Stumbling on Win: Two Economists Expose the Pitfalls on the Road to Victory in Professional Sports

David J. Berri and Martin B. Schmidt
Stumbling On Wins
This page intentionally left blank
Stumbling On Wins

Two Economists Expose the Pitfalls on the Road to Victory in Professional Sports

David J. Berri
Martin B. Schmidt
To Lynn and Susan:
We couldn’t have done this without you.
Contents

Acknowledgments . xi
About the Authors . xiii
Preface . xv

Chapter 1: Maybe the Fans Are Right 1
Sporting Rationality . 3
Crunchers, “Experts,” and the Wrath of Randomness 5
A Century of Mistakes in Baseball 7

Chapter 2: Defending Isiah 13
Isiah Thomas Illustrates How Money Can’t Buy You Love 14
Getting Paid in the NBA . 20
Coaching Contradictions . 23
Isiah’s Defense . 28

Chapter 3: The Search for Useful Stats 33
Identifying the Most “Useful” Numbers 33
The Most Important Position in Team Sports? 39
Assigning Wins and Losses 47

Chapter 4: Football in Black and White 49
A Brief History of the Black Quarterback 50
Performance in Black and White 55
Quarterback Pay in Black and White . 63
Chapter 5: Finding the Face of the Franchise 67
 Birth of the Draft .. 68
 The Problem with Picking First 69
 How to Get Picked First? 78
 Back to Kostka .. 80

Chapter 6: The Pareto Principle and Drafting Mistakes 83
 The Pareto Principle and Losing to Win 83
 The NBA Draft and NBA Performance 93
 Catching a Baseball Draft 100

Chapter 7: Inefficient on the Field 103
 Just Go For It! ... 106
 Evaluating the Little Man in Football 113
 The Hot Hand and Coaching Contradictions 115

Chapter 8: Is It the Teacher or the Students? 119
 The Wealth of Coaching 120
 “Take Your’n and Beat His’n” 122
 Deck Chairs? ... 125
 Growing Older and Diminishing Returns 126
 Putting the Picture Together 132

Chapter 9: Painting a Bigger Picture 135

Appendix A: Measuring Wins Produced in the NBA 141
 A Very Brief Introduction to Regression Analysis 141
 Modeling Wins in the NBA 143
 Calculating Wins Produced in the NBA 148
 Win Score and PAWS48 154
 A Comment on Alternatives 156
 Three Objections to Wins Produced for the NBA 158
Appendix B: Measuring Wins Produced in the NFL

Endnotes

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9

References

Books and Articles
Web Sites

Index
Acknowledgments

The stories we present are drawn both from our research, and the research of others. Obviously, we are indebted to the authors of all the studies we cite. Our own research, though, is not simply the product of our efforts. Specifically we are indebted to the following list of coauthors: Stacey Brook, J.C. Bradbury, Aju Fenn, Rod Fort, Brad Humphreys, Anthony Krautmann, Young Hoon Lee, Michael Leeds, Eva Marikova Leeds, Michael Mondello, Joe Price, Rob Simmons, Brian Soebbing, and Peter von Allmen. We would also like to thank all of the economists who have participated in sessions on sports economics at the Western Economic Association and with the North American Association of Sports Economists. These sessions have been a tremendous help in our work.

We also wish to thank Stefan Szymanski, who urged us to focus on these stories for our next book; and Dean Oliver, who once again provided invaluable insights and assistance for our study of basketball statistics.

Several people read early drafts of chapters and made many valuable suggestions. This list includes J. C. Bradbury, Owen Breck, Stacey Brook, Juliane Clapp, Rich Campbell, Jason Eshleman, Jim Peach, Kevin Quinn, Raymond Sauer, and Stephen Walters. Special thanks go out to Leslee Watson-Flores and Fred Flores, who took the time to read and offer valuable comments on every single chapter.

The Wages of Wins Journal—a blog we started at the suggestion of J. C. Bradbury—has proven to be an invaluable resource. Our audience consistently provides insightful comments into the stories we try and tell.

The people of FT Press, specifically Martha Cooley, Kirk Jensen, Russ Hall, Anne Goebel, and Tim Moore have all been extremely patient and helpful. This book would not have been possible without Martha, so she certainly deserves a great deal of credit. And Kirk’s editorial assistance was essential in transforming our ideas into this final product.
Finally, the list of people we have to thank includes our families, whose support is very much appreciated. Dave Berri would like to thank his wife, Lynn, as well as his daughters, Allyson and Jessica. Lynn read each and every chapter of this book, and her suggestions went far to overcome the limitations in our writing abilities. Martin Schmidt would also like to thank his wife, Susan, as well as his children, Michael, Casey, and Daniel.
About the Authors

David J. Berri is an associate professor of economics at Southern Utah University. He is coauthor of *The Wages of Wins* (Stanford Press). Additionally, he has authored or coauthored more than 30 academic papers, most in the area of sports and economics. His nonacademic writing has appeared in *The New York Times*, *VIBE Magazine*, and online at The Wages of Wins Journal (dberri.wordpress.com). In 2009, he was elected president of the North American Association of Sports Economists and is currently serving on the editorial board of both the *Journal of Sports Economics* and the *International Journal of Sport Finance*. He lives with his wife (Lynn) and two daughters (Allyson and Jessica) in Cedar City, Utah.

Martin B. Schmidt is a professor of economics at the College of William and Mary. He is coauthor of *The Wages of Wins* and also the author of nearly 40 articles primarily in the areas of monetary economics and sports economics. In addition, his writing has appeared in *The New York Times* and *The Sports Business Journal*. He lives with his wife and three kids in Williamsburg, Virginia.
Once upon a time, the word “moneyball” was only heard in reference to a winning shot in billiards. A few years ago, though, the phrase moved out of the pool hall and onto the baseball diamond. The man responsible for this move was Michael Lewis. In 2003, Lewis published *Moneyball*, a book that tells the remarkable story of the Oakland A’s and General Manager Billy Beane. From 1996 to 2006, Beane managed to consistently field a winning baseball team without spending very much money on players. According to Lewis, this feat was accomplished because Beane knew something about measuring player performance that other decision-makers in baseball didn’t know.

One year before *Moneyball* appeared, we published an article examining the coaches voting for the All-Rookie team in the National Basketball Association (NBA). This article suggested that coaches in the NBA were not evaluating rookies correctly. Then in 2006 we published, along with Stacey Brook, *The Wages of Wins*. Our first book explored a variety of issues in sports and economics, including labor strikes, competitive balance, and the ability of a player to “turn it on” in the playoffs. Within this list, we presented evidence that decision-makers in the NBA—like their counterparts in baseball—had problems measuring the value of free agents.

The idea that people in baseball and basketball have trouble evaluating players is certainly interesting to sports fans. Such stories, though, have implications beyond sports. In recent years, research has shown that, in general, people have trouble making “good” decisions. For example, Daniel Gilbert’s *Stumbling on Happiness*, a book that inspired our own title, showed how people’s efforts to find happiness are often sabotaged by their own actions. Dan Ariely, in *Predictably Irrational*, presented a number of experiments that show the difficulty people have in evaluating new information and making good decisions. And Richard Thaler and Cass Sunstein—in *Nudge*—not only describe the troubles people have making choices, but also how the presentation of choices can lead to better outcomes.
Much of this research is based on experimental evidence, and we find such evidence to be persuasive. Still, in the world of professional sports one might expect a different story. Sports come with an abundance of data to inform decisions. Plus, the consequences of failure are both quite severe and very public. In such an environment, we should expect that the experts employed in the industry get it “right.”

The two stories told in Moneyball and The Wages of Wins, though, suggest otherwise. And these tales are actually just the tip of the iceberg. As the following pages reveal, similar stories can be found throughout the world of sports. We believe these stories should not only change the way sports fans perceive the choices made by their favorite teams, but also impact the way economists and other social scientists think about human decision-making.
“I must say, with all due respect, I find it very hard to see the logic behind some of the moves you have made with this fine organization. In the past 20 years, you have caused myself, and the city of New York, a good deal of distress, as we have watched you take our beloved Yankees and reduce them to a laughing stock.”

George Costanza upon meeting George Steinbrenner (owner of the New York Yankees): Seinfeld, “The Opposite” (season 5, 1994)

“What the hell did you trade Jay Buhner for?! He had 30 home runs and over 100 RBIs last year. He’s got a rocket for an arm. You don’t know what the hell you’re doin’!”

Frank Costanza (George’s father) upon meeting George Steinbrenner: Seinfeld, “The Caddy” (season 7, 1996)

Few sports fans ever meet the people who operate their beloved sports teams. Such a meeting, though, would probably inspire many fans to get in touch with their inner “Costanza.” Given the opportunity, fans would love to ask:

- Why do you keep signing such lousy free agents?
- Why can’t we ever draft players who actually help us win?
- Why can’t we ever find a better goalie?
- Why does the coach keep making that decision on fourth down?
- Why does the coach keep playing that point guard?
Obviously, this is just a sample of the questions asked. And, just as obviously, we have cleaned up the language. What may not be obvious is the economic implication of these questions.

Fans often suggest that decision-makers in sports are less than perfect. Managers and coaches are not only accused of making bad choices, fans often accuse these people of making the same bad choices over and over again. Many economists, though, find such stories unbelievable. After all, traditional economics clearly teaches that decision-makers are supposed to be “rational.”

What does it mean to be a “rational” decision-maker? Thorstein Veblen sarcastically argued in 1898 that economists tend to see people as “hedonistic lightning calculators.” In more recent years, Richard Thaler and Cass Sunstein have just as sarcastically suggested that the rational decision-makers described by economists “can think like Albert Einstein, store as much memory as IBM’s Big Blue, and exercise the willpower of Mahatama Gandhi.”

Both these remarks comment on the simple idea that rational decision-makers “choose efficiently the means that advance their goals.” Let’s imagine the behavior of a manager and coach that “chooses efficiently.” Such a person would tend to make the correct decision given the circumstances they observe. Perhaps more importantly, as the game changes, these same coaches and managers would change their point of view and make different decisions. Therefore—and contrary to what sports fans often contend—it’s not possible for coaches and managers to make the same mistake over and over again.

So who is right: fans or economists? The emerging field of behavioral economics—via a collection of laboratory experiments—seems to side with the fans. Experiments have shown that people are not quite as rational as traditional economics contends. Some economists have argued, though, that how people behave in a laboratory experiment is different from how they behave in the “real world.” In the real world, people face real consequences for making mistakes, and real consequences force people to be rational.
Sporting Rationality

To settle this debate, it might help to move out of the laboratory and look at decisions in the “real world.” Sports are often described as being removed from reality. Yet for the people in this particular reality, what happens in sports matters. Consequently, we can learn about the rationality—or irrationality—of human decision-making by examining the “real world” of sports. This examination, consistent with the experimental evidence, will show again and again and again (actually we will present at least 20 “agains”) that decisions in sports are not completely rational.

Before we get to this examination, let’s emphasize that the word “irrational” is not synonymous with the word “stupid.” When we eventually argue that decision-makers in sports are “irrational,” we will not be saying that people in sports are not as smart as people are in other industries or other occupations. In fact, people in sports are often better prepared for their jobs than people employed elsewhere. Furthermore, it seems likely that whatever “irrationalities” are observed in sports are likely to be found elsewhere.

We make this claim because at first glance decision-makers in sports perhaps more than anyone else should be “rational.” There are two characteristics of the sports industry that bolster this expectation. First, despite being a relatively small industry in the American economy, sports receive an inordinate amount of attention from the media. After all, no other industry has an entire section of each local paper devoted to its happenings. Such coverage raises the cost of failure to the participants in sporting contests. Losing in sports, as noted earlier, is not a private affair. Sports fans both near and far witness your failure and are often not shy in expressing their disappointment. Although people do pay some attention to failures in non-sports industries, it’s rare to see interested observers in other industries pay money to yell obscenities at those who fail to achieve success.
Sports are not only different in terms of attention received. In sports, success and failure would seem to be—relative to other industries—somewhat easy to understand. To illustrate, ask yourself this question: At your place of employment, who is the most productive worker? Yes, we know. It must be you. But is this something you could prove? We suspect, for many people, this would be difficult. For workers in many non-sports industries, measuring worker productivity is difficult.

Take our profession, college professors. We both think of ourselves as above average professors. But such a self-assessment may be dubious. In fact, a survey at the University of Nebraska revealed that 94% of college professors thought they were better teachers than the average at that same institution. We don’t think this obvious delusion is unique to Nebraska. Neither of us can recall meeting a fellow professor who thought he or she was below average.

It also turns out that professors are not the only people who overestimate their abilities. Thaler and Sunstein find evidence of this phenomenon in surveys of MBA students, drivers, and new business owners, and this is just a partial list. They go on to note that “unrealistic optimism is a pervasive feature of human life; it characterizes most people in most social categories.”

In sports, though, there’s a brake on this natural tendency. If we asked Jeff Francoeur of the Atlanta Braves how his hitting in 2008 compared to the league average, Francoeur would be hard pressed to argue he was above average. With respect to most of the standard measures of hitting performance, Francoeur was below average. Likewise, Francoeur’s teammate Chipper Jones can be pretty confident that he really was an above-average hitter in 2008. Again, that’s what the stats indicate.

Because sports come with numbers, evaluating worker performance in sports would seem to be easier. Consequently, the path to success would seem—relative to what’s seen in other industries—easier
to navigate. Unfortunately, there are a few stumbling blocks on the path to victory.

The stumbling blocks can be separated into two broad categories. First, numbers have to be understood. Coaches and general managers can see the numbers associated with each player’s performance. But how these numbers connect to wins is not always appreciated. Even if the numbers were understood, though, another stumbling block gets in the way. Understanding the past doesn’t have much value if the past can’t predict the future. Some numbers in sports are simply inconsistent across time. When that’s the case, following the unpredictable numbers makes the path to victory hard to find.

What the numbers mean for the present and future is the foundation of our story. But before we get to that story, we need to address a fundamental objection to any sports analysis offered by academics. Specifically, is it likely that academics would be able to say anything that the “experts” employed in the sports industry don’t already know?

Crunchers, “Experts,” and the Wrath of Randomness

Even if you don’t believe people are perfectly rational, you might still expect decision-makers in sports—where there is an abundance of information, clear objectives, and severe consequences for failure—to get it “right.” After all, these people are the “experts.” There is no reason to think that some college professors armed with a slide rule can do any better.

Let’s respond to that by noting that neither of us owns a slide rule (or knows how to use one). We do, though, have spreadsheets and some fairly sophisticated econometric software. There are a number of examples where people armed with such tools can see things that “the experts” miss. Some of our favorite examples come from places as diverse as the wine industry, analysis of Supreme Court
decisions,14 and the treatment of heart patients in the emergency room.15 In essence, it appears that human beings—who are not actually lightning calculators—tend to lose in a contest against actual lightning calculators.16 Such an outcome is observed whether or not the human being is an “expert.”

Related to the obvious point that people are not lightning calculators is a classic finding in psychology. People in sports often claim they can simply watch a player during a game and “know” if he is good or bad. The seminal work of George Miller, though, has shown that the human mind can only track about seven items at one time.17 In sports, though, a multitude of events are happening throughout the contest. All these events not only have to be seen and noted, the impact of these factors on wins must be ascertained. To claim that you can simply watch a player and see his or her overall contribution to wins suggests that you believe your mind can do something that research suggests is difficult. Despite the limitations of personal observation, though, human beings still tend to believe the analysis based on this approach is correct. Such overconfidence can often cause people to ignore contradictory information.

Statistical analysis, though, can overcome these issues. Spreadsheets and statistical software can evaluate more games than a person can ever personally observe. These evaluations can also allow us to look past the “most dramatic factors” and identify which factors truly matter most in terms of wins. Furthermore, the analysis can also easily change as new data arrives. Perhaps most importantly, statistical models come with confidence intervals.18 In other words, statistical models can assess the quality of the prediction being made. Try getting that kind of service from a human expert!

Number crunching does more than offer better explanations than what we get from “experts.” It can also tell us when there really isn’t an explanation. In other words, number crunching can help us see when a process is inherently random.
Let’s illustrate this last point with an oddity from the Super Bowl. As of 2009, the National Football Conference (NFC) team has won the coin toss at the Super Bowl for 12 consecutive years. Such a streak clearly indicates that the NFC has some secret that allows it to better predict coin tosses; and the American Football Conference (AFC) better do some work if it hopes to close the “coin toss predicting gap.” Then again, maybe there’s another possibility. Flipping a coin is a random process. Even if you flipped a coin 12 times in a row with the same result, the process is still random. The outcomes don’t tell us anything about the skill level of the NFC teams. This point should be obvious, since predicting a coin toss is not an actual skill.

This simple story highlights an additional advantage of analyzing sports data, and another potential pitfall for decision-makers. Some numbers that we associate with an athlete represent the skills of the performer. Other numbers, though, are not about a player’s skill, but instead are determined by the actions of the player’s teammates (or coaching or some random process). The analysis of numbers can actually clue us in on the skills versus non-skills argument. In the absence of such analysis, though, a decision-maker can actually suffer from the “wrath of randomness.” Specifically, a decision-maker can be fooled by numbers that are as reliable predictors of the future as the numbers generated by our coin-flipping game. When that happens, money can be wasted on players who are not really helping. Or on the flip side, a player with some supposedly poor numbers can be removed from the roster when in fact the player is actually helping the team win.

A Century of Mistakes in Baseball

Although the “wrath of randomness” does rear its head in the study of sports, often the numbers do tell a story. Let’s start with a great story that reveals a century of mistakes in Major League Baseball (MLB).
In 1997, the Oakland A’s ranked toward the bottom in Major League Baseball, in respect to both team payroll and winning percentage. The next season, Billy Beane became general manager, and part of this story stayed pretty much the same. Specifically, the lack of spending on players didn’t change. What did change were the outcomes achieved by the A’s. From 1999 to 2002, only the New York Yankees, a team that spent three times more on playing talent than Beane, managed to win more games in the American League. The term “more” is a bit misleading. The Yankees actually won only two more games than the A’s across these four seasons.

How was this possible? It’s been argued that the key was Beane’s ability to recognize specific inefficiencies in baseball’s labor market. Such inefficiencies allowed Beane to pick up talent that was both cheap and productive.

At least, that’s the story that’s been told. For the empirical evidence supporting this tale, we turn to the work of Jahn Hakes and Raymond Sauer. These economists decided to investigate whether the baseball player market was, as they say, “grossly inefficient.” Before we get to their answer, however, let’s briefly describe an efficient labor market. A basic tenet in economics is that workers are paid in line with their expected productivity, that is, workers who are expected to be the most productive get paid the most. This suggests that baseball players who are expected to perform the best are paid the highest salaries (at least, once they become free agents). In a world where some teams are “rich” and others “poor,” the best players typically end up on teams that have the ability to pay the most. In other words, we would expect the Yankees—or the “rich” team—to get the best talent, and a “poor” team like the Oakland A’s should end up with the less capable players.

The key to the above reasoning is the phrase “ballplayers who are expected to be the most productive.” This tells us that having money isn’t enough. Teams have to be able to identify the “most productive” players. If one team can do a better job at identifying the “most
productive,” then that team might be able to field a very good team that’s not very expensive.

To see if the Oakland A’s actually followed this blueprint, Hakes and Sauer needed to connect three dots:

- They needed to uncover how various performance characteristics impact wins in Major League Baseball.
- They needed to figure out what individual teams were willing to pay for each performance characteristic.
- They needed to determine whether the salaries that various performance characteristics command is consistent with how those measures impact wins.

To cut to the chase, Hakes and Sauer found that “...hitters’ salaries during this period (2000-2003) did not accurately reflect the contribution of various batting skills to winning games.” Furthermore, “this inefficiency was sufficiently large enough that knowledge of its existence, and the ability to exploit it, enabled the Oakland Athletics to gain a substantial advantage over their competition.”

How did they reach this conclusion? First, data was collected on team winning percentage, team on-base percentage, and team slugging percentage for all 30 MLB teams from 1999 to 2003. They then ran a simple regression.

Okay, we get ahead of ourselves. What’s a “simple regression?” Regressions are essentially the test tubes of economics. When a chemist seeks to understand the world, he or she steps into a laboratory and starts playing around with test tubes. These test tubes allow a chemist to conduct controlled experiments. Hakes and Sauer, though, could not conduct a controlled experiment with Major League Baseball (at least, Major League Baseball probably wouldn’t let them do this). What they could do, though, is employ regression analysis. This is simply a standard technique economists employ to uncover the relationship between two variables (like player salary and on-base percentage), while statistically holding other factors constant.
When properly executed, regression analysis allows one to see if the relationship between two variables exists; or more precisely, if the relationship between two variables is statistically significant.

Beyond statistical significance, we can also measure the economic significance of a relationship, or the size of the impact one variable has on another. Consider how on-base percentage and slugging percentage relate to team wins. Hakes and Sauer found both to be statistically significant. On-base percentage, though, had twice the impact on team wins. Such a result suggests that players should be paid more for on-base percentage. The study of salaries, though, suggested that prior to 2004, it was slugging percentage that got a hitter paid. In fact, in many of the years these authors examined, on-base percentage was not even found to have a statistically significant impact on player salaries.

After 2004, though, the story changed. An examination of data from 2004 to 2006 reveals that on-base percentage had a bigger impact on player salaries than slugging percentage. In other words, an inefficiency exploited by Billy Beane was eventually eliminated.

It’s important to note, though, how long this took. The National League came into existence in 1876. All of the data necessary to calculate on-base percentage was actually tracked that very first season in the 19th century. However, it was not until the 21st century—or after more than 100 years—that these numbers were understood by decision-makers in baseball. It appears that decision-makers in baseball made the same mistake in evaluating talent year after year, and this continued for a century. Such a tale suggests that maybe all those fans are on to something. Maybe coaches and general managers are capable of repeating the same mistakes.

Of course, one story from the real world of sports doesn’t make a point. What we need is a multitude of stories. And that’s what we provide. The stories we tell give insight into how free agents are evaluated, how teams make decisions on draft day, and even how choices are made on game day. We even present evidence that the
evaluation of coaches in the National Basketball Association (NBA) is less than ideal.

All of these tales from the world of sports tell one very important story. Decision-making is not often as rational as traditional economics argues. And that story has an impact on our understanding of both sports and economics.
This page intentionally left blank
Note: Page numbers followed by n are located in the Endnotes.

A
Abbott, Henry, 125, 180n, 205n
Abdul-Jabbar, Kareem, 84, 131, 206n
Abdur-Rahim, Shareef, 94-95
ACC (Atlantic Coast Conference), 49
Adelman, Rick, 123
adjusted field goal percentage (NBA), 16
adjusted plus-minus statistic, 183-184n
Adjusted Production per 48 minutes played (AdjP48), 203n
AFL (American Football League), 50
African-American quarterbacks
history of, 50-55
pay discrepancy between black and white quarterbacks, 63-66
performance of, 55-63
age and performance, 126-129, 205n
Aguirre, Mark, 88-89
Aikman, Troy, 66, 168-170
Albeck, Stan, 124
All-Rookie Team (NBA), voting factors for, 27
Allen, Ray, 84
Allmen, Peter Von, 189n
Almond, Morris, 24
American Football League (AFL), 50
American International Group, Inc., 174n
Anderson, Dave, 202n
Anderson, Ken, 88-89, 168-170
Ariely, Dan, 173n
Ariza, Trevor, 178n
Arizona Cardinals, 113
Armstrong, Hilton, 152-153
Ashenfelter, Orley, 174n
assigning wins and losses, 47-48
assists (NBA), 16
Atlantic Coast Conference (ACC), 49
Auerbach, Red, 23, 133, 179-180n
Ayres, Ian, 174n

B
Banks, Don, 188n
Banks, Tony, 52-53, 71-73
Barkley, Charles, 194n
Barzilai, Aaron, 184n
base stealing, efficiency of, 103-106, 198-199n
Baseball-Reference.com, 181n
baseball. See Major League Baseball
Basketball-Reference.com, 176n, 182n
basketball. See National Basketball Association
BasketballValue.com, 183n
Batch, Charlie, 52-53
batting average, 33, 135
Index

Beane, Billy, 8, 135
Belfour, Ed, 43
Belichick, Bill, 200n
Bell, Bert, 68
Bellisari, Steve, 74
Bennell, Rick, 25
Benson, Kent, 88-89
Bias, Len, 88-89
Bibby, Mike, 88-89
Biedrins, Andris, 45
Bird, Larry, 42, 84, 180n
Birdsong, Otis, 88-89
Birnbaum, Phil, 190n
black quarterbacks
 history of, 50-55
 pay discrepancy between black and white quarterbacks, 63-66
 performance of, 55-63
Blake, Jeff, 52-53, 73
Blass, Asher, 181n
Bledsoe, Drew, 71-73
blocked shots (NBA), 16
BMI (Body Mass Index), 191n
Bockerstaff, Bernie, 205n
Body Mass Index (BMI), 191n
Bogut, Andrew, 93, 195n
Bonds, Barry, 199n
Boston Celtics, 84, 121
Bowen, Ryan, 152-153
Bowie, Sam, 88-90, 194n
Bradbury, J. C., 33, 127, 181n, 206n
Bradley, Shawn, 88-89
Bradshaw, Terry, 57
Brady, Tom, 168-170
Brand, Elton, 88-89
Brees, Drew, 73
Briks, Aaron, 52-53
Briscoe, Marlin, 51
Brock, Lou, 106
Brodeur, Martin, 39-42
Brodie, John, 168-170
Brooklyn Dodgers, 68
Brown, Devin, 152-153
Brown, Kwame, 88-89
Brown, Larry, 25-26, 124
Brown, Shannon, 25-26
Bryant, Bear, 202n
Bryant, Kobe, 44, 121
Bucks Diary, 149
Buffalo Bills, signing of James Harris, 51, 56-57
Bulger, Marc, 73
Burford, Seth, 74
Burger, John, 101
Burke, Brian, 201n
Butler, Rasual, 152-153
C
Calderon, Jose, 45
Camby, Marcus, 44, 88-89
Campbell, Jason, 52-53
Carlisle, Rick, 204-205n
Carr, David, 71-74, 77
Carroll, Joe Barry, 88-89
Carter, Quincy, 52-53
Carter, Virgil, 168-170
center averages (NBA), 178n
Chamberlain, Wilt, 23
Chandler, Tyson, 88-89, 152-153
Chappell, Mike, 191n
Chicago Bulls, 84, 89, 130
Cincinnati Bengals, signing of Jeff Blake, 53
Cleveland Browns, signing of Bill Willis and Marion Motley, 50
Clifton, Nat, 186n
coaches
 conflicting messages to players, 23-28
 impact on performance, 119-126, 203-205n
coefficient of variation, 185n
coin tosses, 7, 175n
Coleman, Derrick, 88-89, 94-95
Collins, Doug, 205n
competitive balance, 68, 189n
consistency
 consistency across sports, 38
 of hitters/pitchers in MLB, 34-35
 importance of, 181n
Continental Basketball Association, 176n
Cooper, Chuck, 186n
correlation coefficient, 184n
Couch, Tim, 71, 77
Craft, Kim, 185n
Crawford, Jamal
acquisition by New York Knicks, 19
average minutes per game in New York Knicks, 177n
games played as New York Knicks, 177n
performance before coming to New York, 30-31
performance in New York, 31
salary with New York Knicks, 29, 178n
Cross, P., 174n
Culpepper, Daunte, 52-53, 73
Cummings, Terry, 88-89
Cunningham, Randall, 51-53
Curry, Eddy
acquisition by New York Knicks, 19
games played as New York Knicks, 177n
performance before coming to New York, 30-31
performance in New York, 31
salary with New York Knicks, 29, 178n
Curtis, Joseph, 43

D
Daniels, Antonio, 152-153
Daugherty, Brad, 88-89
Davey, Rohan, 74
Davis, Antonio, 178n
Defensive Independent Pitching Statistics (DIPS), 35
Delhomme, Jake, 73
Denver Broncos, 51, 201n
Detroit Lions, drafting of Joey Harrington, 74
Detroit Pistons, 177n
Diminishing Returns, Law of, 130-132
DIPS (Defensive Independent Pitching Statistics), 35
Dobson, H. A., 135

Doman, Brandon, 74
draft
MLB performance and, 100-102
NBA draft
draft position and performance, 93-100, 196-198n
intentional losses to secure better draft position, 88-93, 194n
NBA performance and, 88-89 structure of, 87
NFL draft
factors determining draft position, 78-80
history of, 68-69
overview, 67
player compensation and draft order, 73-77
player productivity and draft order, 69-73
purpose of, 69
surplus value of drafted players, 69-70
telecast of, 191n
Drexler, Clyde, 194n
Druckenmiller, Jim, 71
Dubner, Stephen, 194n
Dumars, Joe, 84
Duncan, Tim, 44, 83, 88-90, 94-95
Dunleavy, Mike, 204n
Dunningham, Randall, 168-170

E
Earned Run Average (ERA), 34-35
Easterbrook, Gregg, 107
economic significance of relationships, measuring, 10
economic value of sports industry, 174n
Edmonton Eskimos, 58
effective field goal percentage (NBA), 176n
efficiency in sports play
base stealing (MLB), 103-106, 198-199n
decision-making on fourth down (NFL), 106-113, 200-201n
“hot hand” phenomenon (NBA), 115-116, 202
kickers, evaluating performance of (NFL), 113-115, 201
playing time, 116-118
walks (MLB), 106, 199

efficient labor markets, characteristics of, 8
82games.com, 149, 182
Elam, Jason, 201
Ellison, Pervis, 88-89
Elway, John, 58, 66
Ely, Melvin, 152-153
ERA (Earned Run Average), 34-35
Esiason, Boomer, 168-170
Evans, Vince, 51-53
Evolution of the Draft and Lottery, 194
Ewing, Patrick, 88-89

F

Fasani, Randy, 74
Favre, Brett, 65, 73
FBS (Football Bowl Subdivision), 193
FCS (Football Championship Subdivision), 193
Ferry, Danny, 88-89
field goal attempts (NBA), 16
Fitch, Bill, 122, 204
Fitzsimmons, Cotton, 124
Follis, Charles W., 50
Football Bowl Subdivision (FBS), 193
Football Championship Subdivision (FCS), 193
football. See National Football League (NFL)
Ford, Chris, 123-124, 205
Ford, Phil, 88-89
forward averages (NBA), 178
fourth down decision-making, 106-113, 200-201
Fouts, Dan, 168-170
Fowler, J. W., 186
Fox, Justin, 194
Francis, Steve, 88-89, 178
Francescoeur, Jeff, 4, 174
Fratello, Mike, 124
free agents
 max players, 23
 NBA performance factors and free agents’ salaries, 20-23, 178-179
 NHL goalies study, 46, 185-186
free throw attempts (NBA), 16
free throws (NBA), 202
Froette, Gus, 72
Froese, Bob, 43

G

Game Score (NBA), 156-157
Garcia, Jeff, 72-73, 168-170
Garnett, Kevin, 44, 84, 94-95
Garrard, David, 52-53, 74-75, 190
Gasol, Pau, 44, 203
gate revenue (NBA), 92, 195
Gentry, Alvin, 204
George, Jeff, 71
Gerrard, Bill, 175
Gibbs, Joe, 106
Gilliam, Armon, 88-90
Gilliam, Joe, 51-53, 57, 187
Gilmore, Artis, 130-131, 206
Gilovich, Thomas, 115
Gladwell, Malcolm, 175
goalies (NHL), evaluating performance of, 39, 42-47
Goals Against Average (NHL), 45
Goldman, Lee, 175
Goodrich, Gail, 89
Goukas, Mike, 204
Grant, Horace, 84
Gray, Quinn, 52-53
Green, Trent, 168-170
Greenwood, Dave, 88-90
Griese, Brian, 168-170
Griffith, Darrell, 88-89
Grove, William, 175

H

Haden, Pat, 187
Hakes, Jahn, 8
Hamilton, Richard, 25
Hanners, Dave, 26
Hardaway, Anfernee, 94-95, 178n
Hardaway, Tim, 94-95
Harrington, Joey, 74, 77
Harris, Al, 204n
Harris, James, 51-53, 56-57, 168-170
Hart, Jim, 168-170
Hasek, Dominik, 43
heart attacks, diagnosing via statistical model, 175n
Heeran, Dave, 156
help factors (NBA), 16
Henderson, Rickey, 106
Hextall, Ron, 43
Hill, Grant, 94-95
hitters (MLB)
 age and performance, 127
 consistency of, 34-35
Hockey-Reference.com, 182n, 185n
hockey. See National Hockey League
Hollinger, John, 144, 156, 176n
Hones, Bert, 168-170
Horn, Keith van, 88-90
Horowitz, Ira, 202n
Houston Oilers, signing of Warren Moon, 59
Houston Rockets, 90
Houston Texans, drafting of David Carr, 74
Howard, Dwight, 44, 88-89, 94-95
Hrudey, Kelly, 43
Huard, Damon, 168-170
Huizinga, John, 202n
Humphreys, Brad, 174n

I
An Inquiry into Nature and Causes of the Wealth of Nations (Smith), 120
instrumental rationality, 173n
Iverson, Allen, 88-91, 195n, 206n

J
Jackson, Phil, 120-125, 132, 203n, 205n
Jackson, Tarvaris, 52-53
James, Bill, 135-136, 175n, 198n
James, Jerome, 178n
James, LeBron, 44, 83, 88-90, 94-95
James, Mike, 152-153
Johnson, Kevin, 196n
Johnson, Larry, 88-89
Johnson, Magic, 42, 83-84, 88-90, 121
Jones, Chipper, 4, 174n
Jones, K. C., 123
Jordan, Eddie, 204n
Jordan, Michael, 42, 84, 121, 194n, 203n
Joseph, Curtis, 42

K
Karl, George, 122, 204n
Kelley, Kevin, 107
Kelly, Jeff, 74
Kelly, Jim, 66
kickers (NFL)
 evaluating performance of, 113-115, 201n
Kidd, Jason, 44, 88-89
Kilmer, Billy, 168-170
King, Peter, 188n
King, Shaun, 52-53
Kiprusoff, Miikka, 43
Kirilenko, Andrei, 94-95
Kitna, Jon, 190n
Kittner, Kurt, 74
Klingler, David, 71
Kostka, Stanislau, 68, 80-81, 189n
Koufos, Kosta, 25
Krautmann, Anthony, 189n
Kuper, Simon, 207n

L
LA Lakers, 84, 203n
labor markets
 characteristics of efficient labor market, 8
 market for sports executives, 174n
Laëmbeir, Bill, 177n
Landry, Greg, 168-170
Lane, Ferdinand, 135
Law of Diminishing Returns, 130-132
Lead to Succeed: 10 Great Traits of Leadership in Business and Life (Pitino), 203n
Lee, David, 44
Leftwich, Byron, 52-53
Lehrer, Jonah, 198n
Lemon, Cleo, 52-53
Lewin, David, 193n
Lewis, Michael, 175n, 201n
limitations of personal observation, 6
Lindbergh, Pelle, 43
Lindsey, George, 182n, 199n
Linear Weights, 182n, 207n
Lloyd, Earl, 186n
Los Angeles Rams
 signing of James Harris, 51
 signing of Kenny Washington, 50
losses
 assigning, 47-48
 intentional losses to secure better
draft position, 88-93, 194n
Loughery, Kevin, 123-124, 205n
Lucas, Ray, 52-53
Luhn, Steve, 180n
Luongo, Roberto, 43
luxury tax in National Basketball
Association (NBA), 180n

M
Macaulay, Fred, 194n
Madden, John, 199n
Madden NFL 2008®, 107, 199n
Magliore, Jamaal, 94-95
Majerle, Dan, 94-95
Major League Baseball (MLB)
 batting average, 135
 draft and MLB performance, 100-102
 efficiency of base stealing, 103-106,
198-199n
 efficiency of walks, 106, 199n
 evaluating player performance in
 age, 127
 consistency of hitters and
 pitchers, 34-35
 DIPS (Defensive Independent
 Pitching Statistics), 35
 ERA (Earned Run
 Average), 34-35
 identifying the most useful
 numbers, 33-35
New York Yankees, 8
Oakland A's case study, 7-10
on-base percentage
 definition of, 175n
 impact on team wins, 10
 importance of, 135
rational integration, 49
relationship between payroll and
wins, 13-14
repeated mistakes by
decision-makers, 136
slugging percentage
 definition of, 175n
 impact on team wins, 10
Manning, Danny, 88-89
Manning, Eli, 71, 77
Manning, Peyton, 63, 71, 73, 168-170
Marbury, Stephon
 acquisition by New York Knicks,
 15, 19
career games played, 16-18
games played as New York
Knicks, 177n
on his style of play, 23
performance before coming to New
York, 30-31
performance in New York, 31
salary with New York Knicks,
29, 178n
Marino, Dan, 168-171
Marion, Shawn, 94-95
Marks, Dean, 152-153
Marshall, George Preston, 187n
Martin, Andrew, 174n
Martin, Kenyon, 88-89
Massey, Cade, 69
Mathletics (Winston), 207n
max players (NBA), 23
Mays, Dave, 51-53, 187n
McCarthy, Ryan, 205n
McCloskey, Deirdre, 175n
McCown, Josh, 74-75
McCracken, Voros, 182n
McDyess, Antonio, 45, 88-89
McGwire, Dan, 71
McHale, Kevin, 84
McNabb, Donovan, 52-53, 65, 168-170, 188n
McNair, Steve, 52-53, 65, 71, 73, 168-170
McNeal, Don, 107
measuring Wins Produced for NBA players
adjusting for position played, 150-151
adjusting for production of teammates, 148-150
alternative statistics, 156-157
basics of regression analysis, 141-143
calculating value of player’s production, 148
calculating WP48 and Wins Produced, 151-154
modeling wins in NBA, 143-148
objections, 158-159
Win Score and PAWS48, 154-156
for NFL players, 161-162, 166-167, 170-171
media coverage of sports industry, 3
Meehl, Paul, 175n
Miami Dolphins, 106
Miles, C. J., 25
Milicic, Darko, 88-90
Miller, George, 6
Miller, Mike, 44
Ming, Yao, 88-89, 94-95
Minnesota Golden Gophers, 68, 189n
Minnesota Vikings, signing of Warren Moon, 60
Mirabile, Mac, 192n
MLB. See Major League Baseball
modeling wins in NBA, 143-148
Moe, Doug, 205n
Moiso, Jerome, 196n
Montana, Joe, 58, 168-170, 187n
Moon, Warren, 51-53, 58-61, 63
Morrison, Adam, 26, 180n
Morton, Craig, 168-170
Moseley, Mark, 106
Motley, Marion, 50
Motta, Dick, 122
Mourning, Alonzo, 88-89
Murphy, Troy, 44
Mutombo, Dikembe, 94-95
The Myth of the Rational Market (Fox), 194n

N
Nagurski, Bronco, 68, 81
Nall, Craig, 74
Namath, Joe, 168-170, 187n
National Basketball Association (NBA)
All-Rookie Team, voting factors for, 27
Boston Celtics, 84, 121
box score numbers, 16
Chicago Bulls, 89, 130
coaches
conflicting messages to players, 23, 25-28
impact on performance, 120-126, 203-205n
Detroit Pistons, 177n
draft
draft position and performance, 93-100, 196-198n
intentional losses to secure better draft position, 88-93, 194n
and NBA performance, 88-89
structure of, 87
evaluating player performance in age, 126-129, 205n
average center numbers, 178n
average power forward numbers, 178n
average shooting guard numbers, 177n
factors determining player productivity, 98
factors producing wins, 132-133

Game Score, 156-157
“hot hand” phenomenon, 115-116, 202n
measuring Wins Produced, 141-159
NBA Efficiency, 156-157
performance factors and free agents’ salaries, 20-23, 178-179n
playing time, 116-118
relationship between possessions utilized and efficiency, 22, 179n
shooting efficiency, 206n
teammates and performance, 130-132, 206n
top 20 players in 2008-09, 44-45
gate revenue, 92, 195n
Houston Rockets, 90
LA Lakers, 84, 203n
luxury tax, 180n
max players, 23
New Orleans Jazz, 89
New York Knicks case study, 14-20, 28-31
Pareto Principle, 83-84, 87
Philadelphia 76ers, 205-206n
relationship between payroll and wins, 14
repeated mistakes by decision-makers, 136-138
salary cap, 180n
San Antonio Spurs, 130
top three producers of wins on NBA champions 1978-2008, 87

National Football League (NFL)
Arizona Cardinals, 113
Buffalo Bills, signing of James Harris, 51, 56-57
Cincinnati Bengals, signing of Jeff Blake, 53
Cleveland Browns, signing of Bill Willis and Marion Motley, 50
coin tosses, 7
decision-making on fourth down, 106-113, 200-201n
Denver Broncos, 51, 201n
Detroit Lions, drafting of Joey Harrington, 74
draft
factors determining draft position, 78-80
history of, 68-69
overview, 67
player compensation and draft order, 73-77
player productivity and draft order, 69-73
purpose of, 69
Scouting Combine, 78-79
surplus value of drafted players, 69-70
telecast of, 191n
evaluating player performance in
identifying the most useful numbers, 35, 37-39
kickers, 113-115, 201n
measuring Wins Produced, 161-162, 166-167, 170-171
performance of black quarterbacks, 55-63
Quarterback Rating, 161
Houston Oilers, signing of Warren Moon, 59
Houston Texans, drafting of David Carr, 74
Los Angeles Rams
signing of James Harris, 51
signing of Kenny Washington, 50
Minnesota Vikings, signing of Warren Moon, 60
quarterbacks
compensation and draft order, 75-76
factors determining draft position, 78-80
history of black quarterbacks, 50-55
NFL Quarterback Wonderlic Scores, 192n
pay discrepancy between black and white quarterbacks, 63-66

performance of black quarterbacks, 55-63

productivity and draft order, 71-73, 77

recent Hall-of-Fame quarterbacks, 59

Relative Plays, 190n

Relative WP100, 191n

racial integration

history of black quarterbacks, 50-55

overview, 49-50

pay discrepancy between black and white quarterbacks, 63-66

performance of black quarterbacks, 55-63

relationship between payroll and wins, 14

repeated mistakes by decision-makers, 137-138

San Diego Chargers, signing of James Harris, 51

Scouting Combine, 191n

Super Bowl XVII, 106

Washington Redskins, 13

National Hockey League (NHL)
evaluating worker performance in goalie performance, 39, 42-47

identifying the most useful numbers, 37-39

New York Rangers, 13

relationship between payroll and wins, 14

NBA. See National Basketball Association

Nelson, Don, 124, 204-205n

Net On Court/Off Court, 182n

Net48, 182n

New Orleans Jazz, 89

New York Knicks, 14-31, 138

New York Rangers, 13

New York Yankees, 8, 13

NFL Quarterback Wonderlic Scores, 192n

NFL. See National Football League

North, Douglass, 173n

O

O’Brien, Jim, 124, 205n

O’Donnell, Neil, 73

O’Neal, Shaquille, 88-89, 94-95, 121, 203n

O’Sullivan, J. T., 74

Oakland A’s, 7-10

Oakley, Charles, 94-95

offensive scoring (NFL), 163-164

Okafor, Emeka, 88-89

Olajuwon, Hakeem, 83, 88-90, 194n

Oliver, Dean, 144, 177n, 179n, 184n, 197n

Olowokandi, Michael, 88-89

on-base percentage
definition of, 175n
impact on team wins, 10
importance of, 135

OPS (on-base percentage plus slugging percentage), 33

P

PA (Possessions Acquired), 145-146

Palmer, Carson, 71-73

Palmer, Pete, 207n

Pareto Principle, 83-84, 87, 194n

Pareto, Vilfredo, 83

Parish, Robert, 84

Pate, Wes, 74, 190n

Paul, Chris, 44, 94-95
calculating Wins Produced for, 148-154

PAWS48 (Position Adjusted Win Score per 48 minutes), 154-156

payroll expenditures

Boston Celtics, 20

in National Football League (NFL)
factors determining draft position, 78-80

pay discrepancy between black and white quarterbacks, 63-66
player compensation and draft order, 73-77
Miami Heat, 20
New York Knicks, 20, 29, 178n
relationship between payroll and wins, 13-14
San Antonio Spurs, 20
Payton, Gary, 88-89
Peete, Rodney, 51-53
Pennington, Chad, 71
PER (Player Efficiency Rating), 156
personal fouls (NBA), 16
personal observation, limitations of, 6
Peterson, Morris, 152-153
Philadelphia 76ers, 205-206n
Philadelphia Eagles, 68
Phillips, Bum, 119, 122, 202n
Pierce, Paul, 84, 94-95
Pippin, Scottie, 84
pitchers (MLB)
age and performance, 127
consistency of, 34-35
DIPS (Defensive Independent Pitching Statistics), 35
Pitino, Rick, 120-124, 203n
Player Efficiency Rating (PER), 156
player performance, evaluating
adjusted plus-minus statistic, 183-184n
age and performance, 126-129, 205n
assigning wins and losses, 47-48
consistency, 34-35, 38
identifying the most useful number, 33-35, 38-39
NBA “hot hand” phenomenon, 115-116, 202n
NFL kickers, 113-115, 201n
NHL goalies, 42-47
Oakland A’s case study, 7, 9-10
overview, 4-5
performance of black quarterbacks, 55-63
playing time, 116-118
plus-minus statistic, 38, 182n
shooting efficiency, 206n
teammates and performance, 130-132, 206n
Wins Produced for NBA players
adjusting for position played, 150-151
adjusting for production of teammates, 148-150
alternative statistics, 156-157
basics of regression analysis, 141-143
calculating value of player’s production, 148
calculating WP48 and Wins Produced, 151-154
modeling wins in NBA, 143-148
objections, 158-159
Win Score and PAWS48, 154-156
Wins Produced for NFL players, 161-162, 166-167, 170-171
playing time, 116-118
plus-minus statistic, 38, 182n
points scored (NBA), 16
Points-Per-Shot (PPS) in NBA, 176n
Pollard, Fritz, 186n
Popovich, Gregg, 124
Posey, James, 152-153
Position Adjusted Win Score per 48 minutes (PAWS48), 154-156
position played, adjusting for (NBA players), 150-151
possessions (NBA), 16, 176n
Possessions Acquired (PA), 145-146, 176n
Possessions Employed, 176n
power forward averages (NBA), 178n
PPS (Points-Per-Shot) in NBA, 176n
Prater, Matt, 201n
Predictably Irrational (Ariely), 173n
Price, Paul, 174n
proathletesonly.com, 189n
Providence College, 121
Przybilla, Joel, 44
Pulaski Academy, 107
INDEX

Q

QB Score, 166
quarterbacks (NFL)
black quarterbacks
history of, 50-55
pay discrepancy between
black and white quarterbacks, 63-66
performance of, 55-63
compensation and draft order, 75-76
evaluating performance of
identifying the most useful
numbers, 35
measuring Wins Produced,
161-162, 166-167, 170-171
performance of black
quarterbacks, 55-63
factors determining draft position,
78-80
NFL Quarterback Wonderlic
Scores, 192
productivity and draft order,
71-73, 77
QB Score, 166
Quarterback Rating, 161
recent Hall-of-Fame
quarterbacks, 59
Relative Plays, 190n
Relative WP100, 191n
Quinn, Kevin, 174n

R

racial integration in sports
black quarterbacks
history of, 50-55
pay discrepancy between
black and white quarterbacks, 63-66
performance of, 55-63
overview, 49-50
Rackers, Neil, 113-114, 201-202n
Ramsay, Jack, 205n
Ramsey, Patrick, 74

Randolph, Zach
acquisition by New York Knicks, 19
performance before coming to New
York, 30-31
performance in New York, 31
salary with New York Knicks, 29
randomness, wrath of, 7
rationality of decision-making
definition of rationality, 3-4
instrumental rationality, 173n
limitations of personal observation, 6
overview, 2
repeated mistakes by decision-
makers, 136-139
rebounds (NBA), 179n
regression analysis, 141-143
regressions, 9
relationships, measuring economic
significance of, 10
Relative Plays (NFL
quarterbacks), 190n
Relative WP100 (NFL
quarterbacks), 191n
Rhoden, William, 14
Richardson, Jason, 26
Richardson, Quentin
acquisition by New York Knicks, 19
games played as New York
Knicks, 177n
performance before coming to New
York, 30-31, 177n
performance in New York, 31
salary with New York Knicks, 29,
178n
Riggins, John, 107
Riley, Pat, 120-122, 203n
Rivers, Doc, 24
Robinson, David, 88-90, 94-95, 196n
Robinson, Glenn, 88-89
Robinson, Jackie, 198n
Rodman, Dennis, 94-95, 177n
Roethlisberger, Ben, 73, 167
Romer, David, 108, 200n
Rondo, Rajon, 44, 84
Rose, Malik, 178n
Rosenbaum, Dan, 184n
Rottenberg Invariance Principle, 189n
Rottenberg, Simon, 189n
Rovell, Darren, 194n
Roy, Brandon, 44
Roy, Patrick, 43
running backs (NFL), evaluating performance of, 36
Ruseski, Jane, 174n
Russell, JaMarcus, 52-53
Ruth, Babe, 103
Rypien, Mark, 168-170

S
Sacred Hoops (Jackson), 203n
Sagarin, Jeff, 184n
salary caps in National Basketball Association (NBA), 180n
sample variance, 179n
Sampson, Ralph, 88-89
San Antonio Spurs, 130
San Diego Chargers, signing of James Harris, 51
Sauer, Raymond, 8
Saunders, Flip, 124
Schatz, Aaron, 202n
scoring factors (NBA), 16
Scouting Combine (NFL), 78-79, 191n
Shelby Athletic Club, 50
shooting efficiency, 206n
shooting guard averages (NBA), 177n
Shue, Gene, 123-124
Shula, Don, 119, 122
Shuler, Heath, 71-72
Silas, Paul, 205n
Siler, Russ, 180n
Sloan, Jerry, 24, 122
slugging percentage definition of, 175n
impact on team wins, 10
Smith, Adam, 120-122
Smith, Akili, 52-53
Smith, Joe, 88-89
Smits, Rik, 88-89
Soccernomics (Szymanski), 207n
sports executives, market for, 174n
sports industry, economic value of, 174n
Stabler, Ken, 168-170
Stafford, Matthew, 76-77
standard deviation, 179n
star power, effect on gate revenue, 91, 195n
statistical analysis advantages of, 6-7
of chest pain symptoms, 175n
compared to expert analysis, 175n
economic significance of a relationship, measuring, 10 regressions, 9
of Supreme Court justices’ votes, 174n
of wine vintage quality, 174n
Staubach, Roger, 58, 168-170
stealing bases, efficiency of, 103-106, 198-199n
Stewart, Kordell, 52-53
Stipanovich, Steve, 88-89
Stojakovic, Peja, 152-153
Strode, Woody, 50
Success Is a Choice: Ten Steps to Overachieving in Business and Life (Pitino), 203n
Sunstein, Cass, 2
Super Bowl XVII, 106
Supreme Court justices’ vote, predicting via empirical model, 174n
surplus value, 69-70, 190n
Swift, Stromile, 88-89
Szymanski, Stefan, 207n

T
Tarkenton, Fran, 168-170
Taylor, Beck, 194n
Taylor, Maurice, 178n
teammates and performance, 130-132, 148-150, 206n
TENDEX model, 156
Testaverde, Vinny, 168-170
Thaler, Richard, 2, 69
Theismann, Joe, 168-170
Theodore, Jose, 43
Thomas, Isaiah, 84, 88-89, 123-124, 138, 205n
career as manager of New York
Knicks, 14-20, 28-32
career averages, 16-18
ownership of Continental Basketball
Association, 176n
Thomas, Tim, 43
Thompson, Mychal, 88-89
Thorn, John, 182n
Thrower, Willie, 51
Tisdale, Wayman, 88-89
Trogdon, Justin, 194n
True Hoop, 180n
Tversky, Amos, 115

V
Vallone, Robert, 115
Vanbiesbrouck, John, 43
variation in winning percentage, 176n
Veblen, Thorstein, 2
Vick, Michael, 52-53, 71

W-X-Y-Z
Wade, Dwayne, 44, 121
The Wages of Wins (Berri), 18, 177n
Walker, Antoine, 122
Walker, James, 188n
Walker, Moses Fleetwood, 186n
Walker, Weldy, 186n
walks (MLB), efficiency of, 106, 199n
Wallace, Gerald, 44
Wallace, Seneca, 52-53
Walters, Stephen, 101, 174n
Warner, Kurt, 72, 168-170
Washington Redskins, 13, 106
Washington, Kenny, 50
Weaver, Earl, 103
Webber, Chris, 88-89
Weil, Sandy, 202n
West, David, 152-153
Westhead, Paul, 205n
Westphal, Paul, 123
Wilkens, Lenny, 122
Williams, Doug, 51-53, 57, 63, 187n
Williams, Jay, 88-89
Williams, Marvin, 93, 195n
Willhnganz, Ty, 149
Willis, Bill, 50
Win Score, 154-156, 177n
wine vintage quality, statistical
models of, 174n
The Winner Within: A Life Plan for
Team Players (Riley), 203n
Wins per 48 Minutes (NBA), 18
Wins Produced, 18
assigning wins, 47-48
measuring for NBA players
adjusting for position played, 150-151
adjusting for production of
teammates, 148-150
alternative statistics, 156-157
basics of regression analysis,
141-143
calculating value of player’s
production, 148
calculating WP48 and Wins
Produced, 151-154
modeling wins in NBA, 143-
146, 148
objections, 158-159
Win Score and PAWS48,
154-156
measuring for NFL players,
161-162, 166-170, 170-171
relationship between payroll and
wins, 13-14
Winston, Wayne, 184n, 190n, 207n
Wolff, Alexander, 186n
Wonderlic test, 78-79, 191n, 193n
Wonderlic, Eldon F., 191n
Worthy, James, 84, 88-89
WP48 (Wins per 48 Minutes), 18,
151-154
wrath of randomness, 7
Wright, Anthony, 52-53
Wright, Julian, 152-153
Young, Steve, 168-170, 187n
Young, Vince, 52-53