Basic Principles and Calculations in Chemical Engineering

Eighth Edition

BASIC PRINCIPLES AND CALCULATIONS IN CHEMICAL ENGINEERING

EIGHTH EDITION

David M. Himmelblau James B. Riggs Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales (800) 382-3419 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales international@pearson.com

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data

Himmelblau, David Mautner, 1923-2011

Basic principles and calculations in chemical engineering.—8th ed. / David M. Himmelblau, James B. Riggs.

p. cm.

Includes bibliographical references and index. ISBN 0-13-234660-5 (hardcover : alk. paper)

1. Chemical engineering—Tables. I. Riggs, James B. II. Title.

TP151.H5 2012

660′.2—dc22

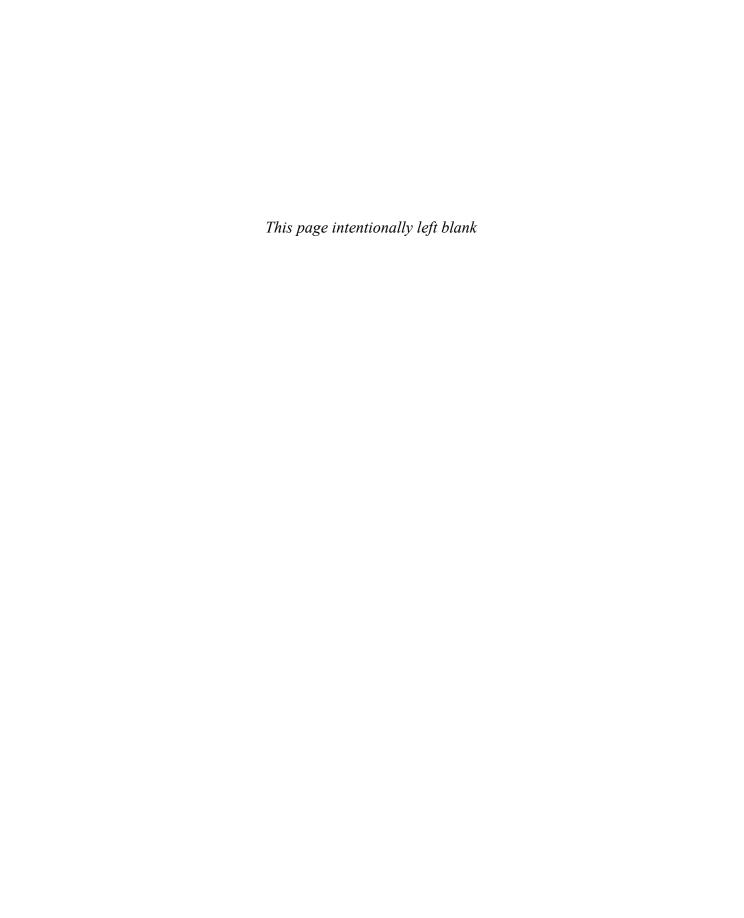
Copyright © 2012 Pearson Education, Inc.

2011045710

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you

ISBN-13: 978-0-13-234660-3 ISBN-10: 0-13-234660-5

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan. Second printing, February 2015


Publisher: Paul Boger Executive Editor: Bernard Goodwin Development Editor: Michelle Housley Managing Editor: John Fuller

may fax your request to (201) 236-3290.

Project Editor: Elizabeth Ryan Copy Editor: Barbara Wood Indexer: Infodex Indexing Services, Inc. Proofreader: Linda Begley Publishing Coordinator: Michelle Housley Multimedia Developer: Dan Scherf Cover Designer: Alan Clements

Compositor: LaserWords

This book is dedicated to the memory of David M. Himmelblau (1923–2011) and his contribution to the field of chemical engineering.

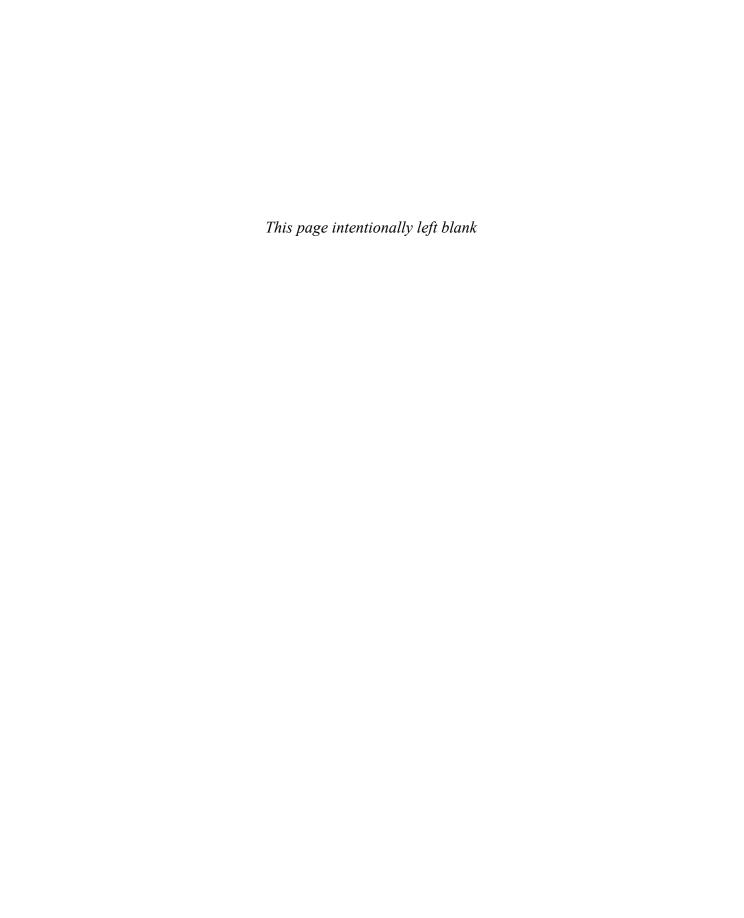
CONTENTS

F A		E /LED	GMENTS AUTHORS	xiii xv xix xx
PART I		INTR	RODUCTION	1
CHAPTE	R 1	WHA	T ARE CHEMICAL ENGINEERING AND BIOENGINEERING?	3
		1.1	Introduction	3
		1.2	A Brief History of Chemical Engineering	4
		1.3	Where Do Chemical and Bioengineers Work?	6
		1.4	Future Contributions of Chemical and Bioengineering	7
		1.5	Conclusion	10
CHAPTE	R 2	INTR	ODUCTORY CONCEPTS	11
		2.1	Systems of Units	12
		2.2	Conversion of Units	17
		2.3	Dimensional Consistency	25
		2.4	Significant Figures	29
		2.5	Validation of Results	36
		2.6	The Mole and Molecular Weight	37

vii

viii			Contents
	2.7	Choosing a Basis	44
	2.8	Density and Specific Gravity	49
	2.9	Concentration	55
	2.10	Temperature	59
	2.11	Pressure and Hydrostatic Head	65
	2.12	Flow Rate	78
PART II	MAT	TERIAL BALANCES	99
CHAPTER 3	MAT	ERIAL BALANCES	101
	3.1	Introduction to Material Balances	102
	3.2	A General Strategy for Solving Material Balance Problems	123
CHAPTER 4	MAT	ERIAL BALANCES WITHOUT REACTION	159
CHAPTER 5	MAT	ERIAL BALANCES INVOLVING REACTIONS	189
	5.1	Stoichiometry	190
	5.2	Terminology for Reaction Systems	198
	5.3	Species Mole Balances	210
	5.4	Element Material Balances	226
	5.5	Material Balances for Combustion Systems	233
CHAPTER 6	MAT	ERIAL BALANCES FOR MULTI-UNIT SYSTEMS	267
	6.1	Primary Concepts	268
	6.2	Sequential Multi-Unit Systems	271
	6.3	Recycle Systems	290
	6.4	Bypass and Purge	306
	6.5	The Industrial Application of Material Balances	314

Contents


PART III	GAS	SES, VAPORS, AND LIQUIDS	347
CHAPTER 7	IDE/	AL AND REAL GASES	349
	7.1	Ideal Gases	350
	7.2	Real Gases: Equations of State	366
	7.3	Real Gases: Compressibility Charts	377
	7.4	Real Gas Mixtures	384
CHAPTER 8	MUL	TIPHASE EQUILIBRIUM	411
	8.1	Introduction	411
	8.2	Phase Diagrams and the Phase Rule	413
	8.3	Single Component Two-Phase Systems (Vapor Pressure)	425
	8.4	Two-Component Gas/Single-Component Liquid Systems	436
	8.5	Two Component Gas/Two Component Liquid Systems	455
	8.6	Multicomponent Vapor-Liquid Equilibrium	466
PART IV	ENE	RGY	487
CHAPTER 9	ENE	RGY BALANCES	489
	9.1	Terminology Associated with Energy Balances	491
	9.2	Types of Energy to Be Included in Energy Balances	496
	9.3	Energy Balances without Reaction	530
CHAPTER 10	ENE	RGY BALANCES: HOW TO ACCOUNT FOR CHEMICAL REACTION	597
	10.1	The Standard Heat (Enthalpy) of Formation	598
	10.2	The Heat (Enthalpy) of Reaction	603
	10.3	Integration of Heat of Formation and Sensible Heat	614
	10.4	The Heat (Enthalpy) of Combustion	635

X		Conte		

	Α		Oomonio
	CHAPTER 11	HUMIDITY (PSYCHROMETRIC) CHARTS AND THEIR USE	653
		11.1 Terminology	654
		11.2 The Humidity (Psychrometric) Chart	657
		11.3 Applications of the Humidity Chart	666
	PART V	SUPPLEMENTARY MATERIAL	681
ON THE CO	CHAPTER 12	ANALYSIS OF THE DEGREES OF FREEDOM IN STEADY-STATE PROCESSES	683
ON THE CO	CHAPTER 13	HEATS OF SOLUTION AND MIXING	708
ON THE CD	CHAPTER 14	THE MECHANICAL ENERGY BALANCE	728
ON THE CO	CHAPTER 15	LIQUIDS AND GASES IN EQUILIBRIUM WITH SOLIDS	756
ON THE CO	CHAPTER 16	SOLVING MATERIAL AND ENERGY BALANCES USING PROCESS SIMULATORS (FLOWSHEETING CODES)	768
ON THE CD	CHAPTER 17	UNSTEADY-STATE MATERIAL AND ENERGY BALANCES	800
	APPENDIXES		827
	Α	ANSWERS TO SUPPLEMENTAL QUESTIONS AND PROBLEMS	829
	В	ATOMIC WEIGHTS AND NUMBERS	844
	C	TABLE OF THE PITZER Z ⁰ AND Z ¹ FACTORS	845
	D	HEATS OF FORMATION AND COMBUSTION	850
	E	ANSWERS TO SELECTED PROBLEMS	854

Contents

ON THE CO	PHYSICAL PROPERTIES OF VARIOUS ORGANIC AND INORGANIC SUBSTANCES	861
ONTHE CD G	HEAT CAPACITY EQUATIONS	873
онтне съ	VAPOR PRESSURES	877
ON THE CD	HEATS OF SOLUTION AND DILUTION	878
ONTHE CD J	ENTHALPY-CONCENTRATION DATA	879
ON THE CO	THERMODYNAMIC CHARTS	886
ON THE CO	PHYSICAL PROPERTIES OF PETROLEUM FRACTIONS	893
ONTHE CD M	SOLUTION OF SETS OF EQUATIONS	902
ONTHE CD N	FITTING FUNCTIONS TO DATA	924
INI	DEX	929

PREFACE

This book is intended to serve as an introduction to the principles and techniques used in the field of chemical engineering as well as biological, petroleum, and environmental engineering. Although the range of subjects deemed to be in the province of chemical engineering has broadened over the last twenty years, the basic principles of this field of study remain the same. This book presents the foundation of specific skills and information that are required for the successful undergraduate and postgraduate study of chemical engineering as well as the professional practice of chemical engineering. Moreover, your remaining chemical engineering classes will rely heavily on the skills that you will develop in this course: your ability to solve abstract problems as well as the application of material and energy balances. One can view the study of the field of chemical engineering as a tree with material and energy balances being the trunk and the subjects of thermodynamics, fluid flow, heat transfer, mass transfer, reactor kinetics, process control, and process design being the branches off the trunk. From this perspective, it is easy to see the importance of mastering the material that follows.

The primary objective of this book is to teach you how to systematically formulate and solve material and energy balance problems. More important, you should learn to systematically formulate and solve all types of problems using the methods presented in this text. In addition, this text serves to introduce you to the breadth of processes that chemical engineers work with, from the types of processes found in the refining and chemical industries to those found in bioengineering, nanoengineering, and the microelectronics industries. While the analysis used in this book will be based largely on a macroscopic scale (i.e., representing a complex system as a uniform system), your later engineering courses will teach you how to formulate microscopic material and energy balances that can be used to more completely describe

xiv Preface

these systems. In fact, you will learn in these classes that to formulate a microscopic balance you only have to apply the balances presented in this textbook to a very small volume inside the process of interest.

This text is organized as follows:

- Part I Introduction: background information (Chapters 1–2)
- Part II Material Balances: how to formulate and solve material balances (Chapters 3–6)
- Part III Gases, Vapors, and Liquids: how to describe gases and liquids (Chapter 7–8)
- Part IV Energy: how to formulate and solve energy balances (Chapters 9–11)

Expecting to "absorb" the information and skills in this text by reading and listening to lectures is a bit naïve. It is well established that one learns by doing, that is, applying what you have been exposed to. In this regard, our text offers a number of resources to assist you in this endeavor. Probably the most important resources for your study of this material are the Self-Assessment Tests at the end of each section in the book. In particular, the Self-Assessment questions and problems are particularly valuable because by answering them and comparing your answers to the answers posted in Appendix A, you can determine what it is that you do not fully understand, which is quite an important piece of information. A number of valuable resources are provided to you on the CD that accompanies this book, which includes the physical property software, which provides timesaving access to physical properties for over 700 compounds and elements; Polymath for solving sets of equations, which comes with a 15-day free trial; and the Supplemental Problems Workbook with over 100 solved problems and process equipment descriptions. For more specific information on the resources available with this textbook and the accompanying CD, refer to the "Read Me" section that follows.

It is our sincere hope that this textbook and materials not only inspire you to continue to pursue your goal to become a chemical engineer, but also make your journey toward that goal easier.

Jim Riggs Austin, Texas

READ ME

Welcome to *Basic Principles and Calculations in Chemical Engineering*. Several tools exist in the book in addition to the basic text to aid you in learning its subject matter. We hope you will take full advantage of these resources.

Learning Aids

- 1. Numerous examples worked out in detail to illustrate the basic principles
- **2.** A consistent strategy for problem solving that can be applied to any problem
- **3.** Figures, sketches, and diagrams to provide a detailed description and reinforcement of what you read
- **4.** A list of the specific objectives to be reached at the beginning of each chapter
- **5.** Self-Assessment Tests at the end of each section, with answers so that you can evaluate your progress in learning
- **6.** A large number of problems at the end of each chapter with answers for about a third of them provided in Appendix E
- 7. Thought and discussion problems that involve more reflection and consideration than the problem sets cited in item 6
- 8. Appendixes containing data pertinent to the examples and problems
- 9. Supplementary references for each chapter
- 10. A glossary following each section

xvi Read Me

- 11. A CD that includes some valuable accessories:
 - a. Polymath—an equation-solving program that requires minimal experience to use. Polymath is provided with a 15-day free trial. Details on the use of Polymath are provided. A special web site gives significant discounts on educational versions of Polymath for various time periods: 4 months, 12 months, and unlimited use: www.polymathsoftware.com/himmelblau
 - b. Software that contains a physical properties database of over 700 compounds.
 - c. A Supplementary Problems Workbook with over 100 completely solved problems and another 100 problems with answers.
 - d. The workbook contains indexed descriptions of process equipment and animations that illustrate the functions of the equipment. You can instantly access these pages if you want to look something up by clicking on the page number.
 - e. Problem-solving suggestions including checklists to diagnose and overcome problem-solving difficulties that you experience.
 - f. Additional chapters and appendixes
- **12.** A set of steam tables (properties of water) in both SI and American Engineering units in the pocket in the back of the book

Scan through the book now to locate these features.

Good Learning Practices (Learning How to Learn)

You cannot put the same shoe on every foot.

Publilius Syrus

Those who study learning characteristics and educational psychologists say that almost all people learn by practicing and reflecting, and not by watching and listening to someone else telling them what they are supposed to learn. "Lecturing is not teaching and listening is not learning." You learn by doing.

Learning involves more than memorizing

Do not equate memorizing with learning. Recording, copying, and outlining notes or the text to memorize problem solutions will be of little help in really understanding how to solve material and energy balance problems. Practice will help you to be able to apply your knowledge to problems that you have not seen before.

Read Me xvii

Adopt good learning practices

You will find that skipping the text and jumping to equations or examples to solve problems may work sometimes but in the long run will lead to frustration. Such a strategy is called "formula-centered" and is a very poor way to approach a problem-solving subject. By adopting it, you will not be able to generalize, each problem will be a new challenge, and the interconnections among essentially similar problems will be missed.

Various appropriate learning styles (information processing) do exist; hence you should reflect on what you do to learn and adopt techniques best suited to you. Some students learn through thinking things out in solitary study. Others prefer to talk things through with peers or tutors. Some focus best on practical examples; others prefer abstract ideas. Sketches and graphs used in explanation usually appeal to most people. Do you get bored by going over the same ground? You might want to take a battery of tests to assess your learning style. Students often find such inventories interesting and helpful. Look in the CD that accompanies this book to read about learning styles.

Whatever your learning style, what follows are some suggestions to enhance learning that we feel are appropriate to pass on to you.

Suggestions to Enhance Learning

- 1. Each chapter in this book will require three or more hours to read, assimilate, and practice your skills in solving pertinent problems. Make allowance in your schedule so that you will have read the pertinent material before coming to class. Instead of sitting in class and not fully understanding what your professor is discussing, you will be able to raise your understanding to a much higher level. It is not always possible, but it is one of the most efficient ways to spend your study time.
- **2.** If you are enrolled in a class, work with one or more classmates, if permitted, to exchange ideas and discuss the material. But do not rely on someone to do your work for you.
- **3.** Learn every day. Keep up with the scheduled assignments—don't get behind, because one topic builds on a previous one.
- **4.** Seek answers to unanswered questions right away.
- **5.** Employ active reading; that is, every five or ten minutes stop for one or two minutes and summarize what you have learned. Look for connecting ideas. Write a summary on paper if it helps.

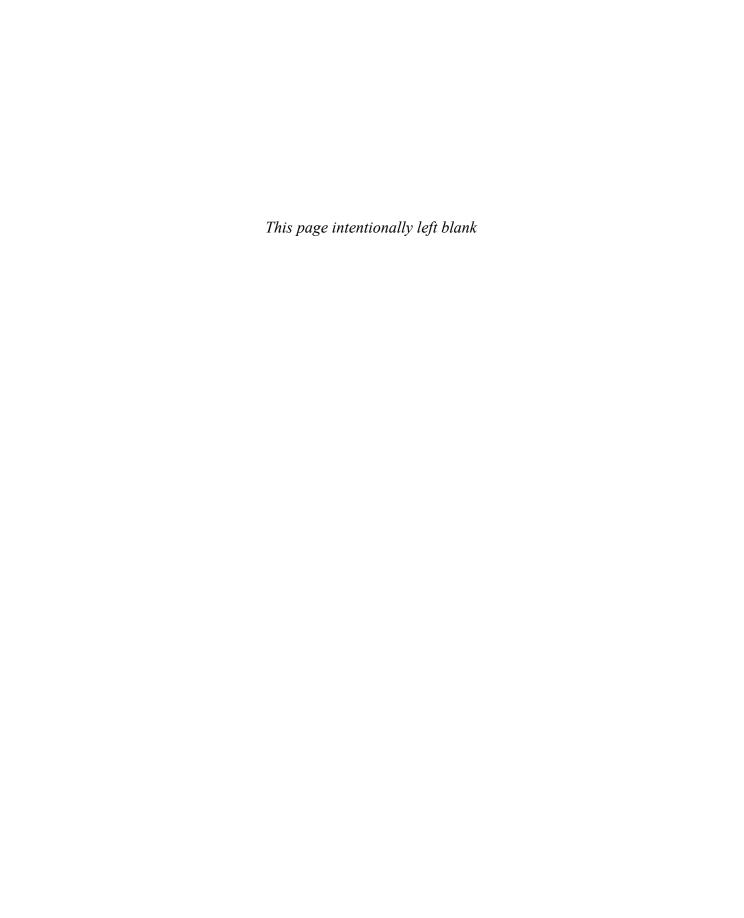
xviii Read Me

Suggestions for How to Use This Book Effectively

How can you make the best use of this book? Read the objectives before and after studying each section. Read the text, and when you get to an example, first cover up the solution and try to solve the stated problem. Some people, those who learn by reading concrete examples, might look at the examples first and then read the text. After reading a section, solve the self-assessment problems at the end of the section. The answers are in Appendix A. After completing a chapter, solve a few of the problems listed at the end of the chapter. R. P. Feynman, the Nobel laureate in physics, made the point: "You do not know anything until you have practiced." Whether you solve the problems using hand calculators or computer programs is up to you, but use a systematic approach to formulating the information leading to a proper solution. Use the supplement on the CD in the back of the book (print it out if you need to) as a source of examples of additional solved problems with which to practice solving problems.

This book functions as a savings account—what you put in, you get out, with interest.

ACKNOWLEDGMENTS


We are indebted to many former teachers, colleagues, and students who directly or indirectly helped in preparing this book, and in particular the present edition of it. We want to thank Professor C. L. Yaws for his kindness in making available the physical properties software database that is the basis of the physical properties package in the CD that accompanies our book, and also thanks to Professors M. B. Cutlip and M. Shacham who graciously made the Polymath software available. Far too many instructors using the text have contributed their corrections and suggestions to list them by name. Any further comments and suggestions for improvement of this textbook would be appreciated.

Jim Riggs Jim.Riggs@ttu.edu

ABOUT THE AUTHORS

David M. Himmelblau was the Paul D. and Betty Robertson Meek and American Petrofina Foundation Centennial Professor Emeritus in Chemical Engineering at the University of Texas, where he taught for 42 years. He received his B.S. from MIT in 1947 and his Ph.D. from the University of Washington in 1957. He was the author of 11 books and over 200 articles on the topics of process analysis, fault detection, and optimization, and served as President of the CACHE Corporation (Computer Aids for Chemical Engineering Education) as well a Director of the AIChE. His book, *Basic Principles and Calculations in Chemical Engineering*, has been recognized by the American Institute of Chemical Engineers as one of the most important books in chemical engineering.

James B. Riggs earned his B.S. in 1969 and his M.S. in 1972, both from the University of Texas at Austin. In 1977, he earned his Ph.D. from the University of California at Berkeley. Dr. Riggs was a university professor for 30 years, the first five years being spent at West Virginia University and the remainder at Texas Tech University. He was appointed Professor Emeritus of Chemical Engineering at Texas Tech University after he retired in 2008. In addition, he has a total of over five years of industrial experience in a variety of capacities. His research interests centered on advanced process control and online process optimization. During his academic career he served as an industrial consultant and founded the Texas Tech Process Control and Optimization Consortium, which he directed for 15 years. Dr. Riggs is the author of two other popular undergraduate chemical engineering textbooks: *An Introduction to Numerical Methods for Chemical Engineers*, Second Edition, and *Chemical and Bio-Process Control*, Third Edition. He currently resides near Austin in the Texas Hill Country.

CHAPTER 1

What Are Chemical Engineering and Bioengineering?

1.1	Introduction	3
1.2	A Brief History of Chemical Engineering	4
1.3	Where Do Chemical and Bioengineers Work?	6
1.4	Future Contributions of Chemical and Bioengineering	7
15	Conclusion	10

Your objectives in studying this chapter are to be able to

- 1. Appreciate the history of chemical engineering and bioengineering
- 2. Understand the types of industries that hire chemical and bioengineers
- **3.** Appreciate the diversity of the types of jobs in which chemical and bioengineers engage
- **4.** Understand some of the ways in which chemical and bioengineers can contribute in the future to the resolution of certain of society's problems

Looking Ahead

In this chapter we will present some features of the professions of chemical and bioengineering. First, we will present an overview of the history of these fields. Next, we will consider where graduates of these programs go to work. Finally, we will present types of projects in which chemical and bioengineers might participate now and in the future.

1.1 Introduction

Why did you choose to work toward becoming a chemical or bioengineer? Was it the starting salary? Did you have a role model who was a chemical or bioengineer, or did you live in a community in which engineers were prominent? Or were you advised that you would do well as a chemical or bioengineer because

you were adept at math and chemistry and/or biology? In fact, most prospective engineers choose this field without fully understanding the profession (i.e., what chemical and bioengineers actually do and what they are capable of doing). This brief chapter will attempt to shed some light on this issue.

Chemical and bioengineers today hold a unique position at the interface between molecular sciences and macroscopic (large-scale) engineering. They participate in a broad range of technologies in science and engineering projects, involving nanomaterials, semiconductors, and biotechnology. Note that we say "participate" because engineers most often work in multidisciplinary groups, each member contributing his or her own expertise.

1.2 A Brief History of Chemical Engineering

The chemical engineering profession evolved from the industrial applications of chemistry and separation science (the study of separating components from mixtures), primarily in the refining and chemical industry, which we will refer to here as the **chemical process industries (CPI)**. The first high-volume chemical process was implemented in 1823 in England for the production of soda ash, which was used for the production of glass and soap. During the same time, advances in organic chemistry led to the development of chemical processes for producing synthetic dyes from coal for textiles, starting in the 1850s. In the latter half of the 1800s a number of chemical processes were implemented industrially, primarily in Britain.

And in 1887 a series of lectures on chemical engineering which summarized industrial practice in the chemical industry was presented in Britain. These lectures stimulated interest in the United States and to some degree led to the formation of the first chemical engineering curriculum at MIT in 1888. Over the next 10 to 15 years a number of U.S. universities embraced the field of chemical engineering by offering fields of study in this area. In 1908, the American Institute of Chemical Engineers was formed and since then has served to promote and represent the interests of the chemical engineering community.

Mechanical engineers understood the mechanical aspects of process operations, including fluid flow and heat transfer, but they did not have a background in chemistry. On the other hand, chemists understood chemistry and its ramifications but lacked the process skills. In addition, neither mechanical engineers nor chemists had backgrounds in separation science, which is critically important to the CPI. In the United States, a few chemistry departments were training process engineers by offering degrees in industrial chemistry, and these served as models for other departments as

the demand for process engineers in the CPI began to increase. As industrial chemistry programs grew, they eventually formed separate degree-granting programs as the chemical engineering departments of today.

The acceptance of the "horseless carriage," which began commercial production in the 1890s, created a demand for gasoline, which ultimately fueled exploration for oil. In 1901, a Texas geologist and a mining engineer led a drilling operation (the drillers were later to be known as "wildcatters") that brought in the Spindletop Well just south of Beaumont, Texas. At the time, Spindletop produced more oil than all of the other oil wells in the United States. Moreover, a whole generation of wildcatters was born, resulting in a dramatic increase in the domestic production of crude oil, which created a need for larger-scale, more modern approaches to crude refining. As a result, a market developed for engineers who could assist in the design and operation of processing plants for the CPI. The success of oil exploration was to some degree driven by the demand for gasoline for the automobile industry, but ultimately the success of the oil exploration and refining industries led to the widespread availability of automobiles to the general population because of the resulting lower cost of gasoline.

These early industrial chemists/chemical engineers had few analytical tools available to them and largely depended upon their physical intuition to perform their jobs as process engineers. Slide rules were used to perform calculations, and by the 1930s and 1940s a number of nomographs were developed to assist them in the design and operation analysis of processes for the CPI. Nomographs are charts that provide a concise and convenient means to represent physical property data (e.g., boiling point temperatures or heat of vaporization) and can also be used to provide simplified solutions of complex equations (e.g., pressure drop for flow in a pipe). The computing resources that became available in the 1960s were the beginnings of the computer-based technology that is commonplace today. For example, since the 1970s computer-aided design (CAD) packages have allowed engineers to design complete processes by specifying only a minimum amount of information; all the tedious and repetitive calculations are done by the computer in an extremely short period of time, allowing the design engineer to focus on the task of developing the best possible process design.

During the period 1960 to 1980, the CPI also made the transition from an industry based on innovation, in which the profitability of a company depended to a large degree on developing new products and new processing approaches, to a more mature commodity industry, in which the financial success of a company depended on making products using established technology more efficiently, resulting in less expensive products.

Globalization of the CPI markets began in the mid-1980s and led to increased competition. At the same time, developments in computer hardware made it possible to apply process automation (advanced process control, or APC, and optimization) more easily and reliably than ever before. These automation projects provided improved product quality while increasing production rates and overall production efficiency with relatively little capital investment. Because of these economic advantages, APC became widely accepted by industry over the next 15 years and remains an important factor for most companies in the CPI.

Beginning in the mid-1990s, new areas came on the scene that took advantage of the fundamental skills of chemical engineers, including the microelectronics industry, the pharmaceutical industry, the biotechnology industry, and, more recently, nanotechnology. Clearly, the analytical skills and the process training made chemical engineers ideal contributors to the development of the production operations for these industries. In the 1970s, over 80% of graduating chemical engineers took jobs with the CPI industry and government. By 2000, that number had dropped to 50% because of increases in the number taking jobs with biotechnology companies, pharmaceutical/health care companies, and microelectronics and materials companies. The next section addresses the current distribution of jobs for chemical engineers.

1.3 Where Do Chemical and Bioengineers Work?

Table 1.1, which lists the percentages of all chemical engineers by employment sector between 1996 and 2007, shows that the percentage of chemical engineers in these developing industries (pharmaceutical, biomedical, and microelectronics industries) increased from 7.1% in 1997 to 19.9% in 2005.

Chemical engineers are first and foremost process engineers. That is, chemical engineers are responsible for the design and operation of processes that produce a wide range of products from gasoline to plastics to composite materials to synthetic fabrics to computer chips to corn chips. In addition, chemical engineers work for environmental companies, government agencies including the military, law firms, and banking companies.

The trend of chemical engineering graduates taking employment in industries that can be designated as bioengineering is a new feature of the twenty-first century. Not only have separate bioengineering or biomedical departments been established, but some long-standing chemical engineering departments have modified their names to "chemical and bioengineering" to reflect the research and fresh interests of students and faculty.

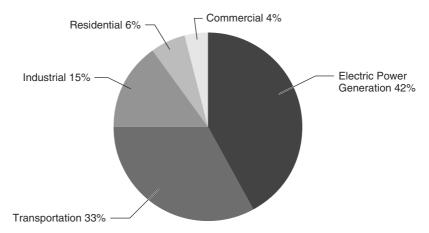
8 8 1 5	,	•		,	,	
	1996	2000	2002	2005	2007	
Chemical, industrial gases, rubber, soaps, fibers, glass, metals, paper	33.3	32.5	25.2	28.1	25.5	
Food, ag products, ag chemical	4.5	5.1	5.6	5.7	5.0	
Energy, petroleum, utilities	14.1	1.9	5.1	4.5	3.7	
Electronics, materials, computers	1.4	1.9	5.1	4.5	3.7	
Equipment design and construction	13.8	12.6	10.6	12.6	14.3	
Environmental, health, and safety	6.4	4.7	4.4	4.2	3.4	
Aerospace, automobile	1.1	0.9	1.8	2.0	2.1	
Research and development	3.9	3.8	4.4	4.2	3.4	
Government	3.6	3.6	3.5	3.7	4.4	
Biotechnology	1.5	2.2	2.4	4.4	3.7	
Pharmaceutical, health care	4.2	6.5	6.1	8.4	7.6	
Professional (including education)	4.7	4.5	8.6	7.0	8.4	
Other	7.4	8.6	9.6	-	1.5	

Table 1.1 Chemical Engineering Employment by Sector (from AIChE Surveys)

A bioengineer uses engineering expertise to analyze and solve problems in chemistry, biology, and medicine. The bioengineer works with other engineers as well as physicians, nurses, therapists, and technicians. Biomedical engineers may be called upon in a wide range of capacities to bring together knowledge from many technical sources to develop new procedures, or to conduct research needed to solve problems in areas such as drug delivery, body imaging, biochemical processing, innovative fermentation, bioinstrumentation, biomaterials, biomechanics, cellular tissue and genetics, system physiology, and so on. They work in industry, hospitals, universities, and government regulatory agencies. It is difficult to find valid surveys of specific companies or topics to classify bioengineering graduates' ultimate locations, but roughly speaking, one-third of graduates go to medical school, one-third continue on to graduate school, and one-third go to work in industry with a bachelor's degree.

1.4 Future Contributions of Chemical and Bioengineering

The solution of many of the pressing problems of society for the future (e.g., global warming, clean energy, manned missions to Mars) will depend significantly on chemical and bioengineers. In order to more fully explain


the role of chemical and bioengineers and to illustrate the role of chemical and bioengineers in solving society's technical problems, we will now consider some of the issues associated with carbon dioxide capture and sequestration, which is directly related to global warming.

Because fossil fuels are less expensive and readily available, we would like to reduce the impact of burning fossil fuels for energy, but without significantly increasing the costs. Therefore, it is imperative that we develop low-cost ${\rm CO}_2$ capture and sequestration technologies that will allow us to do that.

An examination of Figure 1.1 shows the sources of CO_2 emissions in the United States. What category would you attack first? Electric power generation is the number-one source. Transportation sources are widely distributed. No doubt power generation would be the most fruitful.

Carbon capture and storage (CCS) is viewed as having promise for a few decades as an interim measure for reducing atmospheric carbon emissions relatively quickly and sharply while allowing conventional coal-fired power plants to last their full life cycles. But the energy costs, the disposal challenges, and the fact that adding CCS to an existing plant actually boosts the overall consumption of fossil fuels (because of the increased consumption of energy to collect and sequester CO₂, more power plants have to be built so that the final production of net energy is the same) all suggest that CCS is not an ultimate solution.

One interim measure under serious consideration for CCS that might allow existing conventional coal-fired power plants to keep producing until they can be phased out at the end of their full lives involves various known technologies. An existing plant could be retrofitted with an amine scrubber

Figure 1.1 Major sources of carbon dioxide emissions in the United States excluding agriculture

to capture 80% to 95% of CO_2 from combustion gases; the CO_2 would then be condensed into a liquid that would be transported and stored somewhere indefinitely where it could not leak into the atmosphere. If several hundreds or thousands of CCS systems were deployed globally this century, each capturing 1 to 5 metric tons of CO_2 per year collectively, they could contribute between 15% and 55% of the worldwide cumulative mitigation effort.

However, the engineering challenges are significant. First, CCS is an energy-intensive process, so power plants require significantly more fuel to generate each kilowatt-hour of electricity produced for consumption. Depending on the type of plant, additional fuel consumption ranges from 11% to 40% more—meaning not only in dollars, but also in additional fossil fuel that would have to be removed from the ground to provide the power for the capture and sequestration, as well as additional $\rm CO_2$ needing sequestration by doing so. Current carbon-separation technology can increase the price tag of producing electricity by as much as 70%. Put another way, it costs about \$40 to \$55 per ton of carbon dioxide. The annual U.S. output of carbon dioxide is nearly 2 billion tons, which indicates the economic scale of the problem. The U.S. Department of Energy is working on ways to reduce the expenses of separation and capture.

By far, the most cost-effective option is partnering CCS not with older plants, but with advanced coal technologies such as integrated-gasification combined-cycle (IGCC) or oxygenated-fuel (oxyfuel) technology. There is also a clear need to maximize overall energy efficiency if CCS itself is not merely going to have the effect of nearly doubling both demand for fossil fuels and the resultant CO₂ emitted.

Once the CO_2 has been captured as a fairly pure stream, the question is what to do with it that is economical. In view of the large quantity of CO_2 that must be disposed of, disposal, to be considered a practical strategy, has to be permanent.

Any release of gas back into the atmosphere not only would negate the environmental benefits, but it could also be deadly. In large, concentrated quantities, carbon dioxide can cause asphyxiation. Researchers are fairly confident that underground storage will be safe and effective.

This technology, known as carbon sequestration, is used by energy firms as an oil-recovery tool. But in recent years, the Department of Energy has broadened its research into sequestration as a way to reduce emissions. And the energy industry has taken early steps toward using sequestration to capture emissions from power plants.

Three sequestration technologies are actively being developed: storage in saline aquifers in sandstone formations [refer to S. M. Benson and T. Surles, "Carbon Dioxide Capture and Storage," *Proceed. IEEE*, **94**, 1795 (2006)], where the CO_2 is expected to mineralize into carbonates over time;

injection into deep, uneconomic coal seams; and injection into depleted or low-producing oil and natural-gas reservoirs.

Preliminary tests show that contrary to expectations, only 20% maximum of CO_2 precipitates form carbonate minerals, but the majority of the CO_2 dissolves in water. Trapping CO_2 in minerals would be more secure, but CO_2 dissolved in brine is an alternate disposal outcome.

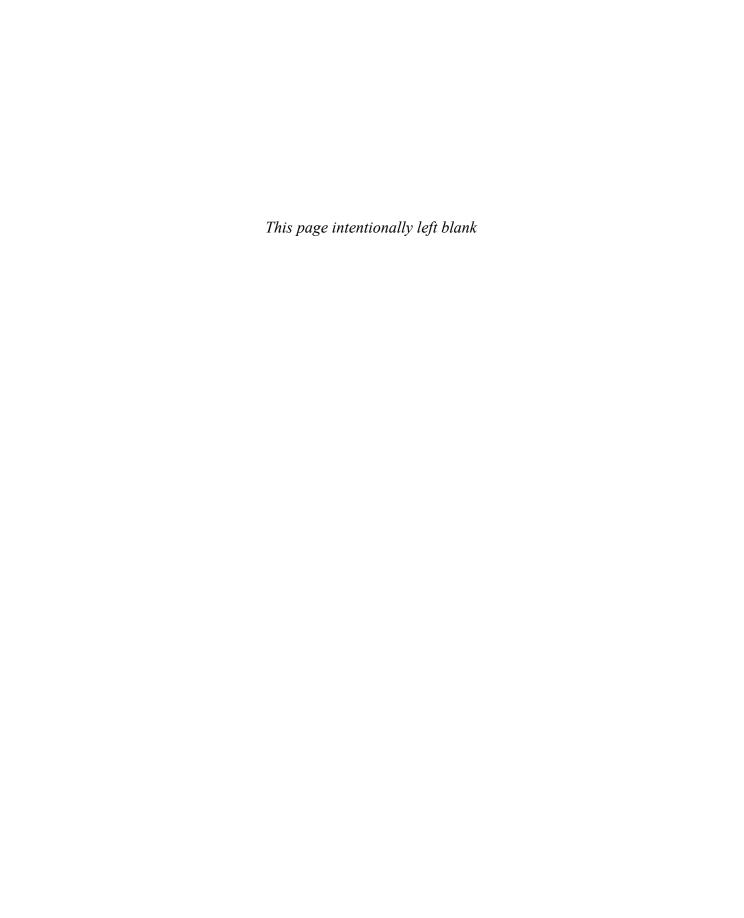
Other suggestions for the reduction of CO_2 emissions include permanent reduction in demand, chemical reaction, various solvents, use of pure O_2 as the oxidant, and so on. See J. Ciferno et al., *Chemical Engineering Progress*, 33–41 (April, 2009), and F. Princiotta, "Mitigating Global Climate Change through Power-Generation Technology," *Chemical Engineering Progress*, 24–32 (November, 2007), who have a large list of possible avenues of approach. The bottom line is that a solution for CO_2 emissions reduction is not just a matter of solving technical problems but a matter of cost and environmental acceptance. Based on the nature of these challenges, it is easy to see that chemical and bioengineers will be intimately involved in these efforts to find effective solutions.

1.5 Conclusion

The chemical engineering profession evolved from society's need for products and energy. Today and into the future, chemical and bioengineers will continue to meet society's needs using their process knowledge, their knowledge of fundamental science, and their problem-solving skills.

Looking Back

In this chapter we reviewed the history of chemical engineering and presented information on the current and projected future status of the profession.


Glossary

Chemical process industries (CPI) The chemical and refining industries.

Computer-aided design (CAD) packages Software programs that are used to design and/or analyze systems including chemical processes.

Web Site

www.pafko.com/history/h_whatis.html

INDEX

In this index the page numbers in *italic* refer to pages in Chapters 12 through 17, and Appendixes F through N, which are located on the CD that accompanies this book. Pages in the problem Workbook are indexed separately, and that index will be found in the Workbook itself as well as proceeding this index..

A	Answers to questions and problems,
Absolute pressure (psia), 68, 71–72, 468	829–843, 854–859
Absolute temperature, 60	Antoine equation, 425–427
Absorbers, 412	API scale, 52
Accumulation, material balance, 103	Armour's laws of ignorance, 130
Acentric factors, 375, 845–849	Atmospheric pressure, 70
Adiabatic cooling line, 659–665	Atomic weight, 38–42
Adiabatic reaction, 622–626	Atomic weights and numbers,
Adiabatic systems, energy balances,	table of, 844
492–493	Average molecular weight,
Adsorbate, 757	40–41
Adsorbent, 757	Azeotropes, 459
Adsorption, gases or liquids on solids	
definition, 757	В
practice problems, 766–767	Bank statement analogy for material
Adsorption isotherms	balance, 102–103
combining with material balance,	Barite fusion, 227–230
762–763	Barometric pressure, 68
curves for, 757–759	Bases, changing, 47–48
fitting to experimental data, 760	Basic dimensions. See Fundamental
Freundlich, 758–761	dimensions.
Langmuir, 759–761	Basic units. See Fundamental units.
AE system of units, 13, 15	Basis
Air, average molecular weight,	changing bases, 47–48
40–41	choosing, 44–48
Airplane crash, 12	definition, 44
Ali Baba and the 39 camels, 46–47	practice problems, 90–91

Batch processes	Closed systems, 108, 492
definition, 111	CO ₂ emissions, 8–10
distillation, material balances for	Coal
unsteady-state processes, 810–812	combustion, 240–245
work performed by, 732-733	heating value, 638–639
Benedict-Webb-Rubin (BWR) equation,	COD (chemical oxygen demand), 245
368	Coefficient of performance (COP),
Bernoulli equation, 742	737, 748
Bioengineering, 4–10	Combustion, material balance
Bioengineers, 7	BOD (biochemical oxygen demand),
Biomass, heating, 561–563	245
Bioreactor analysis, 221–224	cellular product, 244
Block diagrams, 269	coal, 240–245
BOD (biochemical oxygen demand), 245	COD (chemical oxygen demand), 245
Boiling, 415	complete combustion, 234
Boundaries, 108, 492	excess air (oxygen), 234–236
Bubble point	extracellular product, 244
calculating, 462–465	flue gas, 234
definition, 415	fuel cells, 237–239
Burning. See Combustion.	generating electricity from methane,
BWR (Benedict-Webb-Rubin) equation,	237–239
368	ideal gases, 360–364
	nitrogen source, 243
C	overview, 233
CAD (computer-aided design), 5	oxygen demand, 245
Calcination process, modeling, 816–817	partial combustion, 234
Carbon sequestration, 9–10	practice problems, 261–266
Careers in chemical/bioengineering,	stack gas, 234
4–10	substrates, 243
CCS (carbon capture and storage), 8–10	theoretical air (oxygen), 234
Cells, concentrating with centrifuges,	ThOD (theoretical oxygen demand),
117–118	245
Cellular product, 244	TOD (total oxygen demand), 245
Celsius (°C) scale, 60	wet basis, 234
Centrifuges, concentrating cells, 117–118	Combustion gases, enthalpies of, 871–872
Checking for errors. See Validating	Combustion temperature. See Adiabatic
results.	reaction.
Chemical engineering, 4–10	Complete combustion, 234
Chemical process industries (CPI), 4–6	Component balance, 145
Chemisorption, 757	Compounds, definition, 40
Chen's equation, 522	Compressibility, real gases
Chinook wind, 453	compressibility charts, 377–383,
Citric acid production, 626–629	406–408
Closed processes, 108	critical state, 372–376

Compressibility charts, 377–383,	COP (coefficient of performance),
406–408	737, 748
Compressibility factor, 373, 378–383	Corrected, 389
Computer-aided design (CAD), 5	Corresponding states, 373
Concentration	Cox chart, 432–435
definition, 55	CPI (chemical process industries), 4–6
examples of, 56	Critical state, 372–376
mass concentration, 56	B
molar concentration, 56	D
practice problems, 91–94	Dalton's law, 357–358
Condensation	Decimal points. See Significant figures.
at constant temperature, 417–418	Degree of completion, 203
definition, 415	Degree-of-freedom analysis
two component gas/single-	definition, 135
component liquid systems, 441–449	example, 135–138
Conservation of energy, energy	multi-unit systems, 695–698
balances, 499–500, 530–532	processes using element balances,
Consumption, material balance, 103–104	691–692
Continuous distillation column,	processes using species balances,
165–167	693
Continuous filtration, recycle systems,	Degree-of-freedom analysis, steady-
294–297	state processes
Continuous processes, 111	components (species), 685
Conversion. See also Systems of units;	equations, 685–687
specific conversions.	example, 687–690
in biological materials, 20–21	number of degrees, 684
frequent flier miles to U.S. miles, 23	overview, 684–687
in heat capacity equations, 520	practice problems, 700–707
moles/mass, 38–39	process specification, 690–691
nanotechnology, 20	stream variables, 685
overview, 17	variables, 684
pound mass vs. pound force, 21–23	Degrees of superheat, 416
practice problems, 83–85	Density
reaction systems, 203	calculating, 51–52
temperature, 62–64	definition, 49
weight vs. mass, 22–23	overview, 49–54
Conversion factors	practice problems, 91
definition, 17	Dependent equations, 134
example, 20	Derived dimensions, 13
pressure, 66	Derived units, 13
tables of, 18–19	Dew point, calculating
Cooling, humidity charts for, 668–669	from relative humidity, 656
Cooling towers, humidity charts for,	two component gas/single-
669–671	component liquid systems, 437–440

Dew point, calculating (Continued)	practice problems, 261
two component gas/two-component	Endothermic reactions, 598
liquid systems, 462–465	Energy, definition, 497
Dew point, definition, 416	Energy balances. See also Mechanical
Difference equations, 104	energy balance.
Differential equations, 105	adiabatic systems, 492–493
Dilution, heats of, 878	boundaries, 492
Dimensional consistency	closed systems, 492
dimensionless groups, 26	combined with material balances,
of equations, 25–27	552–554
nondimensional groups, 26	conservation of energy, 499–500,
overview, 25	530–531
practice problems, 85–88	equilibrium state, 492
van der Waals' equation, 25	flowsheeting codes. See Process
Dimensionless groups, 26	simulation.
Dimensions, 13	isobaric systems, 492–493
Dissolution, heats of, 709–715	isochoric systems, 492–493
Distillation, definition, 412	isothermal systems, 492–493
Distribution coefficient. See K-value.	mixing, effects of, 715-722
DNA	open systems, 492
efficiency of recovery, 115-116	path variables, 493–494
micro-dissection, 31–34	phase, 492
Dry-bulb temperature, 654	practice problems, 569–572
Drying, 174–176	state of a system, 492–493
_	state variables, 493
E	steady-state, 492
Efficiency	surroundings, 492
COP (coefficient of performance), 737	system, 492
definition, 735–736	transient state, 492
energy conservation, 737	Energy balances, energy caused by
general, 737	reactions
heat engine, 737	adiabatic reaction, 622–626
hydroelectric plants, 736	endothermic reactions, 598
mechanical, 737	exothermic reactions, 598
plants, 738	heat of combustion, 635–642, 651–652
processes, 737	heat reaction, 603–614, 645–650
refrigeration cycle, 737	reference state, 598
Egg trick, 159, 181	sensible heat, 614–635, 650–651
Electrical work, 502	standard heat of combustion, 635
Electricity, generating from methane,	standard heat of formation, 598-603,
237–239	614–636, 643–644, 650–651
Element material balances	standard state, 598
degree-of-freedom analysis, 691–692	Energy balances, enthalpy (<i>H</i>)
overview, 226–232	absolute value, 515

calculating change in, 515	absolute value, 515
overview, 514–518	calculating change in, 515
phase transitions, 516–517, 522–525	of combustion. See Heats of,
single phase, 514	combustion.
tables and charts of, 525–529	of formation. See Standard heat of
Energy balances, properties	formation.
computer databases of, 529-530	overview, 514–518
definition, 492	phase transitions, 516–517, 522–525
extensive, 492	single phase, 514
intensive, 492	tables and charts of, 525-529
Energy balances, types of energy	Enthalpy-concentration diagrams,
heat (Q), 497–501	718–720, 879–884
heat capacity, 511–513, 518–522	Equation solutions
heat of condensation, 517	independent linear equations, 889–900
heat of fusion, 517	independent nonlinear equations,
heat of solidification, 517	900–904
heat of sublimation, 517	Equation-based process simulation,
heat of vaporization, 517	772–777
internal energy (U), 511–513	Equations. See also specific equations.
kinetic energy (KE), 507–508	degree-of-freedom analysis, steady-
latent heat changes, 516	state processes, 685–687
phase transitions, 516	dimensional consistency, 25–27
potential energy (PE), 508–511	element balance, 894–895
practice problems, 572–580	homogenous, 897
sensible heat changes, 516	independent components in the Gibbs
work (W), 501–507	phase rule, 899–900
Energy balances without reactions	nonhomogenous, 898–899
conservation of energy, 530–532	reaction, 895
general energy balance for open	Equations, independent
systems, 542–546	element balance, 894–895
practice problems, 580–595	linear, 891–894
steady-state, closed systems, 541–542	nonlinear, 900–904
steady-state, open systems, 546–557	reaction, 895
unsteady-state, closed systems,	Equations, linear
533–541	definition, 889–890
unsteady-state, open systems, 557–566	independent, identifying, 891–894
Energy conservation. <i>See</i> Conservation	vs. nonlinear, 139
of energy.	set of independent, 890–891, 896–897
Enthalpy (H)	Equations, nonlinear
of combustion gases, 871–872	independent, 900–904
of hydrocarbon vapor, 869	vs. linear, 139
of nitrogen, 870	Newton's method, 900–904
of sulfur compound vapors, 870	Equations of state, 366–372, 403–406
Enthalpy (H) , energy balances	Equilibrium, humidity charts, 659

Equilibrium pressure, 415 in equilibrium with solids. See Equilibrium ratio *K. See K*-value. Adsorption, gases or liquids on Equilibrium state, energy balances, 492 solids. Error checking. See Validating results. multiphase equilibrium, 413 Evaporation, 416 noncondensable, 413 Evaporation of a liquid, work performed partial pressure, 357 during, 730-731 separating with a membrane, Exactly specified, 135 162 - 166Excess air (oxygen), 234–236 specific gravity, 357 Excess reactants, 201–202 Gasoline, material balance for blending, Exothermic reactions, 598 118–119 Extent of reaction, 198–201 Gauge pressure (psig), 68 Extracellular product, 244 General energy balance Extraction processes, definition, 412 for multi-reaction processes, 617–622 F for multi-unit processes, 629–634 Fahrenheit (°F) scale, 60 for open systems, 542–546 General material balances, 104 Flow rate, 78 Flow systems. See Open systems. Generalized compressibility. See Flow work, 502–503 Compressibility charts. Flowsheeting codes. See Process Generalized equation of state, simulation. 373-375 Flowsheets. See Process simulators. Generation, material balance, 103–104 Flue gas, 234 Gibbs' phase rule, 421, 899–900 Fluid warmer, 550–551 Giragossian, Garabed, 531–532 Force, definition, 21 Gordon's law, 124 Freezing, 416 Gram mole, 37 Frequent flier miles, converting to U.S. Green chemistry, 605–606 Gross product, recycle systems, 291 miles, 23 Fresh feed, recycle systems, 291 Group contribution method, 376 Freundlich isotherms, 758–761 Н Friction factors, 742 Fuel cells, 237–239 H (enthalpy). *See* Enthalpy (H). Functions, fitting to data, 905–908. See Heads of fluids, 746 also Variables. Heat (Q), in energy balances, 497–501 Fundamental dimensions, 13 Heat capacity, 511–513, 518–522 Fundamental units, 13 Heat capacity equations, 873–876 Fusion. See Melting. Heat engine efficiency, 737 Heat reaction, 603–614, 645–650 G Heat transfer, 497–498 Gas chromatographic column, Heating value, 637–638 separating compounds, 171–174 Heats of Gases. See also Ideal gases; Real gases. combustion, 635–642, 651–652 density, 356-357 condensation, 517

dilution, 8/8	Hydrocarbon vapor, enthalpies of,
dissolution, 709–715	869
formation. See Standard heat of	Hydrocracking, 230–232
formation.	Hydroelectric plants, efficiency,
fusion, 517	736
mixing, 709–715	Hydrostatic head, 66-68, 95-97
practice problems, 724–727	
solidification, 517	1
solution, 709–715, 878	Ideal critical specific volume, 379
solution at infinite dilution, 710	Ideal gas constant, 351
sublimation, 517	Ideal gas law, 351–357
vaporization, 517	Ideal gas mixtures, 357–360
Hemodialysis, 176–178	Ideal gases. See also Gases; Real gases.
Henry's law, 457	enthalpies, 514
HHV (higher (gross) heating value),	heat capacities, 519
637–639	internal energy, 514
Holborn equation, 368	material balance, 360–364
Home heating, humidity charts for, 667	practice problems, 391–403
Homogenous equations, 897	S.C. (standard conditions), 352–354
Howe's law, 124	volume, calculating, 353–356
Humid heat, 673	volumetric flow rate, 356
Humid volume, 660	Ideal reduced volume, 379
Humidification, 659–665, 668–669	Ideal reversible processes, 729–735
Humidity, 654	Ideal solution relations, 455–457
Humidity charts	Ideal solutions, 709
adiabatic cooling line, 659–665	Implicit equations, 146
definition, 657	Incremental (differential) heat of
dew point, calculating, 656	solution, 710
dry-bulb temperature, 654	Independent equations, 133–135
equilibrium, 659	Independent linear equations,
humid heat, 673	889–900
humid volume, 660	Independent nonlinear equations,
humidification, 659-665	900–904
humidity, 654	Industrial applications for material
practice problems, 674–677	balance, 314–316
properties of moist air, 663–665	Initial condition, material balance,
relative humidity, 654, 656	103
wet-bulb line, 658–659	Inorganic substances, physical
wet-bulb temperature, 654–655	properties of, 861-872
Humidity charts, uses for	Inputs, material balance, 103
cooling and humidification, 668-669	Integral heat of solution, 710
cooling towers, 669–671	Intensive properties, 421
home heating, 667	Internal connections, 274
practice problems, 677–680	Internal energy (U) , 511–513

Invariant systems, 423 Irreversible processes, 729 Isobaric systems, energy balances, 492–493 Isochoric systems, energy balances, 492–493 Isothermal systems, energy balances, 492–493	calculating, 52–54 converting to/from moles, 38–39 vs. weight, 22–23 Mass concentration, 56 Mass flow rate, 78 Mass fraction, 41–42, 56 Mass of reactants, calculating, 194 Mass per unit volume, 56 Material balance accumulation, 103
Jobs in chemical/bioengineering, 4–10	bank statement analogy, 102–103 combined with energy balances, 552–554
K	consumption, 103-104
Kammerling-Onnes equation, 368	definition, 102
Kay's method, 384	flowsheeting codes. See Process
KE (kinetic energy), 507–508	simulation.
Kelvin (K) scale, 60	general, 104
Kg mole, 37–38	generation, 103–104
Kidneys, dialysis, 176–178	industrial applications, 314–316
Knowns, 126–132	initial condition, 103
Korean Air Lines freighter crash, 12	inputs, 103
K-value (vapor-liquid equilibrium ratio), 460–462	for multiple components, 112–119 outputs, 103
	practice problems, 147–154
L	process analysis, 314
Langmuir isotherms, 759–761	process optimization, 314
Latent heat changes, 516	process simulators, 314
Law of corresponding states. See	for single components, 105–107
Corresponding states.	Material balance for multi-unit systems.
Least squares application, 906	See also Recycle systems.
LHV (lower (net) heating value), 637–639	block diagrams, 269 bypass streams, 306–309, 343–345
Limiting reactants, 201–202	independent equations, 273
Linear equations. <i>See</i> Equations, linear.	internal connections, 274
Liquid water properties, 429	mixers, 270
Liquids in equilibrium with solids. See	number of material balances,
Adsorption, gases or liquids on	determining, 274–276
solids.	overall process, 274
	overall total material balance, 271
M	practice problems, 318–328
Manometer, 71–72	process flowsheets, 268–270
Mars Climate Orbiter, 17	purge streams, 306–307, 309–312,
Mass	343–345

with reaction, 282–284	BOD (biochemical oxygen demand),
separators, 270	245
sequential combination of units,	cellular product, 244
271–278	coal, 240–245
splitters, 270 subsystems, 269–270	COD (chemical oxygen demand), 245
•	
sugar recovery process, 284–287	complete combustion, 234
without reaction, 278–282	excess air (oxygen), 234–236
Material balance problems, solving	extracellular product, 244
Armour's laws of ignorance, 130	flue gas, 234
check answers, 141–142	fuel cells, 237–239
choose a basis, 130–131 degree-of-freedom analysis,	generating electricity from methane, 237–239
132–138	ideal gases, 363–364
identify known information,	nitrogen source, 243
126–129	overview, 233
identify unknown information,	
131–132	oxygen demand, 245
	partial combustion, 234
label the diagram, 126–129	practice problems, 261–266
linear equations vs. nonlinear, 139	stack gas, 234
novice vs. expert, 142–143	substrates, 243
obtaining missing data, 129–130	theoretical air (oxygen), 234
overview, 123–124	ThOD (theoretical oxygen demand),
practice problems, 154–158	245
problem statement, 124–125	TOD (total oxygen demand), 245
sketch the process, 126	wet basis, 234
solve equations, 140	Material balance without reaction
specify system boundaries, 126	continuous distillation column,
summary of steps, 142	165–167
write equations, 138–140	drying, 174–176
Material balance with reactions. See also	hemodialysis, 176–178
Reaction systems; Species mole	ideal gases, 363–364
balances.	kidneys, dialysis, 176–178
balancing a reaction equation for a	mixing sulfuric acid, 168–171
biological reaction, 193	practice problems, 181–188
$BaSO_4$ fusion, 227–230	separating gases with a membrane,
calculating the mass of reactants,	162–166
194	separation with gas chromatographic
element balances, 226–232	column, 171–174
hydrocracking, 230–232	streptomycin extraction, 160–162
for multiple reactions, 195–197	tie components, 175
steps involved, 191–193	Maximum extent of reaction, 201–202
Material balance with reactions,	Mechanical efficiency, 737
combustion	Mechanical energy, 749

Mechanical energy balance	single-component liquid systems;
Bernoulli equation, 742	Two component gas/two-
friction factors, 742	component liquid systems.
orifice coefficients, 742	boiling, 415
overview, 740–742	bubble point, 415
pumping water, 744–746	condensation, 415, 417–418
steady-state, examples, 742–746	degrees of superheat, 416
Mechanical work, 502, 504–505	dew point, 416
Melting, 416	equilibrium pressure, 415
Melting curve, 416	evaporation, 416
Methane, generating electricity from,	freezing, 416
237–239	gases, 413
Minimal set of equations, 217	intensive properties, 421
Mixers, 270	invariant systems, 423
Mixing	melting, 416
effects on energy balances,	melting curve, 416
715–722	multicomponent liquid-vapor
heats of, 709–715	equilibrium, 466–467, 486
Mixtures, gases, 384–386, 408–410	noncondensable gases, 413
Modular-based process simulation,	normal boiling point, 416
772, 777–781	normal melting point, 416
Molar concentration, 56	phase diagrams, 413–419
Molar flow rate, 78	phase rule, 419–424
Mole fraction	quality, 418
concentrations, 56	saturated liquid/vapor, 416
definition, 41–42	subcooled liquid, 416
Molecular weight	sublimation, 416
overview, 38–42	sublimation curve, 416
practice problems, 89–90	sublimation pressure, 416
Moles. See also Species mole balances.	supercritical region, 416
calculating, 52–54	superheated vapor, 416
converting to/from mass, 38–39	total system volume, 421
definition, 37	triple point, 414
gram mole, 37	two-phase regions, 418
kg mole, 37–38	vapor, 413
per unit volume, 56	vapor pressure, 415
pound mole, 37	vaporization, 416, 417–418
practice problems, 89–90	
ratio of, 203–204	N
Multicomponent liquid-vapor	Nanotechnology, 20
equilibrium, 466–467, 486	Negative accumulation, 146
Multiphase equilibrium. See also	Newton's method, 900–904
Single-component two-phase	Nitrogen
systems; Two component gas/	for cell growth, 56–57

enthalpies of, 870	Parts per billion (ppb), 56
source, 243	Parts per billion by volume (ppbv),
Noncondensable gases, 413	56
Nonflow systems. See Closed systems.	Parts per million (ppm), 56, 57–58
Nonhomogenous equations, 898–899	Parts per million by volume (ppmv), 56
Nonideal gases. <i>See</i> Real gases. Nonlinear equations. <i>See</i> Equations,	Path variables, energy balances, 493–494
nonlinear.	PE (potential energy), 508–511
Normal boiling point, 416	Peng-Robinson (PR) equation, 368
Normal melting point, 416	Perpetual motion machine, 531–532
Normalized. See Corrected.	Phase
	definition, 350, 421
0	energy balances, 492
Once-through conversion, recycle	Phase diagrams
systems, 297	overview, 413–419
Open processes, 108	practice problems, 470–472
Open systems	vapor-liquid equilibria, 457–459
definition, 108	Phase equilibrium, 421. See also
energy balances, 492	Multiphase equilibrium.
general energy balance, 542–546	Phase rule, 419–424, 470–472
Open systems, energy balances without	Phase transitions, 516–517, 522–525
reactions	Pitzer acentric factors. See Acentric
general energy balance, 542-546	factors.
steady-state, 546–557	Plants (factories), efficiency, 738
unsteady-state, 557-566	Plasma etching, 538–539
Organic substances, physical properties	Point. See State.
of, 861–872	Point function. See State variables.
Orifice coefficients, 742	Potential energy (PE), 508–511
Oscillating reactions, unsteady-state	Pound force, 21–23
process material balances,	Pound mass, 21–23
812–814	Pound mole, 37
Outputs, material balance, 103	Power, definition, 502
Overall conversion, recycle systems, 297	ppb (parts per billion), 56
Overall process, 274	ppbv (parts per billion by volume),
Overall (net) product, recycle systems,	56
291	ppm (parts per million), 56, 57–58
Overall total material balance, 271	ppmv (parts per million by volume),
Overspecified, 135	56
Oxygen demand, 245	PR (Peng-Robinson) equation, 368 Pressure
P	absolute (psia), 68
Paniker, P. K. N., 49	absolute vs. relative, 68, 71–72
Partial combustion, 234	atmospheric pressure, 70

Pressure (Continued)	semi-batch, 111
barometric, 68	steady-state, 108–110
conversion, 70–71	unsteady-state, 110–111
conversion factors, 66	visual diagrams of. See Process
definition, 65	flowsheets.
differences, calculating, 74–75	Properties
gauge pressure, 68	definition, 349
gauge (psig) scale, 68	intensive, 421
hydrostatic, 66–68, 95–97	liquid water, 429
practice problems, 95–97	saturated water, 427–428
standard atmosphere, 70	Properties, physical
static columns, 66	inorganic substances, 861–872
vacuum, 68, 72–73	organic substances, 861–872
Problem solving, novices vs. experts,	petroleum fractions, 887–888
142–143	tables of, 861–872
Process analysis, material balance, 314	Pseudo steady-state processes/systems
Process feed, recycle systems, 291	Pseudocritical constants, 378
Process flowsheets, 268–270	Pseudocritical ideal volume, 385
Process matrix, 777	Pseudocritical values, 384
Process optimization, material balance,	Pseudoreduced ideal volume, 385
314	Pseudoreduced variables, 385
Process simulation	psia (absolute pressure), 68, 71–72,
definition, 768	468
equation-based method, 772-777	psig (gauge pressure), 68
modular-based method, 772,	Psychrometric charts. See Humidity
777–781	charts.
overview, 768–773	Psychrometric line. See Wet-bulb line.
practice problems, 782–799	Pumping water
process matrix, 777	mechanical energy balance, 744-746
vendors of commercial simulators,	power calculation, 554–555
771	
Process simulators, material balance, 314	Q
Processes	Q (heat). See Heat.
batch, 111	Quality, 418
closed, 108	Quasi steady-state processes/systems,
continuous, 111	109
efficiency, 737	_
ideal reversible, 729–735	R
irreversible, 729	Rankine (°R) scale, 60
open, 108	Raoult's law, 455–457
pseudo steady-state, 109	Reactants, calculating mass of, 194
quasi steady-state, 109	Reaction equations, balancing for a
reversible, 729	biological reaction, 193

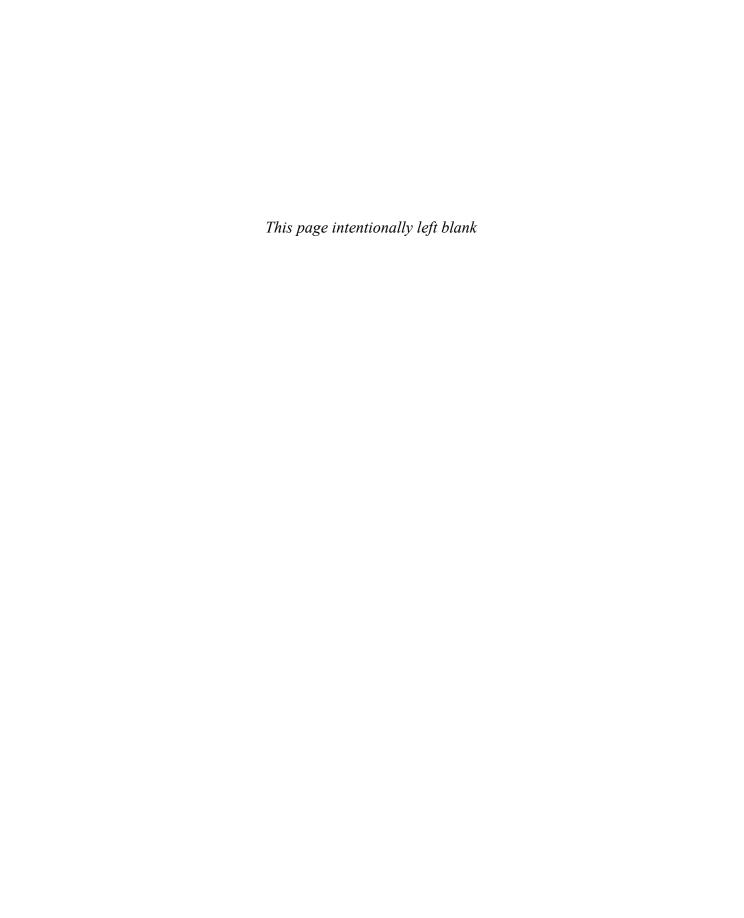
Reaction systems. See also Material Redlich-Kwong (RK) equation, balance with reactions. 370-372 calculations, 205-208 Real gases, volume calculations conversion, 203 compressibility factor, 380–382 degree of completion, 203 real gas mixtures, 385–386 excess reactants, 201-202 Redlich-Kwong (RK) equation, extent of reaction, 198-201 370-372 limiting reactants, 201–202 Real solutions, 709 maximum extent of reaction, 201–202 Recycle stream, 290–291 practice problems, 253–258 Recycle systems. See also Material ratio of the moles, 203–204 balance for multi-unit systems. selectivity, 203-204 continuous filtration, 294–297 yield, 204–205 fresh feed, 291 Real gases. See also Gases; Ideal gases. gross product, 291 acentric factor, 375 once-through conversion, 297 compressibility factor, 373, 378–383 overall conversion, 297 corresponding states, 373 overall (net) product, 291 critical state, 372–376 practice problems, 328–343 enthalpies, 514 process feed, 291 equations of state, 366–372, 403–406 with reaction, 297–303 generalized equation of state, 373–375 recycle stream, 290–291 group contribution method, 376 reflux, 293 ideal critical specific volume, 379 without reaction, 293–297 ideal reduced volume, 379 Redlich-Kwong (RK) equation, 368, 370-372 internal energy, 514 Reduced variables, 373 Kay's method, 384 mixtures, 384–386, 408–410 Reference state, 598 pseudocritical constants, 378 Reference substance, 433 pseudocritical ideal volume, 385 Reference substance plots, 432–435, pseudocritical values, 384 568 Reflux, 293 pseudoreduced ideal volume, 385 Refrigeration cycle efficiency, 737 pseudoreduced variables, 385 reduced variables, 373 Relative error, 81 supercritical fluids, 373 Relative humidity, 654, 656 UNIFAC method, 376 Relative saturation. See Relative UNIQUAC method, 376 humidity. virial equations, 369 Relative temperature, 60 Required air (oxygen). See Theoretical Real gases, compressibility compressibility charts, 377–383, 406-408 Reversible processes, 729 critical state, 372–376 Riedel's equation, 523 Real gases, pressure calculations RK (Redlich-Kwong) equation, 368, compressibility factor, 382–383 370-372 real gas mixtures, 385–386 Rounding to significant figures, 30

5	from reference substance plots,
Saturated liquid/vapor, 416	432–435
Saturated water properties, 427–428	from tables, 427–432
Saturation, two component gas/single-	Single-pass fraction conversion. See
component liquid systems,	Once-through conversion.
437–440	Smokestack emissions, 446–449
S.C. (standard conditions), 352–354	SO ₂ emissions, 639–640
Selectivity, 203–204	Soave-Redlich-Kwong (SRK) equation,
Semi-batch processes, 111	368
Sensible heat, 614–635, 650–651	Solutes, 709
Sensible heat changes, 516	Solution
Separation systems, examples of,	definition, 81
412–413	heats of, 709–715, 878
Separation with gas chromatographic	Solution at infinite dilution, heats of,
column, 171–174	710
Separators, 270	Solvents, 709
Sequential combination of units,	Species mole balances. See also Material
271–278	balance with reactions.
Set of independent equations, 890–891,	bioreactor analysis, 221–224
896–897	degree-of-freedom analysis, 693
Shaft work, 502–503	minimal set of equations, 217
SI system of units	multiple-reaction processes, 216–224
vs. AE system of units, 13	practice problems, 258–261
definition, 13	single-reaction processes, 210–214
prefixes, 14	for a specified fraction conversion,
summary of units, 14	214–216
Significant figures, 29–36, 88	Specific gravity
Simulation. See Process simulation.	calculating density, 51–52
Single phase enthalpy, 514	calculating mass and moles, 52–54
Single-component two-phase systems.	definition, 50–52
See also Multiphase equilibrium.	practice problems, 91
Antoine equation, 425–427	Specific volume, definition, 50
liquid water properties, 429	Splitters, 270
practice problems, 472–476	SRK (Soave-Redlich-Kwong) equation,
prediction via equations, 425–427	368
saturated water properties, 427–428	Stack gas, 234
steam tables, 427–432	Standard atmosphere, 70
superheated steam properties,	Standard conditions (S.C.), 352–354
428–429	Standard conditions of temperature, 60
thin film deposition, 426-427	Standard heat of combustion, 635,
vaporizing metals, 426–427	850–853
Single-component two-phase systems,	Standard heat of formation
vapor pressures	converting from standard heat of
reference substance, 433	combustion, 636

definition, 598	Supercritical fluids, 373
integration with sensible heat,	Supercritical region, 416
614–635, 650–651	Superheated steam properties, 428–429
overview, 598–603	Superheated vapor, 416
practice problems, 643–644	Surroundings, energy balances, 492
table of, 850–853	Symbols
Standard state, 598	extent of reaction, 198
State of a system	general energy balance, 544
definition, 349	used in this book, 129
energy balances, 492–493	Systems
State variables, energy balances, 493	closed, 108
Static columns, 66	definition, 108
Steady-state	energy balances, 492
closed systems, energy balances	open, 108
without reactions, 541–542	pseudo steady-state, 109
energy balances, 492	quasi steady-state, 109
open systems, energy balances	steady-state, 108–110
without reactions, 546–557	unsteady-state, 110–111
processes/systems, 108–110	Systems of units. <i>See also</i> AE system
Steam tables, 427–432	of units; Conversion; SI system of
Stoichiometric coefficients, 192	units.
Stoichiometric quantity, 192	derived dimensions, 13
Stoichiometric ratios, 192	derived units, 13
Stoichiometry, definition, 190	dimensions, 13
Stoichiometry, solving problems with	fundamental dimensions, 13
balancing a reaction equation for a	fundamental units, 13
biological reaction, 193	practice problems, 82
calculating the mass of reactants, 194	units, 13
for multiple reactions, 195–197	units, 15
practice problems, 248–253	T
steps involved, 191–193	• Temperature
Stream variables for degree-of-freedom	absolute scale, 60
analysis, steady-state processes, 685	Celsius (°C) scale, 60
Streptomycin extraction, 160–162	conversions, 62–64
Subcooled liquid, 416	Fahrenheit (°F) scale, 60
Sublimation, 416	kelvin (K) scale, 60
Sublimation curve, 416	measuring, 60
Sublimation pressure, 416	practice problems, 94–95
Substrates, 243	Rankine (°R) scale, 60
Subsystems, 269–270	relative scale, 60
•	
Sugar recovery process, 284–287	standard conditions of, 60 Theoretical air (oxygen), 234
Sulfur compound vapors, enthalpies of, 870	Theoretical flame. <i>See</i> Adiabatic
Sulfuric acid, mixing, 168–171	reaction.

Thermodynamic charts, 885–886 Thin film deposition, 426–427 ThOD (theoretical oxygen demand), 245 Tie components, 175 TOD (total oxygen demand), 245 Total system volume, 421 Transient state. See Unsteady-state. Triple point, 414 Two component gas/single-component liquid systems. See also Multiphase equilibrium. condensation, 441–449 dew point, calculating, 437–440 practice problems, 476–481 saturation, 437–440 vaporization, 450–454 Two component gas/two-component liquid systems. See also Multiphase equilibrium. azeotropes, 459 bubble point, calculating, 462–465 dew point, calculating, 462–465 ideal solution relations, 455–457 K-value (vapor-liquid equilibrium ratio), 460–462 practice problems, 481–485 Raoult's law, 455–457 vapor-liquid equilibria phase diagrams, 457–459 Two-phase regions, 418 U U (internal energy), 511–513 Underspecified, 135 UNIFAC method, 376 UNIQUAC method, 376	Unsteady-state processes, energy balances example, 814–816 modeling a calcination process, 816–817 practice problems, 820–826 Unsteady-state processes, energy balances without reactions closed systems, 533–541 open systems, 557–566 Unsteady-state processes, material balances in batch distillation, 810–812 oscillating reactions, 812–814 overview, 800–804 practice problems, 820–826 without generation, 804–810 V Vacuum, 68, 72–73 Validating results, 36–37 van der Waals' equation, 25, 368 Vapor, 413 Vapor pressure, 415, 877 Vaporization at constant temperature, 417–418 definition, 416 of metals, 426–427 two component gas/single- component liquid systems, 450–454 Vapor-liquid equilibria phase diagrams, 457–459 Variables for degree-of-freedom analysis, steady-state processes, 684. See also Functions. Vendors of commercial simulators,
UNIFAC method, 376	684. See also Functions.
UNIQUAC method, 376 Unique solution, 147	Vendors of commercial simulators, 771
Units, 13. See also Conversion; Systems	Virial equations, 369
of units.	Volumetric flow rate, 78, 356
Universe, definition, 729	VAL
Unknowns, 126–132	Water properties 427, 429
Unsteady-state processes, definition, 110–111	Water properties, 427–429 Watson's equation, 523

Weight vs. mass, 22–23
Well-mixed system, 317
Wet basis, 234
Wet-bulb line, 658–659
Wet-bulb temperature, 654–655
White oil, 466–467
Work (W)
in a batch process, 732–733
electrical, 502
in energy balances, 501-507
during evaporation of a liquid,
730–731


flow, 502–503 mechanical, 502, 504–505 shaft, 502–503 Working in chemical/bioengineering, 4–10

Υ

Yield, 204–205

Z

z factor charts. *See* Compressibility charts.

