Symbols

2:1 signal-to-return ratio pattern, 122-125
3D CAD files, 102
3D discontinuities, PCI Express, 189-191
3D electromagnetic modeling, 80
3D field solvers
 modeling 3D discontinuities, 79-80
 ports, 106-108
3D modeling, signal to return ratios, 122-125

A

accuracy of IO circuit models, 68-71
ADS (Advanced Design System), 176
automatic mesh generation, 108

B

behavioral modeling, IO circuits, 53-54
 assumptions, 56
 CMOS push-pull drivers, 54-56
 IBIS assumptions, 65-66
bit time, 136
boundaries
 modeling 3D discontinuities, 82
 of simulation space, 10-12
budgets
 common-clock IO timing, 30-31
 with standard load, 37
 read timing, DDR2 case study, 142, 165-169
timing, on-chip timing, 26-28
write timing, DDR2 case study, 141, 165-169
byte lanes, length variation (DDR2 case study), 158

C

CAD (computer aided design), 124
card impedance tolerance, PCI Express, 187-189
channel characteristics, PCI Express, 201-202
channel step response, PCI Express, 192-194
checklists, pre-flight checklists, 116-118
chip-to-chip timing, 13-14
 budgets, 26-28
 CMOS latch, 15-18
 common clock, 22-24
 setup and hold constraints, 19-22
 setup and hold SPICE simulations, 25-26
timing failures, 18-19
clock data recovery, 176
CMOS (complementary metal-oxide-semiconductor), 209
 inverters, 211-212
 MOSFETs, 210-211
 pass gate circuits, 213
CMOS current mode drivers, IO circuits, 51-52
CMOS differential receiver, IO circuits, 42-43
CMOS latch
 chip-to-chip timing, 15-18
 dual potential well model, 19
CMOS push-pull drivers, IO circuits, 46-47
 behavioral modeling, 54-56
CMOS receiver, IO circuits, 40-42
 coaxial discontinuity, modeling 3D discontinuities, 94-95
 coaxial transmission lines, modeling 3D discontinuities, 80-82
common clock, 22
common-clock architecture, limitations of, 38
common-clock IO timing, 28-32
 budgets, 30-31
 with standard load, 32-37
common-clock on-chip timing, 22-24
comparing SPICE and IBIS models, IO circuits, 67-68
complementary metal-oxide-semiconductor (CMOS), 209
 inverters, 211-212
 MOSFETs, 210-211
 pass gate circuits, 213
computer aided design (CAD), 124
coupler loss, DDR2 case study, 152-154
connectors, LGA (land grid array) connectors, 118-120
 electrical characterization, 121-122
conservatism, DDR2 case study, 170-171
Coulomb’s Law, 220
coupled differential vias
 inspecting, 113-114
 mechanical drawings, 103-105
 mesh density, 108-113
 ports, 106-108
 preparing for development of the model, 102-103
coupled noise, 50
crosstalk, 163
 PCI Express, 194-195
crosstalk-induced jitter, PCI Express, 196-200
CST Microwave Studio (CST MWS), 81, 101
 energy, 90
 modeling 3D discontinuities, 91
 port signals, 87
 s-parameters, 88-89
 stimulus function, 84
D
 dc transfer characteristic, IO circuits, 41
DDR2 case study
 assumptions, 171-173
 DDR2 signaling, 137-139
 DIMM connectors, 158-163
 evolution of, 134-136
 impedance tolerance, 154-157
 interconnect sensitivity analysis, 148-151
 IO circuits, 143-144
 length variation within byte lanes, 158
 off-chip drivers, 144-145
 on-die termination, 145-147
 pin-to-pin capacitance variation, 157
 read timing, 141-143
 budgets, 142
 read timing budgets, 165-169
 resistor tolerance, 163-165
 slope derating factor, 165
 sources of conservatism, 170-171
 transmission line loss, conductor and dielectric loss, 152-54
 Vref, 163-165
 waveforms, rising and falling, 147
 write timing, 139-140
 budgets, 141
 write timing budgets, 165-169
Index

DDR2 signaling, 137-139
de-emphasis
 differential drivers, PCI Express, 183-187
 drivers, PCI Express, 181
deterministic jitter (DJ), 206
dielectric loss, DDR2 case study, 152-154
digital interfaces, limitations, 2
dimensions, dropping (electromagnetism), 229-232
DIMM connectors, 158-163
discontinuities, 3D discontinuities (PCI Express), 189-191
DJ (deterministic jitter), 206
documentation, 114-116
drivers
 de-emphasized drivers, jitter, 185
 PCI Express
 differential drivers with de-emphasis, 183-187
 ideal drivers and lossy transmission lines, 181-182
dropping dimensions, electromagnetism, 229-232
dual potential well model for CMOS latch, 19

E
ECL (emitter-coupled logic), 134
electrical characterization, LGA connectors, 121-122
electromagnetic constraints, 178
electromagnetic propagation, 191
electromagnetism, equations, 219-220
 charges at rest, 220-221
 dropping dimensions, 229-232
 non-intuitive forces, 223-225
 steady-state currents, 221-223
 time, 225-226
 waves, 226-228
electrostatic discharge (ESD), 43
emitter-coupled logic (ECL), 134
energy, modeling 3D discontinuities, 89-90
ESD (electrostatic discharge), 43
examples, Project Coyote, 3-6
 legacy designs, 6-8
 reflections on, 8-9
extracting timing numbers, common-clock IO timing with standard load, 33

F
far-end crosstalk (FEXT), 160
FDTD (Finite Difference Time Domain) method, 75-79
FEXT (far-end crosstalk), 160
field visualization, modeling 3D discontinuities, 91-93
fields, 225
Finite Difference Time Domain (FDTD) method, 75-79
force, 225
formation of reflection, modeling 3D discontinuities, 96-97

G
GTL (Gunning Transceiver Logic), 53

H
headers, IBIS headers (IO circuits), 61
high-speed serial interfaces, 176-179
High-Speed Transceiver Logic (HSTL), 53
hold, SPICE simulations (chip-to-chip timing), 25-26
hold constraints, chip-to-chip timing, 19-22
hold time, 19
hold time failure, 22
HSTL (High-Speed Transceiver Logic), 53
IBIS (IO Buffer Information Specification), 40
behavioral modeling in IO circuits, 53
IO circuits, 56-61
behavioral modeling assumptions
assumptions, 65-66
IBIS driver model, IO circuits, 63-65
IBIS headers, IO circuits, 61
IBIS mode versus SPICE model, IO circuits, 67-68
IBIS pin tables, IO circuits, 61-62
IBIS receiver model, IO circuits, 62-63
IC (integrated circuit) chips, 14
impedance, card impedance tolerance (PCI Express), 187-189
impedance tolerance, DDR2 case study, 154-157
input decks, SPICE, 214-215
inspecting coupled differential vias, 113-114
integrated circuit (IC) chips, 14
interconnect, defined, 73
interconnect components, mechanical trade-offs of implementing, 120
interconnectivity, DDR2 case study, 148-151
intersymbol interference (ISI), 176
inverters, CMOS, 211-212
IO Buffer Information Specification (IBIS), 40
behavioral modeling in IO circuits, 53
IO circuits, 56-61
behavioral modeling assumptions
assumptions, 65-66
IO circuits
accuracy of models, 68-71
behavioral modeling, 53-54
assumptions, 56
CMOS push-pull drivers, 54-56
behavioral modeling IBIS assumptions, 65-66
CMOS current mode drivers, 51-52
CMOS differential receiver, 42-43
CMOS push-pull drivers, 46-47
CMOS receiver, 40-42
comparing SPICE and IBIS models, 67-68
DDR2 case study, 143-144
IBIS driver model, 63-65
IBIS header, 61
IBIS model, 56-61
IBIS pin tables, 61-62
IBIS receiver model, 62-63
output impedance, 48-49
output rise and fall times, 49-51
pin capacitance, 43-45
quality of models, 68-71
receiver current-voltage, 45
ISI (intersymbol interference), 176
jitter
card impedance tolerance, PCI Express, 188
crosstalk-induced jitter, PCI Express, 196-200
with de-emphasized drivers, 185
push-pull drivers, 182
reflections, 193
land grid array (LGA), 101
land grid array (LGA) connector, 118-120
latches, CMOS latch (chip-to-chip timing), 15-18
length variation within byte lanes, DDR2 case study, 158
LGA (land grid array), 101
LGA (land grid array) connectors, 118-120
electrical characterization, 121-122
Index

limitations
 of common-clock architecture, 38
 of digital interfaces, 2
LVDS (low-voltage differential signaling), 45

M
Maxwell’s Equations, 108
mechanical drawings, coupled differential vias, 103-105
mechanical trade-offs, implementing interconnect components, 120
memory interface controller (MIC), 133
mesh density
 coupled differential vias, 108-113
 modeling 3D discontinuities, 85
mesh run control parameters, 108
metal-oxide-semiconductor field-effect transistors (MOSFETs), 210-211
MIC (memory interface controller), 133
model-to-hardware correlation, 128-131
PCI Express, 205-206
modeling 3D discontinuities
 3D field solver, 79-80
 boundaries, 82
 coaxial discontinuity, 94-95
 coaxial transmission lines, 80-82
 energy, 89-90
 FDTD method, 75-79
 field visualization, 91-93
 formation of reflection, 96-97
 mesh density, 85
 port signals, 87
 running solvers, 86
 s-parameters, 88-89, 97-100
 stimulus function, 84
 transmission lines, 74
 waveguide ports, 83
MOSFETs (metal-oxide-semiconductor field-effect transistors), 210-211

N
NDA (non-disclosure agreement), 103
NEXT (near-end crosstalk), 160
noise, coupled noise, 50
non-disclosure agreement (NDA), 103
non-intuitive forces, electromagnetism, 223-225

O
ODT (on-die termination), 45
 DDR2 case study, 145-147
off-chip drivers, DDR2 case study, 144-145
on-chip timing paths, 21
on-die termination (ODT), 45
 DDR2 case study, 145-147
operating margins, 2
output impedance, IO circuits, 48-49
output rise and fall times, IO circuits, 49-51

P
parameters
 mesh run control parameters, 108
 s-parameters, modeling 3D discontinuities, 88-89
pass gate circuits, CMOS, 211-213
PCI Express, 177-178
 3D discontinuities, 189-191
 card impedance tolerance, 187-189
 channel characteristics, 201-202
 channel step response, 192-194
 crosstalk, 194-195
 crosstalk-induced jitter, 196-200
Index

drivers

differential drivers with de-emphasis, 183-187
lossy transmission lines and, 181-182
jitter, push-pull drivers, 182
model-to-hardware correlation, 205-206
sensitivity analysis, 179-180
results, 202-204
PCI Express specification, 177
PEC (perfect electrical conductor), 82
phase-locked loop (PLL), 176
piecewise linear (PWL) function, 128
pin capacitance, IO circuits, 43-45
pin tables, IBIS headers (IO circuits), 61-62
pin-to-pin capacitance variation, DDR2 case study, 157
PLL (phase-locked loop), 176
port signals, modeling 3D discontinuities, 87
ports, 3D field solvers, 106-108
pre-flight checklists, 116-118
Project Coyote, 3-6
legacy designs, 6-8
reflections on, 8-9
push-pull drivers, jitter, 182
PWL (piecewise linear) function, 128

Q

quality of IO circuit models, 68-71

R

random jitter (RJ), 206
read timing, DDR2 case study, 141-143
budgets, 165-169
DDR2 case study, 165-169
receiver current-voltage characteristics, IO circuits, 45
reference voltage (Vref), 163
reflections, jitter, 193
resistor tolerance, DDR2 case study, 163-165
RJ (random jitter), 206

S

s-parameters, modeling 3D discontinuities, 88-89, 97-100
sensitivity analysis, PCI Express, 179-180
results, 202-204
setup, SPICE simulations (chip-to-chip timing), 25-26
setup constraints, chip-to-chip timing, 19-22
setup time, 19
setup time failures, 20-21
signal to return ratios, 122-125
Simulation Program with Integrated Circuit Emphasis (SPICE), 214
sample input deck, 214-215
setup and hold simulations, chip-to-chip timing, 25-26
subcircuits, 217-218
transistor models, 215-217
simulation space, boundaries of, 10-12
simulation strategies, motivation for developing, 9-10
skin effect, 39
slope derating factor, 165
solvers, modeling 3D discontinuities, 86
spatial discretization, 76
SPICE (Simulation Program with Integrated Circuit Emphasis), 214
sample input deck, 214-215
setup and hold simulations, chip-to-chip timing, 25-26
subcircuits, 217-218
transistor models, 215-217
Index

SPICE model versus IBIS model, comparing, 67-68
SSTL (Stub Series Terminated Logic), 53
standard load, common-clock IO timing, 32-37
steady-state currents, electromagnetism, 221-223
step response, 114
stimulus function, modeling 3D discontinuities, 84
strategies, simulation strategies (motivation for developing), 9-10
Stub Series Terminated Logic (SSTL), 53
subcircuits, SPICE, 217-218
surrogate packages, 126

T

TEM (transverse electromagnetic mode), 190, 227
test cards, 125-127
threshold window, 41
TIA (time interval analyzer), 182
time, electromagnetism, 225-226
time interval analyzer (TIA), 182
timing
 budgets, 26-28
 chip-to-chip timing, 13-14
 CMOS latch, 15-18
common clock, 22-24
 setup and hold constraints, 19-22
 setup and hold SPICE simulations, 25-26
timing failures, 18-19
common-clock IO timing, 28-32
 budgets, 30-31
 with standard load, 32-37
timing failures, chip-to-chip timing, 18-19
transistor models, SPICE, 215-217

transistor-transistor logic (TTL), 134
transmission lines
 coaxial transmission lines, modeling 3D discontinuities, 80-82
 conductor and dielectric loss, DDR2 case study, 152-154
 modeling 3D discontinuities, 74
 PCI Express, 181-182
transverse electromagnetic mode (TEM), 190, 227
TTL (transistor-transistor logic), 134
Tyco Electronics MC-LGA, 120

U

UI (unit interval), 136

V

Vref (reference voltage), 163-165

W-X-Y-Z

Wave Equation, 227
waveforms, rising and falling (DDR2 case study), 147
waveguide ports, modeling 3D discontinuities, 83
waves, electromagnetism, 226-228
write timing, DDR2 case study, 139-141
 budgets, 165-169