

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

Sun Microsystems, Inc., has intellectual property rights relating to implementations of the technology described in this publication.
In particular, and without limitation, these intellectual property rights may include one or more U.S. patents, foreign patents, or
pending applications. Sun, Sun Microsystems, the Sun logo, J2ME, Solaris, Java, Javadoc, NetBeans, and all Sun and Java based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Figures 7–45, 7–46: “Foxkeh” © 2006 Mozilla Japan.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY MAKE IMPROVE-
MENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT
ANY TIME.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact: U.S. Corporate and Government Sales, (800) 382-3419, corpsales@pear-
sontechgroup.com. For sales outside the United States please contact: International Sales, international@pearsoned.com.

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is available through Safari
Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find
code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to www.informit.com/onlineedition
• Complete the brief registration form
• Enter the coupon code T3HJ-WQAI-3TCY-LUIF-SKNA

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Horstmann, Cay S., 1959-
 Core Java. Volume 1, Fundamentals / Cay S. Horstmann, Gary Cornell. —
8th ed.
 p. cm.
 Includes index.
 ISBN 978-0-13-235476-9 (pbk. : alk. paper) 1. Java (Computer program
language) I. Cornell, Gary. II. Title. III. Title: Fundamentals. IV.
Title: Core Java fundamentals.

QA76.73.J38H6753 2008
005.13'3—dc22
 2007028843

Copyright © 2008 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054 U.S.A.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to: Pearson
Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116, Fax: 617-671-3447.

ISBN-13: 978-0-13-235479-0
ISBN-10: 0-13-235479-9

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, April 2008

www.informit.com/onlineedition

xv

Chapter

PrefacePreface

To the Reader
The book you have in your hands is the second volume of the eighth edition of Core JavaTM,
fully updated for Java SE 6. The first volume covers the essential features of the lan-
guage; this volume covers the advanced topics that a programmer will need to know for
professional software development. Thus, as with the first volume and the previous edi-
tions of this book, we are still targeting programmers who want to put Java technology
to work on real projects.

Please note: If you are an experienced developer who is comfortable with advanced lan-
guage features such as inner classes and generics, you need not have read the first vol-
ume in order to benefit from this volume. While we do refer to sections of the previous
volume when appropriate (and, of course, hope you will buy or have bought Volume I),
you can find the needed background material in any comprehensive introductory book
about the Java platform.

Finally, when any book is being written, errors and inaccuracies are inevitable. We
would very much like to hear about them should you find any in this book. Of course,
we would prefer to hear about them only once. For this reason, we have put up a web
site at http://horstmann.com/corejava with an FAQ, bug fixes, and workarounds. Strategically
placed at the end of the bug report web page (to encourage you to read the previous
reports) is a form that you can use to report bugs or problems and to send suggestions
for improvements to future editions.

http://horstmann.com/corejava

Prefacexvi

About This Book
The chapters in this book are, for the most part, independent of each other. You should
be able to delve into whatever topic interests you the most and read the chapters in any
order.

The topic of Chapter 1 is input and output handling. In Java, all I/O is handled through
so-called streams. Streams let you deal, in a uniform manner, with communications
among various sources of data, such as files, network connections, or memory blocks.
We include detailed coverage of the reader and writer classes, which make it easy to
deal with Unicode. We show you what goes on under the hood when you use the object
serialization mechanism, which makes saving and loading objects easy and convenient.
Finally, we cover the “new I/O” classes (which were new when they were added to
Java SE 1.4) that support efficient file operations, and the regular expression library.

Chapter 2 covers XML. We show you how to parse XML files, how to generate XML,
and how to use XSL transformations. As a useful example, we show you how to specify
the layout of a Swing form in XML. This chapter has been updated to include the XPath
API, which makes “finding needles in XML haystacks” much easier.

Chapter 3 covers the networking API. Java makes it phenomenally easy to do complex
network programming. We show you how to make network connections to servers,
how to implement your own servers, and how to make HTTP connections.

Chapter 4 covers database programming. The main focus is on JDBC, the Java database
connectivity API that lets Java programs connect to relational databases. We show you
how to write useful programs to handle realistic database chores, using a core subset of
the JDBC API. (A complete treatment of the JDBC API would require a book almost as
long as this one.) We finish the chapter with a brief introduction into hierarchical data-
bases and discuss JNDI (the Java Naming and Directory Interface) and LDAP (the
Lightweight Directory Access Protocol).

Chapter 5 discusses a feature that we believe can only grow in importance—interna-
tionalization. The Java programming language is one of the few languages designed
from the start to handle Unicode, but the internationalization support in the Java plat-
form goes much further. As a result, you can internationalize Java applications so that
they not only cross platforms but cross country boundaries as well. For example, we
show you how to write a retirement calculator applet that uses either English, German,
or Chinese languages—depending on the locale of the browser.

Chapter 6 contains all the Swing material that didn’t make it into Volume I, especially
the important but complex tree and table components. We show the basic uses of editor
panes, the Java implementation of a “multiple document” interface, progress indicators
that you use in multithreaded programs, and “desktop integration features” such as
splash screens and support for the system tray. Again, we focus on the most useful con-
structs that you are likely to encounter in practical programming because an encyclope-
dic coverage of the entire Swing library would fill several volumes and would only be
of interest to dedicated taxonomists.

Chapter 7 covers the Java 2D API, which you can use to create realistic drawings and
special effects. The chapter also covers some advanced features of the AWT (Abstract
Windowing Toolkit) that seemed too specialized for coverage in Volume I but are, none-
theless, techniques that should be part of every programmer’s toolkit. These features
include printing and the APIs for cut-and-paste and drag-and-drop.

Preface xvii

Chapter 8 shows you what you need to know about the component API for the Java
platform—JavaBeans. We show you how to write your own beans that other program-
mers can manipulate in integrated builder environments. We conclude this chapter by
showing you how you can use JavaBeans persistence to store your own data in a format
that—unlike object serialization—is suitable for long-term storage.

Chapter 9 takes up the Java security model. The Java platform was designed from the
ground up to be secure, and this chapter takes you under the hood to see how this
design is implemented. We show you how to write your own class loaders and security
managers for special-purpose applications. Then, we take up the security API that
allows for such important features as message and code signing, authorization and
authentication, and encryption. We conclude with examples that use the AES and RSA
encryption algorithms.

Chapter 10 covers distributed objects. We cover RMI (Remote Method Invocation) in
detail. This API lets you work with Java objects that are distributed over multiple
machines. We then briefly discuss web services and show you an example in which a
Java program communicates with the Amazon Web Service.

Chapter 11 discusses three techniques for processing code. The scripting and compiler
APIs, introduced in Java SE 6, allow your program to call code in scripting languages
such as JavaScript or Groovy, and to compile Java code. Annotations allow you to add
arbitrary information (sometimes called metadata) to a Java program. We show you
how annotation processors can harvest these annotations at the source or class file level,
and how annotations can be used to influence the behavior of classes at runtime. Anno-
tations are only useful with tools, and we hope that our discussion will help you select
useful annotation processing tools for your needs.

Chapter 12 takes up native methods, which let you call methods written for a specific
machine such as the Microsoft Windows API. Obviously, this feature is controversial:
Use native methods, and the cross-platform nature of the Java platform vanishes. None-
theless, every serious programmer writing Java applications for specific platforms
needs to know these techniques. At times, you need to turn to the operating system’s
API for your target platform when you interact with a device or service that is not sup-
ported by the Java platform. We illustrate this by showing you how to access the regis-
try API in Windows from a Java program.

As always, all chapters have been completely revised for the latest version of Java. Out-
dated material has been removed, and the new APIs of Java SE 6 are covered in detail.

Conventions
As is common in many computer books, we use monospace type to represent computer code.

NOTE: Notes are tagged with a checkmark button that looks like this.

TIP: Helpful tips are tagged with this exclamation point button.

Prefacexviii

CAUTION: Notes that warn of pitfalls or dangerous situations are tagged with an x button.

C++ NOTE: There are a number of C++ notes that explain the difference between the Java
programming language and C++. You can skip them if you aren’t interested in C++.

The Java platform comes with a large programming library or Application Program-
ming Interface (API). When using an API call for the first time, we add a short summary
description, tagged with an API icon. These descriptions are a bit more informal but
occasionally a little more informative than those in the official on-line API documenta-
tion.

Programs whose source code is included in the companion code for this book are listed
as examples; for instance,

You can download the companion code from http://horstmann.com/corejava.

Application Programming Interface

Listing 11–1 ScriptTest.java

http://horstmann.com/corejava

ChapterChapter

755

9

SECURITY

▼ CLASS LOADERS

▼ BYTECODE VERIFICATION

▼ SECURITY MANAGERS AND PERMISSIONS

▼ USER AUTHENTICATION

▼ DIGITAL SIGNATURES

▼ CODE SIGNING

▼ ENCRYPTION

Chapter 9 ■ Security756

W hen Java technology first appeared on the scene, the excitement was not
about a well-crafted programming language but about the possibility of safely execut-
ing applets that are delivered over the Internet (see Volume I, Chapter 10 for more infor-
mation about applets). Obviously, delivering executable applets is practical only when
the recipients are sure that the code can’t wreak havoc on their machines. For this rea-
son, security was and is a major concern of both the designers and the users of Java tech-
nology. This means that unlike other languages and systems, where security was
implemented as an afterthought or a reaction to break-ins, security mechanisms are an
integral part of Java technology.

Three mechanisms help ensure safety:

• Language design features (bounds checking on arrays, no unchecked type conver-
sions, no pointer arithmetic, and so on).

• An access control mechanism that controls what the code can do (such as file access,
network access, and so on).

• Code signing, whereby code authors can use standard cryptographic algorithms to
authenticate Java code. Then, the users of the code can determine exactly who cre-
ated the code and whether the code has been altered after it was signed.

We will first discuss class loaders that check class files for integrity when they are loaded
into the virtual machine. We will demonstrate how that mechanism can detect tamper-
ing with class files.

For maximum security, both the default mechanism for loading a class and a custom
class loader need to work with a security manager class that controls what actions code
can perform. You’ll see in detail how to configure Java platform security.

Finally, you’ll see the cryptographic algorithms supplied in the java.security package,
which allow for code signing and user authentication.

As always, we focus on those topics that are of greatest interest to application program-
mers. For an in-depth view, we recommend the book Inside Java 2 Platform Security:
Architecture, API Design, and Implementation, 2nd ed., by Li Gong, Gary Ellison, and
Mary Dageforde (Prentice Hall PTR 2003).

Class Loaders
A Java compiler converts source instructions for the Java virtual machine. The virtual
machine code is stored in a class file with a .class extension. Each class file contains the
definition and implementation code for one class or interface. These class files must be
interpreted by a program that can translate the instruction set of the virtual machine
into the machine language of the target machine.

Note that the virtual machine loads only those class files that are needed for the execu-
tion of a program. For example, suppose program execution starts with MyProgram.class.
Here are the steps that the virtual machine carries out.

1. The virtual machine has a mechanism for loading class files, for example, by reading
the files from disk or by requesting them from the Web; it uses this mechanism to load
the contents of the MyProgram class file.

2. If the MyProgram class has fields or superclasses of another class type, their class files
are loaded as well. (The process of loading all the classes that a given class depends
on is called resolving the class.)

Class Loaders 757

3. The virtual machine then executes the main method in MyProgram (which is static, so no
instance of a class needs to be created).

4. If the main method or a method that main calls requires additional classes, these are
loaded next.

The class loading mechanism doesn’t just use a single class loader, however. Every Java
program has at least three class loaders:

• The bootstrap class loader
• The extension class loader
• The system class loader (also sometimes called the application class loader)

The bootstrap class loader loads the system classes (typically, from the JAR file rt.jar). It
is an integral part of the virtual machine and is usually implemented in C. There is no
ClassLoader object corresponding to the bootstrap class loader. For example,

String.class.getClassLoader()

returns null.

The extension class loader loads “standard extensions” from the jre/lib/ext directory. You
can drop JAR files into that directory, and the extension class loader will find the classes
in them, even without any class path. (Some people recommend this mechanism to
avoid the “class path from hell,” but see the next cautionary note.)

The system class loader loads the application classes. It locates classes in the directories
and JAR/ZIP files on the class path, as set by the CLASSPATH environment variable or the
-classpath command-line option.

In Sun’s Java implementation, the extension and system class loaders are implemented
in Java. Both are instances of the URLClassLoader class.

CAUTION: You can run into grief if you drop a JAR file into the jre/lib/ext directory and one
of its classes needs to load a class that is not a system or extension class. The extension
class loader does not use the class path. Keep that in mind before you use the extension

directory as a way to manage your class file hassles.

NOTE: In addition to all the places already mentioned, classes can be loaded from the
jre/lib/endorsed directory. This mechanism can only be used to replace certain standard
Java libraries (such as those for XML and CORBA support) with newer versions. See
http://java.sun.com/javase/6/docs/technotes/guides/standards/index.html for details.

The Class Loader Hierarchy
Class loaders have a parent/child relationship. Every class loader except for the bootstrap
class loader has a parent class loader. A class loader is supposed to give its parent a
chance to load any given class and only load it if the parent has failed. For example,
when the system class loader is asked to load a system class (say, java.util.ArrayList), then
it first asks the extension class loader. That class loader first asks the bootstrap class
loader. The bootstrap class loader finds and loads the class in rt.jar, and neither of the
other class loaders searches any further.

http://java.sun.com/javase/6/docs/technotes/guides/standards/index.html

Chapter 9 ■ Security758

Some programs have a plugin architecture in which certain parts of the code are pack-
aged as optional plugins. If the plugins are packaged as JAR files, you can simply load
the plugin classes with an instance of URLClassLoader.

URL url = new URL("file:///path/to/plugin.jar");
URLClassLoader pluginLoader = new URLClassLoader(new URL[] { url });
Class<?> cl = pluginLoader.loadClass("mypackage.MyClass");

Because no parent was specified in the URLClassLoader constructor, the parent of the plugin-
Loader is the system class loader. Figure 9–1 shows the hierarchy.

Figure 9–1 The class loader hierarchy

Most of the time, you don’t have to worry about the class loader hierarchy. Generally,
classes are loaded because they are required by other classes, and that process is trans-
parent to you.

Occasionally, you need to intervene and specify a class loader. Consider this example.

Bootstrap
class loader

Extension
class loader

System
class loader

Plugin
class loader

CLASSPATH

rt.jar

jre/lib/ext

plugin.jar

Class Loaders 759

• Your application code contains a helper method that calls Class.forName(classNameString).
• That method is called from a plugin class.
• The classNameString specifies a class that is contained in the plugin JAR.

The author of the plugin has the reasonable expectation that the class should be loaded.
However, the helper method’s class was loaded by the system class loader, and that is
the class loader used by Class.forName. The classes in the plugin JAR are not visible. This
phenomenon is called classloader inversion.

To overcome this problem, the helper method needs to use the correct class loader. It can
require the class loader as a parameter. Alternatively, it can require that the correct class
loader is set as the context class loader of the current thread. This strategy is used by
many frameworks (such as the JAXP and JNDI frameworks that we discussed in Chap-
ters 2 and 4).

Each thread has a reference to a class loader, called the context class loader. The main
thread’s context class loader is the system class loader. When a new thread is created, its
context class loader is set to the creating thread’s context class loader. Thus, if you don’t do
anything, then all threads have their context class loader set to the system class loader.

However, you can set any class loader by calling
Thread t = Thread.currentThread();
t.setContextClassLoader(loader);

The helper method can then retrieve the context class loader:
Thread t = Thread.currentThread();
ClassLoader loader = t.getContextClassLoader();
Class cl = loader.loadClass(className);

The question remains when the context class loader is set to the plugin class loader. The
application designer must make this decision. Generally, it is a good idea to set the context
class loader when invoking a method of a plugin class that was loaded with a different
class loader. Alternatively, the caller of the helper method can set the context class loader.

TIP: If you write a method that loads a class by name, it is a good idea to offer the caller the
choice between passing an explicit class loader and using the context class loader. Don’t
simply use the class loader of the method’s class.

Using Class Loaders as Namespaces
Every Java programmer knows that package names are used to eliminate name con-
flicts. There are two classes called Date in the standard library, but of course their real
names are java.util.Date and java.sql.Date. The simple name is only a programmer conve-
nience and requires the inclusion of appropriate import statements. In a running pro-
gram, all class names contain their package name.

It might surprise you, however, that you can have two classes in the same virtual
machine that have the same class and package name. A class is determined by its full
name and the class loader. This technique is useful for loading code from multiple
sources. For example, a browser uses separate instances of the applet class loader class
for each web page. This allows the virtual machine to separate classes from different
web pages, no matter what they are named. Figure 9–2 shows an example. Suppose a

Chapter 9 ■ Security760

web page contains two applets, provided by different advertisers, and each applet has a
class called Banner. Because each applet is loaded by a separate class loader, these classes
are entirely distinct and do not conflict with each other.

Figure 9–2 Two class loaders load different classes with the same name

NOTE: This technique has other uses as well, such as “hot deployment” of servlets and
Enterprise JavaBeans. See http://java.sun.com/developer/TechTips/2000/tt1027.html for more
information.

Bootstrap
class loader

Extension
class loader

System
class loader

class loader
for applet #1

class loader
for applet #2

Banner.class Banner.class

http://java.sun.com/developer/TechTips/2000/tt1027.html

Class Loaders 761

Writing Your Own Class Loader
You can write your own class loader for specialized purposes. That lets you carry out cus-
tom checks before you pass the bytecodes to the virtual machine. For example, you can
write a class loader that can refuse to load a class that has not been marked as “paid for.”

To write your own class loader, you simply extend the ClassLoader class and override the
method.

findClass(String className)

The loadClass method of the ClassLoader superclass takes care of the delegation to the par-
ent and calls findClass only if the class hasn’t already been loaded and if the parent class
loader was unable to load the class.

Your implementation of this method must do the following:

1. Load the bytecodes for the class from the local file system or from some other source.
2. Call the defineClass method of the ClassLoader superclass to present the bytecodes to

the virtual machine.

In the program of Listing 9–1, we implement a class loader that loads encrypted class
files. The program asks the user for the name of the first class to load (that is, the class
containing main) and the decryption key. It then uses a special class loader to load the
specified class and calls the main method. The class loader decrypts the specified class
and all nonsystem classes that are referenced by it. Finally, the program calls the main
method of the loaded class (see Figure 9–3).

For simplicity, we ignore 2,000 years of progress in the field of cryptography and use the
venerable Caesar cipher for encrypting the class files.

NOTE: David Kahn’s wonderful book The Codebreakers (Macmillan, 1967, p. 84) refers to
Suetonius as a historical source for the Caesar cipher. Caesar shifted the 24 letters of the
Roman alphabet by 3 letters, which at the time baffled his adversaries.

When this chapter was first written, the U.S. government restricted the export of strong
encryption methods. Therefore, we used Caesar’s method for our example because it was
clearly legal for export.

Figure 9–3 The ClassLoaderTest program

Chapter 9 ■ Security762

Our version of the Caesar cipher has as a key a number between 1 and 255. To decrypt,
simply add that key to every byte and reduce modulo 256. The Caesar.java program of
Listing 9–2 carries out the encryption.

So that we do not confuse the regular class loader, we use a different extension, .caesar,
for the encrypted class files.

To decrypt, the class loader simply subtracts the key from every byte. In the companion
code for this book, you will find four class files, encrypted with a key value of 3—the
traditional choice. To run the encrypted program, you need the custom class loader
defined in our ClassLoaderTest program.

Encrypting class files has a number of practical uses (provided, of course, that you use
a cipher stronger than the Caesar cipher). Without the decryption key, the class files
are useless. They can neither be executed by a standard virtual machine nor readily
disassembled.

This means that you can use a custom class loader to authenticate the user of the class or
to ensure that a program has been paid for before it will be allowed to run. Of course,
encryption is only one application of a custom class loader. You can use other types of
class loaders to solve other problems, for example, storing class files in a database.

Listing 9–1 ClassLoaderTest.java

1. import java.io.*;
2. import java.lang.reflect.*;
3. import java.awt.*;
4. import java.awt.event.*;
5. import javax.swing.*;
6.

7. /**
8. * This program demonstrates a custom class loader that decrypts class files.
9. * @version 1.22 2007-10-05

10. * @author Cay Horstmann
11. */
12. public class ClassLoaderTest
13. {
14. public static void main(String[] args)
15. {
16. EventQueue.invokeLater(new Runnable()
17. {
18. public void run()
19. {
20.

21. JFrame frame = new ClassLoaderFrame();
22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23. frame.setVisible(true);
24. }
25. });
26. }
27. }
28.

Class Loaders 763

29. /**
30. * This frame contains two text fields for the name of the class to load and the decryption key.
31. */
32. class ClassLoaderFrame extends JFrame
33. {
34. public ClassLoaderFrame()
35. {
36. setTitle("ClassLoaderTest");
37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
38. setLayout(new GridBagLayout());
39. add(new JLabel("Class"), new GBC(0, 0).setAnchor(GBC.EAST));
40. add(nameField, new GBC(1, 0).setWeight(100, 0).setAnchor(GBC.WEST));
41. add(new JLabel("Key"), new GBC(0, 1).setAnchor(GBC.EAST));
42. add(keyField, new GBC(1, 1).setWeight(100, 0).setAnchor(GBC.WEST));
43. JButton loadButton = new JButton("Load");
44. add(loadButton, new GBC(0, 2, 2, 1));
45. loadButton.addActionListener(new ActionListener()
46. {
47. public void actionPerformed(ActionEvent event)
48. {
49. runClass(nameField.getText(), keyField.getText());
50. }
51. });
52. pack();
53. }
54.

55. /**
56. * Runs the main method of a given class.
57. * @param name the class name
58. * @param key the decryption key for the class files
59. */
60. public void runClass(String name, String key)
61. {
62. try
63. {
64. ClassLoader loader = new CryptoClassLoader(Integer.parseInt(key));
65. Class<?> c = loader.loadClass(name);
66. Method m = c.getMethod("main", String[].class);
67. m.invoke(null, (Object) new String[] {});
68. }
69. catch (Throwable e)
70. {
71. JOptionPane.showMessageDialog(this, e);
72. }
73. }
74.

Listing 9–1 ClassLoaderTest.java (continued)

Chapter 9 ■ Security764

75. private JTextField keyField = new JTextField("3", 4);
76. private JTextField nameField = new JTextField("Calculator", 30);
77. private static final int DEFAULT_WIDTH = 300;
78. private static final int DEFAULT_HEIGHT = 200;
79. }
80.

81. /**
82. * This class loader loads encrypted class files.
83. */
84. class CryptoClassLoader extends ClassLoader
85. {
86. /**
87. * Constructs a crypto class loader.
88. * @param k the decryption key
89. */
90. public CryptoClassLoader(int k)
91. {
92. key = k;
93. }
94.

95. protected Class<?> findClass(String name) throws ClassNotFoundException
96. {
97. byte[] classBytes = null;
98. try
99. {

100. classBytes = loadClassBytes(name);
101. }
102. catch (IOException e)
103. {
104. throw new ClassNotFoundException(name);
105. }
106.

107. Class<?> cl = defineClass(name, classBytes, 0, classBytes.length);
108. if (cl == null) throw new ClassNotFoundException(name);
109. return cl;
110. }
111.

112. /**
113. * Loads and decrypt the class file bytes.
114. * @param name the class name
115. * @return an array with the class file bytes
116. */
117. private byte[] loadClassBytes(String name) throws IOException
118. {
119. String cname = name.replace('.', '/') + ".caesar";
120. FileInputStream in = null;
121. in = new FileInputStream(cname);
122. try
123. {

Listing 9–1 ClassLoaderTest.java (continued)

Class Loaders 765

124. ByteArrayOutputStream buffer = new ByteArrayOutputStream();
125. int ch;
126. while ((ch = in.read()) != -1)
127. {
128. byte b = (byte) (ch - key);
129. buffer.write(b);
130. }
131. in.close();
132. return buffer.toByteArray();
133. }
134. finally
135. {
136. in.close();
137. }
138. }
139.

140. private int key;
141. }

Listing 9–2 Caesar.java

1. import java.io.*;
2.

3. /**
4. * Encrypts a file using the Caesar cipher.
5. * @version 1.00 1997-09-10
6. * @author Cay Horstmann
7. */
8. public class Caesar
9. {

10. public static void main(String[] args)
11. {
12. if (args.length != 3)
13. {
14. System.out.println("USAGE: java Caesar in out key");
15. return;
16. }
17.

18. try
19. {
20. FileInputStream in = new FileInputStream(args[0]);
21. FileOutputStream out = new FileOutputStream(args[1]);
22. int key = Integer.parseInt(args[2]);
23. int ch;
24. while ((ch = in.read()) != -1)
25. {

Listing 9–1 ClassLoaderTest.java (continued)

Chapter 9 ■ Security766

• ClassLoader getClassLoader()
gets the class loader that loaded this class.

• ClassLoader getParent() 1.2
returns the parent class loader, or null if the parent class loader is the bootstrap
class loader.

• static ClassLoader getSystemClassLoader() 1.2
gets the system class loader; that is, the class loader that was used to load the first
application class.

• protected Class findClass(String name) 1.2
should be overridden by a class loader to find the bytecodes for a class and
present them to the virtual machine by calling the defineClass method. In the name
of the class, use . as package name separator, and don’t use a .class suffix.

• Class defineClass(String name, byte[] byteCodeData, int offset, int length)
adds a new class to the virtual machine whose bytecodes are provided in the
given data range.

• URLClassLoader(URL[] urls)
• URLClassLoader(URL[] urls, ClassLoader parent)

constructs a class loader that loads classes from the given URLs. If a URL ends in
a /, it is assumed to be a directory, otherwise it is assumed to be a JAR file.

• ClassLoader getContextClassLoader() 1.2
gets the class loader that the creator of this thread has designated as the most
reasonable class loader to use when executing this thread.

26. byte c = (byte) (ch + key);
27. out.write(c);
28. }
29. in.close();
30. out.close();
31. }
32. catch (IOException exception)
33. {
34. exception.printStackTrace();
35. }
36. }
37. }

java.lang.Class 1.0

java.lang.ClassLoader 1.0

java.net.URLClassLoader 1.2

java.lang.Thread 1.0

Listing 9–2 Caesar.java (continued)

Bytecode Verification 767

• void setContextClassLoader(ClassLoader loader) 1.2
sets a class loader for code in this thread to retrieve for loading classes. If no
context class loader is set explicitly when a thread is started, the parent’s context
class loader is used.

Bytecode Verification
When a class loader presents the bytecodes of a newly loaded Java platform class to the
virtual machine, these bytecodes are first inspected by a verifier. The verifier checks that
the instructions cannot perform actions that are obviously damaging. All classes except
for system classes are verified. You can, however, deactivate verification with the
undocumented -noverify option.

For example,
java -noverify Hello

Here are some of the checks that the verifier carries out:

• Variables are initialized before they are used.
• Method calls match the types of object references.
• Rules for accessing private data and methods are not violated.
• Local variable accesses fall within the runtime stack.
• The runtime stack does not overflow.

If any of these checks fails, then the class is considered corrupted and will not be loaded.

NOTE: If you are familiar with Gödel’s theorem, you might wonder how the verifier can
prove that a class file is free from type mismatches, uninitialized variables, and stack over-
flows. Gödel’s theorem states that it is impossible to design algorithms that process program
files and decide whether the input programs have a particular property (such as being free
from stack overflows). Is this a conflict between the public relations department at Sun
Microsystems and the laws of logic? No—in fact, the verifier is not a decision algorithm in
the sense of Gödel. If the verifier accepts a program, it is indeed safe. However, the verifier
might reject virtual machine instructions even though they would actually be safe. (You might
have run into this issue when you were forced to initialize a variable with a dummy value
because the compiler couldn’t tell that it was going to be properly initialized.)

This strict verification is an important security consideration. Accidental errors, such as
uninitialized variables, can easily wreak havoc if they are not caught. More important,
in the wide open world of the Internet, you must be protected against malicious pro-
grammers who create evil effects on purpose. For example, by modifying values on the
runtime stack or by writing to the private data fields of system objects, a program can
break through the security system of a browser.

You might wonder, however, why a special verifier checks all these features. After all,
the compiler would never allow you to generate a class file in which an uninitialized
variable is used or in which a private data field is accessed from another class. Indeed,
a class file generated by a compiler for the Java programming language always passes
verification. However, the bytecode format used in the class files is well documented,
and it is an easy matter for someone with some experience in assembly programming
and a hex editor to manually produce a class file that contains valid but unsafe

Chapter 9 ■ Security768

instructions for the Java virtual machine. Once again, keep in mind that the verifier is
always guarding against maliciously altered class files, not just checking the class files
produced by a compiler.

Here’s an example of how to construct such an altered class file. We start with the pro-
gram VerifierTest.java of Listing 9–3. This is a simple program that calls a method and
displays the method result. The program can be run both as a console program and as
an applet. The fun method itself just computes 1 2.

static int fun()
{
 int m;
 int n;
 m = 1;
 n = 2;
 int r = m + n;
 return r;
}

As an experiment, try to compile the following modification of this program:
static int fun()
{
 int m = 1;
 int n;
 m = 1;
 m = 2;
 int r = m + n;
 return r;
}

In this case, n is not initialized, and it could have any random value. Of course, the com-
piler detects that problem and refuses to compile the program. To create a bad class file,
we have to work a little harder. First, run the javap program to find out how the compiler
translates the fun method. The command

javap -c VerifierTest

shows the bytecodes in the class file in mnemonic form.
Method int fun()
 0 iconst_1
 1 istore_0
 2 iconst_2
 3 istore_1
 4 iload_0
 5 iload_1
 6 iadd
 7 istore_2
 8 iload_2
 9 ireturn

We use a hex editor to change instruction 3 from istore_1 to istore_0. That is, local variable
0 (which is m) is initialized twice, and local variable 1 (which is n) is not initialized at all.
We need to know the hexadecimal values for these instructions. These values are readily

Bytecode Verification 769

available from The Java Virtual Machine Specification, 2nd ed., by Tim Lindholm and
Frank Yellin (Prentice Hall PTR 1999).

 0 iconst_1 04
 1 istore_0 3B
 2 iconst_2 05
 3 istore_1 3C
 4 iload_0 1A
 5 iload_1 1B
 6 iadd 60
 7 istore_2 3D
 8 iload_2 1C
 9 ireturn AC

You can use any hex editor to carry out the modification. In Figure 9–4, you see the class
file VerifierTest.class loaded into the Gnome hex editor, with the bytecodes of the fun
method highlighted.

Figure 9–4 Modifying bytecodes with a hex editor

Change 3C to 3B and save the class file. Then try running the VerifierTest program. You
get an error message:

Exception in thread "main" java.lang.VerifyError: (class: VerifierTest, method:fun signature:
()I) Accessing value from uninitialized register 1

That is good—the virtual machine detected our modification.

Now run the program with the -noverify (or -Xverify:none) option.
java -noverify VerifierTest

Chapter 9 ■ Security770

The fun method returns a seemingly random value. This is actually 2 plus the value that
happened to be stored in the variable n, which never was initialized. Here is a typical
printout:

1 + 2 == 15102330

To see how browsers handle verification, we wrote this program to run either as an
application or an applet. Load the applet into a browser, using a file URL such as

file:///C:/CoreJavaBook/v2ch9/VerifierTest/VerifierTest.html

You then see an error message displayed indicating that verification has failed (see Fig-
ure 9–5).

Figure 9–5 Loading a corrupted class file raises a method verification error

Listing 9–3 VerifierTest.java

1. import java.applet.*;
2. import java.awt.*;
3.

4. /**
5. * This application demonstrates the bytecode verifier of the virtual machine. If you use a
6. * hex editor to modify the class file, then the virtual machine should detect the tampering.
7. * @version 1.00 1997-09-10
8. * @author Cay Horstmann
9. */

Security Managers and Permissions 771

Security Managers and Permissions
Once a class has been loaded into the virtual machine and checked by the verifier, the
second security mechanism of the Java platform springs into action: the security manager.
The security manager is a class that controls whether a specific operation is permitted.
Operations checked by the security manager include the following:

• Creating a new class loader
• Exiting the virtual machine
• Accessing a field of another class by using reflection
• Accessing a file
• Opening a socket connection
• Starting a print job
• Accessing the system clipboard
• Accessing the AWT event queue
• Bringing up a top-level window

There are many other checks such as these throughout the Java library.

10. public class VerifierTest extends Applet
11. {
12. public static void main(String[] args)
13. {
14. System.out.println("1 + 2 == " + fun());
15. }
16.

17. /**
18. * A function that computes 1 + 2
19. * @return 3, if the code has not been corrupted
20. */
21. public static int fun()
22. {
23. int m;
24. int n;
25. m = 1;
26. n = 2;
27. // use hex editor to change to "m = 2" in class file
28. int r = m + n;
29. return r;
30. }
31.

32. public void paint(Graphics g)
33. {
34. g.drawString("1 + 2 == " + fun(), 20, 20);
35. }
36. }

Listing 9–3 VerifierTest.java (continued)

Chapter 9 ■ Security772

The default behavior when running Java applications is that no security manager is
installed, so all these operations are permitted. The applet viewer, on the other hand,
enforces a security policy that is quite restrictive.

For example, applets are not allowed to exit the virtual machine. If they try calling the
exit method, then a security exception is thrown. Here is what happens in detail. The
exit method of the Runtime class calls the checkExit method of the security manager. Here is
the entire code of the exit method:

public void exit(int status)
{
 SecurityManager security = System.getSecurityManager();
 if (security != null)
 security.checkExit(status);
 exitInternal(status);
}

The security manager now checks if the exit request came from the browser or an indi-
vidual applet. If the security manager agrees with the exit request, then the checkExit
method simply returns and normal processing continues. However, if the security man-
ager doesn’t want to grant the request, the checkExit method throws a SecurityException.

The exit method continues only if no exception occurred. It then calls the private native
exitInternal method that actually terminates the virtual machine. There is no other way
of terminating the virtual machine, and because the exitInternal method is private, it can-
not be called from any other class. Thus, any code that attempts to exit the virtual
machine must go through the exit method and thus through the checkExit security check
without triggering a security exception.

Clearly, the integrity of the security policy depends on careful coding. The providers of
system services in the standard library must always consult the security manager before
attempting any sensitive operation.

The security manager of the Java platform allows both programmers and system
administrators fine-grained control over individual security permissions. We describe
these features in the following section. First, we summarize the Java 2 platform security
model. We then show how you can control permissions with policy files. Finally, we
explain how you can define your own permission types.

NOTE: It is possible to implement and install your own security manager, but you should not
attempt this unless you are an expert in computer security. It is much safer to configure the
standard security manager.

Java Platform Security
JDK 1.0 had a very simple security model: Local classes had full permissions, and remote
classes were confined to the sandbox. Just like a child that can only play in a sandbox,
remote code was only allowed to paint on the screen and interact with the user. The applet
security manager denied all access to local resources. JDK 1.1 implemented a slight modi-
fication: Remote code that was signed by a trusted entity was granted the same permis-
sions as local classes. However, both versions of the JDK provided an all-or-nothing
approach. Programs either had full access or they had to play in the sandbox.

Security Managers and Permissions 773

Starting with Java SE 1.2, the Java platform has a much more flexible mechanism. A
security policy maps code sources to permission sets (see Figure 9–6).

Figure 9–6 A security policy

A code source is specified by a code base and a set of certificates. The code base specifies the
origin of the code. For example, the code base of remote applet code is the HTTP URL
from which the applet is loaded. The code base of code in a JAR file is a file URL. A certif-
icate, if present, is an assurance by some party that the code has not been tampered with.
We cover certificates later in this chapter.

A permission is any property that is checked by a security manager. The Java platform
supports a number of permission classes, each of which encapsulates the details of a
particular permission. For example, the following instance of the FilePermission class
states that it is okay to read and write any file in the /tmp directory.

FilePermission p = new FilePermission("/tmp/*", "read,write");

More important, the default implementation of the Policy class reads permissions from a
permission file. Inside a permission file, the same read permission is expressed as

permission java.io.FilePermission "/tmp/*", "read,write";

We discuss permission files in the next section.

Figure 9–7 shows the hierarchy of the permission classes that were supplied with Java
SE 1.2. Many more permission classes have been added in subsequent Java releases.

Code Base2 Permission Set 2

Permission Set 1

certificates
code location

Code Base1

certificates
code location

permission
 #1a

permission
 #1b

permission
 #2a

permission
 #2b

Chapter 9 ■ Security774

In the preceding section, you saw that the SecurityManager class has security check meth-
ods such as checkExit. These methods exist only for the convenience of the programmer
and for backward compatibility. They all map into standard permission checks. For
example, here is the source code for the checkExit method:

public void checkExit()
{
 checkPermission(new RuntimePermission("exitVM"));
}

Each class has a protection domain, an object that encapsulates both the code source and
the collection of permissions of the class. When the SecurityManager needs to check a per-
mission, it looks at the classes of all methods currently on the call stack. It then gets the
protection domains of all classes and asks each protection domain if its permission col-
lection allows the operation that is currently being checked. If all domains agree, then
the check passes. Otherwise, a SecurityException is thrown.

Why do all methods on the call stack need to allow a particular operation? Let us work
through an example. Suppose the init method of an applet wants to open a file. It might
call

Reader in = new FileReader(name);

Figure 9–7 A part of the hierarchy of permission classes

AII
Permission

Basic
Permission

File
Permission

Socket
Permission

Audio
Permission

Net
Permission

Reflected
Permission

Security
Permission

Permission

AWT
Permission

SQL
Permission

Runtime
Permission

Auth
Permission

Logging
Permission

Property
Permission

Serializable
Permission

Security Managers and Permissions 775

The FileReader constructor calls the FileInputStream constructor, which calls the checkRead
method of the security manager, which finally calls checkPermission with a FilePermis-
sion(name, "read" object. Table 9–1 shows the call stack.

The FileInputStream and SecurityManager classes are system classes for which CodeSource is null
and permissions consist of an instance of the AllPermission class, which allows all opera-
tions. Clearly, their permissions alone can’t determine the outcome of the check. As you
can see, the checkPermission method must take into account the restricted permissions of
the applet class. By checking the entire call stack, the security mechanism ensures that
one class can never ask another class to carry out a sensitive operation on its behalf.

NOTE: This brief discussion of permission checking explains the basic concepts. However,
we omit a number of technical details here. With security, the devil lies in the details, and we
encourage you to read the book by Li Gong for more information. For a more critical view of
the Java platform security model, see the book Securing Java: Getting Down to Business with
Mobile Code, 2nd ed., by Gary McGraw and Ed W. Felten (Wiley 1999). You can find an online
version of that book at http://www.securingjava.com.

• void checkPermission(Permission p) 1.2
checks whether this security manager grants the given permission. The method
throws a SecurityException if the permission is not granted.

• ProtectionDomain getProtectionDomain() 1.2
gets the protection domain for this class, or null if this class was loaded without a
protection domain.

Table 9–1 Call Stack During Permission Checking

Class Method Code Source Permissions

SecurityManager checkPermission null AllPermission

SecurityManager checkRead null AllPermission

FileInputStream constructor null AllPermission

FileReader constructor null AllPermission

applet init applet code source applet permissions

. . .

java.lang.SecurityManager 1.0

java.lang.Class 1.0

http://www.securingjava.com

Chapter 9 ■ Security776

• ProtectionDomain(CodeSource source, PermissionCollection permissions)
constructs a protection domain with the given code source and permissions.

• CodeSource getCodeSource()
gets the code source of this protection domain.

• boolean implies(Permission p)
returns true if the given permission is allowed by this protection domain.

• Certificate[] getCertificates()
gets the certificate chain for class file signatures associated with this code source.

• URL getLocation()
gets the code base of class files associated with this code source.

Security Policy Files
The policy manager reads policy files that contain instructions for mapping code sources to
permissions. Here is a typical policy file:

grant codeBase "http://www.horstmann.com/classes"
{
 permission java.io.FilePermission "/tmp/*", "read,write";
};

This file grants permission to read and write files in the /tmp directory to all code that
was downloaded from http://www.horstmann.com/classes.

You can install policy files in standard locations. By default, there are two locations:

• The file java.policy in the Java platform home directory
• The file .java.policy (notice the period at the beginning of the file name) in the user

home directory

NOTE: You can change the locations of these files in the java.security configuration file in
the jre/lib/security. The defaults are specified as

policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

A system administrator can modify the java.security file and specify policy URLs that
reside on another server and that cannot be edited by users. There can be any number of
policy URLs (with consecutive numbers) in the policy file. The permissions of all files are
combined.

If you want to store policies outside the file system, you can implement a subclass of the
Policy class that gathers the permissions. Then change the line

policy.provider=sun.security.provider.PolicyFile

in the java.security configuration file.

java.security.ProtectionDomain 1.2

java.security.CodeSource 1.2

http://www.horstmann.com/classes

Security Managers and Permissions 777

During testing, we don’t like to constantly modify the standard policy files. Therefore,
we prefer to explicitly name the policy file that is required for each application. Place the
permissions into a separate file, say, MyApp.policy. To apply the policy, you have two
choices. You can set a system property inside your applications’ main method:

System.setProperty("java.security.policy", "MyApp.policy");

Alternatively, you can start the virtual machine as
java -Djava.security.policy=MyApp.policy MyApp

For applets, you instead use
appletviewer -J-Djava.security.policy=MyApplet.policy MyApplet.html

(You can use the -J option of the appletviewer to pass any command-line argument to the
virtual machine.)

In these examples, the MyApp.policy file is added to the other policies in effect. If you add a
second equal sign, such as

java -Djava.security.policy==MyApp.policy MyApp

then your application uses only the specified policy file, and the standard policy files are
ignored.

CAUTION: An easy mistake during testing is to accidentally leave a .java.policy file that
grants a lot of permissions, perhaps even AllPermission, in the current directory. If you find that
your application doesn’t seem to pay attention to the restrictions in your policy file, check for a
left-behind .java.policy file in your current directory. If you use a UNIX system, this is a partic-
ularly easy mistake to make because files with names that start with a period are not displayed
by default.

As you saw previously, Java applications by default do not install a security manager.
Therefore, you won’t see the effect of policy files until you install one. You can, of
course, add a line

System.setSecurityManager(new SecurityManager());

into your main method. Or you can add the command-line option -Djava.security.manager
when starting the virtual machine.

java -Djava.security.manager -Djava.security.policy=MyApp.policy MyApp

In the remainder of this section, we show you in detail how to describe permissions in
the policy file. We describe the entire policy file format, except for code certificates,
which we cover later in this chapter.

A policy file contains a sequence of grant entries. Each entry has the following form:
grant codesource
{
 permission1;
 permission2;
 . . .
};

Chapter 9 ■ Security778

The code source contains a code base (which can be omitted if the entry applies to code
from all sources) and the names of trusted principals and certificate signers (which can
be omitted if signatures are not required for this entry).

The code base is specified as
codeBase "url"

If the URL ends in a /, then it refers to a directory. Otherwise, it is taken to be the name
of a JAR file. For example,

grant codeBase "www.horstmann.com/classes/" { . . . };
grant codeBase "www.horstmann.com/classes/MyApp.jar" { . . . };

The code base is a URL and should always contain forward slashes as file separators,
even for file URLs in Windows. For example,

grant codeBase "file:C:/myapps/classes/" { . . . };

NOTE: Everyone knows that http URLs start with two slashes (http://). But there seems
sufficient confusion about file URLs that the policy file reader accepts two forms of file
URLs, namely, file://localFile and file:localFile. Furthermore, a slash before a Windows
drive letter is optional. That is, all of the following are acceptable:

file:C:/dir/filename.ext
file:/C:/dir/filename.ext
file://C:/dir/filename.ext
file:///C:/dir/filename.ext

Actually, in our tests, the file:////C:/dir/filename.ext is acceptable as well, and we have no
explanation for that.

 The permissions have the following structure:
permission className targetName, actionList;

The class name is the fully qualified class name of the permission class (such as
java.io.FilePermission). The target name is a permission-specific value, for example, a file or
directory name for the file permission, or a host and port for a socket permission. The
actionList is also permission specific. It is a list of actions, such as read or connect, sepa-
rated by commas. Some permission classes don’t need target names and action lists.
Table 9–2 lists the commonly used permission classes and their actions.

Table 9–2 Permissions and Their Associated Targets and Actions

Permission Target Action

java.io.FilePermission file target (see text) read, write,
execute, delete

java.net.SocketPermission socket target (see text) accept, connect,
listen, resolve

java.util.PropertyPermission property target (see text) read, write

Security Managers and Permissions 779

java.lang.RuntimePermission createClassLoader
getClassLoader
setContextClassLoader
enableContextClassLoaderOverride
createSecurityManager
setSecurityManager
exitVM
getenv.variableName
shutdownHooks
setFactory
setIO
modifyThread
stopThread
modifyThreadGroup
getProtectionDomain
readFileDescriptor
writeFileDescriptor
loadLibrary.libraryName
accessClassInPackage.packageName
defineClassInPackage.packageName
accessDeclaredMembers.className
queuePrintJob
getStackTrace
setDefaultUncaughtExceptionHandler
preferences
usePolicy

(none)

java.awt.AWTPermission showWindowWithoutWarningBanner
accessClipboard
accessEventQueue
createRobot
fullScreenExclusive
listenToAllAWTEvents
readDisplayPixels
replaceKeyboardFocusManager
watchMousePointer
setWindowAlwaysOnTop
setAppletStub

(none)

java.net.NetPermission setDefaultAuthenticator
specifyStreamHandler
requestPasswordAuthentication
setProxySelector
getProxySelector
setCookieHandler
getCookieHandler
setResponseCache
getResponseCache

(none)

Table 9–2 Permissions and Their Associated Targets and Actions (continued)

Permission Target Action

Chapter 9 ■ Security780

java.lang.reflect.ReflectPermission suppressAccessChecks (none)

java.io.SerializablePermission enableSubclassImplementation
enableSubstitution

(none)

java.security.SecurityPermission createAccessControlContext
getDomainCombiner
getPolicy
setPolicy
getProperty.keyName
setProperty.keyName
insertProvider.providerName
removeProvider.providerName
setSystemScope
setIdentityPublicKey
setIdentityInfo
addIdentityCertificate
removeIdentityCertificate
printIdentity
clearProviderProperties.providerName
putProviderProperty.providerName
removeProviderProperty.providerName
getSignerPrivateKey
setSignerKeyPair

(none)

java.security.AllPermission (none) (none)

javax.audio.AudioPermission play
record

(none)

javax.security.auth.AuthPermission doAs
doAsPrivileged
getSubject
getSubjectFromDomainCombiner
setReadOnly
modifyPrincipals
modifyPublicCredentials
modifyPrivateCredentials
refreshCredential
destroyCredential
createLoginContext.contextName
getLoginConfiguration
setLoginConfiguration
refreshLoginConfiguration

(none)

java.util.logging.LoggingPermission control (none)

java.sql.SQLPermission setLog (none)

Table 9–2 Permissions and Their Associated Targets and Actions (continued)

Permission Target Action

Security Managers and Permissions 781

As you can see from Table 9–2, most permissions simply permit a particular operation.
You can think of the operation as the target with an implied action "permit". These per-
mission classes all extend the BasicPermission class (see Figure 9–7 on page 774). However,
the targets for the file, socket, and property permissions are more complex, and we need
to investigate them in detail.

File permission targets can have the following form:

For example, the following permission entry gives access to all files in the directory /
myapp and any of its subdirectories.

permission java.io.FilePermission "/myapp/-", "read,write,delete";

You must use the \\ escape sequence to denote a backslash in a Windows file name.
permission java.io.FilePermission "c:\\myapp\\-", "read,write,delete";

Socket permission targets consist of a host and a port range. Host specifications have the
following form:

Port ranges are optional and have the form:

Here is an example:
permission java.net.SocketPermission "*.horstmann.com:8000-8999", "connect";

Finally, property permission targets can have one of two forms:

Examples are "java.home" and "java.vm.*".

For example, the following permission entry allows a program to read all properties
that start with java.vm.

permission java.util.PropertyPermission "java.vm.*", "read";

file a file
directory/ a directory
directory/* all files in the directory
* all files in the current directory
directory/- all files in the directory or one of its subdirectories
- all files in the current directory or one of its subdirectories
<<ALL FILES>> all files in the file system

hostname or IPaddress a single host
localhost or the empty string the local host
*.domainSuffix any host whose domain ends with the given suffix
* all hosts

:n a single port
:n- all ports numbered n and above
:-n all ports numbered n and below
:n1-n2 all ports in the given range

property a specific property
propertyPrefix.* all properties with the given prefix

Chapter 9 ■ Security782

You can use system properties in policy files. The token ${property} is replaced by the
property value. For example, ${user.home} is replaced by the home directory of the user.
Here is a typical use of this system property in a permission entry.

permission java.io.FilePermission "${user.home}", "read,write";

To create platform-independent policy files, it is a good idea to use the file.separator
property instead of explicit / or \\ separators. To make this simpler, the special notation
${/} is a shortcut for ${file.separator}. For example,

permission java.io.FilePermission "${user.home}${/}-", "read,write";

is a portable entry for granting permission to read and write in the user’s home direc-
tory and any of its subdirectories.

NOTE: The JDK comes with a rudimentary tool, called policytool, that you can use to edit
policy files (see Figure 9–8). Of course, this tool is not suitable for end users who would be
completely mystified by most of the settings. We view it as a proof of concept for an
administration tool that might be used by system administrators who prefer point-and-click
over syntax. Still, what’s missing is a sensible set of categories (such as low, medium, or
high security) that is meaningful to nonexperts. As a general observation, we believe that
the Java platform certainly contains all the pieces for a fine-grained security model but
that it could benefit from some polish in delivering these pieces to end users and system
administrators.

Figure 9–8 The policy tool

Security Managers and Permissions 783

Custom Permissions
In this section, you see how you can supply your own permission class that users can
refer to in their policy files.

To implement your permission class, you extend the Permission class and supply the
following methods:

• A constructor with two String parameters, for the target and the action list
• String getActions()
• boolean equals()
• int hashCode()
• boolean implies(Permission other)

The last method is the most important. Permissions have an ordering, in which more
general permissions imply more specific ones. Consider the file permission

p1 = new FilePermission("/tmp/-", "read, write");

This permission allows reading and writing of any file in the /tmp directory and any of its
subdirectories.

This permission implies other, more specific permissions:
p2 = new FilePermission("/tmp/-", "read");
p3 = new FilePermission("/tmp/aFile", "read, write");
p4 = new FilePermission("/tmp/aDirectory/-", "write");

In other words, a file permission p1 implies another file permission p2 if

1. The target file set of p1 contains the target file set of p2.
2. The action set of p1 contains the action set of p2.

Consider the following example of the use of the implies method. When the FileInputStream
constructor wants to open a file for reading, it checks whether it has permission to do so.
For that check, a specific file permission object is passed to the checkPermission method:

checkPermission(new FilePermission(fileName, "read"));

The security manager now asks all applicable permissions whether they imply this per-
mission. If any one of them implies it, then the check passes.

In particular, the AllPermission implies all other permissions.

If you define your own permission classes, then you need to define a suitable notion of
implication for your permission objects. Suppose, for example, that you define a TVPer-
mission for a set-top box powered by Java technology. A permission

new TVPermission("Tommy:2-12:1900-2200", "watch,record")

might allow Tommy to watch and record television channels 2–12 between 19:00 and
22:00. You need to implement the implies method so that this permission implies a more
specific one, such as

new TVPermission("Tommy:4:2000-2100", "watch")

Implementation of a Permission Class
In the next sample program, we implement a new permission for monitoring the inser-
tion of text into a text area. The program ensures that you cannot add “bad words” such
as sex, drugs, and C++ into a text area. We use a custom permission class so that the list
of bad words can be supplied in a policy file.

Chapter 9 ■ Security784

The following subclass of JTextArea asks the security manager whether it is okay to add
new text:

class WordCheckTextArea extends JTextArea
{
 public void append(String text)
 {
 WordCheckPermission p = new WordCheckPermission(text, "insert");
 SecurityManager manager = System.getSecurityManager();
 if (manager != null) manager.checkPermission(p);
 super.append(text);
 }
}

If the security manager grants the WordCheckPermission, then the text is appended. Other-
wise, the checkPermission method throws an exception.

Word check permissions have two possible actions: insert (the permission to insert a spe-
cific text) and avoid (the permission to add any text that avoids certain bad words). You
should run this program with the following policy file:

grant
{
 permission WordCheckPermission "sex,drugs,C++", "avoid";
};

This policy file grants the permission to insert any text that avoids the bad words sex,
drugs, and C++.

When designing the WordCheckPermission class, we must pay particular attention to the implies
method. Here are the rules that control whether permission p1 implies permission p2.

• If p1 has action avoid and p2 has action insert, then the target of p2 must avoid all
words in p1. For example, the permission

WordCheckPermission "sex,drugs,C++", "avoid"

implies the permission
WordCheckPermission "Mary had a little lamb", "insert"

• If p1 and p2 both have action avoid, then the word set of p2 must contain all words in
the word set of p1. For example, the permission

WordCheckPermission "sex,drugs", "avoid"

implies the permission
WordCheckPermission "sex,drugs,C++", "avoid"

• If p1 and p2 both have action insert, then the text of p1 must contain the text of p2. For
example, the permission

WordCheckPermission "Mary had a little lamb", "insert"

implies the permission
WordCheckPermission "a little lamb", "insert"

You can find the implementation of this class in Listing 9–4.

Note that you retrieve the permission target with the confusingly named getName method
of the Permission class.

Security Managers and Permissions 785

Because permissions are described by a pair of strings in policy files, permission classes
need to be prepared to parse these strings. In particular, we use the following method to
transform the comma-separated list of bad words of an avoid permission into a genuine
Set.

public Set<String> badWordSet()
{
 Set<String> set = new HashSet<String>();
 set.addAll(Arrays.asList(getName().split(",")));
 return set;
}

This code allows us to use the equals and containsAll methods to compare sets. As you saw
in Chapter 2, the equals method of a set class finds two sets to be equal if they contain the
same elements in any order. For example, the sets resulting from "sex,drugs,C++" and
"C++,drugs,sex" are equal.

CAUTION: Make sure that your permission class is a public class. The policy file loader
cannot load classes with package visibility outside the boot class path, and it silently ignores
any classes that it cannot find.

The program in Listing 9–5 shows how the WordCheckPermission class works. Type any text
into the text field and click the Insert button. If the security check passes, the text is
appended to the text area. If not, an error message is displayed (see Figure 9–9).

Figure 9–9 The PermissionTest program

CAUTION: If you carefully look at Figure 9–9, you will see that the frame window has a
warning border with the misleading caption "Java Applet Window." The window caption is
determined by the showWindowWithoutWarningBanner target of the java.awt.AWTPermission. If you
like, you can edit the policy file to grant that permission.

Chapter 9 ■ Security786

You have now seen how to configure Java platform security. Most commonly, you will
simply tweak the standard permissions. For additional control, you can define custom
permissions that can be configured in the same way as the standard permissions.

Listing 9–4 WordCheckPermission.java

1. import java.security.*;
2. import java.util.*;
3.

4. /**
5. * A permission that checks for bad words.
6. * @version 1.00 1999-10-23
7. * @author Cay Horstmann
8. */
9. public class WordCheckPermission extends Permission

10. {
11. /**
12. * Constructs a word check permission
13. * @param target a comma separated word list
14. * @param anAction "insert" or "avoid"
15. */
16. public WordCheckPermission(String target, String anAction)
17. {
18. super(target);
19. action = anAction;
20. }
21.

22. public String getActions()
23. {
24. return action;
25. }
26.

27. public boolean equals(Object other)
28. {
29. if (other == null) return false;
30. if (!getClass().equals(other.getClass())) return false;
31. WordCheckPermission b = (WordCheckPermission) other;
32. if (!action.equals(b.action)) return false;
33. if (action.equals("insert")) return getName().equals(b.getName());
34. else if (action.equals("avoid")) return badWordSet().equals(b.badWordSet());
35. else return false;
36. }
37.

38. public int hashCode()
39. {
40. return getName().hashCode() + action.hashCode();
41. }
42.

43. public boolean implies(Permission other)
44. {

Security Managers and Permissions 787

45. if (!(other instanceof WordCheckPermission)) return false;
46. WordCheckPermission b = (WordCheckPermission) other;
47. if (action.equals("insert"))
48. {
49. return b.action.equals("insert") && getName().indexOf(b.getName()) >= 0;
50. }
51. else if (action.equals("avoid"))
52. {
53. if (b.action.equals("avoid")) return b.badWordSet().containsAll(badWordSet());
54. else if (b.action.equals("insert"))
55. {
56. for (String badWord : badWordSet())
57. if (b.getName().indexOf(badWord) >= 0) return false;
58. return true;
59. }
60. else return false;
61. }
62. else return false;
63. }
64.

65. /**
66. * Gets the bad words that this permission rule describes.
67. * @return a set of the bad words
68. */
69. public Set<String> badWordSet()
70. {
71. Set<String> set = new HashSet<String>();
72. set.addAll(Arrays.asList(getName().split(",")));
73. return set;
74. }
75.

76. private String action;
77. }

Listing 9–5 PermissionTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * This class demonstrates the custom WordCheckPermission.
7. * @version 1.03 2007-10-06
8. * @author Cay Horstmann
9. */

10. public class PermissionTest
11. {

Listing 9–4 WordCheckPermission.java (continued)

Chapter 9 ■ Security788

12. public static void main(String[] args)
13. {
14. System.setProperty("java.security.policy", "PermissionTest.policy");
15. System.setSecurityManager(new SecurityManager());
16. EventQueue.invokeLater(new Runnable()
17. {
18. public void run()
19. {
20. JFrame frame = new PermissionTestFrame();
21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22. frame.setVisible(true);
23. }
24. });
25. }
26. }
27.

28. /**
29. * This frame contains a text field for inserting words into a text area that is protected
30. * from "bad words".
31. */
32. class PermissionTestFrame extends JFrame
33. {
34. public PermissionTestFrame()
35. {
36. setTitle("PermissionTest");
37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
38.

39. textField = new JTextField(20);
40. JPanel panel = new JPanel();
41. panel.add(textField);
42. JButton openButton = new JButton("Insert");
43. panel.add(openButton);
44. openButton.addActionListener(new ActionListener()
45. {
46. public void actionPerformed(ActionEvent event)
47. {
48. insertWords(textField.getText());
49. }
50. });
51.

52. add(panel, BorderLayout.NORTH);
53.

54. textArea = new WordCheckTextArea();
55. add(new JScrollPane(textArea), BorderLayout.CENTER);
56. }
57.

Listing 9–5 PermissionTest.java (continued)

Security Managers and Permissions 789

• Permission(String name)
constructs a permission with the given target name.

• String getName()
returns the target name of this permission.

• boolean implies(Permission other)
checks whether this permission implies the other permission. That is the case if
the other permission describes a more specific condition that is a consequence of
the condition described by this permission.

58. /**
59. * Tries to insert words into the text area. Displays a dialog if the attempt fails.
60. * @param words the words to insert
61. */
62. public void insertWords(String words)
63. {
64. try
65. {
66. textArea.append(words + "\n");
67. }
68. catch (SecurityException e)
69. {
70. JOptionPane.showMessageDialog(this, "I am sorry, but I cannot do that.");
71. }
72. }
73.

74. private JTextField textField;
75. private WordCheckTextArea textArea;
76. private static final int DEFAULT_WIDTH = 400;
77. private static final int DEFAULT_HEIGHT = 300;
78. }
79.

80. /**
81. * A text area whose append method makes a security check to see that no bad words are added.
82. */
83. class WordCheckTextArea extends JTextArea
84. {
85. public void append(String text)
86. {
87. WordCheckPermission p = new WordCheckPermission(text, "insert");
88. SecurityManager manager = System.getSecurityManager();
89. if (manager != null) manager.checkPermission(p);
90. super.append(text);
91. }
92. }

java.security.Permission 1.2

Listing 9–5 PermissionTest.java (continued)

Chapter 9 ■ Security790

User Authentication
The Java Authentication and Authorization Service (JAAS) is a part of Java SE 1.4 and
beyond. The “authentication” part is concerned with ascertaining the identity of a pro-
gram user. The “authorization” part maps users to permissions.

JAAS is a “pluggable” API that isolates Java applications from the particular technology
used to implement authentication. It supports, among others, UNIX logins, NT logins,
Kerberos authentication, and certificate-based authentication.

Once a user has been authenticated, you can attach a set of permissions. For example,
here we grant Harry a particular set of permissions that other users do not have:

grant principal com.sun.security.auth.UnixPrincipal "harry"
{
 permission java.util.PropertyPermission "user.*", "read";
 . . .
};

The com.sun.security.auth.UnixPrincipal class checks the name of the UNIX user who is run-
ning this program. Its getName method returns the UNIX login name, and we check
whether that name equals "harry".

You use a LoginContext to allow the security manager to check such a grant statement.
Here is the basic outline of the login code:

try
{
 System.setSecurityManager(new SecurityManager());
 LoginContext context = new LoginContext("Login1"); // defined in JAAS configuration file
 context.login();
 // get the authenticated Subject
 Subject subject = context.getSubject();
 . . .
 context.logout();
}
catch (LoginException exception) // thrown if login was not successful
{
 exception.printStackTrace();
}

Now the subject denotes the individual who has been authenticated.

The string parameter "Login1" in the LoginContext constructor refers to an entry with the
same name in the JAAS configuration file. Here is a sample configuration file:

Login1
{
 com.sun.security.auth.module.UnixLoginModule required;
 com.whizzbang.auth.module.RetinaScanModule sufficient;
};

Login2
{
 . . .
};

User Authentication 791

Of course, the JDK contains no biometric login modules. The following modules are
supplied in the com.sun.security.auth.module package:

UnixLoginModule
NTLoginModule
Krb5LoginModule
JndiLoginModule
KeyStoreLoginModule

A login policy consists of a sequence of login modules, each of which is labeled required,
sufficient, requisite, or optional. The meaning of these keywords is given by the following
algorithm:

1. The modules are executed in turn, until a sufficient module succeeds, a requisite mod-
ule fails, or the end of the module list is reached.

2. Authentication is successful if all required and requisite modules succeed, or if none
of them were executed, if at least one sufficient or optional module succeeds.

A login authenticates a subject, which can have multiple principals. A principal describes
some property of the subject, such as the user name, group ID, or role. As you saw in the
grant statement, principals govern permissions. The com.sun.security.auth.UnixPrincipal
describes the UNIX login name, and the UnixNumericGroupPrincipal can test for membership
in a UNIX group.

A grant clause can test for a principal, with the syntax
grant principalClass "principalName"

For example:
grant com.sun.security.auth.UnixPrincipal "harry"

When a user has logged in, you then run, in a separate access control context, the code
that requires checking of principals. Use the static doAs or doAsPrivileged method to start a
new PrivilegedAction whose run method executes the code.

Both of those methods execute an action by calling the run method of an object that imple-
ments the PrivilegedAction interface, using the permissions of the subject’s principals:

PrivilegedAction<T> action = new
 PrivilegedAction()
 {
 public T run()
 {
 // run with permissions of subject principals
 . . .
 }
 };
T result = Subject.doAs(subject, action); // or Subject.doAsPrivileged(subject, action, null)

If the actions can throw checked exceptions, then you implement the PrivilegedException-
Action interface instead.

The difference between the doAs and doAsPrivileged methods is subtle. The doAs method
starts out with the current access control context, whereas the doAsPrivileged method
starts out with a new context. The latter method allows you to separate the permissions
for the login code and the “business logic.” In our example application, the login code
has permissions

Chapter 9 ■ Security792

permission javax.security.auth.AuthPermission "createLoginContext.Login1";
permission javax.security.auth.AuthPermission "doAsPrivileged";

The authenticated user has a permission
permission java.util.PropertyPermission "user.*", "read";

If we had used doAs instead of doAsPrivileged, then the login code would have also needed
that permission!

The program in Listing 9–6 and Listing 9–7 demonstrates how to restrict permissions to
certain users. The AuthTest program authenticates a user and then runs a simple action
that retrieves a system property.

To make this example work, package the code for the login and the action into two sep-
arate JAR files:

javac *.java
jar cvf login.jar AuthTest.class
jar cvf action.jar SysPropAction.class

If you look at the policy file in Listing 9–8, you will see that the UNIX user with the
name harry has the permission to read all files. Change harry to your login name. Then
run the command

java -classpath login.jar:action.jar
 -Djava.security.policy=AuthTest.policy
 -Djava.security.auth.login.config=jaas.config
 AuthTest

Listing 9–12 shows the login configuration.

On Windows, change Unix to NT in both AuthTest.policy and jaas.config, and use a semicolon
to separate the JAR files:

java -classpath login.jar;action.jar . . .

The AuthTest program should now display the value of the user.home property. However, if
you change the login name in the AuthTest.policy file, then a security exception should be
thrown because you no longer have the required permission.

CAUTION: Be careful to follow these instructions exactly. It is very easy to get the setup
wrong by making seemingly innocuous changes.

Listing 9–6 AuthTest.java

1. import java.security.*;
2. import javax.security.auth.*;
3. import javax.security.auth.login.*;
4.

5. /**
6. * This program authenticates a user via a custom login and then executes the SysPropAction
7. * with the user's privileges.
8. * @version 1.01 2007-10-06
9. * @author Cay Horstmann

10. */

User Authentication 793

11. public class AuthTest
12. {
13. public static void main(final String[] args)
14. {
15. System.setSecurityManager(new SecurityManager());
16. try
17. {
18. LoginContext context = new LoginContext("Login1");
19. context.login();
20. System.out.println("Authentication successful.");
21. Subject subject = context.getSubject();
22. System.out.println("subject=" + subject);
23. PrivilegedAction<String> action = new SysPropAction("user.home");
24. String result = Subject.doAsPrivileged(subject, action, null);
25. System.out.println(result);
26. context.logout();
27. }
28. catch (LoginException e)
29. {
30. e.printStackTrace();
31. }
32. }
33. }

Listing 9–7 SysPropAction.java

1. import java.security.*;
2.

3. /**
4. This action looks up a system property.
5. * @version 1.01 2007-10-06
6. * @author Cay Horstmann
7. */
8. public class SysPropAction implements PrivilegedAction<String>
9. {

10. /**
11. Constructs an action for looking up a given property.
12. @param propertyName the property name (such as "user.home")
13. */
14. public SysPropAction(String propertyName) { this.propertyName = propertyName; }
15.

16. public String run()
17. {
18. return System.getProperty(propertyName);
19. }
20.

21. private String propertyName;
22. }

Listing 9–6 AuthTest.java (continued)

Chapter 9 ■ Security794

• LoginContext(String name)
constructs a login context. The name corresponds to the login descriptor in the JAAS
configuration file.

• void login()
establishes a login or throws LoginException if the login failed. Invokes the login
method on the managers in the JAAS configuration file.

• void logout()
logs out the subject. Invokes the logout method on the managers in the JAAS
configuration file.

• Subject getSubject()
returns the authenticated subject.

• Set<Principal> getPrincipals()
gets the principals of this subject.

• static Object doAs(Subject subject, PrivilegedAction action)
• static Object doAs(Subject subject, PrivilegedExceptionAction action)
• static Object doAsPrivileged(Subject subject, PrivilegedAction action,

AccessControlContext context)
• static Object doAsPrivileged(Subject subject, PrivilegedExceptionAction action,

AccessControlContext context)
executes the privileged action on behalf of the subject. Returns the return value of
the run method. The doAsPrivileged methods execute the action in the given access
control context. You can supply a “context snapshot” that you obtained earlier by
calling the static method AccessController.getContext(), or you can supply null to
execute the code in a new context.

• Object run()
You must define this method to execute the code that you want to have executed
on behalf of a subject.

Listing 9–8 AuthTest.policy

1. grant codebase "file:login.jar"
2. {
3. permission javax.security.auth.AuthPermission "createLoginContext.Login1";
4. permission javax.security.auth.AuthPermission "doAsPrivileged";
5. };
6.

7. grant principal com.sun.security.auth.UnixPrincipal "harry"
8. {
9. permission java.util.PropertyPermission "user.*", "read";

10. };

javax.security.auth.login.LoginContext 1.4

javax.security.auth.Subject 1.4

java.security.PrivilegedAction 1.4

User Authentication 795

• Object run()
You must define this method to execute the code that you want to have executed
on behalf of a subject. This method may throw any checked exceptions.

• String getName()
returns the identifying name of this principal.

JAAS Login Modules
In this section, we look at a JAAS example that shows you

• How to implement your own login module.
• How to implement role-based authentication.

Supplying your own login module is useful if you store login information in a database.
Even if you are happy with the default module, studying a custom module will help
you understand the JAAS configuration file options.

Role-based authentication is essential if you manage a large number of users. It would
be impractical to put the names of all legitimate users into a policy file. Instead, the
login module should map users to roles such as “admin” or “HR,” and the permissions
should be based on these roles.

One job of the login module is to populate the principal set of the subject that is being
authenticated. If a login module supports roles, it adds Principal objects that describe
roles. The Java library does not provide a class for this purpose, so we wrote our own
(see Listing 9–9). The class simply stores a description/value pair, such as role=admin. Its
getName method returns that pair, so we can add role-based permissions into a policy file:

grant principal SimplePrincipal "role=admin" { . . . }

Our login module looks up users, passwords, and roles in a text file that contains lines
like this:

harry|secret|admin
carl|guessme|HR

Of course, in a realistic login module, you would store this information in a database or
directory.

You can find the code for the SimpleLoginModule in Listing 9–10. The checkLogin method
checks whether the user name and password match a user record in the password file. If
so, we add two SimplePrincipal objects to the subject’s principal set:

Set<Principal> principals = subject.getPrincipals();
principals.add(new SimplePrincipal("username", username));
principals.add(new SimplePrincipal("role", role));

The remainder of SimpleLoginModule is straightforward plumbing. The initialize method
receives

• The Subject that is being authenticated.
• A handler to retrieve login information.

java.security.PrivilegedExceptionAction 1.4

java.security.Principal 1.1

Chapter 9 ■ Security796

• A sharedState map that can be used for communication between login modules.
• An options map that contains name/value pairs that are set in the login configuration.

For example, we configure our module as follows:
SimpleLoginModule required pwfile="password.txt";

The login module retrieves the pwfile settings from the options map.

The login module does not gather the user name and password; that is the job of a sepa-
rate handler. This separation allows you to use the same login module without worry-
ing whether the login information comes from a GUI dialog box, a console prompt, or a
configuration file.

The handler is specified when you construct the LoginContext, for example,
LoginContext context = new LoginContext("Login1",
 new com.sun.security.auth.callback.DialogCallbackHandler());

The DialogCallbackHandler pops up a simple GUI dialog box to retrieve the user name and
password. com.sun.security.auth.callback.TextCallbackHandler gets the information from the
console.

However, in our application, we have our own GUI for collecting the user name and
password (see Figure 9–10). We produce a simple handler that merely stores and returns
that information (see Listing 9–11).

The handler has a single method, handle, that processes an array of Callback objects. A
number of predefined classes, such as NameCallback and PasswordCallback, implement the
Callback interface. You could also add your own class, such as RetinaScanCallback. The han-
dler code is a bit unsightly because it needs to analyze the types of the callback objects:

public void handle(Callback[] callbacks)
{
 for (Callback callback : callbacks)
 {
 if (callback instanceof NameCallback) . . .
 else if (callback instanceof PasswordCallback) . . .
 else . . .
 }
}

The login module prepares an array of the callbacks that it needs for authentication:
 NameCallback nameCall = new NameCallback("username: ");
 PasswordCallback passCall = new PasswordCallback("password: ", false);
 callbackHandler.handle(new Callback[] { nameCall, passCall });

Then it retrieves the information from the callbacks.

Figure 9–10 A custom login module

User Authentication 797

The program in Listing 9–12 displays a form for entering the login information and the
name of a system property. If the user is authenticated, the property value is retrieved in
a PrivilegedAction. As you can see from the policy file in Listing 9–13, only users with the
admin role have permission to read properties.

As in the preceding section, you must separate the login and action code. Create two
JAR files:

javac *.java
jar cvf login.jar JAAS*.class Simple*.class
jar cvf action.jar SysPropAction.class

Then run the program as
java -classpath login.jar:action.jar
 -Djava.security.policy=JAASTest.policy
 -Djava.security.auth.login.config=jaas.config
 JAASTest

Listing 9–14 shows the login configuration.

NOTE: It is possible to support a more complex two-phase protocol, whereby a login is com-
mitted if all modules in the login configuration were successful. For more information, see
the login module developer’s guide at http://java.sun.com/javase/6/docs/technotes/guides/
security/jaas/JAASLMDevGuide.html.

Listing 9–9 SimplePrincipal.java

1. import java.security.*;
2.

3. /**
4. * A principal with a named value (such as "role=HR" or "username=harry").
5. * @version 1.0 2004-09-14
6. * @author Cay Horstmann
7. */
8. public class SimplePrincipal implements Principal
9. {

10. /**
11. * Constructs a SimplePrincipal to hold a description and a value.
12. * @param roleName the role name
13. */
14. public SimplePrincipal(String descr, String value)
15. {
16. this.descr = descr;
17. this.value = value;
18. }
19.

20. /**
21. * Returns the role name of this principal
22. * @return the role name
23. */

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Chapter 9 ■ Security798

24. public String getName()
25. {
26. return descr + "=" + value;
27. }
28.

29. public boolean equals(Object otherObject)
30. {
31. if (this == otherObject) return true;
32. if (otherObject == null) return false;
33. if (getClass() != otherObject.getClass()) return false;
34. SimplePrincipal other = (SimplePrincipal) otherObject;
35. return getName().equals(other.getName());
36. }
37.

38. public int hashCode()
39. {
40. return getName().hashCode();
41. }
42.

43. private String descr;
44. private String value;
45. }

Listing 9–10 SimpleLoginModule.java

1. import java.io.*;
2. import java.security.*;
3. import java.util.*;
4. import javax.security.auth.*;
5. import javax.security.auth.callback.*;
6. import javax.security.auth.login.*;
7. import javax.security.auth.spi.*;
8.

9. /**
10. * This login module authenticates users by reading usernames, passwords, and roles from a
11. * text file.
12. * @version 1.0 2004-09-14
13. * @author Cay Horstmann
14. */
15. public class SimpleLoginModule implements LoginModule
16. {
17. public void initialize(Subject subject, CallbackHandler callbackHandler,
18. Map<String, ?> sharedState, Map<String, ?> options)
19. {
20. this.subject = subject;
21. this.callbackHandler = callbackHandler;
22. this.options = options;
23. }

Listing 9–9 SimplePrincipal.java (continued)

User Authentication 799

24.

25. public boolean login() throws LoginException
26. {
27. if (callbackHandler == null) throw new LoginException("no handler");
28.

29. NameCallback nameCall = new NameCallback("username: ");
30. PasswordCallback passCall = new PasswordCallback("password: ", false);
31. try
32. {
33. callbackHandler.handle(new Callback[] { nameCall, passCall });
34. }
35. catch (UnsupportedCallbackException e)
36. {
37. LoginException e2 = new LoginException("Unsupported callback");
38. e2.initCause(e);
39. throw e2;
40. }
41. catch (IOException e)
42. {
43. LoginException e2 = new LoginException("I/O exception in callback");
44. e2.initCause(e);
45. throw e2;
46. }
47.

48. return checkLogin(nameCall.getName(), passCall.getPassword());
49. }
50.

51. /**
52. * Checks whether the authentication information is valid. If it is, the subject acquires
53. * principals for the user name and role.
54. * @param username the user name
55. * @param password a character array containing the password
56. * @return true if the authentication information is valid
57. */
58. private boolean checkLogin(String username, char[] password) throws LoginException
59. {
60. try
61. {
62. Scanner in = new Scanner(new FileReader("" + options.get("pwfile")));
63. while (in.hasNextLine())
64. {
65. String[] inputs = in.nextLine().split("\\|");
66. if (inputs[0].equals(username) && Arrays.equals(inputs[1].toCharArray(), password))
67. {
68. String role = inputs[2];
69. Set<Principal> principals = subject.getPrincipals();
70. principals.add(new SimplePrincipal("username", username));

Listing 9–10 SimpleLoginModule.java (continued)

Chapter 9 ■ Security800

71. principals.add(new SimplePrincipal("role", role));
72. return true;
73. }
74. }
75. in.close();
76. return false;
77. }
78. catch (IOException e)
79. {
80. LoginException e2 = new LoginException("Can't open password file");
81. e2.initCause(e);
82. throw e2;
83. }
84. }
85.

86. public boolean logout()
87. {
88. return true;
89. }
90.

91. public boolean abort()
92. {
93. return true;
94. }
95.

96. public boolean commit()
97. {
98. return true;
99. }

100.

101. private Subject subject;
102. private CallbackHandler callbackHandler;
103. private Map<String, ?> options;
104. }

Listing 9–11 SimpleCallbackHandler.java

1. import javax.security.auth.callback.*;
2.

3. /**
4. * This simple callback handler presents the given user name and password.
5. * @version 1.0 2004-09-14
6. * @author Cay Horstmann
7. */
8. public class SimpleCallbackHandler implements CallbackHandler
9. {

Listing 9–10 SimpleLoginModule.java (continued)

User Authentication 801

10. /**
11. * Constructs the callback handler.
12. * @param username the user name
13. * @param password a character array containing the password
14. */
15. public SimpleCallbackHandler(String username, char[] password)
16. {
17. this.username = username;
18. this.password = password;
19. }
20.

21. public void handle(Callback[] callbacks)
22. {
23. for (Callback callback : callbacks)
24. {
25. if (callback instanceof NameCallback)
26. {
27. ((NameCallback) callback).setName(username);
28. }
29. else if (callback instanceof PasswordCallback)
30. {
31. ((PasswordCallback) callback).setPassword(password);
32. }
33. }
34. }
35.

36. private String username;
37. private char[] password;
38. }

Listing 9–12 JAASTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.security.auth.*;
4. import javax.security.auth.login.*;
5. import javax.swing.*;
6.

7. /**
8. * This program authenticates a user via a custom login and then executes the SysPropAction
9. * with the user's privileges.

10. * @version 1.0 2004-09-14
11. * @author Cay Horstmann
12. */
13. public class JAASTest
14. {

Listing 9–11 SimpleCallbackHandler.java (continued)

Chapter 9 ■ Security802

15. public static void main(final String[] args)
16. {
17. System.setSecurityManager(new SecurityManager());
18. EventQueue.invokeLater(new Runnable()
19. {
20. public void run()
21. {
22. JFrame frame = new JAASFrame();
23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
24. frame.setVisible(true);
25. }
26. });
27. }
28. }
29.

30. /**
31. * This frame has text fields for user name and password, a field for the name of the requested
32. * system property, and a field to show the property value.
33. */
34. class JAASFrame extends JFrame
35. {
36. public JAASFrame()
37. {
38. setTitle("JAASTest");
39.

40. username = new JTextField(20);
41. password = new JPasswordField(20);
42. propertyName = new JTextField(20);
43. propertyValue = new JTextField(20);
44. propertyValue.setEditable(false);
45.

46. JPanel panel = new JPanel();
47. panel.setLayout(new GridLayout(0, 2));
48. panel.add(new JLabel("username:"));
49. panel.add(username);
50. panel.add(new JLabel("password:"));
51. panel.add(password);
52. panel.add(propertyName);
53. panel.add(propertyValue);
54. add(panel, BorderLayout.CENTER);
55.

56. JButton getValueButton = new JButton("Get Value");
57. getValueButton.addActionListener(new ActionListener()
58. {
59. public void actionPerformed(ActionEvent event)
60. {
61. getValue();
62. }

Listing 9–12 JAASTest.java (continued)

User Authentication 803

63. });
64. JPanel buttonPanel = new JPanel();
65. buttonPanel.add(getValueButton);
66. add(buttonPanel, BorderLayout.SOUTH);
67. pack();
68. }
69.

70. public void getValue()
71. {
72. try
73. {
74. LoginContext context = new LoginContext("Login1", new SimpleCallbackHandler(username
75. .getText(), password.getPassword()));
76. context.login();
77. Subject subject = context.getSubject();
78. propertyValue.setText(""
79. + Subject.doAsPrivileged(subject, new SysPropAction(propertyName.getText()), null));
80. context.logout();
81. }
82. catch (LoginException e)
83. {
84. JOptionPane.showMessageDialog(this, e);
85. }
86. }
87.

88. private JTextField username;
89. private JPasswordField password;
90. private JTextField propertyName;
91. private JTextField propertyValue;
92. }

Listing 9–13 JAASTest.policy

1. grant codebase "file:login.jar"
2. {
3. permission java.awt.AWTPermission "showWindowWithoutWarningBanner";
4. permission javax.security.auth.AuthPermission "createLoginContext.Login1";
5. permission javax.security.auth.AuthPermission "doAsPrivileged";
6. permission javax.security.auth.AuthPermission "modifyPrincipals";
7. permission java.io.FilePermission "password.txt", "read";
8. };
9.

10. grant principal SimplePrincipal "role=admin"
11. {
12. permission java.util.PropertyPermission "*", "read";
13. };

Listing 9–12 JAASTest.java (continued)

Chapter 9 ■ Security804

• void handle(Callback[] callbacks)
handles the given callbacks, interacting with the user if desired, and stores the
security information in the callback objects.

• NameCallback(String prompt)
• NameCallback(String prompt, String defaultName)

constructs a NameCallback with the given prompt and default name.
• void setName(String name)
• String getName()

sets or gets the name gathered by this callback.
• String getPrompt()

gets the prompt to use when querying this name.
• String getDefaultName()

gets the default name to use when querying this name.

• PasswordCallback(String prompt, boolean echoOn)
constructs a PasswordCallback with the given prompt and echo flag.

• void setPassword(char[] password)
• char[] getPassword()

sets or gets the password gathered by this callback.
• String getPrompt()

gets the prompt to use when querying this password.
• boolean isEchoOn()

gets the echo flag to use when querying this password.

• void initialize(Subject subject, CallbackHandler handler, Map<String,?> sharedState,
Map<String,?> options)
initializes this LoginModule for authenticating the given subject. During login
processing, uses the given handler to gather login information. Use the sharedState
map for communication with other login modules. The options map contains the
name/value pairs specified in the login configuration for this module instance.

Listing 9–14 jaas.config

1. Login1
2. {
3. SimpleLoginModule required pwfile="password.txt";
4. };

javax.security.auth.callback.CallbackHandler 1.4

javax.security.auth.callback.NameCallback 1.4

javax.security.auth.callback.PasswordCallback 1.4

javax.security.auth.spi.LoginModule 1.4

Digital Signatures 805

• boolean login()
carries out the authentication process and populates the subject’s principals.
Returns true if the login was successful.

• boolean commit()
is called after all login modules were successful, for login scenarios that require a
two-phase commit. Returns true if the operation was successful.

• boolean abort()
is called if the failure of another login module caused the login process to abort.
Returns true if the operation was successful.

• boolean logout()
logs out this subject. Returns true if the operation was successful.

Digital Signatures
As we said earlier, applets were what started the craze over the Java platform. In prac-
tice, people discovered that although they could write animated applets like the famous
“nervous text” applet, applets could not do a whole lot of useful stuff in the JDK 1.0
security model. For example, because applets under JDK 1.0 were so closely supervised,
they couldn’t do much good on a corporate intranet, even though relatively little risk
attaches to executing an applet from your company’s secure intranet. It quickly became
clear to Sun that for applets to become truly useful, it was important for users to be able
to assign different levels of security, depending on where the applet originated. If an
applet comes from a trusted supplier and it has not been tampered with, the user of that
applet can then decide whether to give the applet more privileges.

To give more trust to an applet, we need to know two things:

• Where did the applet come from?
• Was the code corrupted in transit?

In the past 50 years, mathematicians and computer scientists have developed sophisti-
cated algorithms for ensuring the integrity of data and for electronic signatures. The
java.security package contains implementations of many of these algorithms. Fortu-
nately, you don’t need to understand the underlying mathematics to use the algorithms
in the java.security package. In the next sections, we show you how message digests can
detect changes in data files and how digital signatures can prove the identity of the
signer.

Message Digests
A message digest is a digital fingerprint of a block of data. For example, the so-called
SHA1 (secure hash algorithm #1) condenses any data block, no matter how long, into a
sequence of 160 bits (20 bytes). As with real fingerprints, one hopes that no two mes-
sages have the same SHA1 fingerprint. Of course, that cannot be true—there are only
2160 SHA1 fingerprints, so there must be some messages with the same fingerprint. But
2160 is so large that the probability of duplication occurring is negligible. How negligi-
ble? According to James Walsh in True Odds: How Risks Affect Your Everyday Life (Merritt
Publishing 1996), the chance that you will die from being struck by lightning is about
one in 30,000. Now, think of nine other people, for example, your nine least favorite
managers or professors. The chance that you and all of them will die from lightning
strikes is higher than that of a forged message having the same SHA1 fingerprint as the

Chapter 9 ■ Security806

original. (Of course, more than ten people, none of whom you are likely to know, will
die from lightning strikes. However, we are talking about the far slimmer chance that
your particular choice of people will be wiped out.)

A message digest has two essential properties:

• If one bit or several bits of the data are changed, then the message digest also changes.
• A forger who is in possession of a given message cannot construct a fake message

that has the same message digest as the original.

The second property is again a matter of probabilities, of course. Consider the following
message by the billionaire father:

“Upon my death, my property shall be divided equally among my children; however, my
son George shall receive nothing.”

That message has an SHA1 fingerprint of
2D 8B 35 F3 BF 49 CD B1 94 04 E0 66 21 2B 5E 57 70 49 E1 7E

The distrustful father has deposited the message with one attorney and the fingerprint
with another. Now, suppose George can bribe the lawyer holding the message. He
wants to change the message so that Bill gets nothing. Of course, that changes the fin-
gerprint to a completely different bit pattern:

2A 33 0B 4B B3 FE CC 1C 9D 5C 01 A7 09 51 0B 49 AC 8F 98 92

Can George find some other wording that matches the fingerprint? If he had been the
proud owner of a billion computers from the time the Earth was formed, each computing
a million messages a second, he would not yet have found a message he could substitute.

A number of algorithms have been designed to compute these message digests. The two
best-known are SHA1, the secure hash algorithm developed by the National Institute of
Standards and Technology, and MD5, an algorithm invented by Ronald Rivest of MIT.
Both algorithms scramble the bits of a message in ingenious ways. For details about
these algorithms, see, for example, Cryptography and Network Security, 4th ed., by
William Stallings (Prentice Hall 2005). Note that recently, subtle regularities have been
discovered in both algorithms. At this point, most cryptographers recommend avoiding
MD5 and using SHA1 until a stronger alternative becomes available. (See http://www.rsa.com/
rsalabs/node.asp?id=2834 for more information.)

The Java programming language implements both SHA1 and MD5. The MessageDigest
class is a factory for creating objects that encapsulate the fingerprinting algorithms. It has
a static method, called getInstance, that returns an object of a class that extends the Message-
Digest class. This means the MessageDigest class serves double duty:

• As a factory class
• As the superclass for all message digest algorithms

For example, here is how you obtain an object that can compute SHA fingerprints:
MessageDigest alg = MessageDigest.getInstance("SHA-1");

(To get an object that can compute MD5, use the string "MD5" as the argument to getInstance.)

After you have obtained a MessageDigest object, you feed it all the bytes in the message by
repeatedly calling the update method. For example, the following code passes all bytes in
a file to the alg object just created to do the fingerprinting:

http://www.rsa.com/rsalabs/node.asp?id=2834
http://www.rsa.com/rsalabs/node.asp?id=2834

Digital Signatures 807

InputStream in = . . .
int ch;
while ((ch = in.read()) != -1)
 alg.update((byte) ch);

Alternatively, if you have the bytes in an array, you can update the entire array at once:
byte[] bytes = . . .;
alg.update(bytes);

When you are done, call the digest method. This method pads the input—as required by
the fingerprinting algorithm—does the computation, and returns the digest as an array
of bytes.

byte[] hash = alg.digest();

The program in Listing 9–15 computes a message digest, using either SHA or MD5. You
can load the data to be digested from a file, or you can type a message in the text area.
Figure 9–11 shows the application.

Figure 9–11 Computing a message digest

Listing 9–15 MessageDigestTest.java

1. import java.io.*;
2. import java.security.*;
3. import java.awt.*;
4. import java.awt.event.*;
5. import javax.swing.*;
6.

7. /**
8. * This program computes the message digest of a file or the contents of a text area.
9. * @version 1.13 2007-10-06

10. * @author Cay Horstmann
11. */
12. public class MessageDigestTest
13. {

Chapter 9 ■ Security808

14. public static void main(String[] args)
15. {
16. EventQueue.invokeLater(new Runnable()
17. {
18. public void run()
19. {
20. JFrame frame = new MessageDigestFrame();
21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22. frame.setVisible(true);
23. }
24. });
25. }
26. }
27.

28. /**
29. * This frame contains a menu for computing the message digest of a file or text area, radio
30. * buttons to toggle between SHA-1 and MD5, a text area, and a text field to show the
31. * message digest.
32. */
33. class MessageDigestFrame extends JFrame
34. {
35. public MessageDigestFrame()
36. {
37. setTitle("MessageDigestTest");
38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
39.

40. JPanel panel = new JPanel();
41. ButtonGroup group = new ButtonGroup();
42. addRadioButton(panel, "SHA-1", group);
43. addRadioButton(panel, "MD5", group);
44.

45. add(panel, BorderLayout.NORTH);
46. add(new JScrollPane(message), BorderLayout.CENTER);
47. add(digest, BorderLayout.SOUTH);
48. digest.setFont(new Font("Monospaced", Font.PLAIN, 12));
49.

50. setAlgorithm("SHA-1");
51.

52. JMenuBar menuBar = new JMenuBar();
53. JMenu menu = new JMenu("File");
54. JMenuItem fileDigestItem = new JMenuItem("File digest");
55. fileDigestItem.addActionListener(new ActionListener()
56. {
57. public void actionPerformed(ActionEvent event)
58. {
59. loadFile();
60. }
61. });

Listing 9–15 MessageDigestTest.java (continued)

Digital Signatures 809

62. menu.add(fileDigestItem);
63. JMenuItem textDigestItem = new JMenuItem("Text area digest");
64. textDigestItem.addActionListener(new ActionListener()
65. {
66. public void actionPerformed(ActionEvent event)
67. {
68. String m = message.getText();
69. computeDigest(m.getBytes());
70. }
71. });
72. menu.add(textDigestItem);
73. menuBar.add(menu);
74. setJMenuBar(menuBar);
75. }
76.

77. /**
78. * Adds a radio button to select an algorithm.
79. * @param c the container into which to place the button
80. * @param name the algorithm name
81. * @param g the button group
82. */
83. public void addRadioButton(Container c, final String name, ButtonGroup g)
84. {
85. ActionListener listener = new ActionListener()
86. {
87. public void actionPerformed(ActionEvent event)
88. {
89. setAlgorithm(name);
90. }
91. };
92. JRadioButton b = new JRadioButton(name, g.getButtonCount() == 0);
93. c.add(b);
94. g.add(b);
95. b.addActionListener(listener);
96. }
97.

98. /**
99. * Sets the algorithm used for computing the digest.

100. * @param alg the algorithm name
101. */
102. public void setAlgorithm(String alg)
103. {
104. try
105. {
106. currentAlgorithm = MessageDigest.getInstance(alg);
107. digest.setText("");
108. }

Listing 9–15 MessageDigestTest.java (continued)

Chapter 9 ■ Security810

109. catch (NoSuchAlgorithmException e)
110. {
111. digest.setText("" + e);
112. }
113. }
114.

115. /**
116. * Loads a file and computes its message digest.
117. */
118. public void loadFile()
119. {
120. JFileChooser chooser = new JFileChooser();
121. chooser.setCurrentDirectory(new File("."));
122.

123. int r = chooser.showOpenDialog(this);
124. if (r == JFileChooser.APPROVE_OPTION)
125. {
126. try
127. {
128. String name = chooser.getSelectedFile().getAbsolutePath();
129. computeDigest(loadBytes(name));
130. }
131. catch (IOException e)
132. {
133. JOptionPane.showMessageDialog(null, e);
134. }
135. }
136. }
137.

138. /**
139. * Loads the bytes in a file.
140. * @param name the file name
141. * @return an array with the bytes in the file
142. */
143. public byte[] loadBytes(String name) throws IOException
144. {
145. FileInputStream in = null;
146.

147. in = new FileInputStream(name);
148. try
149. {
150. ByteArrayOutputStream buffer = new ByteArrayOutputStream();
151. int ch;
152. while ((ch = in.read()) != -1)
153. buffer.write(ch);
154. return buffer.toByteArray();
155. }
156. finally

Listing 9–15 MessageDigestTest.java (continued)

Digital Signatures 811

• static MessageDigest getInstance(String algorithmName)
returns a MessageDigest object that implements the specified algorithm. Throws
NoSuchAlgorithmException if the algorithm is not provided.

• void update(byte input)
• void update(byte[] input)
• void update(byte[] input, int offset, int len)

updates the digest, using the specified bytes.
• byte[] digest()

completes the hash computation, returns the computed digest, and resets the
algorithm object.

• void reset()
resets the digest.

157. {
158. in.close();
159. }
160. }
161.

162. /**
163. * Computes the message digest of an array of bytes and displays it in the text field.
164. * @param b the bytes for which the message digest should be computed.
165. */
166. public void computeDigest(byte[] b)
167. {
168. currentAlgorithm.reset();
169. currentAlgorithm.update(b);
170. byte[] hash = currentAlgorithm.digest();
171. String d = "";
172. for (int i = 0; i < hash.length; i++)
173. {
174. int v = hash[i] & 0xFF;
175. if (v < 16) d += "0";
176. d += Integer.toString(v, 16).toUpperCase() + " ";
177. }
178. digest.setText(d);
179. }
180.

181. private JTextArea message = new JTextArea();
182. private JTextField digest = new JTextField();
183. private MessageDigest currentAlgorithm;
184. private static final int DEFAULT_WIDTH = 400;
185. private static final int DEFAULT_HEIGHT = 300;
186. }

java.security.MessageDigest 1.1

Listing 9–15 MessageDigestTest.java (continued)

Chapter 9 ■ Security812

Message Signing
In the last section, you saw how to compute a message digest, a fingerprint for the orig-
inal message. If the message is altered, then the fingerprint of the altered message will
not match the fingerprint of the original. If the message and its fingerprint are delivered
separately, then the recipient can check whether the message has been tampered with.
However, if both the message and the fingerprint were intercepted, it is an easy matter
to modify the message and then recompute the fingerprint. After all, the message digest
algorithms are publicly known, and they don’t require secret keys. In that case, the
recipient of the forged message and the recomputed fingerprint would never know that
the message has been altered. Digital signatures solve this problem.

To help you understand how digital signatures work, we explain a few concepts from
the field called public key cryptography. Public key cryptography is based on the notion of
a public key and private key. The idea is that you tell everyone in the world your public
key. However, only you hold the private key, and it is important that you safeguard it
and don’t release it to anyone else. The keys are matched by mathematical relationships,
but the exact nature of these relationships is not important for us. (If you are interested,
you can look it up in The Handbook of Applied Cryptography at http://www.cacr.math.uwater-
loo.ca/hac/.)

The keys are quite long and complex. For example, here is a matching pair of public and
private Digital Signature Algorithm (DSA) keys.

Public key:
p:
fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df63413c5e12ed0899
bcd132acd50d99151bdc43ee737592e17

q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73da179069b32e29356
30e
1c2062354d0da20a6c416e50be794ca4

y:
c0b6e67b4ac098eb1a32c5f8c4c1f0e7e6fb9d832532e27d0bdab9ca2d2a8123ce5a8018b8161a760480fadd040b927
281ddb22cb9bc4df596d7de4d1b977d50

Private key:
p:
fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df63413c5e12ed0899
bcd132acd50d99151bdc43ee737592e17

q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

g:
678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73da179069b32e2935630
e1c2062354d0da20a6c416e50be794ca4

x: 146c09f881656cc6c51f27ea6c3a91b85ed1d70a

It is believed to be practically impossible to compute one key from the other. That is,
even though everyone knows your public key, they can’t compute your private key in
your lifetime, no matter how many computing resources they have available.

http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/

Digital Signatures 813

It might seem difficult to believe that nobody can compute the private key from the
public keys, but nobody has ever found an algorithm to do this for the encryption
algorithms that are in common use today. If the keys are sufficiently long, brute
force—simply trying all possible keys—would require more computers than can be
built from all the atoms in the solar system, crunching away for thousands of years. Of
course, it is possible that someone could come up with algorithms for computing keys
that are much more clever than brute force. For example, the RSA algorithm (the
encryption algorithm invented by Rivest, Shamir, and Adleman) depends on the diffi-
culty of factoring large numbers. For the last 20 years, many of the best mathemati-
cians have tried to come up with good factoring algorithms, but so far with no
success. For that reason, most cryptographers believe that keys with a “modulus” of
2,000 bits or more are currently completely safe from any attack. DSA is believed to be
similarly secure.

Figure 9–12 illustrates how the process works in practice.

Figure 9–12 Public key signature exchange with DSA

Public key

Message

DSA private key

Signature

DSA
signing

algorithm

DSA
verification
algorithm

Chapter 9 ■ Security814

Suppose Alice wants to send Bob a message, and Bob wants to know this message came
from Alice and not an impostor. Alice writes the message and then signs the message
digest with her private key. Bob gets a copy of her public key. Bob then applies the pub-
lic key to verify the signature. If the verification passes, then Bob can be assured of two
facts:

• The original message has not been altered.
• The message was signed by Alice, the holder of the private key that matches the

public key that Bob used for verification.

You can see why security for private keys is all-important. If someone steals Alice’s pri-
vate key or if a government can require her to turn it over, then she is in trouble. The
thief or a government agent can impersonate her by sending messages, money transfer
instructions, and so on, that others will believe came from Alice.

The X.509 Certificate Format
To take advantage of public key cryptography, the public keys must be distributed. One
of the most common distribution formats is called X.509. Certificates in the X.509 format
are widely used by VeriSign, Microsoft, Netscape, and many other companies, for sign-
ing e-mail messages, authenticating program code, and certifying many other kinds of
data. The X.509 standard is part of the X.500 series of recommendations for a directory
service by the international telephone standards body, the CCITT.

The precise structure of X.509 certificates is described in a formal notation, called “abstract
syntax notation #1” or ASN.1. Figure 9–13 shows the ASN.1 definition of version 3 of the
X.509 format. The exact syntax is not important for us, but, as you can see, ASN.1 gives a
precise definition of the structure of a certificate file. The basic encoding rules, or BER, and a
variation, called distinguished encoding rules (DER) describe precisely how to save this
structure in a binary file. That is, BER and DER describe how to encode integers, character
strings, bit strings, and constructs such as SEQUENCE, CHOICE, and OPTIONAL.

NOTE: You can find more information on ASN.1 in A Layman’s Guide to a Subset of
ASN.1, BER, and DER by Burton S. Kaliski, Jr. (ftp://ftp.rsa.com/pub/pkcs/ps/layman.ps),
ASN.1—Communication Between Heterogeneous Systems by Olivier Dubuisson (Aca-
demic Press 2000) (http://www.oss.com/asn1/dubuisson.html) and ASN.1 Complete by John
Larmouth (Morgan Kaufmann Publishers 1999) (http://www.oss.com/asn1/larmouth.html).

Verifying a Signature
The JDK comes with the keytool program, which is a command-line tool to generate and
manage a set of certificates. We expect that ultimately the functionality of this tool will
be embedded in other, more user-friendly programs. But right now, we use keytool to
show how Alice can sign a document and send it to Bob, and how Bob can verify that
the document really was signed by Alice and not an imposter.

The keytool program manages keystores, databases of certificates and private/public key
pairs. Each entry in the keystore has an alias. Here is how Alice creates a keystore,
alice.certs, and generates a key pair with alias alice.

keytool -genkeypair -keystore alice.certs -alias alice

http://www.oss.com/asn1/larmouth.html
http://www.oss.com/asn1/dubuisson.html

Digital Signatures 815

[Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

 TBSCertificate ::= SEQUENCE {
 version [0] EXPLICIT Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version must be v2 or v3
 extensions [3] EXPLICIT Extensions OPTIONAL
 -- If present, version must be v3
 }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

 CertificateSerialNumber ::= INTEGER

 Validity ::= SEQUENCE {
 notBefore CertificateValidityDate,
 notAfter CertificateValidityDate }

 CertificateValidityDate ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

 UniqueIdentifier ::= BIT STRING

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 Extensions ::= SEQUENCE OF Extension

 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }

Figure 9–13 ASN.1 definition of X.509v3

Chapter 9 ■ Security816

When creating or opening a keystore, you are prompted for a keystore password. For
this example, just use secret. If you were to use the keytool-generated keystore for any
serious purpose, you would need to choose a good password and safeguard this file.

When generating a key, you are prompted for the following information:
Enter keystore password: secret
Reenter new password: secret
What is your first and last name?
 [Unknown]: Alice Lee
What is the name of your organizational unit?
 [Unknown]: Engineering Department
What is the name of your organization?
 [Unknown]: ACME Software
What is the name of your City or Locality?
 [Unknown]: San Francisco
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Alice Lee, OU=Engineering Department, O=ACME Software, L=San Francisco, ST=CA, C=US> cor-
rect?
 [no]: yes

The keytool uses X.500 distinguished names, with components Common Name (CN),
Organizational Unit (OU), Organization (O), Location (L), State (ST), and Country (C) to
identify key owners and certificate issuers.

Finally, specify a key password, or press ENTER to use the keystore password as the key
password.

Suppose Alice wants to give her public key to Bob. She needs to export a certificate file:
keytool -exportcert -keystore alice.certs -alias alice -file alice.cer

Now Alice can send the certificate to Bob. When Bob receives the certificate, he can
print it:

keytool -printcert -file alice.cer

The printout looks like this:
Owner: CN=Alice Lee, OU=Engineering Department, O=ACME Software, L=San Francisco, ST=CA, C=US
Issuer: CN=Alice Lee, OU=Engineering Department, O=ACME Software, L=San Francisco, ST=CA, C=US
Serial number: 470835ce
Valid from: Sat Oct 06 18:26:38 PDT 2007 until: Fri Jan 04 17:26:38 PST 2008
Certificate fingerprints:
 MD5: BC:18:15:27:85:69:48:B1:5A:C3:0B:1C:C6:11:B7:81
 SHA1: 31:0A:A0:B8:C2:8B:3B:B6:85:7C:EF:C0:57:E5:94:95:61:47:6D:34
 Signature algorithm name: SHA1withDSA
 Version: 3

If Bob wants to check that he got the right certificate, he can call Alice and verify the cer-
tificate fingerprint over the phone.

Digital Signatures 817

NOTE: Some certificate issuers publish certificate fingerprints on their web sites. For exam-
ple, to check the VeriSign certificate in the keystore jre/lib/security/cacerts directory, use
the -list option:

keytool -list -v -keystore jre/lib/security/cacerts

The password for this keystore is changeit. One of the certificates in this keystore is

Owner: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only",
OU=Class 1 Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US
Issuer: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized
use only", OU=Class 1 Public Primary Certification Authority - G2, O="VeriSign, Inc.",
C=US
Serial number: 4cc7eaaa983e71d39310f83d3a899192
Valid from: Sun May 17 17:00:00 PDT 1998 until: Tue Aug 01 16:59:59 PDT 2028
Certificate fingerprints:
 MD5: DB:23:3D:F9:69:FA:4B:B9:95:80:44:73:5E:7D:41:83
 SHA1: 27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47

You can check that your certificate is valid by visiting the web site http://www.verisign.com/
repository/root.html.

Once Bob trusts the certificate, he can import it into his keystore.
keytool -importcert -keystore bob.certs -alias alice -file alice.cer

CAUTION: Never import into a keystore a certificate that you don’t fully trust. Once a certifi-
cate is added to the keystore, any program that uses the keystore assumes that the certifi-
cate can be used to verify signatures.

Now Alice can start sending signed documents to Bob. The jarsigner tool signs and veri-
fies JAR files. Alice simply adds the document to be signed into a JAR file.

jar cvf document.jar document.txt

Then she uses the jarsigner tool to add the signature to the file. She needs to specify the
keystore, the JAR file, and the alias of the key to use.

jarsigner -keystore alice.certs document.jar alice

When Bob receives the file, he uses the -verify option of the jarsigner program.
jarsigner -verify -keystore bob.certs document.jar

Bob does not need to specify the key alias. The jarsigner program finds the X.500
name of the key owner in the digital signature and looks for matching certificates in
the keystore.

If the JAR file is not corrupted and the signature matches, then the jarsigner program
prints

jar verified.

Otherwise, the program displays an error message.

http://www.verisign.com/repository/root.html
http://www.verisign.com/repository/root.html

Chapter 9 ■ Security818

The Authentication Problem
Suppose you get a message from your friend Alice, signed with her private key, using
the method we just showed you. You might already have her public key, or you can
easily get it by asking her for a copy or by getting it from her web page. Then, you can
verify that the message was in fact authored by Alice and has not been tampered with.
Now, suppose you get a message from a stranger who claims to represent a famous soft-
ware company, urging you to run the program that is attached to the message. The
stranger even sends you a copy of his public key so you can verify that he authored the
message. You check that the signature is valid. This proves that the message was signed
with the matching private key and that it has not been corrupted.

Be careful: You still have no idea who wrote the message. Anyone could have generated a
pair of public and private keys, signed the message with the private key, and sent the
signed message and the public key to you. The problem of determining the identity of
the sender is called the authentication problem.

The usual way to solve the authentication problem is simple. Suppose the stranger and
you have a common acquaintance you both trust. Suppose the stranger meets your
acquaintance in person and hands over a disk with the public key. Your acquaintance
later meets you, assures you that he met the stranger and that the stranger indeed works
for the famous software company, and then gives you the disk (see Figure 9–14). That
way, your acquaintance vouches for the authenticity of the stranger.

Figure 9–14 Authentication through a trusted intermediary

In fact, your acquaintance does not actually need to meet you. Instead, he can use his
private key to sign the stranger’s public key file (see Figure 9–15).

Stranger

Private key

Public key

Public key file

Trusted
channel

Trusted

channel

You

Friend

Digital Signatures 819

When you get the public key file, you verify the signature of your friend, and because
you trust him, you are confident that he did check the stranger’s credentials before
applying his signature.

However, you might not have a common acquaintance. Some trust models assume
that there is always a “chain of trust”—a chain of mutual acquaintances—so that you
trust every member of that chain. In practice, of course, that isn’t always true. You
might trust your friend, Alice, and you know that Alice trusts Bob, but you don’t
know Bob and aren’t sure that you trust him. Other trust models assume that there is a
benevolent big brother in whom we all trust. The best known of these companies is
VeriSign, Inc. (http://www.verisign.com).

Figure 9–15 Authentication through a trusted intermediary’s signature

Stranger

Private key

Public key

Private
key

Key file

Public
key

Signed
key file

Trusted
channel

Trusted

channel

You

Friend

Sign

Verify

http://www.verisign.com

Chapter 9 ■ Security820

You will often encounter digital signatures that are signed by one or more entities who
will vouch for the authenticity, and you will need to evaluate to what degree you trust
the authenticators. You might place a great deal of trust in VeriSign, perhaps because
you saw their logo on many web pages or because you heard that they require multiple
people with black attaché cases to come together into a secure chamber whenever new
master keys are to be minted.

However, you should have realistic expectations about what is actually being authenti-
cated. The CEO of VeriSign does not personally meet every individual or company rep-
resentative when authenticating a public key. You can get a “class 1” ID simply by filling
out a web form and paying a small fee. The key is mailed to the e-mail address included
in the certificate. Thus, you can be reasonably assured that the e-mail address is genu-
ine, but the requestor could have filled in any name and organization. There are more
stringent classes of IDs. For example, with a “class 3” ID, VeriSign will require an indi-
vidual requestor to appear before a notary public, and it will check the financial rating
of a corporate requestor. Other authenticators will have different procedures. Thus,
when you receive an authenticated message, it is important that you understand what,
in fact, is being authenticated.

Certificate Signing
In the section “Verifying a Signature“ on page 814, you saw how Alice used a self-
signed certificate to distribute a public key to Bob. However, Bob needed to ensure that
the certificate was valid by verifying the fingerprint with Alice.

Suppose Alice wants to send her colleague Cindy a signed message, but Cindy doesn’t
want to bother with verifying lots of signature fingerprints. Now suppose that there is
an entity that Cindy trusts to verify signatures. In this example, Cindy trusts the Infor-
mation Resources Department at ACME Software.

That department operates a certificate authority (CA). Everyone at ACME has the CA’s
public key in their keystore, installed by a system administrator who carefully checked
the key fingerprint. The CA signs the keys of ACME employees. When they install each
other’s keys, then the keystore will trust them implicitly because they are signed by a
trusted key.

Here is how you can simulate this process. Create a keystore acmesoft.certs. Generate a
key par and export the public key:

keytool -genkeypair -keystore acmesoft.certs -alias acmeroot
keytool -exportcert -keystore acmesoft.certs -alias acmeroot -file acmeroot.cer

The public key is exported into a “self-signed” certificate. Then add it to every
employee’s keystore.

keytool -importcert -keystore cindy.certs -alias acmeroot -file acmeroot.cer

For Alice to send messages to Cindy and to everyone else at ACME Software, she needs to
bring her certificate to the Information Resources Department and have it signed. Unfor-
tunately, this functionality is missing in the keytool program. In the book’s companion
code, we supply a CertificateSigner class to fill the gap. An authorized staff member at
ACME Software would verify Alice’s identity and generate a signed certificate as follows:

java CertificateSigner -keystore acmesoft.certs -alias acmeroot
 -infile alice.cer -outfile alice_signedby_acmeroot.cer

Digital Signatures 821

The certificate signer program must have access to the ACME Software keystore, and the
staff member must know the keystore password. Clearly, this is a sensitive operation.

Alice gives the file alice_signedby_acmeroot.cer file to Cindy and to anyone else in ACME
Software. Alternatively, ACME Software can simply store the file in a company direc-
tory. Remember, this file contains Alice’s public key and an assertion by ACME Soft-
ware that this key really belongs to Alice.

Now Cindy imports the signed certificate into her keystore:
keytool -importcert -keystore cindy.certs -alias alice -file alice_signedby_acmeroot.cer

The keystore verifies that the key was signed by a trusted root key that is already
present in the keystore. Cindy is not asked to verify the certificate fingerprint.

Once Cindy has added the root certificate and the certificates of the people who regu-
larly send her documents, she never has to worry about the keystore again.

Certificate Requests
In the preceding section, we simulated a CA with a keystore and the CertificateSigner
tool. However, most CAs run more sophisticated software to manage certificates, and
they use slightly different formats for certificates. This section shows the added steps
that are required to interact with those software packages.

We will use the OpenSSL software package as an example. The software is preinstalled
for many Linux systems and Mac OS X, and a Cygwin port is also available. Alterna-
tively, you can download the software at http://www.openssl.org.

To create a CA, run the CA script. The exact location depends on your operating system.
On Ubuntu, run

 /usr/lib/ssl/misc/CA.pl -newca

This script creates a subdirectory called demoCA in the current directory. The directory con-
tains a root key pair and storage for certificates and certificate revocation lists.

You will want to import the public key into the Java keystore of all employees, but it is
in the Privacy Enhanced Mail (PEM) format, not the DER format that the keystore
accepts easily. Copy the file demoCA/cacert.pem to a file acmeroot.pem and open that file in a
text editor. Remove everything before the line

-----BEGIN CERTIFICATE-----

and after the line
-----END CERTIFICATE-----

Now you can import acmeroot.pem into each keystore in the usual way:
keytool -importcert -keystore cindy.certs -alias alice -file acmeroot.pem

It seems quite incredible that the keytool cannot carry out this editing operation itself.

To sign Alice’s public key, you start by generating a certificate request that contains the
certificate in the PEM format:

keytool -certreq -keystore alice.store -alias alice -file alice.pem

To sign the certificate, run
openssl ca -in alice.pem -out alice_signedby_acmeroot.pem

http://www.openssl.org

Chapter 9 ■ Security822

As before, cut out everything outside the BEGIN CERTIFICATE/END CERTIFICATE markers from
alice_signedby_acmeroot.pem. Then import it into the keystore:

keytool -importcert -keystore cindy.certs -alias alice -file alice_signedby_acmeroot.pem

You use the same steps to have a certificate signed by a public certificate authority such
as VeriSign.

Code Signing
One of the most important uses of authentication technology is signing executable pro-
grams. If you download a program, you are naturally concerned about damage that a
program can do. For example, the program could have been infected by a virus. If you
know where the code comes from and that it has not been tampered with since it left its
origin, then your comfort level will be a lot higher than without this knowledge. In fact,
if the program was also written in the Java programming language, you can then use
this information to make a rational decision about what privileges you will allow that
program to have. You might want it to run just in a sandbox as a regular applet, or you
might want to grant it a different set of rights and restrictions. For example, if you
download a word processing program, you might want to grant it access to your printer
and to files in a certain subdirectory. However, you might not want to give it the right to
make network connections, so that the program can’t try to send your files to a third
party without your knowledge.

You now know how to implement this sophisticated scheme.

1. Use authentication to verify where the code came from.
2. Run the code with a security policy that enforces the permissions that you want to

grant the program, depending on its origin.

JAR File Signing
In this section, we show you how to sign applets and web start applications for use with
the Java Plug-in software. There are two scenarios:

• Delivery in an intranet.
• Delivery over the public Internet.

In the first scenario, a system administrator installs policy files and certificates on local
machines. Whenever the Java Plug-in tool loads signed code, it consults the policy file
for the permissions and the keystore for signatures. Installing the policies and certifi-
cates is straightforward and can be done once per desktop. End users can then run
signed corporate code outside the sandbox. Whenever a new program is created or an
existing one is updated, it must be signed and deployed on the web server. However, no
desktops need to be touched as the programs evolve. We think this is a reasonable sce-
nario that can be an attractive alternative to deploying corporate applications on every
desktop.

In the second scenario, software vendors obtain certificates that are signed by CAs such
as VeriSign. When an end user visits a web site that contains a signed applet, a pop-up
dialog box identifies the software vendor and gives the end user two choices: to run the
applet with full privileges or to confine it to the sandbox. We discuss this less desirable
scenario in detail in the section “Software Developer Certificates“ on page 827.

Code Signing 823

For the remainder of this section, we describe how you can build policy files that grant
specific permissions to code from known sources. Building and deploying these policy
files is not for casual end users. However, system administrators can carry out these
tasks in preparation for distributing intranet programs.

Suppose ACME Software wants its users to run certain programs that require local file
access, and it wants to deploy the programs through a browser, as applets or Web Start
applications. Because these programs cannot run inside the sandbox, ACME Software
needs to install policy files on employee machines.

As you saw earlier in this chapter, ACME could identify the programs by their code
base. But that means that ACME would need to update the policy files each time the
programs are moved to a different web server. Instead, ACME decides to sign the JAR
files that contain the program code.

First, ACME generates a root certificate:
keytool -genkeypair -keystore acmesoft.certs -alias acmeroot

Of course, the keystore containing the private root key must be kept at a safe place.
Therefore, we create a second keystore client.certs for the public certificates and add the
public acmeroot certificate into it.

keytool -exportcert -keystore acmesoft.certs -alias acmeroot -file acmeroot.cer
keytool -importcert -keystore client.certs -alias acmeroot -file acmeroot.cer

To make a signed JAR file, programmers add their class files to a JAR file in the usual
way. For example,

javac FileReadApplet.java
jar cvf FileReadApplet.jar *.class

Then a trusted person at ACME runs the jarsigner tool, specifying the JAR file and the
alias of the private key:

jarsigner -keystore acmesoft.certs FileReadApplet.jar acmeroot

The signed applet is now ready to be deployed on a web server.

Next, let us turn to the client machine configuration. A policy file must be distributed to
each client machine.

To reference a keystore, a policy file starts with the line
keystore "keystoreURL", "keystoreType";

The URL can be absolute or relative. Relative URLs are relative to the location of the
policy file. The type is JKS if the keystore was generated by keytool. For example,

keystore "client.certs", "JKS";

Then grant clauses can have suffixes signedBy "alias", such as this one:
grant signedBy "acmeroot"
{
 . . .
};

Any signed code that can be verified with the public key associated with the alias is now
granted the permissions inside the grant clause.

Chapter 9 ■ Security824

You can try out the code signing process with the applet in Listing 9–16. The applet tries
to read from a local file. The default security policy only lets the applet read files from
its code base and any subdirectories. Use appletviewer to run the applet and verify that
you can view files from the code base directory, but not from other directories.

Now create a policy file applet.policy with the contents:
keystore "client.certs", "JKS";
grant signedBy "acmeroot"
{
 permission java.lang.RuntimePermission "usePolicy";
 permission java.io.FilePermission "/etc/*", "read";
};

The usePolicy permission overrides the default “all or nothing” permission for signed
applets. Here, we say that any applets signed by acmeroot are allowed to read files in the
/etc directory. (Windows users: Substitute another directory such as C:\Windows.)

Tell the applet viewer to use the policy file:
appletviewer -J-Djava.security.policy=applet.policy FileReadApplet.html

Now the applet can read files from the /etc directory, thus demonstrating that the sign-
ing mechanism works.

As a final test, you can run your applet inside the browser (see Figure 9–16). You need
to copy the permission file and keystore inside the Java deployment directory. If you
run UNIX or Linux, that directory is the .java/deployment subdirectory of your home
directory. In Windows Vista, it is the C:\Users\yourLoginName\AppData\Sun\Java\Deployment
directory. In the following, we refer to that directory as deploydir.

Copy applet.policy and client.certs to the deploydir/security directory. In that directory,
rename applets.policy to java.policy. (Double-check that you are not wiping out an existing
java.policy file. If there is one, add the applet.policy contents to it.)

TIP: For more details on configuring client Java security, read the sections “Deployment
Configuration File and Properties” and “Java Control Panel” in the Java deployment
guide at http://java.sun.com/javase/6/docs/technotes/guides/deployment/deployment-guide/
overview.html.

Restart your browser and load the FileReadApplet.html. You should not be prompted to
accept any certificate. Check that you can load any file in the /etc directory and the
directory from which the applet was loaded, but not from other directories.

When you are done, remember to clean up your deploydir/security directory. Remove the
files java.policy and client.certs. Restart your browser. If you load the applet again after
cleaning up, you should no longer be able to read files from the local file system.
Instead, you will be prompted for a certificate. We discuss security certificates in the
next section.

http://java.sun.com/javase/6/docs/technotes/guides/deployment/deployment-guide/overview.html
http://java.sun.com/javase/6/docs/technotes/guides/deployment/deployment-guide/overview.html

Code Signing 825

Figure 9–16 A signed applet can read local files

Listing 9–16 FileReadApplet.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.io.*;
4. import java.util.*;
5. import javax.swing.*;
6.

7. /**
8. * This applet can run "outside the sandbox" and read local files when it is given the right
9. * permissions.

10. * @version 1.11 2007-10-06
11. * @author Cay Horstmann
12. */
13. public class FileReadApplet extends JApplet
14. {
15. public void init()
16. {
17. EventQueue.invokeLater(new Runnable()
18. {
19. public void run()
20. {

Chapter 9 ■ Security826

21. fileNameField = new JTextField(20);
22. JPanel panel = new JPanel();
23. panel.add(new JLabel("File name:"));
24. panel.add(fileNameField);
25. JButton openButton = new JButton("Open");
26. panel.add(openButton);
27. ActionListener listener = new ActionListener()
28. {
29. public void actionPerformed(ActionEvent event)
30. {
31. loadFile(fileNameField.getText());
32. }
33. };
34. fileNameField.addActionListener(listener);
35. openButton.addActionListener(listener);
36.

37. add(panel, "North");
38.

39. fileText = new JTextArea();
40. add(new JScrollPane(fileText), "Center");
41. }
42. });
43. }
44.

45. /**
46. * Loads the contents of a file into the text area.
47. * @param filename the file name
48. */
49. public void loadFile(String filename)
50. {
51. try
52. {
53. fileText.setText("");
54. Scanner in = new Scanner(new FileReader(filename));
55. while (in.hasNextLine())
56. fileText.append(in.nextLine() + "\n");
57. in.close();
58. }
59. catch (IOException e)
60. {
61. fileText.append(e + "\n");
62. }
63. catch (SecurityException e)
64. {
65. fileText.append("I am sorry, but I cannot do that.\n");
66. fileText.append(e + "\n");
67. }
68. }
69. private JTextField fileNameField;
70. private JTextArea fileText;
71. }

Listing 9–16 FileReadApplet.java (continued)

Code Signing 827

Software Developer Certificates
Up to now, we discussed scenarios in which programs are delivered in an intranet and for
which a system administrator configures a security policy that controls the privileges of
the programs. However, that strategy only works with programs from known sources.

Suppose while surfing the Internet, you encounter a web site that offers to run an applet
or web start application from an unfamiliar vendor, provided you grant it the permis-
sion to do so (see Figure 9–17). Such a program is signed with a software developer certifi-
cate that is issued by a CA. The pop-up dialog box identifies the software developer and
the certificate issuer. You now have two choices:

• Run the program with full privileges.
• Confine the program to the sandbox. (The Cancel button in the dialog box is mis-

leading. If you click that button, the applet is not canceled. Instead, it runs in the
sandbox.)

Figure 9–17 Launching a signed applet

What facts do you have at your disposal that might influence your decision? Here is
what you know:

• Thawte sold a certificate to the software developer.
• The program really was signed with that certificate, and it hasn’t been modified in

transit.
• The certificate really was signed by Thawte—it was verified by the public key in the

local cacerts file.

Chapter 9 ■ Security828

Does that tell you whether the code is safe to run? Do you trust the vendor if all you
know is the vendor name and the fact that Thawte sold them a software developer cer-
tificate? Presumably Thawte went to some degree of trouble to assure itself that Che-
mAxon Kft. is not an outright cracker. However, no certificate issuer carries out a
comprehensive audit of the honesty and competence of software vendors.

In the situation of an unknown vendor, an end user is ill-equipped to make an intelli-
gent decision whether to let this program run outside the sandbox, with all permissions
of a local application. If the vendor is a well-known company, then the user can at least
take the past track record of the company into account.

NOTE: It is possible to use very weak certificates to sign code—see http://www.dallaway.com/
acad/webstart for a sobering example. Some developers even instruct users to add untrusted
certificates into their certificate store—for example, http://www.agsrhichome.bnl.gov/Controls/
doc/javaws/javaws_howto.html. From a security standpoint, this seems very bad.

We don’t like situations in which a program demands “give me all rights, or I won’t run
at all.” Naive users are too often cowed into granting access that can put them in danger.

Would it help if each program explained what rights it needs and requested specific per-
mission for those rights? Unfortunately, as you have seen, that can get pretty technical.
It doesn’t seem reasonable for an end user to have to ponder whether a program should
really have the right to inspect the AWT event queue.

We remain unenthusiastic about software developer certificates. It would be better if
applets and web start applications on the public Internet tried harder to stay within
their respective sandboxes, and if those sandboxes were improved. The Web Start API
that we discussed in Volume I, Chapter 10 is a step in the right direction.

Encryption
So far, we have discussed one important cryptographic technique that is implemented
in the Java security API, namely, authentication through digital signatures. A second
important aspect of security is encryption. When information is authenticated, the infor-
mation itself is plainly visible. The digital signature merely verifies that the information
has not been changed. In contrast, when information is encrypted, it is not visible. It can
only be decrypted with a matching key.

Authentication is sufficient for code signing—there is no need for hiding the code. How-
ever, encryption is necessary when applets or applications transfer confidential infor-
mation, such as credit card numbers and other personal data.

Until recently, patents and export controls have prevented many companies, including
Sun, from offering strong encryption. Fortunately, export controls are now much less
stringent, and the patent for an important algorithm has expired. As of Java SE 1.4, good
encryption support has been part of the standard library.

Symmetric Ciphers
The Java cryptographic extensions contain a class Cipher that is the superclass for all
encryption algorithms. You get a cipher object by calling the getInstance method:

Cipher cipher = Cipher.getInstance(algorithName);

http://www.dallaway.com/acad/webstart
http://www.dallaway.com/acad/webstart

Encryption 829

or
Cipher cipher = Cipher.getInstance(algorithName, providerName);

The JDK comes with ciphers by the provider named "SunJCE". It is the default provider
that is used if you don’t specify another provider name. You might want another pro-
vider if you need specialized algorithms that Sun does not support.

The algorithm name is a string such as "AES" or "DES/CBC/PKCS5Padding".

The Data Encryption Standard (DES) is a venerable block cipher with a key length of
56 bits. Nowadays, the DES algorithm is considered obsolete because it can be cracked
with brute force (see, for example, http://www.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/
). A far better alternative is its successor, the Advanced Encryption Standard (AES).
See http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf for a detailed description
of the AES algorithm. We use AES for our example.

Once you have a cipher object, you initialize it by setting the mode and the key:
int mode = . . .;
Key key = . . .;
cipher.init(mode, key);

The mode is one of
Cipher.ENCRYPT_MODE
Cipher.DECRYPT_MODE
Cipher.WRAP_MODE
Cipher.UNWRAP_MODE

The wrap and unwrap modes encrypt one key with another—see the next section for an
example.

Now you can repeatedly call the update method to encrypt blocks of data:
int blockSize = cipher.getBlockSize();
byte[] inBytes = new byte[blockSize];
. . . // read inBytes
int outputSize= cipher.getOutputSize(blockSize);
byte[] outBytes = new byte[outputSize];
int outLength = cipher.update(inBytes, 0, outputSize, outBytes);
. . . // write outBytes

When you are done, you must call the doFinal method once. If a final block of input data
is available (with fewer than blockSize bytes), then call

outBytes = cipher.doFinal(inBytes, 0, inLength);

If all input data have been encrypted, instead call
outBytes = cipher.doFinal();

The call to doFinal is necessary to carry out padding of the final block. Consider the DES
cipher. It has a block size of 8 bytes. Suppose the last block of the input data has fewer
than 8 bytes. Of course, we can fill the remaining bytes with 0, to obtain one final block
of 8 bytes, and encrypt it. But when the blocks are decrypted, the result will have several
trailing 0 bytes appended to it, and therefore it will be slightly different from the origi-
nal input file. That could be a problem, and, to avoid it, we need a padding scheme. A
commonly used padding scheme is the one described in the Public Key Cryptography
Standard (PKCS) #5 by RSA Security Inc. (ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Chapter 9 ■ Security830

pkcs5v2-0.pdf). In this scheme, the last block is not padded with a pad value of zero, but
with a pad value that equals the number of pad bytes. In other words, if L is the last
(incomplete) block, then it is padded as follows:

L 01 if length(L) = 7
L 02 02 if length(L) = 6
L 03 03 03 if length(L) = 5
. . .
L 07 07 07 07 07 07 07 if length(L) = 1

Finally, if the length of the input is actually divisible by 8, then one block
08 08 08 08 08 08 08 08

is appended to the input and encrypted. For decryption, the very last byte of the plain-
text is a count of the padding characters to discard.

Key Generation
To encrypt, you need to generate a key. Each cipher has a different format for keys, and
you need to make sure that the key generation is random. Follow these steps:

1. Get a KeyGenerator for your algorithm.
2. Initialize the generator with a source for randomness. If the block length of the

cipher is variable, also specify the desired block length.
3. Call the generateKey method.

For example, here is how you generate an AES key.
KeyGenerator keygen = KeyGenerator.getInstance("AES");
SecureRandom random = new SecureRandom(); // see below
keygen.init(random);
Key key = keygen.generateKey();

Alternatively, you can produce a key from a fixed set of raw data (perhaps derived from
a password or the timing of keystrokes). Then use a SecretKeyFactory, like this:

SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("AES");
byte[] keyData = . . .; // 16 bytes for AES
SecretKeySpec keySpec = new SecretKeySpec(keyData, "AES");
Key key = keyFactory.generateSecret(keySpec);

When generating keys, make sure you use truly random numbers. For example, the regu-
lar random number generator in the Random class, seeded by the current date and time, is
not random enough. Suppose the computer clock is accurate to 1/10 of a second. Then
there are at most 864,000 seeds per day. If an attacker knows the day a key was issued
(as can often be deduced from a message date or certificate expiration date), then it is an
easy matter to generate all possible seeds for that day.

The SecureRandom class generates random numbers that are far more secure than those pro-
duced by the Random class. You still need to provide a seed to start the number sequence at
a random spot. The best method for doing this is to obtain random input from a hard-
ware device such as a white-noise generator. Another reasonable source for random
input is to ask the user to type away aimlessly on the keyboard, but each keystroke
should contribute only one or two bits to the random seed. Once you gather such ran-
dom bits in an array of bytes, you pass it to the setSeed method.

Encryption 831

SecureRandom secrand = new SecureRandom();
byte[] b = new byte[20];
// fill with truly random bits
secrand.setSeed(b);

If you don’t seed the random number generator, then it will compute its own 20-byte
seed by launching threads, putting them to sleep, and measuring the exact time when
they are awakened.

NOTE: This algorithm is not known to be safe. In the past, algorithms that relied on timing
other components of the computer, such as hard disk access time, were later shown not to
be completely random.

The sample program at the end of this section puts the AES cipher to work (see Listing
9–17). To use the program, you first generate a secret key. Run

java AESTest -genkey secret.key

The secret key is saved in the file secret.key.

Now you can encrypt with the command
java AESTest -encrypt plaintextFile encryptedFile secret.key

Decrypt with the command
java AESTest -decrypt encryptedFile decryptedFile secret.key

The program is straightforward. The -genkey option produces a new secret key and serial-
izes it in the given file. That operation takes a long time because the initialization of the
secure random generator is time consuming. The -encrypt and -decrypt options both call
into the same crypt method that calls the update and doFinal methods of the cipher. Note
how the update method is called as long as the input blocks have the full length, and the
doFinal method is either called with a partial input block (which is then padded) or with
no additional data (to generate one pad block).

Listing 9–17 AESTest.java

1. import java.io.*;
2. import java.security.*;
3. import javax.crypto.*;
4.

5. /**
6. * This program tests the AES cipher. Usage:

7. * java AESTest -genkey keyfile

8. * java AESTest -encrypt plaintext encrypted keyfile

9. * java AESTest -decrypt encrypted decrypted keyfile

10. * @author Cay Horstmann
11. * @version 1.0 2004-09-14
12. */
13. public class AESTest
14. {

Chapter 9 ■ Security832

15. public static void main(String[] args)
16. {
17. try
18. {
19. if (args[0].equals("-genkey"))
20. {
21. KeyGenerator keygen = KeyGenerator.getInstance("AES");
22. SecureRandom random = new SecureRandom();
23. keygen.init(random);
24. SecretKey key = keygen.generateKey();
25. ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(args[1]));
26. out.writeObject(key);
27. out.close();
28. }
29. else
30. {
31. int mode;
32. if (args[0].equals("-encrypt")) mode = Cipher.ENCRYPT_MODE;
33. else mode = Cipher.DECRYPT_MODE;
34.

35. ObjectInputStream keyIn = new ObjectInputStream(new FileInputStream(args[3]));
36. Key key = (Key) keyIn.readObject();
37. keyIn.close();
38.

39. InputStream in = new FileInputStream(args[1]);
40. OutputStream out = new FileOutputStream(args[2]);
41. Cipher cipher = Cipher.getInstance("AES");
42. cipher.init(mode, key);
43.

44. crypt(in, out, cipher);
45. in.close();
46. out.close();
47. }
48. }
49. catch (IOException e)
50. {
51. e.printStackTrace();
52. }
53. catch (GeneralSecurityException e)
54. {
55. e.printStackTrace();
56. }
57. catch (ClassNotFoundException e)
58. {
59. e.printStackTrace();
60. }
61. }
62.

Listing 9–17 AESTest.java (continued)

Encryption 833

• static Cipher getInstance(String algorithmName)
• static Cipher getInstance(String algorithmName, String providerName)

returns a Cipher object that implements the specified algorithm. Throws a
NoSuchAlgorithmException if the algorithm is not provided.

• int getBlockSize()
returns the size (in bytes) of a cipher block, or 0 if the cipher is not a block cipher.

• int getOutputSize(int inputLength)
returns the size of an output buffer that is needed if the next input has the given
number of bytes. This method takes into account any buffered bytes in the cipher
object.

63. /**
64. * Uses a cipher to transform the bytes in an input stream and sends the transformed bytes
65. * to an output stream.
66. * @param in the input stream
67. * @param out the output stream
68. * @param cipher the cipher that transforms the bytes
69. */
70. public static void crypt(InputStream in, OutputStream out, Cipher cipher)
71. throws IOException, GeneralSecurityException
72. {
73. int blockSize = cipher.getBlockSize();
74. int outputSize = cipher.getOutputSize(blockSize);
75. byte[] inBytes = new byte[blockSize];
76. byte[] outBytes = new byte[outputSize];
77.

78. int inLength = 0;
79. boolean more = true;
80. while (more)
81. {
82. inLength = in.read(inBytes);
83. if (inLength == blockSize)
84. {
85. int outLength = cipher.update(inBytes, 0, blockSize, outBytes);
86. out.write(outBytes, 0, outLength);
87. }
88. else more = false;
89. }
90. if (inLength > 0) outBytes = cipher.doFinal(inBytes, 0, inLength);
91. else outBytes = cipher.doFinal();
92. out.write(outBytes);
93. }
94. }

javax.crypto.Cipher 1.4

Listing 9–17 AESTest.java (continued)

Chapter 9 ■ Security834

• void init(int mode, Key key)
initializes the cipher algorithm object. The mode is one of ENCRYPT_MODE, DECRYPT_MODE,
WRAP_MODE, or UNWRAP_MODE.

• byte[] update(byte[] in)
• byte[] update(byte[] in, int offset, int length)
• int update(byte[] in, int offset, int length, byte[] out)

transforms one block of input data. The first two methods return the output. The
third method returns the number of bytes placed into out.

• byte[] doFinal()
• byte[] doFinal(byte[] in)
• byte[] doFinal(byte[] in, int offset, int length)
• int doFinal(byte[] in, int offset, int length, byte[] out)

transforms the last block of input data and flushes the buffer of this algorithm
object. The first three methods return the output. The fourth method returns the
number of bytes placed into out.

• static KeyGenerator getInstance(String algorithmName)
returns a KeyGenerator object that implements the specified algorithm. Throws a
NoSuchAlgorithmException if the algorithm is not provided.

• void init(SecureRandom random)
• void init(int keySize, SecureRandom random)

initializes the key generator.
• SecretKey generateKey()

generates a new key.

• static SecretKeyFactory getInstance(String algorithmName)
• static SecretKeyFactory getInstance(String algorithmName, String providerName)

returns a SecretKeyFactory object for the specified algorithm.
• SecretKey generateSecret(KeySpec spec)

generates a new secret key from the given specification.

• SecretKeySpec(byte[] key, String algorithmName)
constructs a key specification.

Cipher Streams
The JCE library provides a convenient set of stream classes that automatically encrypt or
decrypt stream data. For example, here is how you can encrypt data to a file:

Cipher cipher = . . .;
cipher.init(Cipher.ENCRYPT_MODE, key);
CipherOutputStream out = new CipherOutputStream(new FileOutputStream(outputFileName), cipher);
byte[] bytes = new byte[BLOCKSIZE];
int inLength = getData(bytes); // get data from data source

javax.crypto.KeyGenerator 1.4

javax.crypto.SecretKeyFactory 1.4

javax.crypto.spec.SecretKeySpec 1.4

Encryption 835

while (inLength != -1)
{
 out.write(bytes, 0, inLength);
 inLength = getData(bytes); // get more data from data source
}
out.flush();

Similarly, you can use a CipherInputStream to read and decrypt data from a file:
Cipher cipher = . . .;
cipher.init(Cipher.DECRYPT_MODE, key);
CipherInputStream in = new CipherInputStream(new FileInputStream(inputFileName), cipher);
byte[] bytes = new byte[BLOCKSIZE];
int inLength = in.read(bytes);
while (inLength != -1)
{
 putData(bytes, inLength); // put data to destination
 inLength = in.read(bytes);
}

The cipher stream classes transparently handle the calls to update and doFinal, which is
clearly a convenience.

• CipherInputStream(InputStream in, Cipher cipher)
constructs an input stream that reads data from in and decrypts or encrypts them
by using the given cipher.

• int read()
• int read(byte[] b, int off, int len)

reads data from the input stream, which is automatically decrypted or encrypted.

• CipherOutputStream(OutputStream out, Cipher cipher)
constructs an output stream that writes data to out and encrypts or decrypts them
using the given cipher.

• void write(int ch)
• void write(byte[] b, int off, int len)

writes data to the output stream, which is automatically encrypted or decrypted.
• void flush()

flushes the cipher buffer and carries out padding if necessary.

Public Key Ciphers
The AES cipher that you have seen in the preceding section is a symmetric cipher. The
same key is used for encryption and for decryption. The Achilles heel of symmetric
ciphers is key distribution. If Alice sends Bob an encrypted method, then Bob needs the
same key that Alice used. If Alice changes the key, then she needs to send Bob both the
message and, through a secure channel, the new key. But perhaps she has no secure
channel to Bob, which is why she encrypts her messages to him in the first place.

javax.crypto.CipherInputStream 1.4

javax.crypto.CipherOutputStream 1.4

Chapter 9 ■ Security836

Public key cryptography solves that problem. In a public key cipher, Bob has a key pair
consisting of a public key and a matching private key. Bob can publish the public key
anywhere, but he must closely guard the private key. Alice simply uses the public key to
encrypt her messages to Bob.

Actually, it’s not quite that simple. All known public key algorithms are much slower
than symmetric key algorithms such as DES or AES. It would not be practical to use a
public key algorithm to encrypt large amounts of information. However, that problem
can easily be overcome by combining a public key cipher with a fast symmetric cipher,
like this:

1. Alice generates a random symmetric encryption key. She uses it to encrypt her
plaintext.

2. Alice encrypts the symmetric key with Bob’s public key.
3. Alice sends Bob both the encrypted symmetric key and the encrypted plaintext.
4. Bob uses his private key to decrypt the symmetric key.
5. Bob uses the decrypted symmetric key to decrypt the message.

Nobody but Bob can decrypt the symmetric key because only Bob has the private key
for decryption. Thus, the expensive public key encryption is only applied to a small
amount of key data.

The most commonly used public key algorithm is the RSA algorithm invented by
Rivest, Shamir, and Adleman. Until October 2000, the algorithm was protected by a
patent assigned to RSA Security Inc. Licenses were not cheap—typically a 3% royalty,
with a minimum payment of $50,000 per year. Now the algorithm is in the public
domain. The RSA algorithm is supported in Java SE 5.0 and above.

NOTE: If you still use an older version of the JDK, check out the Legion of Bouncy Castle
(http://www.bouncycastle.org). It supplies a cryptography provider that includes RSA as
well as a number of algorithms that are not part of the SunJCE provider. The Legion of
Bouncy Castle provider has been signed by Sun Microsystems so that you can combine it
with the JDK.

To use the RSA algorithm, you need a public/private key pair. You use a KeyPairGenerator
like this:

KeyPairGenerator pairgen = KeyPairGenerator.getInstance("RSA");
SecureRandom random = new SecureRandom();
pairgen.initialize(KEYSIZE, random);
KeyPair keyPair = pairgen.generateKeyPair();
Key publicKey = keyPair.getPublic();
Key privateKey = keyPair.getPrivate();

The program in Listing 9–18 has three options. The -genkey option produces a key pair.
The -encrypt option generates an AES key and wraps it with the public key.

Key key = . . .; // an AES key
Key publicKey = . . .; // a public RSA key
Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.WRAP_MODE, publicKey);
byte[] wrappedKey = cipher.wrap(key);

http://www.bouncycastle.org

Encryption 837

It then produces a file that contains

• The length of the wrapped key.
• The wrapped key bytes.
• The plaintext encrypted with the AES key.

The -decrypt option decrypts such a file. To try the program, first generate the RSA keys:
java RSATest -genkey public.key private.key

Then encrypt a file:
java RSATest -encrypt plaintextFile encryptedFile public.key

Finally, decrypt it and verify that the decrypted file matches the plaintext:
java RSATest -decrypt encryptedFile decryptedFile private.key

Listing 9–18 RSATest.java

1. import java.io.*;
2. import java.security.*;
3. import javax.crypto.*;
4.

5. /**
6. * This program tests the RSA cipher. Usage:

7. * java RSATest -genkey public private

8. * java RSATest -encrypt plaintext encrypted public

9. * java RSATest -decrypt encrypted decrypted private

10. * @author Cay Horstmann
11. * @version 1.0 2004-09-14
12. */
13. public class RSATest
14. {
15. public static void main(String[] args)
16. {
17. try
18. {
19. if (args[0].equals("-genkey"))
20. {
21. KeyPairGenerator pairgen = KeyPairGenerator.getInstance("RSA");
22. SecureRandom random = new SecureRandom();
23. pairgen.initialize(KEYSIZE, random);
24. KeyPair keyPair = pairgen.generateKeyPair();
25. ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(args[1]));
26. out.writeObject(keyPair.getPublic());
27. out.close();
28. out = new ObjectOutputStream(new FileOutputStream(args[2]));
29. out.writeObject(keyPair.getPrivate());
30. out.close();
31. }
32. else if (args[0].equals("-encrypt"))
33. {

Chapter 9 ■ Security838

34. KeyGenerator keygen = KeyGenerator.getInstance("AES");
35. SecureRandom random = new SecureRandom();
36. keygen.init(random);
37. SecretKey key = keygen.generateKey();
38.

39. // wrap with RSA public key
40. ObjectInputStream keyIn = new ObjectInputStream(new FileInputStream(args[3]));
41. Key publicKey = (Key) keyIn.readObject();
42. keyIn.close();
43.

44. Cipher cipher = Cipher.getInstance("RSA");
45. cipher.init(Cipher.WRAP_MODE, publicKey);
46. byte[] wrappedKey = cipher.wrap(key);
47. DataOutputStream out = new DataOutputStream(new FileOutputStream(args[2]));
48. out.writeInt(wrappedKey.length);
49. out.write(wrappedKey);
50.

51. InputStream in = new FileInputStream(args[1]);
52. cipher = Cipher.getInstance("AES");
53. cipher.init(Cipher.ENCRYPT_MODE, key);
54. crypt(in, out, cipher);
55. in.close();
56. out.close();
57. }
58. else
59. {
60. DataInputStream in = new DataInputStream(new FileInputStream(args[1]));
61. int length = in.readInt();
62. byte[] wrappedKey = new byte[length];
63. in.read(wrappedKey, 0, length);
64.

65. // unwrap with RSA private key
66. ObjectInputStream keyIn = new ObjectInputStream(new FileInputStream(args[3]));
67. Key privateKey = (Key) keyIn.readObject();
68. keyIn.close();
69.

70. Cipher cipher = Cipher.getInstance("RSA");
71. cipher.init(Cipher.UNWRAP_MODE, privateKey);
72. Key key = cipher.unwrap(wrappedKey, "AES", Cipher.SECRET_KEY);
73.

74. OutputStream out = new FileOutputStream(args[2]);
75. cipher = Cipher.getInstance("AES");
76. cipher.init(Cipher.DECRYPT_MODE, key);
77.

78. crypt(in, out, cipher);
79. in.close();
80. out.close();
81. }

Listing 9–18 RSATest.java (continued)

Encryption 839

82. }
83. catch (IOException e)
84. {
85. e.printStackTrace();
86. }
87. catch (GeneralSecurityException e)
88. {
89. e.printStackTrace();
90. }
91. catch (ClassNotFoundException e)
92. {
93. e.printStackTrace();
94. }
95. }
96.

97. /**
98. * Uses a cipher to transform the bytes in an input stream and sends the transformed bytes
99. * to an output stream.

100. * @param in the input stream
101. * @param out the output stream
102. * @param cipher the cipher that transforms the bytes
103. */
104. public static void crypt(InputStream in, OutputStream out, Cipher cipher)
105. throws IOException, GeneralSecurityException
106. {
107. int blockSize = cipher.getBlockSize();
108. int outputSize = cipher.getOutputSize(blockSize);
109. byte[] inBytes = new byte[blockSize];
110. byte[] outBytes = new byte[outputSize];
111.

112. int inLength = 0;
113. ;
114. boolean more = true;
115. while (more)
116. {
117. inLength = in.read(inBytes);
118. if (inLength == blockSize)
119. {
120. int outLength = cipher.update(inBytes, 0, blockSize, outBytes);
121. out.write(outBytes, 0, outLength);
122. }
123. else more = false;
124. }
125. if (inLength > 0) outBytes = cipher.doFinal(inBytes, 0, inLength);
126. else outBytes = cipher.doFinal();
127. out.write(outBytes);
128. }
129.

130. private static final int KEYSIZE = 512;
131. }

Listing 9–18 RSATest.java (continued)

Chapter 9 ■ Security840

You have now seen how the Java security model allows the controlled execution of
code, which is a unique and increasingly important aspect of the Java platform. You
have also seen the services for authentication and encryption that the Java library pro-
vides. We did not cover a number of advanced and specialized issues, among them:

• The GSS-API for “generic security services” that provides support for the Kerberos
protocol (and, in principle, other protocols for secure message exchange). There is a
tutorial at http://java.sun.com/javase/6/docs/technotes/guides/security/jgss/tutorials/
index.html.

• Support for the Simple Authentication and Security Layer (SASL), used by the
Lightweight Directory Access Protocol (LDAP) and Internet Message Access
Protocol (IMAP). If you need to implement SASL in your own application, look
at http://java.sun.com/javase/6/docs/technotes/guides/security/sasl/sasl-refguide.html.

• Support for SSL. Using SSL over HTTP is transparent to application programmers;
simply use URLs that start with https. If you want to add SSL to your own applica-
tion, see the Java Secure Socket Extension (JSEE) reference at http://java.sun.com/
javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html.

Now that we have completed our overview of Java security, we turn to distributed
computing in Chapter 10.

http://java.sun.com/javase/6/docs/technotes/guides/security/jgss/tutorials/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jgss/tutorials/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/sasl/sasl-refguide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html

IndexIndex

991

Symbols and Numbers
character, in a choice format, 327
$ (dollar sign), matching beginning and end of a

line, 76
% character, in a LIKE clause, 253
@ operator, in XPath, 130
@ symbol, preceding the name of each

annotation, 906
[] operator, in XPath, 130
\ (backslash)

as an escape character, 76
in a Windows environment, 62

\\ (backslashes), for Windows-style path names,
59

\\ escape sequence, in a Windows file name, 781
"\\|" expression, 15
/ (forward slash). See Forward slash (/)
]]> string, 92
^, matching beginning and end of a line, 76
| characters, in a choice format, 327
+ (possessive or greedy match), 76
< symbol, in a choice format, 327
<= symbol, in a choice format, 327
<> operator, in SQL, 225
= operator, in SQL, 225
= = operator, testing for object equality, 54
? (question mark)

in a prepared query, 243
in date output, 311

? (reluctant or stingy match), 76
; (semicolon), annotation placed without, 906
- character, in a LIKE clause, 253
. symbol, matching any character, 76
“2D”, classes with a name ending in, 525
2D graphics, printing, 602

3D rectangle, 525
8-bit Unicode Transformation Format, 24
32-bit cyclic redundancy checksum. See CRC32

checksum

A
Absolute identifiers, 198
Absolute nonopaque URIs, 197
Absolute path name, 63
Absolute URI, 197
Abstract method declarations, 936
ABSTRACT modifier, 426
Abstract syntax notation #1. See ASN.1
AbstractCellEditor class, 396, 397
AbstractFormatter class, 462
AbstractListModel class, 359
AbstractProcessor class, 921
AbstractSpinnerModel class, 465, 472
AbstractTableModel class, 374, 394
accept method, 62
acceptChanges method, 261–262
Access control mechanism, 756
Accessor methods, 233
Action event listener, 444
Action listeners, installing, 908
ActionListener interface, 909
ActionListenerFor.java, 908
ActionListenerInstaller class, 908
ActionListenerInstaller.java, 910–911
Actions lists, for permissions, 778–780
Activatable class, 865, 866, 870
Activatable warehouse implementation, 867,

869–870
ACTIVATED value, for getEventType, 474
Activation, of remote objects, 865–871

Index992

Activation descriptors, constructing, 865, 867
Activation group, 866
Activation ID, 866
Activation program, 867, 868–869
ActivationDesc class, 871
ActivationGroup class, 871
ActivationGroupDesc class, 870
ActivationSystem class, 871
add method, of the SystemTray class, 679
add operation, 540, 541
addBatch method, 275
addChangeListener method, 498
addColumn method, 385
addEventHandlers method, 900
addPropertyChangeListener method, 702, 725
addTab method, 496
addTreeSelectionListener method, 427
addVetoableChangeListener method, 703
addWindowListener method, 398
AES (Advanced Encryption Standard)

algorithm, 829
AES key, 830, 836–837
AESTest.java, 831–833
Affine transformation, 554
Affine transforms, constructing, 556
AffineTransform class, 554, 556–557
AffineTransform object, 555
AffineTransformOp class, 592, 600
Agent, 932–934
Aliases

for ISO-8859-1, 19
iterating through, 19–20
for namespaces in XML, 137

aliases method, 19
Allows children node property, 413
AllPermission permission, 780
Alnum character class, 79
Alpha channel, 560
Alpha character class, 79
Alpha composites, 569
AlphaComposite class, 562, 568
AlphaComposite object, 562, 563
AlreadyBoundException, 852
Altered class files, constructing, 768–770
Amazon e-commerce web service, 877–882
AmazonTest.java, 880–882
Anchor rectangle, 551
andFilter method, 384

Angle swept out, for an arc, 527
AnnotatedElement class, 911
Annotation(s)

circular dependencies for, 914
for compilation, 916
defined, 905
for event handlers, 906–911
example of simple, 905
for managing resources, 917
passing at runtime, 909
processing source-level, 921
shortcuts simplifying, 912
using, 905–911

Annotation elements, 913, 914
Annotation interfaces, 913, 915

defined by Java SE, 915
defining an annotation, 906, 911
extending, 913

Annotation objects, source fields locked in, 909
Annotation processors, 921
Annotation syntax, 911–915
Anonymous type definition, 114
Antialiasing technique, 568, 570
Apache Batik viewer, 147, 148
Apache Derby database. See Derby database
append methods, 6, 530
Appendable interface, 5, 6, 7
Applet class, 303, 349
Applet viewer, security policy, 772
Applets

executing safely, 756
JDBC in, 221
not exiting the virtual machine, 772

Application(s). See also Java applications
building in Visual Basic, 686–687
deploying RMI, 852–855
managing frames, 503
using beans to build, 690–698

Application class loader. See System class loader
Application classes, loading, 757
Application data, storing, 742
Application programs, file locking in, 74
Application servers, structure for, 221
apt stand-alone tool, 921
Arbitrary data, using JavaBeans persistence, 736
Arbitrary sequences, building, 530
Arc(s), 527, 528
Arc angles, 528, 529, 539

Index 993

Arc2D class, 525
Arc2D.CHORD arc type, 528
Arc2D.Double class, 539
Arc2D.OPEN arc type, 528
Arc2D.PIE arc type, 528
ArcMaker class, 531, 537
Area class, 541
Areas, 540–541
ARGB color value, 587, 591, 592
Array(s)

creating Java in native methods, 965
element values as, 914
manipulating Java, 965
multiplying elements in by a constant, 964
properties specifying, 701–702
saving in object serialization format, 48–49

ARRAY data type, in SQL, 277
Array elements, accessing, 962–965
Array types, 962, 963
Array values, fetching, 277
ArrayIndexOutOfBoundsException, 966
ArrayStoreException, 966
ASCII (American Standard Code for

Information Exchange), 20
ASCII character class, 79
ASCII encoding, using plain, 329
ASCII files, storing properties, 331
ASN.1, 814, 815
ASN.1 - Communication Between Heterogeneous

Systems (Dubuisson), 814
ASN.1 Complete (Larmouth), 814
Asymmetry, of the Swing table, 378
Attribute(s). See also Printing attributes

advantage for enumerated types, 109
checking the value of, 630
compared to elements, 109
enumerating all in LDAP, 285
for grid bag constraints, 115
groups of, 627
LDAP, 279, 280
retrieving, 630
in SVG, 147
in XML, 108–109
in XML elements, 91
in XML Schema, 114

Attribute class, 295, 634
Attribute hierarchy, class diagram of, 628
Attribute interface, 628

Attribute names, in HTML, 90
Attribute set(s)

constructing, 286
hierarchy, 629
interfaces and classes for, 628
as a specialized kind of map, 630

Attribute types, 109–110
Attribute values

copying with XSLT, 159
in XML, 90

Attributes class, 142–143, 294
AttributeSet superinterface, 628, 634
AttributesImpl class, 167
AudioPermission permission, 780
Authentication

to SMTP, 192
of users, 790–805

Authentication problem, 818–820
AuthenticationException, 284
authority part, of server-based URIs, 197
Authorization, of users, 790
AuthPermission permission, 780
AuthTest.java, 792–793
Autoboxing, 370
Autocommit mode, 274
Autoflush mode, 12
Autogenerated keys, 254
Automatic registration, 229
Automatic resizing, of table columns, 390
Auto-numbering rows, in a database, 254
Auxiliary files, automatic generation of, 905
available method, 2–3, 487
availableCharsets method, 20
Average value, replacement of each pixel with,

594
AWTPermission permission, 779

B
Background color, of a cell, 394
Backslash (\). See \ (backslash)
Bad words, not allowing into a text area,

783–789
Banding, in dot-matrix and inkjet printers, 604
Banner, printing, 612, 613
Base URI, 198
BASE64Encoder class, 202
Basic encoding rules (BER), 814
BasicAttributes class, 294

Index994

BasicAttributes constructor, 286
BasicAttributes object, 285–286
BasicPermission class, 781
BasicStroke class, 542, 550
BasicStroke constructer, 543, 544
Batch updates, 274–276
BCEL (Bytecode Engineering Library), 926, 927
Bean Builder, experimental, 694
Bean descriptor, 737
Bean info classes, 699, 919, 920
BeanDescriptor class, 724
BeanInfo classes, 710–713

API notes, 712, 716, 724
setting a property using, 117
supplying, 710, 723

BeanInfoAnnotationFactory.java, 923–926
BeanInfoAnnotationProcessor, 922
Beans. See also JavaBeans

composing in a builder environment, 692–698
defined, 686
packaging in JAR files, 691–692
property types, 701–709
rules for designing, 698–701
saving to a stream, 732
using to build an application, 690–698
writing, 688–690

Beans class, 698
BER (basic encoding rules), 814
Bevel join, 542, 543
BIG_ENDIAN constant, 71
Big-endian method, 24
Bilinear interpolation, 592
Binary data

from a Blob, 250
reading and writing, 23–32
reading from a file, 25
writing, 25

Binary format, for saving data, 11
Binary values, reading, 67
Bindings, 886
Bindings class, 887
Biometric login modules, 791
BitSet object, re-creating, 738–739
Blank character class, 79
Blending, of source and destination, 560
Blob class, 251
BLOB data type, in SQL, 227, 277
BLOBs (binary large objects), 250

Blocking, by read and write methods, 2
Blur filter, 594
Book class, 611, 622
Book.java, 862
Books table, view of, 222, 223
BooksAuthors table, 244
BookTest.java, 614–622
boolean arrays, 964
BOOLEAN data type, in SQL, 226, 277
Boolean valued properties, 145
Bootstrap class loader, 757, 758
Bootstrap registry service, 848
Bound properties, 702–703
Boundary matchers, 78
Bounding box, for an arc, 527
Breadth-first enumeration, 422, 423
Breadth-first search algorithm, 428
Breadth-first traversal, 426
Browsers, 473, 770
Buffer(s), 3, 66–67, 72
Buffer class, 70–71, 72, 73
Buffer data structure, 72–73
Buffer objects, 72
Buffered image, obtaining, 551
Buffered stream, creating, 10, 11
BufferedImage class, 551, 585, 590–591
BufferedImage object, 585
BufferedImageOp class, 600
BufferedImageOp interface, 585, 592
BufferedInputStream, 10
BufferedOutputStream, 11
BufferedReader class, 14
Builder environments, 690, 692–698
Builder tools, 698
buildSource method, 901, 903
Bundle classes, 331–333
Business logic, 220, 791–792
Butt cap, 542
ButtonFrame class, 907–908
ButtonFrame.java, 901–902, 907–908
bypass methods, 462–463
Byte(s), 2–4
Byte array, saving data into, 57
Byte sequences, decoding, 22
byte values, converting, 601
BYTE_ARRAY data source, 623–624
ByteArrayJavaClass object, 901
ByteArrayJavaClass.java, 898

Index 995

ByteBuffer class, 23, 71, 72
Bytecode engineering, 926–934
Bytecode Engineering Library. See BCEL
Bytecode level, 909, 926
Bytecode verification, 767–771
Bytecodes, modifying, 769, 932–934
ByteLookupTable subclass, 593, 601
Byte-oriented streams, Unicode and, 2

C
C code

accessing Java strings from, 946–947
calling any Java method from, 956
making calls to Java code, 970
for the native fprint method, 957, 959–961

C functions
calling from Java programs, 936–942
calling Java methods, 956–962
naming, 937

C header file, producing, 937–938
C strings, 944
C types, compared to Java types, 942
C#, 699
C++

accessing JNI functions in, 945
implementing native methods, 939
inheritance hierarchy of array types, 963
making calls to Java code, 970

CA (certificate authority), 820, 821
CA script, running, 821
Cached row sets, 261–263
CachedRowSet class, 262–263
CachedRowSet interface, 260
CachedRowSet object, 261
Caching, prepared statements, 243
Caesar cipher, 761–762
Caesar.java, 762, 765–766
Calendar display, locating dates in, 688, 689
CalendarBean, 688, 689
call escape, 252
Call functions, versions of, 958
call method, invoking, 896
Call methods, accessing, 954
Call stack, during permission checking, 775
Call transitional event, 354
Callback interface, 796
CallbackHandler class, 804
CallNonvirtualXxxMethod functions, 958

CallStaticObjectMethod function, 957–958
CallStaticXxxMethod function, 957
Cancel button, in a progress monitor dialog

box, 483
cancelCellEditing method, 397, 398
Cancellation requests, 483
cancelRowUpdates method, 257
canImport method, 660
canInsertImage method, 578
CANON_EQ flag, 80
Canonical path name, 63
CANONICAL_DECOMPOSITION collator value, 319
Capacity, of a buffer, 72
Cascading windows, 505
Case sensitivity, of XML, 90
CASE_INSENSITIVE flag, 79
Catalog, describing schemas, 272
Category, of an attribute, 630
Category character class, 79
CDATA attribute value, 109
CDATA sections, in XML documents, 92
Cell(s), 382, 394
Cell color, 396
Cell editing, 394–395, 397
Cell renderers, 365, 393
Cell selection, 382
CellEditor class, 404
Certificate authority. See CA
Certificates

importing into keystores, 817
set of, 773
signing, 821–822
in the X.509 format, 814

CertificateSigner class, 820
Chain of trust, assuming, 819
ChangeListener, 498
ChangeTrackingTest.java, 445–446
changeUpdate method, of DocumentListener, 444
Channel(s)

avoiding multiple on the same locked
file, 75

from a file, 66
read and write methods of, 185
turning into an output stream, 185

Channels class, 191
char arrays, converting strings to, 944
CHAR_ARRAY data source, 624
Character(s), 4, 77

Index996

Character classes, 76
predefined, 76, 77, 79
predefined names, 79
in regular expressions, 77

Character data, getting, 251
CHARACTER data type, in SQL, 226, 277
Character encoding, 11, 20–22, 328–329
Character outlines, 558
Character references, in XML documents, 92
Character sets, 19–23
CharacterData class, 104
CharBuffer class, 6, 23, 72, 73
CharSequence interface, 6, 8
Charset class, 19, 22–23
Chart bean, 714, 723–724
ChartBean2Customizer.java, 727–731
ChartBeanBeanInfo class, 713–714
ChartBeanBeanInfo.java, 714–715
Checkbox editor, installed by JTable, 395
checkError method, 12, 13
checkExit method, 774
checkPermission method, 775, 784
checkRandomInsertions method, 905
Child elements

inheriting namespace of parent, 137
in an XML document, 91

Child nodes, 96, 405, 406
Children

adding to the root node, 408
analyzing in XML documents, 95

Chinese characters and messages, 333–335
Choice formats, 327
CHORD arc type, 528
CIE (Commission Internationale de l’Eclairage),

586–587
Cipher class, 828, 833–834
Cipher object, initializing, 829
Cipher streams, in the JCE library, 834–835
Circular dependencies, in annotations, 914
Class(es)

loading different with the same name, 760
with the same class and package name,

759–760
separating from different web pages, 759
undocumented, 202

Class browser, example, 427
Class class, 766, 775
Class descriptors, 48, 49

Class files, 756
controlling the placement of, 895
names of, 329
producing unsafe, 767–770
program loading encrypted, 761–765

Class fingerprint, 46
Class identifier, 47
Class IDs, 820
Class loader hierarchy, 757–759
Class loaders, 756–767

described, 756
in every Java program, 757
as namespaces, 759–760
simple, 901, 904–905
specifying, 758–759
writing for specialized purposes, 761–767

class object, obtaining, 950
CLASS retention policy, for annotations, 918
Class tree program, 428
ClassLoader class, 761, 766
Classloader inversion, 759
ClassLoaderTest.java, 762–765
CLASSPATH environment variable, 854
ClassTree.java, 428–433
clear method, calling, 72
CLEAR rule, 561, 562
Client(s)

configuration of, 823
configuring Java security, 824
connecting to a server port, 171
enumerating all registered RMI objects, 849
getting a stub to access a remote object, 850
implementing for a web service, 874–877
installing proxy objects on, 843
invoking a method on another machine, 845
loading additional classes at runtime, 860
role in distributed programming, 842–843
serving multiple, 180–183

Client classes, generating, 874
Client program, running for a web service, 876
Client/server application, traditional, 221
Client-side artifact classes, 879
Clip area, restoring, 604
clip method, 523, 558
Clipboard, 635–652. See also Local clipboard;

System clipboard
reading a string from, 636
transferring images into, 642–647

Index 997

Clipboard class, 636, 640, 642, 652
Clipboard services, 635
ClipboardOwner interface, 636, 640
Clipping, shapes, 522
Clipping area, 558, 604
Clipping region, setting, 523
Clipping shape, 557–559
Clob class, 251–252
CLOB data type, in SQL, 227, 277
Clob object, retrieving, 251
CLOBs (character large objects), 250
clone method, remote references not

having, 865
Cloneable interface, 40
CloneNotSupportedException, 865
Cloning, using serialization for, 56–59
Close box, adding, 498
close method

calling immediately, 235
for streams, 3, 4

Close property, user vetoing, 509
Closeable interface, 5, 7
Closed nonleaf icon, 412
closed property, of the JInternalFrame class, 703
closeEntry method, 38
closePath method, 530
Closure type, for an arc, 527
Cntrl character class, 79
Code. See also Java code

automatic generation of, 905
techniques for processing, 884

Code base, 773, 778, 868
Code generator tools, annotations used by, 916
Code Page 437, for file names, 329
Code signing, 756, 822–828
Code sources, 773
codebase entry, 854
Codebase URL, ending with a slash (/), 854
The Codebreakers (Kahn), 761
CodeSource class, 776
Collation, localizing, 318–324
Collation key object, 320
Collation order, 320–323
CollationKey class, 324
CollationTest.java, 321–323
Collator, default, 383
Collator class, 324
Collator object, 318

Collators, cutting the strength of, 318
Color, dragging into a text field, 655
Color chooser, 396
Color class, 550, 592
Color constructor, 587
Color model, 586
Color rendering, 569
Color space conversions, 593
Color type, cells of, 393
Color values, 587, 588
ColorConvertOp operation, 593
Colored rectangles, expressing a set of, 147
ColorModel class, 591
Color-model-specific description, 587
Column classes, in Swing, 378–379
Column names, 222

changing, 375
prefixing with table names, 225
for a table, 371

Columns
accessing, 379
in a database, 222
determining which are selected, 382
hiding and displaying in tables, 385
rearranging, 371
resizing, 379–381
selecting, 381
selection and filtering of, 385–389
setting in a text field, 448
specifying comparators for, 383

Combo box, 717
Combo box editor, 395
Command-line arguments, 777
Commands

in comments, 92
terminating in SQL, 228

Comma-separated data file, script sending
back, 211

Comments, in XML documents, 92
Commit behavior, with setFocusLostBehavior

method, 449
commit method, calling for transactions, 274
Commit or revert behavior, 448, 449
Commited text string, 448–449
Committed transactions, 273, 274
Common Dialog control, in Visual Basic, 686
Common Gateway Interface (CGI) scripts, 208
Common Name (CN) component, 816

Index998

Common Object Request Broker Architecture
(CORBA), 844

Comparator, installing for each column, 383
Comparator interface, 318
compareTo method, 318
Compatibility characters, decomposing, 319
Compilable interface, 889, 890
Compilation, annotations for, 916
Compilation tasks, 895–900
CompilationTask class, 896, 897, 899
CompilationTask objects, 895, 896
CompiledScript class, 890
Compiler, 895. See also Microsoft compiler
Compiler API, 895–905
CompilerTest.java, 902–904
Compiling, scripts, 889–890
Completion percentage, progress bar

computing, 479
Complex area, constructing, 541
Complex types, 112, 113
Component class, 703, 709
Component organizers, 492–520
Composing, transformations, 554, 555
Composite interface, 562
CompositeTest.java, 564–568
Composition, 560–568
Composition rules, 560

designing, 560, 561
program exploring, 563–568
selecting, 522
setting, 523

Compressed format, storing files in, 32
Compression method, setting, 38
Computer Graphics: Principles and Practice, Second

Edition in C (Foley/Dam/Feiner), 530,
561, 587

Concurrency setting, of a result set, 259
Concurrency values, for result sets, 255
Concurrent connections, 273
Confidential information, transferring, 828
Configuration file, 790
connect method, 199
Connection class

API notes, 233, 250, 252, 258, 272, 275–276
close method of, 235

Connection management, 278–279
Connection object, 229
Connection pool, 279

Connections
managing, 235
pooling, 279
starting new threads, 181

Constrained properties, 703–704
Construction parameters, packaging, 866
Constructive area geometry operations, 540–541
Constructor(s). See also specific constructors

constructing trees out of a collection of
elements, 406

native methods invoking, 958
specifying for the InputStreamReader, 11

@ConstructorProperties annotation, 738
Content handlers, 199, 207
ContentHandler class, 142
ContentHandler interface, 138
Context, closing, 286
Context class, 851–852
Context class loader, 759
Context interface, 294
Contexts, beans usable in a variety of, 688
CONTIGUOUS_TREE_SELECTION, 427
Control points, 529, 531
Controls, in Visual Basic, 686
convertColumnIndexToModel method, 382
convertRowIndexToModel method, 382
Convolution, mathematical, 594–595
Convolution operator, 601
ConvolveOp object, 595
ConvolveOp operation, 593, 601
Coordinate system, translating, 605
Coordinate transformations, 552–557
Copies attribute, 630
Copies class, 630
CORBA (Common Object Request Broker

Architecture), 844
Core Java Foundation Classes (Topley), 370, 405
Core Swing: Advanced Programming (Topley), 405,

443
COREJAVA database, 242
Corner area, for a RoundRectangle2D, 527
Country (C) component, 816
Country code, ISO codes for, 300
CRC32 checksum, 38, 39, 66, 67–68
CRC32 class, 67–68
CREATE TABLE statement, in SQL, 226
createBlob method, 251
createClob method, 251

Index 999

createElement method, 146
CreateJavaVM, 975
createNewFile method, 60
createSubcontext method, 286
createTextNode method, 146
createTransferable method, 658
Cross-platform print dialog box, 603
Cryptographic algorithms, 756
Cryptography and Network Security (Stallings),

806
CTRL key, dragging and, 653
CTRL+V keystroke, 662
Cubic curves, 529, 530
CubicCurve2D.Double class, 539
Currencies, formatting, 309–310
Currency class, 309, 310
Currency identifiers, 309
Cursor, moving by a number of rows, 256
curveTo method, 530
Custom cell editor, 396
Custom editor dialog box, 719
Custom editors, 396–404
Custom formatters, 453–463
Custom permissions, 783
Custom tree models, 434–442
Customizer class, writing, 725–732
Customizer interface, 725, 732
Customizers, 723–732
Cut and paste, 635
Cyclic gradient paint, 552
cyclic parameter, of GradientPaint, 551
Cygwin programming environment, 939, 975

D
DamageReport objects, 742
DamageReporter.java, 743–749
DamageReport.java, 749–751
Dash pattern, 543–544
Dashed lines, program specifying, 544–549
Data

avoiding duplication of, 223
changing in a database, 226, 242
digital fingerprint of a block of, 805
encrypting to a file, 834–835
posting to a script, 210
reading in text format, 14
sending back to web servers and programs,

207

Data Definition Language (DDL) statements,
234

Data Encryption Standard (DES), 829
Data field descriptors, 47–49
Data fields, 55, 56, 951
Data file, 28. See also File(s)
Data sources

defined, 278
for JDBC, 227
for print services, 623–624

Data transfer
API, 635
capabilities of the clipboard, 635
classes and interfaces for, 636
support in Swing, 654–657

Data types
Java, 276–277
for print services, 623–624
print services for, 623
in SQL, 226–227

Database
combining queries, 235
connecting to, 229–230, 239
creating for experimental use, 227
driver reporting nonfatal conditions, 237
example for this book, 222
integrity, 273–274
populating, 238–241
programs, 227
starting, 228–229
URLs, 227–228
vendors, 220

Database configuration, 278
Database connections

cost of establishing, 278
keeping in a queue, 279
opening in Java, 229

Database server, starting and stopping, 228–229
Database-independent protocol, 220
DatabaseMetaData class

API notes, 260, 272–273, 276
giving data about the database, 264
methods inquiring about the database,

263–264
DatabaseMetaData method, 236
DatabaseMetaData type, 263
DataFlavor class, 636, 640–642
DataFormat class, 316–317

Index1000

Datagrams, 174
DataI0 helper class, 27
DataInput interface, 25
DataInputStream methods, 9
DataInputStream subclass, 4
DataOutput interface, 23, 26
DataOutputStream subclass, 4
DataSource interface, 278
DataTruncation class, 237–238
Date(s)

convenient way of entering, 688, 689
display of, 298–299
incrementing or decrementing in a spinner,

465
Date and time

formatting, 310–317
literals, embedding, 252

Date class, 52
DATE data type, in SQL, 227, 277
Date editor, for a spinner, 472
Date filter, 384
Date format, as lenient, 452
Date models, for spinners, 471
DateEditor class, 472
dateFilter method, 384
DateFormat class, 310, 452
DateFormatTest.java, 312–315
DDL (Data Definition Language) statement, 234
Decapitalization, 700
DECIMAL data type, in SQL, 226, 276
decode method, 22
Decomposition mode, 319
Decryption key, 762
Default(s), not stored with an annotation, 912
Default cell editor, 417–418
Default collator, 383
Default constructor, for a bean, 688
Default mutable tree node, 407
Default rendering actions, 378–379
Default tree model, 407–408
Default value, for integer input, 448
DefaultCellEditor class, 417–418

API notes, 404
variations of, 395

DefaultFormatter class, 452, 454, 462
DefaultHandler class, 139
DefaultListModel class, 363–364
DefaultMutableTreeNode class, 407, 414, 422, 426

DefaultPersistenceDelegate class, 753
defaultReadObject method, 52
DefaultRowSorter class, 391
DefaultTableCellRenderer class, 394
DefaultTableModel, 394
DefaultTreeCellRenderer class, 424, 425, 427
DefaultTreeModel class

API notes, 414, 422
automatic notification by, 416
constructing, 408
example not using, 434

defaultWriteObject method, 52
defineClass method, 761
Degree, of normalization, 319
Delayed formatting, of complex data, 636
DELETE query, in SQL, 226
deleteRow method, 258
Delimiters, separating instance fields, 14
@Deprecated annotation, 915, 916
@Deprecated Javadoc tag, 915
Depth-first enumeration, 423
Depth-first traversal, 426
depthFirstEnumeration method, 422
DER (distinguished encoding rules), 814
Derby database, 227, 228–229, 230, 238
derbyclient.jar file, 228
DES algorithm, 829
Design patterns, 699
DeskTop, populating, 511
Desktop applications, launching, 673–679
Desktop class, 673, 678–679
Desktop pane, 492
DesktopAppTest.java, 674–678
DesktopManager class, 511
Destination pixel, 560
DestroyJavaVM function, 971, 975
destroySubcontext method, 286
Device coordinates, 552, 553. See also Pixels
Diagnostic class, 899–900
Diagnostic objects, 896
DiagnosticCollector class, 899
DiagnosticListener, installing, 895
DialogCallbackHandler, 796
DianosticCollector class, 895
digest method, 807
Digit character class, 79
Digital Signature Algorithm keys.

See DSA keys

Index 1001

Digital signatures, 805–822
described, 812
verifying, 814, 816–817

DirContext class, 294
Direct buffers, 965
Directory, 60, 941
Directory context, 284, 294
Directory tree, in LDAP, 280, 281, 284
DISCONTIGUOUS_TREE_SELECTION, 427
Disk files, as random access, 26
displayMessage method, 679
Distinguished encoding rules (DER), 814
Distinguished name, 279, 285
Distributed collector, 857
Distributed programming, 842–843
Dithering, 569
doAsPrivileged method, 791–792
Doc attributes, 627
Doc interface, 624
DocAttribute interface, 629, 631
DocFlavor class, 623
DocPrintJob class, 626, 634
DOCTYPE declaration, in a DTD, 106
DOCTYPE node, including in output, 147
Document(s), XML files called, 90
Document class, 103, 148, 447
Document filter, 449, 450
Document flavors, for print services, 623–624
Document interface, 443–447
Document listener, installing, 444
Document object, 93
Document Object Model parser. See DOM parser
Document structure, 105
Document type definitions. See DTDs
DocumentBuilder class, 103, 111, 148
DocumentBuilder object, 93
DocumentBuilderFactory class, 103, 112, 138
@Documented meta-annotation, 918–919
DocumentEvent class, 447
DocumentFilter class, 450, 462–463
DocumentListener, attaching to a text field, 726
DocumentListener class, 447
DocumentListener methods, 444
doFinal method, calling once, 829
DOM (Document Oject Model) approach, 130
DOM parser, 93, 137, 138
DOM tree, 95, 97, 146
DOMResult class, 161, 166

DOMSource class, 149
DOMTreeModel class, 97
DOMTreeTest.java, 98–103
doPost method, 212
DOTALL flag, in a pattern, 80
DOUBLE data type, in SQL, 226, 277
Double underscores, in native method names,

937
DRAFT constant, 630
Drag and drop, 652, 653
Drag sources, configuring, 658–660
Drag-and-drop user interface, 652–654
Dragging, activating, 654
draw method, 523, 524
draw operation, 542
draw3DRect method, 525
Drawing, shapes, 522–523
Drawing operations, constraining, 557
Driver class, registering, 229
DriverManager, 229, 232
Drivers, types of JDBC, 219–220
drivers property, 229
Drop actions, 653
Drop cursor shapes, 653
Drop location, obtaining, 662
Drop modes, supported by Swing components,

661
Drop targets, 652–653, 660–668
DropLocation classes, 667–668
DSA (Digital Signature Algorithm) keys, 812,

813
DST rules, 561, 562, 563
DTDs (Document Type Definitions), 90, 105,

106–112
Dynamic class loading, 860–864

E
Echo server, accessing, 180
EchoServer.java, 178–179
e-commerce web service, 877–882
Edge detection, 595
EDGE_NO_OP edge condition, 601
EDGE_ZERO_FILL edge condition, 601
Edit dialog box, 397
Edited value, for a cell, 395
Editor pane, 473, 474
EditorPaneTest.java, 475–478
Editors, custom, 396–404

Index1002

EJBs (Enterprise JavaBeans), 221, 686, 844
Element(s)

of annotations, 906
of attributes, 911–912
compared to attributes, 91, 109
constructing for documents, 146
describing data, 109
legal attributes of, 108

Element attributes, 146
Element class, 103, 148–149
Element content

rules for, 107
whitespace, 114

Element declarations, for an annotation, 913
ELEMENT rule, in a DTD, 108
Ellipse2D class, 525
Elliptical arc, 528, 529
E-mail, 191–196, 673
Employee records, storing, 14, 26
Employee.java, 952–953
EmployeeTest.java, 952
Encoder class, 752
-encoding flag, 328
-encoding option, 329
Encoding process, 737
Encoding schemes, 20
Encryption, 828–840
End cap styles, 542, 544–549
End points, of quadratic and cubic curves, 529
End tags, in XML and HTML, 90
End-of-line character, 12
Engine. See Scripting engine
English, retirement calculator in, 334
ENTERED value, for getEventType, 474
Enterprise JavaBeans (EJBs), 221, 686, 844
Entities, defined by DTDs, 110
ENTITY attribute value, 110
Entity references, 92, 110
Entity resolver, installing, 93
EntityResolver interface, 106, 111
Entry class, 384, 392
EntryLogger.java, 928–930
EntryLoggingAgent.java, 933–934
enum construct, 53
EnumCombo helper class, 311, 315–316
EnumCombo.java, 315–316
Enumerated type, 113
Enumeration, native methods supporting, 979

Enumeration objects, 39, 422, 426
Enumeration values, for attributes, 631
EnumSyntax class, 630
env pointer, 945
EOFException object, 966
Equals comparison, in SQL, 225
equals method

of the File class, 61
looking at the location of remote objects, 865
remote objects overriding, 865
of a set class, 785

Error handler, installing, 111
Error handling, in batch mode, 275
ErrorHandler interface, 111, 112
Errors, handling in native methods, 966–970
Escape hatch mechanism, 414
Escapes

in regular expressions, 78
in SQL, 252–253

Euro symbol, 19
evaluate method, 130–131
Event firing, 397, 435
Event handlers, 726, 890–891, 906–911
Event listeners, adding, 117
EventHandler class, 734
EventListenerList convenience class, 435
EventObject, 701
Events, 697, 700
ExceptionListener class, 752
ExceptionOccurred method, 966
exclusive flag, locking a file, 74
Exclusive lock, 75
exclusiveOr operation, 540, 541
ExecSQL.java, 239–241
Executable applets, delivering, 756
Executable programs, signing, 822
execute method, 253
execute statement, 232
EXECUTE_FAILED value, 276
executeQuery method, 255
executeQuery object, 232
executeUpdate method, 232, 243
exists method, 60
exit method, 772
EXITED value, 474
exitInternal method, 772
exportDone method, 659
exportObject method, 848

Index 1003

Expression class, 753
Extensible Stylesheet Language

Transformations. See XSLT
Extension class loader, 757, 758
extern "C", native methods as, 939
Externalizable classes, 47
Externalizable interface, 52, 53

F
Factoring algorithms, 813
Factory methods, 303, 304, 310, 738
FeatureDescriptor class, 712
Field(s)

accessing from native methods, 950–954
marking as transient, 52
preventing from being serialized, 51
in a variable, 436

Field identifier, cost of computing, 951
Field IDs, compared to Field objects, 957
fieldID, obtaining, 950
File(s)

counting lines in, 487–490
creating from a File object, 59–60
determining the total number of bytes in, 27
locking a portion of, 74
memory-mapped, 65–71
with multiple images, 576–585
reading numbers from, 8

File class, 59, 62–65
File extensions, indexed property for, 701–702
File formats

for object serialization, 46–51
supported, 575

File locking, 74–75
File management, 59–65
File names, specifying, 62
File object, 59, 60, 61
File objects, substituting, 900
File operations, timing data for, 66
File output stream, 10
File permission targets, 781
File pointer, 26
File separator character, 59
File suffixes, 575, 576
file URLs, 778
FileChannel class, 70, 74, 75
FileInputStream, 8, 10, 487
FileInputStream class, 70, 775

FileLock class, 75
fileName property, 701
FileNameBean component, 692, 704–707
FileNameBean.java, 705–707
FilenameFilter, 61, 62, 65
FileOutputStream, 8, 10, 70, 958
FilePermission permission, 778
Filer interface, 922
FileReadApplet.java, 825–826
FileReader class, 11–12
FileWriter class, 11–12
FileWriter constructor, 328
fill methods, 523, 524
Filling, shapes, 522
Filter(s)

combining, 384
image processing operations, 592
implementing, 384
nesting, 9
predefined, 384
for user input, 449–451

Filter classes, 9
FilteredRowSet interface, 260
Filtering

images, 592–601
rows, 383–385

FilterInputStream class, 9
FilterOutputStream class, 9
fin object, reading, 8
finally block, 235
find method, 82
FindClass function, 950, 953, 957
findClass method, 761
FindDirectories.java, 61
Fingerprint, 46, 47, 49
fireIndexedPropertyChange method, 703
firePropertyChange method, 702–703
fireVetoableChange method, 704
Fixed cell size, 360
Fixed-size record, 27–28
Flag byte, 47
FlavorListener, 641, 642
flip method, 72
float coordinates, 525
FLOAT data type, in SQL, 226, 276
Floating-point numbers, storing, 24
flush method, 3, 4
Flushable interface, 5, 7

Index1004

Flushing, the buffer, 3
Focus, text field losing, 448
Focus listener, 444
Folder icons, 412
Font(s), antialiasing, 569, 570
Font choices, displaying, 365
Font dialog, 118
Font name, showing its own font, 366
Font render context, 558
fontdialog.xml, 120–122
Forest, 405, 406, 412
Form data, posting, 207–216
Form view, creating, 693
Format class, 326
format method, using the current locale, 325
Format names, 576
Format string, in a choice format, 327
Formatter objects, 303
Formatters

custom, 453–463
supported by JFormattedTextField, 451–453

FormatTest example program, 450–451, 455–461
FormatTest.java, 455–461
Forms, filled out by users, 207–208
forName method, 19
Fortune cookie icon, 679
Forward slash (/)

as a directory separator in Windows, 62
ending the codebase URL with, 854
as a file separator, 59
in a UNIX environment, 62

ForwardingJavaFileManager class, 896–897, 900, 901
fprint native method, 967
Fractals, 588
Fractional character dimensions, 569
Frame(s)

applications managing, 503
closing, 509
dragging across the desktop, 511
making visible, 505
setting to be resizable, 506
tiling, 507–508
with two nested split panes, 492

Frame class, 900, 901–902
Frame icon, 504
Frame state, 506
Frame window, 434
FROM clause, in SQL, 224–225

FULL OUTER JOIN, 253
Functions, built-in to SQL, 226

G
Garbage collectors, 946, 964
Gasp table, of a font, 569
Gawor, Jarek, 283
GeneralPath class, 525, 540, 544
GeneralPath object, 530
@Generated annotation, 916
German, retirement calculator in, 335
Gesture, initiating a drag operation, 652
get methods

for beans, 699
in ByteBuffer, 71
calling, 72
for reading and writing, 67
of ResultSet, 233
of URI, 197–198

GET response command, 209–210
getAbsolutePath method, 62
getAllByName method, 176
getAllFrames method, 506
getAnnotation method, 909
getArray method, 277
getAsText method, 717
getAsText/setAsText methods, 718
getAttribute method, 97, 116
getAttributes method, 96, 285
getAvailableLocales method, 304, 310
getBeanInfo method, 711
getBlob method, 250
GetBooleanArrayElements method, 964
getBundle method, 330
getByName method, 175
getCanonicalPath method, 62
getCategory method, 630
getCellEditorValue method, 395, 397, 398
getCellRenderer method, 394
getChannel method, 66
getCharacterStream method, 251
getChild method, 97, 436–437
getChildNodes method, 94
getClob method, 250
getCollationKey method, 320
getColorModel method, 587
getColumn method, 379
getColumnClass method, 378

Index 1005

getColumnCount method, 374, 375
getColumnName method, 375
getConcurrency method, 256
getConnection method, 229, 239
getContent method, 199
getCurrencyInstance method, 303, 309
getData method, 96
getDataElements method, 587
getDateInstance method, 452
getDefault method, 301
getDisplayName method, 302
getDocumentElement method, 93, 94
getDrive method, 850
getDropLocation method, 662
getElementAt method, 359
getEngineFactories method, 884
getErrorCode, 236
getErrorStream method, 212
getEventType method, 474
getFieldDescription method, 428
GetFieldID function, 950
getFields method, 436
getFilePointer method, 26, 32
getFirstChild method, 96
getFontRenderContext method, 558
getHeaderField method, 199
getHeaderFieldKey method, 199, 201
getHeaderFields method, 201
getHeight method, 604
getIcon method, 711
getImageableHeight method, 605
getImageableWidth method, 605
getImageableX method, 605
getImageableY method, 605
getImageReadersByMIMEType method, 576
getImageReadersBySuffix method, 576
getIndexOfChild method, 435
getInputStream method, 174, 199, 210
getInstance factory method, 318
getInstance method, 806

of AlphaComposite, 562–563
of Cipher, 828–829
of Currency, 309

getIntegerInstance method, 448
getJavaFileForOutput method, 897
getJavaInitializationString method, 718
getLastChild method, 96
getLastPathComponent method, 415–416

getLastSelectedPathComponent method, 416
getLength method, 94
getLocalHost method, 176
getMaxStatements method, 235
getMethodCallSyntax method, 888
GetMethodID function, 956, 958
getModel method, 363
getMoreResults method, 253
getName method, 623
getNewValue method, 510
getNextEntry method, 32
getNextException method, 236
getNextSibling method, 96
getNextValue method, 465, 466
getNodeName method, 96–97
getNodeValue method, 96–97
getNumberInstance method, 303
getNumImages method, 577
getNumThumbnails method, 577
getObject method, 332
GetObjectArrayElement method, 964
GetObjectClass function, 950, 951
getOrientation method, 611
getOutline method, 558
getOutputStream method, 210
getPageCount method, 612
getParameter method, 886
getPathToRoot method, 417
getPercentInstance method, 303
getPixel method, 586
getPixels method, 586
getPointCount method, 531
getPreviousValue method, 465, 466
getPrintService method, 627
getProperty method, 957
getPropertyDescriptors method, 710, 714
getRaster method, 585
getReaderFileSuffixes method, 576
getResource method, 329
getReturnAuthorization method, 864
getRGB method, 587
getRoot method, 97
getRowCount method, 374, 375
getSecurityManager method, 772
getSelectedColumns method, 382
getSelectedIndex method, 498
getSelectedRows method, 382
getSelectedValue convenience method, 354

Index1006

getSelectedValues method, 354
getSelectionModel, 381
getSelectionPath method, 416, 428
getSelectionPaths method, 428
get/set naming pattern, exception to, 699
getSourceActions method, 658
getSQLState method, 236
getSQLStateType method, 236
GetStaticFieldID function, 953
GetStaticMethodID function, 957
GetStringRegion method, 946
GetStringUTFChars function, 946, 948
GetStringUTFLength method, 946
GetStringUTFRegion method, 946
GetSuperclass method, 990
getSystemClipboard method, 636–640
getTableCellEditorComponent method, 396
getTableCellRendererComponent method, 393
getTables method, 272–273
getTagName method, 94
getTags method, 717–718
getTask method, 896
getTime method, 65
getTransferable method, 658, 661
getTreeCellRendererComponent method, 425
getType method, 256
getUpdateCount method, 253
getURL method, 475
getValue method, 978, 982–989

defining for a spinner, 465
of JSpinner, 464
returning the integer value of an attribute,

630
getValueAt method, 374, 375
getWidth method, 604
getWriteFormatNames method, 576
getWriterFormats helper method, 576
GetXxxArrayElements function, 964
GetXxxArrayRegion method, 964
GIF files, writing, 575
GIF image, 623
Global scope, 886
Gnu C compiler, 939
Gödel’s theorem, 767
GradientPaint class, 550, 552
GradientPaint object, 550–551
grant clause, 791, 823
grant entries, in a policy file, 777–778

Graph character class, 79
Graphic Java 2: Mastering the JFC, Volume II: Swing

(Geary), 370, 405
Graphics, printing, 602–611
Graphics class, 522, 524, 552, 559
Graphics classes, using float coordinates, 525
Graphics object, clipped, 604
Graphics2D class, 550, 557, 559, 568, 574
Grid bag, 115
Grid bag pane, 122–127
Grid width, 116
gridbag.dtd, 115, 127
GridBagLayout, 115
GridBagPane class, 117
GridBagPane.java, 122–127
GridBagTest.java, 118–120
gridbag.xsd, 128–129
Groovy engine, 884, 885, 891
groupCount method, 80
Grouping, in regular expressions, 78
Groups

defining subexpressions, 76
nested, 80

GSS-API, 840
GUI design tools, 732
GUI events, 890–894
GUI-based property editors, 719–720

H
Half-close, 184
The Handbook of Applied Cryptography, 812
Handles, for subtrees, 424
hashCode method, 865
Header(s)

table rendering, 394
of an XML document, 90

Header information, querying the server for, 199
Header types, querying values, 201
HelloNative.java, 937
HelloNativeTest.java, 941
Hex editor, modifying byte codes, 769
Hidden commands, in comments, 92
Hiding, table columns, 385
Hierarchical databases, 279, 286–293
Hierarchical URIs, 197
Hierarchy

array types, 963
attribute sets, 629

Index 1007

attributes for printing, 628
for bundles, 330
class loader, 757–759
of countries, states, and cities, 405
for input and output streams, 4, 5
permission classes, 773–774
property files, 88
reader and writer, 6
of text components and documents, 443

HIGH constant, 630
Hints. See Rendering hints
Horizontal line style, tree with, 411–412
HORIZONTAL_SPLIT, for a split pane, 492
HORIZONTAL_WRAP, for a list box, 353
Host names, 172, 175–176
Host variable, in a prepared query, 243
Hot deployment, 760
HrefMatch.java, 82–83
HTML

compared to XML, 89, 90
displaying program help in, 472
displaying with JEditorPane, 472–478
form, 208
help system, 475–478
making XML compliant, 90
opening with snippets of Java code, 900
page, 208, 472, 473
rule for attribute usage, 92
table, 160, 162
transforming XML files into, 157–158

HTMLDocument class, 443
HTTP, 221
HTTP request, response header fields from, 201
/https: URLs, accessing, 206
HttpURLConnection class, 216
Human-readable name, of a data flavor, 640
Hyperlink(s), 474, 475
HyperlinkEvent class, 478
HyperlinkListener class, 478
HyperlinkListener interface, 474
hyperlinkUpdate method, 474
Hypertext references, locating all, 82

I
IANA Character Set Registry, 19
IBM Tivoli Directory Server, 280
ICC profiles, 586, 587
Icon(s), 394, 412

Icon images, loading, 711
Icon objects, list filled with, 365
Icon state, of a frame, 506
ID construct, 109
Identical character differences, 318–319
Identity transformation, 161
IDL (Interface Definition Language), 844
IDREF attribute value, 109
IDREFS attribute value, 109
ifModifiedSince property, 206
IIOImage class, 585
IIOImage object, 578
IIOP (Inter-ORB Protocol), 844
IIOServiceProvider class, 584
Illegal input, provided by users, 448
IllegalAccessException, 436
IllegalArgumentException, 311, 465, 472, 967
IllegalStateException, 577
Image(s)

blurring, 594
building, 585
creating, 585
filtering, 592–601
readers and writers for, 575–585
rotating about the center, 592
storing, 251
superimposing on existing, 559–560
transferring into the clipboard, 642–647

Image class, 583
Image control, in Visual Basic, 686
Image file types, 575–576
Image format, 575
Image icon, 394
Image manipulation, 585–601
Image processing operations, 596–600
Image size, getting, 577
Image types, menu of all supported, 576
Imageable area, 605
ImageInputStream, 576
ImageIO class, 575, 576
ImageIOTest.java, 579–582
ImageList drag-and-drop application, 658
ImageListDragDrop.java, 662–666
ImageProcessingTest.java, 596–600
ImageReader class, 583–584
ImageReaderWriterSpi class, 584
ImageTransferTest.java, 644–647
ImageViewer bean, 688, 689–690

Index1008

ImageViewerBean component, 692
ImageViewerBean.java, 689–690
ImageWriter class, 577, 584–585
IMAP (Internet Message Access Protocol), 840
implies method, 783, 784
importData method, 661, 662
InBlock character class, 79
InCategory character class, 79
include method, 384
Incremental rendering, of images, 585
Indented output, 150
Indeterminate progress bar, 479–480
Indeterminate property, 491
Indexed properties, 701–702
IndexedPropertyChangeEvent class, 708
IndexedPropertyDescriptor class, 713
IndexOutOfBoundsException, 577
Inequality testing, in SQL, 225
InetAddress class, 175, 177
InetAddress object, 175, 738
InetAddressTest.java, 176
InetSocketAddress class, 191
Infinite tree, 437
Information

locating in an XML document, 129
using URLConnection to retrieve, 198–207

Inheritance trees, 236, 423–424
@Inherited meta-annotation, 919
InitialContext class, 851
InitialDirContext class, 294
Initialization code, for shared libraries, 942
initialize method, 738
Input, splitting into an array, 84
Input fields, formatted, 447–463
Input reader, reading keystrokes, 11
Input stream(s), 2

as an input source, 93
keeping open, 184
monitoring the progress of, 487–492

Input stream filter, 492
Input validation mask, 447
INPUT_STREAM data source, 623
InputSource class, 111
InputStream class, 2, 3–4
InputStream object, 174
InputStreamReader class, 11
InputVerifier class, 451
Insert row, 257

INSERT statement, in SQL, 226
Insert string command, 449
insertNodeInto method, 416
insertRow method, 257, 258
insertString method, 449–450
insertTab method, 496
insertUpdate method, 444
Inside Java 2 Platform Security: Architecture, API

Design, and Implementation (Gong/
Ellison/Dageforde), 756

Instance fields, 688, 950–953, 954
Instance methods, calling from native code,

956–957
instanceof operator, 864
Instrumentation API, installing a bytecode

transformer, 932
Integer(s), methods of storing, 24
INTEGER (INT) data type, in SQL, 226, 276
Integer constructor, 978
Integer formatter, 449
Integer identifier type, 384
Integer input, text field for, 448
Interactive scripting tool, 228
@interface declaration, 906
Interface Definition Language (IDL), 844
Interface description, 844
Internal frames

cascading on the desktop, 506–507
dialogs in, 510–520
displaying multiple, 492
setting the size of, 505
tiled, 507

internalFrameClosing method, 511
InternalFrameListener, 511
InternalFrameTest.java, 512–518
International Color Consortium (ICC), 586, 587
International currency character, Euro symbol

replacing, 19
International Organization for Standardization.

See ISO specific standards
Internationalization, 298
Internet, delivery over the public, 822
Internet addresses, 175–177
Internet hosts, services provided by, 170
Internet Message Access Protocol (IMAP),

840
Internet Printing Protocol 1.1 (RFC 2911),

631

Index 1009

Inter-ORB Protocol. See IIOP
Interpolation strategies, 592
Interruptible sockets, 184–191
intersect operation, 540, 541
intranet, delivery in, 822–825
Introspector class, 711
InverseEditor.java, 720–721
InverseEditorPanel.java, 721–722
Investment, growth of, 374–377
InvestmentTable.java, 375–377
Invocable interface, 888, 889
Invocation API, 970–975
InvocationTest.c, 972–974
invokeFunction method, 888
IOException, 173, 475
IP addresses, customizing 4-byte, 453–455
IPv6 Internet addresses, supporting, 175
isAdjusting method, 354
IsAssignableFrom method, 990
isCanceled method, 483
isCellEditable method, 394, 397
isDesktopSupported method, 673
isDirectory method, 60
isEditValid method, 448, 451
isFile method, 60
isIcon method, 506
isIndeterminate method, 491
isLeaf method, 412–413, 435
ISO 216 paper sizes, 332
ISO 639-1, 300
ISO 3166-1, 300
ISO 4217, 309
ISO 8859-1, 11
ISO-8859-1, 19, 20
ISO-8859-15, 19
iSQL-Viewer, 264
is/set naming pattern, 699–700
isShared method, 74
isStringPainted method, 491
isSupported method, 673, 679
item method, 94
Item.java, 930–931
Items, selecting in a list box, 354
ItemSearch operation, 878
ItemSearchRequest parameter type, 878
Iterable objects, 896
Iterator interface, 233
iterator method, 236

J
JAAS, 790
JAAS login modules, 795–805
JAASTest.java, 801–803
JAR file(s)

for the database driver, 228
packaging beans in, 691–692
registering the driver class, 229
signing, 823
signing and verifying, 817
as ZIP file with a manifest, 33

JAR file resources, 329
jarsigner tool, 817, 823
Java 2D API, 522, 524
Java API, for SQL access, 218
Java applications. See also Application(s)

data copying between two instances of,
648–652

splash screens difficult for, 668
with three internal frames, 503, 504
writing internationalized, 298

Java code. See also Code
dynamic generation, 900–905
iterating through multiple result sets, 244

Java compiler, tools invoking, 895
Java data types, 276–277
Java Database Connectivity, 218
Java deployment directory, 824
Java exception, native C++ method in, 966
Java method name, for a C function, 937
Java methods, calling from native code, 956–962
Java Native Interface. See JNI
Java objects, transferring via the system

clipboard, 647–652
Java platform security, 772–776
Java Plug-in tool, 822
Java program

copying a native program to, 644
copying to a native program, 643

Java RMI technology. See RMI
Java servlets, 208
Java String objects, converting, 277
Java types, compared to C types, 942
Java virtual machine. See Virtual machine(s)
The Java Virtual Machine Specification (Lindholm/

Yellin), 769
java.awt.datatransfer package, 636
java.awt.Desktop class, 673

Index1010

java.awt.dnd package, 654
java.awt.geom package, 52
JavaBeans, 686, 701–709. See also Beans
JavaBeans persistence, 732–753

for arbitrary data, 736
complete example, 742–753

java.beans.Beans class, 698
JavaCompiler class, 899
JavaDB. See Derby database
Javadoc comments, 906
JavaFileManager, 895
JavaFileObject interface, 896
JavaFileObject subclass, 896
javah utility, 937
JavaHelp, 472
javaLowerCase character class, 79
JavaMail API, 192–193
javaMirrored character class, 79
java.nio package

making memory mapping simple, 66
new I/O in, 65
unifying characterset conversion, 19

java.policy files, 776
JavaScript—The Definitive Guide (Flanagan), 889
java.security configuration file, 776
JavaServer Faces (JSF), 208, 686
JavaServer Pages (JSP), 686
javaUpperCase character class, 79
javaWhitespace character class, 79
javax.imageio package, 575
javax.sql.rowset package, 260
JAX-WS technology, 842, 871–874
jclass type, in C, 958
JComponent, attaching a verifier to, 451
JComponent class, 414, 447, 520, 657, 709
JDBC

application deploying, 278
configuration, 227–232
design of, 218–221
driver types, 219–220
drivers currently available, 219
requests, 220
syntax describing data sources, 227
tracing, enabling, 230
typical uses of, 220–221
ultimate goal of, 220
version numbers, 273

JDBC 4, 218

JDBC API, 218
JDBC driver, 220, 235, 252
JDBC Driver API, 218
JDBC/ODBC bridge, 219
JDBC-related problems, debugging, 230
JdbcRowSet interface, 260
JDesktopPane, 504, 505, 518
JDialog class, 510
JEditorPane class

API notes, 478
displaying HTML with, 472–478
in edit mode by default, 473
extending JTextComponent, 473
showing and editing styled text, 443

JFormattedTextField class, 448, 461
JFrame class, 666
JFrame object, 732–733
JInternalFrame class, 505, 509, 510, 518–519
JInternalFrame windows, constructing, 504
JList class

API notes, 357–358, 363, 364, 369
calling get methods of, 365
configuring for writing custom renderers, 366
responsible for visual appearance of data,

358–359
JList component, 352–355
JList constructors, 364
JList object, 359
JNDI service, 278
JNI (Java Native Interface), 936, 944
JNI API, finding, 946
JNI debugging mode, 971
JNI functions, 945, 950, 966
JNI_CreateJavaVM, 971
JNI_OnLoad method, 942
JobAttributes class, as obsolete, 631
Join style, for thick strokes, 542–543
Joining, tables, 223, 224
JoinRowSet interface, 260
Joint styles, 544–549
JPEG files, 576
JProgressBar, 479, 490–491
JSP engine, 900
JSpinner class, 470
JSpinner component, 442, 463–472
JSplitPane class, 492, 496
jstring type, 944, 958
JTabbedPane class, 501–502

Index 1011

JTabbedPane object, 496
JTable class, 370

API notes, 374, 389–390, 403
picking a renderer, 378

JTable component, 370
JTextPane subclass, 443
JTree , constructing, 406, 408
JTree class, 405

API notes, 413–414, 421, 433
calling methods to find tree nodes, 434–435

JTree constructor, 408
JUnit 4 testing tool, 906
jvm pointer, 971
JXplorer, 283

K
Kerberos protocol, 840
Kernel, of a convolution operation, 594–595
Kernel object, 595, 601
Keyboard, reading information from, 2
KeyGenerator class, 834
Keys

distributing, 835
generating, 816, 830–831
native methods enumerating, 979, 980–981
retrieving autogenerated, 254

Keystore(s), 814, 823
Keystore password, 816
Keystrokes

monitoring, 444
reading from the console, 11
trying to filter, 447–448

keytool, 816

L
Label, 425
Language design features, of Java, 756
Language locales, 301
Large objects (LOBs), 250–252, 857
A Layman’s Guide to a Subset of ASN.1, BER, and

DER (Kaliski), 814
Layout algorithm, 612
Layout orientation, for a list box, 353
layoutPages method, 612
LCD values, 569
LD_LIBRARY.PATH, 975
LDAP (Lightweight Directory Access Protocol),

279–295, 840

LDAP Browser, 283
LDAP directory

accessing, 284–285
keeping all data in a tree structure, 279
modifying, 285–286

LDAP server, 280–284
LDAP user, configuring, 280, 282
LDAPTest.java, 287–293
LDIF data, 282
LDIF file, 282–283
Least common denominator approach, 59
Leaves, of a tree, 405, 406, 412, 413
Legacy classes, 526
Legacy code, containing an enumerated type,

53–54
Legacy data, converting into XML, 161
Legion of Bouncy Castle provider, 836
length method, 27, 32
Lenient date format, 452
lenient flag, 311
Levels of security, 805
Lightweight Directory Access Protocol. See

LDAP
Lightweight Directory Interchange Format data.

See LDIF data
LIKE operator, in SQL, 225
Limit, of a buffer, 72
Line segments, testing the miter limit, 544
Lines

counting in a file, 487–490
terminating in e-mail, 192

lineTo method, 530
Link action, 653
Link to the file, placing, 653
Linux, 941, 975
List(s), 352–369

very long, 360
List box(es)

adding or removing items in, 358
filled with strings program, 355
populating with planets, 493–495
with rendered cells, 366
scrolling, 353
of strings, 352–358

List cell renderers, 365, 393
List components, reacting to double clicks, 355
List display, 353
list method, 60, 64

Index1012

List models, 358–363
List selection listener, 354
List values, 365–369
List<String> interface, 858
ListCellRenderer, 366, 369
ListDataListener, 359
Listener interface, for events, 700
Listener management methods, 435
Listeners, 703, 906–907
Listening

to hyperlinks, 474
to tree events, 427–434

listFiles method, 64
ListModel class, 363
ListModel interface, 358–359
ListRenderingTest.java, 367–369
ListResourceBundle class, 331–332
ListSelectionEvent method, 354
ListSelectionListener class, 358
ListSelectionModel class, 391
ListTest.java, 355–357
LITTLE_ENDIAN constant, 71
Little-endian method, 24
Load time, 932–934
loadClass method, 761
loadImage convenience method, 711
loadLibrary method, 940
LOBs (large objects), 250–252, 857
Local clipboard, 652
Local encoding schemes, 20
Local host, 176
Local language

ISO codes for, 300
translating to, 298

Local name, in the DOM parser, 137
Local parameter and result objects, 859
Local variables, annotations for, 914
Locale(s)

defined, 299
described, 298–303
formatting numbers for, 303
getting a list of currently supported, 304
no connection with character encodings, 328
program for selecting, 311–315
for the retirement calculator, 333

Locale class, 299, 302–303
Locale objects, 301, 318
Locale-dependent utility classes, 301

Location (L) component, 816
lock method, 74, 75
Logging, RMI activity, 855–856
Logging instructions, 927
LoggingPermission permission, 780
Login(s)

management of, 278
separating from action code, 797

Login code
basic outline of, 790
separating from business logic, 791–792

Login information, storing, 795
Login modules, 791, 795, 796
Login policy, 791
LoginContext class, 794
LoginModule class, 804–805
LONG NVARCHAR data type, in SQL, 277
LONG VARCHAR data type, in SQL, 277
LongListTest.java, 360–362
Long-term storage, JavaBeans persistence

suitable for, 732
Lookup table, 331
LookupOp operation, 593–594, 601
lookupPrintServices method, 623
LookupTable class, 593
lostOwnership method, 636
Lower character class, 79
Lower limit, in a choice format, 327

M
Macintosh

clipboard implementation of, 635
executable program, 329

Magic number, beginning every file, 46
Mail header, sending, 192
Mail messages. See also E-mail

sending, 192
using sockets to send plain text, 193–196

MailTest.java, 193–196
main method, executing, 757
makehtml.xsl, 162
makeprop.xsl, 162–163
makeShape methods, 531
makeVisible method, 417
Mandelbrot set, drawing, 587–588
Mangled signatures, 956
Mangling, rules for, 954–955
Manifest entry, in JAR files, 33

Index 1013

Manifest file, 691
Map interface, 570
map method, 66
MapClassLoader.java, 904–905
MappedByteBuffer, 66
Mapping modes, 66
Mark, of a buffer, 72
mark method, of InputStream, 4
Marker annotation, 912
MarshalledObject class, 866, 870
MaskFormatter, 452–453, 463
Mastering Regular Expressions (Friedl), 77
match attribute, in XSLT, 159
Matcher class, 84–85
Matcher object, 77, 80
matches method, 77
Matching, in SQL, 225
Matrices, 554, 556–557
Matrix transformations, 554
Maximum state, of a frame, 506
Maximum value, for a progress bar, 479
maxoccurs attribute, in XML Schema, 114
MD5 algorithm, 806
MDI (multiple document interface), 502–503
Memory mapping, 65–71
Message digests, 805–811
Message formatting, 324–328
Message signing, 812–814
Message strings, defining in an external

location, 329
MessageDigest class, 806, 811
MessageDigestTest.java, 807–811
MessageFormat class, 324, 325–326
Messages, varying, 326–327
Meta-annotations, 906, 915, 917–919
Metadata, 263–273
Metal look and feel

frame icon displayed, 504
grabber areas of internal frames, 503
selected frame in, 505
selecting multiple items, 428
for a tree, 410

Method(s)
of an annotation interface, 913
executing Java, 961–962
of graphics classes, 525

Method IDs
compared to Method objects, 957

needed to call a method, 956
obtaining, 958

Method names
for beans, 698
for a C function, 937
capitalization pattern for, 700

Method signatures, 954, 955
Method verification error, 770
Metric system, adoption of, 332
Microsoft Active Directory, 280
Microsoft Active Server Pages (ASP), 208
Microsoft compiler, 939
Microsoft Windows, clipboard implementation

of, 635
MIME (Multipurpose Internet Mail Extension)

standard, 575
MIME type name, of a data flavor, 640
MIME types

for print services, 623–624
reader or writer matching, 575
transferring an arbitrary Java object

reference, 652
transferring local, serialized, and remote Java

objects, 641
MimeUtility class, 202
Minimum value, for a progress bar, 479
minoccurs attribute, in XML Schema, 114
MissingResourceException, 330
Miter join, 542, 543
Miter limit, 543
Mixed contents

parsing, 108
in the XML specification, 91

mkdir method, 60
Mnemonics, for tab labels, 498
Model, obtaining a reference to, 363
model object, 364
Modernist painting, 147, 148, 150–156
Modifier, annotation used like, 906
modifyAttributes method, 286
Mouse events, trapping, 355
Move action, changing to a copy action, 653, 660
moveColumn method, 385
moveToCurrentRow, 257
moveToInsertRow method, 257
Moving, a column in a table, 371
Multicast lookup, of remote objects, 848
MULTILINE flag, 80

Index1014

Multipage printout, 612
Multiple document interface (MDI), 502–503
Multiple images

program displaying, 578–582
reading and writing files with, 576–585
writing a file with, 577

Multiple-page printing, 611–613
multithreaded server, 182–183
MULTITHREADED value, for scripts, 886
MutableTreeNode class, 414
MutableTreeNode interface, 407

N
NameCallback class, 804
NameClassPair helper class, 849, 852
NamedNodeMap class, 104
NamedNodeMap object, 96
Namespace(s)

turning on support for, 114
using, 136–138
using class loaders as, 759–760

Namespace mechanism, in XML, 136
Namespace processing, 140, 143
Namespace URI, in the DOM parser, 137
Namespace URL, 136
Name/value pairs, in a property file, 88
Naming class, 852
Naming convention, for resource bundles, 330
Naming pattern, for properties, 699
NamingEnumeration class, 285
NamingEnumeration<T> class, 295
NanoHTTPD web server, 853, 854, 861

starting, 868
National character string (NCHAR), 277
Native C code, compiling, 939
Native character encoding, changing, 329
Native code, 936, 940
native keyword, 936
Native methods

calling Java methods, 966
enumerating keys, 979, 980–981
example, 936–937
handling error conditions, 966
implementing registry access functions as,

977–990
implementing with C++, 939, 966
overloading, 937
throwing exceptions, 967, 970

Native print dialog box, 603
Native program

copying a Java program to, 643
copying to a Java program, 644

Native storage, for XML data, 277
native2ascii utility, 329
NCHAR data type, in SQL, 277
NCLOB data type, in SQL, 277
Negative byte values, 454
Nested groups, 80
Nesting filters, 9
NetBeans integrated development environment,

690
NetBeans version 6, importing beans into, 692
NetPermission permission, 779
Network address, for a remote object, 857
Network connections, to remote locations, 860
Network password dialog box, 200
Network programming, debugging tool, 170
Network sniffer, 876
New I/O, 65–75
New Project dialog box, in NetBeans 6, 692
NewByteArray, 978
newDocument method, 146
NewGlobalRef, 951
Newline character, displaying, 97
NewObject function, 958
newOutputStream method, 185
NewStringUTF function, 944–945, 948

calling to create a new string, 978
constructing a new jstring, 946

NewXxxArray function, 965
next method, 254
nextElement method, 422, 979
nextPage method, 261
NIOTest.java, 68–70
NMTOKEN attribute value, 109
NMTOKENS attribute value, 109
NO_DECOMPOSITION collator value, 319
Node(s)

changing the appearance of, 425
displaying as leaves, 435
generating on demand, 437
identifying in a tree, 415
rendering, 424–427
in a tree, 405, 406

Node class, 104, 138, 148
Node enumeration, 422–424

Index 1015

Node interface, with subinterfaces, 94
Node label, formatting, 436
Node renderer, 412–413
Node set, converting to a string, 160
nodeChanged method, 416
NodeList class, 104
NodeList collection type, 94
Non-ASCII characters, changing to Unicode, 329
Non-deterministic parsing, 108
Nonremote objects, 856, 857–860
Non-XML legacy data, converting into XML, 161
NORMAL constant, 630
Normalization forms, 319
Normalization process, 320
Normalized attribute value, 109
Normalized color values, 586
Normalizer class, 320, 324
NoSuchAlgorithmException, 811
NoSuchElementException, 979
NOT NULL constraint, in SQL, 257
NotBoundException, 852
notFilter method, 384
Novell eDirectory, 280
-noverify option, 767
n-tier models, 220
NULL, in SQL, 257
Null references, storing, 49
NullPointerException, 967
Number filter, 384
Number formats, 303–310
Number formatters, 304–308
Number models, for spinners, 471
Number superclass, 448
NumberFormat class, 308–309, 451
NumberFormat type, 304
NumberFormatException, 444
NumberFormatTest.java, 305–308
Numbers

formatting, 298
printf formatting, 942–944
reading from a file, 8
writing to a buffer, 67

NUMERIC data type, in SQL, 226, 276
NVARCHAR data type, in SQL, 277

O
Object(s)

allowing arbitrary inside cells, 116

reading back in, 40
saving a network of, 41, 42
saving in object serialization format, 46
saving in text format, 14–18
serial numbers for, 49
shared by several objects, 40–41
as the solution to all problems, 842
storing in object serialization format, 48
transferring via the clipboard, 647–652
transmitting between client and server,

842–843
writing and reading, 40
writing to a stream and reading back, 39

Object array, accessing elements in, 964
Object classes, in LDAP, 279
Object data fields, accessing, 950
Object data, saving, 40
Object files, evolution of classes, 54
Object inspection tree, 434
Object references, transferring, 652, 857
Object serialization, 39

associating serial numbers, 41–42
compared to JavaBeans persistence, 732
file format, 46–51
modifying the default mechanism, 51–53

Object stream, 51, 55
Object values, 370
ObjectInputStream, 40, 45–46
ObjectInspectorTest.java, 437–441
ObjectOutputStream, 40, 45
ObjectRefTest program, 49–51
ObjectStreamConstants, 47
ObjectStreamTest.java, 43–45
ODBC, 218, 220
One-touch expand icons, 492–493
Opaque absolute URI, 197
OPEN arc type, 528
openConnection method, 198
Opened nonleaf icon, 412
OpenLDAP, 280, 282
OpenSSL software package, 821
openStream method, 196
Operating systems, character encoding, 328
optional module, 791
Ordering, of permissions, 783
orFilter method, 384
Organization (O) component, 816
Organizational Unit (OU) component, 816

Index1016

Orientation, for a progress bar, 479
Original PC encoding, for file names, 329
Outer join, 253
Outline dragging, 511
Outline shape, 558
Output stream, 2, 3, 184, 578
OutputStream class, 2, 4
OutputStreamWriter class, 11
OverlappingFileLockException, 75
Overloading, native methods, 937
@Override annotation, 916
Overtype mode, mask formatter in, 453
Overwrite mode, DefaultFormatter in, 452

P
Packages

annotations for, 914
using to avoid name clashes, 136

Packets, sending, 174
Padding scheme, 829–830
Page, multiple calls for, 604
Page format measurements, 605
Page orientation, 611
Page setup dialog box, 605, 606, 607, 610
Page size, 261
Pageable interface, 611
PageAttributes class, as obsolete, 631
pageDialog method, 605
PageFormat class, 611
PageFormat parameter, 604
Paint, 523, 550–552
Paint interface, 550
paint method, 369
paintComponent method, 365, 544, 613
paintValue method, 720
Paper margins, 604
Paper sizes, 332, 604
Parameter marshalling, 845–846
Parameters

attaching the end of a URL, 209
parsing by serializing, 857

Parent, of every node, 405, 406
Parent nodes, 417
Parent/child relationships

of class loaders, 757
establishing between tree nodes, 408

parse method, 161, 303–304, 311
Parse tree, 97

ParseException, 304, 308, 311, 454
Parsers, 93, 137, 138–146
Parsing

experimenting with, 311
by URIs, 197
XML documents, 93–104

PasswordCallback class, 804
Password-protected file by FTP, 201
Password-protected web page, 200
Path(s)

finding from an ancestor to a given node, 423
of objects, 415
program creating sample, 530–539

Path names, resolving, 10
path parameter, 60
Path2D class, 540
Path2D.Float class, 540
pathFromAncestorEnumeration method, 423
Pattern class, 84
Pattern object, 77
Patterns, 75–76, 79
#PCDATA, 108, 109
PCDATA abbreviation, 107
PEM (Privacy Enhanced Mail) format, 821
Periods, replacing with underscores, 937
Permission classes, 773–774, 783–789
Permission files, 773
Permissions

attaching a set of, 790
custom, 783
defined, 773
describing in the policy file, 777
implying other permissions, 784
listing of, 778–780
restricting to certain users, 792
structure of, 778

PermissionText.java, 787–789
Permutations, algorithm determining, 466
Persist behavior, with setFocusLostBehavior, 449
Persistence delegate, 736–737
PersistenceDelegate class, 752
PersistenceDelegatTest.java, 739–741
PersistentFrameTest.java, 734–735
Phase, of the dash pattern, 550
PIE arc type, 528
Pixels. See also Device coordinates

composing, 560
interpolating, 569

Index 1017

reading, 586
setting individual, 585
setting to a particular color, 587

Placeholder character, 453, 463
Placeholder index, 325
Placeholders, 324
Plain text, turning an XML file into, 160, 162–163
PlainDocument class, 450
Planet data, table with, 379
PlanetTable.java, 372–373
Platform integration, 668–683
Platform-specific code, installing onto the client,

220
Plugins. See also Java Plug-in tool

packaged as JAR files, 758
Point2D class, 524
Point2D.Double class, 742
Points, paper size measured in, 604
Policy class, 773, 776
Policy files

adding role-based permissions into, 795
building to grant specific permissions, 823
creating, 782, 824
locations for, 776
sample, 792, 794
security, 776–782
supplying, 860–861

Policy URLs, in the policy file, 776
policytool, 782
Polygon, 530
Polygon2D class. See GeneralPath class
Pooling, connections, 279
POP before SMTP rule, 192
Populating, a database, 238–241
Pop-up menu, for a tray icon, 679
PopupMenu class, 679
Port, 171
Port ranges, 781
Porter-Duff composition rules, 561–562
Position, of a buffer, 66, 72
position function, 160
POST data, 211, 212–215
POST response command, 209, 210
@PostConstruct annotation, 915, 917
PostgreSQL

database, 230
drivers, 228

Postorder traversal, 423

postOrderTraversal method, 423
PostScript files, 627
PostTest.java, 212–215
Predefined filters, 384
@PreDestroy annotation, 917
preOrderTraversal method, 423
Prepared statements, 242–244
PreparedStatement class, 250
PreparedStatement object, 243
Primary character differences, 318–319
Primitive type values, 67
Primitive types, arrays of, 965
Principal class, 795
Principal objects, 795
Principals, 791
Print character class, 79
Print dialog box, 602, 610
Print job, 602, 604, 627
print methods

of the Printable object, 604
of the Printable sections, 611
of PrinterJob, 603
of PrintWriter, 13, 956
for a table, 372

Print preview, 613–614
Print request attributes, 627
Print service attributes, 627
Print services, 623–626

compared to stream print services, 627
document flavors for, 623–624
finding, 623
printing an image file, 625–626

Print writer, 12
Printable interface, 602, 606, 610
Printable.NO_SUCH_PAGE value, 603
Printable.PAGE_EXISTS value, 603
printDialog method, 602
Printer graphics context, 612
Printer settings, 602
PrinterException, 603
PrinterJob class, 602, 610–611, 622
printf, formatting numbers, 942–944
Printf1 class, 942–944
Printf1.java, 943
Printf1Test.java, 944
Printf2.java, 948
Printf2Test.java, 947
Printf3Test.java, 959

Index1018

Printf4.java, 969–970
printIn method, 12
Printing, 601–635

attribute hierarchy, 628
attribute set hierarchy, 629
multiple-page, 611–613

Printing attributes, 627–634
listing of, 631–634

PrintJobAttribute interface, 628, 631
Printouts, generating, 602
PrintPreviewDialog class, 613
PrintQuality attribute, 630
PrintRequestAttribute interface, 628, 631
PrintRequestAttributeSet interface, 602
PrintService class, 626, 634
PrintService objects, 623
PrintServiceAttribute interface, 631
PrintServiceLookup class, 626
PrintServiceTest.java, 625–626
PrintStream class, 12
PrintTest.java, 607–610
PrintWriter class, 12, 13, 14
Privacy Enhanced Mail (PEM) format, 821
Private keys, 812, 814
PRIVATE mapping mode, 66
PrivilegedAction interface, 791, 794
PrivilegedExceptionAction interface, 791, 795
processAnnotations method, 908, 909
Processing instructions, in XML documents,

92
Processing tools, for annotations, 905
Processor interface, 921
Product class, 858–859
Product.java, 858–859
Program code, controlling the source of, 895
Programs. See also Java program

launching from the command line, 228
signing executable, 822
supporting cut and paste of data types, 635
switching the default locale of, 302

Progress bars, 479–482, 669
Progress indicators, 479–492
Progress monitor dialog box, 483
Progress monitors, 483–486, 487
Progress value, setting, 483
ProgressBarTest.java, 480–482
ProgressMonitor, 479, 483, 491
ProgressMonitorInputStream, 479, 487, 492

ProgressMonitorInputStreamTest.java, 488–490
ProgressMonitorTest.java, 484–486
Properties

array of descriptors for, 713
Boolean valued, 145
bound, 702–703
changing the setting of in the NetBeans

environment, 696
constrained, 703–704
constructing objects from, 737–738
exposing in beans, 688
at a higher level than instance fields, 688
indexed, 701–702
in the NetBeans environment, 695
simple, 701
transient, 739

Properties class, 88
Properties window, in Visual Basic, 687
@Property annotation, 919–920
Property editors, 713–723

in builder tools, 696
GUI-based, 719–723
string-based, 716–719
supplying customizers, 723
writing, 716–723

Property files, 331
describing program configuration, 88
flat hierarchy of, 88
specifying string resources, 329
for strings, 331
unique key requirement, 88

Property inspectors
displaying current property values in,

720–721
listing bean property names, 695, 696
in Visual Basic, 686

Property permission targets, 781
Property setter statements, 733
Property settings, vetoing, 509–510
Property values, editing, 725
PropertyChange event, 702
PropertyChangeEvent class, 520, 708, 725
PropertyChangeEvent object, 510, 703
PropertyChangeListener interface, 703, 707
PropertyChangeSupport class, 702, 707–708
PropertyDescriptor, 710, 712–713, 716
PropertyEditor class, 722–723
PropertyEditor interface, 716

Index 1019

PropertyEditorSupport class, 716, 717
Property.java, 920
PropertyPermission permission, 778
PropertyVetoException

API notes, 520, 709
catching, 506
throwing, 505, 508, 509, 510, 703

Protection domain, 774
ProtectionDomain class, 776
Prototype cell value, 360
Proxies, communicating, 844
Proxy classes, for annotation interfaces, 913
Proxy objects, 843, 909
Public certificates, keystore for, 823
Public class, permission class as, 785
PUBLIC identifier, 106, 147
Public key, 812
Public key algorithms, 836
Public key ciphers, 835–840
Public key cryptography, 812
Public Key Cryptography Standard (PKCS) #5,

829–830
Pull parser, 143–146
Punct character class, 79
Pure rule, 569
Pushback input stream, 9
PushbackInputStream, 11
put methods, 67, 71
putNextEntry method, 33, 38

Q
QuadCurve2D.Double class, 539
Quadratic curves, 529
quadTo method, 530
Qualified name, in the DOM parser, 137
Quantifiers, 76, 78
Queries

building manually, 243
constraining, 225
executing, 242–254
using SQL, 224

Query by example (QBE) tools, 224
Query results, 223
Query statements, 242–244
QueryDB application, 242
QueryDB.java, 244–250
Question-mark characters, in date output, 311
Quotation marks, optional in HTML, 90

R
"r"

for read access, 26
read-only mode, 32

raiseSalary method, 950, 951, 953
Random access, 66, 577
Random input, from a hardware device, 830
Random numbers, 830
Random-access files, 26–32
RandomAccessFile class, 26, 32, 70
RandomFileTest.java, 28–31
Randomness, 830
Ranges of cells, 382
Raster class, 591
Raster images, constructing, 585–592
Raster point, 591
RasterImageTest.java, 589–590
read method

of DataInput interface, 25
of ImageIO, 575
of InputStream, 2, 3
of the progress monitor stream, 487
of Reader, 4
of ZipInputStream, 32

Read permission, 773
READ_ONLY mapping mode, 66
READ_WRITE mapping mode, 66
Readable interface, 5, 6, 7
ReadableByteChannel interface, 185
Reader class, 4
READER data source, 624
readExternal method, 53
readFixedString method, 27
Reading, text input, 14
readLine method, 14
readObject method

of the Date class, 52
of ObjectInputStream, 40, 46
as private, 53
of a serializable class, 52

readResolve method, 54
Read/write property, 699
REAL data type, in SQL, 226, 277
Records

computing size of fixed, 28
reading, 15

Rectangle2D class, 525
Rectangle2D.Double class, 737

Index1020

RectangularShape superclass, 525
Redundancy elimination, 733
Reflection, 428, 436, 698–699
ReflectPermission permission, 780
regedit command, in the DOS shell, 975
regexFilter method, 384, 392
RegexTest.java, 80–82
register method, 867
Registered objects, displaying names of, 849
Registration mechanism, 229
Registry

accessing, 975–990
Java platform interface for accessing, 977
overview of, 975–977

Registry access functions, implementing as
native methods, 977–990

Registry editor, 976–977
Registry functions, program testing, 979–980,

989–990
Registry keys, 977, 978
Registry object references, 849
Regular expressions, 75–85

in an element specification, 108
replacing all occurrences of, 83
rows having a string value matching, 392
syntax of, 76, 77–78
uses for, 77
vertical bar character in, 15

Relational database, 279
Relational model, distributing data, 223
Relative identifiers, handling, 198
Relative URI, 197
Relative URLs, 106, 823
Relativization, of a URI, 198
Relax NG, 105
ReleaseStringUTFChars function, 946, 948
ReleaseXxxArrayElements function, 964
Reliability, of remote method calls, 847
reload method, 416
remaining method, 72
Remote interface, 847
Remote method call(s), 843, 845–846
Remote method invocation. See RMI
Remote methods, 856–865
Remote objects, 845

activation of, 865–871
clone method, 865
comparing, 865

equals method, 865
garbage-collecting, 857
hashCode method, 865
interfaces for, 847
passing, 856
registering, 848, 850
transferring, 857

Remote references
invoking methods on, 857
with multiple interfaces, 864
passing, 857
transferring objects as, 857

Remote resource, connecting to, 199
Remote Warehouse interface, 862–863
RemoteException, 847, 848, 864
removeColumn method, 385
removeElement method, 364
removeMode property, 742
removeNodeFromParent method, 416
removePropertyChangeListener method, 702, 725
removeTabAt method, 497
removeUpdate method, 444
removeVetoableChangeListener method, 703
Rendered cells, in a list box, 366
RenderHints class, 568, 570
Rendering

actions, 378
hints, 522, 568–575
list values, 365–369
nodes, 424–427
pipeline, 523–524
shapes, 606

RenderingHints class, 575
RenderQualityTest.java, 571–574
Rental car, damage report for, 742
replace method, 450
replaceAll method, 83
replaceFirst method, 83
Representation class, 640
Request headers, 199
required module, 791
requisite module, 791
Rescale operator, 600
RescaleOp operation, 593, 600
Rescaling operation, 593
reset method, 4
reshape method, 505
Resizable state, of a frame, 506

Index 1021

Resizing
columns, 379–381
columns in a table, 371
rows in JTable, 381

resolveEntity method, 106–107
Resolving

a class, 756
a relative URL, 198

Resource(s), 329
alternate mechanisms for storing, 333
annotations for managing, 917
bundle classes, 331
bundles, 329–333
data, 199
files, 329
hierarchy, for bundles, 330
injection, 917
kinds of, 329

Resource annotation, 278
@Resource annotation, 917
Response header fields, 201
Response page, 208
Result interface, 161
Result sets

analyzing, 233
concurrency values, 255
enhancements to, 258
managing, 235
retrieving multiple, 253
scrollable and updatable, 254–260
type value, 255
updatable, 254, 256–260

Results, query returning multiple, 253–254
ResultSet class, 233, 234, 251, 258–259, 273
ResultSet type, 232
ResultSetMetaData class, 264, 273
@Retention meta-annotation, 917–918
Retention policies, 918
Retire.java, 336–346
Retirement calculator applet, 333–349
RetireResources_de.java, 347
RetireResources_zh.java, 347–349
RetireResources.java, 346–347
Return character, displaying, 97
Reverting, an input string, 449
RFC 2279, 24
RFC 2368, 673
RFC 2396, 197

RFC 2781, 24
RGB color model, 586
Rhino engine, 884, 885, 887, 888
Rhino interpreter, 117
Rich text format (RTF), 472
RIGHT OUTER JOIN, 253
Rivest, Ronald, 806
RMI (Remote Method Invocation)

activation daemon, 868
activity, logging, 855–856
applications, deploying, 852–855
communication between client and middle

tier, 221
deploying applications using, 852–855
loggers, listing of, 855–856
method calls between distributed objects, 844
programming model, 846–856
protocol, 842
registry, 848–855
registry, starting, 854
URLs, 848–849

rmid program, 868, 870
rmiregistry service, 853
Role-based authentication, 795
Roles, login module supporting, 795
rollback method, 274
Rolled back transactions, 273, 274
Root

certificate, 823
element, of an XML document, 90–91
handle, tree with, 412
hiding altogether, 412
node, 405, 406, 407, 408

rotate method, 553, 554
Rotation transformation, 553
Round cap, 542
Round join, 542, 543
Rounded rectangle, 527
RoundRectangle2D class, 525, 527
RoundRectangle2D.Double class, 539
Row(s)

adding to the database, 257
in a database, 222
determining selected, 382
filtering, 383–385
inspecting individual, 233
resizing, 381
selecting, 371, 381

Index1022

Row(s) (continued)
selection and filtering of, 385–389
sorting, 372, 382–383

Row height, setting, 381
Row position, of a node, 416
Row sets, 260–263
RowFilter class, 383, 384, 392
ROWID data type, in SQL, 277
ROWID values, 277
RowSet class, 262
RowSet interface, 260
RSA algorithm, 813, 836
RSATest.java, 837–839
RTF (rich text format), 472
Rules, in a DTD, 107
run method, 897
RUNTIME retention policy, for annotations, 918
RuntimePermission permission, 779
"rw"

read/write access, 26
read/write mode, 32

"rwd", read/write mode, 32
"rws", read/write mode, 32

S
Sample values, 586, 593
Sandbox, 772
SASL (Simple Authentication and Security

Layer), 840
Save points, 274
Savepoint class, 276
SAX parser, 138–143
SAX XML reader, 161
SAXParseException class, 112
SAXParser class, 142
SAXParserFactory class, 141
SAXSource, 161, 166
SAXTest.java, 140–141
Scalable Vector Graphics (SVG) format, 147
Scalar functions, 252
scale method, 552, 553
Scaling operation, 600
Scaling transformation, 553, 556
Scanner, constructing, 196–197
Scanner class, 14, 185
Schema, 272
Schema file, 112
schemeSpecificPart, of a URI, 197

Scopes, collection of, 886
Script(s)

compiling, 889–890
executing in multiple threads, 886
invoking, 885
redirecting, 887–888
for server-side programs, 208

Script class, accessing, 889
Script engines, invoking functions, 888–889
ScriptContext class, 888
ScriptContext interface, 886
ScriptEngine class, 887, 888
ScriptEngineFactory class, 885
ScriptEngineManager, 884, 885, 887
Scripting

API, 884
GUI events, 890–894
engine, 884–885, 886, 888–889
engine factories, 884
for the Java platform, 884–894
languages, 884
statements, variables bound by, 886

ScriptTest.java, 891–894
Scroll pane, scrolling, 417
Scrollable result, 254

sets, 254, 260
Scrolling, 256

mode, 497
scrollPathToVisible method, 417
Secondary character differences, 318–319
Secret key, generating, 831
SecretKeyFactory, 830, 834
SecretKeySpec class, 834
Secure Hash Algorithm. See SHA
Secure random generator, 831
Secure web pages, 206
SecureRandom class, 830
Securing Java: Getting Down to Business with

Mobile Code (McGraw/Felten), 775
Security

levels of, 805
mechanisms, 756

Security manager class, 756
Security managers, 771–789

configuring standard, 772
reading policy files, 861
in RMI applications, 860

Security policy, 773, 866

Index 1023

Security policy files. See Policy files
SecurityException, 772, 774
SecurityManager class, 774, 775
SecurityPermission permission, 780
Seek forward only mode, 577
seek method, 26, 32
SELECT queries, 232
SELECT statement

adding to a batch, 275
executing to read a LOB, 250
in SQL, 224, 225

Selected frame, 505
Selection(s)

choosing from a very long list of, 359
moving from current frame to the next, 508–

509
Selection model, for rows, 381
Selection state, setting for tree nodes, 427
Semicolon (;), annotation placed without, 906
separator field, 62
Serial number, saving objects with, 41
Serial version unique ID, 46
SerialCloneable class, 57
SerialCloneTest.java, 57–59
@Serializable annotation, 919
Serializable class, 51
Serializable interface, 40, 47
SerializablePermission permission, 780
Serialization

copying objects using, 857
mechanism, 51–53, 857
performance of, 53
unsuitable for long-term storage, 732
using for cloning, 56–59

Serialized Java objects, 647–652
SerialTransferTest.java, 648–652
serialver program, 54–55
serialVersionUID constant, 55
Server(s)

connecting to, 170–177
harvesting information from, 211
implementing, 177–184
role in distributed programming, 842–843
starting on a given URL, 873

Server calls, 853
Server program, 863–864
Server-side script, 209
ServerSocket class, 177, 179

Service provider interface, of a reader, 576
SERVICE_FORMATTED data source, 624
set methods, 243, 523, 699
Set of nodes, XPath describing, 130
Set operations, in regular expressions, 78
setAllowsChildren method, 413
setAllowUserInteraction method, 200
setAsksAllowsChildren method, 413
setAsText method, 717
setAttribute method, 146
setAutoCreateRowSorter method, 372, 382
setAutoResizeMode method, 380–381
setBackground method, 655
setCellRenderer method, 365
setCellSelectionEnabled method, 382
setClip operation, 557–558
setClosed method, 509
setColor method, 444
setColumns method, 448
setColumnSelectionAllowed method, 381
setComparator method, 383
setComposite method, 523, 562
setContextClassLoader method, 759
setContinuousLayout method, 493
setCurrency method, 309
setDataElements method, 587
setDefaultRenderer method, 394
setDoInput method, 199
setDoOutput method, 199, 210
setDragEnabled method, 654, 659
setDragMode method, 511
setDropMode method, 661
setEditable method, 417
setEntityResolver method, 106
setErrorHandler method, 111
setFillsViewportHeight method, 372
setFocusLostBehavior method, 449
setHeaderRenderer method, 394
setHeaderValue method, 394
setIfModifiedSince method, 200
setIndeterminate method, 480
setLenient method, 452
setMaximum method, 479, 506
setMaxWidth method, 379
setMillisToDecideToPopup method, 483–484
setMinimum method, 479
setMinWidth method, 379
setMnemonicAt method, 498

Index1024

setNamespaceAware method, 137
setObject method, 725–726
setObjectArrayElement method, 964
setOneTouchExpandable method, 493
setOverwriteMode method, 452
setPage method, 473
setPageable method, 611
setPageSize method, 261
setPaint method, 523, 550
setPixel methods, 585, 586
setPlaceholderCharacter method, 453
setPreferredWidth method, 379
setProgress method, 483
setPropertyEditorClass method, 713
setReader method, 887
setRenderingHint method, 568
setRenderingHints method, 522, 570
setRequestProperty method, 200
setResizable method, 379
setRootVisible method, 412
setRowFilter method, 383, 385
setRowHeight method, 381
setRowMargin method, 381
setRowSelectionAllowed method, 381
setSecurityManager method, 777
setSeed method, 830–831
setSelected method, 505
setSelectedIndex method, 497
setSelectionMode method, 354, 381
setSoTimeout method, 174
setStringPainted method, 479
setStroke method, 522, 542
setTabComponentAt method, 498
setTabLayoutPolicy method, 497–498
setTable method, 262
SetTest program, 928, 931–932
SetTest.java, 931–932
setText method, 473
setTitle method, 726
setTransform operation, 555
setUseCaches method, 200
setValue method, 448, 465, 978
setValueAt method, 398
setVisible method, 397, 505
setVisibleRowCount method, 353
setWidth method, 380
setWriter method, 887
SetXxxArrayRegion method, 964

SGML (Standard Generalized Markup
Language), 89

SHA (Secure Hash Algorithm), 46
SHA1 (secure hash algorithm #1), 805–806
Shape classes

relationships between, 526
using, 527–540

Shape interface, 524, 541
Shape maker classes, 531
Shape makers, 530
ShapeMaker abstract superclass, 531
ShapePanel class, 531
Shapes, 524–540

composing from areas, 540–541
creating, 523
drawing, 522–523
rendering, 606
superimposing, 560

ShapeTest.java, 532–539
shared locks, 74
shear method, 553
Shear transformation, 553, 557
short values, 601
ShortLookupTable subclass, 593, 601
shouldSelectCell method, 397
showInternalXxxDialog methods, 510
showWindowWithoutWarningBanner target, 785
Side files, 919
Signatures

encoding, 954–956
of a field, 950
mangling, 956

Signed applet, 825, 827
Simple Authentication and Security Layer

(SASL), 840
Simple Mail Transport Protocol. See SMTP
Simple Object Access Protocol. See SOAP
Simple properties, 701
Simple type, 112–113
SimpleBeanInfo convenience class, 710, 712
SimpleCallbackHandler.java, 800–801
SimpleDateFormat class, 471
SimpleDoc class, 624, 626
SimpleJavaFileObject class, 900
SimpleLoginModule.java, 798–800
SimplePrincipal.java, 797–798
SimpleTree.java, 408–410
SimulatedActivity class, 479

Index 1025

Single quotes, in SQL, 225
Single value annotation, 912
SINGLE_TREE_SELECTION, 427
Singleton object, splash screen as, 669
Singletons, serializing, 53–54
SISC Scheme engine, 884, 891
size element, 91
Skewed angle, for an elliptical arc, 529
skip method, 3
slapd.conf file, 280
Slow activity, progress of, 479
SMALLINT data type, in SQL, 226, 276
SMTP (Simple Mail Transport Protocol), 191

specification, 192
SOAP (Simple Object Access Protocol), 844, 871

message, 879
traffic, 876

Social Security numbers, 452
Socket(s), 173, 184–191
Socket class, 174, 175, 184
Socket constructor, 175
Socket object, 177
Socket operation, interrupting, 185
Socket permission targets, 781
Socket timeouts, 174–175
SocketChannel class, 191
SocketChannel feature, of java.nio, 185
SocketPermission permission, 778
SocketTest.java, 173
SocketTimeoutException, 174–175
Software developer certificates, 827–828
Solaris, compiling InvocationTest.c, 975
Sorting, rows, 382–383
Source file annotations, tools harvesting, 923
Source files, 328–329, 896
Source interface, 160–161
Source level, processing annotations at, 909
Source pixel, 560
SOURCE retention policy, 918
Source-level annotation process, 919–926
Space character class, 79
Spelling rule sets, in Norway, 299
Spinner(s), 464, 465
Spinner model, 465
SpinnerDateModel class, 471
SpinnerListModel, 464, 471
SpinnerNumberModel, 464, 471
SpinnerTest.java, 466–470

Splash screens, 668–673
drawing directly on, 668–669
indicating the loading process on, 668
replacing with a follow-up window, 670

SplashScreen class, 673
SplashScreenTest.java, 670–672
split method

of Pattern, 84
of String, 15

Split panes, 492–496
SplitPaneTest.java, 493–495
Splitter bar, 492–493
sprintf C function, 947–948
SQL (Structured Query Language), 218, 222–227

changing data inside a database, 226
data types, 226–227, 276–278
exceptions, 236–238
types, 277
writing keywords in capital letters, 224

SQL ARRAY, 277
SQL statement file, program reading, 238,

239–241
SQL statements

executing, 232–241
executing arbitrary, 232

SQLException class, 236, 237
SQLPermission permission, 780
SQLWarning class, 237
SQLXML data type, in SQL, 277
SQLXML interface, 277–278
Square cap, 542
SQuirrel, 264
SRC rule, 562
SRC_ATOP rule, 562
SRC_IN rule, 561, 562
SRC_OUT rule, 561, 562
SRC_OVER rule, 560, 561, 562
sRGB standard, 587
SSL, 840
Standard annotations, 915–919
Standard extensions, loading, 757
Standard Generalized Markup Language

(SGML), 89
StandardJavaFileManager class, 899
Start angle, of an arc, 527, 528, 539
startElement method, 139–140
startNameEnumeration function, 979
State (ST) component, 816

Index1026

stateChanged method, 498
STATELESS value, for scripts, 886
Statement class, 234, 254, 276, 753
Statement object, 232, 235
Statements, managing, 235
Static fields, 953–954
Static initialization block, 940, 941
Static methods, calling from native methods,

957–958
StAX parser, 143–146, 150–157
StAXTest.java, 144
stopCellEditing method, 397, 398
Stored procedures, 252
Stream(s)

assembling bytes into data types, 8
classes, 3, 834–835
closing, 3
filters, 8–11, 487
in the Java API, 2–4
keeping track of intermediate, 9
print services, 627
retrieving bytes from files, 8
sending print data to, 627
types, 4–8

Streaming parsers, 93, 138–146
StreamPrintService class, 627
StreamPrintServiceFactory class, 627
StreamResult class, 149, 162
StreamSource, 161, 166
Strength, of a collator, 318
String(s)

converting into normalized forms, 320
filter looking for matching, 384
internationalizing, 331
objects, saving, 46. See also Java String objects
painted property, 491
parameters, 944–949
patterns, specifying with regular expressions,

75
transferring to and from native methods,

944–949
writing and reading fixed-size, 27

STRING data source, 624
String parameter, of getPrice, 857
StringBuffer class, 72
StringBuilder class, 27
StringBuilderJavaSource.java, 897–898
StringSelection class, 636, 642

stringToValue method, 454
Stroke interface, 542
Strokes, 542–550

control over, 522
controlling placement of, 569
selecting, 542

StrokeTest.java, 545–549
Structure of a database, 263
Structured Query Language. See SQL
Stub classes, 872
Stubs, 845–846
Style, in a placeholder index, 325
style attribute, 108
Style sheet, 160, 162
StyledDocument interface, 443
Subcontext, 294
Subject, login authenticating, 791
Subject class, 794
subtract operation, 540, 541
Subtrees, 410
SUCCESS_NO_INFO value, 276
sufficient module, 791
Sun compiler, 939
Sun DOM parser, 137
Sun Java System Directory Server for Solaris, 280
supportCustomEditor, 720
@SupportedAnnotationTypes annotation, 921
SupportedValuesAttribute interface, 628
supportsBatchUpdates method, 275
supportsResultSetConcurrency method, 255
supportsResultSetType method, 255
@SuppressWarnings annotation, 915, 916
SVG (Scalable Vector Graphics) format, 147
Swing, data transfer support in, 654–657
Swing code, generating dynamic, 900
Swing components

drag-and-drop behavior of, 658
layout manager for, 115

Swing table, as asymmetric, 378
Swing user interface toolkit, 352
SwingDnDTest.java, 656–657
SwingWorker class, 479
Symbols. See also specific symbols

in choice formats, 327
in a mask formatter, 452–453

Symmetric ciphers, 828–830, 835
SyncProviderException, 262, 263
SysPropAction.java, 793

Index 1027

System class, 941
System class loader, 757, 758, 759
System clipboard, 636, 647–652
SYSTEM declaration, in a DTD, 106
SYSTEM identifier, 147
System properties, in policy files, 782
System tray, 679–683
System.err, 12
System.in, 12
System.out, 12
SystemTray class, 679, 682
SystemTrayTest.java, 680–682

T
Tab

labels, 498
layout, 497–498
layout policy, 502
titles, 498

Tabbed pane(s), 492, 496–502
user interface, 725

TabbedPaneTest.java, 498–501
Table(s)

constructing from arrays, 371
inserting values into, 226
inspecting and linking, 224
joining, 223, 224
manipulating rows and columns in, 378–392
with planet data, 379
printing, 372
producing, 370–404
selecting data from multiple, 225
simple, 370
types array for, 272

Table cell renderers, 393
Table classes, 379, 380
Table columns, 379, 390
Table index values, 382
Table models, 370, 374–378
Table names, 262, 263
Table view, removing a column from, 385
TableCellEditor class, 404
TableCellEditor interface, 396
TableCellRenderer class, 403
TableCellRenderer interface, 393
TableCellRenderTest.java, 399–403
TableColumn class, 391, 404
TableColumn object, 379, 385

TableColumn type, 379
TableColumnModel class, 391
TableColumnModel object, 379
TableModel class, 378, 389
TableRowSorter <M> object, 382
TableRowSorter class, 391
TableSelectionTest.java, 385–389
TableStringConverter class, 391
Tabs, 496, 497
Tag name, of an element, 94
@Target meta-annotation, 917
Target names, for permissions, 778–780
TCP (Transmission Control Protocol), 174
telnet

accessing an HTTP port, 172
activating in Windows Vista, 170
connecting to java.sun.com, 171

Telnet windows, 181
Tertiary character differences, 318–319
@Test annotation, 906
TestDB.java, 230–232
Text

components, in the Swing library, 442–478
input and output, 11–23
transferring to and from the clipboard, 636
transmitting through sockets, 177

Text field(s)
editor, 395
for integer input, 448
losing focus, 448
program showing various formatted,

455–461
tracking changes in, 444
user supplying input to, 448–449

Text file, inside a ZIP file, 32
Text format

for saving data, 11
saving objects in, 14–18

Text fragments, 653
Text input, reading, 14
Text nodes

constructing, 146
as only children, 96

Text output, writing, 12–13
Text strings

converting back to a property value, 717
property editors working with, 716
saving, 11

Index1028

TextFileTest.java, 15–18
TextLayout class, 559
TextLayout object, 558
TextTransferTest.java, 637–639
TexturePaint class, 550, 551, 552
TexturePaint object, 551
this argument object, 950
Thread(s)

executing scripts in multiple, 886
forcing loading in a separate, 474
making connections using, 180
referencing class loaders, 759

Thread class, 766–767
ThreadedEchoHandler class, 180
ThreadedEchoServer.java, 182–183
THREAD-ISOLATED value, 886
Three-tier applications, 221
Three-tier model, 220
Throw function, 966
ThrowNew function, 966
Thumbnails, 577
Tiled internal frames, 507
Tiling

frames, 507–508
windows, 505

Time
computing in different time zones, 311
formatting, 310–317

TIME data type, in SQL, 227, 277
Time of day service, 170–171
Time picker, 465
Timeout value, selecting, 174
Timer, updating progress measurement, 483
TIMESTAMP data type, in SQL, 227, 277
TimeZone class, 311, 317
TitlePositionEditor.java, 718–719
Tödter, Kai, 688
Tool class, 899
Toolkit class, 639
Tools, processing annotations, 905
tools.jar, as no longer necessary, 895
Tooltip, for a tray icon, 679
Top-left corner, shifting, 612
toString method

calling to get a string, 22
displaying table objects, 371
returning a class name, 531
of the Variable class, 436

Tracing, 230
Tracking, in text components, 443–447
Transactions, 273–278
Transfer handler

adding, 659, 660
constructing, 657
installing, 655

Transfer wrapper, 648, 651
Transferable interface, 636, 640, 642–647
Transferable object, 661
Transferable wrapper, 652
TransferHandler class, 657, 658, 659–660, 666
TransferSupport class, 666–667
transform method, 160, 161, 523, 555
Transformations

composing, 554, 555
supplying, 554
types of, 553
from user space to device space, 523
using, 522, 613

Transformer class, 149
TransformerFactory class, 149, 166
TransformTest.java, 163–166
Transient fields, 51
transient keyword, 51
Transient properties, 739
Transitional events, 354
translate method, 553, 612
Translation transformation, 553
Transmission Control Protocol (TCP), 174
Transparency, 559–560
Traversal order, 464–465
Traversals, 422
Tray icons, 679, 680
TrayIcon class, 683
TrayIcon instance, 679
Tree(s), 405–442

cell renderer, 424, 425, 426
classes, 407
composed of nodes, 405, 406
describing an infinite, 437
editing, 415–421
events, 427–434
leaves of, 412, 413
parsers, 93
paths, 415, 417
program displaying with a few nodes, 406,

407, 408–410

Index 1029

selection listener, 427
simple, 406–414
structures, 279, 405
with/without connecting lines, 411

Tree model(s)
constructing, 407–408, 435–436
custom, 434–442
linking nodes together, 415
obtaining, 406

Tree nodes
accessing with XPath, 129
changing font for individual, 425
determining currently selected, 415
editing, 417
iterating through, 422

TreeCellRenderer class, 426
TreeCellRenderer interface, 424, 425
TreeEditTest.java, 418–421
TreeModel class, 414, 442
TreeModel interface, 406, 434, 435
TreeModelEvent class, 442
TreeModelEvent object, 435
TreeModelListener class, 442
TreeModelListener interface, 435
TreeNode array, 417
TreeNode class, 414, 422
TreeNode interface, 407, 415
treeNodesChanged method, 435
treeNodesInserted method, 435
treeNodesRemoved method, 435
TreePath class, 415, 422
TreePath constructor, 417
TreePath objects, 415
TreeSelectionEvent class, 428, 434
TreeSelectionListener class, 434
TreeSelectionListener interface, 427
TreeSelectionModel, 427
treeStructureChanged method, 435
trim method, 96
True Odds: How Risks Affect Your Everyday Life

(Walsh), 805
Trust, giving to an applet, 805
Trust models, assuming a chain of trust, 819
try/catch block, 235
try/finally block, 235
tryLock method, 74, 75
Type(s)

defined by a schema, 112–113

of images, 585
nesting definitions for, 113–114
in a placeholder index, 325

Type drivers, 219–220
TYPE_INT_ARGB, 585
TYPE_INT_ARGB type, 586
Typesafe enumerations, 53–54

U
UDP (User Datagram Protocol), 174
UI-intensive Windows programs, Visual Basic

optimized for, 687
Unambiguous DTD, 108
Unicast, 848
UnicastRemoteObject class, 848, 865
Unicode

characters, 2, 331
“replacement character” ('\uFFFD'), 23
strings, 22
using for all strings, 298

UNICODE_CASE flag, 80
Uniform Resource Identifier. See URI
Uniform resource name (URN), 197
Unique identifier, for a remote object, 857
UNIX user, checking the name of, 790
UNIX_LINES flag, 80
UnknownHostException, 173
UnsatisfiedLinkError, 937
Unwrap mode, 829
Updatable result sets, 254, 256–260
update methods, 257, 829
UPDATE statement, 243, 258
updateRow method, 257, 258
Upper case, turning characters of a string to, 451
Upper character class, 79
URI (Uniform Resource Identifier), 136, 197
URI class, 197–198
URL(s)

compared to URIs, 197
connections, 196–216
forms of, 778
specifying a Derby database, 227
specifying for a DTD, 106
types of, 823

URL class, 196–198, 206, 452
URL data source, 623
URL object, 196
URLClassLoader class, 766

Index1030

URLConnection, 210
URLConnection class, 196–198

API notes, 206–207
compared to Socket, 199
methods, 199–200
using to retrieve information, 198–207

URLConnection object, 198, 212
URLConnectionTest.java, 202–205
URLDecoder class, 216
URLEncoder class, 216
URN (uniform resource name), 197
US-ASCII character encoding, 20
User(s)

authentication, 790–805
coordinates, in transformations, 552, 553
drop action, 660
interface components, 602
names, 278
objects, 407–408, 425
providing illegal input, 448
restricting permissions to certain, 792

User Datagram Protocol (UDP), 174
UTF-8 character encoding, 20, 24, 944
UTF-16 character encoding, 11, 20, 24

V
Validating, XML documents, 105–112
Validation

of input, 447
languages, 105
turning on, 110

VALUE_RENDER_QUALITY, 571
VALUE_STROKE_NORMALIZE, 571
valueChanged method, 427, 428
valueToString method, 454
VARCHAR data type, in SQL, 226, 278
Variable class, 436
Variable-byte encodings, 19
Variants, in locales, 299
Vendor name, of a reader, 576
Verification, 767
Verifiers, 451, 767
VerifierTest.java, 770–771
verify method, 451
VeriSign, Inc., 819, 820
VeriSign certificate, 817
Version number

of the object serialization format, 46

of a reader, 576
Versioning, 54–56
VERTICAL, for a list box, 353
VERTICAL_SPLIT, for a split pane, 492
VERTICAL_WRAP, for a list box, 353
Very long lists, 360
Vetoable change listeners, 509
vetoableChange method, 510
VetoableChangeListener, 509, 520, 703, 708
VetoableChangeSupport class, 703–704, 708–709
Vetoing, 505, 509–510
ViewDB application, 264–272
ViewDB.java, 263–272
Virtual machine(s)

embedding into C or C++ programs, 970–971
function terminating, 971
launching, 868
loading class files, 756
setting up and calling the main method of

Welcome, 971–974
terminating, 772
transferring values between, 857
writing strings intended for, 24

Visual Basic, 686, 699
Visual feedback, 653, 660–661
Visual presentation, 220

W
WarehouseActivator.java, 868–869
WarehouseClient program, 851, 875
WarehouseImpl.java, 847–848, 862–863, 869–870
Warehouse.java, 872
WarehouseServer server program, 849
WarehouseServer.java, 863–864, 873
WarehouseService class, 876
Warning class, 237
Warnings, retrieving, 237
Weak certificates, 828
WeakReference objects, 437
Web applications, 843
Web browser, 172, 207
Web crawler program

code for, 140–141
implemented with the StAX parser, 144
implementing, 139

Web or enterprise environment, JDBC
applications in, 278

Web pages, accessing secure, 206

Index 1031

Web servers, invoking programs, 208
Web service client, 874–877
Web services

architecture, 844
components of, 871–882
concrete example of, 877–882
in Java, 871–874

Web Services Description Language. See WSDL
Web Start applications, 221
@WebParam annotation, 871–872
WebRowSet interface, 260
@WebService, 871–872
WHERE clause, in SQL, 225
Whitespace, 96, 114, 147
Wild card characters, in SQL, 225
Win32RegKey class, 977
Win32RegKey.java, 980–981
Win32RegKeyn class, 979
Win32RegKeyNameEnumeration class, 979
Win32RegKeyTest.java, 989–990
Window listener, 398
Windows. See also Microsoft Windows

cascading all, 506
compiling InvocationTest.c, 975

Windows executable program, 329
Windows look and feel

standard commands for cascading and
tiling, 505

tree with, 410, 411
Windows Vista, activating telnet, 170
Word check permissions, 784
WordCheckPermission class, 784
WordCheckPermission.java, 786–787
Worker thread, blocking indefinitely, 483
Working directory, finding, 8
wrap method, 22
Wrap mode, 829
Wrapper class, 643
WritableByteChannel interface, 185
WritableRaster class, 591
WritableRaster type, 585
Write, then read cycle, 72
write method

of ImageIO, 575
of OutputStream, 2, 4
of Writer, 4
writing out the first image, 578

writeAttribute, 150

writeCharacters, 150
writeData method, 14
writeDouble method, 23
writeEmptyElement, 150
writeEndDocument, 150
writeEndElement, 150
writeExternal method, 53
writeFixedString method, 27
writeInt method, 23
writeObject method

of the Date class, 52
of ObjectOutputStream, 40, 45
as private, 53
of a serializable class, 52

Write-only property, 699
Writer class, 4
writeStartDocument, 150
writeStartElement, 150
writeUTF method, 24
Writing, text output, 12–13
WS-*. See Web services
WSDL (Web Services Description Language),

844, 871
for the Amazon E-Commerce Service,

877–879
file, 873–874

wsgen class, 872
wsimport utility, 874

X
x- prefix, indicating an experimental name, 641
X Window System, 635
X.500 distinguished names, 816
X.509 certificate format, 814–817
XDigit character class, 79
XHTML, 90, 139
XML

approaches for writing, 150–156
compared to HTML, 90
describing a grid bag layout, 115
format, expressing hierarchical structures,

88–89
header, 150
introducing, 88–90
layout, defining a font dialog, 118
output, 146, 147, 150–156
parsers, 93
protocol, advantage of, 844

Index1032

XML (continued)
reader, generating SAX events, 161
standard, 89
use of in a realistic setting, 115–129

XML documents
generating, 146–157
parsing, 93–104
reading, 93
structure of, 90–92
transforming into other formats, 157
validating, 105–112
writing with StAX, 150–157

XML files
describing a gridbag layout, 118–120
describing a program configuration, 89
format of, 89
parsing with a schema, 114
transforming into HTML, 157–158

XML Schema, 105, 112–114
XMLDecoder, 733, 752
XMLEncoder, 733, 736, 752
XMLInputFactory class, 145
XMLOutputFactory class, 156
XMLReader interface, 161, 166
XMLStreamReader class, 145–146
XMLStreamWriter, 150, 156–157
XMLWriteTest.java, 150–156
XOR rule, 562
XPath

expressions, 131–135
functions, 130
language, 129–135

XPath class, 135

XPath object, 130
XPathFactory class, 135
XPathTest.java, 131–135
xsd prefix, 113
xsd:choice construct, 114
xsd:schema element, 114
xsd:sequence construct, 114
xsl:output element, 159
XSLT (XSL Transformations), 146–147, 157–167
XSLT processor, 157, 158, 159
XSLT style sheet, 157, 159
xsl:value-of statement, 160
Xxx2D classes, 526
Xxx2D.Double class, 526
Xxx2D.Float class, 526

Z
ZIP archives, 32–39
ZIP file

opening, 33
reading numbers from, 9, 10
reading through, 32
writing, 33

ZIP input stream, 33
ZIP streams, 33
ZipEntry class, 38–39
ZipEntry constructor, 33
ZipEntry object, 33
ZipException, 33
ZipFile, 39
ZipInputStream, 4, 32, 38
ZipOutputStream, 4, 33, 38
ZipTest.java, 34–37

	Preface
	9 SECURITY
	Class Loaders
	The Class Loader Hierarchy
	Using Class Loaders as Namespaces
	Writing Your Own Class Loader

	Bytecode Verification
	Security Managers and Permissions
	Java Platform Security
	Security Policy Files
	Custom Permissions
	Implementation of a Permission Class

	User Authentication
	JAAS Login Modules

	Digital Signatures
	Message Digests
	Message Signing
	The X.509 Certificate Format
	Verifying a Signature
	The Authentication Problem
	Certificate Signing
	Certificate Requests

	Code Signing
	JAR File Signing
	Software Developer Certificates

	Encryption
	Symmetric Ciphers
	Key Generation
	Cipher Streams
	Public Key Ciphers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

