

The Nature and Origin of Biological Evolution

EUGENE V. KOONIN

The Logic of Chance:

The Nature and Origin of Biological Evolution

Eugene V. Koonin

Vice President, Publisher: Tim Moore

Associate Publisher and Director of Marketing: Amy Neidlinger

Acquisitions Editor: Kirk Jensen Editorial Assistant: Pamela Boland Senior Marketing Manager: Julie Phifer Assistant Marketing Manager: Megan Graue

Cover Designer: Alan Clements Managing Editor: Kristy Hart Project Editor: Betsy Harris

Copy Editor: Krista Hansing Editorial Services, Inc.

Proofreader: Kathy Ruiz Indexer: Erika Millen

Senior Compositor: Gloria Schurick Manufacturing Buyer: Dan Uhrig © 2012 by Pearson Education, Inc.

Publishing as FT Press Science

Upper Saddle River, New Jersey 07458

FT Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact U.S. Corporate and Government Sales, 1-800-382-3419, corpsales@pearsontechgroup.com. For sales outside the U.S., please contact International Sales at international@pearson.com.

Company and product names mentioned herein are the trademarks or registered trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Printed in the United States of America

First Printing September 2011

Pearson Education LTD.

Pearson Education Australia PTY, Limited.

Pearson Education Singapore, Pte. Ltd.

Pearson Education Asia, Ltd.

Pearson Education Canada, Ltd.

Pearson Educación de Mexico, S.A. de C.V.

Pearson Education—Japan

Pearson Education Malaysia, Pte. Ltd.

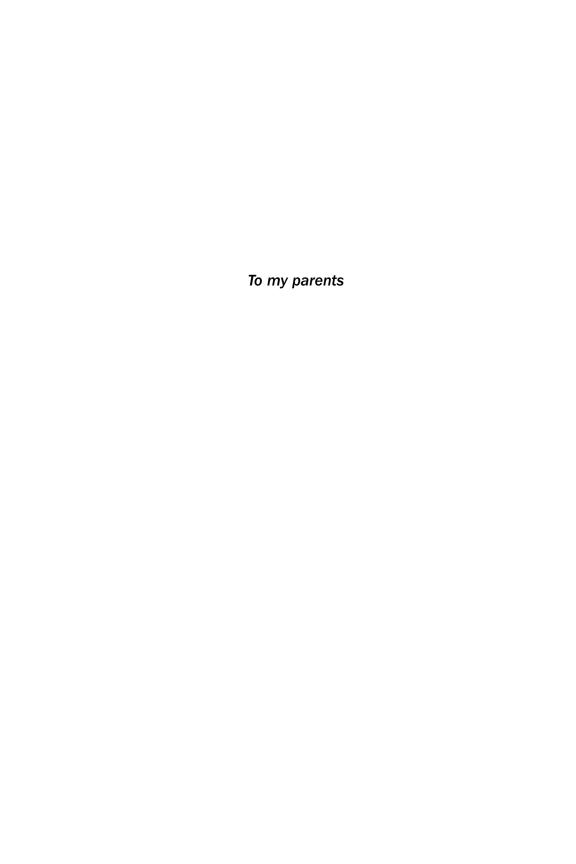
ISBN-10: 0-13-254249-8

ISBN-13: 978-0-13-254249-4

Library of Congress Cataloging-in-Publication Data

Koonin, Eugene V.

The logic of chance : the nature and origin of biological evolution / Eugene V. Koonin.—1st ed. p. cm.


Includes bibliographical references.

ISBN 978-0-13-254249-4 (hardback : alk. paper)

1. Evolutionary genetics. 2. Genomes. 3. Evolution (Biology) I. Title.

QH390.K66 2012

576.8—dc23

Contents

Preface	Toward a postmodern synthesis of evolutionary biologyvii
Chapter 1:	The fundamentals of evolution: Darwin and Modern Synthesis
Chapter 2:	From Modern Synthesis to evolutionary genomics: Multiple processes and patterns of evolution
Chapter 3:	Comparative genomics: Evolving genomescapes
Chapter 4:	Genomics, systems biology, and universals of evolution: Genome evolution as a phenomenon of statistical physics
Chapter 5:	The web genomics of the prokaryotic world: Vertical and horizontal flows of genes, the mobilome, and the dynamic pangenomes105
Chapter 6:	The phylogenetic forest and the quest for the elusive Tree of Life in the age of genomics
Chapter 7:	The origins of eukaryotes: Endosymbiosis, the strange story of introns, and the ultimate importance of unique events in evolution171
Chapter 8:	The non-adaptive null hypothesis of genome evolution and origins of biological complexity
Chapter 9:	The Darwinian, Lamarckian, and Wrightean modalities of evolution, robustness, evolvability, and the creative role of noise in evolution
Chapter 10:	The Virus World and its evolution293
Chapter 11:	The Last Universal Common Ancestor, the origin of cells, and the primordial gene pool

Chapter 12:	Origin of life: The emergence of translation, replication, metabolism, and membranes—the biological, geochemical, and cosmological perspectives
Chapter 13:	The postmodern state of evolutionary biology
Appendix A:	Postmodernist philosophy, metanarratives, and the nature and goals of the scientific endeavor421
Appendix B:	Evolution of the cosmos and life: Eternal inflation, "many worlds in one," anthropic selection, and a rough estimate of the probability of the origin of life
	References
	Endnotes
	Acknowledgments
	About the author
	Index

Preface: Toward a postmodern synthesis of evolutionary biology

The title of this work alludes to four great books: Paul Auster's novel *The Music of Chance* (Auster, 1991); Jacques Monod's famous treatise on molecular biology, evolution, and philosophy, *Chance and Necessity* (*Le hazard et la necessite*) (Monod, 1972); the complementary book by Francois Jacob, *The Logic of Life* (Jacob, 1993); and, of course, Charles Darwin's *The Origin of Species* (Darwin, 1859). Each of these books, in its own way, addresses the same overarching subject: the interplay of randomness (chance) and regularity (necessity) in life and its evolution.

Only after this book was completed, at the final stage of editing, did I become aware of the fact that the phrase *Logic of Chance* has already been used in a book title by John Venn, an eminent Cambridge logician and philosopher who in 1866 published *The Logic of Chance: An Essay on the Foundations and Province of the Theory of Probability.* This work is considered to have laid the foundation of the frequency interpretation of probability, which remains the cornerstone of probability theory and statistics to this day (Venn, 1866). He is obviously famous for the invention of the ubiquitous Venn diagrams. I am somewhat embarrassed that I was unaware of John Venn's work when starting this book. On the other hand, I can hardly think of a more worthy predecessor.

My major incentive in writing this book is my belief that, 150 years after Darwin and 40 years after Monod, we now have at hand the data and the concepts to develop a deeper, more complex, and perhaps, more satisfactory understanding of this crucial relationship. I make the case that variously constrained randomness is at the very heart of the entire history of life.

The inspiration for this book has been manifold. The most straightforward incentive to write about the emerging new vision of evolution is the genomic revolution that started in the last decade of the twentieth century and continues to unfold. The opportunity to compare the complete genome sequences of thousands of organisms from all walks of life has qualitatively changed the landscape of evolutionary biology. Our

inferences about extinct, ancestral life forms are not anymore the wild guesses they used to be (at least, for organisms with no fossil record). On the contrary, comparing genomes reveals numerous genes that are conserved in major groups of living beings (in some cases, even in all or most of them) and thus gives us a previously unimaginable wealth of information and confidence about the ancestral forms. For example, it is not much of an exaggeration to claim that we have an excellent idea of the core genetic makeup of the last common ancestor of all bacteria that probably lived more than 3.5 billion years ago. The more ancient ancestors are much murkier, but even for those, some features seem to be decipherable. The genomic revolution did more than simply allow credible reconstruction of the gene sets of ancestral life forms. Much more dramatically, it effectively overturned the central metaphor of evolutionary biology (and, arguably, of all biology), the Tree of Life (TOL), by showing that evolutionary trajectories of individual genes are irreconcilably different. Whether the TOL can or should be salvaged—and, if so, in what form—remains a matter of intense debate that is one of the important themes of this book.

Uprooting the TOL is part of what I consider to be a "meta-revolution," a major change in the entire conceptual framework of biology. At the distinct risk of earning the ire of many for associating with a much-maligned cultural thread, I call this major change the transition to a post-modern view of life. Essentially, this signifies the plurality of pattern and process in evolution; the central role of contingency in the evolution of life forms ("evolution as tinkering"); and, more specifically, the demise of (pan)adaptationism as the paradigm of evolutionary biology. Our unfaltering admiration for Darwin notwithstanding, we must relegate the Victorian worldview (including its refurbished versions that flourished in the twentieth century) to the venerable museum halls where it belongs, and explore the consequences of the paradigm shift.

However, this overhaul of evolutionary biology has a crucial counterpoint. Comparative genomics and evolutionary systems biology (such as organism-wide comparative study of gene expression, protein abundance, and other molecular characteristics of the phenotype) have revealed several universal patterns that are conserved across the entire span of cellular life forms, from bacteria to mammals. The existence of such universal patterns suggests that relatively simple theoretical models akin to those employed in statistical physics might be able to explain important aspects

preface ix

of biological evolution; some models of this kind with considerable explanatory power already exist. The notorious "physics envy" that seems to afflict many biologists (myself included) might be soothed by recent and forthcoming theoretical developments. The complementary relationship between the universal trends and the contingency of the specific results of evolution appears central to biological evolution—and the current revolution in evolutionary biology—and this is another central theme of this book.

Another entry point into the sketch of a new evolutionary synthesis that I am trying to develop here is more specific and, in some ways, more personal. I earned my undergraduate and graduate degrees from Moscow State University (in what was then the USSR), in the field of molecular virology. My PhD project involved an experimental study of the replication of poliovirus and related viruses that have a tiny RNA molecule for their genome. I have never been particularly good with my hands, and the time and place were not the best for experimentation because even simple reagents and equipment were hard to obtain. So right after I completed my PhD project, a colleague, Alex Gorbalenya, and I started to veer into an alternative direction of research that, at the time, looked to many like no science at all. It was "sequence gazing" that is, attempting to decipher the functions of proteins encoded in the genomes of small viruses (the only complete genomes available at the time) from the sequences of their building blocks, amino acids. Nowadays, anyone can rapidly perform such an analysis by using sleek software tools that are freely available on the Internet; naturally, meaningful interpretation of the results still requires thought and skill (that much does not change). Back in 1985, however, there were practically no computers and no software. Nevertheless, with our computer science colleagues, we managed to develop some rather handy programs (encoded at the time on punch cards). Much of the analysis was done by hand (and eye). Against all odds, and despite some missed opportunities and a few unfortunate errors, our efforts over the next five years were remarkably fruitful. Indeed, we managed to transform the functional maps of those small genomes from mostly unchartered territory to fairly rich "genomescapes" of functional domains. Most of these predictions have been subsequently validated by experiment, and some are still in the works (bench experimentation is much slower than computational analysis). I believe that our success was mostly due to the early realization of the strikingly simple but

surprisingly powerful basic principle of evolutionary biology: When a distinct sequence motif is conserved over a long evolutionary span, it must be functionally important, and the higher the degree of conservation, the more important the function. This common-sense principle that is of course rooted in the theory of molecular evolution has served our purposes exceedingly well and, I believe, converted me into an evolutionary biologist for the rest of my days. What I mean is not so much theoretical knowledge, but rather an indelible feeling of the absolute centrality and essentiality of evolution in biology. I am inclined to reword the famous dictum of the great evolutionary geneticist Theodosius Dobzhansky ("Nothing in biology makes sense except in the light of evolution") (Dobzhansky, 1973) in an even more straightforward manner: *Biology is evolution*.

In those early days of evolutionary genomics, Alex and I often talked about the possibility that our beloved small RNA viruses could be direct descendants of some of the earliest life forms. After all, they were tiny and simple genetic systems, with only one type of nucleic acid involved, and their replication was directly linked to expression through the translation of the genomic RNA. Of course, this was late-night talk with no direct relevance to our daytime effort on mapping the functional domains of viral proteins. However, I believe that, 25 years and hundreds of diverse viral and host genomes later, the idea that viruses (or virus-like genetic elements) might have been central to the earliest stages of life's evolution has grown from a fanciful speculation to a concept that is compatible with a wealth of empirical data. In my opinion, this is the most promising line of thought and analysis in the study of the earliest stages of the evolution of life.

So these are the diverse conceptual threads that, to me, unexpectedly converge on the growing realization that our understanding of evolution—and, with it, the very nature of biology—have forever departed from the prevailing views of the twentieth century that today look both rather naïve and somewhat dogmatic. At some point, the temptation to try my hand in tying together these different threads into a semblance of a coherent picture became irresistible, hence this book.

Some of the inspiration came from outside of biology, from the recent astounding and enormously fascinating developments in physical cosmology. These developments not only put cosmology research squarely within the physical sciences, but completely overturn our ideas

preface xi

about the way the world is, particularly, the nature of randomness and necessity. When it comes to the boundaries of biology, as in the origin of life problem, this new worldview cannot be ignored. Increasingly, physicists and cosmologists pose the question "Why is there something in the world rather than nothing?" not as a philosophical problem, but as a physical problem, and explore possible answers in the form of concrete physical models. It is hard not to ask the same about the biological world, yet at more than one level: Why is there life at all rather than just solutions of ions and small molecules? And, closer to home, even assuming that there is life, why are there palms and butterflies, and cats and bats, instead of just bacteria? I believe that these questions can be given a straightforward, scientific slant, and plausible, even if tentative, answers seem to be emerging.

Recent advances in high-energy physics and cosmology inspired this book in more than only the direct scientific sense. Many of the leading theoretical physicists and cosmologists have turned out to be gifted writers of popular and semipopular books (one starts to wonder whether there is some intrinsic link between abstract thinking at the highest level and literary talent) that convey the excitement of their revelations about the universe with admirable clarity, elegance, and panache. The modern wave of such literature that coincides with the revolution in cosmology started with Stephen Hawking's 1988 classic A Brief History of Time (Hawking, 1988). Since then, dozens of fine diverse books have appeared. The one that did the most to transform my own view of the world is the wonderful and short Many Worlds in One, by Alex Vilenkin (Vilenkin, 2007), but equally excellent treatises by Steven Weinberg (Weinberg, 1994), Alan Guth (Guth, 1998a), Leonard Susskind (Susskind, 2006b), Sean Carroll (Carroll, 2010), and Lee Smolin (in a controversial book on "cosmic natural selection"; Smolin, 1999) were of major importance as well. These books are far more than brilliant popularizations: Each one strives to present a coherent, general vision of both the fundamental nature of the world and the state of the science that explores it. Each of these visions is unique, but in many aspects, they are congruent and complementary. Each is deeply rooted in hard science but also contains elements of extrapolation and speculation, sweeping generalizations, and, certainly, controversy. The more I read these books and pondered the implications of the emerging new worldview, the more strongly was I tempted to try something like that in my own field of

evolutionary biology. At one point, while reading Vilenkin's book, it dawned on me that there might be a direct and crucial connection between the new perspective on probability and chance imposed by modern cosmology and the origin of life—or, more precisely, the origin of biological evolution. The overwhelming importance of chance in the emergence of life on Earth suggested by this line of enquiry is definitely unorthodox and is certain to make many uncomfortable, but I strongly felt that it could not be disregarded if I wanted to be serious about the origin of life.

This book certainly is a personal take on the current state of evolutionary biology as viewed from the vantage point of comparative genomics and evolutionary systems biology. As such, it necessarily blends established facts and strongly supported theoretical models with conjecture and speculation. Throughout the book, I try to distinguish between the two as best I can. I intended to write the book in the style of the aforementioned excellent popular books in physics, but the story took a life of its own and refused to be written that way. The result is a far more scientific, specialized text than originally intended, although still a largely nontechnical one, with only a few methods described in an oversimplified manner. An important disclaimer: Although the book addresses diverse aspects of evolution, it remains a collection of chapters on selected subjects and is by no account a comprehensive treatise. Many important and popular subjects, such as the origin of multicellular organisms or evolution of animal development, are completely and purposefully ignored. As best I could, I tried to stick with the leitmotif of the book, the interplay between chance and nonrandom processes. Another thorny issue has to do with citations: An attempt to be, if not comprehensive, then at least reasonably complete, would require thousands of references. I gave up on any such attempt from the start, so the reference list at the end is but a small subset of the relevant citations, and the selection is partly subjective. My sincere apologies to all colleagues whose important work is not cited.

All these caveats and disclaimers notwithstanding, it is my hope that the generalizations and ideas presented here will be of interest to many fellow scientists and students—not only biologists, but also physicists, chemists, geologists, and others interested in the evolution and origin of life. 1

The fundamentals of evolution: Darwin and Modern Synthesis

In this chapter and the next, I set out to provide a brief summary of the state of evolutionary biology before the advent of comparative genomics in 1995. Clearly, the task of distilling a century and a half of evolutionary thought and research into two brief, nearly nontechnical chapters is daunting, to put it mildly. Nevertheless, I believe that we can start by asking ourselves a straightforward question: What is the take-home message from all those decades of scholarship? We can garner a concise and sensible synopsis of the pregenomic evolutionary synthesis even while inevitably omitting most of the specifics.

I have attempted to combine history and logic in these first two chapters, but some degree of arbitrariness is unavoidable. In this chapter, I trace the conceptual development of evolutionary biology from Charles Darwin's *On the Origin of Species* to the consolidation of Modern Synthesis in the 1950s. Chapter 2 deals with the concepts and discoveries that affected the understanding of evolution between the completion of Modern Synthesis and the genomic revolution of the 1990s.

Darwin and the first evolutionary synthesis: Its grandeur, constraints, and difficulties

It is rather strange to contemplate the fact that we have just celebrated the 150th anniversary of the first publication of Darwin's *On the Origin of Species* (Darwin, 1859) and the 200th jubilee of Darwin himself. Considering the profound and indelible effect that *Origin*

had on all of science, philosophy, and human thinking in general (far beyond the confines of biology), 150 years feels like a very short time.

What was so dramatic and important about the change in our worldview that Darwin prompted? Darwin did not discover evolution (as sometimes claimed overtly but much more often implied, especially in popular accounts and public debates). Many scholars before him, including luminaries of their day, believed that organisms changed over time in a nonrandom manner. Even apart from the great (somewhat legendary) Greek philosophers Empedokles, Parmenides, and Heraclites, and their Indian contemporaries who discussed eerily prescient ideas (even if, oddly for us, combined with mythology) on the processes of change in nature, Darwin had many predecessors in the eighteenth and early nineteenth centuries. In later editions of Origin, Darwin acknowledged their contributions with characteristic candor and generosity. Darwin's own grandfather, Erasmus, and the famous French botanist and zoologist Jean-Bapteste Lamarck (Lamarck, 1809) discussed evolution in lengthy tomes.1 Lamarck even had a coherent concept of the mechanisms that, in his view, perpetuated these changes. Moreover, Darwin's famed hero, teacher, and friend, the great geologist Sir Charles Lyell, wrote about the "struggle for existence" in which the more fecund will always win. And, of course, it is well known that Darwin's younger contemporary, Alfred Russel Wallace, simultaneously proposed essentially the same concept of evolution and its mechanisms.

However, the achievements of all these early evolutionists notwithstanding, it was Darwin who laid the foundation of modern biology and forever changed the scientific outlook of the world in *Origin*. What made Darwin's work unique and decisive? Looking back at his feat from our 150-year distance, three breakthrough generalizations seem to stand out:

- 1. Darwin presented his vision of evolution within a completely naturalist and rationalist framework, without invoking any teleological forces or drives for perfection (or an outright creator) that theorists of his day commonly considered.
- 2. Darwin proposed a specific, straightforward, and readily understandable mechanism of evolution that is interplay

- between heritable variation and natural selection, collectively described as the survival of the fittest.
- **3.** Darwin boldly extended the notion of evolution to the entire history of life, which he believed could be adequately represented as a grand tree (the famous single illustration of *Origin*), and even postulated that all existing life forms shared a single common ancestor.

Darwin's general, powerful concept stood in stark contrast to the evolutionary ideas of his predecessors, particularly Lamarck and Lyell, who contemplated mostly, if not exclusively, evolutionary change within species. Darwin's fourth great achievement was not purely scientific, but rather presentational. Largely because of a well-justified feeling of urgency caused by competition with Wallace, Darwin presented his concept in a brief and readable (even for prepared lay readers), although meticulous and carefully argued, volume. Thanks to these breakthroughs, Darwin succeeded in changing the face of science rather than just publishing another book. Immediately after *Origin* was published, most biologists and even the general educated public recognized it as a credible naturalist account of how the observed diversity of life could have come about, and this was a dynamic foundation to build upon.²

Considering Darwin's work in a higher plane of abstraction that is central to this book, it is worth emphasizing that Darwin seems to have been the first to establish the crucial interaction between chance and order (necessity) in evolution. Under Darwin's concept, variation is (nearly) completely random, whereas selection introduces order and creates complexity. In this respect, Darwin is diametrically opposed to Lamarck, whose worldview essentially banished chance. We return to this key conflict of worldviews throughout the book.

Indeed, with all due credit given to his geologist and early evolutionary biologist predecessors, Darwin was arguably the first scholar to prominently bring the possibility of evolutionary change (and, by implication, origin) of the entire universe into the realm of natural phenomena that are subject to rational study. Put another way, Darwin initiated the scientific study of the *time arrow*—that is, time-asymmetrical, irreversible processes. By doing so, he prepared the ground not only for all further development of biology, but also for

the advent of modern physics. I believe that the great physicist Ludwig Boltzmann, the founder of statistical thermodynamics and the author of the modern concept of entropy, had good reason to call Darwin a "great physicist," paradoxical as this might seem, given that Darwin knew precious little about actual physics and mathematics. Contemporary philosopher Daniel Dennett may have had a point when he suggested that Darwin's idea of natural selection might be the single greatest idea ever proposed (Dennett, 1996).

Certainly, Darwin's concept of evolution at the time Origin was published and at least through the rest of the nineteenth century faced severe problems that greatly bothered Darwin and, at times, appeared insurmountable to many scientists. The first substantial difficulty was the low estimate of the age of Earth that prevailed in Darwin's day. Apart from any creation myth, the best estimates by nineteenth-century physicists (in particular, Lord Kelvin) were close to 100 million years, a time span that was deemed insufficient for the evolution of life via the Darwinian route of gradual accumulation of small changes. Clearly, that was a correct judgment—the 100 million years time range is far too short for the modern diversity of life to evolve, although no one in the nineteenth century had a quantitative estimate of the rate of Darwinian evolution. The problem was resolved 20 years after Darwin's death. In the beginning of the twentieth century, when radioactivity was discovered, scientists calculated that cooling of the Earth from its initial hot state would take billions of years, just about the time Darwin thought would be required for the evolution of life by natural selection.

The second, more formidable problem has to do with the mechanisms of heredity and the so-called Jenkin nightmare. Because the concept of discrete hereditary determinants did not exist in Darwin's time (outside the obscure articles of Mendel), it was unclear how an emerging beneficial variation could survive through generations and get fixed in evolving populations without being diluted and perishing. Darwin apparently did not think of this problem at the time he wrote *Origin*; an unusually incisive reader, an engineer named Jenkin, informed Darwin of this challenge to his theory. In retrospect, it is difficult to understand how Darwin (or Jenkin or Huxley) did not think of a Mendelian solution. Instead, Darwin came up with a more extravagant concept of heredity, the so-called pangenesis, which even he himself did not seem to take quite seriously. This problem was

resolved by the (re)birth of genetics, although the initial implications for Darwinism³ were unexpected (see the next section).

The third problem that Darwin fully realized and brilliantly examined was the evolution of complex structures (organs, in Darwin's terms) that require assembly of multiple parts to perform their function. Such complex organs posed the classic puzzle of evolutionary biology that, in the twentieth century, has been evocatively branded 'irreducible complexity.'4 Indeed, it is not immediately clear how selection could enact the evolution of such organs under the assumption that individual parts or partial assemblies are useless. Darwin tackled this problem head-on in one of the most famous passages of Origin, the scenario of evolution of the eye. His proposed solution was logically impeccable, plausible, and ingenious: Darwin posited that complex organs do evolve through a series of intermediate stages, each of which performs a partial function related to the ultimate function of the evolving complex organ. Thus, the evolution of the eye, according to Darwin, starts with a simple light-sensing patch and proceeds through primitive eye-like structures of incrementally increasing utility to full-fledged, complex eyes of arthropods and vertebrates. It is worth noting that primitive light-sensing structures resembling those Darwin postulated on general grounds have been subsequently discovered, at least partially validating his scenario and showing that, in this case, the irreducibility of a complex organ is illusory. However, all the brilliance of Darwin's scheme notwithstanding, it should be taken for what it is: a partially supported speculative scenario for the evolution of one particular complex organ. Darwin's account shows one possible trajectory for the evolution of complexity but does not solve this major problem in general. Evolution of complexity at different levels is central to understanding biology, so we revisit it on multiple occasions throughout this book.

The fourth area of difficulty for Darwinism is, perhaps, the deepest. This major problem has to do with the title and purported main subject of Darwin's book, the origin of species and, more generally, large-scale evolutionary events that are now collectively denoted as macroevolution. In a rather striking departure from the title of the book, all indisputable examples of evolution that Darwin presented involve the emergence of new varieties within a species, not new species let alone higher taxa. This difficulty persisted long after

Darwin's death and exists even now, although it was mitigated first by the progress of paleontology, then by developments in the theory of speciation supported by biogeographic data, and then, most convincingly, by comparative genomics (see Chapters 2 and 3). Much to his credit, and unlike detractors of evolution up to this day, Darwin firmly stood his ground in the face of all difficulties, thanks to his unflinching belief that, incomplete as his theory might be, there was no rational alternative. The only sign of Darwin's vulnerability was the inclusion of the implausible pangenesis model in later editions of *Origin*, as a stop-gap measure to stave off the Jenkin nightmare.

Genetics and the "black day" of Darwinism

An urban legend tells that Darwin had read Mendel's paper but found it uninspiring (perhaps partly because of his limited command of German). It is difficult to tell how different the history of biology would have been if Darwin had absorbed Mendel's message, which seems so elementary to us. Yet this was not to be.

Perhaps more surprisingly, Mendel himself, although obviously well familiar with the Origin, did not at all put his discovery into a Darwinian context. That vital connection had to await not only the rediscovery of genetics at the brink of the twentieth century, but also the advent of population genetics in the 1920s. The rediscovery of Mendelian inheritance and the birth of genetics should have been a huge boost to Darwinism because, by revealing the discreteness of the determinants of inheritance, these discoveries eliminated the Jenkin nightmare. It is therefore outright paradoxical that the original reaction of most biologists to the discovery of genes was that genetics made Darwin's concept irrelevant, even though no serious scientist would deny the reality of evolution. The main reason genetics was deemed incompatible with Darwinism was that the founders of genetics, particularly Hugo de Vries, the most productive scientist among the three rediscoverers of Mendel laws, viewed mutations of genes as abrupt, saltational hereditary changes that ran counter to Darwinian gradualism. These mutations were considered to be an inalienable feature of Darwinism, in full accord with Origin. Accordingly, de Vries viewed his mutational theory of evolution as "anti-Darwinian." So Darwin's centennial jubilee and the 50th anniversary

of the *Origin* in 1909 were far from triumphant, even as genetic research surged and Wilhelm Johansson introduced the term *gene* that very year.

Population genetics, Fisher's theorem, fitness landscapes, drift, and draft

The foundations for the critically important synthesis of Darwinism and genetics were set in the late 1920s and early 1930s by the trio of outstanding theoretical geneticists: Ronald Fisher, Sewall Wright, and J. B. S. Haldane. They applied rigorous mathematics and statistics to develop an idealized description of the evolution of biological populations. The great statistician Fisher apparently was the first to see that, far from damning Darwinism, genetics provided a natural, solid foundation for Darwinian evolution. Fisher summarized his conclusions in the seminal 1930 book *The Genetical Theory of Natural Selection* (Fisher, 1930), a tome second perhaps only to Darwin's *Origin* in its importance for evolutionary biology. This was the beginning of a spectacular revival of Darwinism that later became known as *Modern Synthesis* (a term mostly used in the United States) or *neo-Darwinism* (in the British and European traditions).

It is neither necessary nor practically feasible to present here the basics of population genetics.⁶ However, several generalizations that are germane to the rest of the discussion of today's evolutionary biology can be presented succinctly. Such a summary, even if superficial, is essential here. Basically, the founders of population genetics realized the plain fact that evolution does not affect isolated organisms or abstract species, but rather affects concrete groups of interbreeding individuals, termed populations. The size and structure of the evolving population largely determines the trajectory and outcome of evolution. In particular, Fisher formulated and proved the fundamental theorem of natural selection (commonly known as Fisher's theorem), which states that the intensity of selection (and, hence, the rate of evolution due to selection) is proportional to the magnitude of the standing genetic variation in an evolving population, which, in turn, is proportional to the effective population size.

Box 1-1 gives the basic definitions and equations that determine the effects of mutation and selection on the elimination or fixation of mutant alleles, depending on the effective population size. The qualitative bottom line is that, given the same mutation rate, in a population with a large effective size, selection is intense. In this case, even mutations with a small positive selection coefficient ("slightly" beneficial mutations) quickly come to fixation. On the other hand, mutations with even a small negative selection coefficient (slightly deleterious mutations) are rapidly eliminated. This effect found its rigorous realization in Fisher's theorem.

Box 1-1: The fundamental relationships defining the roles of selection and drift in the evolution of populations

Nearly neutral evolution dominated by drift

1/Ne >> |s|

Evolution dominated by selection

 $1/Ne \ll |s|$

Mixed regime, with both drift and selection important

 $1/Ne \approx |s|$

Ne: effective population size (typically, substantially less than the number of individuals in a population because not all individuals produce viable offspring)

s: selection coefficient or fitness effect of mutation:

 $s = F_A - F_a$

 F_A , F_a : fitness values of two alleles of a gene

s>0: beneficial mutation

s<0: deleterious mutation

A corollary of Fisher's theorem is that, assuming that natural selection drives all evolution, the mean fitness of a population cannot decrease during evolution (if the population is to survive, that is). This is probably best envisaged using the imagery of a fitness landscape, which was first introduced by another founding father of population genetics, Sewall Wright. When asked by his mentor to present the results of his mathematical analysis of selection in a form accessible to

biologists, Wright came up with this extremely lucky image. The appeal and simplicity of the landscape representation of fitness evolution survive to this day and have stimulated numerous subsequent studies that have yielded much more sophisticated and less intuitive theories and versions of fitness landscapes, including multidimensional ones (Gavrilets, 2004).7 According to Fisher's theorem, a population that evolves by selection only (technically, a population of an infinite size—infinite populations certainly do not actually exist, but this is convenient abstraction routinely used in population genetics) can never move downhill on the fitness landscape (see Figure 1-1). It is easy to realize that a fitness landscape, like a real one, can have many different shapes. Under certain special circumstances, the landscape might be extremely smooth, with a single peak corresponding to the global fitness maximum (sometimes this is poetically called the Mount Fujiyama landscape; see Figure 1-1A). More realistically, however, the landscape is rugged, with multiple peaks of different heights separated by valleys (see Figure 1-1B). As formally captured in Fisher's theorem (and much in line with Darwin), a population evolving by selection can move only uphill and so can reach only the local peak, even if its height is much less than the height of the global peak (see Figure 1-1B). According to Darwin and Modern Synthesis, movement across valleys is forbidden because it would involve a downhill component. However, the development of population genetics and its implications for the evolutionary process changed this placid picture because of genetic drift, a key concept in evolutionary biology that Wright also introduced.

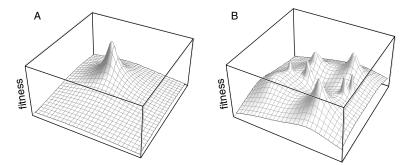


Figure 1-1 Fitness landscapes: the Mount Fujiyama landscape with a single (global) fitness peak and a rugged fitness landscape.

10 the logic of chance

As emphasized earlier, Darwin recognized a crucial role of chance in evolution, but that role was limited to one part of the evolutionary process only: the emergence of changes (mutations, in the modern parlance). The rest of evolution was envisaged as a deterministic domain of necessity, with selection fixing advantageous mutations and the rest of mutations being eliminated without any long-term consequence. However, when population dynamics entered the picture, the situation changed dramatically. The founders of quantitative population genetics encapsulated in simple formulas the dependence of the intensity of selection on population size and mutation rate (see Box 1-1 and Figure 1-2). In a large population with a high mutation rate, selection is effective, and even a slightly advantageous mutation is fixed with near certainty (in an infinite population, a mutation with an infinitesimally small positive selection coefficient is fixed deterministically). Wright realized that a small population, especially one with a low mutation rate, is quite different. Here random genetic drift plays a crucial role in evolution through which neutral or even deleterious (but, of course, nonlethal) mutations are often fixed by sheer chance. Clearly, through drift, an evolving population can violate the principle of upward-only movement in the fitness landscape and might slip down (see Figure 1-2).8 Most of the time, this results in a downward movement and subsequent extinction, but if the valley separating the local peak from another, perhaps taller one is narrow, then crossing the valley and starting a climb to a new, perhaps taller summit becomes possible (see Figure 1-2). The introduction of the notion of drift into the evolutionary narrative is central to my story. Here chance enters the picture at a new level: Although Darwin and his immediate successors saw the role of chance in the emergence of heritable change (mutations), drift introduces chance into the next phase—namely, the fixation of these changes—and takes away some of the responsibility from selection. I explore just how important the role of drift is in different situations during evolution throughout this book.

John Maynard Smith and, later, John Gillespie developed the theory and computer models to demonstrate the existence of a distinct

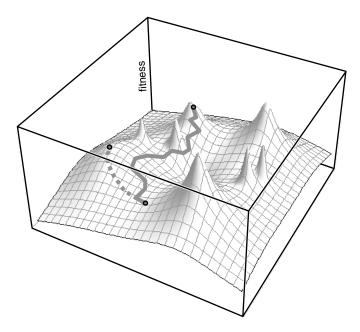


Figure 1-2 Trajectories on a rugged fitness landscape. The dotted line is an evolutionary trajectory at a high effective population size. The solid line is an evolutionary trajectory at a low effective population size.

mode of neutral evolution that is only weakly dependent on the effective population size and that is relevant even in infinite populations with strong selection. This form of neutral fixation of mutations became known as *genetic draft* and refers to situations in which one or more neutral or even moderately deleterious mutations spread in a population and are eventually fixed because of the linkage with a beneficial mutation: The neutral or deleterious alleles spread by *hitchhiking* with the linked advantageous allele (Barton, 2000). Some population-genetic data and models seem to suggest that genetic draft is even more important for the evolution in sexual populations than drift. Clearly, genetic draft is caused by combined effects of natural selection and neutral variation at different genomic sites and, unlike drift, can occur even in effectively infinite populations (Gillespie, 2000).

Genetic draft may allow even large populations to fix slightly deleterious mutations and, hence, provides them with the potential to cross valleys on the fitness landscape.

Positive and purifying (negative) selection: Classifying the forms of selection

Darwin thought of natural selection primarily in terms of fixation of beneficial changes. He realized that evolution weeded out deleterious changes, but he did not interpret this elimination on the same plane with natural selection. In the course of the evolution of Modern Synthesis, the notion of selection was expanded to include "purifying" (negative) selection; in some phases of evolution, this turns out to be more common (orders of magnitude more common, actually) than "Darwinian," positive selection. Essentially, purifying selection is the default process of elimination of the unfit. Nevertheless, defining this process as a special form of selection seems justified and important because it emphasizes the crucial role of elimination in shaping (constraining) biological diversity at all levels. Simply put, variation is permitted only if it does not confer a significant disadvantage on any surviving variant. To what extent these constraints actually limit the space available for evolution is an interesting and still open issue, and I touch on this later (see in particular Chapters 3, 8, and 9).

A subtle but substantial difference exists between purifying selection and *stabilizing selection*, which is a form of selection defined by its effect on frequency distributions of trait values. These forms include stabilizing selection that is based primarily on purifying selection, directional selection driven by positive (Darwinian) selection, and the somewhat more exotic regimes of disruptive and balancing selection that result from combinations of multiple constraints (see Figure 1-3).

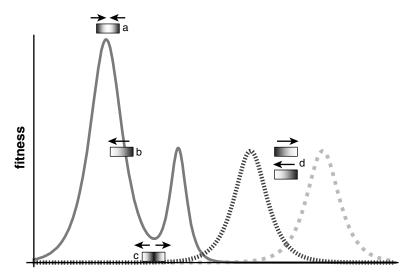


Figure 1-3 Four distinct forms of selection in an evolving population: (A) Stabilizing selection (fitness landscape represented by solid line); (B) Directional selection (fitness landscape represented by solid line); (C) Disruptive selection (fitness landscape represented by solid line); (D) Balancing selection (fitness landscape changes periodically by switching between two dotted lines).

Modern Synthesis

The unification of Darwinian evolution and genetics achieved primarily in the seminal studies of Fisher, Wright, and Haldane prepared the grounds for the Modern Synthesis of evolutionary biology. The phrase itself comes from the eponymous 1942 book by Julian Huxley (Huxley, 2010), but the conceptual framework of Modern Synthesis is considered to have solidified only in 1959, during the centennial celebration of Origin. The new synthesis itself was the work of many outstanding scientists. The chief architects of Modern Synthesis were arguably experimental geneticist Theodosius Dobzhansky, zoologist Ernst Mayr, and paleontologist George Gaylord Simpson. Dobzhansky's experimental and field work with the fruit fly Drosophila melanogaster provided the vital material support to the theory of population genetics and was the first large-scale experimental validation of the concept of natural selection. Dobzhansky's book Genetics and the Origin of Species (Dobzhansky, 1951) is the principal manifesto of Modern Synthesis, in which he narrowly defined evolution as "change in the frequency of an allele within a gene pool." Dobzhansky also

famously declared that *nothing in biology makes sense except in the light of evolution*⁹ (see more about "making sense" in Appendix A). Ernst Mayr, more than any other scientist, is to be credited with an earnest and extremely influential attempt at a theoretical framework for Darwin's quest, the origin of species. Mayr formulated the so-called biological concept of species, according to which speciation occurs when two (sexual) populations are isolated from each other for a sufficiently long time to ensure irreversible genetic incompatibility (Mayr, 1963). Simpson reconstructed the most comprehensive (in his time) picture of the evolution of life based on the fossil record (Simpson, 1983). Strikingly, Simpson recognized the prevalence of stasis in the evolution of most species and the abrupt replacement of dominant species. He also introduced the concept of quantum evolution, which presaged the punctuated equilibrium concept of Stephen Jay Gould and Niles Eldredge (see Chapter 2).

The consolidation of Modern Synthesis in the 1950s was a somewhat strange process that included remarkable "hardening" (Gould's word) of the principal ideas of Darwin (Gould, 2002). Thus, the doctrine of Modern Synthesis effectively left out Wright's concept of random genetic drift and its evolutionary importance, and remains uncompromisingly pan-adaptationist. Rather similarly, Simpson himself gave up the idea of quantum evolution, so gradualism remained one of the undisputed pillars of Modern Synthesis. This "hardening" shaped Modern Synthesis as a relatively narrow, in some ways dogmatic conceptual framework.

To proceed with the further discussion of the evolution of evolutionary biology and its transformation in the age of genomics, it seems necessary to succinctly recapitulate the fundamental principles of evolution that Darwin first formulated, the first generation of evolutionary biologists then amended, and Modern Synthesis finally codified. We return to each of these crucial points throughout the book.

1. Undirected, random variation is the main process that provides the material for evolution. Darwin was the first to allow chance as a major factor into the history of life, and this was arguably one of his greatest insights. Darwin also allowed a subsidiary role for directed, Lamarckian-type variation, and he tended to give these mechanisms more weight in later editions of *Origin*. Modern

- Synthesis, however, is adamant in its insistence on random mutations being the only source of evolutionarily relevant variability.
- 2. Evolution proceeds by fixation of rare beneficial variations and elimination of deleterious variations: This is the process of natural selection that, along with random variation, is the principal driving force of evolution, according to Darwin and Modern Synthesis. Natural selection, which is obviously akin to and inspired by the "invisible hand" of the market that ruled economy according to Adam Smith, was the first mechanism of evolution ever proposed that was simple and plausible and that did not require any mysterious innate trends. As such, this was Darwin's second key insight. Sewall Wright emphasized that chance could play a substantial role in the fixation of changes during evolution rather than only in their emergence, via genetic drift that entails random fixation of neutral or even moderately deleterious changes. Population-genetic theory indicates that drift is particularly important in small populations that go through bottlenecks. Genetic draft (hitchhiking) is another form of stochastic fixation of nonbeneficial mutations. However, Modern Synthesis in its "hardened" form effectively rejected the role of stochastic processes in evolution beyond the origin of variation and adhered to a purely adaptationist (panadaptationist) view of evolution. This model inevitably leads to the concept of "progress," gradual improvement of "organs" during evolution. Darwin endorsed this idea as a general trend, despite his clear understanding that organisms are less than perfectly adapted, as strikingly exemplified by rudimentary organs, and despite his abhorrence of any semblance of an innate strive for perfection of the Lamarckian ilk. Modern Synthesis shuns progress as an anthropomorphic concept but nevertheless maintains that evolution, in general, proceeds from simple to complex forms.
- **3.** The beneficial changes that are fixed by natural selection are infinitesimally small (in modern parlance, the evolutionarily relevant mutations are supposed to have infinitesimally small fitness effects), so evolution occurs via the gradual accumulation of these tiny modifications. Darwin insisted on *strict gradualism* as an essential staple of his theory: "Natural selection

can act only by the preservation and accumulation of infinitesimally small inherited modifications, each profitable to the preserved being. ...If it could be demonstrated that any complex organ existed, which could not possibly have been formed by numerous, successive, slight modifications, my theory would absolutely break down." (*Origin of Species*, Chapter 6). Even some contemporaries of Darwin believed that was an unnecessary stricture on the theory. In particular, the early objections of Thomas Huxley are well known: Even before the publication of *Origin*, Huxley wrote to Darwin, "You have loaded yourself with an unnecessary difficulty in adopting *Natura non facit saltum* so unreservedly" (http://aleph0.clarku.edu/huxley/). Disregarding these early warnings and even Simpson's concept of quantum evolution, Modern Synthesis uncompromisingly embraced gradualism.

- **4.** An aspect of the classic evolutionary biology that is related to but also distinct from the principled gradualism is *uniformitarianism* (absorbed by Darwin from Lyell's geology). This is the belief that the evolutionary processes have remained essentially the same throughout the history of life.
- 5. This key principle is logically linked to gradualism and uniformitarianism: Macroevolution (the origin of species and higher taxa), is governed by the same mechanisms as microevolution (evolution within species). Dobzhansky, with his definition of evolution as the change of allele frequencies in populations, was the chief proponent of this principle. Darwin did not use the terms microevolution and macroevolution; nevertheless, the sufficiency of intraspecies processes to explain the origin of species and, more broadly, the entire evolution of life can be considered the central Darwinian axiom (or perhaps a fundamental theorem, but one for which Darwin did not have even an inkling of the proof). It seems reasonable to speak of this principle as "generalized uniformitarianism": The processes of evolution are the same not only throughout the history of life, but also at different levels of evolutionary transformation, including major transitions. The conundrum of microevolution versus macroevolution is, in some ways, the fulcrum of evolutionary biology, so we revisit it repeatedly throughout this book.

- 6. Evolution of life can be accurately represented by a "great tree," as emphasized by the only illustration in *Origin* (in Chapter 4). Darwin introduced the Tree of Life (TOL) only as a general concept and did not attempt to investigate its actual branching order. The tree was populated with actual life forms, to the best of the knowledge at the time, by the chief German follower of Darwin, Ernst Haeckel. The founders of Modern Synthesis were not particularly interested in the TOL, but they certainly embraced it as a depiction of the evolution of animals and plants that the fossil record amply supported in the twentieth century. By contrast, microbes that were increasingly recognized as major ecological agents remained effectively outside the scope of evolutionary biology.
- 7. A corollary of the single TOL concept deserves the status of a separate principle: All extant diversity of life forms evolved from a single common ancestor (or very few ancestral forms, under Darwin's cautious formula in Chapter 14 of *Origin*; see Darwin, 1859). Many years later, this has been dubbed the Last Universal Common (Cellular) Ancestor (LUCA). For the architects of Modern Synthesis, the existence of LUCA was hardly in doubt, but they did not seem to consider elucidation of its nature a realistic or important scientific goal.

Synopsis

In his book On the Origin of Species, Charles Darwin meticulously collected evidence of temporal change that permeates the world of living beings and proposed for the first time a plausible mechanism of evolution: natural selection. Evolution by natural selection certainly is one of the most consequential concepts ever developed by a scientist and even has been deemed the single most important idea in human history (Dennett, 1996). Somewhat paradoxically, it is also often branded a mere tautology, and when one thinks in terms of the survival of the fittest, there seems to be some basis for this view. However, considering the Darwinian scenario as a whole, it is easy to grasp its decidedly nontautological and nontrivial aspect. Indeed, what Darwin proposed is a mechanism for the transformation of random

variation into adaptations that are not random at all, including elaborate, complex devices that perform highly specific functions and so increase the fitness of their carriers. Coached in physical terms and loosely following Erwin Schroedinger's famous treatise, Darwinian evolution is a machine for the creation of negentropy—in other words, order from disorder. I submit that this was the single key insight of Darwin, the realization that a simple mechanism, devoid of any teleological component, could plausibly account for the emergence, from random variation alone, of the amazing variety of life forms that appear to be so exquisitely adapted to their specific environments. Viewed from that perspective, the "invisible hand" of natural selection appears almost miraculously powerful, and one cannot help wondering whether it is actually sufficient to account for the history of life. This question has been repeatedly used as a rhetoric device by all kinds of creationists, but it also has been asked in earnest by evolutionary biologists. We shall see in the rest of this book that the answers widely differ, both between scientists and between different situations and stages in the evolution of life.

Of course, Darwinism in its original formulation faced problems more formidable and more immediate than the question of the sufficiency of natural selection: Darwin and his early followers had no sensible idea of the mechanisms of heredity and whether these mechanisms, once discovered, would be compatible with the Darwinian scenario. In that sense, the entire building of Darwin's concept was suspended in thin air. The rediscovery of genetics at the beginning of the twentieth century, followed by the development of theoretical and experimental population genetics, provided a solid foundation for Darwinian evolution. It was shown beyond reasonable doubt that populations evolved through a process in which Darwinian natural selection was a major component. The Modern Synthesis of evolutionary biology completed the work of Darwin by almost seamlessly unifying Darwinism with genetics. As it matured, Modern Synthesis notably "hardened" through indoctrinating gradualism, uniformitarianism, and, most important, the monopoly of natural selection as the only route of evolution. In Modern Synthesis, all changes that are fixed during evolution are considered adaptive, at least initially. For all its fundamental merits, Modern Synthesis is a rather dogmatic and woefully incomplete theory. To name three of the most glaring problems, Modern Synthesis makes a huge leap of faith by extending the mechanisms and patterns established for microevolution to macroevolutionary processes; it has nothing to say about evolution of microbes, which are the most abundant and diverse life forms on Earth; and it does not even attempt to address the origin of life.

Recommended further reading

Futuyma, Douglas. (2009) *Evolution*, 2d edition. Sunderland, MA: Sinauer Associates.

Probably the best available undergraduate text on evolutionary biology.

Gould, Stephen Jay. (2002) *The Structure of Evolutionary Theory*. Cambridge, MA: Harvard University Press.

The almost 1,500-page tome obviously is not for the feeble at heart, and not many will read it in its entirety. Nevertheless, at least the first part is valuable for its clear and witty presentation of the history of evolutionary biology and its pointed critique of Modern Synthesis.

Hartl, Daniel L., and Andrew G. Clark. (2006) *Principles of Population Genetics*, 4th edition. Sunderland, MA: Sinauer Associates.

An excellent, fairly advanced, but accessible textbook on population genetics.

Mayr, Ernst. (2002) What Evolution Is. New York: Basic Books.

A basic but clear and useful presentation of classical evolutionary biology by one of the architects of Modern Synthesis.

Schroedinger, Erwin. (1992) What Is Life?: With "Mind and Matter" and "Autobiographical Sketches." Cambridge, MA: Cambridge University Press.

The first edition of this wonderful book was published in 1944, on the basis of a series of lectures that Schroedinger (one of the founders of quantum mechanics) delivered in Edinburgh, where he stayed during World War II. Obviously outdated, but remarkably lucid, prescient, and still relevant in the discussion of the role of entropy and information in biology.

Index

500 index

Ignicoccus hospitalis, 109	überoperons, 113
Methanosarcina, 108, 122, 191, 205	wall-to-wall organization, 109
mobilome, 128-131	giant bacteria, 202
Nanoarchaeum equitans, 108-109, 325	Haemophilus influenzae, 51, 65-66
signal transduction, 116-119	horizontal gene transfer (HGT) in,
Thaumarchaeota, 206	119-134, 141, 266-268
Thermoplasma, 207	hyperthermophilic bacteria, 484n
Thermoproteales, 207	importance of, 105-106
archaeal membrane phospholipids, 491n	mobilome, 128-131
Archaeal Progenitor of Eukaryotes	Mycobacterium leprae, 62
(APE), 205	Mycoplasma genitalium, 65-67, 483n
archaeo-eukaryotic DNA primase, 309	Pelagibacter ubique, 109, 246, 414
archezoa, 178, 181	Prochlorococcus, 246, 414
archezoan scenario of eukaryogenesis,	proteobacteria, 45, 177
198-204	Pseudomonas aeruginosa, 484n
Argonaute, 197	Rickettsia, 62
artifacts of phylogenetic analysis, 30	signal transduction, 116-119
ascoviruses, 318	Sorangium cellulosum, 108
Aspergillus fumigatus, 65	species abbreviations, 485-486n
ATPases, 118, 310, 335-336, 342, 349	stress-induced mutagenesis, 270
AU (Approximately Unbiased) test, 29	Thermotoga maritima, 92, 115, 122, 161
(PF	Thermus thermophilis, 129, 135
	bacterial IQ, 119
	bacterial phospholipids, 491n
1.	bacteriophages, 120, 267, 293, 299, 305
b	bacteriorhodopsin, 267
Bacillus subtilis, 92	baculoviruses, 324
bacteria	Bapteste, Eric, 150
Actinobacteria, 161	Baross, John, 379
alpha-proteobacteria, 45, 177	Bateson, William, 487n
antibiotic resistance, 267	Bayesian inference, 28
Aquifex aeolicus, 122, 484n	BBB (Biological Big Bang) model,
Aquificales, 161	159-160
Bacillus subtilis, 92	BDIM (Birth, Death, and Innovation
bacterial IQ, 119	Model), 93-94
conjugation, 132-133	Behe, Michael, 479n
contribution to origins of eukaryotes,	Beijerinck, Martinus, 294
189-192	bidirectional best hits, 55
Cyanobacteria, 161, 179	Big Bang, 432, 436
Deinococcus radiodurans, 129,	biological (evolutionary) information
136-137, 161	density, 228-230
Epulopiscium, 202	Biological Big Bang model, 159-160
Escherichia coli, 59, 120, 269, 410	biological concept of species, 14
evolution in, 40-41	biological importance, 88-89
expression regulation, 116-119	biological information transmission,
Firmicutes, 161	275-281
Fusobacteriae, 161	biophilic domain, 384
Gene Transfer Agents (GTAs), 121, 268	Birth, Death, and Innovation Model
genome architecture, 139	(BDIM), 93-94
conserved gene neighborhoods,	Blackburn, Elizabeth, 490n
113-115	Bohr, Niels, 427
gene order, 111-112	Boltzmann, Ludwig, 4, 33, 226
genome sequencing, 106-107	bootstrap analysis, 29
genomic signatures, 135-137	Bork, Peer, 148
genome size, 107-109	bricolage, 40
operons, 112	bureaucracy ceiling hypothesis, 98-99

index 501

С	CNE (constructive neutral evolution),
c-di-GMP-dependent signal	249-250, 416
transduction, 118	co-orthologs, 56
c-value paradox, 35	coacervate droplets, 378
cages, 279	coarse-grained macroscopic history,
Cairns, John, 269	432, 436
Caldiarchaeum subterraneum, 195-196	coding coenzyme handles (CCH), 369
canalization, 45	codons, 88, 278, 366-368
capacitation, 285-286	COGs (Clusters of Orthologous Genes),
capacitors, 286	55-57, 124-125, 483n
capsidless genetic elements, 490n	"combinatorial scenario" for origin of
capsids, 295	eukaryotes, 222-223
Carroll, Lewis, 491n	comparative genomics
Carroll, Sean, 157	breakdown of genes by evolutionary
Carsonella rudii, 133	age, 54
Cas (CRISPR-associated proteins),	Clusters of Orthologous Genes (COGs),
263-265	55-57
cas genes, 130, 263, 488-489n	co-orthologs, 56
Cas1 protein, 489n	elementary events of genome evolution,
caspase, 118	75-76
	evolutionary relationships between
catabolite repressor protein (CRP), 116 Caudovirales, 305	genes, 56
Cavalier-Smith, Tom, 183	fluidity of genomes, 59-61
Cavalli-Sforza, Luigi-Luca, 132	gene universe, 65-66
CC (Compressed Cladogenesis) model,	fractal structure of, 71-75
157-159	minimal gene sets, 66-69
	non-orthologous gene displacement
Coch Thomas 261	(NOGD), 69-71
Cech, Thomas, 361	genome architecture, 61
cell degeneration hypothesis of virus	genome diversity, 50-53
evolution, 315-316	genomescapes, 61-64
cells, emergence of, 339-343	homologs, 56
Central Dogma of molecular biology,	minimal gene sets, 66-69
259, 272, 360	multidomain proteins, 58-59
chance, 437	non-orthologous gene displacement
chaperones, 279	(NOGD), 69-71
Chargaff, Erwin, 23, 481n	orthologous lineages, 55-56
Chargaff rules, 23	orthologs, 56
chemical frameworks for the origin of	paralogs, 56
life, 377-382	sequence conservation, 54-55
chlorophyll-dependent	xenologs, 56
photosynthesis, 267	compartmentalization, 378
chloroplasts, 44	complementarity principle, 366, 417-418
Chromalveolata, 182-183, 189	complementation, 126
chromatin, 173-175	complexity. See also non-adaptive theory
chromosomal inversions, 76	of genome evolution
circoviruses, 298	complexity hypothesis, 126
Clustered Regularly Interspaced Short	constructive neutral evolution (CNE),
Palindromic Repeats (CRISPR), 130,	249-250
263-265	Darwinian modality of evolution, 5
clustering of prokaryotes, 110	definition of, 227-230
Clusters of Orthologous Genes (COGs),	evolution of, 415-416
55-57, 124-125, 483n	exaptation, 249
CMBR (cosmic microwave background	genomic complexity, 226
radiation), 431	as genomic syndrome, 242-245

importance of relaxed purifying	d
selection for evolution of complexity,	d'Herelle, Felix, 315, 338
237-242	Dagan, Tal, 148
"irreducible complexity," 5, 211,	Danchin, Antoine, 490n
248, 479n	Dennett, Dan, 4, 406
Kolmogorov complexity, 226-227	Darwin's Black Box: The Biochemical
organizational complexity, 226, 247-250	Challenge to Evolution (Behe), 479n
paradox of biological complexity,	Darwin, Charles, 1, 105, 257. See also
413-416	Darwinism
complexity hypothesis, 126	Darwinian modality of evolution, 2-6,
Compressed Cladogenesis model,	14, 17-18
157-159	interest in microbes, 484n
conjugation, 132-133	on evolution of organization
conserved gene neighborhoods, 113	complexity, 248
constrained trees, 29	On the Origin of Species, 3, 17
constructive neutral evolution (CNE),	Tree of Life (TOL) concept, 25, 145-148
249-250, 416	Darwin, Erasmus, 2
continuum of Darwinian and Lamarckian	Darwin-Eigen cycle, 353-355
mechanisms of evolution, 271-274	Darwinian modality of evolution, 2-6, 14,
Copernicus, Nicolaus, 427	17-18, 262, 271-274
core genes, 74	Darwinian threshold, 345, 349
coronaviruses, 296 correlomics studies, 85	Darwinism
cosmic microwave background radiation	explained, 2, 14, 17-18, 479n
(CMBR), 431	postmodern assessment of, 398-399
cosmology	gradualism, 402-403
anthropic principle, 433-437	selection, 399-402
Big Bang, 436	Tree of Life (TOL) , $403-404$
coupled replication-translation systems,	variation, 402-403
434-435	Dawkins, Richard, 35, 152, 283, 413,
eternal inflation, 382-391	481, 486n
inflation, 431-432, 436	Dayhoff, Margaret, 26
island (pocket) universes, 432, 436	defective interfering particles, 321
many worlds in one (MWO) model,	Deinococcus radiodurans, 129,
431-437	136-137, 161
multiverse, 432, 436	Delbruck, Max, 293
O-regions, 432-436	deletion/loss, 76
coupled replication-translation	Deleuze, Gilles, 422
systems, 434-435	derived shared characters, 183
Crenarchaeota, 191, 303, 318	desiccation resistance, 136
Crick, Francis, 21, 25, 35, 258, 360	determinism, 405-408
CRISPR (Clustered Regularly	dialectical materialism, 491n
Interspaced Short Palindromic	Dicer, 197
Repeats), 130, 263-265, 489n	direct-RNA-templating hypothesis, 369
CRISPR-associated proteins (Cas),	directons, 115
263-265	distance phylogenetic methods, 27
crown group phylogency, 181	diversity
CRP (catabolite repressor protein), 116	of genomes, 50-53
crystallization, 332-334	of replication-expression strategies in
Cyanobacteria, 161, 179	viruses, 296-297
cytoskeleton, 172, 175	DNA-dependent RNA polymerases,
, , ,	277, 296
	DNA packaging, 121
	DNA polymerase, 83
	LUNA etruoturo VI

DNA viruses, 304 Dobzhansky, Theodosius, 13, 16, 480n domains of life, 220, 412-413 domains, evolutionary, 58 Doolittle, W. Ford, 35, 147, 150 Drake hypothesis, 276 Drake, Jan, 276 Drosophila, 13, 63, 229 Drummond, Allan, 87 dsDNA genomes, 296 dsDNA-replicons, 312 dsDNA viruses, 298-299 dsRNA viruses, 312 duplication, gene, 76, 91-92, 250	eukaryogenesis, 172, 236, 280 archael and bacterial contribution to origin of eukaryotes, 189-192 eukaryotic introns, 217-220 Last Eukaryote Common Ancestor (LECA), 185-189 modeling, 198-199 origin of key functional systems of eukaryotic cell, 192-198 root of eukaryotic evolutionary tree, research into, 183-185 stem phase of eukaryotic evolution, 187-189 symbiogenesis versus archezoan scenarios, 198-204 symbiogenesis-triggered eukaryogenesis,
	204-217 Enlamata 41
е	Eukaryota, 41 eukaryote signature proteins (ESPs), 203
E. coli, 59, 120, 269, 276, 410	eukaryotes, 105
EAL domain, 117	antivirus defense, 323
Echols, Harrison, 269	chromatin organization, 173-175
effective population size (N_e) , 101,	compared to prokaryotes, 171-174, 178
231-233	cytoskeleton, 172, 175
Eigen, Manfred, 23, 353	definition of, 171
Eigen threshold, 353	endomembranes, 172, 175
Einstein, Albert, 418, 428	endosymbiosis, 175, 179-180
Eldredge, Niles, 14, 38, 46 elementary events of genome	eukaryogenesis
evolution, 75-76	archael and bacterial contribution to origin of eukaryotes, 189-192
ELFs (Evil Little Fellows), 110	eukaryotic introns, 217-220
emergent properties, 100	Last Eukaryote Common Ancestor
Empedokles, 2	(LECA), 185-189
empires of life, 294, 412-413	modeling, 198-199
endomembranes, 172, 175	origin of key functional systems of
endosymbiosis, 44-45, 175, 179-180	eukaryotic cell, 192-198
Engels, Friedrich, 491n	root of eukaryotic evolutionary
entropic genomes, 229	tree, research into, 183-185
entropy, 226-230, 283, 288. See also	stem phase of eukaryotic evolution,
genome streamlining environmental virology, 300-301	187-189
epigenetic inheritance, 288	symbiogenesis versus archezoan
epigenetic landscape, 45	scenarios, 198-204 symbiogenesis-triggered
epistasis, 405-406	eukaryogenesis, 204-217
Epulopiscium, 202	eukaryote signature proteins
ERP (Error-Prone Replication) principle,	(ESPs), 203
22-25, 101	evolution of exon-intron gene structure,
error catastrophe threshold, 281	234-237
error threshold, 275	FECA (First Eukaryotic Common
Error-Prone Replication (EPR) principle,	Ancestor), 236
22-25, 101	genome architecture, 61, 412
escaped gene scenario, 315-316	genome diversity, 53
Escherichia coli, 59, 120, 269, 276, 410	genomescapes, 63-64
ESPs (eukaryote signature proteins), 203 eternal inflation, 382-391, 432	horizontal gene transfer (HGT), 213, 266-268

internal architecture of, 172-174 intracellular trafficking, 173, 176 Last Eukaryote Common Ancestor (LECA), 187, 234-236 megagroups of, 183 mitochondria, 176-178 mitochondria-like organelles (MLOs), 178-179 nucleus, 173 ratio of nonsynonymous/synonymous substitutions, 34 reverse transcription, 266 RNA interference (RNAi), 265-266 spliceosomes, 197, 212, 249	First Eukaryotic Common Ancestor (FECA), 236 Fisher's theorem, 7-9, 480n Fisher, Ronald, 7, 21, 480-481n Fitch (least squares) method, 27 Fitch, Walter, 37 fitness, 8, 89 fitness landscapes, 480n explained, 8 Mount Fujiyama landscape, 9 flagella, 180 Forest of Life (FOL), 165-166 Biological Big Bang model, 159-160 Compressed Cladogenesis model,
splicing, 280	157-159
supergroups of, 180-185	definition of, 152
transcription factor-binding sites, 239	horizontal gene transfer (HGT),
Europa, potential discovery of life	164-165
forms on, 390	Inconsistency Score, 158
Euryarchaeota, 191	Nearly Universal Trees (NUTs), 153-156
Evil Little Fellows (ELFs), 110	web-like signals, 160-163
evolution as tinkering, 40 evolution of evolvability, 283-289	"A Formal Test of the Theory of Universal Common Ancestry"
evolution, definition of, 397	(Theobald), 491n
evolutionary bootstrapping, 212	Forterre, Patrick, 295, 339
evolutionary capacitors, 285	Foster, Patricia, 269
evolutionary domains, 58	Fowles, John, 479n
evolutionary entropy, 226-230, 283, 288.	Fox, George, 41
See also genome streamlining	fractal gene space-time, 110-111
evolutionary extrapolation, 284	fractal organization of gene universe,
evolutionary foresight, 283-289	71-75
evolutionary genomics, birth of, 43-44	Franklin, Rosalind, 21
evolutionary information density, 228-230	Freeland, Stephen, 367
evolvability, evolution of, 283-289	The French Lieutenant's Woman
exaptation, 39, 249, 368, 370 Excavates, 183, 186	(Fowles), 479n frozen accident, 366
exon-intron gene structure, 234-237	FtsK family, 310
exon theory of genes, 217	FtsK/HerA, 310
exosome, 280	functional space, 135-137
experimental evolution, 410-411	fundamental units of evolution, 151-153
expression regulation in bacteria and archaea, 116-119 extinction, 10	fungal prion proteins, 286 fungi, Aspergillus fumigatus, 65 Fusobacteriae, 161
eye, evolution of, 5, 248	1 4000 4000 1400 1400
	g
f	Gell-Mann, Murray, 486n
F-ATPases, 342	gene duplication, 36-37, 76, 91-92, 250
false (high-energy) vacuum, 432	gene homology, 37
FECA (First Eukaryotic Common	gene jumping, 268
Ancestor), 236 Feynman, Richard, 427	gene knockout, phenotypic effects of, 88-89
Firmicutes, 161	gene neighborhood networks, 113-115

"Gene Order Is Not Conserved in Bacterial Evolution" (Mushegian and	genome-to-phenotype mapping, 409-410
Koonin), 483n	genomescapes, 61-64
gene orthology, 55	identifying in selfish elements, 490n
gene replication, tree-like nature of, 149	informational genomes, 229
gene sharing, 113	orthologous lineages, 55-56
gene status, 86-87	sequence conservation, 54-55
gene transfer, 416	genomescapes, 61-64
Gene Transfer Agents (GTAs), 121,	genomic complexity, 226
268, 301	genomic hitchhiking, 113
gene universe, 65-66	genomic parasites, 324
elementary events of genome evolution,	genomic signatures, 135-137
75-76	genomic syndrome, 399
fractal structure of, 71-75	geochemical frameworks for the origin of
minimal gene sets, 66-69	life, 377-382
non-orthologous gene displacement	GGDEF domain, 117
(NOGD), 69-71	giant bacteria, 202
generalized uniformitarianism, 16	giant viruses, 293
genes in pieces, 217	Gibbs, Josiah Willard, 33
genetic draft, 11, 15	Gilbert, Walter, 217, 361
genetic drift, 9, 15, 415	Gillespie, John, 10
The Genetical Theory of Natural	GINS subunits, 203
Selection (Fisher), 7	giruses, 293
genetics	Global Ocean Survey, 301
birth of, 6-7	Gogarten, J. Peter, 147
population genetics, 7-12	Gould, Stephen Jay, 14, 38, 249, 406
Fisher's theorem, 7-8	gradualism, 15, 38-40, 402-403. See also
fitness landscapes, 8-9	punctuated equilibrium
genetic draft, 11, 15	The Grand Design (Hawking and
genetic drift, 9-10, 15	Mlodinov), 493n
Genetics and the Origin of Species	Gray, Michael, 249
(Dobzhansky), 13	Greider, Carol, 490n
genome streamlining, 242-245, 252, 414	Gros, Olivier, 206
genome-to-phenotype mapping, 409-410	Group II self-splicing introns, 209-210
genomes	Group selection, 341
architecture, 61	GTAs (Gene Transfer Agents), 121,
breakdown of genes by evolutionary	268, 301
age, 54	GTPases, 118, 356
definition of, 50	Guattari, Felix, 422
diversity, 50-53	Guth, Alan, 431
entropic genomes, 229	, ,
fluidity of, 59-61	
genome evolution, non-adaptive theory	
of, 250-253	1.
gene architecture in eukaryotes,	h
234-237	H+(Na+)-ATPase/ATP synthase, 342
genome streamlining, 242-245	Haeckel, Ernst, 17, 40, 105, 146
importance of relaxed purifying	Haemophilus influenzae, 51, 65-66
selection for evolution of	Haldane, J. B. S., 7, 315, 338, 377,
complexity, 237-242	481-482n
population bottlenecks, 232	hallmark genes, 305-314
population genetics, 231-233,	halobacteria, 122
245-247	Hawking, Stephen, 427, 493n
genome streamlining, 242-245, 252, 414	Heat Shock Protein (HSP), 285
6- 3 8, 3, - 7, 111	Heisenberg principle, 432

helicases, 197	coupled replication-translation systems,
helix-turn-helix (domain), 117	434-435
herA-nurA operon, 129	island (pocket) universes, 432, 436
Heraclites, 2	many worlds in one (MWO) model,
heredity. See inheritance	431-437
heterokonts, 183	multiverse, 432
HGT (horizontal gene transfer), 147-148,	O-regions, 432-436
164-165, 266-268, 336, 403	influenza viruses, 275
HGT optimization hypothesis, 132-133	information theory, 275
in eukaryotes, 213-214	information transmission, 275-281
in prokaryotes, 119-134, 141	informational genomes, 229
'highly conserved' genes, 55	inheritance
highly resolved tree of life, 148	epigenetic inheritance, 288
hitchhiking, 11, 15	Lamarckian inheritance, 487n
HIV, 275	compared to Darwinian modality
Hodgkinia cicadicola, 107, 133	of evolution, 262
holographic bound, 432	compared to Wrightian modality of
At Home in the Universe: The Search for	evolution, 262
the Laws of Self-Organization and	continuum of Darwinian and
Complexity (Kauffman), 486n	Lamarckian mechanisms of
Homo sapiens, 92	evolution, 271-274
homologous genes, 37	CRISPR-Cas system of antivirus
homologous recombination, 150-151	immunity in prokaryotes,
homologs, 56	263-265
homoplasy, 30	eukaryotic RNA interference
horizontal gene transfer. See HGT	(RNAi), 265-266
HSP (Heat Shock Protein), 285	explained, 257-259
Hurst, Lawrence, 367	horizontal gene transfer (HGT),
Huxley, Julian, 13	266-268
Huxley, Thomas Henry, 16, 479n	Lamarckian-type epigenetic
Hydrogen Hypothesis, 207	inheritance, 266
hydrogenosomes, 178	piRNAs, 266
hydrothermal vents, 337, 379, 381	principles of, 259-261
hyperthermophiles, 135	stress-induced mutagenesis,
hyperthermophilic bacteria, 135, 484n	268-271
	Mendelian inheritance, 6
	inorganic catalysts, 417
	insertion, 76
i	intelligent design (ID), 479n
ioneahadral (anharical) cancida 249	interferon system, 323
icosahedral (spherical) capsids, 342	intergenic regions, 139
icosahedral viruses, 308	intracellular trafficking, 173, 176
ID (intelligent design), 479n	intron excision, 200
Ignicoccus hospitalis, 109	introns
illegitimate recombination, 150	eukaryotic introns, 217-220
immunoglobulin gene clusters, 323	evolution of exon-intron gene structure,
in paralogs, 56	234-237
Inconsistency Score, 158	intron excision, 200
Inconstancy of the Genome	"introns early" hypothesis, 217
(Khesin), $481n$	self-splicing introns, 200, 209-210
infectious proteins, 489n	"introns early" hypothesis, 217
inflation 421 422 426	iron sulfide, 337
inflation, 431-432, 436	"irreducible complexity," 5, 211,
inflationary cosmology	248, 479n
anthropic principle, 433-434, 437 Big Bang, 436	irremediable complexity, 250

irreversible gene loss, 416 island (pocket) universes, 383, 432, 436 Ivanovsky, Dmitri, 294	CRISPR-Cas system of antivirus immunity in prokaryotes, 263-265 eukaryotic RNA interference (RNAi), 265-266 explained, 257-259
Jacob, Francois, 39, 112, 406 jelly roll capsid protein (JRC), 307-308 Jenkin, Henry Charles Fleeming, 4 Johansson, Wilhelm, 7 JRC (jelly roll capsid protein), 308 "jumping genes" (mobile elements), 36 junk DNA, 35-36, 239-241 junk recruitment, 239-241, 252 Just So Stories (Kipling), 482n	horizontal gene transfer (HGT), 266-268 Lamarckian-type epigenetic inheritance, 266 piRNAs, 266 principles of, 259-261 stress-induced mutagenesis, 268-271 Lamarckian-type epigenetic inheritance, 266 Lamarckism, 3, 257-259. See also Lamarckian inheritance lambda phage, 299 Landweber, Laura, 369 Lane, Nick, 201 Last Ancestral Universal Common State
Kammerer, Paul, 258, 487-488n Kauffman, Stuart, 486n Kelvin, Lord William Thomson, 4 Kepler, Johannes, 427 Khesin, Roman, 481n Kimura, Motoo, 31 Kipling, Rudyard, 482n Kishino-Hasegawa test, 29 Knight, Rob, 369 knockout, phenotypic effects of, 88-89 Kol'tzov, Nikolai, 481n Kolmogorov complexity, 226-227, 486n Kuhn, Thomas, 422	(LUCAS), 332-333, 346-347 Last Eukaryote Common Ancestor (LECA), 185-189, 234-236 Last Universal Common (Cellular) Ancestor (LUCA), 17, 329, 491n lipid vesicle model of precellular evolution, 340 LUCAS (Last Ancestral Universal Common State), 332 primordial Virus World model of precellular evolution, 337-340, 343, 346 progenotes, 334 reconstructing gene repertoire of, 330-337
La Philosophie Zoologique (Lamarck), 479n lac operon, 269, 409 lac-repressor, 116 lactobacilli, 247 Lamarck, Jean-Bapteste, 2-3, 257, 479n Lamarckian evolution, 3, 403. See also Lamarckian inheritance Lamarckian inheritance, 257, 487n compared to Darwinian modality of evolution, 262 compared to Wrightian modality of evolution, 262 continuum of Darwinian and Lamarckian mechanisms of evolution, 271-274	Last Universal Common Ancestor of Viruses (LUCAV), 313-314 lateral genomics, 165 Lawrence, Jeffrey, 115, 127 LBA (long branch attraction), 26, 30 least squares (Fitch) method, 27 LECA (Last Eukaryote Common Ancestor), 185-189, 234-236 Lederberg, Joshua, 132 Lenski, Richard, 276, 410 Lewontin, Richard, 38, 249 LexA, 116 life, definition of, 352 life, origin of, 351-353 Anthropic Chemical Evolution (ACE), 386-391 chemical frameworks, 377-382 codon assignments, 366-368 eternal inflation, 382391 geochemical frameworks, 377-382

primordial broth scenario, 377	maximum parsimony (MP), 26-27
RNA World hypothesis	Mayr, Ernst, 13-14, 25, 54
problems with, 375-377	mbp (mega basepairs), 52
protein domain evolution, 355-360	McClintock, Barbara, 36, 268
ribozymes, 360-366	McDonald-Kreitman test, 35
translation, 368-375	mega basepairs (mbp), 52
lipid vesicle model, 340	megagroups (of eukaryotes), 183
lipid vesicles, 341	megaplasmids, 129
Lobkovsky, Alexander, 88	megaverse, 436
log-normal distribution, 84	meiosis, 214
long branch attraction (LBA), 26, 30	Mendel, Gregor, 4-7
look-ahead effect, 282	Mendelian inheritance, 6
Lost City, 380	Mereschkowsky, Konstantin, 44, 482n
LUCA (Last Universal Common	mesophiles, 136
(Cellular) Ancestor), 17, 329, 491n	mesophilic archaea, 205
lipid vesicle model of precellular	metabolomes, 82
evolution, 340	metagenomics, 293, 300-302
LUCAS (Last Ancestral Universal	metanarratives
Common State), 332	construction of, 424
primordial Virus World model of	trust in, 421-425
precellular evolution, 337-340,	metaphors in biology, 481n
343, 346	metaphysical implications, 426
progenotes, 334	Methanocaldococcus jannaschii, 65, 69
reconstructing gene repertoire of,	Methanosarcina, 122, 191, 205
330-337	Methanosarcina barkeri, 108
LUCAS (Last Ancestral Universal	Methanosarcinales, 118
Common State), 332-333, 346-347	microbes Downin's interest in 484s
LUCAV (Last Universal Common	Darwin's interest in, 484n
Ancestor of Viruses), 313-314	evolution in, 40-42
Lyell, Charles, 2-3	microcompartments, networks of, 337 microevolution, 16
Lynch, Michael, 131, 230, 250, 276, 400 Lyotard, Jean-Francois, 421	microRNAs, 238
Lysenko, Trofim, 488n	microspheres, 378
Lysenkoist pseudoscience, 258	mimivirus, 293, 298
Lysenkoist pseudoseienee, 200	minimal gene sets, 66-69
	misfolding, 87-91, 279-280
	mitochondria, 176-178
	mitochondria-like organelles (MLOs),
m	178-179
M-theory, 493n	mitosomes, 178
macroevolution, 5, 16	ML (maximum likelihood), 28
macroscopic (coarse-grained) history,	Mlodinow, Leonard, 427, 493n
432, 436	MLOs (mitochondria-like organelles),
Major Histocompatibility Complex, 323	178-179
many worlds in one (MWO) model,	mobile elements, 36
384-386, 431-437	mobilome, 128-131
mapping genomes to phenotype, 409-410	model-dependent realism, 427-430
Margulis, Lynn, 44, 180	Modern Synthesis, 7
Mars, potential discovery of life	fundamental principles of, 14-17
forms on, 390	origins of, 13-14
Martin, William, 148, 201, 207, 216	postmodern assessment of, 398-399
Maslov, Sergei, 98	gradualism, 402-403
master universe, 436	selection, 399-402
maturases, 364	Tree of Life (TOL), $403-404$
maximum likelihood (ML), 28	variation, 402-403
	problems with, 18-19

molecular clock, 26	measuring by sequence comparison,
molecular evolution	32-35
birth of, 25-26	population genetics theory, 231-233
gene duplication, 36	positive selection, 34
junk DNA, 35	purifying (negative) selection, 12, 34-35
mobile elements, 36	role and status of, 399-402
molecular clock, 26	stabilizing selection, 12-13
neutral theory, 31-32	NCLDV (Nucleo-Cytoplasmic Large
orthologs, 37	DNA Viruses), 302, 305, 307
paralogs, 37	nearly neutral networks, 90-91 Nearly Universal Trees (NUTs), 153-156
selfish genes, 35 molecular phenomic variables,	negative selection, 12, 34-35
correlations with evolutionary rates,	and evolution of complexity, 237-242
83-89	population genetics theory, 231-233
molecular phylogenetics.	negative-strand RNA viruses, 312
See phylogenetics	negentropy, 18
Monera, 105. See also prokaryotes	neighbor-joining (NJ) method, 27
Monod, Jacques, 112, 423	nematodes, 300
monophyly, 302-305	neo-Darwinism, 7
Mount Fujiyama landscape, 9	neofunctionalization, 35
MP (maximum parsimony), 26-27	nested genes, 218
mRNAs, 296	net of life, 147, 165
Mulkidjanian, Armen, 381	networks, 94, 483n
Müller's ratchet, 131	of microcompartments, 337
Müller, Miklos, 131, 207	nearly neutral networks, 90-91
multidomain proteins, 58-59	node degree distribution, 94
multiverses, 384, 432, 436	scale-free networks, 95-96
Mushegian, Arcady, 67, 483n	universal scaling laws, 97-99
mutagenesis, stress-induced,	neutral theory, 31-32, 252
268-271, 403	The New Foundations of Evolution: On
mutations, 402	the Tree of Life (Sapp), $485n$
mutation rates, 275-277	Newton, Isaac, 427-428
mutational meltdown, 131, 275, 280	Nidovirales, 298
phenotypic mutations, 277-283	NJ (neighbor-joining) method, 27
stress-induced mutagenesis, 268-271	NMD (Nonsense-Mediated Decay),
de Vries mutational theory of	211, 280
evolution, 6	node degree distribution, 94
MWO (many worlds in one) model,	NOGD (non-orthologous gene
384-386, 431-437	displacement), 69-71, 126, 140
Mycobacteria, 247	noise, 277-283
Mycobacterium leprae, 62	non-adaptive theory of genome evolution
Mycoplasma genitalium, 65-67, 483n	250-253, 415-416
	case study: gene architecture in
	eukaryotes, 234-237
	genome streamlining, 242-245
n	importance of relaxed purifying
Naegleria gruberi, 186	selection for evolution of complexity, 237-242
Nanoarchaeum equitans, 108, 247, 325	
natural selection, 3-4	population bottlenecks, 232
bricolage concept, 40	population genetics, 231-233, 245-247 non-orthologous gene displacement
explained, 15	(NOGD), 69-71, 126, 140
Fisher's theorem, 7-9	non-sequence-based genome trees, 30
in generative models for the	nonhomologous (illegitimate)
genome-wide universals, 100	recombination, 150
group selection, 341	

Nonsense-Mediated Decay (NMD), 211, 280 nonsynonymous positions, 33 nonsynonymous substitutions, 32-35 NTP (nucleoside triphosphates), 356 NTPase, 310 nuclear envelope, 211 nuclear pore complexes, 211 Nucleo-Cytoplasmic Large DNA Viruses (NCLDV), 302, 305-307 nucleomorph, 179 nucleoside triphosphates (NTP), 356	RNA World hypothesis problems with, 375-377 protein domain evolution, 355-366 ribozymes, 360-366 translation, 368-375 On the Origin of Species (Darwin), 3, 17, 145-146, 258 orthologous lineages, 55-56 orthologs, 37, 55-56 out paralogs, 56
nucleus, 173	
nudiviruses, 318	n
NUTs (Nearly Universal Trees), 153-156	P. Isaac 256 250 4025
	P-loop, 356, 359, 492n
	packaging ATPase, 310 Paleoproterozoic era, 204
	Paley, William, 486n
0	Palm-domains, 312
O-regions, 432-436	pangenesis, 4
observable regions of the universe	pangenomes, 107, 110
(O-regions), 432-436	Panglossian paradigm, 38
off-lattice models (of protein folding), 88	papilloma viruses, 311
Ohno, Susumu, 36	papovaviruses, 309
Ohta, Tomoko, 32	paradigms, 25, 32, 35-36
oligonucleotides, 367-369	paralogs, 37, 56, 92-93
oligophyly, 325	parasites
one-component systems, 117	emergence of, 345
Oparin, Alexander Ivanovich, 377, 492n	inevitability of, 320-321
operonization, 115 operons, 112, 139	Red Queen hypothesis, 322-325 Parmenides, 2
herA-nurA operon, 129	Pasteur, Louis, 377
lac operon, 269	pathogenicity islands, 59, 120
operonization, 115	Pauling, Linus, 25, 146
selfish operon hypothesis, 115	PCD (programmed cell death), 118, 323
selfish operons, 127, 139	Pelagibacter ubique, 109, 246, 414
überoperons, 113	Penny, David, 353
Opisthokonts, 182	peptidyltransferase ribozymes, 363
ORFans, 110-111, 128, 306	Phage Group, 293
organization of bacterial and archaeal	phagocytosis, 202
genomes, 109	phenomic variables, correlations with
organizational complexity, 226, 247-250	evolutionary rates, 83-89
organs, use and disuse of, 260	phenotypes, 401
Orgel, Leslie, 35, 361	genome-to-phenotype mapping,
origin of life, 351-353, 416-417	409-410
Anthropic Chemical Evolution (ACE), 386-391	phenotypic mutations, 277-283 *Philosophie Zoologique (Lamarck), 257
chemical frameworks, 377-382	phospholipids, 491n
codon assignments, 366-368	photosynthesis, 267
eternal inflation, 382-391	phyletic pattern, 30
geochemical frameworks, 377-382	phylogenetics, 26, 146
primordial broth scenario, 377	artifacts of, 30
=	Bayesian inference 28

bootstrap analysis, 29	Postmodern Synthesis, 417-419
least squares (Fitch) method, 27	statistical physics, 404-405
maximum likelihood (ML), 28	stochasticity, 405-408
maximum parsimony (MP), 27	viruses and prokaryotes, 411
neighbor-joining (NJ) method, 27	postmodernist philosophy, 421-424
non-sequence-based genome trees, 30	power law 92-96
sequence-based methods, 27	poxviruses, 308, 324
shared derived characters, 30	pre-cellular compartmentalization, 378
simulated trees, 29	preferential attachment, 95-96
statistical tests (tree topology), 29	primordial broth, 337, 377
ultrametric (simple hierarchical	primordial Virus World model of
clustering) methods, 27	precellular evolution, 315-317, 337-340,
physics. See statistical physics	343, 346
piRNAs, 266	prions, 489n
PIWI-interacting (pi)RNA, 265-266	prion-mediated potentiation of
Planctomycetes, 216	evolvability, 286
Plantae, 182-183, 189, 219	self-propagating prions, 491n
plasmids, 128, 304, 324	probability, 437
plasmodesmata, 299	Prochlorococcus, 246, 414
plastids, 179	progenotes, 334
polydnaviruses, 318	programmed cell death (PCD), 118, 323
polyoma viruses, 311	progress, 253, 260, 486n
polyphyly, 302-305	prokaryotes, 105. See also
Poole, Anthony, 274, 374	archaea; bacteria
Popper, Karl Raymund, 429-430	antivirus defense, 323
population bottlenecks, 208, 232	chromatin organization, 175
population dynamics, 400	clustering of, 110
population genetics, 7-12, 231-233,	compared to eukaryotes, 171-174, 178
245-247, 281	conjugation, 132-133
Fisher's theorem, 7-8	CRISPR-Cas system of antivirus
fitness landscapes	immunity, 263-265
explained, 8	difficulty in defining, 138-139
genetic draft, 11, 15	evolution in, 40
genetic drift, 9-10, 15	expression regulation, 116-119
Mount Fujiyama landscape, 9	fluidity of genes, 59
founders of, 481n	fractal gene space-time, 110-111
positive selection, 34, 231-233	Gene Transfer Agents (GTAs), 121, 268
positive-strand RNA viruses, 304	genome architecture, 61, 139
Postmodern Synthesis, 417-421	conserved gene neighborhoods,
postmodernism, 397-398, 421-424	113-115
complementarity principle, 417-418	gene order, 111-112
determinism, 405-408	genome size, 107-109
empires and domains of life, 412-413	operons, 112
enigma of origin of life, 416-417	überoperons, 113
experimental evolution, 410-411	wall-to-wall organization, 109
genome-to-phenotype mapping,	genome diversity, 53
409-410	genomescapes, 61
paradox of biological complexity,	genomic signatures, 135-137
413-416	HGT (horizontal gene transfer),
postmodern reassessment of Darwin	119-134, 141, 147, 266-268
and Modern Synthesis, 398-399	mobilome, 128-131
gradualism, 402-403	ORFans, 110-111
selection, 399-402	pangenomes, 110
Tree of Life (TOL), 403-404	ratio of nonsynonymous/synonymous
variation, 402-403	substitutions, 34

signal transduction, 116-119 signals of tree-like and web-like	Protista, 105. See also eukaryotes proto-ribosome, 374
evolution, 160-163	Prusiner, Stanley, 489n
transcription-translation coupling,	pseudo-paralogs, 94
173, 176	pseudogenes, 62
proofreading, 277	Pseudomonas aeruginosa, 484n
properties, emergent, 100	Puigbo, Pere, 152
protease, 118	punctuated equilibrium, 37-38
proteasome, 194, 280	purifying (negative) selection, 12, 34-35
protein between	and evolution of complexity, 237-242
misfolding, 87	population genetics theory, 231-233
off-lattice folding model, 88	
Protein Breakthrough, 366, 374	
protein-coding sequences, 34-35	
proteinoids, 378	q-r
proteins	The Quark and the Jaguar: Adventures
archaeo-eukaryotic DNA primase, 309	in the Simple and the Complex
Argonaute, 197	
ATPase subunit of terminase, 310	(Gell-Mann), $486n$
Cas (CRISPR-associated proteins),	radiovaciatance 126 127
263-265	radioresistance, 136-137
Cas1, 489n	Radman, Miroslav, 269
chaperones, 279	random genetic drift, 263
Dicer, 197	random variation, 3, 14
eukaryote signature proteins	randomness, 437
(ESPs), 203	Raoult, Didier, 295, 422, 493n
fungal prion proteins, 286	rare genomic changes (RGCs), 30, 183 ratchet of constructive neutral
Heat Shock Protein (HSP), 280, 285	_
infectious proteins, 489n	evolution, 416
jelly roll capsid protein (JRC), 307-308	ratchet of gene transfer, 208, 416
multidomain proteins, 58-59	ratchet of irreversible gene loss, 416
packaging ATPase, 310	RCRE (rolling circle replication initiation
Protein Breakthrough, 366, 374	endonuclease), 309, 311
protein domain evolution, 355-360	RdRp (RNA-dependent RNA
protein evolution	polymerase), 298, 311
model of misfolding-driven protein	realism, model-dependent, 427-430
evolution, 90-91	reciprocal altruism, 341
robustness to misfolding, 87, 90-91,	Reclinomonas americana, 176, 184
279-280	recombination, 76
protein folding	homologous recombination, 150-151
misfolding, 87, 90-91, 279-280	nonhomologous (illegitimate)
models of, 483n	recombination, 150
protein sequence conservation, 26	tree-like nature of, 150-151
reverse transcriptase (RT), 298, 311	reconstructed gene repertoire of LUCA
RNA-binding proteins, 287	(Last Universal Common (Cellular)
RNA-dependent RNA polymerase	Ancestor), 330-337
(RdRp), 298, 311	Red Queen hypothesis, 322-325
rolling circle replication initiation	regulators, 116, 286
endonuclease (RCRE), 309-311	regulons, 116
security proteins, 324	relaxed purifying selection and evolution
Sm proteins, 197	of complexity, 237-242
Superfamily 3 helicase (S3H), 307-308	replication
ubiquitin, 195-196	Darwin-Eigen cycle, 353-355
UL9-like superfamily 2 helicase, 309	Eigen threshold, 353
proteobacteria, 177	error rates, 275-277
proteomes, 82	

Error-Prone Replication (EPR) principle, 22-25 replication-expression strategies in viruses, 296-297 tree-like nature of, 149	RRM (RNA recognition motif), 312 rRNA, 41, 176, 364 RT (reverse transcriptase), 210, 296-298, 311 Russell, Michael, 337, 379
replicators, 320-321. See also origin of life	,,,
replicon fusion, 129	
restriction enzymes, 130	
restriction-modification (RM), 128	
retro-transcribing elements, 296-298,	S
304, 312	S3H (Superfamily 3 helicase), 307-308
reverse gyrase, 135	Saccharomyces cerevisiae, 65, 89, 92
reverse transcriptase (RT), 210, 296,	Sagan, Dorion, 180
298, 311	Sagan, Lynn (Margulis), 44
reverse transcription, 266	Sapienza, Carmen, 35
RGCs (rare genomic changes), 30, 183	Sapp, Jan, 485n
Rhizaria, 183	scale-free networks, 95-96
rhizome of life, 404, 422	scaling
rhizomes, 493n	scale-free networks, 95-96
ribbon-helix-helix (domain), 117	universal scaling laws, 97-99
ribosomal (r)RNA, 176	Schroedinger, Erwin, 18, 481n
ribosomal peptidyltransferase, 363	sea anemone, 65
ribosomal superoperon, 113	security proteins, 324
ribozymes, 209, 360-362, 365-366	selection
Rickettsia, 62, 177, 247	group selection, 341
RM (restriction-modification), 128	population genetics theory, 231-233
RNA 3'-aminoacylation, 363	purifying (negative) selection, 12, 34-35
RNA-binding proteins, 287	and evolution of complexity,
RNA demethylases, 276	237-242
RNA endonuclease toxins, 130	population genetics theory,
RNA interference (RNAi), 265-266, 345	231-233
RNA ligase, 363	role and status of, 399-402
RNA polymerase, 363	selection amplification (SELEX), 367
RNA recognition motif (RRM), 312	SELEX (selection amplification), 367
RNA viruses. See also viruses	self-aminoacylation, 363
negative-strand RNA viruses, 312	self-propagating prions, $491n$
positive-strand RNA viruses, 296	self-splicing introns, 200, 209-210, 249
RNA World hypothesis, 312	selfish cooperators, 341-342, 346
problems with, 375-377	The Selfish Gene (Dawkins), 481n
protein domain evolution, 355-360	selfish genes, 35, 152, 413
ribozymes, 360-362, 365-366	selfish operons, 115, 127, 139
RNA-dependent RNA polymerase	semi-adaptive hypothesis on evolution of
(RdRp), 298, 311	mutation rates, 276
RNAi (RNA interference), 265-266, 345	sequence analysis of protein-coding
RNAse P, 364	sequences, 34-35
RNome, 238	sequence-based phylogenetic
robustness, 45, 87-91	methods, 27
robustness of biological systems, 283-287	sequence comparison, 32-35
robustness to misfolding, 279-280	sequence conservation, 54-55
Rogozin, Igor, 184	serine-threonine protein kinases, 118
rolling circle replication initiation	Shannon formula for entropy, 226
endonuclease (RCRE), 309-311	Shannon, Claude, 275, 480n
Rossmann fold, 355	shared derived characters, 30
Rous Sarcoma Virus, 293	signal recognition particle (SRP), 336
RpoS, 269	signal transduction, 116-119

simple hierarchical clustering (ultrametric) methods, 27	supergroups (of eukaryotes), 180-185 supernetwork, 157
Simpson, George Gaylord, 13-14, 38	superoperon, 341
simulated trees, 29	supplying devices, 414
singularity, 432	survival of the fittest, 3, 287
· .	survival of the flattest, 9, 297
siRNA system, 265	Susskind, Leonard, 432
size of genomes	
in viruses, 298	symbiogenesis-triggered eukaryogenesis,
in bacteria and archaea, 107-109	198-217 "
Sm proteins, 197, 249	"symbiosis islands," 120
small nuclear (sn)RNAs, 249, 364	synapomorphies, 30, 183
Smith, Adam, 15	synonymous substitutions, 32-35
Smith, Hamilton, 51	systems biology, 82
Smith, John Maynard, 10	Birth, Death, and Innovation Model
snRNAs, 249	(BDIM), 93-94
Sorangium cellulosum, 108	bureaucracy ceiling hypothesis, 98-99
SOS (stress response) regulator, 116	correlations between evolutionary and
SOS repair, 269, 284	phenomic variables, 83-89
spandrels, 38-40	emergent properties, 100
"Spandrels of San Marco" (Gould and	gene duplication, 91-92
Lewontin), 38	gene status, 86-87
species abbreviations, 485-486n	networks
species tree, 146, 159	nearly neutral networks, 90-91
Spiegelman, Sol, 245, 410	node degree distribution, 94
spliceosomes, 197, 212, 249	preferential attachment, 95-96
splicing, 209-210, 237-239, 280, 364	scale-free networks, 95-96
sponges, 65	universal scaling laws, 97-99
SRP (signal recognition particle), 336	stochasticity, 99-101
ssDNA, 296	universal distribution of paralogous
ssDNA-replicons, 311	family sizes, 92-93
stabilizing selection, 12-13	Szathmary, Eors, 341, 365
Stanier, Roger, 106	Szostak, Jack, 340, 490n
Stanley, Wendell, 295	-
statistical physics, 81, 101, 404-405.	
See also systems biology	
statistical tests (tree topology), 29	1
stem phase of eukaryotic evolution,	t
187-189	TA (toxin-antitoxin) systems, 128-130
stereochemical hypothesis, 367	tailed bacteriophages, 305
stochasticity, 99-101, 405-408	Taq polymerase, 136
Stoltzfus, Arlin, 249	telomerase, 213, 299, 312, 490n
streamlined genomes, 414	temperate bacteriophages, 299
streamlining, 217, 242-245, 252	terminase, ATPase subunit of, 310
stress response (SOS) regulator, 116	testing performance of phylogenetic
stress-induced mutagenesis, 268-271, 403	methods, 29
strict gradualism, 15	Tetrahymena, 361
string theory landscape, 432	Thaumarchaeota, 191, 206
"strong" anthropic principle, 433, 492n	Theobald, Douglas, 491n
Structure of Scientific Revolutions	thermophiles, 136
(Kuhn), 422	thermophilic phenotype, 135
struggle for existence, 2	Thermoplasma, 207
subfunctionalization, 370-372	Thermoproteales, 207
substitution, 76	Thermotoga maritima, 92, 115, 122
Superfamily 3 helicase (S3H), 307-308	Thermotogae, 161
(0022), 00. 000	Thermus thermophilis, 129

Theseus ship metaphor, 490n Thomson, William (Lord Kelvin), 4 Thousand Plateaus: Capitalism and Schizophrenia (Deleuze and Guattari), 493n three-domain Tree of Life, 41-43 Through the Looking Glass and What Alice Found There (Lewis), 491n time arrow, 3 Timofeev-Resovski, Nikolai, 481n tinkering, evolution as, 40 TOL. See Tree of Life toxin-antitoxin (TA) systems, 128-130, 324 trans-translation, 280 transcription, 238 error rates, 277 transcription factor-binding sites, 239-241 transcription factors, 241-242 transcription factors, 241-242 transcription-translation coupling, 173, 176, 199, 216 transcriptomes, 82 transitional epochs	U Ub (ubiquitin), 195-196 Ub ligase, 196 überoperons, 113 ubiquitin, 195-196, 203 ubiquitin ligase, 196 ubiquity of viruses, 300-301 UL9-like superfamily 2 helicase, 309 ultrametric (simple hierarchical clustering) methods, 27 uniformitarianism, 16, 398 Unikonts, 182-183 Universal Common Ancestry hypothesis, 146 universal distribution of paralogous family sizes, 92-93 universal scaling laws, 97-99 universes island (pocket) universes, 383, 432, 436 master universes, 436 untranslated regions (UTRs), 86 use and disuse of organs, 260 UTRs (untranslated regions), 86
Biological Big Bang model, 159-160 Compressed Cladogenesis model,	V
Compressed Cladogenesis model,	
157-159	•
157-159 transformation, 38, 45	V-ATPases, 343
157-159 transformation, 38, 45 translation	V-ATPases, 343 Van Niel, Cornelius, 106
transformation, 38, 45	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n
transformation, 38, 45 translation error rates, 277 origin of, 368-375	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404,	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL)	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153 three-domain Tree of Life, 41-43	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301 virus defense islands, 322
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153 three-domain Tree of Life, 41-43 tree topology, 29	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301 virus defense islands, 322 Virus World, 294, 314-319, 325-326,
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153 three-domain Tree of Life, 41-43	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301 virus defense islands, 322 Virus World, 294, 314-319, 325-326, 335-346, 411, 490n
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153 three-domain Tree of Life, 41-43 tree topology, 29 Trichoplax, 65	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301 virus defense islands, 322 Virus World, 294, 314-319, 325-326, 335-346, 411, 490n viruses, 411-413, 482n
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153 three-domain Tree of Life, 41-43 tree topology, 29 Trichoplax, 65 triplicase, 375 tRNAs, 176, 359, 364, 369-373 tubulin, 172, 203	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301 virus defense islands, 322 Virus World, 294, 314-319, 325-326, 335-346, 411, 490n viruses, 411-413, 482n antivirus defense, 322-325
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153 three-domain Tree of Life, 41-43 tree topology, 29 Trichoplax, 65 triplicase, 375 tRNAs, 176, 359, 364, 369-373	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301 virus defense islands, 322 Virus World, 294, 314-319, 325-326, 335-346, 411, 490n viruses, 411-413, 482n
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153 three-domain Tree of Life, 41-43 tree topology, 29 Trichoplax, 65 triplicase, 375 tRNAs, 176, 359, 364, 369-373 tubulin, 172, 203	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301 virus defense islands, 322 Virus World, 294, 314-319, 325-326, 335-346, 411, 490n viruses, 411-413, 482n antivirus defense, 322-325 bacteriophages, 293, 299, 305
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153 three-domain Tree of Life, 41-43 tree topology, 29 Trichoplax, 65 triplicase, 375 tRNAs, 176, 359, 364, 369-373 tubulin, 172, 203	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301 virus defense islands, 322 Virus World, 294, 314-319, 325-326, 335-346, 411, 490n viruses, 411-413, 482n antivirus defense, 322-325 bacteriophages, 293, 299, 305 baculoviruses, 324
transformation, 38, 45 translation error rates, 277 origin of, 368-375 TRAPP complex, 203 Tree of Life (TOL), 17, 25, 165, 403-404, 485n. See also Forest of Life (FOL) arborescence, 149 controversy over, 147-148 "highly resolved tree of life," 148 history of, 145-147 intrinsic tree-like nature of fundamental units of evolution, 149-150, 153 three-domain Tree of Life, 41-43 tree topology, 29 Trichoplax, 65 triplicase, 375 tRNAs, 176, 359, 364, 369-373 tubulin, 172, 203	V-ATPases, 343 Van Niel, Cornelius, 106 Van Nimwegen, Eric, 97, 484n Van Valen, Leigh, 491n variation, 402-403 Venter, J. Craig, 51, 301 Vilenkin, Alexander, 383 viral domains, 413 viral hallmark genes, 305-314 viral packaging, 342 Virchow, Rudolf, 318 virions, 295, 342 viroids, 295, 298 viromes, 300-301 virus defense islands, 322 Virus World, 294, 314-319, 325-326, 335-346, 411, 490n viruses, 411-413, 482n antivirus defense, 322-325 bacteriophages, 293, 299, 305 baculoviruses, 324 and birth of evolutionary genomics,

Crenarchaeota, 303, 318 definition of, 294-295 DNA viruses, 304 dsDNA viruses, 298-299 dsRNA viruses, 312 environmental virology, 300-301	W Wachtershauser, Günter, 379 Waddington, Conrad, 45 Walker A motif, 356 Walker, John, 492n wall-to-wall genomes, 109
functional content, 298-299 Gene Transfer Agents (GTAs), 301 genome architecture, 298-300, 490n genome diversity, 53 genome sizes, 298 genomescapes, 61 giant viruses, 293 HIV, 275 icosahedral viruses, 308 influenza viruses, 275 Last Universal Common Ancestor of Viruses (LUCAV), 313-314 metagenomics of, 300-302 mimivirus, 293, 298	Wallace, Alfred Russel, 2 Watson, James, 21 "weak" anthropic principle, 384, 433, 492n Web of Life, 404 Web-like signals, 160-163 Weismann, August, 258, 487n WGD (whole genome duplication), 36 whole genome duplication (WGD), 36 Wilke, Claus, 87 Wilson, Allan, 83 Winkler, Hans, 483n Woese, Carl, 41, 106, 220, 332, 336,
negative-strand RNA viruses, 312 Nucleo-Cytoplasmic Large DNA Viruses (NCLDV), 302, 305-307 origin and evolution, 314 cell degeneration scenario, 315-316 escaped gene scenario, 315-316 "primordial" hypothesis, 315-317 papovaviruses, 309 polyphyly versus monophyly, 302-305 positive-strand RNA viruses, 296, 304 poxviruses, 308, 324	360, 412 Wolbachia, 177, 247 Wolf, Yuri, 88, 152, 369 Wollman, Elie, 132 Wright, Sewall, 7-10, 15, 262 Wrightian evolution, 262, 403
replication-expression strategies, 296-297 retro-transcribing elements, 296-298, 304, 312 Rous Sarcoma Virus, 293 ubiquity of, 300-301 viral domains, 413 viral genes, 306-307 viral hallmark genes, 305-314 viroids, 295, 298	xenologs, 56, 126 Yarus, Michael, 369 yeasts, Saccharomyces cerevisiae, 65, 89, 92 Zhang, Jianzhi, 89 zinc sulfide mounds, 381 Zn-ribbon, 117 Zuckerkandl, Emile, 25, 146
viromes, 300-301 virus defense islands, 322 Virus World, 294, 314-319, 325-326, 335-346, 411, 490n von Neumann, John, 481n de Vries, Hugo, 6	