting and using commands, 516
IronPython, 325
is not operator, 770
is operator, 770
isAlive method (Thread object), 172
is_alive() method (Thread object), 172
isalnum() method (string), 773, 779
isalpha() method (string), 773, 779
isatty() method (file object), 786
ISBN (International Standard Book Number),

184
isDaemon() method (Thread object), 172
isdecimal() method (string), 773, 779
isdigit() method (string), 773, 779
islower() method (string), 773, 779
isnumeric() method (string), 773, 779
ISP (Internet Service Provider), 394
isspace() method (string), 773, 779
issubset() function (set types), 784
issuperset() function (set types), 784
istitle() method (string), 773, 779
isupper() method (string), 774, 779
items() function, 804
items() method (dictionary), 782
__iter__() method, 794
__iter__() method (DB-API Cursor object), 266
iter*() method (dictionary), 783
iterables, Python 3 changes, 804
itertools.izip() function, 731, 820
J
Jabber protocol, 614, 660
Java, 610

“Hello World” application, 746
Jython and, 744
vs. Python, 747

JavaScript, 610
JavaScript Object Notation (JSON), 719–724
join() function, 774
join() method, 298
join() method (queue object), 203
join() method (string), 779
join() method (thread object), 172, 174, 186
JOINs, Web resources on, 298
JPEG (Joint Photographic Experts Group), 401
jQuery, 495
JRuby, 610
JSON (JavaScript Object Notation), 719–724

converting Python dict to, 722–724
objects, 311

Python dists conversion to, 720
JSON arrays, 720
json package, 740
json.dumps() function, 722
Jython, 610, 744–748

basics, 744
GUI example with Swing, 745–748

K
Kantor, Brian, 105
Kay framework, App Engine and, 617
key for cache, 649
KeyboardInterrupt, 72, 788, 789
KeyError, 789
keys() function, 804
keys() method (dictionary), 783
keys-only counting, 643
key-value pairs

in CGI, 445
urlencode() encoding of, 403

key-value stores, 310
keyword module, 819
keywords, 768
KInterbasDB, 317
Klassa, John, 341
Kleene Closure, 12
Kuchling, Andrew, 799
L
Label widget, 220, 238, 241

Button and Scale widgets with, 224–225
Button widget with, 223

LabelFrame widget, 220, 247
LAN (Local Area Network), 394
language runtimes of App Engine, 610
Lapsley, Phil, 105
last() method (NNTP object), 107
lastrowid attribute (DB-API Cursor object), 265
Launcher, 628
__le__() method, 792
len() function, 774
len() function (set types), 783
__len__() method, 791, 794
libevent, 89
LibreOffice, 357
LibreOffice Calc, 685
LifoQueue class, 202
ligHTTPD, 428, 446, 494
lightweight processes, 159
limit() method, 297
line termination characters, 346

for Word documents, 331
links, parsing, 418
Linux

package manager for Django install, 501
Zip file for App Engine SDK, 620

list type built-in methods, 781–782
list() function, 774
list() method (POP3 object), 125
Listbox bind() method, 233
Listbox widget, 220
listdir.py script, 230–236
listen() method, 62, 67
list_tweet() method, 589
list_tweets() method, 587
literals

binary and octal, 804
bytes, 815

Index 837

LiteSpeed, 428
ljust() function, 774
ljust() method (string), 779
LMTP (Local Mail Transfer Protocol), 117
LMTP class, 118
load-balancing, 394
loc.close() method, 102
Local Mail Transfer Protocol (LMTP), 117
local variables

assigning to cache, 757
for instance attributes, 703

localhost, 64
Lock object (threading module), 164–169

context manager, 196
locked() method, 165
locks for threads, vs. sleep, 167
logical OR, 9

brackets for, 11
login

admin directive, for Google App Engine, 653
anonymous FTP, 96, 102
avoiding plaintext, 136, 142
for database creation, 271
for FTP access, 96
registering password, 405
required directive, 653
for SMTP servers, 133

login.html template, 595
login() method (FTP objects), 99
login() method (IMAP4 object), 129
login() method (SMTP object), 119
logout() method (IMAP4 object), 129
Logs, 615
long type, 802, 809
long() function, 771
__long__() method, 793
lookahead assertions, 8, 33
LookupError, 789
loop() function, 168, 195

lock use in, 193
loseConnection() method, 87
lower() function, 774
lower() method (string), 779
LRU (least recently used) algorithm,

Memcache API use of, 649
__*lshift__() method, 793
lstrip() method (string), 774, 779
__lt__() method, 792
lxml package, 185, 489
M
Mail service/API, 615
mail.send_mail() function, 656
_main() function, 185
mailbox module, 147
mailcap module, 147
mainloop(), starting GUI app, 222, 235
makedirs() function, 414
makefile() method, 64

makefiles, 377
make_img_msg() function, 131, 133
make_mpa_msg() function, 131
Makepy utility, 329
make_server() function, 483
manage.py file in Django project, 504

shell command, 515
manage.py runserver command, 519
map() function, 804
map() method, 207
Mapper, resources, 677
MapReduce service/API, 615
markup parser, 185
Mastering Regular Expressions (Friedl), 48
match objects, 20
match() function/method, 4, 17, 20–21, 26
Matcher service/API, 615

resources, 677
matching

conditional, 34
strings, 44–45
vs. searching, 4, 21–22, 46–48

max() function, 774
MaxDB (SAP), 317
mech.py script, 425–428
Mechanize module, 424, 435
Mechanize.Browser class

importing, 427
Megastore, 636
Memcache API, 614, 615, 647–651

documentation, 649
memory conservation in Python 3, 804
memory leak, 383

in C code, 375
MemoryError, 789
Menu widget, 220
Menubutton widget, 220
message transport agents (MTA), 115–116

well-known, 117
message transport system (MTS), 116
Message widget, 220
message.get_payload() method, 134
message.walk() method, 134
messages attribute (DB-API Cursor object), 266
Meta class, 579
metacharacters, 6
methods

permission to access, 589
vs. functions, 19

mhlib module, 147
microblogging with Twitter, 690–707
Microsoft

Exchange, 122
Internet Server Application Programming

Interface (ISAPI), 479
MFC, 249

middleware onion, 485
middleware, for WSGI, 485

838 Index

migration to Python 3, 807–822
built-in functions, 813

migration to Python (continued)
exceptions, 816–817
integers and, 809–812
object-oriented programming, 814
print statement vs. print() function, 812
reduced() moved to functools module, 813
strings, 815

migration tools for Python 3, 805
MIME (Mail Interchange Message Extension),

131
MIME (Multipurpose Internet Mail Extension),

headers, 401
mimetools module, 147
mimetypes module, 147
MimeWriter module, 147
mimify module, 147
min() function, 774
MiniFieldStorage, 445
mkd() method (FTP objects), 99
__*mod__() method, 793
mode() method (file object), 787
model forms, in Django, 547
ModelForm

data processing, 549
HTML form generation with, 548

models
classes to define, 559
in Django, setting default ordering, 540

models.py file, 558
for Django app, 508

model-template view (MTV) pattern, 514
model-view controller (MVC) pattern, 514
module initializer function, 376
modules, order for importing, 421
Modules/Setup file, Tkinter and, 215
mod_wsgi Apache module, Django and, 497
MongoDB, 310, 318, 498
mouse move event, 218
msg.get_payload() method, 134
msg.walk() method, 134
.msi file, for App Engine SDK, 620
mtfacfib.py script, 180–182
mtsleepA.py script, 165
mtsleepB.py script, 167–169, 173
mtsleepC.py script, 173
mtsleepD.py script, 175
mtsleepE.py script, 177–178
mtsleepF.py script, 191, 194–196

porting to Python 3, 196–197
__*mul__() method, 792, 794
multipart encoding, 468
“multipart/form-data”, 466
multiprocessing module, 207, 209
multithreaded (MT) programming

basics, 157–158
Python Virtual Machine, 160–163
related modules, 209

thread module, 164–169
threads and processes, 158–159

multivalued fields in CGI, 467
mutex module, 209
MVCEngine, 617
myhttpd.py script, 430
myMail.py script, 126–128
MySpace, 690
MySQL, 255, 271–272, 316, 498
MySQL Connector/Python, 280, 316
MySQL for Django database, 510–511
MySQLdb package, 280, 286, 316
myThread.py script, 178
N
name attribute (Thread object), 172
name identifier, for saving matches, 32
NAME setting, for Django database, 510
name() method (file object), 787
named matches, 20
named parameter style, for database parame-

ters, 261
NameError, 789
names

for Django projects, 502
for Google App Engine application, 631
strategy for Python 2 to Python 3, 408

namespaces for App Engine, resources, 677
Namespaces service/API, 616
NDB (new database) service/API, 616
__ne__() method, 792
__neg__() method, 793
negation

in regex, 12
of character set matches, 14

negative lookahead assertion, 8, 33
.NET, 325
Netscape Server Application Programming In-

terface (NSAPI), 479
Netscape, cookies specification, 468
Network News Transfer Protocol (NNTP)

additional resources, 114
basics, 105
client program example, 108–114
interactive example, 108
Python and, 105

network programming
for client/server architecture, 56–57
related modules, 88–89
socket module for, 61–62
sockets, 58–61
TCP server creation, 64–68
Twisted framework, 84–87

networks, location components, 397
__new__() method, 791
NEWLINE characters, to separate HTTP

header from HTML, 451
newlines() method (file object), 787
newsgroups, 104–114

Index 839

new-style classes, 814
next() method (DB-API Cursor object), 266
next() method (file object), 786
next() method (NNTP object), 107
nextset() method (DB-API Cursor object), 266
nlst() method (FTP objects), 99
NNTP. See Network News Transfer Protocol

(NNTP)
nntplib class, 105
nntplib module, 148
nntplib.NNTP class, 105

methods, 107
non-ASCII characters, \u escape for, 464
non-blocking sockets, 65
nondeterministic activity, 157
non-relational databases, 309–315, 498

Django and, 618
MongoDB, 310
PyMongo, 311–315
Web resources, 319

non-validating, Expat parser as, 725
__nonzero__() method, 791
noop() method (IMAP4 object), 130
NoSQL, 310
not operator, 770
NotImplementedError, 789
NotSupportedError exception (DB-API), 263
now_int() function, 736
now_str() function, 736
ntohl() function, 78
ntohs() function, 78
NULL objects, 267

check for, 383
NUMBER type object (DB-API), 267
numeric conversion, 793
numeric parameter style, for database

parameters, 261
numeric type operators, 770–772
O
OAuth, 494, 569

credentials for Twitter’s public API, 567
resources, 597, 678
Twitter and, 694

oauth2 library, 571
object comparisons, 770
object-level caching, 651
object-oriented programming, 814
object-relational managers (ORMs), 289–309

employee role database example, 291–309
SQLAlchemy for, 291–304
SQLObject for, 304–309

explicit/“classical” access, 301–304
setup and installation, 290–291

Object-Relational Mapper (ORM)
App Engine and, 618

objects
comparison, 792
creating and caching, 329

oct() function, 771, 774
__oct__() method, 794
octal literals, 804
octothorpe. See hash symbol (#)
offset() method, 298
olook.pyw script, 335–337
one() method, 298
onethr.py script, 162–163
OpenDocument text (ODT) format, 357
OpenID service/API, 616, 653
OpenOffice, 356
OperationalError exception (DB-API), 263
operators, 769

numeric type, 770–772
sequence type, 772–776
summary, 795–797

OR
logical, 9
logical, brackets for, 11

or operator, 770
__*or__() method, 793
Oracle, 317, 498
Oracle Open Office, 357
ord() function, 771, 774
order_by() method, 297, 538
os module, 414

importing, 232
os.makedirs() function, 414
os.popen() command, 37
os.spawnv() function, 346
OSError, 789
Outlook

address book protection in, 336
COM programming with, 334–337, 340–347

outlook_edit.pyw script, 341–347
output() function, 421
OverflowError exception, 788, 802
OverflowWarning, 790
owned reference, 382
P
PaaS (Platform-as-a-Service), 607
package manager, for Django install, 500
packer, 224

fill parameter, 224
Packer (geometry manager), 218
page views, persistent state across multiple,

467
PanedWindow widget, 220, 247
Panel widget, 241
Pango, importing, 243
parallel processing, 157
paramstyle attribute (DB-API), 260, 261
parent widget, 217
parentheses, for regex groups, 14–15
parse() function, 423
parse_links.py script, 419–424
parse_links() method, 415

840 Index

parsing
data string, csv module for, 686
e-mail, 134

parsing (continued)
tree format for HTML documents, 423
Web content, 418–424

part.get_content_type() method, 134
Partial Function Application (PFA), 226–229
partition() function, 774
pass_() method (POP3 object), 125
Passive FTP mode, 98, 103
PASSWORD setting, for Django database, 510
passwords

for anonymous FTP, 97
See also login

PATH environment variable
django-admin.py in, 502
easy_install and, 500

pattern-matching, 4
patterns() function, 531
PC COM client programming, 325
P_DETACH flag, 346
PDO, 289
PendingDeprecation Warning, 790
PEP 333, 496
PEP 3333, 487
PEP 444, 487
percent sign (%)

for hexadecimal ordinal equivalents, 403
for modulo, 772
in string format operator (%)

conversion symbols, 776
performance, interpreted vs. compiled

languages, 367
period (.) symbol, in regex, 6, 9, 23
permission flags, in Django, 579
@permission_required decorator, 589
permissions, to access method, 589
persistence, in state across multiple page

views, 467
persistent storage, 254, 488

databases and, 255
scalability issues, 310

pfaGUI2.py script, 227–229
PHP, 610
Pinax platform, 501

resources, 597
pip, for Django install, 499
pipe symbol (|)

for Django variable tag filters, 528
in regex, 9

Pipeline, 616
resources, 678

Placer (geometry manager), 218
plaintext

avoiding for login, 136, 142
See also comma-separated values (CSV)

planning for transition to Python 3, 817

platform.python_version() function, 142
Platform-as-a-Service (PaaS), 607
plus sign (+)

for encoding, 403
in regex, 6, 12–13

PlusService class, 755
plus_top_posts.py script, 752–759

sample execution, 750
PMW (Python MegaWidgets), 239, 248
PNG (Portable Network Graphics), 401
P_NOWAIT flag, 346
pop() function, 774
pop() function (set types), 785
pop() method (dictionary), 783
pop() method (list), 782
poplib class, 122
poplib module, 148
poplib.POP3 class, 122

methods, 124–125
poplib.POP3_SSL class, 123
PoPy, 272
PORT setting, for Django database, 510
PORT variable, for timestamp client, 70
port, for Web server, 447
porting Python version 2 to version 3, 408
ports, 397

for Django development server, 506
for SMTP, 118
reserved numbers, 59
well-known numbers, 59

__pos__() method, 793
Positive Closure, 12
positive lookahead assertion, 8, 33
POSIX systems

http.server module on, 447
POSIX-compliant threads, 161
POST handler, for blog posts, 634
Post Office Protocol (POP), 121–122

example, 126–128
interactive example, 123–124
poplib.POP3 class methods, 124–125
Python and, 122
Yahoo! Mail example, 142–144

POST request method, for HTTP requests, 400
post() method (FormHandler), 667
post() method (NNTP object), 107
Postel, Jonathan, 96, 116
PostgreSQL, 272–274, 317, 498
postings on newsgroups, 104
post-processing, 485
post_tweet.html template, 586
post_tweet() method, 584
pound sign (#) Seehash character (#)
P_OVERLAY flag, 346
pow() function, 736, 771
__*pow__() method, 793
PowerPoint, COM programming with,

332–334, 347–356

Index 841

ppoint.pyw script, 333
pprint.pprint() function, 732
precompiled code objects, performance, 19
preprocessing, 485
prettyprinting, 732
print servers, 55
print statement, 196

proxy for, 716
Python 2 vs. 3 versions, 279
vs. print() function, 799–800, 812, 819

print() function, 38
PriorityQueue class, 202
private cloud, 606
process() function, 424, 455
processes

synchronization, 190
threads and, 158–159

prodcons.py script, 204–206
producer() function, 200
production servers, 446

Apache as, 498
profiling with Appstats, 670
ProgrammingError exception (DB-API), 263
programs, vs. processes, 158
projects

file structure for TweetApprover, 565–571
in Django, 501

basic files, 504
creating, 502–505

proprietary source code, extensions to protect,
367

Prospective Search service/API, 616
proto attribute, for socket object, 64
proxy servers, 394
Psycho, 386
psycopg, 272, 317

Connection object setup code, 273
output, 273

pthreads, 161
public cloud, 606
publish_tweet() method, 592
pull queues, 663, 666
purge() function/method, 18, 19
push queues, 663, 666
put() method (queue object), 203
put_nowait() method (queue object), 203
P_WAIT flag, 346
pwd() method (FTP objects), 99
Py_ Build Value() function, 372
PyArg_Parse*() functions, 372
PyArg_ParseTuple() function, 374
PyCon conference Web site, 425
Py_DECREF() function, 383
PyDO/PyDO2, 289, 318
pyFLTK module, 249
pyformat parameter style, for database

parameters, 261
PyGreSQL, 272, 317

Connection object setup code, 273
output, 273

PyGTK, 242–244
PyGTK module, 248

importing, 243
PyGUI module, 249
Py_INCREF() function, 383
Py_InitModule() function, 376
PyKDE module, 249
Pylons, 494, 495

resources, 597
PyMethodDef ModuleMethods[] array, 376
PyMongo, 311–315, 318
PyMongo3, 318
pymssql, 317
PyObject* Module_func() wrappers, 371–376
PyOpenGL module, 249
PyPgSQL, 272, 317

Connection object setup code, 273
output, 273

PyPy, 386
PyQt module, 249
PyQtGPL module, 249
Pyramid, 495

resources, 597
Pyramid framework, App Engine and, 617
Pyrex, 385
pysqlite, 274, 317
Python, 610

and App Engine, 609
converting data between C/C++ and, 372
“Hello World” application with Swing, 747
obtaining release number as string, 142
supported client libraries, 98
vs. Java, 747
Web servers with, 446
writing code compatible with versions 2.x

and 3.x, 818–822
importing for, 820–821

Python 2.6+, 805
Python 3 changes, 798–806, 807–809

class type, 801
division, 803–804
exceptions, 801–802
integers, 802–804
iterables, 804
migration tools, 805
print statement vs. print() function, 799–800
reasons for, 799
Unicode vs. ASCII, 800–801
See also migration to Python 3

Python application shell in Django, 514–517,
407

Python dict
conversion to JSON, 722–724
converting to XML, 725–729

Python Extensions for Windows, 327
Python interpreter, 655

compilation, enabled threads and, 162
Python MegaWidgets (PMW), 239
Python objects, wrapping in object to delegate

lookup, 705

842 Index

Python types, vs. JSON types, 721
Python Virtual Machine (PVM), 160–163

extensions and, 384
Python/ceval.c file, 161
PythonCard module, 248
.pyw extension, 237, 327
Q
QLime, 289
qmark parameter style, for database

parameters, 261
-Qnew switch, 811
qsize() method (Queue object), 203
Quercus, 610
queries, 255

change to reverse output order, 537–540
in Google App Engine, documentation, 640
speed of, caching and, 647

Query methods, Web resources on, 298
QuerySet, 537
question mark (?), in regex, 6, 12–13, 24, 47
Queue data structure, 158
Queue module, 163
queue.yaml file, 665
Queue/queue module, 202–206, 209
queues for tasks, 663
Quicken, downloading CSV files for importing

into, 685
quit Button, 238, 241
quit() method (FTP objects), 99
quit() method (NNTP object), 107
quit() method (POP3 object), 125
quit() method (SMTP object), 118, 119
quopri module, 147
quote() function, 404
quote*() functions, 402
quote_plus() function, 404
R
race conditions, 159, 190
radio buttons

default, 454
string to build list, 454

Radiobutton widget, 220
raising exceptions

in Python 3, 817
Python 3 changes, 802

randName() function, 287
random data, script to generate, 41
random.choice() function, 43
random.randint() method, 205
random.randrange() function, 43
range() function, 804
ranges (-) in regex, 12
raw strings, 27, 34, 36, 512

note on use, 35
raw_input() function, 280, 774
rcp command (Unix), 96

RDBMS (relational database management
system), 255

re module, 3, 16–35
character classes creation, 24
core functions and methods, 17–18
match objects, 20
match() function/method, 20–21
matching any single character, 23
matching multiple strings, 22
search() function, 21–22

re.compile() function, 183, 189
re.I/IGNORECASE, 31
re.L/LOCALE flag, 34
re.M/MULTILINE, 31
re.S/DOTALL, 31
re.split() function, 39
re.U/UNICODE flag, 34
re.X/VERBOSE flag, 32
read() method (file object), 786
read() method (urlopen object), 401
reader() function, 205
readinto() method (file object), 786
readline() method, 81
readline() method (file object), 786
readline() method (urlopen object), 401
readlines() method (file object), 786
readlines() method (urlopen object), 401
readQ() function, 205
realm, 405
receiving e-mail, 121

Google App Engine for, 658–660
recording events from application activity, 671
records in database, autogenerating for

testing, 538
recv() method, 63
recvfrom() method, 63
recvfrom_into() method, 63
recv_into() method, 63
redirect_to() generic view, 552
reduced() function, Python 3 move to

functools module, 813
refactoring, 136
reference counting, extensions and, 382–383
reference server, WSGI, 483
ReferenceError, 789
refill() function, 200
regex module, 16
regex. See regular expressions
registering password for login, 405
regsub module, 16
regular expressions, 3, 4

alternation (|) operation, 9
characters, escaping to include, 9
comments, 8, 16
compilation decision, 19
conditional matching, 34
creating first, 5

Index 843

escaping characters to include, 23
examples, 36–41

in-depth, 41–48
exercise answers, 763
extension notations, 16, 31–34
for e-mail addresses, 24–26
grouping parts without saving, 32
groups, 14–15
matching from start or end of strings or

word boundaries, 10, 26–27
for obtaining current book ranking, 182
ranges (-) and negation (^), 12
repetition, 12–13, 24–26
special characters for character sets, 14
special symbols and characters, 6–16
splitting string based on, 30–31
Unicode string vs. ASCII/bytes string, 188
See also re module

relational databases, available interfaces,
269–270

release() method (lock object), 165, 190, 193
remote API shell, 654
remote procedure calls (RPCs), XML and,

733–738
remove() function, 774
remove() function (set types), 785
remove() method (list), 782
ren command, 188
rename() method (FTP objects), 99
render_to_response() method, 534, 536, 561
repetition, in regex, 12–13
replace() function, 774
replace() method (string), 780
replacing, searching and, 29
replenishment rates, for task queues, 663
ReplyThread, 158
repr() function, 769, 774
__repr__() method, 791
request context instance, 544
Request for Comments (RFCs), for cookies, 468
request in CGI, 444
RequestProcessor, 158
reserved port numbers, 59
reserved words, 768
reshtml variable, 451
resize() function, 225
response in CGI, 444
response submodule, 400
ResultsWrapper class, 705

for Twitter, 704
testing, 706

retasklist.py script, 40
retr() method (POP3 object), 125, 127
retrbinary() method (FTP objects), 99, 102
Retriever class, 414
retrlines() method (FTP objects), 99
retry parameters, for task queues, 663
reverse proxy, 394

reverse() function, 368–370, 375, 774
reverse() method (list), 782
reverse-chronological order

for blog, 537
query change for, 537–540

review_tweet() method, 587, 590
rewho.py script, 38
Reynolds, Joyce, 96
rfind() function, 774
rfind() method (string), 780
Rhino, 610
rich shells for Django, 515
rindex() function, 774
rindex() method (string), 780
rjust() function, 774
rjust() method (string), 780
RLock object (threading module), 170

context manager, 196
rmd() method (FTP objects), 99
road signs, PFA GUI application, 227–229
robotparser module, 400, 433, 489
rollback() method (DB-API Connection ob-

ject), 264
root window, 217
round() function, 771
rowcount attribute (DB-API Cursor object), 265
ROWID type object (DB-API), 267
rownumber attribute (DB-API Cursor object),

266
rows in database table, 255

inserting, 257
insertion, update, and deletion, 297

rpartition() function, 774
RPython, 387
__*rshift__() method, 793
rsplit() function, 775
rstrip() function, 775
rstrip() method, 113, 780
rsync command (Unix), 96
Ruby, 610
run() method (Thread object), 172
run_bare_wsgi_app() function, 484
RuntimeError, 789
RuntimeWarning, 790
run_wsgi_app() function, 624
run_wsgi_app() method, 483
S
SaaS (Software-as-a-Service), 135, 607
Salesforce, 608
sandbox, 611

restrictions, 612–616
sapdb, 317
saving

matches from regex, 32
subgroup from regex, 7

SAX (Simple API for XML), 725
Scala, 610
scalability issues for storage, 310

844 Index

Scale widget, 220
Label and Button widget with, 224–225

scanf() function, 280, 285
scp command (Unix), 96
scripts, standalone, 102
Scrollbar widget, 220, 233
Scrollbar.config() method, 233
sdb.dbapi, 317
search command (Twitter API), 695
search on Twitter, Tweepy library for, 692
Search service/API, 615
search() function (Twitter), 704
search() function/method, 4, 17, 21–22, 26–27
search() method (IMAP4 object), 130
searching

and replacing, 29
subgroups from, 27
vs. matching, 4, 21–22, 46–48

secret.pyc file, 136
Secure Socket Layer (SSL), 393, 404
security

e-mail and, 136
for Outlook address book, 337

seek() method (file object), 787
SELECT * FROM statement (MySQL), 272
select module, 88
select() function, 88
select() method (IMAP4 object), 130
self.api, 703
self.error variable, 477
self.service.people() function, 756
Semaphore class, 199
Semaphore object (threading module), 170

context manager, 196
semi-generic views in Django, 551
send() method, 63
sendall() method, 63
send_approval_email() method, 591
sendData() method, 86
send_group_email() function, 667
sending e-mail, 116–117

Google App Engine for, 656
sendmail() method (SMTP object), 118, 119
sendMsg() method, 133
SendNewsletter class, 667
send_rejection_email() method, 591
send_review_email() method, 585
sendto() method, 63
sequence type operators, 772–776
sequential program, 157
server integration, as CGI alternative, 479
server.py module, 429
server.register_function() function, 736
servers, 54, 56

for UDP, 76
implementing exit scheme, 66, 72
as Internet providers, 95
location on Internet, 394–395

socket methods, 62
TCP

creating, 64–68
creating Twisted Reactor, 84–85
executing, 71–73
executing Twisted, 87
SocketServer execution, 83

timestamp from, 73
WSGI, 482

session management, 488
set types, operators and functions, 783–785
set() function, 783
__set__() method, 792
__setattr__() method, 792
setblocking() method, 63
“Set-Cookie” header, 468
setCPPCookies() method, 476, 477, 478
setDaemon() method (Thread object), 172
set_debuglevel() method (SMTP object), 119
setdefault() method (dictionary), 783
setDirAndGo() method, 235
setinputsizes() method (DB-API Cursor

object), 266
__setitem__() method, 794, 795
setName() method (Thread object), 172
setoutputsize() method (DB-API Cursor

object), 266
setprofile() function (threading module), 179
sets

displaying, 192
for names of running threads, 192

__setslice__() method, 794
setsockopt() method, 63
settimeout() method, 63
settings file, for TweetApprover, 566–571
settings.py file

in Django project, 504
settings.py file in Django project

INSTALLED_APPS tuple in, 509
settrace() function (threading module), 179
setup.py script, creating, 377–378
SGML (Standard Generalized Markup

Language), 724
sgmllib module/package, 418, 433, 489
sharded counter, 643
sharding, 498
Short Message Service (SMS), 691
showError() function, 459
showForm() function, 454
showForm() method, 477
_showRanking() function, 184, 186
showRanking() function, 182
showResults() method, 478
showwarning message box, 329
shutdown() method, 63
Simple API for XML (SAX), 725
Simple Mail Transfer Protocol (SMTP), 116

authentication, 118

Index 845

example, 126–128
interactive example, 119–120
Python and, 118
web resources, 120
Yahoo! Mail example, 142–144

Simple Storage System (S3), 607
simpleBS() function, 421, 422
SimpleHTTPRequestHandler class, 429, 447
SimpleHTTPServer class, 430, 489
SimpleHTTPServer module, 432, 435

handlers in, 430
simplejson library, 571, 720
simpletree format, for HTML documents, 423
simple_wsgi_app() app, 483
simple_wsgi_app(), wrapping, 485
SimpleXMLRPCServer package, 434, 733, 740
single-threaded process, 157
six package, 822
Slashdot, and traffic, 674
sleep, 159

vs. thread locks, 167
sleep() function, 166, 181, 354
SMS (Short Message Service), 691
smtpd module, 147
smtplib class, 118
smtplib module, 148
smtplib.SMTP class, 118

methods, 118–119
SMTP_SSL class, 118, 139
SOAP, 733
social media analysis tool, 750–759
social networking, 690

See also Twitter
SOCK_DGRAM socket, 61
Socket, 616
socket module, 61–62, 88, 404

attributes, 76–78
socket.error, 143
socket.socket() function, 61–62, 65, 74, 77
socketpair() function, 77
sockets, 58–61

addresses with host-port pairs, 59
built-in methods, 62–64
connection-oriented vs. connectionless,

60–61
data attributes, 64
for FTP, 97
related modules, 88–89

SocketServer class
TCP client creation, 82–83
TCP server and client execution, 83
TCP server creation, 80–82

SocketServer module, 65, 79–83, 88, 210
classes, 79

SOCK_STREAM socket, 60
softspace() method (file object), 787
software client/server architecture, 55–56
Software-as-a-Service (SaaS), 135, 607

sort() function, 775
sort() method (list), 782
sorted() function, 758
SoupStrainer class, 419, 422
spaces, plus sign (+) for encoding, 403
spam e-mail, 127
special characters

for character sets, 14
regular expressions with, 5, 7

vs. ASCII symbols, 34
spider, 410
spin locks, 174
Spinbox widget, 220, 247
SpinButton widget, 236

position of labels, 244
SpinCtrl widget, 241, 242
split() function, 775
split() function/method, 17
split() method, 30–31
split() method (string), 780
splitlines() function, 775
splitlines() method (string), 780
spreadsheets

closing without saving, 330
processing data from, 328
See also Excel

SQL, 256–257
viewing ORM-generated, 296

SQL Server, 317
SQLAlchemy, 289, 291–304, 318, 495

setup and install, 290
SQLite, 274–275, 317, 498, 510

for Django database, 511–??
loading database adapter and, 286

SQLite for Django database, ??–512
sqlite3 package, 290
sqlite3a, 317
SQLObject, 289, 304–309, 318

setup and install, 290
SQLObject2, 318
ssl() function, 77
standalone script, 102
standalone widgets, 217
Standard Generalized Markup Language

(SGML), 724
StandardError, 788
StarOffice, 357
start of string, matching, 6, 10
_start() function, 356
start() method (Thread object), 172, 174
start_new_thread() function, 165, 166
startproject command, 502, 504
start_response() callable, 481
startswith() function, 775
startswith() method (string), 780
starttls() method (SMTP object), 119
stat() method (NNTP object), 107
stat() method (POP3 object), 125, 127

846 Index

stateless protocol
HTTP as, 392

states, enumeration and definition, 579
static dispatch, 329
static PyObject* function, 371
status() function, 736
stock quotes

downloading into Excel, 338–340
Yahoo! server for, 685–689

stock.py script, 688
csv module for, 717

stockcsv.py script, 718
StopIteration, 788
storage mechanisms, 254
storbinary() method (FTP objects), 99
storlines() method (FTP objects), 99
Storm, 289, 318
str type, 800
str.format() method, 196, 207
str.__getslice__() method, 138
str.join() method, 137
str.startswith() method, 138
str.title() method, 460
str() function, 769, 775
__str__() method, 192, 296, 306, 791
strdup() function, 375
stream socket, 60
StreamRequestHandler class, 79, 81
string format operator (%)

bytes objects and, 409
directives, 777

STRING type object (DB-API), 267
StringIO class, 475, 731
strings

built-in methods, 778–781
converting to Unicode, 189
in Python 3, 815
in regular expressions, Unicode vs. ASCII/

bytes, 188
matching, 44–45

from start or end, 10
multiple, 22

obtaining Python release number as, 142
parsing, csv module for, 686
raw, 512
script to generate, 41–43
searching for pattern in middle, 21
splitting based on regex, 30–31
“title-case formatter”, 285
Unicode vs. ASCII, 800–801, 815

strip() function, 775
strip() method (string), 780
sub() function/method, 18, 29
__*sub__() method, 792
subclassing Thread(), 177–178
subgroup from regex

matching saved, 7
saving, 7
searches, 27

subn() function/method, 29
subprocess module, 206, 209
sudo command, 500
sum() function, 771
summation function, thread for, 180–182
Sun Microsystems Java/Swing, 249
superuser

creating, 513
login as, 520

swapcase() function, 775
swapcase() method (string), 780
swhello.java program, 746, 747
swhello.py program, 747
SWIG (Simplified Wrapper and Interface

Generator), 384
swing module, 249
Swing, GUI development and, 745–748
sybase, 317
symmetric_ difference_ update() function

(set types), 785
symmetric_difference() function (set types),

784
syncdb command, 512, 579

and database table creation, 518
superuser creation, 513

synchronization of threads, 166, 170
synchronization primitives, 201

shared resources and, 261
synchronization primitives for threads,

190–201
context management, 196
locking example, 190–196
semaphore example, 197–201

SyntaxError, 789
SyntaxWarning, 790
sys module/package, 414
sys.stdout.write() function, 819
SystemError, 789
SystemExit, 161, 788
T
t.timeit() method, 138
TabError, 789
__tablename__ attribute, 296
tables in database, 255

create() function for, 287
creation with Django, 512–514

Task Queue service/API, 616
task queues, 663
task_done() method (queue object), 203
tasklist command, 38, 39

parsing output, 40
taskqueue.add() method, 665
tasks

callables as deferred, 669
in App Engine, creating, 663–666
sending e-mail as, 666–668

Tcl (Tool Command Language), 214
TCP (Transmission Control Protocol), 60

client creation, 68–71

Index 847

executing server and clients, 71–73
listener setup and start, 62
server creation, 64–68

SocketServer class for, 80–82
SocketServer class for client creation, 82–83
timestamp server, 66–68
Twisted server creation, 84–85

TCP client socket (tcpCliSock), 70
TCP/IP socket, creating, 61
TCPServer class (SocketServer module), 79
tell() method (file object), 787
tempfile module, 345
templates

for blog application, 562
in Django

cross-site request forgery, 544
directory, 529
for user input, 542
for user interface, 528–529
for Web page, 527
for Web pages, 570
inheritance, 553

for TweetApprover
to display post status, 592
login.html, 595
pending tweet form, 595

Terms of Service (ToS)
for Google service, 731

ternary/conditional operator, 229
test-driven development (TDD) model, 528
test_home() method, 556
testing

auto-generating database records for, 538
database, 556
Django blog application code review,

557–563
extensions, 379–382
in Django, 554–557
ResultsWrapper class, 706
user interface, 556
when porting code to Python 3, 818

test_obj_create() method, 555
tests.py file for Django app, 508

auto-generation, 554–557
text editors, for email editing in Outlook, 341
text file, converting to PowerPoint, 347–356
text font size on Label widget, 224
text in Python 3, 800
text processing, 3

comma-separated values (CSV), 715–719
JavaScript Object Notation (JSON), 719–724
related modules, 740
resources, 738
XML (eXtensible Markup Langauge),

724–738
Text widget, 221
tformat() function, 285, 288
thank_you() method, 585

themed widget sets, 244
thread module, 161, 163, 164–169, 209

avoiding use, 164
functions and methods, 165

Thread object (threading module), 170
thread.al-locate_lock() function, 169
ThreadFunc class, 176
ThreadFunc object, 176
Threading MixIn class (SocketServer module),

79
threading module, 161, 163, 169, 209

bookrank.py script, 182–189
functions, 179
synchronization primitives, 201
Thread class, 171–179
vs. thread module, 164

threading.activeCount() method, 196
threading.currentThread() method, 195
threading.current_thread() method, 195
threading.enumerate() method, 195
ThreadingTCPServer class (SocketServer

module), 79
ThreadingUDPServer class (SocketServer

module), 79
threads, 159

alternatives, 206–209
app to spawn random number, 191
creating object instance

passing in callable class instance, 175–176
passing in function, 173–175
subclass instance, 177–178

example without, 162–163
execution of single, 160
exiting, 161
extensions and, 384
for Fibonacci, factorial, summation func-

tions, 180–182
loops executed by single, 162–163
modules supporting, 163
processes and, 158–159
Python access to, 161
set for names of running, 192
spawning to handle client requests, 65
synchronization primitives, 190–201

context management, 196
locking example, 190–196
semaphore example, 197–201

threadsafety attribute (DB-API), 260
thttpd, 428, 446
TIDE + module, 248
Tile/Ttk module, 244–246, 248
time module, 168
Time type object (DB-API), 267
time.ctime() function, 43, 689
time.sleep() function, 162, 232, 354
TimeFromTicks type object (DB-API), 267
timeout exception, for socket module, 77
timeout, for FTP connections, 97

848 Index

Timer object (threading module), 170
timestamp

extracting days of week from, 44
from server, 73

Timestamp type object (DB-API), 267
timestamp() function, 736
TimestampFromTicks type object (DB-API),

267
TIPC (Transparent Interprocess Communica-

tion) protocol, 59
Tipfy, 617, 618

App Engine and, 676
title() function, 775
title() method (string), 460, 780
“title-case formatter”, 285
Tix (Tk Interface eXtensions), 238
Tix module, 248
Tk GUI toolkit, 214

geometry managers, 218
widgets, 219–221

Tk Interface eXtensions (Tix), 238
Tk library, 244–246
tkhello1.py script, 221–222
tkhello2.py script, 222
tkhello3.py script, 223
tkhello4.py script, 224–225
Tkinter module, 214–215, 248

demo code, 235
examples

Button widget, 222
directory tree traversal tool, 230–236
Label and Button widgets, 223
Label widget, 221–222
Label, Button, and Scale widgets, 224–225

importing, 215
installing, 215
Python programming and, 216–221
Tk for GUI, 745

TkZinc module, 248
TLS (Transport Layer Security), 144, 146
Tool Command Language (Tcl), 214
Toplevel widget, 221
topnews() function, 732
top_posts() function, 758
Tornado, 496
ToscaWidgets, 495
traceback, 445
transactional counter, 643
transition plan, 817
translate() function, 775
translate() method (string), 781
Transmission Control Protocol (TCP), 60

client creation, 68–71
SocketServer server and client execution, 83
timestamp server, 66–68

Transparent Interprocess Communication
(TIPC) protocol, 59

tree format, for HTML documents, parsing,
423

tree-based parsers for XML, 725
troubleshooting Twython library install, 572
__*truediv__() method, 792
truncate() method (file object), 787
try-except statement, while loop inside

except clause, 72
Ts_ci_wrapp class, 486
ts_simple_wsgi_app(), for wrapping apps, 485
tsTcIntV6.py script, 71
tsTclnt.py script, 69–71
tsTclntTW.py script, 85, 86
tsTserv.py script, 66–68
tsTserv3.py script, 67, 68
tsTservSS.py script, 80
tsTservTW.py script, 84
tsUclnt.py script, 75
tsUserv.py script, 73, 74
tuple() function, 775
TurboEntity, 295
TurboGears, 495

resources, 597
twapi module, 735
twapi.py script, 695–696, 698–706
Tweepy, 691

compatibility library for Twython and,
693–706

Tweet class, for TweetApprover, 578
TweetApprover, 564–596

approver app
urls.py URLconf file, 576
views.py file, 587–592

data model, 576–582
DATABASES variable, 570
installing Twython library for, 571–572
poster and approver apps, 565
poster app

data models file, 578
urls.py URLconf file, 575
views.py file, 582

project file structure, 565–571
Project URLconf file, 573–575
reviewing tweets, 587–596
settings file, 566–571
submitting tweets for review, 582–586
templates

for pending tweet form, 595
login.html, 595
to display post status, 592

URL structure, 572–576
user creation, 580
workflow, 565

tweet_auth.py file, 699
TweetForm, definition, 583
tweets, 690
Twisted framework, 84–87

executing TCP server and client, 87
TCP client creation, 85–87
TCP server creation, 84–85
Web site, 89

Index 849

Twitter, 690–707
authorization with, 694
documentation, 704
hybrid app, 694–706
OAuth credentials for public API, 567
Python and, 691–693
resources, 707
scalability issues, 310
and traffic, 674
Tweepy library for search, 692

Twitter account, authentication, 694
Twitter developers, resources, 597
TWITTER_CONSUMER_KEY setting, 567
TWITTER_CONSUMER_SECRET setting, 567
TWITTER_OAUTH_TOKEN setting, 567
TWITTER_OAUTH_TOKEN_SECRET setting, 567
Twython, 691

camel capitalization, 703
compatibility library for Tweepy and,

693–706
Twython library, 736

installing, 571–572
twython-example.py script, 692
txt2ppt.pyw script, 351–356
txt2ppt() function, 354
type attribute,for socket object, 64
type objects (DB-API), 266–268
type() function, 769, 775
TypeError, 789
types, JSON vs. Python, 721
TyphoonAE back-end system, 676
U
\u escape, for non-ASCII characters, 464
UDP (User Datagram Protocol), 61

client creation, 74–76
executing server and client, 76
server creation, 73–74

UDP/IP socket, creating, 61
UDPServer class (SocketServer module), 79
unary operators, 793
UnboundLocalError, 789
uniCGI.py script, 465
Unicode strings

converting to, 189
in CGI applications, 464–465
regular expression with, 188
vs. ASCII strings, 800–801, 815

__unicode__() method, 579, 791
UnicodeDecodeError, 790
UnicodeEncodeError, 790
UnicodeError, 790
UnicodeTranslateError, 790
union OR, 9
union() function (set types), 784
unit testing in Django, 554–557, ??–563
unit*_wrap() functions, 706
Universal Network Objects (UNO), 357
University of California, Berkeley version of

Unix, 58

Unix sockets, 58
UnixDatagramServer class (SocketServer

module), 79
UnixStreamServer class (SocketServer

module), 79
Unix-to-Unix Copy Protocol (UUCP), 96
unquote() function, 403, 404
unquote_plus() function, 403, 404
UPDATE statement (MySQL), 272
UPDATE statement (SQL), 257
update() function (set types), 785
update() function, for database adapter, 288
update() method, 297, 298, 314
update() method (dictionary), 783
update_status command (Twitter API), 695
update_status() function, 704
updateStatus() method, 592
updating database table rows, 255
uploaded file, retrieving, 468
uploading files, 478

application to Google, 629
upper() function, 775
upper() method (string), 781
URIs (Uniform Resource Identifiers), 396
URL mappings, in urls.py file, 558
URL patterns, for Web pages from Django, 527
URLconf file, 543

for Django app, 531–533
for Django project, 529–531
for TweetApprover, 573–575, 576
for TweetApprover poster app, 575

urlencode() function, 403, 404
URLfetch service/API, 614, 616, 672
urljoin() function, 399, 422
urllib module/package, 103, 396, 399, 414, 434
urllib.error module/package, 434
urllib.parse module/package, 434
urllib.quote() function, 402, 476
urllib.quote_plus() function, 402
urllib.requestg module/package, 434
urllib.unquote() function, 476
urllib2 module, 401, 434, 732

authentication example, 405–407
porting, 407–410

urllib2.urlopen() function, 689
urllib2.urlopen() method, 184, 686
urlopen() function, 400–402, 732

importing, 820
urlopen_auth.py script, 405, 406
urlopen_auth3.py script, 409, 410
urlparse module/package, 398–404, 414, 434
urlparse() function, 398, 399
urlpatterns global variable, 519
urlretrieve() function, 402, 404, 415
URLs (Uniform Resource Locators), 396–398

avoiding hardcoding, 591
breaking into components, 398
encoding data for inclusion in URL string,

402

850 Index

URLs (Uniform Resource Locators) (continued)
GET request variables and values in, 452
structure for TweetApprover, 572–576
variables in, 392

URLs variable, 421
urls.py file, 531

for Django app, 504, 508
urlunparse() function, 398, 399
URNs (Uniform Resource Names), 396
USE statement (SQL), 256
Usenet News System, 104–114
User Datagram Protocol (UDP), 61
user input

Django and, 542–546
cross-site request forgery, 544
templates, 542
URLconf entry, 543
views, 543

Web services processing of, 442
user interface

for blog, 527–533
for databases, 255
for searching posts, 758
testing, 556

user profile in Google+, 750
USER setting, for Django database, 510
user() method (POP3 object), 125
username for anonymous FTP, 97
UserRequestThread, 158
Users service, 616

adding in App Engine, 652–654
users, creating in TweetApprover, 580
user_timeline command (Twitter API), 695
user_timeline() function, 704
UserWarning, 790
ushuffle_*.py application, porting to use

MongoDB, 312
ushuffle_db.py application, 276–279
ushuffle_mongo.py application, 312–315
ushuffle_sad.py application, 292–301

output, 299–301
vs. ushuffle_sae.py application, 304

ushuffle_sae.py application, 301–304
ushuffle_so.py application, 304–309
UTF-8 encoding, 464
V
validating parsers, 725
value comparisons, 769
ValueError, 790
values() function, 804
values() method (dictionary), 783
van Rossum, Guido, 799
variables

hidden, in form, 454, 467
in URLs, 392
tags in Django templates, 528

vendor lock-in, 675

verify_credentials command (Twitter API),
695

verify_credentials() function (Twitter), 704
view functions, 543

create_blogpost(), 562
for blog application, 533–537
for Web page from Django, 527
in Django app, 532

views
fake, 533
for TweetApprover approver app, 587–592
for TweetApprover poster app, 582
generic, 537
in Django, 551–553

for user input, 543
generic views, 552–553
semi-generic views, 551

views.py file
for blog application, 560
for Django app, 508

virtual circuit, 60
virtualenv, 500

resources, 597
VSTO, 325
W
\W alphanumeric character set, 34
\w alphanumeric character set, 34
\w special character, for alphanumeric charac-

ter class, 14
warming requests, in Google App Engine, 673
WarmUp service/API, 616
Warning, 790
Warning exception (DB-API), 263
Watters, Aaron, 258
Web addresses. See URLs (Uniform Resource

Locators)
Web applications

Google App Engine and, 605
model-view controller (MVC) pattern, 514

Web browsers
as FTP client, 103
cookie management, 476

Web clients, 391–392, 394
parsing Web content, 418–424
programmatic browsing, 424–428
Python tools, 396–410

porting urllib2 HTTP authentication
example, 407–410

urllib module/package, 399
urllib2 HTTP authentication example,

405–407
urlparse module/package, 398–404

simple Web crawler/spider/bot, 410–418
Web connection, opening, 400
Web forms, adding database entry from, 523

Index 851

Web frameworks, 487, 494–496
App Engine vs., 609
resources on, 597

Web page templates in Django, 527
Web programming

real world development, 487
related modules, 433, 488–489

Web resources
concurrent.futures module, 209
DB-API, 268
list of supported databases, 270
on App Engine, 676
on Appstats, 672
on building extensions, 366
on Cython, 385
on database-related modules/packages, 316
on DRY, 591
on extensions, 387
on FTP, 104
on GUIs, 250
on JOINs, 298
on JSON, 719
on Jython, 744
on MongoDB, 311
on NNTP, 114
on non-relational databases, 319
on NoSQL, 310
on Office applications, 357
on Psyco, 386
on PyPy, 387
on Pyrex, 385
on Python versions, 806
on Query methods, 298
on receiving e-mail, 660
on SMTP, 120
on SWIG, 384
on text processing, 738
on Twitter, 704, 707
on Twitter API libraries, 691
on Web frameworks, 597
on XML-RPC, 736
on Yahoo! Finance Server, 707
on race conditions, 190
on urllib2, 407

Web server farm, 395
Web Server Gateway Interface (WSGI),

480–482
reference server, 483

Web servers, 55, 391–392, 428–433
implementing simple base, 430–431
in Django, 505
scaling, 487
setup for CGI, 446–448
typical modern-day components, 444

Web services
basics, 685

microblogging with Twitter, 690–707
Yahoo! Finance Stock Quotes Server,

685–689
Web sites

CGI for fully interactive, 457–463
downloading latest version of file, 101

Web surfing, 391–392
web.py, 496
web2py, 496, 618

App Engine and, 676
web2py framework, 619
webapp framework, 617, 619
webapp2 framework, 617, 627
Web-based SaaS cloud services, 135
webbrowser module/package, 433, 489
WebWare MiddleKit, 289
well-known port numbers, 59
whitespace characters

\s in regex for, 14
matching in regex, 7
removing, 113

who command (POSIX), regular expression for
output, 36–38

who variable (Python), 451
widgets, 217

default arguments, 221
in top-level window object, 219

WIDTH variable for Google+ program, 754
win32com.client module, 327
win32ui module, 249
windowing object, 216

top-level, 217
defining size, 225
widgets in, 219

Windows Extensions for Python, 326
windows servers, 55
WindowsError, 789
with statement, 38

context manager and, 196
getRanking() use of, 208

withdraw() function, 329
word boundaries

matching and, 7, 10, 26
matching from start or end, 10

Word, COM programming with, 331
word.pyw script, 331
workbook in Excel, 329
wrappers, listing for Python interpreter, 376
wrapping apps, 485
write() function, WSGI standard and, 481
write() method, 81, 102
write() method (file object), 787
writelines() method (file object), 787
writeQ() function, 205
writer() function, 205
writerow() method, 717

852 Index

WSGI (Web Server Gateway Interface), 496
middleware and wrapping apps, 485
sample apps, 484
servers, 482
updates in Python 3, 486

wsgi.* environment variables, 483
wsgiref module, 435, 489

demonstration app, 484
wsgiref.sim ple_server.demo_app(), 484
wsgiref.simple_server.WSGIServer, 483
wxGlade module, 248
wxPython module, 248
wxWidgets, animalWx.pyw application, 240–242
X
xhdr() method (NNTP object), 107, 112
xist tool, 462
XML (eXtensible Markup Language), 724–738

converting Python dict to, 725–729
vs. JSON, 719
in practice, 729–733

xml package, 434, 725
xml.dom module/package, 434, 740
xml.dom.minidom, 725
xml.etree module/package, 434
xml.etree.ElementTree module/package, 740

importing, 821
xml.parsers.expat package, 434, 740
xml.sax module/package, 434, 740
xmllib module, 434, 725
XML-RPC, 733–738

client code, 737–738
resources, 736

xmlrpc.client package, 733
xmlrpc.server package, 733

xmlrpcclnt.py script, 737–738
xmlrpclib module, 148, 434, 733, 737, 740
xmlrpcsrvr.py script, 734–737
XMPP (eXtensible Messaging and Presence

Protocol), 614
XMPP (eXtensible Messaging and Presence

Protocol) API, 616, 660
__*xor__() method, 793
xreadlines() method (file object), 786
Y
Yahoo! Finance Stock Quotes Server, 685–689

code interface with, 736
csv module for, 717–719
parameters, 687, 695
resources, 707

Yahoo! Mail, 135, 138–144
Yahoo! Mail Plus, 135, 139
YAML (yet another markup language), 622
yielding, 159
ymail.py script, 140–144
Z
\Z special character, for matching from end of

string, 10
ZeroDivisionError, 788
zfill() function, 775
zfill() method (string), 781
Zip files

for App Engine SKD, 620
Google App Engine and, 613

zip() function, 731, 804
iterator version, 820

Zope, 496

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 4 Multithreaded Programming
	4.1 Introduction/Motivation
	4.2 Threads and Processes
	4.3 Threads and Python
	4.4 The thread Module
	4.5 The threading Module
	4.6 Comparing Single vs. Multithreaded Execution
	4.7 Multithreading in Practice
	4.8 Producer-Consumer Problem and the Queue/queue Module
	4.9 Alternative Considerations to Threads
	4.10 Related Modules
	4.11 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

